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ABSTRACT

The m-testing approach provides a general and convenient framework in which to view

and construct speci�cation tests for econometric models. Previous m-testing frameworks

only consider test statistics that involve �nite dimensional parameter estimators and in�nite

dimensional parameter estimators a�ecting the limit distribution of the m-test statistics. In

this paper we propose a new m-testing framework using both �nite and in�nite dimensional

parameter estimators, where the latter may or may not a�ect the limit distribution of the

m-test. This greatly extends the potential and 
exibility of m-testing. The new m-testing

framework can be used to test hypotheses on parametric, semiparametric and nonparametric

models. Some examples are given to illustrate how to use it to develop new speci�cation

tests.

Key Words: Consistent speci�cation test, In�nite dimensional parameter, Nonparametric

estimation, m-testing.



1. INTRODUCTION, MOTIVATION, AND HEURISTICS

A prominent theme recurring throughout Clive Granger's extensive body of work is his

concern with the adequacy of econometric models. Granger [1990] gives this concern the

status of an axiom in his general introduction to his volume Modelling Economic Series. In

fact, it is his �rst axiom:

Axiom A: Any model will only be an approximation to the generating mechanism, with

there being a preference for the best available approximation.

Granger's second axiom is:

Axiom B: The basic objective of a modelling exercise is to a�ect the beliefs | and hence

the behavior | of other research workers.

Taken together, Axioms A and B require us not merely to report the results of our

econometric modeling, but to evaluate the models as well, providing \comparisons with other

models, the results of speci�cation tests, out-of-sample evaluation, and so forth" [Granger,

1990, p. 3].

Indeed, one of the most useful approaches to speci�cation testing involves the direct

comparison of the results of two di�erent models of the same phenomenon. This approach

to speci�cation testing, pioneered by Durbin [1954], Wu [1973], and Hausman [1978], has

undergone substantial evolution and extension. Speci�cation tests have progressed from

purely parametric contexts, as in Durbin [1954], Wu [1973], Hausman [1978], Newey [1985],

and Tauchen [1985], to contexts involving both nonparametric and parametric approaches,

as in Whang and Andrews [1993] and Hong and White [1991, 1995]. Our purpose here is to

extend and unify these approaches in a way that permits hypothesis testing about parametric,

semi-parametric, and nonparametric models in a manner not previously possible, providing

new tools to aid in achieving the objective of Granger's Axiom B.

To illustrate the issues involved, consider the consistent test for the correctness of a

parametric regression model f(Xt; �) for the conditional expectation �o(Xt) = E(YtjXt)

given by Hong and White [1991, 1995], where Yt is the dependent variable, Xt is the vector

of explanatory variables and � is a �nite dimensional parameter vector. The test is based
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on the sample covariance

m̂n = n�1
Pn

t=1(�̂n(Xt)� f(Xt; �̂n))(Yt � f(Xt; �̂n)): (1.1)

Here �̂n is an appropriate estimator, such as the nonlinear least squares estimator, and �̂n is

a nonparametric series estimator for �o: The statistic m̂n estimates the covariance

mo = E[(�o(Xt)� f(Xt; �
�))(Yt � f(Xt; �

�))];

where �� = p lim �̂n: Under the null hypothesis of correct speci�cation (and only then) we

have mo = 0; as correct speci�cation implies �o(Xt) = f(Xt; �o) a:s: for some �
� = �o: Thus,

a test based on m̂n has asymptotic power one whenever f(Xt; �) is misspeci�ed.

Although Hong and White [1995, Theorem A.3] give a version of their statistic that does

not su�er from the e�ects of neglecting heteroskedasticity of unknown form, this immunity

is achieved essentially by use of a heteroskedasticity-consistent covariance matrix estimator.

An attractive alternative is to correct for heteroskedasticity of unknown form directly, using

a consistent nonparametric estimator for the conditional variance, as this may deliver better

power. Letting �o(Xt) = (var(YtjXt))
1=2 and �o = �o=�o; where �o(Xt) = E(YtjXt); we

now estimate �o nonparametrically by �̂n and �o nonparametrically, say by �̂n (e.g., as in

Robinson [1987]). The statistic of interest is now

m̂n = n�1
Pn

t=1(�̂n(Xt)� f(Xt; �̂n)=�̂n(Xt))(Yt � f(Xt; �̂n))=�̂n(Xt): (1.2)

This estimates

mo = E[(�o(Xt)� f(Xt; �
�))2=�2o(Xt)];

which is again zero only under correct speci�cation. We see that m̂n is a particular value of

mn(�; �; �) = n�1
Pn

t=1m(Zt; �; �; �);

where Zt = (X 0
t; Yt)

0 and m(Zt; �; �; �) = (�(Xt)� f(Xt; �)=�(Xt))(Yt � f(Xt; �))=�(Xt):

We distinguish between the two in�nite dimensional parameters � and �; as it turns out

that the e�ects of replacing them with �̂n and �̂n are quite di�erent: �̂n plays a key role in

determining the asymptotic distribution of a suitably scaled version of m̂n, while �̂n plays

essentially no role in determining this distribution.

Although we are motivated by consideration of (1.1) and (1.2), it is conceptually simpler

and notationally much simpler to work �rst with the general statistic mn(�̂n; �̂n; �̂n) and

then specialize. A not inconsiderable additional bene�t to this is that many other interesting

speci�cation testing procedures fall into the same framework, saving a great deal of e�ort
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that might otherwise be required in treating them. We discuss several new applications in

considerable detail, including a new test for regression error normality in a nonparametric

regression and a new test for omitted variables in nonparametric regression, as well as two

new consistent regression speci�cation tests based on (1.1) and (1.2).

To make clear the contribution of our approach and its relation to prior work, we recall

that Newey [1985] and Tauchen [1985] treated the case of \m-testing" based on the statistic

mn(�̂n);

while White [1987, 1994] treated the case

mn(�̂n; �̂n);

where �̂n is a parametric estimator that a�ects the asymptotic distribution of the test statis-

tic, and �̂n is a �nite dimensional parametric estimator not a�ecting the asymptotic dis-

tribution. Whang and Andrews [1993] achieved a substantial advance by letting �̂n be a

nonparametric estimator not a�ecting the asymptotic distribution. This framework can be

used to test parametric and semiparametric models (see Whang and Andrews [1993]).

To handle the speci�c examples above, we introduce the nonparametric estimator �̂n;

leading to

mn(�̂n; �̂n; �̂n):

This m-statistic cannot be handled within any previously studied framework (e.g., Whang

and Andrews [1993]), because �̂n plays a key role in determining its asymptotic distribu-

tion. Our goal, therefore, is to develop appropriate theory to permit us to test hypotheses

based on such statistics. A major consequence of introducing �̂n is that the distribution

and power theory for the tests of interest can di�er substantially from that previously de-

veloped. Indeed, the joint presence of �̂n; �̂n and �̂n introduces the potential for a variety of

interesting possibilities. Our framework can be used to test hypotheses about parametric,

semiparametric and nonparametric models.

Although the notation in the sections that follows is unavoidably complicated by the need

to keep separate track of �; �; and �; the basic underlying idea for developing our distribution

theory is straightforward: essentially, we just take a Taylor series expansion appropriate to

the situation at hand.

To see what is involved, we �rst replace �̂n with its limit, say �o : at each step we will

impose conditions ensuring that this has no e�ect on the asymptotic distribution of interest.

Now take a �rst order Taylor expansion around �o and �o :

mn(�̂n; �̂n; �o) = mn(�o; �o; �o) +r0
�m

o
n(�̂n � �o) +r0

�m
o
n(�̂n � �o) + rn:
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In the second term, r0
�m

o
n denotes the Jacobian of mn with respect to � evaluated at

(�o; �o; �o): The third term is a 
agrant abuse of notation, but it greatly helps us to see what

is going on. If � were �nite dimensional, then the Jacobian r0
�m

o
n of mn with respect to �

at (�o; �o; �o) could multiply (�̂n� �o) as we have written. Because � is in�nite dimensional,
what we have written is invalid; however, by using the Frechet di�erential, we get a term

that behaves essentially just as r0
�m

o
n(�̂n��o) does. Later, the Frechet notation �mo

n appears

in its place. For now, we stick with our abuse. The �nal term (rn) is a remainder.

To obtain the desired null distributions, we need to �nd the orders of the di�erent terms

under the null, rescale by the rate for the slowest converging (i.e., dominant) term(s), and

apply appropriate central limit results. Clearly, di�erent cases may arise in which the orders

of the various terms bear di�erent relationships to each other.

A particularly interesting possibility is that rn dominates, i.e., the �rst three terms in

the �rst order expansion vanish under the null hypothesis at a rate faster than rn vanishes.

In particular, this occurs for our motivating case m(Zt; �o; �o) = (�o(Xt) � f(Xt; �o))(Yt �
f(Xt; �o)) because �o(Xt) = f(Xt; �o) a:s; causing the �rst term to vanish for all n: The

terms involving r0
�m

o
n and r0

�m
o
n essentially vanish in probability at rates fast enough to

overwhelm the more slowly converging (�̂n � �o) and (�̂n � �o): We refer to cases in which

this does not happen as \�rst order", because the analysis can be based on the �rst order

Taylor expansion. Cases in which we do have this sort of degeneracy will be called \second

order", because it turns out that a second order Taylor expansion works.

The second order cases involve an approximation that acts like

mn(�̂n; �̂n; �o) =
1
2
(�̂n � �o)

0r2
�m

o
n(�̂n � �o) + rn:

Again we abuse notation. The term on the right involving r2
�m

o
n is really a second order

Frechet derivative later denoted �2mo
n: All but the dominant term have been placed in the

remainder rn: Analysis of the dominant term turns out to be straightforward using the

distribution theory for U - or V -statistics. As might be expected, the dominant term has non-

zero expectation and so must be recentered properly; estimation of the requisite recentering is

usually straightforward. Interestingly, the rate of convergence of the leading term is typically

quite rapid. In the past, this has often been viewed as a form of degeneracy, with a variety of

special measures introduced to avoid it. (See Section 2.3 below and Hong and White [1995]

for a discussion.) We view this \degeneracy" as a potential advantage to be exploited: the

rapid convergence rate leads to re-scalings that deliver statistics with better power under

both local and global alternatives.

The preceding discussion suggests that for the �rst order case we will obtain conditions
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ensuring that n1=2m̂n converges in distribution to a normal random vector with mean zero

under the null, as is usual; from this we can construct asymptotic �2 statistics in the usual

way (i.e., by forming an appropriate quadratic form in m̂n). For the second order case, we

�nd that, after recentering by Rn (say) and scaling by an (say), where an grows faster than

n1=2; an(m̂n � Rn) converges to a normal random vector with mean zero under the null.

Again, we can construct asymptotic �2 statistics.

With this heuristic picture of what we are going to do and why, we can now turn to a

rigorous development of our theory, treating �rst and second order cases separately.

2. THE BASIC FRAMEWORK

2.1 Fundamentals of M-testing

To begin, we describe the data generating process (DGP) and the estimators of interest.

Assumption A.1: (
;F ; P ) is a complete probability space on which is de�ned the stochas-
tic process fZnt : 
 ! R�g; t = 1; :::; n; n = 1; 2; :::; � 2 N ; where P is such that for each n

fZntg is independently but not necessarily identically distributed (i.n.i.d.).

Assumption A.2: For pseudo-metric spaces (�; ��) and (�; ��) suppose �̂n : 
 ! �

and �̂n : 
 ! �; n = 1; 2; :::; are measurable such that ��(�̂n; �o) !p 0 for �o 2 � and

��(�̂n; �o) !p 0 for �o 2 �: Furthermore, �̂n : 
 ! A � Rp ; p 2 N ; is measurable with

�̂n � �o
n !p 0 for some nonstochastic sequence f�o

n 2 A g:

For notational simplicity, below we let the dependence of Znt on n be implicit. Put

� = A � �� �: We consider a measurable \moment" function mnt : R
� � � ! Rq ; q 2 N ;

that satis�es

E[mnt(Zt; �o; �o; �o)] = 0 for some �o 2 A and all t = 1; :::; n; n � 1

when the model is correctly speci�ed. Under model misspeci�cation, such a moment condi-

tion does not hold generally, giving the test its power. The speci�c form taken by mnt will

be dictated by the null hypothesis of interest and the alternatives against which power is

desired. Sections 3 and 4 provide a variety of examples illustrating choice of mnt:

Throughout, we putmt(
) = mnt(Zt; 
) and �mn(
) = n�1
Pn

t=1 Emt(
):Given the i.n.i.d.

assumption and that �̂n may a�ect the convergence rate of our statistics, we de�ne the null
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hypothesis based on fmtg to be

Ho : an �mn(�o; �o; �)! 0 for some (�o; �o) 2 A � � and all � 2 �o � �

for a nonstochastic sequence fan : an !1; an=n! 0g: Local alternatives are

Han : an �mn(�
o
n; �o; �) = O(1) for some (�o

n; �o) 2 A � � and all � 2 �o � �:

We specify the global alternative as

HA : k �mn(
)k � c > 0 for all 
 2 � and all n su�ciently large.

Note that Han can be generated by the functional form of fmtg and/or sequence f�o
ng:

The factor an is determined by fmtg and �̂n: In �rst order m-testing, an = n1=2; for second

order, an = n1=2+� for some � > 0: These hypotheses may or may not coincide with the

null hypothesis originally of interest (say H�
o ) and its alternatives. In �rst order m-testing,

there is often a discrepancy between Ho and H�
o : In second order, however, Ho generally

coincides with H�
o ; thus delivering consistent tests. These issues are addressed further in the

applications of Sections 3 and 4.

Stochastic equicontinuity plays a key role in ensuring that �̂n has no asymptotic e�ect.

De�nition 2.1 [Stochastic Equicontinuity]: Let (
;F ; P ) be a probability space and (�; ��)

be a pseudo-metric space. The stochastic process fQn : 
� �! Rqg; n = 1; 2; :::; q 2 N ; is

stochastically ��-equicontinuous at �o 2 � if for each � > 0 there exists � > 0 such that

limn!1 P � �sup�2B(�o ;�) kQn(�; �)�Qn(�; �o)k > �
�
< �;

where P � is outer probability and B (�o ; �) = f� 2 � : ��(�; �o) � �g:

Primitive conditions can be found in Andrews [1994]; Theorem 3.6 below also provides an

alternative method to ensure stochastic equicontinuity.

Assumption A.3: (a) Given (�o
n; �o) 2 A � � and a nonstochastic sequence fan : an !

1; an=n! 0g; an(mn(�
o
n; �o; �)� �mn(�

o
n; �o; �)) is stochastically ��-equicontinuous at �o 2 �;

and (b) an �mn(�
o
n; �o; �̂n) = an �mn(


o
n) + oP (1); where 


o
n = (�o

n; �o; �o):

We also make use of the concept of uniform equicontinuity (cf. Billingsley [1986]).
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De�nition 2.2 [Uniform Equicontinuity]: Let (�; ��) be a product pseudo-metric space. For

each n; let Qn : � ! R
q � R

k ; q; k 2 N ; be a given mapping: Then fQng is uniformly

equicontinuous on �with respect to �� if for each � > 0 there exists � > 0 such that

lim supn sup(
1;
2)2Bn (�) kQn(
1)�Qn(
2)k < �;

where B n(�) = f(
1; 
2) 2 �� � : ��(
1; 
2) � �g:

Assumption A.4: For each n denote 
̂n = (�̂n; �̂n; �̂n): Let �� be a product pseudo-metric

on � such that ��(
̂n; 

o
n) !p 0: (a) For each 
 2 �; �mn(
) is O(1) and is uniformly

equicontinuous on � with respect to ��; (b) fmt(
)g obeys a weak uniform law of large

numbers (ULLN) on �, i.e., sup
2� kmn(
)� �mn(
)k !p 0:

Weak ULLN's are given by Andrews [1991a], Newey [1991], and White and Wooldridge

[1991].

2.2 First Order M-testing

We now treat the case in which the �rst order terms of a Taylor expansion determine the

behavior of our test statistics. The next two assumptions permit a �rst order expansion.

Assumption B.1: (a) For each (�; �) 2 ���; mt(�; �; �) is continuously di�erentiable a:s:
on A and �mn(�; �; �) is continuously di�erentiable on A ; (b) for each 
 2 �, r� �mn(
) =

n�1
Pn

t=1 Er�mt(
) is O(1) and is uniformly equicontinuous on � with respect to a product

pseudo-metric �� such that ��(
̂n; 

o
n)!p 0; and (c) fr�mt(
)g obeys a weak ULLN on �:

Assumption B.2: (a) For each � 2 �; mt(�
o
n; �; �) is Frechet di�erentiable with respect to

�� a.s. on a neighborhood �o of �o such that E(�mt(� � �o; 

o
n)) < 1 for all � 2 �o; (b)

there exist some � > 0 and Dnt : R
� ! R+ ; n�1

Pn
t=1EDnt(Zt) = O(1); such that

kmt(�
o
n; �; �)�mt(�

o
n; �o; �)� �mt(� � �o;�

o
n; �o; �)k � Dnt(Zt)��(�; �o)

1+� a:s:

for all � 2 �o and all � 2 �; (c) ��(�̂n; �o) = oP (n
�1=2(1+�)):

The product pseudo-metric �� in B.1 may di�er from that of A.4. In B.2, �mt(���o;�o
n; �o; �)

is the Frechet di�erential of mt(�
o
n; �; �) with respect to �� at �o with increment � � �o,
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corresponding to r0
�m

o
n(�̂n � �o) in Section 1. The inequality in B.2(b) controls the Taylor

series remainder. For fmtg linear in �; set � =1:

Assumption B.3: For each n denote �mo
n(� � �o; �) = n�1

Pn
t=1 �mt(� � �o;�

o
n; �o; �) and

� �mo
n(���o; �) = E�mo

n(���o; �): (a) n1=2 sup�2� k�mo
n(�̂n��o; �)�� �mo

n(�̂n��o; �)k !p 0; (b)

n1=2(� �mo
n(�̂n� �o; �̂n)� � �mo

n(�̂n� �o; �o))!p 0; and (c) n1=2k� �mo
n(�̂n� �o; �o)�Vnk = oP (1);

where Vn = n�1
Pn

t=1 vnt(Zt; 

o
n) and vnt : R

� � �! R
q is measurable with n1=2EVn ! 0:

For each � 2 �, �mo
n(�̂n � �o; �) is asymptotically a second order V -statistic, so B.3(a) is

a uniform V -statistic projection. B.3(b) ensures that replacing �̂n with �o does not a�ect

the limiting distribution of � �mo
n(�̂n � �o; �̂n): Ensuring B.3(c) typically involves an \under-

smoothing" procedure to make the bias of �̂n vanish faster than its variance.

Assumption B.4: n1=2(�̂n � �o
n) = n1=2Sn + oP (1); where Sn = n�1

Pn
t=1 snt(Zt; �

o
n);

snt : R
� � A ! R

p is measurable, and n1=2ESn ! 0:

This includes most parametric and semiparametric estimators that are n1=2-consistent and

asymptotically normal. In parametric maximum likelihood estimation, for example, snt is

the score function premultiplied by the inverse of the information matrix.

Assumption B.5: J
o�1=2
n n1=2Wn !d N(0; Iq);whereWn = mn(


o
n)� �mn(


o
n)+r0

� �mn(

o
n)Sn+

Vn and Jo
n is a q � q nonstochastic O(1) uniformly positive de�nite matrix.

This ensures that n1=2Wn is nondegenerate. It occurs when � �mo
n(�� �o; �o) = OP (n

�1=2); so

that this functional of �̂n achieves the parametric rate. Here, n
1=2Vn; n

1=2(mn(

o
n)� �mn(


o
n))

and n1=2r0
� �mn(


o
n)Sn jointly determine the limiting distribution of n1=2m̂n: This possibility

arises when � �mo
n(�̂n � �o; �o) can be approximated asymptotically as a weighted integral of

�̂n � �o; providing additional smoothing. See Andrews [1991b, Section 4], Goldstein and

Messer [1992], H�ardle and Stoker [1989], Lavergne and Vuong [1996], Newey [1994], Powell,

Stock and Stoker [1989], Robinson [1988] and Stoker [1989].

Assumption B.6: For each n there exists a measurable Ĵn : 
 ! Rq � Rq such that

Ĵn�Jn !p 0; where Jn is a q� q nonstochastic O(1) uniformly positive de�nite matrix with
Jn = Jo

n under Han;where J
o
n is as in B.5.
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We now state the �rst main result, a substantive extension of Whang and Andrews [1993].

Theorem 2.3: De�ne Mn = nm̂0
nĴ

�
n m̂n; where m̂n = mn(
̂n): (i) Suppose A.1-A.3 (with

an = n1=2) and B.1-B.6 hold. Then under Han with an = n1=2;

Mn !d �2q(�
o
n);

where �2q(�
o
n) is a chi-square distribution with q degrees of freedom and noncentrality �on =

n �m0
n(


o
n)J

o�1
n �mn(


o
n); (ii) Suppose A.1,A.2,A.4 and B.6 hold. Then under HA and for any

nonstochastic sequence fCn = o(n)g;

P [Mn > Cn]! 1:

When the limiting random variable depends on n as in (i) above, the convergence in distri-

bution is as de�ned by White [1994, De�nition 8.3]. Theorem 2.3 implies that Mn is able

to detect the class of local alternatives converging to the null at the parametric rate n�1=2:

Compared to Whang and Andrews [1993], who consider only the in�nite dimensional pa-

rameter estimators that do not a�ect the limit distribution of the m-test statistic, we permit

use of in�nite dimensional parameter estimators that may or may not a�ect the limit distri-

bution of interest. This extends the scope of m-testing to test parametric, semiparametric,

and nonparametric models against various alternatives, as illustrated by the examples in

Sections 3 and 4 below.

2.3 Second Order M-testing

We now consider the case in which second order terms dominate in our Taylor approxi-

mation. To characterize the relevant cases, we use the following de�nition.

De�nition 2.4 [Degenerate Moment Function]: Let A.1, B.1(a) and B.2(a) hold. Then

fmtg is an-degenerate at 
on = (�o
n; �o; �o) 2 � if there exists a nonstochastic sequence fan :

an=n
1=2 !1; an=n! 0g such that (a) an(mn(


o
n)� �mn(


o
n))!p 0; (b) (an=n

1=2)r� �mn(

o
n)!

0; and (c) an� �m
o
n(� � �o; �o) ! 0 for all � 2 �o � �; where �o contains a neighborhood of

�o:

Under Ho; mt(
o) = 0 a:s; r� �mn(
o) = 0 and � �mo
n(� � �o; �o) = 0 for all � 2 �o and all

t; n: Assumption B.5 thus fails. Consequently, Theorem 2.3 does not apply to DMF's.
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The examples at the outset of Section 1 are DMF's. Hong andWhite [1995] give numerous

other examples relevant for testing speci�cation hypotheses about models of conditional

densities or expectations. In the past, the standard response to degeneracy has been to

remove it, e.g., by sample splitting (Yatchew [1992], Whang and Andrews [1993, Section

5]), use of nonparametric estimators not nesting the parametric model (Wooldridge [1992]),

or special weightings (Fan and Gencay [1993], Lee [1988] and Robinson [1991]). These

approaches base the limiting distribution of the test statistics essentially on modi�ed �rst

order terms. As it turns out, these approaches do not fully exploit the possible e�ciency

gains provided by the degeneracy. In addition, each has features one may consider drawbacks:

sample-splitting uses relatively ine�cient nonparametric estimators; non-nested approaches

require slow convergence of the nonparametric estimator to the true function; and weighting

may introduce unnecessary noise or make the asymptotic covariance matrix depend on a

nuisance parameter, the choice of which may a�ect size and power in �nite samples. Further,

these procedures may work only in certain cases. For example, non-nested testing and

deterministic weighting may not apply when �o is constant under the null, as in testing

heteroskedasticity.

We therefore part with tradition and avoid these drawbacks by basing tests on the dom-

inant second order terms. As our statistics are quadratic forms, CLT's for generalized

quadratic forms (e.g., de Jong [1987]) or degenerate U -statistics (e.g., Hall [1984]) apply.

In addition to being straightforward, a main advantage of our approach is that it improves

asymptotic power under both local and global alternatives, as will be seen below.

We now introduce two conditions that permit a two term Taylor expansion.

Assumption C.1: (a) For each (�; �) 2 ���; mt(�; �; �) is twice continuously di�erentiable
a:s: on A ;with kr0

�mt(�)k and kr2
�mt(�)k dominated byDnt : R

� ! R
+ ; n�1

Pn
t=1 EDnt(Zt) =

O(1); (b) with fang as in Assumption A.3, ann�1=2(r0
�mn(�

o
n; �̂n; �̂n)�r0

� �mn(�
o
n; �̂n; �̂n))!p

0; and (c) ann
�1=2(r0

� �mn(�
o
n; �̂n; �̂n)�r0

� �mn(

o
n))!p 0:

This ensures that the �rst two terms in the Taylor expansion of anm̂n around �o
n do not

a�ect its limit distribution.

Assumption C.2: (a) For each � 2 �; mt(�
o
n; �; �) is twice Frechet di�erentiable with

respect to �� a:s: on a neighborhood �o of �o and there exist some � > 0 and Dnt : R
� !
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R
+ ; n�1

Pn
t=1EDnt(Zt) = O(1); such that for all � 2 �o and � 2 �;

kmt(�
o
n; �; �)�mt(�

o
n; �o; �)� �mt(� � �o;�

o
n; �o; �)� �2mt(� � �o;�

o
n; �o; �)k

� Dnt(Znt)��(�; �o)
2+� a:s:;

(b) with fang as in Assumption A.3 and � as in (a), ��(�̂n; �o) = oP (a
�1=(2+�)
n ):

Here, �2mt(���o;�o
n; �o; �) corresponds to

1
2
(���o)0r2

�m
o
n(���o) in Section 1. The inequality

imposes a rate condition on the remainder term of the Taylor expansion.

Assumption C.3: For (�; �) 2 �o � � denote �2mo
n(� � �o; �) = n�1

Pn
t=1 �

2mt(� �
�o;�

o
n; �o; �) and �

2 �mo
n(�� �o; �) = E�2mo

n(�� �o; �): Let fang be as in Assumption A.3. (a)
ansup�2�k�2mo

n(�̂n � �o; �)� �2 �mo
n(�̂n � �o; �)k !p 0; (b) �mo

n(�̂n � �o; �)� � �mo
n(�� �o; �) +

�2 �mo
n(�̂n � �o; �) =Wn(�) + oP (a

�1
n ) uniformly in � 2 �;where Wn(�) = n�2

Pn
t=1

Pn
s=1

Wnts(Zt; Zs; �) and Wnts : R
� � R� � �! Rq is measurable; (c) an(Wn(�̂n)� EWn(�̂n)) =

an(Wn(�o) � EWn(�o)) + oP (1); (d) anEWn(�̂n) = anEWn(�o) + oP (1) and an� �m
o
n(�̂n �

�o; �̂n) = an� �m
o
n(�̂n � �o; �o) + oP (1):

For each � 2 �; �2mo
n(�̂n � �o; �) is asymptotically a third order V -statistic, so C.3(a)

is a uniform V -statistic projection. C.3(b) says that �mo
n(�̂n � �o; �) � � �mo

n(�̂n � �o; �) +

�2 �mo
n(�̂n� �o; �) is asymptotically a generalized quadratic form Wn(�) (see de Jong [1987]).

When Wnts(Zt; Zs; �) =Wn(Zt; Zs; �); Wn(�) is a second order V -statistic. In �rst order m-

testing, the term �mo
n(�̂n� �o; �)� � �mo

n(�̂n� �o; �) vanishes (cf. B.3(a)), but here it matters.
Generically, it is of the same order as the second term in C.3(b). In speci�c cases, the limiting

distribution of the m-test statistic may be determined by: (i) the �rst term only (when fmtg
is linear in �; as in (1.1) and (1.2)); (ii) the second term only; or (iii) both jointly (e.g., Hong

and White [1993, 1995]). C.3(b) provides a useful decomposition of DMF's; there may exist

alternative decompositions, leading to di�erent tests. For example, Hong and White [1991]

show that di�erent decompositions for (1.1) lead to a nested test (Hong and White [1991])

and a non-nested test (Wooldridge [1992]). C.3(c) ensures that replacing �̂n with �o does

not matter asymptotically. While anEWn(�o) dominates an(Wn(�o) � EWn(�o)), it can be

subtracted from anm̂n so that an(Wn(�o) � EWn(�o)) becomes dominant, a \recentering"

procedure. This can have an appealing interpretation. For example, with �̂n a nonparametric

series estimator, Hong and White [1995] interpret recentering as subtracting the degrees of

freedom from a �2 random variable.
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Assumption C.4: n1=2(�̂n � �o
n) = OP (1):

We need not know the structure of �̂n; as it will not a�ect the limit distribution of the test.

Assumption C.5: For fang as in Assumption A.3, Jo�1=2
n an(Wn(�o)�EWn(�o))!d N(0; 1)

as an !1; where Jo
n is a q � q nonstochastic O(1) uniformly positive de�nite matrix.

Given the i.n.i.d. assumption, we generally have var(Wnts(Zt; Zs)jZt) = var(Wnts(Zt; Zs)jZs) =

0 for t 6= s: Thus, Wn(�o) � EWn(�o) is a degenerate U -statistic. Here, CLT's for non-

degenerate U -statistics (e.g., Power, Stock and Stoker [1989], Lavergne and Vuong [1996])

do not apply. Instead, we must use CLT's for degenerate generalized quadratic forms (or

degenerate U -statistics). For CLT's for quadratic forms, see (e.g.) de Jong [1987], Hall

[1984], Mikosch [1991], Rotar [1973] and Whittle [1964].

Assumption C.6: (a) Ĵn : 
! R
q � R

q is measurable such that Ĵn � Jn !p 0; where Jn

is a q � q nonstochastic O(1) uniformly positive de�nite matrix with Jn = Jo
n under Han;

where Jo
n is as in C.5; (b) R̂n : 
 ! R

q is measurable such that an(R̂n � Rn) !p 0; where

fang is as in A.3 and Rn is a q� 1 nonstochastic vector with Rn = EWn(�o) under Han and

kRnk = o(k �mn(

o
n)k) under HA:

Our second main result can now be given.

Theorem 2.5: Suppose fmtg satis�es De�nition 2.4 with fang as in A.3. De�ne Mn =

a2n(m̂n � R̂n)
0Ĵ�n (m̂n � R̂n); where m̂n = mn(
̂n): (i) Suppose A.1-A.3 and C.1-C.6 hold.

Then under Han;

Mn !d �2q(�
o
n);

where �on = a2n �m
0
n(


o
n)J

o�1
n �mn(


o
n): (ii) Suppose A.1, A.2, A.4 and C.6 hold. Then under HA

and for any nonstochastic sequence fCn = o(a2n)g;

P [Mn > Cn]! 1:

To interpret Han for the DMF's, we consider the case in which Han is generated by the

sequence f�o
ng; where �o

n ! �o; and �o is as in Ho: Recall that for DMF's, �mn(
o) = 0 and

r� �mn(
o) = 0, so a two term Taylor expansion gives

an �mn(
on) =
1
2
an(�o

n � �o)0r2
� �mn(
o)(�o

n � �o) + o(anjj�o
n � �ojj2):
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It follows that Mn has nontrivial power against H�
an : �o

n � �o = ca
�1=2
n for some c 6= 0:

Obviously, this local alternative converges to Ho faster than n�1=4 because an=n1=2 ! 1:

We thus achieve an e�ciency improvement in terms of local power, compared to the various

previous approaches that avoid rather than exploit the degeneracy. For these approaches,

typical local alternatives are n�1=4 (see Hong and White [1993] for an example):

Theorem 2.5(i) shows that Mn cannot detect local alternatives H
�
an of O(n

�1=2); because

an=n ! 0: In other words, the second order tests are less e�cient than those that are able

to detect local alternatives vanishing at the parametric rate n�1=2: However, this conclu-

sion is speci�c to the local power criterion. Using other appropriate e�ciency criteria, the

conclusion can be di�erent for second order m-tests. Speci�cally, we can apply Bahadur's

[1960] asymptotic slope criterion, suitable for comparing two large sample tests under �xed

alternatives. The basic idea is to hold power �xed and compare the resulting test sizes.

Bahadur's relative e�ciency is the limit of the ratio of the sample sizes required by two tests

to achieve the same asymptotic signi�cance level (p-value) under a �xed alternative. This

criterion has been used by (e.g.) Geweke [1981a, 1981b] among others.

For parametric testing, the asymptotic slope is the rate at which minus twice the loga-

rithm of the asymptotic signi�cance level of the test statistic tends to in�nity as n increases.

Because the rate of divergence of second order m-tests is di�erent from that of the paramet-

ric tests, we cannot use Bahadur's approach directly. Instead, we extend it appropriately.

Given Mn !d �2q under Ho; the asymptotic signi�cance level of Mn is 1� Fq(Mn); where Fq

is the cdf of �2q: We now de�ne

Kn = �2 ln(1� Fq(Mn)):

Because ln(1 � Fq(�)) = �1
2
�2(1 + o(1)) as � ! +1 (cf. Bahadur [1960, Section 5]), it

follows from Theorem 2.5(ii) that

Kn=a
2
n = �m0

n(

o
n)J

�1
n �mn(


o
n) + oP (1):

Following Bahadur, we call �m0
n(


o
n)J

�1
n �mn(


o
n) the \asymptotic slope" of the sequence of

tests based on fMng under HA: Obviously, a larger asymptotic slope or a faster rate an

implies a faster rate at which the asymptotic signi�cance level decreases to zero as n!1:

For parametric tests and �rst order m-tests, an = n1=2: For second order m-tests, however,

an=n
1=2 ! 1: For example, Hong and White [1995] have an = n1=2+� for � > 0: Therefore,

second order m-tests are more e�cient than parametric tests or �rst order m-tests under

�xed alternatives in the sense that Bahadur's relative e�ciency is in�nite. This conclusion

is in sharp contrast to that reached under Han:
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3. APPLICATION TO NONPARAMETRIC SERIES ESTIMATION

3.1a First Order M-testing: Results with Fixed Regressors

We �rst apply Theorem 2.3 to robust nonparametric series regressions. For simplicity

and convenience, we assume the following DGP.

Assumption D.1: (a) For each n; Yt = �o(Xt) + �o(Xt)�t; t = 1; :::; n; where �o 2 Cr(X)
and X � R

d contains the support of Xt; r; d 2 N : Suppose fXtg are nonrandom and

f�tg are independently and identically distributed (i.i.d.) with E(�t) = 0 and E(�2t ) = 1;

(b) �o : X ! R+ is constant:

Here fXtg (hence fYtg) may implicitly depend on n: The analysis extends to random re-

gressors (see Andrews [1991b] or Gallant Souza [1991]). Homoskedasticity (D.1(b)) can be

relaxed; we do so in Section 3.2.

A nonparametric series estimator for �o is �̂n = argmin�2�n
Qn(Z

n; �); where Qn :


��n ! R; Zn = (Z1; :::; Zn); Zt = (Yt; X
0
t)
0; and

�n = f� : X ! R j �(x) =
Ppn

j=1 �j j(x); �j 2 Rg (3.1)

for given f j : X ! Rg and pn 2 N : We take Qn(Z
n; �) = n�1

Pn
t=1 �(Yt � �(Xt)); with

� : R ! R: If � is convex with derivative '; then �̂n(�) =  0np�̂n solves

n�1
Pn

t=1  np(Xt)'(Yt � �̂n(Xt)) = 0; (3.2)

where  npn(Xt) = f 1(Xt); :::;  pn(Xt)g0 and �̂n are pn � 1 vectors.

Andrews [1991b] treats least squares. We complement Andrews by giving new results for

robust estimators. We follow Yohai and Maronna [1979], Mammen [1989] by restricting ':

Assumption D.2: ' : R ! R is a monotonic bounded function with three bounded

derivatives such that E'(�t) = 0 and E'0(�t) > 0.

Monotonicity ensures a unique solution for �̂n: Boundedness ensures robustness to outliers;

it rules out least squares. Di�erentiability is for convenience.

Denote D�� = (@�1=@x�11 ) � � � (@�d=@x�dd )�; where � 2 Cr(X) and � = (�1; :::; �d)
0 is a d�1

vector of nonnegative integers. The order of D�� is j�j = Pd
i=1 �i � r: When j�j = 0; put

D0� = �: We use certain Sobolev spaces.
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De�nition 3.1 [Sobolev Space]: Let � 2 Cr(X); r 2 N : For 0 � s � r; de�ne �s;1(�1; �2) =

k�1 � �2ks;1 ; where k�ks;1 = maxj�j�s supx2X
��D��(x)

�� : When s = 0; write �1 = �0;1:

De�ne the Sobolev spaces

Ws
1;r(X) =

n
� 2 Cr(X) : k�ks;1 <1

o
; 0 � s � r; W1;r(X) =W0

1;r(X):

Assumption D.3: Let �min(A) denote the minimum eigenvalue of square matrix A and

	n = f 0npn(X1); :::;  
0
npn(Xn)g0: Suppose (a) �min(	

0
n	n)!1; (b) putting �npn = sup1�t�n

f 0npn(Xt)(	
0
n	n)

� npn(Xt)g; then max(n1=3[ln(n)]2=3; pn�npn)! 0; (c) max0�j�pn k jks;1 �
Bs(pn); 0 � s � r; where Bs : N ! R

+ is nondecreasing.

Assumption D.3(a) is key for consistency of �̂n for �o: D.3(b) is a strengthened Lindeberg

condition, implying p2=n ! 0: We allow B0(pn) to increase with pn: For such series as B-

splines, Gallant's [1981] Fourier Flexible Form (FFF) and the trigonometric series, B0(�) is
bounded if X is. For 1� s � r; Bs(pn) grows with pn generally.

Assumption D.4: There exists a sequence of pn � 1 nonstochastic vectors f�ong such

that �on(�) =  0npn(�)�on 2 Ws
1;r(X) and (a) �1(�on; �o) = o(n�1=2); or (b) �s;1(�on; �o) =

o(n�1=2(1+�)); 0 � s � r; for � as in B.2(a).

Given f jg; D.4 is ensured by imposing smoothness on �o with appropriate choice of pn:

For example, if f jg is the Fourier series, �o 2 Cr(X); X = (0; 2�)d; then there exists

�on(�) =  0npn(�)�on 2 Ws
1;r(X); 0 � s < r; such that �s;1(�on; �o) = o(p

�(r�s)=d+�
n ) for any

� > 0 (e.g. Edmunds and Moscalelli [1977]). Hence, D.4(a) holds if pn = nd=2r+� and D.4(b)

holds if pn = nd=2(r�s)(1+�)+�:

We now establish consistency and asymptotic normality for �̂n.

Proposition 3.2 [Consistency]: Suppose D.1-D.2, D.3(a) and D.4(a) hold, and pn ! 1;

pn�npn ! 0. Let �̂n be as in (3.2). Then n�1
Pn

t=1(�̂n(Xt) � �o(Xt))
2 = OP (pn=n) and

jj�̂n � �onjj = OP (p
1=2
n =�

1=2
min(	

0
n	n)):

Proposition 3.3 [Normality]: Suppose D.1-D.3(a,b) and D.4(a) hold. Let Gnpn be a sequence

of pn � q nonstochastic matrices such that Ion = G0
npn(	

0
n	n)

�GnpnE'
2(�t)=E

2'0(�t) is a

q � q uniformly nonsingular matrix. Let vnt(Zt) = G0
nt(	

0
n	n)

� npn(Xt)'(�t)=E'
0(�t). Then
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I
o�1=2
n G0

npn(�̂n � �on) = I
o�1=2
n

Pn
t=1 vnt + oP (1); and

Io�1=2n G0
npn(�̂n � �on)!d N(0; Iq):

This complements Andrews [1991b, Theorem 1(a)]. We will approximate � �mo
n(�̂n � �o; �o)

as Go0
np(�̂n � �on) for some G

o
npn: For this, the following is appropriate.

Assumption D.5: (a) For each � 2 � and � 2 �o; � �m
o
n(���o; �) = n�1

Pn
t=1 gnt(Xt; �)(�(Xt)�

�o(Xt)); where gnt : X�� ! Rq and n�1
Pn

t=1 gnt(Xt; �o)gnt(Xt; �o)
0 is a q�q O(1) uniformly

positive de�nite matrix; (b) there exist some � > 0 and Dnt : X ! R+ ; n�1
Pn

t=1Dnt(Xt) =

O(1); such that for all x 2 X and �1; �2 2 �; kgnt(x; �1)� gnt(x; �2)k � Dnt(x)
1=2��(�1; �2)

�;

and (c) ��(�̂n; �o) = oP (p
�1=2�
n ):

Assumption D.5(a) is a \smoothness" (Goldstein and Messer [1992, De�nition 3.2]) or \full

mean" (Newey [1994, Assumption 3.5]) condition. D.5(b,c) ensure B.3(b).

The main result of this section follows.

Theorem 3.4: Suppose Assumptions A.2 (for �; �), A.3, B.1, B.3(a), B.4, B.5 with

vnt(Zt) = Go0
npn(	

0
n	n=n)

� npn(Xt)'(�t)=E'
0(�t); B.6, D.1-D.3(a,b), D.4-D.5 hold. De�ne

Mn = nm̂0
nĴ

�
n m̂n; where m̂n = mn(�̂n; �̂n; �̂n) and �̂n = �̂n as in (3.2). Suppose either (a)

fmtg is linear in �; or (b) B.2(a,b) with (�; ��) = (Ws
1;R(X); �s;1), and D.3(c) hold, and

n1=2(1+�)pnBs(pn)=�
1=2
min(	

0
n	n)! 0; where � is as in B.2(a). Then (i) under Ho;

Mn !d N(0; 1);

(ii) under HA and for any nonstochastic sequence fCn = o(n)g;

P [Mn > Cn]! 1:

Hence, asymptotic n1=2-normality is attainable, with �̂n a series m-estimator. We omit

treatment of local alternatives for the sake of brevity.

3.1b First Order M-testing: Application to Testing Normality

We now apply Theorem 3.4 to construct a new test for normality of the regression error

of a nonparametric regression. For this purpose, we use the following moment vector:

mt(�; �; �) = f(Yt � �(Xt))3; (Yt � �(Xt))4 � 3�4g0;
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where (�; �) = (�2; �); and �o = �2o is the unconditional variance of the regression error:

Here we recognize quantities with expectations proportional to the standard measures of

skewness and excess kurtosis. White [1982] shows that the vanishing of these two moments is

necessary and su�cient for validity of the information matrix equality when estimating the

mean and variance of a normal random variable using maximum likelihood. Thus, testing for

skewness and excess kurtosis gives an information matrix test for normality. Alternatively,

Bera and Jarque [1982] obtain a normality test based on these moments by nesting the

normal within the Pearson family. This example clearly demonstrates a typical feature of

�rst order m-testing: the hypothesis H�
o originally of interest (normality) does not exactly

coincide with the null hypothesis Ho tested (absence of skewness and excess kurtosis), as

there are non-normal distributions with no skewness and excess kurtosis. It is for this reason

that �rst order m-testing often fails to deliver consistent tests against H�
o :

We have the following new result.

Theorem 3.5 [Testing for Normality]: Suppose for each n; (a) Yt = �o(Xt) + �t; where

Xt = (2t � 1)=2n; t = 1; :::; n; and �t is i.i.d. with E(�t) = 0; E(�2t ) = �2o ; (b) �o 2 Cr(0; 1)
for some r > 2; (c)  j(x) =

p
2 cos(j � 1)�x; j = 1; 2; :::; (d) ' satis�es D.2; and (e)

p4n=n! 0; p2r��n =n!1 for any arbitrarily small � > 0:

Put �̂2n = n�1
Pn

t=1 �̂
2
t and �̂t = '(�̂t)=(n

�1Pn
t=1 '

0(�̂t)); where �̂t = Yt � �̂n(Xt); with �̂n

as in (3.2). De�ne Mn = nm̂0
nĴ

�1
n m̂n; m̂n = n�1

Pn
t=1(�̂

3
t ; �̂

4
t � 3�̂4n)

0; and

Ĵn =

"
Ĵ11 Ĵ12

Ĵ12 Ĵ22

#
;

where Ĵ11 = 15�̂6n�6�̂2nn�1
Pn

t=1 �̂
3
t �̂t+9�̂

4
nn

�1Pn
t=1 �̂

2
t ; Ĵ12 = �3�̂2nn�1

Pn
t=1 �̂

4
t �̂t+18�

4
nn

�1Pn
t=1 �̂

2
t �̂t;

and Ĵ22 = 24�̂8n: Then (i) under Ho;

Mn !d �22;

(ii) under HA; if E(�6t ) <1, then for any nonstochastic sequence fCn = o(n)g;

P [Mn > Cn]! 1:

Compared to Bera and Jarque's [1982] test, our test is insensitive to model misspeci�cation

for �; because we use a nonparametric model rather a parametric model. A similar result

holds for more general regression designs; we omit this for brevity.

3.2 Second Order M-testing
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Next, we apply Theorem 2.5 to give a new consistent speci�cation test for parametric

models in the presence of heteroskedasticity of unknown form, as motivated us at the outset.

The following parametric speci�cation applies.

Assumption E.1: Let fXtg be a nonstochastic sequence with vn ) v; vn(B ) = n�1
Pn

t=1 1[Xt 2
B ]; B � R

d : For each x 2 X; f(x; �) : A ! R is twice continuously di�erentiable on A ; with

jf(x; �)j ; kr�f(x; �)k2 and kr2
�f(x; �)k dominated by functions integrable with respect to v:

The null hypothesis originally of interest (correct model speci�cation) is

H�
o : v[f(X;�o) = �o(X)] = 1 for some �o 2 A

for �o as in Assumption D.1, and the global alternative is

H�
A : v[f(X;�) 6= �o(X)] > 0 for all � 2 A :

Using a nonparametric series estimator for �o; Hong and White [1995, Theorem A.3] propose

a consistent test for H�
o based on (1.1) achieving robustness to heteroskedasticity through

use of a heteroskedasticity consistent covariance matrix estimator. This limitation can be

avoided by using

mt(�; �; �) = (�(Xt)� f(Xt; �)=�(Xt))(Yt � f(Xt; �))=�(Xt); (3.3)

where (�; �) = (�=�; �): Observe that at (�o; �o) = (�o=�o; �o); mn(�; �o; �o) = 0 if and only

if � = �o under H
�
o : Hence, tests based on (3.3) are consistent against H�

o . Because (3.3) is

degenerate at 
o, Theorem 2.5 applies.

Using �n as in (3.1), we form an adaptive nonparametric least squares estimator for �o as

�̂n = argmin�2�n
n�1

Pn
t=1(Yt=�̂n(Xt)� �(Xt))

2: (3.4)

where �̂n is a nonparametric estimator for �o: To verify that using �̂n in place of �o has no

asymptotic e�ect, we use the following uniform convergence result, extending a method of

Hall [1988, 1989] from a �nite dimensional space to an in�nite dimensional space. This can

also be used to verify stochastic equicontinuity.

Theorem 3.6: Let (
;F ; P ) be a complete probability space and � = f� : X � R
d !

[c; c�1] j j�(x1) � �(x2)j � �kx1 � x2k for any x1; x2 2 Xg;where 0 < � < 1 and X is

18



bounded, d 2 N : For each n suppose �n is a compact subset of �; and Qn : 
 � �n ! R is

a stochastic mapping such that EQn(�) = 0 for each � 2 �n:

Suppose (a) for each pair �; � > 0; sup�2�n
P [jQn(�)j > �] � C1n

��; and (b) for each

� > 0; there exists �1 = �1(�) > 0 such that E sup(�1;�2)2Bn (�n) jQn(�1)�Qn(�2)j � Cn��;

where B n(�n) = f(�1; �2) 2 �n � �n : �1(�1; �2) < �n = n��1g; then for each pair �; � > 0;

P
�
sup�2�n

jQn(�)j > �
� � C2n

��:

Assumption D.1: (b0) �o 2 � = f� : X ! [c; c�1] j j�(x1)� �2(x2)j � �kx1 � x2k for any
x1; x2 2 Xg ; where 0 < � <1 and X � R

d is bounded; (c) all moments of �t are �nite.

Assumption E.2: �̂n : 
! � is measurable such that �1(�̂n; �o) = o(min[p
�1=2
n ; (pn=n)

1=2+�])

for any arbitrarily small � > 0:

Assumption E.3: For �npn as in D.3, �npn ! 0:

Assumption E.4: There exists a nonstochastic sequence f�ong such that �on(�) =  0npn(�)�on 2
W1;r(X) and �1(�on; �o) = o(p

1=2
n =n1=2):

We now state a CLT for the quadratic form of f npn(Xt)�tg in the presence of �:

Theorem 3.7: Suppose D.1(a,b0; c), D.3(a) and E.2-E.3 hold. Let pn ! 1 as n ! 1:

De�ne Wn(�) =
Pn

t=1

Pn
s=1Wnts(�);where

Wnts(�) = (�o(Xt)=�(Xt))�t 
0
npn(Xt)(	

0
n	n)

�1 npn(Xs)�s(�o(Xs)=�(Xs)):

Then

(Wn(�̂n)� pn) =(2pn)
1=2 !d N(0; 1):

This is obtained by �rst showing p
�1=2
n (Wn(�̂n)�Wn(�o))!p 0 using Theorem 3.6 and then

showing (Wn(�o)� pn)=(2pn)1=2 !d N(0; 1) using de Jong's [1987] CLT for quadratic forms.

A new heteroskedasticity-insensitive test complementing Hong and White [1995] follows.

Theorem 3.8: Suppose C.4, D.1(a,b0;c), D.3(a) and E.1-E.4 hold. De�ne Mn = (nm̂n �
pn)=(2pn)

1=2;where m̂n = n�1
Pn

t=1(�̂n(Xt)�f(Xt; �̂n)=�̂n(Xt))(Yt�f(Xt; �̂n))=�̂n(Xt); with

�̂n as in (3.4). Let pn !1 as n!1: Then (i) under H�
o ;

Mn !d N(0; 1);
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(ii) under H�
A and for any nonstochastic sequence fCn = o(n=p

1=2
n )g;

P [Mn > Cn]! 1:

4. APPLICATIONS TO NONPARAMETRIC KERNEL ESTIMATION

4.1a First Order M-testing for the i.i.d. Case

Assumption F.1: (a) For each n the random sample fZ1; :::; Zng is i.i.d., where Zt =

(X 0
t; Yt)

0 2 Rd+1 ; d 2 N ; and E jYtj < 1; (b) the support X � Rd of X is compact and

the distribution of X is absolutely continuous on X with respect to Lebesgue measure, with

density po bounded above and away from zero on X: Furthermore, the sample fX1; :::; Xng
does not include the boundary points of X; and (c) for some � > 0; EjY 2+�

t j < 1 and

supx2XE[jY j2+� jX = x] <1:

Boundedness of po away from below can be relaxed using moving trimming (e.g. H�ardle and

Stoker [1989] or Robinson [1988]). To avoid boundary e�ects, we assume fX1; :::; Xng does
not include boundary points of X. Part (c) gives moment conditions for uniform convergence

of kernel estimators (e.g. Mack and Silverman [1982], Newey [1994]).

We use the Nadaraya-Watson kernel estimator for �o(x) = E(Y jX = x) :

�̂n(x) =

(
(np̂n(x))

�1Pn
t=1 YtKn(x�Xt) if p̂n(x) 6= 0

0 otherwise,
(4.1)

where p̂n(x) = n�1
Pn

t=1Kn(x�Xt); Kn(x�Xt) = b�dn K[(x�Xt)=bn]; and bn is a bandwidth.

We now impose regularity conditions on K; �o and po:

Assumption F.2: K : T ! R is a symmetric bounded kernel of �nite order k with compact

support T = [��; � ]d; 0 < � <1; such that K is di�erentiable of order s � 0;with Lipschitz

s-th derivative,
R
T
K(u)du = 1;

R
T
ui11 u

i2
2 � � � uidd K(u)du = 0 for jij = Pd

j=1 ij < k; andR
T
ui11 u

i2
2 � � � uidd K(u)du 6= 0 for jij = k:

Assumption F.3: There exist extensions of po and po�o such that these extensions are in

Wr
1;r(R

d) for some integer r > 0:

We use a uniform convergence result due to Newey [1994].
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Lemma 4.1: (Newey [1994, Theorem B.1]): Suppose Assumptions F.1-F.3 hold with r �
s + k: Let bn ! 0; n�=(2+�)bdn= ln(n) ! 1; where � is as in F.1:Then (i) �s;1(�̂n; �o) =

OP ([nb
d+2s
n = ln(n)]�1=2 + bkn); and (ii) �s;1(p̂n; po) = OP ([nb

d+2s
n = ln(n)]�1=2 + bkn):

This delivers explicit rates for bn satisfying certain conditions of Theorem 2.3.

We now impose conditions on mt(�; �; �) = m(Zt; �; �; �):

Assumption F.4: (a) Let �o 2 �o � �: For each � 2 �o and each � 2 �; � �mo
n(� � �o; �) =

E[g(X; �)(�(X)��o(X))]; where g : X�� ! R
q is such that for each � 2 �, g(�; �) 2 Ck(X);

E[g(X; �o)g(X; �o)
0] is a q� q �nite positive semi-de�nite matrix and supx2X jjDkg(x; �o)jj �

� < 1; (b) there exist some � > 0 and D : Rd ! R
+ , ED(X) < 1; such that for all

x 2 X and �1; �2 2 �; kg(x; �2)� g(x; �1)k � D(x)1=2��(�1; �2)
�; and (c) ��(�̂n; �o) =

oP ((nb
d
n)
�1=2�):

F.4(a) is a \smoothness" or \full mean" assumption. F.4(b,c) ensure that replacing �̂nwith

�o does not a�ect the limiting distribution of � �m
o
n(���o; �̂n):We use the following key result.

Proposition 4.2: Suppose F.1(a,b) and F.2-F.4(a) hold and Vo = E[g(X; �o)g(X; �o)
0�2] is

�nite and nonsingular, where � = Y � �o(X): Let n�=(2+�)bdn= ln(n) !1; nb2dn = ln(n) !1;

nb2kn ! 0; and 2k > d:Then n1=2� �mo
n(�̂n � �o; �o) = n�1=2

Pn
t=1 g(Xt; �o)�t + oP (1); and

n1=2� �mo
n(�̂n � �o; �o)!d N(0; Vo):

This is necessary but not su�cient for B.5; the following su�ces.

Assumption F.5: For W (Zt; 
o) = m(Zt; 
o) + r0
� �m(
o)s(Zt; �o) + g(Xt; �o)�t; Jo =

E(W (Z; 
o)W (Z; 
o)
0) is a q � q �nite positive de�nite matrix.

Theorem 4.3: Suppose Assumptions A.2 (for �; �), A.3, B.1, B.3(a), B.4, B.6 with Jo
n =

Jo;F.1(a,b) and F.2-F.5 hold. De�ne Mn = nm̂0
nĴ

�
n m̂n;where m̂n = mn(�̂n; �̂n; �̂n) and

�̂n = �̂n is as in (4.1). Let nbdn ! 1; nb2kn ! 0; 2k > d: Suppose either (a) fmtg is linear

in � or (b) B.2(a,b) with (�; ��) = (Ws
r;1(X); �1); and F.1(c) hold, n�=(2+�)bdn= ln(n) !

1; n�b
(d+2s)(1+�)
n = ln(1+�)(n) ! 1; nb

2k(1+�)
n ! 0; where � is as in F.1 and � as in B.2.

Then (i) under Ho

Mn !d �2q;
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(ii) under HA and for any nonstochastic sequence fCn = o(n)g;

P [Mn > Cn]! 1:

Asymptotic n1=2-normality is thus achieved, despite the presence of �̂n:

4.1b First Order M-testing: Application to Testing Omitted Variables

Although nonparametric regressions do not require speci�cation of functional form, they

do require a priori knowledge of relevant explanatory variables. One may be interested in

testing the relevance of additional variables. We now give a new test for omitted variables

insensitive to model misspeci�cation.

Put Zt = (Yt; X
0
t)
0 = (Yt; (X

0
1t; X

0
2t))

0; where X1t is a d1 � 1 random vector with density

po1 and X2t is a d2 � 1 random vector, d1 + d2 = d: Suppose one is interested in testing the

relevance of X2t in explaining Yt: Then the hypotheses originally of interest are

H�
o : P [E(YtjX1t) = E(YtjXt)] = 1 v.s. H�

A : P [E(YtjX1t) = E(YtjXt)] < 1:

Put �o1(X1t) = E(YtjX1t) and consider the moment function

m(Zt; �; �; �) =  (X2t)(Yt � �1(X1t));

where � = �1;  is a given weighting function, and � and � are null. Now H�
o implies

Em(Zt; �; �o; �) for �o = �o1: We note that Robinson [1989, 5.52(e)] suggests a similar ap-

proach to testing H�
o with the choice of  (X2t) = X2t; but does not construct a test statistic.

To construct our statistic, we use a kernel estimator for �o1 :

�̂1n(x1) =

(
(np̂1n(x1))

�1Pn
t=1 YtKn(x1 �X1t) if p̂1n(x1) 6= 0

0 otherwise,
(4.2)

where p̂1n(x1) = n�1
Pn

t=1Kn(x1 � X1t); Kn(x1 � X1t) = b�1n K((x1 � X1t)=bn);with K

: Rd1 ! R a kernel and bn a bandwidth.

We also use the following kernel estimator for g(X1t) = E( (X2t)jX1t) :

ĝn(x1) =

(
(np̂1n(x1))

�1Pn
t=1  (X2t)Kn(x1 �X1t) if p̂1n(x1) 6= 0

0 otherwise.
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Theorem 4.4 [Testing for Omitted Variables]: Suppose (a) F.1 with � = 2 hold; (b)  :

R
d2 ! R is measurable such that E 4(X2t) < 1 and supx12X1

E( 4(X2t)jX1t = x1) < 1;

where X1 is the compact support of X1; (c) F.2 with s = 0 holds; (d) po1 and p
o
1�

o
1 satisfy F.3;

(e) g(X1t) = E( (X2t)jX1t) 2 Ck(X1) with supx12X1
jjDkg(x1)jj <1; (f) nb2d1n = ln2(n)!1;

bn ! 0:

De�neMn = nm̂0
nĴ

�1
n m̂n; where m̂n = n�1

Pn
t=1  (X2t)(Yt��̂1n(X1t)); Ĵn = n�1

Pn
t=1( (X2t)�

ĝn(X1t))
2(Yt � �̂1n(Xt))

2: Then (i) under Ho : E[ (X2t)(E(YtjXt)� E(YtjX1t))] = 0;

Mn !d �21;

(ii) suppose HA : E[ (X2t)(Yt � �o1(X1t))] 6= 0 holds. Then for any nonstochastic sequence

fCn = o(n1=2)g;
P [jMnj > Cn]! 1:

This test is not necessarily consistent against H�
A as H�

o implies Ho but the converse may

fail. Power depends on choice of  : For consistency we must choose  so that H�
o coincides

with Ho: Such choices exist; see Bierens [1990] and Stinchcombe and White [1998].

Lavergne and Vuong [1996] propose a method to determine relevant regressors using

kernel estimators, but this does not apply here, due to the degeneracy of their statistic. Our

approach complements theirs. One could also use Theorem 2.5 to construct a consistent test

for H�
o ; we leave this for further work.

4.2 Second Order M-testing

In Section 3.2 we gave a new heteroskedasticity-insensitive consistent speci�cation test

for the parametric model f(Xt; �) using an estimate of conditional variance. We now give a

heteroskedasticity insensitive consistent speci�cation test using kernel regression and a new

heteroskedasticity-consistent covariance matrix estimator.

We use a weighted version of (1.1), i.e. mt(�; �; �) = p(Xt)(�(Xt) � f(Xt; �))(Yt �
f(Xt; �)): Put � = (�1; �2) = (r; p) = (p�; p) and let � be null. Then

mt(�; �; �) = (r(Xt)� p(Xt)f(Xt; �))(Yt � f(Xt; �)): (4.3)

As (4.3) is degenerate at (�o; �o) = (�o; (po�o; po)); where �o 2 A is such that H�
o :

P [f(Xt; �o) = �o(Xt)] = 1 holds, Theorem 2.5 applies. A consistent test against H�
A :

P [f(Xt; �) 6= �o(Xt)] > 1 for all � 2 A can be based on

m̂n = n�1
Pn

t=1(r̂n(Xt)� p̂n(Xt)f(Xt; �̂n))(Yt � f(Xt; �̂n)); (4.4)
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where r̂n = p̂n�̂n; and �̂n and p̂n are as in (4.1). We make following additional assumptions:

Assumption F.6: For each � 2 A ; f(�; �) : X!R is measurable; (b) f(X; �) is twice con-
tinuously di�erentiable a:s: on A ;with jf(X; �)j, jjr�f(X; �)jj2 and jjr2

�f(X; �)jj dominated
by D : X!R

+ ; ED2(X) <1:

Assumption F.7: �2o(X) = var(Y jX) is continuous on X.

The next result is the key to obtaining the distribution of our statistic.

Theorem 4.5: Suppose F.1 (with � = 2), F.2-F.3 and F.7 hold. LetWn = n�2
Pn

t=1

Pn
s=1Wnts;

Wnts = �t�sKn(Xt � Xs); �t = Yt � �o(Xt): De�ne Jo = 2C(K)E(�4o(X)po(X)); C(K) =R
T
K2(u)du: Let nbdn !1; bn ! 0: Then

J�1=2o nbd=2n (Wn � EWn)!d N(0; 1):

This is obtained by applying de Jong's [1987] CLT for generalized quadratic forms. Next,

we propose a heteroskedasticity-consistent U -statistic estimator for Jo:

Proposition 4.6: Suppose Assumptions F.1 (with � = 2), F.2-F.3 and F.7 hold. De�ne

Ĵn = 4C(K)bdnn
�2Pn

t=2

Pt�1
s=1 �̂

2
nt�̂

2
nsKn(Xt � Xs); where �̂nt = Yt � �̂n(Xt) and �̂n is as in

(4.1). Let nb3dn !1; bn ! 0 and 2k > d: Then Ĵn � Jo !p 0:

Now the new heteroskedasticity-insensitive consistent test can be given.

Theorem 4.7: Suppose Assumptions C.4, F.1 (with � = 2), F.2(with s = 0), F.3 and F.6-

F.7 hold. De�ne Mn = Ĵ
�1=2
n nb

d=2
n (m̂n � R̂n); where Ĵn is as in Proposition 4.6, m̂n is as

in (4.4) and R̂n = (nbdn)
�1K(0)�̂2n;with �̂

2
n = n�1

Pn
t=1 �̂

2
nt; �̂nt = Yt � �̂n(Xt) and �̂n as in

(4.1). Let nb3dn !1; nb2k+dn ! 0; 2k > d:Then (i) under H�
o ;

Mn !d N(0; 1);

(ii) under H�
A and any nonstochastic sequence fCn = o(nb

d=2
n )g;

P [Mn > Cn]! 1:

The growth rate of Mn under HA is nb
d=2
n ; faster than n1=2 because nbdn !1; however, Mn

can only detect local alternatives of O(n�1=2b�d=4n ); slightly slower than O(n�1=2):
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MATHEMATICAL APPENDIX

Proof of Theorem 2.3: (i) Given B.2 and by H�older's inequality, we have

jjmn(�
o
n; �̂n; �̂n)�mn(�

o
n; �o; �̂n)� �mo

n(�̂n � �o; �̂n)jj � Dn��(�̂n; �o)
1+� = oP (n

�1=2); (A1)

where Dn = n�1
P

tDnt(Zt) = OP (1) by Markov's inequality. By the mean value theorem,

m̂n = mn(�
o
n; �̂n; �̂n) +r0

�mn(~�n; �̂n; �̂n)(�̂n � �o
n)

given B.1(a), where a di�erent ~�n (k~�n � �o
nk � k�̂n � �o

nk) appears in each row of

r�mn(�; �̂n; �̂n): Substituting mn(�
o
n; �̂n; �̂n) into (A1) and rearranging, we obtain

m̂n = mn(�
o
n; �o; �̂n) +r0

�mn(~�n; �̂n; �̂n)(�̂n � �o
n) + �mo

n(�̂n � �o; �̂n) + oP (n
�1=2): (A2)

For the �rst term in (A2), we have

mn(�
o
n; �o; �̂n) = �mn(�

o
n; �o; �̂n) + (mn(�

o
n; �o; �̂n)� �mn(�

o
n; �o; �̂n))

= �mn(

o
n) + (mn(


o
n)� �mn(


o
n)) + oP (n

�1=2) (A3)

given A.3 and an = n1=2. For the second term in (A2), we have

jjr�mn(~�n; �̂n; �̂n)�r� �mn(

o
n)jj � jjr�mn(~�n; �̂n; �̂n)�r� �mn(~�n; �̂n; �̂n)jj

+ jjr� �mn(~�n; �̂n; �̂n)�r� �mn(

o
n)jj

= oP (1)

by the triangle inequality and B.1. Hence, we obtain

r0
�mn(~�n; �̂n; �̂n)(�̂n � �o

n) = r0
� �mn(


o
n)Sn + oP (n

�1=2) (A4)

given B.4 and B.5, which implies �̂n � �o
n = OP (n

�1=2): For the last term in (A2), we have

�mo
n(�̂n � �o; �̂n) = � �mo

n(�̂n � �o; �o) + (�mo
n(�̂n � �o; �̂n)� � �mo

n(�̂n � �o; �̂n))

+ (� �mo
n(�̂n � �o; �̂n)� � �mo

n(�̂n � �o; �o))

= � �mo
n(�̂n � �o; �o) + oP (n

�1=2)

= Vn + oP (n
�1=2) (A5)

given B.3. Substituting (A3)-(A5) into (A2), we obtain m̂n = �mn(

o
n) +Wn + oP (n

�1=2):

It follows that J
o�1=2
n n1=2m̂n !d N(J

o�1=2
n n1=2 �mn(


o
n); Iq) by B.5: By Slutsky's Theorem, we

have n1=2Ĵ
�1=2
n m̂n !d N(J

o�1=2
n n1=2 �mn(


o
n); Iq) given Ĵ�n � Jo�1

n = oP (1) from B.6: Hence,

Mn !d �2q(�
o
n):
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(ii) Given A.2, A.4 and B.6, we have m̂n � �mn(

o
n) !p 0 and Ĵ�n � J�1n !p 0: Hence,

Mn=n = �m0
n(


o
n)J

�1
n �mn(


o
n)+ oP (1) by continuity, where �m0

n(

o
n)J

�1
n �mn(


o
n) � c > 0 for all n

su�ciently large under HA: The desired result follows immediately.

Proof of Theorem 2.5: (i) Given C.2 and H�older's inequality, we have

mn(�
o
n; �̂n; �̂n)�mn(�

o
n; �o; �̂n)� �m̂o

n(�̂n � �o; �̂n)� �2m̂o
n(�̂n � �o; �̂n) = oP (a

�1
n ): (A6)

Under C.1(a), a second order Taylor expansion of m̂n about �o
n yields

m̂n = mn(�
o
n; �̂n; �̂n) +r0

�mn(�
o
n; �̂n; �̂n)(�̂n� �o

n) +
1

2
(�̂n� �o

n)
0r2

�mn(~�n; �̂n; �̂n)(�̂n� �o
n);

where a di�erent ~�n (k~�n � �o
nk � k�̂n � �o

nk) appears in each row of r2
�mn(�; �̂n; �̂n). Sub-

stituting mn(�
o
n; �̂n; �̂n) into (A6) and rearranging, we obtain

m̂n = mn(�
o
n; �o; �̂n) + r0

�mn(�
o
n; �̂n; �̂n)(�̂n � �o

n)

+
1

2
(�̂n � �o

n)
0r2

�mn(~�n; �̂n; �̂n)(�̂n � �o
n)

+ [�m̂o
n(�̂n � �o; �̂n) + �2m̂o

n(�̂n � �o; �̂n)] + oP (a
�1
n ): (A7)

Given C.1 and De�nition 2.4(b), we have

r�mn(�
o
n; �̂n; �̂n) = r� �mn(


o
n) + (r�mn(�

o
n; �̂n; �̂n)�r� �mn(


o
n)) = oP (n

1=2=an); (A8)

and

jjr2
�mn(~�n; �̂n; �̂n)jj � n�1

P
tDnt(Zt) = OP (1) (A9)

by Markov's inequality. On the other hand,

�m̂o
n(�̂n � �o; �̂n) = (�m̂o

n(�̂n � �o; �̂n)� � �mo
n(�̂n � �o; �̂n))

+ (� �mo
n(�̂n � �o; �̂n)� � �mo

n(�̂n � �o; �o)) + � �mo
n(�̂n � �o; �o)

= (�m̂o
n(�̂n � �o; �̂n)� � �mo

n(�̂n � �o; �̂n)) + oP (a
�1
n )

given C.3(d) and De�nition 2.4(c), and

�2m̂o
n(�̂n � �o; �̂n) = �2 �mo

n(�̂n � �o; �̂n) + (�2m̂o
n(�̂n � �o; �̂n)� �2 �mo

n(�̂n � �o; �̂n))

= �2 �mo
n(�̂n � �o; �̂n) + oP (a

�1
n )

given C.3(a). It follows that

�m̂o
n(�̂n � �o; �̂n) + �2m̂o

n(�̂n � �o; �̂n)

= �m̂o
n(�̂n � �o; �̂n)� � �mo

n(�̂n � �o; �̂n) + �2 �mo
n(�̂n � �o; �̂n) + oP (a

�1
n )

= Wn(�̂n) + oP (a
�1
n )

= EWn(�o) + (EWn(�̂n)� EWn(�o)) + (Wn(�̂n)� EWn(�̂n)) + oP (a
�1
n )

= EWn(�o) + (Wn(�o)� EWn(�o)) + oP (a
�1
n ) (A10)
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given C.3(b,c,d). Substituting (A8-A10) into (A7) and using A.3, C.4, an=n ! 0; and

De�nition 2.4(a), we obtain

m̂n = �mn(

o
n) + (mn(


o
n)� �mn(


o
n)) + EWn(�o) + (Wn(�o)� EWn(�o)) + oP (a

�1
n )

= �mn(
n) + EWn(�o) + (Wn(�o)� EWn(�o)) + oP (a
�1
n ):

Consequently, given C.5, we have J
o�1=2
n an(m̂n � EWn(�o)) !d N(J

o�1=2
n an �mn(


o
n); Iq): It

follows by Slutsky's Theorem that Ĵ
�1=2
n an(m̂n� R̂n)!d N(J

o�1=2
n an �mn(


o
n); Iq) given Ĵ

�
n �

Jo�1
n !p 0 and an(R̂n � EWn(�o))!p 0 by C.6: Therefore, Mn !d �2q(�

o
n):

(ii) The proof of consistency is similar to that of Theorem 2.3(ii).

Proof of Proposition 3.2: Put �̂nt = �̂n(Xt); �
o
nt = �on(Xt); and �ot = �o(Xt): We �rst

apply Yohai and Maronna (YM) [1979, Theorem 2.2] to show n�1
P

t(�̂nt��ont)2 = OP (pn=n):

YM assume a linear model of the form (see YM (Eq.(1.1)))

Y o
nt =  0npn(Xt)�

o
n + �t = �on(Xt) + �t; t = 1; 2; :::; n; n = 1; 2; :::;

where  npn(Xt) is a given pn � 1 vector, and �t is i.i.d. This is a moving DGP assumption.

With this in mind, we must control the bias �on � �o properly to apply YM's results to �̂n:

Put �nt = (	0
n	n)

�1=2 npn(Xt); ~�n = (	0
n	n)

1=2�̂n; �
+
n = (	0

n	n)
1=2�on: Then Y o

nt =

� 0nt�
+
n + �t: Following the proof of YM, we see that to apply YM's Theorem 2.2 to ~�n; it

su�ces that

jjb0n
P

t �nt'(Y
o
nt � � 0nt ~�n)jj ! 0 a:s: (A11)

for any bn 2 R
pn with jjbnjj = O(1): By applying the mean value theorem to the �rst order

condition (3.2) term by term, we obtain

0 =
P

t �nt'(Yt � � 0nt ~�n) =
P

t �nt'(Y
o
nt � � 0nt ~�n) +

P
t �nt'

0( �Ynt)(�ont � �ot );

where �Ynt lies between Ynt and Y
o
nt. Hence, it su�ces for (A11) to hold if jjb0n

P
t �nt'

0( �Ynt)(�ont�
�ot )jj ! 0 a:s: Given D.2, D.4(a), the identity

P
t �nt�

0
nt = Ipn and the Cauchy-Schwarz in-

equality, we have

jjb0n
P

t �nt'
0( �Yt)(�ont � �ot )jj � c�1 fb0n (

P
t �nt�

0
nt) bng1=2 f

P
t(�

o
nt � �ot )

2g1=2
� c�1n1=2 kbnk2 �1(�on; �o)! 0:

Hence, asymptotically, ~�n can be viewed as a solution to (A11), which is equivalent to Eq.

(2.7) of YM. The results of YM then apply to (A11). Given D.1-D.2, D.3(a), D.4(a) and
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pn�npn ! 0; the conditions of YM [1979, Theorem 2.2] are satis�ed. Hence, p
�1=2
n jj~�n��+n jj =

OP (1); i.e., (�̂n � �on)
0(	0

n	n)(�̂n � �on) = OP (pn): It follows thatP
t(�̂nt � �ot )

2 � 2
P

t(�̂nt � �ont)
2 + 2

P
t(�

o
nt � �ot )

2

� 2(�̂n � �on)
0(	0

n	n)(�̂n � �on) +OP (n�
2
1(�

o
n; �o))

= OP (pn)

given D.4(a). Because (�̂n � �on)
0(	0

n	n)(�̂n � �on) � �min(	
0
n	n)jj�̂n � �onjj2; we also have

jj�̂n � �onjj2 = OP (p
1=2
n =�1=2min(	

0
n	n)):

Proof of Proposition 3.3: We apply Mammen [1989, Theorem 4]. Like YM, Mammen

also considers a linear model of the form of (A11). Following the proofs of both his Theorems

1 and 4, we see that Mammen's results can be applied to (A11), which holds given D.2 and

D.4(a), as has been shown in the proof of Proposition 3.2.

Let bn be any sequence of pn�q nonstochastic matrices such that b0nbn is a q�q uniformly
nonsingular matrix with kb0nbnk bounded. We �rst show

~I�1=2n b0n( ~�n � �+n )!d N(0; Iq); (A12)

where ~�n = (	0
n	n)

1=2�̂n; �
+
n = (	0

n	n)
1=2�on; and ~In = b0nbn�

2(');with �2(') = E'2(�t)=E
2'0(�t):

Since Mammen only considers the univariate case (q = 1); we use the Cramer-Wold device

(e.g. White [1984, p.108]) to prove (A12).

Let h 2 Rq be an arbitrary constant with h0h = 1: De�ne cn = bnh; a pn� 1 vector (thus

cn is equivalent to �n in Mammen [1989]). Given D.1-D.3(a,b), Condition (2.1) of Mammen

[1989] is satis�ed. Note that we impose pn�npn ! 0 to ensure that b0n( ~�n��+n ) is centered at

zero asymptotically. It remains to show that kcnk is bounded below and above. Since b0nbn is

a q�q symmetric bounded uniformly nonsingular matrix, 0 < c � �min(b
0
nbn) � �max(b

0
nbn) �

c�1 <1: Hence, �min(b
0
nbn) � c0ncn = h0b0nbnh � �max(b

0
nbn); i.e., kcnk is bounded below and

above. Thus, (A12) now follows by Mammen [1989, Theorem 4]. Next we show

Io�1=2n G0
npn(�̂n � �on)!d N(0; Iq) (A13)

for Ion = G0
npn(	

0
n	n)

�Gnp�
2('): De�ne the pn � 1 vector bon = an(	

0
n	n)

�1=2Gnpn; where

a�1n = jjG0
npn(	

0
n	n)

�Gnpnjj: It follows immediately that bo0n bon is a q� q O(1) symmetric uni-
formly nonsingular matrix and tr(bo0n b

o
n) = 1:Hence, from (A12) we have ~I

o�1=2
n anG

0
npn(	

0
n	n)

�1=2

( ~�n��+n )!d N(0; Iq); where ~I
o
n = bo0n b

o
n�

2(') = a2nI
o
n: Because

~�n��+n = (	0
n	n)

1=2(�̂n��on);
this is equivalent to (A13).
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Proof of Theorem 3.4: Put �̂nt = �̂n(Xt); �
o
nt = �on(Xt);and �

o
t = �o(Xt): (i) We verify

the conditions of Theorem 2.3(i). A.1 is ensured by D.1; A.2-A.3 and B.1 are either imposed

directly or ensured (in A.2, we take (�; ��) = (Ws
1;r; �s;1) and �̂n = �̂n as in (3.2)). When

fmtg is linear in �; B.2 holds trivially with � = 1 for any pseudo-metric ��; otherwise

B.2(a,b) are assumed, and B.2(c) holds because

�s;1(�̂n; �o) � �s;1(�̂n; �on) + �s;1(�on; �o)

� p
1=2
n sup1�j�pn jj jjj1;sjj�̂n � �onjj+ �s;1(�on; �o)

� p
1=2
n Bs(pn)OP (p

1=2
n =�

1=2
min(	

0
n	n)) + �s;1(�on;�o)

= o(n�1=(2(1+�))

given D.3(c), D.4(b), n1=2(1+�)pnBs(pn)=�min(	
0
n	n)! 0 and Proposition 3.2.

Next, we verify B.3. B.3(a) is imposed directly; given D.5, we have

� �mo
n(�̂n � �o; �̂n) = n�1

P
t gnt(Xt; �̂n)(�̂nt � �ot ) = n�1

P
t gnt(Xt; �o)(�̂nt � �ot ) + rn;

where rn = n�1
P

t(gnt(Xt; �̂n)� gnt(Xt; �o))(�̂nt � �̂ot ) = oP (n
�1=2) by the Cauchy-Schwarz

inequality, Proposition 3.2 and D.5(b,c). Hence, B.3(b) holds. B.3(c) also holds because

n�1
P

t gnt(Xt; �o)(�̂nt � �ot ) = n�1
P

t gnt(Xt; �o)(�̂nt � �ont) + n�1
P

t gnt(Xt; �o)(�
o
nt � �ot )

= [n�1
P

t gnt(Xt; �o) 
0
npn(Xt)](�̂n � �on) + oP (n

�1=2)

= n�1
P

t vnt(Zt) + oP (n
�1=2)

by Proposition 3.3 and using the fact that kn�1Pt gnt(Xt; �o)(�
o
nt � �ot )k = oP (n

�1=2) given

D.4(a) and D.5(a) by the Cauchy-Schwarz inequality. Finally, B.4-B.6 are assumed directly.

It follows from Theorem 2.3(i) that Mn !d �2q:

(ii) Consistency follows immediately from Theorem 2.3(ii).

Proof of Theorem 3.5: We apply Theorem 3.4. (i) First we verify D.1-D.5. Both

D.1-D.2 hold given (a) and (d). Given (a) and (c), we have
P

t  i(Xt) j(Xt) = n�ij;

where �ii = 1 and �ij = 0; i 6= j. Therefore, �min(	
0
n	n) = n, so D.3(a) holds. Since

maxj supx2[0;1] j j(x)j �
p
2; D.3(c) (for s = 0) holds with B0(pn) =

p
2 for all pn: Because

�npn = supt( 
0
npn(Xt)(	

0
n	n)

� npn(Xt)) � 2pn=n; D.3(b) holds given p
4
n=n! 0:

Next, we verify D.4-D.6. Given (b), there exists �on(�) =  0npn(�)�on 2 Cr(0; 1) such

that �1(�on; �o) = o(p�r+�n ) for all � > 0 (e.g., Edmunds and Moscatelli [1977]). It follows

that D.4 with s = 0 hold given (e). Also, with B0(pn) =
p
2 and � = 1; the condition

n1=2(1+�)pnB0(pn)=�
1=2
min(	

0
n	n) = O(pn=n

1=4)! 0 holds given (e). From (A14) below, we see

that D.5(a) holds with gnt(Xt; �) = (�3�2o ; 0)0; D.5(b,c) are null because � does not appear.

29



We now verify the remaining conditions. We put �t = �(Xt); �̂nt = �̂n(Xt); �
o
nt = �on(Xt):

A.2 holds with (�̂n; �o) = (�̂2n; �
2
o); (�; ��) = (Cr(0; 1); �1); and �̂n = �̂n as in (3.2). A.3 is

null since � does not appear. B.1 holds given fmtg. Next we verify B.2(a,b). For � 2 �o =

f� 2 Cr(0; 1) : �1(�;�o) � �g; we have j(Yt��t)3� �3t +3�2t (�t��ot )j � (3j�tj+�)(�t��ot )2
and j(Yt � �t)

4 � �4t + 4�3t (�t � �ot )j � (8�2t + 3�2)(�t � �ot )
2: It follows that

��mt(�o; �; �)� (�3t ; �
4
t � 3�4o)

0 + (3�2t ; 4�
3
t )
0(�t � �ot )

�� � Dnt(Zt)�
2
1(�; �o) (A14)

for all � 2 �o; where Dnt(Zt) = 8�2t + 3 j�tj+ 3�2 +�. Therefore, B.2(a,b) with � = 1 hold.

From (A14) we have �m̂o
n(� � �o; �) = �n�1Pn

t=1(3�
2
t ; 4�

3
t )
0(�t � �ot ); and � �m

o
n(� � �o; �) =

(�3�2o ; 0)0n�1
P

t(�t � �ot ): Hence, B.3(a) holds because

�m̂o
n(�̂n � �o; �)� � �mo

n(�̂n � �o; �) = �n�1
X
t

(3(�2t � �2o); 4�
3
t )
0(�̂nt � �ot )

= �n�1
X
t

(3(�2t � �2o); 4�
3
t )
0(�̂nt � �ont)

�n�1
X
t

(3(�2t � �2o); 4�
3
t )
0(�ont � �ot )

= oP (n
�1=2); (A15)

where for the �rst term kn�1Pt(3(�
2
t � �2o); 4�

3
t )
0(�̂nt � �ont)k � jjn�1

P
t(3(�

2
t��2o); 4�3t )0 0npn(Xt)jj

jj�̂n � �onjj = OP (pn=n
1=2)OP (p

1=2
n =�

1=2
min(	

0
n	n)) = oP (n

�1=2) by Chebyshev's inequality and

Proposition 3.2; and for the second term n�1
P

t(3(�
2
t��2o); 4�3t )(�ont��ot ) = OP (n

�1=2�1(�on;�o)) =

oP (n
�1=2) by Chebyshev's inequality. Similarly, we can show that �̂2n � �2o = n�1

Pn
t=1(�

2
t �

�2o)+oP (n
�1=2); so B.4 with snt = �2t��2o holds. By de�nition,Go

npn = n�1
P

t  npn(Xt)(�3�2o ; 0) =
((� 3p

2
�2o ; 0; :::; 0); (0; 0; :::; 0))

0: It follows that vnt(Zt) = Go0
npn(	

0
n	n=n)

� n(Xt)'(�t)=E'
0(�t) =

(�3�2o�t; 0)0; where �t = '(�t)=E'
0(�t): Therefore, we have Wnt = (�3t � 3�2o�t; (�

4
t � 3�4o) �

6�2o(�
2
t � �2o))

0: By the Lindeberg-Levy CLT, J
�1=2
o n1=2Wn !d N(0; I2); where

Jo =

"
J11 J12

J12 J22

#
;

with J11 = 15�6o � 6�2oE(�
3
t �t)+9�4oE(�

2
t ); J22 = 24�8o and J12 = �3�2oE(�4t �t)+18�4oE(�

4
t �t):

Hence, B.5 holds. B.6 also holds given Ĵn by straightforward veri�cation using appropriate

weak ULLN's and �1(�̂n;�o)!p 0 by Proposition 3.2. The desired result then follows from

Theorem 3.4(i). (ii) Consistency follows immediately from Theorem 3.4(ii).

Proof of Theorem 3.6: Given �n = n��1 ; we choose a subset f�1n; :::; �#Gn

n g from �n

such that for each � 2 �n, there exists at least one �jn such that �1(�; �jn) < �n;where
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Gn = Gn(�n) is a �nite open covering of �n of cardinality of #Gn: This cardinality is �nite

as � (and hence �n) has �nite metric entropy. For arbitrary � > 0;

P
�
sup�2�n

jQn(�)j > �
�

� P
�
max1�i�#Gn

sup�2Bn (�in;�n) jQn(�)j > �
�

� P [max1�i�#Gn
jQn(�

i
n)j > �=2] + P

�
max1�i�#Gn

sup�2Bn (�in;�n) jQn(�)�Qn(�
i
n)j > �=2

�
� P [max1�i�#Gn

jQn(�
i
n)j > �=2] + P

�
sup�02�n

sup�2Bn (�0;�n) jQn(�)�Qn(�
0)j > �=2

�
;

where B n(�
i
n; �n) = f� 2 �n : �1(�; �in) < �ng: For the �rst term

P [max1�i�#Gn
jQn(�

i
n)j > �=2] �P#Gn

i=1 P [jQn(�
i
n)j > �=2]

� #Gnmax1�i�#Gn
P [jQn(�

i
n)j > �=2]

� #Gn sup�2�n
P [jQn(�)j > �=2]

� #GnC1n
��

given (a). This holds in particular for �2 = �+ d�1: Next, for the second term

P [sup�02�n
sup�2Bn (�0;�n) jQn(�)�Qn(�0)j] > �=2 � 2��1Cn��

by Markov's inequality, given (b). Therefore,

P [sup�2�n
jQn(�)j > �] � #GnC1n�(�+d�1) + 2��1Cn��:

Because �n � �; #Gn � #Gn(�n) for any �n > 0;where #G(�n) is the metric entropy

of �: Given � and �n = n��1 ; we have from Kolmogorov and Tihomirov [1961, Section

2.3] that #G(�n) = �nd�1 : (Kolmogorov and Tihomirov prove this only for d = 1; but the

proof for d > 1 follows analogously.) Substituting this into the above expression, we obtain

P
�
sup�2�n

jQn(�)j > �
� � C2n

�� for some C2: This completes the proof.

Proof of Theorem 3.7: Put �nt = (	0
n	n)

�1=2 npn(Xt); �̂nt = �̂n(Xt); �t = �(Xt) and �
o
t =

�o(Xt): Then Wnts = �t�
0
nt�ns�s�

o
t �

o
s=�t�s: The proof consists of showing: (i)

P
t(Wnt(�̂n) �

Wnt(�o)) = oP (p
1=2
n ); (ii)

PP
t6=s(Wnt(�̂n)�Wnt(�o)) = oP (p

1=2
n ); and (iii) (

P
t

P
sWnts(�o)�

pn)=(2pn)
1=2 !d N(0; 1):

We �rst consider (i). Given E.2 and the identity
P

t �
0
nt�nt = pn; we have j

P
tWntt(�̂n)�

Wntt(�o)j � C�1(�̂n; �o)
P

t �
2
t �
0
nt�nt = oP (p

1=2
n ) by Markov's inequality:

Next, we apply Theorem 3.6 to show (ii). Choose �n = f� 2 P
: �1(�; �o) � n��g

for some 0 < � < 1: Note that �̂n 2 �n in probability. Let Qn(�) =
PP

t6=s(Wnt(�̂n) �
Wnt(�o)) =

Pn
t=2Qnt;where Qnt = 2

Pt�1
s=1(Wnts(�)�Wnts(�o)):

To show (ii), it su�ces to show sup�2�n
jQn(�)j = oP (p

1=2
n ):Given D.1(a,b0;c),

P
t �

0
nt�nt =

pn and pn=n ! 0 (as implied by E.3); we have E[sup(�1;�2)2Bn (n��1 ) jQn(�1) � Qn(�2)j] �
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c�1n��1
PP

t6=s �
0
nt�nt � c�1n��1+1pn � c�1n��1+2: Hence, condition (b) of Theorem 3.6

holds by choosing �1 � �+ 2: Next, we verify condition (a). Since E(Qntj�1; �2; :::; �t�1) = 0

given fXtg nonstochastic, fQnt;Ft�1g is a martingale di�erence sequence, where fFtg is

the sequence of �-�elds consisting of �s; s � t. By H�older's inequality and Rosenthal's

inequality (see Hall and Heyde [1980, p.23], or Hall [1989] for its application), we have that

for k = 1; 2; :::;

E
�
Q2k

n (�)
� � nPn

t=2

�
EQ2k

nt(�)
�1=kok

:

Conditional on �t; Qnt(�) is sum of independent random variables, and so given D.1(c) andP
t �nt�

0
nt = In; EQ

2k
nt(�) � c(k)�1�2k1(�; �o)

�Pt�1
s=1(�

0
nt�ns)

2
	k � c(k)�1�2k1(�; �o)(�

0
nt�nt)

k: It

follows that EQ2k
n (�) � c(k)�1�2k1(�; �o) f

Pn
t=2 �

0
nt�ntgk � c(k)�1�2k1(�; �o)p

k
n: Therefore, by

Markov's inequality, we have for any � > 0 and for k = 1; 2; :::;

P
�jQn(�)j > �p1=2n

� � EQ2k
n (�)=(p

k
n�

2k) = c(k)�1��2k�2k1(�; �o) � c(k)�1��2kn��k:

It follows from Theorem 3.6 that sup�2�n
jQn(�)j = o(p

�1=2
n ) a:s: Thus, (ii) is proved. Finally,

the proof of (iii) follows exactly that of Hong and White [1995, Theorem A.1].

Proof of Theorem 3.8: We use the following notations: f ot = f(Xt; �o);r�f
o
t = r�f(Xt; �o);

�ot = �o(Xt); �t = �(Xt); �
o
t = �o(Xt); �̂nt = �̂n(Xt); �

o
nt = �on(Xt); �t = �(Xt); �

o
t = �o(Xt);

�̂nt = �̂n(Xt): Under H
�
o we have mt(
o) = (�ot � f ot =�

o
t )(Yt � f ot )=�

o
t = 0; r� �mn(
o) =

�E[r�f
o
t (Yt � f ot )=(�

o
t )

2 + (�ot � f ot =�
o
t )=�

o
t ] = 0 and � �mo

n(� � �o; �o) = E[(�t � �ot )(Yt �
f ot )=�

o
t ] = 0 for � 2 W1;r(X): It follows that (3.3) is an-degenerate at 
o under H�

o for

any given sequence an: Hence, Theorem 2.5 is relevant. (i) We �rst consider asymptotic

normality: A.1 is ensured by D.1(a,b0;c); A.2 holds with (�; ��) = (W1;r(X); �1) and

(�; ��) = (�; �1). A.3(a) with an = n=p
1=2
n holds because

an(mn(�o; �o; �)� �mn(�o; �o; �)) = ann
�1Pn

t=1(�
o
t � f ot =�

o
t )(Yt � f ot )=�

o
t

= ann
�1Pn

t=1 �
o
t �t(1=�t�

o
t � �2t )

= oP (1)

given D.1(a,b0,c) and E.2 by applying Theorem 3.6 (following the analogous reasoning of

(ii) in the proof of Theorem 3.7); A.3(b) also holds trivially since �mo
n(�o; �o; �) = 0 for all

� = � 2 �: C.1(a) holds given D.1(a,b0,c) and E.1; C.1(b) holds since

r�mn(�o; �̂n; �̂n)�r� �mn(�o; �̂n; �̂n) = �n�1Pn
t=1(r�f

o
t =�̂nt)(Yt � f ot )=�̂nt

= �n�1Pn
t=1r�f

o
t �t=�

o
t

�n�1Pn
t=1r�f

o
t �

o
t �t(�̂

�2
nt � �o�2t )

= OP (n
�1=2)

= oP (n
1=2=an):
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Above, the �rst term isOP (n
�1=2) by Chebyshev's inequality and the second term is oP (n

�1=2)

given E.2 by Theorem 3.6 following the analogous reasoning of (ii) of the proof of Theorem

3.7. C.1(c) holds under H�
o since

r0
� �m

o
n(�o; �̂n; �̂n)�r0

� �m
o
n(
o)

= �n�1Pn
t=1r0

�f
o
t (�̂nt � f ot =�̂nt)=�̂nt

= n�1
P

t(r0
�f

o
t =�̂nt)(�̂nt � �ot ) + n�1

Pn
t=1r0

�f
o
t �

o
t (1=�̂nt�

o
t � 1=�̂2nt)

= n�1
P

t(r0
�f

o
t =�

o
t )(�̂nt � �ot ) + n�1

Pn
t=1r0

�f
o
t (1=�̂nt � 1=�ot )(�̂nt � �ot )

+ n�1
P

tr0
�f

o
t �

o
t (1=�̂nt�

o
t � 1=�̂2nt)

= oP (p
1=2
n =n1=2);

where for the �rst term (a weighted average of �̂n��o) we have n�1
P

t(r0
�f

o
t =�

o
t )(�̂nt��ot ) =

oP (p
1=2
n =n1=2) by straightforward but tedious algebra, given D.1(a), E.2 and E.4. Also, the

last two terms are oP (p
1=2
n =n1=2) by the Cauchy-Schwarz inequality given E.2 and E.4.

We now verify the remaining conditions. Since (3.3) is linear in �; C.2 with � =1 holds.

C.3(a) also holds trivially since �2mnt(� � �o;�o; �o; �) = 0; for C.3(b),

�m̂o
n(�̂n � �o; �̂n)

= n�1
P

t(�̂n � �ot )�t�
o
t =�̂nt

= n�1
P

t(�̂n � �ont)�t�
o
t =�̂nt + n�1

P
t(�

o
nt � �ot )�t�

o
t =�̂nt

= n�1
P

t

P
s(�

o
t =�̂nt)�t�

0
nt�ns�s(�

o
s=�̂ns) + n�1

P
t

P
s(�

o
t =�̂nt)�t�

0
nt�ns(�

o
t=�̂ns � �ont)

+n�1
P

t(�t � �ot )�t�
o
t =�̂nt

= n�1
P

t

P
s �t�

0
nt�ns�s + oP (p

1=2
n =n)

by Theorem 3.6, given E.2 and E.4. Also, C.3(d) holds since � �mo
n(�̂n � �o; �) = 0 for all

� 2 �; C.4 is given directly; and C.5 with Jo
n = 2 holds by Theorem 3.7. Finally, C.6 holds

with Ĵn = 2 and R̂n = Ro
n = pn=n: The result now follows from Theorem 2.5(i).

(ii) Consistency follows immediately from Theorem 2.5(ii).

Proof of Lemma 4.1: See Appendix B of Newey [1994]. Note that the proof for �1(p̂; po) =

OP ([nb
d
n= ln(n)]

�1=2 + bkn) follows analogously to that of Newey with yni = 1:

Proof of Proposition 4.2: Given F.4(a) and �̂n = r̂n=p̂n, we have

� �mo
n(�̂n � �o; �o) = E[g(X; �o)(�̂n(X)� �o(X))]

=

Z
X

g(x; �o)[r̂n(x)� �o(x)p̂n(x)]dx

+

Z
X

g(x; �o)[r̂n(x)� �o(x)p̂n(x)][po(x)=p̂n(x)� 1]dx (A16)
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For the �rst term, we can write

Z
X

g(x; �o)[r̂n(x)� �o(x)p̂n(x)]dx =

Z
X

g(x; �o)[n
�1

nX
t=1

(Yt � �o(x))Kn(Xt � x)]dx

= n�1
X
t

g(Xt; �o)�t

+n�1
X
t

�t[

Z
X

g(x; �o)Kn(Xt � x)dx� g(Xt; �o)]

+ n�1
X
t

Z
X

g(x; �)(�o(Xt)� �o(x))Kn(Xt � x)dx

= n�1
X
t

g(Xt; �o)�t + oP (n
�1=2) +OP (b

k
n)

= n�1
X
t

g(Xt; �o)�t + oP (n
�1=2) (A17)

given nb2kn ! 0;where the second term is oP (n
�1=2) by Chebyshev's inequality and the fact

that
R
X
g(x; �o)Kn(Xt� x)dx� g(Xt; �o) = o(1) uniformly in t given F.1(b), F.2 and F.4(a).

Also, the second term is O(bkn) by Markov's inequality and the fact that
R
X
g(x; �o)(�o(x

0)�
�o(x))Kn(x

0 � x)dx = O(bkn) uniformly in x
0 2 X given F.1(b) and F.2-F.4(a).

Next, we consider the last term of (A16). By the Cauchy-Schwarz inequality, we obtain����
Z
X

g(x; �o)[r̂n(x)� �o(x)p̂n(x)][po(x)=p̂n(x)� 1]dx

����
� sup

x2X
jpo(x)=p̂n(x)� 1j (

Z
X

kg(x; �o)k2 dx)1=2(
Z
X

[r̂n(x)� �o(x)p̂n(x)]
2dx)1=2

= OP (ln
1=2(n)(nbdn)

�1=2 + bkn)OP ((nb
d
n)
�1=2 + bkn)

= oP (n
�1=2) (A18)

given nb2dn = ln(n) ! 1; nb2kn ! 0; and 2k > d; where we have made use of the fact

that supx2X jpo(x)=p̂n(x)� 1j = OP ((nb
d
n= ln(n))

�1=2 + bkn) by Lemma 4.1, and
R
X
[r̂n(x) �

�o(x)p̂n(x)]
2dx = OP ((nb

d
n)
�1+b2kn ) by Markov's inequality given F.1-F.3. Combining (A16)-

(A18) yields n1=2� �mo
n(�̂n��o; 
o) = n�1=2

P
t g(Xt; �o)�t+oP (1): Because Vo = E[g(X; �o)g(X; �o)

0�2]

is O(1) and nonsingular, n�1=2
P

t g(Xt; �o)�t !d N(0; Vo) by the Lindeberg-Levy CLT.

Proof of Theorem 4.3: (i) We verify the conditions of Theorem 2.3(i). A.1 is ensured

by F.1; A.2 holds with (�; ��) = (Ws
1;r(X); �1) and �̂n = �̂n as in (4.1); A.3 and B.1 are

imposed directly. When (a) m(Zt; �; �; �) is linear in �; B.2 with � =1 holds for any norm

��; or when (b) B.2(a,b) hold, B.2(c) is ensured by Lemma 4.1 given n
�=(2+�)bdn lnn(n)!1;

n�b
(d+2s)(1+�)
n = ln1+�(n)!1 and nb

2k(1+�)
n ! 0: B.3(a) is assumed directly; given F.4, B.3(b)
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holds because

� �mo
n(�̂n � �o; �̂n) = E[g(X; �̂n)(�̂n(X)� �o(X))]

= E[g(X; �o)(�̂n(X)� �o(X))] + E[(g(X; �̂n)� g(X; �o))(�̂n(X)� �o(X))]

= E[g(X; �o)(�̂n(X)� �o(X))] + oP (n
�1=2);

where the second term is oP (n
�1=2) by the Cauchy-Schwarz inequality, F.4(b,c) andE(�̂n(X)�

�o(X))2 = OP ((nb
d
n)
�1+b2kn ): By Proposition 4.2, B.3(c) holds with vnt(Zt) = g(Xt; �o)�t: B.4

is given directly; B.5 holds by the Lindeberg-Levy CLT given F.5. Finally, B.6 is imposed

directly. All conditions of Theorem 2.3(i) are satis�ed, so the desired result follows.

(ii) Consistency follows immediately from Theorem 2.3(ii).

Proof of Theorem 4.4: Put �̂1t = �̂1n(X1t); �
o
1(X1t) = �o1t; p̂1t = p̂1n(X1t); p

o
1t = po1(X1t);

and r̂1t = �̂1tp̂1t: (i) We apply Theorem 4.3(i.a) as fmtg is linear in � = �1. Given that �

and � do not appear, A.2 with (�; ��) = (W1;r(X); �2) holds, where �2(�1; �2) = (
R
X
(�2(x)�

�1(x))
2po(x)dx)

1=2: A.3 and B.1 are null since A and � are null. The proofs of B.3(a) and

B.6 are deferred to the end.

Next, we verify F.1-F.5. F.1 with � = 2 holds given (a); F.2 with s = 0 holds given (b);

F.3 (for �o1 and p
o
1) holds given (d); F.4(a) holds with g(X1t; �) = g(X1t) since, with po the

joint density of Xt;

� �mo
n(�̂n � �o; �o) = E( (X2t)(�̂1t � �o1t)) = E(g(X1t)(�̂1t � �o1t));

where g satis�es conditions in F.4(a) given (e); F.4(b,c) are null. F.5 holds withW (Zt; �o) =

( (X2t) � g(X1t))�1t given (a) and (b), where �1t = Yt � �o1t. Finally, nb2d1n = ln2(n) ! 1;

nb2kn ! 0; 2k > d1 are imposed directly. All conditions of Theorem 4.3(i.a) are satis�ed.

Hence, Mn !d �21; provided B.3(a) and B.6 hold.

It remains to prove B.3(a) and B.6. For B.3(a), note that

�mo
n(�̂n � �o; �) = n�1

P
t  (X2t)(�̂1t � �o1t)

= n�1
P

t  (X2t)(r̂1t � �o1tp̂1t)p
o�1
1t + n�1

P
t  (X2t)(r̂1t � �o1tp̂1t)(p̂

�1
1t � po�11t )

= n�1
P

t  (X2t)(r̂1t � �o1tp̂1t)p
o�1
1t + oP (n

�1=2);

where the second term is oP (n
�1=2) given the conditions on po1; �

o
1 and  ; by following rea-

soning analogous to (A18). Similarly, we can also obtain

� �mo
n(�̂n � �o; �) =

Z
X1

g(x1)(r̂1n(x1)� �o1(x1)p̂1n(x1))dx1 + oP (n
�1=2):
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Thus, to show �mo
n(�̂n � �o; �)� � �mo

n(�̂n � �o; �) = oP (n
�1=2); it su�ces to show

An = n�1
X
t

 (X2t)(r̂1t � �o1tp̂1t)p
o�1
1t

=

Z
X1

g(x1)(r̂n(x1)� �o1(x1)p̂1n(x1))dx1 + oP (n
�1=2): (A19)

For this purpose, we write

An = n�2
P

t

P
s  (X2t)(Ys � �o1t)p

o�1
1t Kn(X1t �X1s)

= n�2
PP

t6=s  (X2t)(Ys � �o1t)p
o�1
1t Kn(X1t �X1s) + hn

= Un + oP (n
�1=2);

where hn = b�1n K(0)n�2
P

t  (X2t)�1tp
o�1
1t = OP (n

�3=2b�11n ) = oP (n
�1=2) by Chebyshev's in-

equality given conditions (a)-(d). We now consider Un:

De�ne Unts = [ (X2t)(Ys � �o1t)p
o�1
1t +  (X2s)(Yt � �o1s)p

o�1
1s ]Kn(X1t � X1s): Then Un =

n�2
PP

s<t Unts = (1�n�1)EUn+n
�2PP

s<t Ûnts; where Ûnts = Unts�EUn; EUn = EUnts:

Given nb2d1n ln2(n) ! 1; we have EÛ2
nts = O(b�d1n ) = o(n): Hence, by the extended U -

statistic projection theorem of Powell et al [1989, Lemma 3.1], we have Un = (1�n�1)[EUn+

n�1
P

t E(ÛntsjZt)] + oP (n
�1=2); where

E(ÛntsjZt) =
R
X
 (x2)(Yt � �o1(x1))p

o�1
1 (x1)Kn(X1t � x1)po(x)dx

+ (X2t)p
o�1
1t

R
X
(�o1(x1)� �o1(X1t))Kn(X1t � x1)po(x)dx� EUn

=
R
X1

g(x1)(Yt � �o1(x1))p
o�1
1 (x1)Kn(X1t � x1)p

o
1(x1)dx1 � EUn +O(bkn)

given the conditions on �o1 and K: It follows that

Un = EUn + n�1
P

t

R
X1

g(x1)(Yt � �o1(x1))Kn(X1t � x1)dx1 + oP (n
�1=2)

given nb2kn ! 0. Therefore, (A19) holds. Thus, B.3(a) holds: Finally, by Lemma 4.1, we have

�1(�̂1n; �o1) !p 0 and �1(ĝn; g) !p 0 given conditions (a)-(f). Hence, it is straightforward

to show Ĵn !p Jo = E(( (X2t)� g(X1t))
2�21t); so B.6 holds.

(ii) Consistency follows immediately from Theorem 4.3(ii).

Proof of Proposition 4.5: Because E(WntsjXt) = E(WntsjXs) = 0; t 6= s; given F.1(a), we

have EWn = (nbdn)
�1K(0)�2o ; where �

2
o = E(�2t ): Hence, Wn � EWn = n�2

PP
s<t 2Wnts +

(nbdn)
�1K(0)n�1

P
t(�

2
t ��2o) = n�2

PP
s<t 2Wnts+OP (n

�3=2b�dn ) by Chebyshev's inequality

given F.2(a,c) with � = 2: Put an = nb
d=2
n : Then an(Wn � EWn) = n�1bd=2n

PP
s<t 2Wnts +

oP (1) given nbdn ! 1: Therefore, to show an(Wn � EWn) !d N(0; 1); it su�ces to show

Un !d N(0; 1); where Un =
PP

s<t Unts; Unts = 2n�1bd=2n Wnts: Because E(UntsjZt) =
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E(UntsjZs) = 0 for t 6= s; Un is a degenerate second order U -statistic. de Jong's [1987]

CLT for generalized forms then applies. By de Jong [1987, Proposition 3.2], it su�ces for

J
�1=2
n Un !d N(0; 1) that Gni=J

2
n = o(1) for i = 1; 2; 4; where Gni and Jn are de�ned as

follows. Put Kts
n = Kn(Xt � Xs): Then, by change of variable, it is straightforward to

compute that

Jn = var(Un) =
PP

s<tEU
2
nts

= (1� n�1)2bdnE[�
2
1�

2
2(K

12
n )2]

= 2C(K)E(�4o(X)po(X))(1 + o(1))

= Jo(K)(1 + o(1));

Gn1 =
PP

s<tEU
4
nts � 8n�2b2dn E[�

4
1�

4
2(K

12
n )4]

� �2n�2b2dn E(K
12
n )4

= �2n�2b�dn (
R
T
K4(v)dv)E(po(X))(1 + o(1));

Gn2 =
PPP

s<t<j E[U
2
ntsU

2
ntj]

� 16n�1b2dn E[�
2
1�

2
2(K

12
n )2�21�

2
3(K

13
n )2]

� �2n�1b2dn E[(K
12
n )2(K13

n )2]

= �2n�1C2(K)E(p2o(X))(1 + o(1));

Gn4 =
PPPP

i<j<s<t[E(UnijUnisUntjUnts) + E(UnijUnitUnsjUnst) + E(UnisUnitUnjsUnjt)]

� b2dn E(�
2
1�

2
2�

2
3�

2
4K

12
n K

13
n K

42
n K

43
n )

� �2b2dn E(K
12
n K

13
n K

42
n K

43
n )

= �2bdn(
R
T
K(v)K(v + w)K(w)dvdw)E(p3o(X))(1 + o(1)):

It follows that Gni=J
2
n = o(1) for i = 1; 2; 4 given nbdn !1; bn ! 0: Hence, Jo(K)�1=2Un !d

N(0; 1); and therefore Jo(K)�1=2nbd=2n (Wn � EWn)!d N(0; 1):

Proof of Proposition 4.6: Put �̂nt = �o(Xt) � �̂n(Xt) and Ŝn = 2n�2
PP

s<t �̂
2
nt�̂

2
nsK

ts
n ;

where Kts
n = Kn(Xt�Xs): Then Ĵn = 2C(K)Ŝn: Straightforward but tedious algebra delivers

that

Ŝn = 2n�2
PP

s<t �
2
t �
2
tK

ts
n + n�2

PP
s<t(8�

2
t �s�̂ns + 4�2t �̂

2
ns + 8�t�s�̂nt�̂ns + 8�t�̂nt�̂

2
ns + 2�̂2nt�̂

2
ns)K

ts
n

= ~Sn + 8A1n + 4A2n + 8A3n + 8A4n + 2A5n; say

= ~Sn + oP (1);

where Ajn = oP (1); j = 1; :::; 5; by straightforward but tedious algebra. For example,

A2n � �b�dn (n�1
P

t �
2
t )(n

�1P
s �̂

2
ns) = OP (n

�1b�2dn + b2k�dn ) = oP (1) given boundedness
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of K; nb3dn ! 1; bn ! 0 and 2k > d; where we have also made use of n�1
P

s �̂
2
ns =

OP (n
�1b�dn + b2kn ).

Next, we show ~Sn = E(�4o(X)po(X))+oP (1). Since E[�
2
1�

2
2(K

12
n )2] = O(b�dn ) = o(n) given

nbdn !1; it follows by Powell et al [1989, Lemma 3.1] that

~Sn = So
n + 2n�1

Pn
t=1[�

2
t

R
X
�2o(x)Kn(Xt � x)po(x)dx� So

n] + oP (n
�1=2);

where So
n = bdnE[�

2
1�

2
2K

12
n ]: Furthermore, by Chebyshev's inequality,

Pn
t=1[�

2
t

R
X
�2o(x)

Kn(Xt � x)po(x)dx � So
n] = OP (n

�1=2) given F.1 (with � = 2) and F.2. It follows that

~Sn = So
n + OP (n

�1=2); on the other hand, So
n = E(�4o(Xt)po(Xt)) + o(1) by continuity of �2o

and po: Since Ĵn = 2C(K)Ŝn; we have Ĵn = Jo + oP (1):

Proof of Theorem 4.7: We �rst verify that (4.3) is degenerate underH�
o : noting f(Xt; �o) =

�o(Xt) and �t = Yt� f(Xt; �o); we have mt(�o; �o; �) = (ro(Xt)� po(X)f(Xt; �o))�t = 0 a:s;

r0
� �mn(�o; �o; �) = E[�r0

�f(Xt; �o)(ro(Xt)�po(Xt)f(Xt; �o)+�t)] = 0; and � �mo
n(���o; �) =

Ef[(r(Xt)� ro(Xt))� (p(Xt)� po(Xt))f(Xt; �o)]�tg = 0 for all � = (r; p) 2 � =Wr
1;r(X) �

Wr
1;r(X): It follows by De�nition 2.4 that (4.3) is an-degenerate at 
o under H

�
o for any given

sequence an: Theorem 2.5 is applicable. (i) We �rst show asymptotic normality; A.1 is en-

sured by F.1; A.2 holds with (�; ��) = (Wr
1;r(X)�Wr

1;r(X); �); where �(�; �
0) = �1(�; �0)+

�1(p; p0): A.3 is null because � does not appear. Given F.6, (4.3) is twice di�erentiable a:s: on

A; with kr2
�mt(�; �; �)k = k[r(Xt) + p(Xt)Yt � 2p(Xt)f(Xt; �)]� 2p(Xt)r�f(Xt; �)r0

�f(Xt; �)k
dominated by some integrable function. Hence, C.1(a) holds; C.1(b,c) are null since � is

null. Next, because

mt(�o; �; �) = mt(�o; �; �) + �mt(� � �o;�o; �o; �)

= mt(�o; �o; �) + [(r(Xt)� ro(Xt))� (p(Xt)� po(Xt))f(Xt; �o)]�t;

C.2(a) with � =1 holds; and C.2(b) holds trivially. C.3(a) is null because �2mt(�; �; �) = 0:

In addition, since � �mo
n(� � �o; �) = 0 for all � 2 � under H�

o ; we have

�m̂o
n(�̂n � �o; �)� � �mo

n(�̂n � �o; �) + �2 �mo
n(� � �o; �)

= n�1
P

t[(r̂n(Xt)� ro(Xt))� (p̂n(Xt)� po(Xt))f(Xt; �o)]�t:

Put �̂nt = �̂n(Xt); �
o
t = �o(Xt) and K

ts
n = Kn(Xt�Xs): Substituting expressions for r̂n and

p̂n, we obtain

�m̂o
n(�̂n � �o; �) = n�2

P
t

P
s �t(Ys � �ot )K

ts
n

= n�2
P

t

P
s �t�sK

ts
n + n�2

P
t

P
s �t(�

o
s � �ot )K

ts
n

= Wn +OP (n
�1b1�d=2n + n�1=2bkn)

= n�2
P

t

P
sWnts + oP (n

�1b�d=2n ):
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given nb2k+dn ! 0; where Wnts = �t�sK
ts
n ; and we have made use of

n�2
P

t

P
s �t(�

o
s � �ot )K

ts
n = OP (n

�1b1�d=2n + n�1=2bkn); (A20)

as is shown at the end of this proof. Therefore, C.3(b) holds for an = nb
d=2
n ; C.3(c,d) are

null since � is null. C.4 is given directly. C.5 holds with Jo
n = Jo = 2C(K)E(�4o(Xt)po(Xt))

by Theorem 4.5. Finally, C.6(a) is ensured by Proposition 4.6; and C.6(b) with Rn =

n�1b�dn K(0)�2o holds because R̂n = n�1b�dn K(0)�̂2n; and

�̂2n � �2o = n�1
P

t(�
2
t � �2o) + 2n�1

P
t �t(�̂nt � �ot ) + n�1

P
t(�̂nt � �ot )

2

= OP (n
�1=2) +OP (n

�1=2b�d=2n + bkn) +OP (n
�1b�dn + b2kn )

= oP (b
d=2
n )

given nb3dn !1; nb2k+dn ! 0 and 2k > d: Therefore, Mn !d N(0; 1) by Theorem 2.5(i).

It remains to show (A20). De�ne Unts = (�t(�
o
s � �ot ) + �s(�

o
t � �os))K

ts
n ; and put Ûnts =

(Unts � Unt � Uns); Unt = E(UntsjZs): Then we can write

Un = n�2
P

t

P
s �t(�

o
s � �ot )K

ts
n

= n�2
PP

t<s(�t(�
o
s � �ot ) + �s(�

o
t � �os))K

ts
n

= n�2
PP

t<s Ûnts + 2(1� n�1)n�1
P

t Unt:

Because E(ÛntsjZt) = E(ÛntsjZs) = 0 and EÛ2
nts � 2EU2

nts = O(b2�dn ); we have var(
PP

s<t Ûnts) =PP
s<tEÛ

2
nts = O(n2b2�dn ): It follows by Chebyshev's inequality that n�2

PP
t<s Ûnts =

OP (n
�1b1�d=2n ): Next, noting that Unt = �t

R
X
(�o(x)��o(Xt))Kn(Xt�x)po(x)dx and E(U2

nt) =

O(b2kn ) given F.1-F.3, we have n�1
P

t Unt = OP (n
�1=2bkn) by Chebyshev's inequality. it fol-

lows that Un = OP (n
�1b1�d=2n +n�1=2bkn): This completes the proof for asymptotic normality.

(ii) Consistency follows immediately from Theorem 2.5(ii).
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