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ABSTRACT

The m-testing approach provides a general and convenient framework in which to view
and construct specification tests for econometric models. Previous m-testing frameworks
only consider test statistics that involve finite dimensional parameter estimators and infinite
dimensional parameter estimators affecting the limit distribution of the m-test statistics. In
this paper we propose a new m-testing framework using both finite and infinite dimensional
parameter estimators['where the latter may or may not affect the limit distribution of the
m-test. This greatly extends the potential and flexibility of m-testing. The new m-testing
framework can be used to test hypotheses on parametricl'semiparametric and nonparametric
models. Some examples are given to illustrate how to use it to develop new specification

tests.

Key Words: Consistent specification testlInfinite dimensional parameterl’ Nonparametric

estimationl'm-testing.



1. INTRODUCTION, MOTIVATION, AND HEURISTICS

A prominent theme recurring throughout Clive Granger’s extensive body of work is his
concern with the adequacy of econometric models. Granger [1990] gives this concern the
status of an axiom in his general introduction to his volume Modelling Economic Series. In

factl'it is his first axiom:

Axiom A: Any model will only be an approximation to the generating mechanismI'with

there being a preference for the best available approximation.

Granger’s second axiom is:

Axiom B: The basic objective of a modelling exercise is to affect the beliefs — and hence

the behavior — of other research workers.

Taken togetherl' Axioms A and B require us not merely to report the results of our
econometric modelingl'but to evaluate the models as welll'providing “comparisons with other
modelsI'the results of specification testsI'out-of-sample evaluationI'and so forth” [Grangerl’
1990I'p. 3].

IndeedI'one of the most useful approaches to specification testing involves the direct
comparison of the results of two different models of the same phenomenon. This approach
to specification testingl'pioneered by Durbin [1954|' Wu [1973|['and Hausman [1978]["has
undergone substantial evolution and extension. Specification tests have progressed from
purely parametric contextsI'as in Durbin [1954]'Wu [1973]'Hausman [1978]'Newey [1985]|"
and Tauchen [1985]'to contexts involving both nonparametric and parametric approachesI’
as in Whang and Andrews [1993] and Hong and White [1991I'1995]. Our purpose here is to
extend and unify these approaches in a way that permits hypothesis testing about parametricl’
semi-parametricl’'and nonparametric models in a manner not previously possiblel'providing
new tools to aid in achieving the objective of Granger’s Axiom B.

To illustrate the issues involvedI consider the consistent test for the correctness of a
parametric regression model f(X;, a) for the conditional expectation 0,(X;) = E(Y;|X;)
given by Hong and White [19911'1995]'where Y; is the dependent variable'X, is the vector

of explanatory variables and « is a finite dimensional parameter vector. The test is based



on the sample covariance

My, =n"" Z?:l(én(Xt) — [(Xy, an))(Yy — (X4, Gn)). (L.1)

Here @, is an appropriate estimatorl'such as the nonlinear least squares estimatorland 6, is

a nonparametric series estimator for #,. The statistic m,, estimates the covariance

mey = E[(Qo(Xt) - f(Xta a*))(y;f - f(Xta Oé*))],

where a* = plim d,,. Under the null hypothesis of correct specification (and only then) we
have m, = 0, as correct specification implies 0,(X;) = f(Xy, a,) a.s. for some o = «,. Thus’
a test based on m,, has asymptotic power one whenever f(X;, «) is misspecified.

Although Hong and White [1995' Theorem A.3] give a version of their statistic that does
not suffer from the effects of neglecting heteroskedasticity of unknown formI'this immunity
is achieved essentially by use of a heteroskedasticity-consistent covariance matrix estimator.
An attractive alternative is to correct for heteroskedasticity of unknown form directlyl'using
a consistent nonparametric estimator for the conditional variancel'as this may deliver better
power. Letting 7,(X;) = (var(Y;|X;))"/? and 0, = p,/7s, where po(X;) = E(Y;|X,;), we
now estimate 6, nonparametrically by 0, and T, nonparametricallyl'say by 7, (e.g.I'as in
Robinson [1987]). The statistic of interest is now

ity = 07 Y (0u(X0) — F(Xey G) /(X)) (Vi = f(Xe, G)) /700(X0)- (1.2)

This estimates
my = E[(No(Xt) - f(Xt7 a*))2/7rg(Xt)]7

which is again zero only under correct specification. We see that m,, is a particular value of
my(a,0,7) =n"1tY"  m(Z,a,b,7),

where Z; = (X[, Y;)" and m(Z;, o, 0, ) = (0(Xy) — f( Xy, ) /7( X)) (Y — f(X, @) /7(Xy).

We distinguish between the two infinite dimensional parameters # and 7, as it turns out
that the effects of replacing them with 0, and 7, are quite different: 6, plays a key role in
determining the asymptotic distribution of a suitably scaled version of m,['while 7, plays
essentially no role in determining this distribution.

Although we are motivated by consideration of (1.1) and (1.2)T'it is conceptually simpler
and notationally much simpler to work first with the general statistic mn(dn,én,frn) and
then specialize. A not inconsiderable additional benefit to this is that many other interesting

specification testing procedures fall into the same frameworkl'saving a great deal of effort



that might otherwise be required in treating them. We discuss several new applications in
considerable detaill'including a new test for regression error normality in a nonparametric
regression and a new test for omitted variables in nonparametric regressionl’as well as two
new consistent regression specification tests based on (1.1) and (1.2).

To make clear the contribution of our approach and its relation to prior worklI'we recall
that Newey [1985] and Tauchen [1985] treated the case of “m-testing” based on the statistic

mn(&n)a

while White [1987'1994] treated the case
M (G )

where ¢, is a parametric estimator that affects the asymptotic distribution of the test statis-
ticl'and 7, is a finite dimensional parametric estimator not affecting the asymptotic dis-
tribution. Whang and Andrews [1993] achieved a substantial advance by letting 7, be a
nonparametric estimator not affecting the asymptotic distribution. This framework can be
used to test parametric and semiparametric models (see Whang and Andrews [1993]).

To handle the specific examples abovel we introduce the nonparametric estimator én,
leading to

~

M (Giny O, )

This m-statistic cannot be handled within any previously studied framework (e.g.I'Whang
and Andrews [1993])[ because 0, plays a key role in determining its asymptotic distribu-
tion. Our goall'thereforel'is to develop appropriate theory to permit us to test hypotheses
based on such statistics. A major consequence of introducing 6, is that the distribution
and power theory for the tests of interest can differ substantially from that previously de-
veloped. IndeedI'the joint presence of &, 7, and 0, introduces the potential for a variety of
interesting possibilities. Our framework can be used to test hypotheses about parametricl’
semiparametric and nonparametric models.

Although the notation in the sections that follows is unavoidably complicated by the need
to keep separate track of «, #, and 7, the basic underlying idea for developing our distribution
theory is straightforward: essentiallyl'we just take a Taylor series expansion appropriate to
the situation at hand.

To see what is involved['we first replace 7, with its limitI'say m, : at each step we will
impose conditions ensuring that this has no effect on the asymptotic distribution of interest.

Now take a first order Taylor expansion around «, and 6, :

~

M (G, én, To) = M (o, O, Tp) + VLmE (G, — p) + Vym& (6, — 0,) + 1.



In the second termI’ V[ m? denotes the Jacobian of m, with respect to « evaluated at
(o, 05, 7,). The third term is a flagrant abuse of notationI'but it greatly helps us to see what
is going on. If # were finite dimensionall'then the Jacobian Vjm? of m, with respect to 6
at (ao,8,,m,) could multiply (én —0,) as we have written. Because # is infinite dimensionall’
what we have written is invalid; however['by using the Frechet differentiall'we get a term
that behaves essentially just as ngg(én —0,) does. LaterI'the Frechet notation dm¢ appears
in its place. For nowI'we stick with our abuse. The final term (r,) is a remainder.

To obtain the desired null distributionsI'we need to find the orders of the different terms
under the nulll'rescale by the rate for the slowest converging (i.e.I'dominant) term(s)I’and
apply appropriate central limit results. Clearlyl'different cases may arise in which the orders
of the various terms bear different relationships to each other.

A particularly interesting possibility is that r, dominatesl'i.e.I'the first three terms in
the first order expansion vanish under the null hypothesis at a rate faster than r, vanishes.
In particular['this occurs for our motivating case m(Z;, a,, 0,) = (6,(X:) — f( X, a0)) (Y —
F(X4, ap)) because 0,(X;) = f(Xi, @) a.s, causing the first term to vanish for all n. The
terms involving VI m? and Vjm? essentially vanish in probability at rates fast enough to
overwhelm the more slowly converging (é, — a,) and (6, — 6,). We refer to cases in which
this does not happen as “first order”I'because the analysis can be based on the first order
Taylor expansion. Cases in which we do have this sort of degeneracy will be called “second
order”'because it turns out that a second order Taylor expansion works.

The second order cases involve an approximation that acts like
(0 = 00)' Vgm0 = 05) + .

mn(dna én: 7T0) = %

o

¢ is really a second order

Again we abuse notation. The term on the right involving Vim
Frechet derivative later denoted §?m2. All but the dominant term have been placed in the
remainder 7,. Analysis of the dominant term turns out to be straightforward using the
distribution theory for U- or V-statistics. As might be expectedI'the dominant term has non-
zero expectation and so must be recentered properly; estimation of the requisite recentering is
usually straightforward. Interestinglyl'the rate of convergence of the leading term is typically
quite rapid. In the pastl'this has often been viewed as a form of degeneracyl'with a variety of
special measures introduced to avoid it. (See Section 2.3 below and Hong and White [1995]
for a discussion.) We view this “degeneracy” as a potential advantage to be exploited: the
rapid convergence rate leads to re-scalings that deliver statistics with better power under
both local and global alternatives.

The preceding discussion suggests that for the first order case we will obtain conditions



ensuring that n'/?m,, converges in distribution to a normal random vector with mean zero
under the nulllas is usual; from this we can construct asymptotic y? statistics in the usual
way (i.e.I'by forming an appropriate quadratic form in 1m,). For the second order casel'we
find thatTafter recentering by R, (say) and scaling by a, (say)I'where a, grows faster than

1/2, an(my, — R,) converges to a normal random vector with mean zero under the null.

n
Againl'we can construct asymptotic x? statistics.
With this heuristic picture of what we are going to do and whyl'we can now turn to a

rigorous development of our theoryl'treating first and second order cases separately.
2. THE BASIC FRAMEWORK

2.1 Fundamentals of M-testing
To beginI'we describe the data generating process (DGP) and the estimators of interest.

Assumption A.1: (2, F, P) is a complete probability space on which is defined the stochas-
tic process {Z,; : Q@ >R}, t =1,..,n,n=1,2,..., v € N, where P is such that for each n
{Z,+} is independently but not necessarily identically distributed (i.n.i.d.).

Assumption A.2: For pseudo-metric spaces (0, pe) and (II, prr) suppose 0, : O — O
and 7, : Q — II, n = 1,2, ..., are measurable such that p@(én,HO) —P 0 for 6, € © and
pu(ftn, 7o) =P 0 for m, € II. Furthermorel'a,, : @ — A C R?, p € N, is measurable with

Gy, — af —P 0 for some nonstochastic sequence {af € A}.

For notational simplicityl'below we let the dependence of Z,; on n be implicit. Put
[' = A x © x II. We consider a measurable “moment” function m,; : R xI' = R?, ¢ € N,
that satisfies

E[mu(Zy, ap, 00, )] = 0 for some o, € Aand allt =1,...n, n>1

when the model is correctly specified. Under model misspecification['such a moment condi-
tion does not hold generallyl'giving the test its power. The specific form taken by m,,, will
be dictated by the null hypothesis of interest and the alternatives against which power is
desired. Sections 3 and 4 provide a variety of examples illustrating choice of ;.
ThroughoutT'we put m¢(y) = mue(Zy,v) and m,,(y) =n ' -1, Emy(y). Given the i.n.i.d.

assumption and that 0, may affect the convergence rate of our statisticsI'we define the null



hypothesis based on {m,} to be
H, : a,my,(a, 0,,m) — 0 for some (a,,0,) € Ax O and all 7 € II, CII
for a nonstochastic sequence {a,, : a, — 00, a,/n — 0}. Local alternatives are
Hu, : apimg (a2, 0,,m) = O(1) for some (a2,0,) € A x © and all 7 € 1, C II.
We specify the global alternative as
Hy : ||mn(7)|| > ¢>0forall y € I' and all n sufficiently large.

Note that H,, can be generated by the functional form of {m,} and/or sequence {a2}.
The factor a,, is determined by {m,} and 6,. In first order m-testingl'a, = n'/%; for second

1/2+¢ for some € > 0. These hypotheses may or may not coincide with the

order'a,, = n
null hypothesis originally of interest (say H}) and its alternatives. In first order m-testingl’
there is often a discrepancy between H, and H}. In second orderI"howeverl' H, generally
coincides with H, thus delivering consistent tests. These issues are addressed further in the
applications of Sections 3 and 4.

Stochastic equicontinuity plays a key role in ensuring that 7, has no asymptotic effect.

Definition 2.1 [Stochastic Equicontinuity]: Let (2, F, P) be a probability space and (11, py)
be a pseudo-metric space. The stochastic process {Q, : QXX II - R}, n=1,2,..., ¢ €N, is

stochastically py-equicontinuous at m, € I if for each € > 0 there exists 6 > 0 such that
limy, 00 P* [SU-pweB(wo,d) 1Qn(-7) — Qu (-, mo)[| > e] <6

where P* is outer probability and B(n,,d) = {w € Il : py(m,m,) < 0}.

Primitive conditions can be found in Andrews [1994]; Theorem 3.6 below also provides an

alternative method to ensure stochastic equicontinuity.
Assumption A.3: (a) Given (a2,6,) € A x © and a nonstochastic sequence {a, : a, —
00, Gy /1 — 0}, ap(mp (a2, 0,, ) =M, (a2, 0,, ) is stochastically py-equicontinuous at 7, € II;

and (b) a,m, (a2, 0,, 7,) = aymy, (72) + op(1), where 72 = (a2, 0,, ).

We also make use of the concept of uniform equicontinuity (cf. Billingsley [1986]).



Definition 2.2 [Uniform Equicontinuity]: Let (T, pr) be a product pseudo-metric space. For
each n,let Q, : T — R x R¥ ¢,k € N, be a given mapping. Then {Q,} is uniformly

equicontinuous on I with respect to pr if for each € > 0 there exists § > 0 such that

limsup,, SUD (4, /72)EBy (5) 1Qn(711) — Qn(72)]] <,

where B, (0) = {(71,7%2) € I' x I': pr(71,72) < 6}

Assumption A.4: For each n denote 4, = (d,, én, 7n). Let pr be a product pseudo-metric
on I' such that pr(9,,72) —P 0. (a) For each v € T', m,(y) is O(1) and is uniformly
equicontinuous on I' with respect to pp; (b) {m(y)} obeys a weak uniform law of large

numbers (ULLN) on ['Ti.e.I'sup, cr [[mq () — ma(7)[] =7 0.

Weak ULLN’s are given by Andrews [1991a|l' Newey [1991]"and White and Wooldridge
[1991].

2.2  First Order M-testing

We now treat the case in which the first order terms of a Taylor expansion determine the

behavior of our test statistics. The next two assumptions permit a first order expansion.

Assumption B.1: (a) For each (0, 7) € © x II, my(-, 8, ) is continuously differentiable a.s.
on A and m,(-,0,7) is continuously differentiable on A; (b) for each v € T Vym,(vy) =
n Y EVemy(y) is O(1) and is uniformly equicontinuous on I' with respect to a product

pseudo-metric prsuch that pr(9,,72) —? 0; and (c) {Vami(y)} obeys a weak ULLN on T

Assumption B.2: (a) For each 7 € II, my(a?, -, 7) is Frechet differentiable with respect to

pe a.s. on a neighborhood ©, of 6, such that E(dm(0 — 0,;72)) < oo for all # € ©,; (b)
there exist some A > 0 and D,,; : R" - R, n=' > | ED,,,(Z;) = O(1), such that
Ims(al, 0, ) — my(al, b, m) — 6my(0 — 0,502, 00, 7)|| < Dut(Z:)po (0, 0,) a.s.

for all € ©, and all 7 € IT; (c) pe(0n,0,) = op(n~1/20V).

The product pseudo-metric pp in B.1 may differ from that of A.4. In B.2I'0m(0—6,; a2, 0,, )

is the Frechet differential of m;(a2,-,7) with respect to pe at 6, with increment 6 — 6,T’



corresponding to V’gmfl(én —6,) in Section 1. The inequality in B.2(b) controls the Taylor

series remainder. For {m,} linear in 6, set A\ = oo.

Assumption B.3: For each n denote dm2 (0 — 0,;m) =n "ty 7 dmy(0 — 6,; 02, 0,,7) and
512 (0—0p; ) = ESmE (0—0y; 7). (a) n/? sup, oy [|6mC (0 —05; 1) — 61 (0, —b; ) || =P 0; (b)
N2 (68 (0, — 0,3 70 ) — 012 (B — O3 6)) —P 0; and (¢) n/2||6m2 (0, — 0, o) — Va|| = 0p(1),
where V,, = n™t 31 0,(Z4,72) and vy, 0 R x I' — R? is measurable with n'/?EV,, — 0.

For each 7w € HFémZ(én — 0,;m) is asymptotically a second order V-statisticI'so B.3(a) is
a uniform V-statistic projection. B.3(b) ensures that replacing 7, with 7, does not affect
the limiting distribution of 6me (6, — 6,;#,). Ensuring B.3(c) typically involves an “under-

smoothing” procedure to make the bias of 0, vanish faster than its variance.

Assumption B.4: n'?(a, — a2) = n'/2S, + op(1), where S, = n71Y7 | s.u(Z;,02),
$pt 1 R x A — RP is measurablel'and n'/2ES, — 0.

This includes most parametric and semiparametric estimators that are n'/?-consistent and
asymptotically normal. In parametric maximum likelihood estimationl'for examplel's,,; is

the score function premultiplied by the inverse of the information matrix.

Assumption B.5: Jo *nl/2W, —% N(0, I,), where W, = my, (72) =10 (2) + V70 (12) St

V, and J? is a ¢ X ¢ nonstochastic O(1) uniformly positive definite matrix.

This ensures that n'/21¥, is nondegenerate. It occurs when §m? (6 — 0,;7,) = Op(n~'/?), so
that this functional of §, achieves the parametric rate. HereI'n'/2V,,, n'/2(m,(v2) — mn(72))
and n'/2V' m,,(v2)S,, jointly determine the limiting distribution of n'/?rh,,. This possibility
arises when 57?7,%(02Z — 0,;m,) can be approximated asymptotically as a weighted integral of
0, — 0,, providing additional smoothing. See Andrews [1991bISection 4]I' Goldstein and
Messer [1992|['Hérdle and Stoker [1989|'Lavergne and Vuong [1996]['Newey [1994]|['Powelll

Stock and Stoker [1989]'Robinson [1988] and Stoker [1989].

Assumption B.6: For each n there exists a measurable J, : Q — R? x R? such that
J, —J,, =P 0, where .J, is a ¢ X ¢ nonstochastic O(1) uniformly positive definite matrix with

Jp = J? under H,,,where J? is as in B.5.



We now state the first main resultl’a substantive extension of Whang and Andrews [1993].

Theorem 2.3: Define M, = ninl,J 1, where i, = m,(3,). (i) Suppose A.1-A.3 (with
a, = n1/2) and B.1-B.6 hold. Then under Hg, with a, = n'/?,

M, =% x2(¢2),

where Xz(g‘;) is a chi-square distribution with q degrees of freedom and noncentrality (¢ =
nml (v2)Jo " m,. (v2); (i) Suppose A.1,A.2,A.4 and B.6 hold. Then under Hy and for any

nonstochastic sequence {C,, = o(n)},
P[M, > C,] = 1.

When the limiting random variable depends on n as in (i) abovel'the convergence in distri-
bution is as defined by White [19941 Definition 8.3]. Theorem 2.3 implies that A, is able
to detect the class of local alternatives converging to the null at the parametric rate n=/2.
Compared to Whang and Andrews [1993]'who consider only the infinite dimensional pa-
rameter estimators that do not affect the limit distribution of the m-test statistic'we permit
use of infinite dimensional parameter estimators that may or may not affect the limit distri-
bution of interest. This extends the scope of m-testing to test parametricl'semiparametricl’
and nonparametric models against various alternativesl'as illustrated by the examples in

Sections 3 and 4 below.
2.3 Second Order M-testing

We now consider the case in which second order terms dominate in our Taylor approxi-

mation. To characterize the relevant casesI'we use the following definition.

Definition 2.4 [Degenerate Moment Function|: Let A.1, B.1(a) and B.2(a) hold. Then
{m} is a,-degenerate at v = (a2, 0,,m,) € I' if there exists a nonstochastic sequence {a, :
n/1Y? = 00, a,/n — 0} such that (a) a,(my,(72) =M, (72)) =P 0; (b) (an/n )V giitn (72) —
0; and (¢) a,om? (0 — 0,;m,) — 0 for all 0 € ©, C O, where O, contains a neighborhood of
0,.

Under H,, my(7,) = 0 a.s, Vamy(7,) = 0 and 6m2 (0 — 6,;m,) = 0 for all # € ©, and all
t,n. Assumption B.5 thus fails. Consequentlyl'Theorem 2.3 does not apply to DMF’s.



The examples at the outset of Section 1 are DMF’s. Hong and White [1995] give numerous
other examples relevant for testing specification hypotheses about models of conditional
densities or expectations. In the pastl'the standard response to degeneracy has been to
remove itI'e.g.I'by sample splitting (Yatchew [1992]' Whang and Andrews [1993I Section
5])['use of nonparametric estimators not nesting the parametric model (Wooldridge [1992])T
or special weightings (Fan and Gencay [1993][' Lee [1988] and Robinson [1991]). These
approaches base the limiting distribution of the test statistics essentially on modified first
order terms. As it turns outl'these approaches do not fully exploit the possible efficiency
gains provided by the degeneracy. In additionl'each has features one may consider drawbacks:
sample-splitting uses relatively inefficient nonparametric estimators; non-nested approaches
require slow convergence of the nonparametric estimator to the true function; and weighting
may introduce unnecessary noise or make the asymptotic covariance matrix depend on a
nuisance parameter['the choice of which may affect size and power in finite samples. Furtherl’
these procedures may work only in certain cases. For examplel non-nested testing and
deterministic weighting may not apply when 6, is constant under the nulll'as in testing
heteroskedasticity.

We therefore part with tradition and avoid these drawbacks by basing tests on the dom-
inant second order terms. As our statistics are quadratic formsI' CLT’s for generalized
quadratic forms (e.g.I'de Jong [1987]) or degenerate U-statistics (e.g.I'Hall [1984]) apply.
In addition to being straightforwardl'a main advantage of our approach is that it improves
asymptotic power under both local and global alternativesI'as will be seen below.

We now introduce two conditions that permit a two term Taylor expansion.

Assumption C.1: (a) For each (6, 7) € O xII, my(-, 0, 7) is twice continuously differentiable
a.s.on A, with ||[Vim,(-)]] and ||[VZm,(-)|] dominated by D, : R” — R", n t 3"  ED,(Z;) =
O(1); (b) with {a,} as in Assumption A.3Ta,n~2(V!,mu (0, 0p, 7tn) =V in (0, Op, 70y)) —P
0; and (¢) apn™Y2(V M, (a2, O, 7tn) — V'in(72)) = 0.

This ensures that the first two terms in the Taylor expansion of a,m, around o) do not

affect its limit distribution.

o

Assumption C.2: (a) For each 7 € II, my(a?,-,m) is twice Frechet differentiable with

respect to pe a.s. on a neighborhood 0, of 6, and there exist some A > 0 and D,; : RV —

10



R, n ' >" | ED,(Z;) = O(1), such that for all € ©, and 7 € II,

lmi(al, 0, 7) — my(a2, 0y, ) — me(0 — 0,502, 05, 1) — 6*my (0 — 0,; 02, 0,, )|

< Dpi(Znt) po(0;0,)* a.s.;

(b) with {a,} as in Assumption A.3 and A as in (a)Lpe (6, 0,) = Op(aﬁl/@“)),

Herel'6%m, (0—0,; a2, 0,, ) corresponds to 5(0—0,)'Vamg(0—6,) in Section 1. The inequality

imposes a rate condition on the remainder term of the Taylor expansion.

Assumption C.3: For (0,7) € ©, x II denote 6*m2(0 — O,;m) = n 1> 6%my (0 —
O,; 2, 0,,7) and 6?m2 (0 — 0,; ) = E5°m? (0 — 0,; 7). Let {a,} be as in Assumption A.3. (a)
nSUPgen ||02me (0, — 003 ) — 628 (0, — 003 7)|| =2 0 (b) 62 (0, — O3 1) — 62 (0 — 0, 7) +
521 (0, — B3 1) = W, (7) 4 op(a;") uniformly in 7 € II, where W, (7) =n=2 31 S0 |

Wius(Zy, Zg;m) and Wiy : R” x RY x IT — R? is measurable; (¢) a,(Wy,(7,) — EW, (7)) =
an (Wi (7)) — EWpn(m,)) + 0p(1); (d) anEW,(7,) = anEWy(m,) + 0p(1) and a,6me (6, —

~

05 7tn) = a,0mM2 (6, — 0,5 7,) + 0op(1).

For each m € II, 62m2(f, — 0,;7) is asymptotically a third order V-statisticI'so C.3(a)
is a uniform V-statistic projection. C.3(b) says that dm2 (8, — 0,;7) — 6mS (6, — b5 ) +
52m2 (0, — 0,; ) is asymptotically a generalized quadratic form W, (r) (see de Jong [1987]).
When W, (Zy, Zg; ) = Wy (Zy, Zg; ), W () is a second order V-statistic. In first order m-
testingl'the term 6me (0, — 0,; 1) — 672 (6, — 0,; 7) vanishes (cf. B.3(a))I'but here it matters.
Genericallyl'it is of the same order as the second term in C.3(b). In specific casesI'the limiting
distribution of the m-test statistic may be determined by: (i) the first term only (when {m;}
is linear in 0, as in (1.1) and (1.2)); (ii) the second term only; or (iii) both jointly (e.g.'Hong
and White [19931'1995]). C.3(b) provides a useful decomposition of DMF’s; there may exist
alternative decompositionsI'leading to different tests. For exampleI'Hong and White [1991]
show that different decompositions for (1.1) lead to a nested test (Hong and White [1991])
and a non-nested test (Wooldridge [1992]). C.3(c) ensures that replacing 7, with 7, does
not matter asymptotically. While a, EW,,(7,) dominates a,(W,(m,) — EW,(m,))l'it can be
subtracted from a,m, so that a,(W,(r,) — EW,(m,)) becomes dominantI’a “recentering”
procedure. This can have an appealing interpretation. For example['with 0, a nonparametric
series estimator]'Hong and White [1995] interpret recentering as subtracting the degrees of

freedom from a x? random variable.
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Assumption C.4: n'/%(&, —a2) = Op(1).
We need not know the structure of &, as it will not affect the limit distribution of the test.

Assumption C.5: For {a,} as in Assumption A.SFJﬁfl/Zan(Wn(wo)—EWn(Wo)) —% N(0,1)

as a, — 00, where J? is a ¢ X ¢ nonstochastic O(1) uniformly positive definite matrix.

Given the i.n.i.d. assumptionl'we generally have var(W,,s(Zy, Zs)|Zy) = var(Wis(Zy, Zs)| Zs)
0 for t # s. ThusI' W, (m,) — EW,,(7,) is a degenerate U-statistic. Here['CLT’s for non-
degenerate U-statistics (e.g.I'Power, Stock and Stoker [1989|'Lavergne and Vuong [1996])
do not apply. Insteadl'we must use CLT’s for degenerate generalized quadratic forms (or
degenerate U-statistics). For CLT’s for quadratic formsI'see (e.g.) de Jong [1987|' Hall
[1984]I'Mikosch [1991]I'Rotar [1973] and Whittle [1964].

Assumption C.6: (a) J, : 0 = RY x RY is measurable such that J, — J,, —? 0, where J,
is a ¢ x ¢ nonstochastic O(1) uniformly positive definite matrix with J, = J? under Hg,,
where J° is as in C.5; (b) R, : Q — R? is measurable such that a, (R, — R,) —? 0, where
{a,} is as in A.3 and R, is a ¢ X 1 nonstochastic vector with R,, = EW,,(7,) under H,, and
[ Rnll = ol[lma(y)]) under H.,.

Our second main result can now be given.

Theorem 2.5: Suppose {m;} satisfies Definition 2.4 with {a,} as in A.3. Define M, =
a2 (i, — Ry)'J (1, — Ry), where i, = my(3,). (i) Suppose A.1-A.8 and C.1-C.6 hold.
Then under H,,,

M, =% x2(¢2),
where (¢ = a’m! (v2)J°~ 'm, (v°2). (ii) Suppose A.1, A.2, A./ and C.6 hold. Then under H 4

and for any nonstochastic sequence {C, = o(a2)},

P[M, > C,] — 1.

To interpret H,, for the DMF’sI'we consider the case in which H,, is generated by the
sequence {a?}, where a2 — «,, and «, is as in H,. Recall that for DMF’sI'm,,(y,) = 0 and

VoM (7,) = 0'so a two term Taylor expansion gives

anmn(')’s) = %an(aﬁ - ao)’v?xmn(%)(az - a0) + O(Gn”az - a0||2).
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It follows that A, has nontrivial power against H;, : of — o, = can'’? for some ¢ # 0.
Obviouslyl'this local alternative converges to H, faster than n~'/* because a,/n'/? — oo.
We thus achieve an efficiency improvement in terms of local power['compared to the various
previous approaches that avoid rather than exploit the degeneracy. For these approachesl’
typical local alternatives are n~'/* (see Hong and White [1993] for an example).

Theorem 2.5(i) shows that M, cannot detect local alternatives H, of O(n~'/?), because
a,/n — 0. In other wordsI'the second order tests are less efficient than those that are able

=12 Howeverl this conclu-

to detect local alternatives vanishing at the parametric rate n
sion is specific to the local power criterion. Using other appropriate efficiency criterial'the
conclusion can be different for second order m-tests. Specificallyl'we can apply Bahadur’s
[1960] asymptotic slope criterion['suitable for comparing two large sample tests under fixed
alternatives. The basic idea is to hold power fixed and compare the resulting test sizes.
Bahadur’s relative efficiency is the limit of the ratio of the sample sizes required by two tests
to achieve the same asymptotic significance level (p-value) under a fixed alternative. This
criterion has been used by (e.g.) Geweke [1981al'1981b] among others.

For parametric testing['the asymptotic slope is the rate at which minus twice the loga-
rithm of the asymptotic significance level of the test statistic tends to infinity as n increases.
Because the rate of divergence of second order m-tests is different from that of the paramet-
ric testsI'we cannot use Bahadur’s approach directly. Insteadl'we extend it appropriately.

Given M,, —¢ XZ under H,, the asymptotic significance level of M,, is 1 — F,(M,,), where F,
is the cdf of x7. We now define

K, = —21In(1 — F,(M,)).

Because In(1 — Fy(¢)) = —3¢*(1 4+ o(1)) as ¢ — +oo (cf. Bahadur [1960I Section 5])I'it
follows from Theorem 2.5(ii) that

Kn/a, = my (1) mn(77) + 0p(1).

Following Bahadurl'we call m/,(72).J,'m,(72) the “asymptotic slope” of the sequence of
tests based on {M,} under H,. Obviouslyl'a larger asymptotic slope or a faster rate a,
implies a faster rate at which the asymptotic significance level decreases to zero as n — oo.

172 For second order m-testsIhoweverl’

For parametric tests and first order m-testsl'a,, = n
an/n'? — oo. For example['Hong and White [1995] have a,, = n'/2*¢ for ¢ > 0. Thereforel’
second order m-tests are more efficient than parametric tests or first order m-tests under
fixed alternatives in the sense that Bahadur’s relative efficiency is infinite. This conclusion

is in sharp contrast to that reached under H,,.
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3. APPLICATION TO NONPARAMETRIC SERIES ESTIMATION

3.1a First Order M-testing: Results with Fixed Regressors

We first apply Theorem 2.3 to robust nonparametric series regressions. For simplicity

and conveniencel'we assume the following DGP.

Assumption D.1: (a) For each n, Y; = p,(X;) + 0,(Xy)e, t = 1, ..., n, where p, € C"(X)
and X C R? contains the support of X;, 7, d € N. Suppose {X;} are nonrandom and
{e;} are independently and identically distributed (i.i.d.) with E(e) = 0 and E(ef) = 1;
(b) 0, : X — R* is constant.

Here {X;} (hence {Y;}) may implicitly depend on n. The analysis extends to random re-
gressors (see Andrews [1991b] or Gallant Souza [1991]). Homoskedasticity (D.1(b)) can be
relaxed; we do so in Section 3.2.

A nonparametric series estimator for p, is fi, = argmin,ce, Qn(Z", 1), where @, :
QX O, >R 2= (Z,.... Zn), Zi = (Y;, X!)', and

for given {¢); : X — R} and p, € N. We take Q,(Z", ) = n 1>, o(Y; — p(Xy)), with
¢: R — R If ¢ is convex with derivative ¢, then fi,(-) = ;pﬁAn solves

nTh Y Yup (X)) (Ve — 1 (X3)) = 0, (3.2)

where ¢, (X)) = {¥1(X}), ..., 1y, (X;)} and [, are p, x 1 vectors.
Andrews [1991b] treats least squares. We complement Andrews by giving new results for

robust estimators. We follow Yohai and Maronna [1979]'Mammen [1989] by restricting .

Assumption D.2: ¢ : R — R is a monotonic bounded function with three bounded
derivatives such that Ep(e;) = 0 and E¢'(e;) > 0.

Monotonicity ensures a unique solution for Bn Boundedness ensures robustness to outliers;
it rules out least squares. Differentiability is for convenience.

Denote D0 = (9% /9x)") - - - (9 /0x)*)f, where 6 € C"(X) and A = (Ay, ..., \g)' isa dx 1
vector of nonnegative integers. The order of D is [A| = 320, \; < r. When |A| = 0, put

D' = 0. We use certain Sobolev spaces.
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Definition 3.1 [Sobolev Space|: Let 6§ € C"(X), r € N. For 0 < s < r, define ps(01,02) =
161 — o]
Define the Sobolev spaces

500 Where [|0]]s oo = maxy < Supyex |DM(2)|. When s = 0, write ps = poso-

Wi (X) = {0 € Cr(X) : 0,00 < 00}, 0S5 <y Wi, (X) = WE,(X).

Assumption D.3: Let A\y,(A) denote the minimum eigenvalue of square matrix A and
\IJ - {wnpn( ) 777bnpn( n)}, Suppose (a) )\mln(\IJ;L\IITl) — O9; (b) puttlng gnpn = Suplgtgn

(¥ (X0) (W, 9,,) 4y, (X0) }, then max(n'/[In(n) >3, pa&ap,) — 05 (¢) maxocjcp, 115l 0 <
Bs(pn), 0 < s <r, where B; : N — R* is nondecreasing.

Assumption D.3(a) is key for consistency of ji, for p,. D.3(b) is a strengthened Lindeberg
conditionlimplying p?/n — 0. We allow By(p,) to increase with p,. For such series as B-
splinesI"Gallant’s [1981] Fourier Flexible Form (FFF) and the trigonometric seriesI'By(-) is
bounded if X is. For 1< s < r, Bs(p,) grows with p, generally.

Assumption D.4: There exists a sequence of p, x 1 nonstochastic vectors {39} such

that () = 4, ()8 € Wi, (X) and (a) poo(pf), 110) = o(n7?); or (b) psoo(ptf, o) =
o(n=Y20+0) 0 < s <, for A as in B.2(a).

Given {9;}, D.4 is ensured by imposing smoothness on p, with appropriate choice of p,,.
For examplel'if {¢;} is the Fourier seriesI'y, € C"(X), X = (0,27)% then there exists
1o () = U, ()85 € Wi, (X), 0 < s < 7, such that pye(15, o) = o(pn"~"/*") for any
¢ > 0 (e.g. Edmunds and Moscalelli [1977]). Hencel'D.4(a) holds if p,, = n%/?*¢ and D.4(b)
holds if p,, = n#/2(r=s)(1+\)+e,

We now establish consistency and asymptotic normality for fi,,.

Proposition 3.2 [Consistency|: Suppose D.1-D.2, D.3(a) and D.4(a) hold, and p, — oo,
Pn&np, — 0. Let fi, be as in (3.2). Then n™' >0 (fi(Xt) — po(X))? = Op(pn/n) and
180 = 8211 = Op (i [ A (W1, 00)).

Proposition 3.3 [Normality]: Suppose D.1-D.3(a,b) and D.4(a) hold. Let G,,, be a sequence

of pn % q nonstochastic matrices such that I = G, (¥, 9,)” Gy, E0*(;)/ E*¢'(e) is a
q X q uniformly nonsingular matriz. Let vy, (Zy) = Gl (V1Y) Yup, (Xi)@(e) /E¢' (e). Then
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LG, (B = 82) = 172 S0 v+ 0p(1), and

0—1/2 A o
LG (B — B2) = N(0, I,).

~

This complements Andrews [1991bI"Theorem 1(a)]. We will approximate 0m2(6,, — 0,;7,)
as GZ’p(ﬂAn — ;) for some Gy, . For thisI'the following is appropriate.

Assumption D.5: (a) Foreach 7 € [Tand 6 € ©,, 6m2(0—0,;7) =n 137 gne( Xy, m)(0(Xy)—
0,(Xt)), where g, : XXIT — R and 0™ Y71 | ge( Xy, 70) Gt (X, )" 18 @ ¢ x ¢ O(1) uniformly
positive definite matrix; (b) there exist some 7 > 0 and D, : X — RY, n7' >0 | Dy (X;) =
O(1), such that for all z € X and 7, 7 € 11, ||gnt (@, T1) — gne(w, 72)|| < Dye()2pri (71, m0)";

and (¢) pu(Fn, ) = 0p(pn /7).

Assumption D.5(a) is a “smoothness” (Goldstein and Messer [1992I Definition 3.2]) or “full
mean” (Newey [1994I' Assumption 3.5]) condition. D.5(bl¢) ensure B.3(b).

The main result of this section follows.

Theorem 3.4: Suppose Assumptions A.2 (for a,m), A.3, B.1, B.3(a), B.4, B.5 with
v (Zy) = GO, (WL, /1) Yy, (Xi)p(e)/E¢' (), B.6, D.1-D.3(a,b), D.4-D.5 hold. Define

npn
M, = nm;lj;mn, where 1, = mn(&n,én,frn) and 0, = fi, as in (8.2). Suppose either (a)
{m¢} is linear in 0; or (b) B.2(a,b) with (©, pe) = (Wi, z(X), ps), and D.3(c) hold, and
R 20N p B, (pa) AL (W W,) — 0, where A is as in B.2(a). Then (i) under H,,

M, —* N(0,1);
(11) under H, and for any nonstochastic sequence {C,, = o(n)},

PM, > C,] = 1.

Hencel asymptotic n'/?-normality is attainablel’ with 0, a series m-estimator. We omit

treatment of local alternatives for the sake of brevity.
3.1b  First Order M-testing: Application to Testing Normality

We now apply Theorem 3.4 to construct a new test for normality of the regression error

of a nonparametric regression. For this purposel'we use the following moment vector:
my(e, 0, m) = {(Ve = p(X0))%, (Y — p(X))* = 301},
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where (o, 6) = (02, i), and a, = 02 is the unconditional variance of the regression error.

Here we recognize quantities with expectations proportional to the standard measures of
skewness and excess kurtosis. White [1982] shows that the vanishing of these two moments is
necessary and sufficient for validity of the information matrix equality when estimating the
mean and variance of a normal random variable using maximum likelihood. ThusI'testing for
skewness and excess kurtosis gives an information matrix test for normality. Alternativelyl’
Bera and Jarque [1982] obtain a normality test based on these moments by nesting the
normal within the Pearson family. This example clearly demonstrates a typical feature of
first order m-testing: the hypothesis H} originally of interest (normality) does not exactly
coincide with the null hypothesis H, tested (absence of skewness and excess kurtosis)["as
there are non-normal distributions with no skewness and excess kurtosis. It is for this reason
that first order m-testing often fails to deliver consistent tests against H.

We have the following new result.

Theorem 3.5 [Testing for Normality]: Suppose for each n, (a) Yy = p,(Xy) + €, where
Xy =(2t—1)/2n,t=1,...n, and ¢ is i.i.d. with E(e;) = 0, E(e?) = 02; (b) po € C"(0,1)

for some r > 2; (c) (x) = V2cos(j — V), 7 = 1,2,...; (d) ¢ satisfies D.2; and (e)

pt/n— 0, p=°/n — oo for any arbitrarily small § > 0.

Put 62 =n~' 370 & and iy = p(&)/ (7t Y1, ¢ (6)), where & =Y, — 1, (Xy), with fiy,

e
as in (3.2). Define M, = nin!, J Yy, 1y, =n"" Sor (€, el — 361, and
. Jn J
jo= | e
Jiz J
where Jy; = 1568 —662n~1 30 @04+95in 13S0 7, Jip = —362n"t Y00 e +-180in T SO0 €24y,
and Jyy = 2468. Then (i) under H,,
M, —* X%;
(ii) under Hya, if E(€l) < 0o, then for any nonstochastic sequence {C,, = o(n)},
P[M, > C,] = 1.

Compared to Bera and Jarque’s [1982] testour test is insensitive to model misspecification
for p, because we use a nonparametric model rather a parametric model. A similar result

holds for more general regression designs; we omit this for brevity.

3.2 Second Order M-testing
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NextI'we apply Theorem 2.5 to give a new consistent specification test for parametric
models in the presence of heteroskedasticity of unknown formlI'as motivated us at the outset.

The following parametric specification applies.

Assumption E.1: Let {X;} be a nonstochastic sequence with v, = v, v,(B) = n~t> "  1[X, €
B],B C R?. For each € X, f(,-) : A — R is twice continuously differentiable on A, with
| (@, )], [[Vaf(z,)||* and ||V2f(z,-)|| dominated by functions integrable with respect to v.

The null hypothesis originally of interest (correct model specification) is
H: :o[f(X, a,) = po(X)] = 1for some a, € A
for p, as in Assumption D.1Tand the global alternative is
H o[f(X, a) # po(X)] > 0 for all a € A.

Using a nonparametric series estimator for z,, Hong and White [1995I Theorem A.3] propose
a consistent test for H} based on (1.1) achieving robustness to heteroskedasticity through
use of a heteroskedasticity consistent covariance matrix estimator. This limitation can be

avoided by using

my(e, 0, m) = (0(X1) — f(X, @) [o(X0))(Y: = [(Xe, @) /o (X0), (3-3)

where (0, 7) = (u/0,0). Observe that at (6,,7,) = (1o/00, 00), Mmu(a, b,, ) = 0 if and only
if & = «a, under H}. Hencel'tests based on (3.3) are consistent against H;.Because (3.3) is
degenerate at v,["Theorem 2.5 applies.

Using ©,, as in (3.1)['we form an adaptive nonparametric least squares estimator for 6, as

0, = argmingeco, n~" 37 (Vi/6,(X;) — 0(X)))% (3.4)
where ¢, is a nonparametric estimator for o,. To verify that using &,, in place of o, has no
asymptotic effectl'we use the following uniform convergence resultl'extending a method of
Hall [1988I'1989] from a finite dimensional space to an infinite dimensional space. This can

also be used to verify stochastic equicontinuity.

Theorem 3.6: Let (2, F, P) be a complete probability space and I1 = {7 : X C R —
e, ¢ | |7(z1) — m(x2)| < Allzy — x| for any x1,29 € X}, where 0 < A < oo and X is
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bounded, d € N. For each n suppose 11, is a compact subset of I, and @, : 2 x II,, — R is
a stochastic mapping such that EQ, () = 0 for each 7 € I1,,.

Suppose (a) for each pair e, A > 0,sup, ¢y, P[|Qn(m)] > €] < Cin™; and (b) for each
A >0, there exists \i = Ai(X\) > 0 such that Esup,, ., es, 5,) |@n(m1) — Qn(ma)] < Cn,
where By, (6,) = {(m1,m2) € I, X I, : poo(m1,m2) < 0 =1 )‘1}, then for each pair e, A > 0,

P [supcn, |@n(m)] > €] < Con™
Assumption D.1: (b') 0, € ¥ ={0:X = [¢,c7]| | |o(x1) — 02(22)] < A||z; — z|| for any

71,79 € X}, where 0 < A < oo and X C R? is bounded; (c) all moments of ¢; are finite.

Assumption E.2: G, :  — X is measurable such that py (6, 0,) = o(min[pgl/Z, (pp/n)'/?+0])
for any arbitrarily small 6 > 0.

Assumption E.3: For §,,, as in D.3I',,, — 0.

Assumption E.4: There exists a nonstochastic sequence {35 } such that 6} (-) = ¢y, (-)5; €
Wi (X) and poo (62, 6,) = o(py/ > /n/2).

We now state a CLT for the quadratic form of {t,,, (X;)e;} in the presence of o.

Theorem 3.7: Suppose D.1(a,l',c), D.3(a) and E.2-E.3 hold. Let p, — 0o as n — o0.
Define Wy(o) =3 0 S0 Wis(0), where
Wt (0) = (00(X¢) /(X)) €ethny, (Xe) (U3, ¥n) ™ g, (Xs)€s(00(X) [0 (X)),
Then
(Wa(6n) — pn) /(2pn)1/2 — N(0,1).

This is obtained by first showing pﬁl/Q(Wn(@z) — W,(0,)) =P 0 using Theorem 3.6 and then
showing (W,(c,) — pn)/(2pn)*? —¢ N(0, 1) using de Jong’s [1987] CLT for quadratic forms.

A new heteroskedasticity-insensitive test complementing Hong and White [1995] follows.

Theorem 3.8: Suppose C.4, D. l(a,b’,c) D.3(a) and E.1-E.j hold. Define M, = (nm, —
pn)/(2pn)1/2 where 1y, =n"* Zt 1( n(Xe) = f(Xe, @) [ 60(X0)) (Ye— f(Xi, ) /00(Xo), with
0, asin (3.4). Let p, — oo as n — co. Then (i) under HY,

M, —* N(0,1);
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(11) under HY% and for any nonstochastic sequence {C,, = o(n/pi/Z)},
PIM, > C,] — 1.
4. APPLICATIONS TO NONPARAMETRIC KERNEL ESTIMATION

4.1a  First Order M-testing for the i.i.d. Case

Assumption F.1: (a) For each n the random sample {Zi, ..., Z,} is i.i.d.I'where Z; =
(X)) € Rt d € N, and E|Y;| < oo; (b) the support X C R? of X is compact and
the distribution of X is absolutely continuous on X with respect to Lebesgue measurel'with
density p, bounded above and away from zero on X. Furthermorel'the sample { X, ..., X,}
does not include the boundary points of X; and (c) for some § > 0, E|Y,*™| < oo and
supgex E[|Y 77 |X = 2] < oo.

Boundedness of p, away from below can be relaxed using moving trimming (e.g. Hirdle and
Stoker [1989] or Robinson [1988]). To avoid boundary effectsI'we assume {Xj, ..., X,,} does
not include boundary points of X. Part (c¢) gives moment conditions for uniform convergence
of kernel estimators (e.g. Mack and Silverman [1982]['Newey [1994]).

We use the Nadaraya-Watson kernel estimator for p,(z) = E(Y|X =) :

e :{ (np()™ S Vi (o = X0) i () # 0 "

0 otherwisel

where p,(z) = n7 ' Y0 Ky(2—X,), K, (v —X;) = b, *K[(x—X;)/b,], and b,, is a bandwidth.

We now impose regularity conditions on K, u, and p,.

Assumption F.2: K : T — R is a symmetric bounded kernel of finite order k£ with compact
support T = [—7,7]%, 0 < 7 < o0, such that K is differentiable of order s > 0, with Lipschitz
s-th derivativel' [, K (u)du = 1, [Luf'uf - - - w4 K (u)du = 0 for |i| = 2?21 i; < k, and
Jpufug - ud K (u)du # 0 for |i| = k.

Assumption F.3: There exist extensions of p, and p,pu,such that these extensions are in

Wi, . (R?) for some integer r > 0.

We use a uniform convergence result due to Newey [1994].
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Lemma 4.1: (Newey (1994, Theorem B.1|): Suppose Assumptions F.1-F.3 hold with r >
s+ k. Let b, — 0, n®/)pd /In(n) — oo, where § is as in F.1. Then (i) ps.oo(fin, fto) =
Op([nby ™/ In(n)] 712 + b); and (i) ps,oo(ba, po) = Op([nb2*/ In(n)] =172 + Bf).

This delivers explicit rates for b, satisfying certain conditions of Theorem 2.3.

We now impose conditions on my(«, 8, 7) = m(Z, a, p, 7).

Assumption F.4: (a) Let 6, € ©, C ©. For each § € O,and each 7w € II, dm? (0 — 0,;7) =
Elg(X, m)(0(X)—0,(X))], where g : XxIT — R? is such that for each = € IITg(-, ) € C*(X),
Elg(X,7)g(X, m,)"] is a ¢ x ¢ finite positive semi-definite matrix and sup,.x ||D¥g(z, m,)|| <
A < oo; (b) there exist some > 0 and D : R? — R*I'ED(X) < oo,such that for all
v € X and 7, m € II, ||g(z, ™) — g(z,m)|| < D(x)"?pn(m,m)"; and (¢) pu(fn, 7)) =

op((nby) /")

F.4(a) is a “smoothness” or “full mean” assumption. F.4(bl¢) ensure that replacing 7, with

7, does not affect the limiting distribution of 6m2 (0 —6,; 7,,). We use the following key result.

Proposition 4.2: Suppose F.1(a,b) and F.2-F./(a) hold and V, = E[g(X, 7,)g(X, m,) €] is
finite and nonsingular, where € =Y — p,(X). Let n®/C+)p /1n(n) — oo, nb??/In(n) — oo,
nb?* — 0, and 2k > d. Then n'?6m (0, — 0,3 7,) = n Y231 g(Xy, mo)er + op(1), and

nl/zém;(én — 0,;m,) =% N(0,V,).

This is necessary but not sufficient for B.5; the following suffices.

Assumption F.5: For W(Ztaf)/o) = m(Ztaf)/o) + v,am(f)/o)s(ztaao) + g(Xtaﬂ—o)eta Jo =
EW(Z,v,)W(Z,7,)") is a ¢ X ¢ finite positive definite matrix.

Theorem 4.3: Suppose Assumptions A.2 (for a,m), A.3, B.1, B.3(a), B.4, B.6 with J? =
Jo, F.1(a,b) and F.2-F.5 hold. Define M,, = nm;ljn_mn,where m, = mn(dn,én,ﬁn) and
0, = [in is as in (4.1). Let nb® — oo, nb?* — 0, 2k > d. Suppose either (a) {my} is linear
in 0 or (b) B.2(a,b) with (0, pe) = (W;(X),ps), and F.1(c) hold, n®/@+p/In(n) —

00, n)‘b%d”s)(lﬂ)/ln(1+/\)(n) — 00, nb2F "N 50, where § is as in F.1 and A as in B.2.
Then (i) under H,

d 2.
*]\471,_> Xq)
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(ii) under H, and for any nonstochastic sequence {C,, = o(n)},
P[M, > C,] = 1.

Asymptotic n'/2-normality is thus achieved['despite the presence of 0,,.
4.1b  First Order M-testing: Application to Testing Omitted Variables

Although nonparametric regressions do not require specification of functional formI'they
do require a priori knowledge of relevant explanatory variables. One may be interested in
testing the relevance of additional variables. We now give a new test for omitted variables
insensitive to model misspecification.

Put Z, = (Y}, X)) = (Y3, (X1, X5,))', where Xy, is a d; x 1 random vector with density
py and Xy is a dy X 1 random vectorl'd; + dy = d. Suppose one is interested in testing the
relevance of Xy; in explaining Y;. Then the hypotheses originally of interest are

H? : PIE(Y,|Xy) = E(Y)|X)] =1vs. H%: PEY,|Xy) = E(Y,|X,)] < 1.

o

Put p9(Xy;) = E(Y;|X1¢) and consider the moment function

m(Zy, o, 0, 1) = (X)) (Ve — 111 (X1e)),

where 0 = py, 1 is a given weighting functionl'and « and 7 are null. Now H implies
Em(Z;, a,0,,m) for 0, = pg. We note that Robinson [1989I'5.52(e)] suggests a similar ap-
proach to testing H} with the choice of 1(Xy;) = Xy, but does not construct a test statistic.

To construct our statisticl'we use a kernel estimator for pf :

(4.2)

fian(1) = (np1n (1)) P> ViKG (2 — Xu)  if Pro(@1) #0
in 1) —
0 otherwisel’

where ﬁln(xl) =nt Z?:l Kn(CEl — Xlt); Kn(xl — Xlt) = b;lK((l'l — Xlt)/bn),Wlth K
: R" — R a kernel and b,, a bandwidth.
We also use the following kernel estimator for g(Xy;) = E(¢(Xy)| X1) :

on(or) = (nprn(21)) 2S00 W( X)) Ky — X)) if pra(21) #0
- 0 otherwise.
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Theorem 4.4 [Testing for Omitted Variables|: Suppose (a) F.1 with § = 2 hold; (b) ¢ :
R% — R is measurable such that Evy*(Xy) < oo and supg,ex,E(W*(Xo)| X1 = 1) < 00,
where X is the compact support of X1; (¢) F.2 with s = 0 holds; (d) p$ and pSu$ satisfy F.3;
(e) g(X1;) = E(¢¥(Xa)| X11) € C¥(X4y) with sup, cx, ||DFg(x1)]| < 003 (f) nb>® [ In*(n) — oo,
b, — 0.

Define M,, = nint, J Vi, where i, = n=" 320 p(Xog) (Yiefirn (X10)), Jo = 078300 (0( X)) —
9n(X1))2(Ye = fun(X4))?. Then (i) under H, : E[()(X2) (E(Y:|X) — E(Yi X)) = 0,

d 2.
j\4n_> Xla

(ii) suppose Hy : E[(Xo) (Y — u8(X1))] # 0 holds. Then for any nonstochastic sequence
{Cn = 0(711/2)},
P[|M,| > C,] — 1.

This test is not necessarily consistent against H} as H implies H, but the converse may
fail. Power depends on choice of 9. For consistency we must choose 1 so that H} coincides
with H,. Such choices exist; see Bierens [1990] and Stinchcombe and White [1998].

Lavergne and Vuong [1996] propose a method to determine relevant regressors using
kernel estimatorsI'but this does not apply here['due to the degeneracy of their statistic. Our
approach complements theirs. One could also use Theorem 2.5 to construct a consistent test

for H}; we leave this for further work.
4.2 Second Order M-testing

In Section 3.2 we gave a new heteroskedasticity-insensitive consistent specification test
for the parametric model f(X;, o) using an estimate of conditional variance. We now give a
heteroskedasticity insensitive consistent specification test using kernel regression and a new
heteroskedasticity-consistent covariance matrix estimator.

We use a weighted version of (1.1)['i.e. my(«,8,m) = p(Xy)(u(Xy) — f( Xy, ) (Y —
f(X¢, @)). Put 6 = (01,6,) = (r,p) = (pu, p) and let 7 be null. Then

my(e, 0,m) = (r(Xe) — p(Xo) (X, @) (Vs = f(Xy, @) (4.3)

As (4.3) is degenerate at (o, 0,) = (<, (Potto, o)), Where o, € A is such that H} :
Plf(Xi, 00) = po(Xy)] = 1 holdsI' Theorem 2.5 applies. A consistent test against H7 :
P[f(Xt, ) # po(Xy)] > 1 for all @ € A can be based on

i =07t 3 (P (Xe) = Pu(X0) (X, ) (Ve = f(XG, Gn)), (4.4)
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where 7, = Py fin, and fi,, and p,, are as in (4.1). We make following additional assumptions.

Assumption F.6: For each v € A, f(-, ) : X—R is measurable; (b) f(X,) is twice con-
tinuously differentiable a.s. on A with |f (X, )|['||Vaf(X,)]|? and ||[V2f(X,-)|| dominated
by D : X—R*, ED*(X) < oo.

Assumption F.7: 02(X) = var(Y|X) is continuous on X.
The next result is the key to obtaining the distribution of our statistic.

Theorem 4.5: Suppose F.1 (with§ = 2), F.2-F.3 and F.7hold. Let W, = n™23>"0" >0 Wy,
Wis = €6 Kn(Xy — X5), € = Y, — 1o(Xy). Define J, = 2C(K)E(c2(X)p,(X)), C(K) =
J, K*(w)du. Let nb? — oo, b, — 0. Then

Jo Pt (W, — EW,) —¢ N(0,1).
This is obtained by applying de Jong’s [1987] CLT for generalized quadratic forms. NextI’

we propose a heteroskedasticity-consistent U-statistic estimator for .J,,.

Proposition 4.6: Suppose Assumptions F.1 (with 6 = 2), F.2-F.3 and F.7 hold. Define
Jp = AC(K)bIn 230 ST 2,82 Ko (Xy — X,), where éy = Vi — j1,(X,) and fi, is as in

s=1 "nt-ns

(4.1). Let nb3* — co, b, — 0 and 2k > d. Then J, — J, =P 0.
Now the new heteroskedasticity-insensitive consistent test can be given.

Theorem 4.7: Suppose Assumptions C.4, F.1 (with 6 = 2), F.2(with s =0), F.3 and F.6-
F.7 hold. Define M,, = Jn Z/Z(mn - Rn), where J, is as in Proposition 4.6, m, is as
in (4.4) and R, = (nb%)~' K (062, with 62 = n 130" | &,, éu = Yi — jin(Xy) and i, as in
(4.1). Let nb3* — co, nb2k+t® — 0, 2k > d. Then (i) under H:,

M, =% N(0,1);
1) under HY, and any nonstochastic sequence {C,, = o andL/Q ,
A
P[M, > C,] = 1.

The growth rate of M, under H, is nb¥?, faster than n/? because nb? — oo; howeverl' M,

can only detect local alternatives of O(n/2b,*), slightly slower than O(n /2).
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MATHEMATICAL APPENDIX
Proof of Theorem 2.3: (i) Given B.2 and by Hélder’s inequalityl'we have
||ma (o én: ) — mn(ay, 0o, ) — 5m$z(én — 03 ) || < ane(én; 90)1+)\ = OP(n_1/2)a (A1)

where D, =n %", Dy (Z;) = Op(1) by Markov’s inequality. By the mean value theoremI”

~

mn - mn(afu én; 7Arn) + V;mn(&n; en; 7Arn)(dn - O‘Z)

given B.1(a)l’ where a different &, (||, — 2| < || — @2||) appears in each row of

Vamy (s, 0, Tp). Substituting my, (a2, én,frn) into (A1) and rearrangingl’'we obtain

~ ~

My = M (08, 0y, ) + Vo (G, O, T0) (G — 02) 4 6mC (0, — B3 70,) + 0p(n™1%). (A2)
For the first term in (A2)T'we have

mn(afp 00; 7Arn) = mn(az,; 90; 7Arn) + (mn(az,; 90; 7?'n) - mn(afp 00; 7?'n))
= (1) + (ma(77) = (7)) + 0p(n” %) (A3)

1/2

given A.3 and a,, = n'/?. For the second term in (A2)['we have

||Vo¢mn(6‘n; énaﬁ-n) - Vamn(72)|| < ||V04mn(&n7 én’ ﬁ'n) B Vam”(&n’ én’ﬁ-n)H
+ [V o (@, O, ) = Ve (72) ]
= op(1)

by the triangle inequality and B.1. Hencel'we obtain

~

Vot (G, O, 700) (@ — 07) = Vit (77) S + op(n~'1?) (Ad)

given B.4 and B.5I'which implies &, — a2 = Op(n~=*/?). For the last term in (A2)I'we have

OmC (B — 003 7n) = 6 (0 — 00370) + (0O (B, — 0y ) — 68 (0 — 043 7))
+ (670 (B — 0,3 ) — 002 (B — B 70,))
= 0mC(0n — 0,;7,) + 0p(nY?)

= V,+op(n*? (A5)
given B.3. Substituting (A3)-(A5) into (A2)T'we obtain 1, = m,(v2) + W, + op(n~'/?).
It follows that Jg /*n!/2pm,, —¢ N(J2 *n'/2m,(72), I,) by B.5. By Slutsky’s TheoremI'we
have n/2J; i, =% N(J2 20t 2m, (12), 1,) given J; — Jo=' = op(1) from B.6. Hencel
d 0
My, =% x3(60).-
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(ii) Given A.2I'A.4 and B.6D'we have 1, — m,(72) —? 0 and .J, — J, ' —? 0. Hencel’
M,/n =m ()] m,(7°) + op(1) by continuityl'where m!, (v2)J ', (72) > ¢ > 0 for all n

sufficiently large under H,4. The desired result follows immediately. B

Proof of Theorem 2.5: (i) Given C.2 and Holder’s inequalityl'we have

M (02, 0y 7)) — M (A2, 0, 71 ) — O (O — O3 700) — 62002 (B — O3 7)) = 0p(at).  (AB)

Under C.1(a)T"a second order Taylor expansion of 7, about af yields

~ ~ ~
~

M = My (02, 0y ) + Vo, (2, 0, 70) (G — 02) + = (G — @2)' NV 2my, (G Oy 7)) (G, — @2),

where a different é, (||@n — 02| < ||éw — a2]|) appears in each row of V2m, (-, 0y, 7). Sub-

stituting m., (a2, 0, 7,) into (A6) and rearrangingl'we obtain

~

m, = my(ad, 00, 7,) + Vim,(al, 0, 7,) (0 — af)

1 ~
+§(dn —a2)'V2my, (G, O, ) (G — )

+ [0 (0, — B,; ) + 6208 (B — B3 70)] + 0p(a7h). (A7)
Given C.1 and Definition 2.4(b)I'we have
Vattin (a5, 00, ) = Vaiiin(19) + (Varin(0f, On, ) = Variin (7)) = 0p(n'/?/ay),  (A8)
and
V20 (G, O, )| < 0710, Dot Z0) = Op(1) (A9)
by Markov’s inequality. On the other handI’
01t (B — 003 70) = (817, — O3 7tn) — 611, (B — B3 7))
+ (0 (On — 003 70n) — 015 (O — 003 m)) + 0y, (6 — 003 7,)
= (68 (O — 003 1) — O (0 — 003 7)) + 0p (a7")
given C.3(d) and Definition 2.4(c)l"and
3210 (On — Oo; Tn) = 02MG(On — o3 Tn) + (%1008 (0 — 003 7)) — 6212 (B — 0,3 71) )

n n
= 6%mo (0, — 0,;7n) + op(a;?t)

~

given C.3(a). It follows that

518 (B — O3 7)) + 62108 (6, — 0,3 7))

n

~

= 0 (0 — O3 7n) — 5MY (B — o3 7) + 8°m (0, — 003 7)) + 0p(ay, )

= Wa(ftn) +op(a,)

= EW,(m,) + (EW,(7,) — EWy(m,)) + (Wa(#,) — EW,(7,)) + op(ay, )

= EW,(7,) + Wy(m,) — EW,(7,)) + op(a;t) (A10)
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given C.3(bIeld). Substituting (A8-A10) into (A7) and using A.3I'C.4l'a,/n — 0, and
Definition 2.4(a)I'we obtain

~

i = ma(5) + (ma(77) = M (7)) + EWa(mo) + (Wa(mo) — EW,(m,)) + op(a;")
= mn(Ym) + EW,o(m,) + (Wa(m,) — EW,(m,)) + op(a,t).

Consequentlyl'given C.5I'we have Jo~a, (i, — EWy (7)) =% N(J2™ P anmn(12), 1,). 1t
follows by Slutsky’s Theorem that Jy "/*a, (1, — Ry) =% N(J3aymn(+2), 1,) given J, —
Jo L =2 0 and ay (R, — EW,(m,)) = 0 by C.6. Thereforel' M, —¢ Xa(G9)-

(ii) The proof of consistency is similar to that of Theorem 2.3(ii). W

Proof of Proposition 3.2: Put ji,; = [i,(Xy), p8, = p2(Xy), and puf = pe(Xy). We first
apply Yohai and Maronna (YM) [1979T Theorem 2.2] to show n= ' >~ (fine—p2,)* = Op(pu/n).
YM assume a linear model of the form (see YM (Eq.(1.1)))

Ynot = ;zpn(Xt)ﬁz tT6 = H%(Xt) +e, t= 17 27 sy Ty M= 17 27 )

where 1, (X;) is a given p, x 1 vector['and ¢, is i.i.d. This is a moving DGP assumption.
With this in mindI'we must control the bias u. — p, properly to apply YM’s results to fi,.

Put G = (\Ij;zllln)il/%/)npn (X)), Bn = (\II;'L\IITL)]-/QBTU ﬂ:{ = (\Ij;zllln)lmﬂfr Then Yy, =
! BT + €. Following the proof of YMTI'we see that to apply YM’s Theorem 2.2 to B, it
suffices that

16, 3 Gue (Y, = GBIl = 0 acs. (A11)

for any b, € R with ||b,|| = O(1). By applying the mean value theorem to the first order

condition (3.2) term by term['we obtain

0 = Zt Cutp(Yy — CvlztBn) = Zt Crtp (Y — letBn) + Zt Cnt@,(ynt)(ﬂgt — 7)),

where Y,,, lies between Y,,; and Y,%,. Hencel'it suffices for (A11) to hold if ||b], >, G’ (Yar) (122,
p)|] = 0 a.s. Given D.2I'D.4(a)l"the identity >, 4i(,; = Ip, and the Cauchy-Schwarz in-

equalityl'we have

18, 0 Care (V) (16 — )] < e {0, (32, GueGln) b /2 {0 (1 — 1)}
< 02 |bu]| poo (125, 110) — 0.

HenceFasymptoticallyFBn can be viewed as a solution to (A11)['which is equivalent to Eq.
(2.7) of YM. The results of YM then apply to (A11l). Given D.1-D.2I'D.3(a)'D.4(a) and
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PnCup, — 0, the conditions of YM [1979I'Theorem 2.2] are satisfied. Hencergl/ZHBn Bl =
Op(1), L.e.D(B, — 52) (¥ 0,) (Bn — B2) = Op(py). It follows that

Zt(/lnt - N?)Q < 2 Zt(ﬂnt - /’l”l(')Lt)Z + %Zt(lu’?zt - “2)2
S Q(ﬁn — ﬁg),(q]%q]n)(ﬁn — ﬁz) + OP(npgo (/u;)u Ho))
OP(pn)

given D.4(a). Because (G, — 52) (0. 0,)(Bp — £2) > Amin(T,0,)||3, — 82|[2, we also have
180 = B2 = Op (o /A (¥, 9)).

Proof of Proposition 3.3: We apply Mammen [1989I' Theorem 4]. Like YMI'Mammen
also considers a linear model of the form of (A11). Following the proofs of both his Theorems
1 and 4I'we see that Mammen’s results can be applied to (A11)I'which holds given D.2 and
D.4(a)l"as has been shown in the proof of Proposition 3.2.

Let b, be any sequence of p, x ¢ nonstochastic matrices such that b/,b, is a ¢ x ¢ uniformly

nonsingular matrix with ||0/,b,]| bounded. We first show
INn_l/Zb;z(Bn - ﬁ:) _>d N(07 IQ)a (A12)

where 3, = (U ,)'/23,, B = (0 ©,)/26°, and I, = b,b,02(p), with 0%(¢) = E?(e,)/E2¢ (€;).
Since Mammen only considers the univariate case (¢ = 1), we use the Cramer-Wold device
(e.g. White [1984I'p.108]) to prove (A12).

Let h € R? be an arbitrary constant with h’h = 1. Define ¢, = b,h, a p, X 1 vector (thus
¢y is equivalent to «,, in Mammen [1989]). Given D.1-D.3(alb)['Condition (2.1) of Mammen
[1989] is satisfied. Note that we impose p,(n,, — 0 to ensure that b, (3, — B;) is centered at
zero asymptotically. It remains to show that ||c,|| is bounded below and above. Since 0/,b,, is
a ¢ x ¢ symmetric bounded uniformly nonsingular matrixI'0 < ¢ < Apin(0,0,) < Amax(0),0n) <
¢! < oo, Hencel' Ayin (b,0,) < ey = BV, byh < Apax(b),0y,), 1.6.0||¢,|| is bounded below and
above. ThusI'(A12) now follows by Mammen [1989 Theorem 4]. Next we show

152G, (B, — 7) = N(0,1,) (A13)

npn
for Ig = G}, (U, ¥,) " Grpo? (). Define the p, x 1 vector by, = a, (¥}, ¥,) Gy, , where
a,t = ||ann( U, ) Gpp, || It follows immediately that 6202 is a ¢ x ¢ O(1) symmetric uni-
formly nonsingular matrix and tr(b9'6%) = 1. Hencel'from (A12) we have fgil/QanG’npn (W, )"1/2
(Bn=B1) = N(O, 1), where I = b/1,0°(ip) = a1 Because f,— 5 = (¥,0,)/2(5,~ 37),
this is equivalent to (A13). ®
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Proof of Theorem 3.4: Put i,y = 1,(Xy), o, = p2(Xy),and pf = po(Xy). (i) We verify
the conditions of Theorem 2.3(i). A.1 is ensured by D.1; A.2-A.3 and B.1 are either imposed
directly or ensured (in A.2['we take (0, po) = (W, ,, ps,00) and 0, = jin as in (3.2)). When
{m;} is linear in #, B.2 holds trivially with A = oo for any pseudo-metric pg; otherwise
B.2(alb) are assumedl’and B.2(c) holds because

ps,OO(ﬂn: NO) < pS,OO([Ln: U%) + Ps,oo(#%, NO)
<p711/2 SuPlgjgpn ||77[)]||oo s||ﬂn ﬂoH +ps,oo(,u$u/1'o)

< il By(pa) Op (il > N (W 0,)) 4 Py oo (12 110)
_ O(R—l/(2(1+/\))

given D.3(c)['D.4(b)I'n20+ Ny, B, (pn)/ Amin (P!, ¥,,) — 0 and Proposition 3.2.
NextI'we verify B.3. B.3(a) is imposed directly; given D.5'we have

5m%(én - 005 7Arn) =n! Zt gnt(Xt; ﬁn)(/}'nt - ,u?) =n"! Zt gnt(Xta 71'o)(,&/nt - ,u?) + T,

where 7, = 113" (Gt (Xts ) — Gt (X, o)) (it — /12) = op(n~?) by the Cauchy-Schwarz
inequalityl'Proposition 3.2 and D.5(bl¢). Hencel'B.3(b) holds. B.3(c) also holds because

Y e (X o) (e — 1) = 17" 32 gt (Xs o) (fimt — 1194) + 171 3, gt (X, 7o) (1 — 117)
= [nil Zt gnt(Xtv 7T0) npn (Xt)](ﬂ ﬂﬁ) + OP(nil/Z)
=n""Y, vu(Zy) + op(n )

by Proposition 3.3 and using the fact that ||[n ™1 >", gue( Xy, 7o) (12, — p10)|| = op(n~'/?) given
D.4(a) and D.5(a) by the Cauchy-Schwarz inequality. Finally'B.4-B.6 are assumed directly.
It follows from Theorem 2.3(i) that M, —% x2.

(ii) Consistency follows immediately from Theorem 2.3(ii). W

Proof of Theorem 3.5: We apply Theorem 3.4. (i) First we verify D.1-D.5. Both
D.1-D.2 hold given (a) and (d). Given (a) and (c)['we have >, i(Xy)¢;(Xy) = ndyj,
where 0; = 1 and 6;; = 0, ¢ # j. Thereforel’ A, (¥, ¥,,) = nI'so D.3(a) holds. Since
max; sup,er1) | ()| < V2, D.3(c) (for s = 0) holds with By(p,) = v/2 for all p,. Because
Enpn = SUPy (Y, (X0) (U, 90) Py, (X1)) < 2pp/n, D.3(b) holds given p,/n — 0.

NextI' we verify D.4-D.6. Given (b)I" there exists yu(-) = ¥, (-)8; € C"(0,1) such
that peo (12, i) = o(p; ") for all § > 0 (e.g.'Edmunds and Moscatelli [1977]). It follows
that D.4 with s = 0 hold given (e). Alsol'with By(p,) = v/2 and A = 1, the condition
nt200 . By (pa) /A2 (W 0,) = O(p,/nt/4) — 0 holds given (e). From (A14) belowI'we see

that D.5(a) holds with g,,(X;,7) = (—=302,0); D.5(bI¢) are null because m does not appear.
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We now verify the remaining conditions. We put p, = pu(X), fine = fin(Xe), poy = 1o (X4).
A.2 holds with (A, @) = (62,02), (0, pe) = (C™(0,1), ps), and 0, = fi, as in (3.2). A.3 is

n)» - o

null since 7 does not appear. B.1 holds given {m;}. Next we verify B.2(alb). For u € ©, =
{1 €C(0,1) = poo(ps pro) < A}, we have |(Yy — piy)* — € +3€ (e — )| < (3lee] +A) (e — 1)
and |(Y; — o) — €} +4eX (e — p2)| < (8€2 + 3A?%) (py — pf)?. Tt follows that

Mo, 0,7) — (€, € — 30,)" + (3¢, 4€7) (e — 127)| < Dot Z4) P (115 1) (A14)

for all p € ©,, where D,;(Z;) = 8¢+ 3 |e;| + 3A% + A. ThereforeI'B.2(alb) with A = 1 hold.
From (A14) we have 6m? (0 — 0,;7) = —n~' >0 [ (3e7, 4€}) (e — 1f), and 6m2 (0 — 0,;m) =
(=302,0)n ' >, (1 — pf). Hencel'B.3(a) holds because

01 (B — 003 ) — 65 (O — o3 m) = —n™" > (3(eF — 02),4€}) (fins — p1§)
= —n7' ) (8(e] — 00),4€}) (jine — 1i5y)

—n~' Y (3(ef — 02),4€)) (i, — 1)

= op(n?), (A15)

where for the first term [|n™" 37, (3(€} — 07), 4€})" (fine — )| < [0 32, (3(6/—07), 4€)) vy, (X0 ]
1B = 3°|| = Op(pa/n)Op(py/* /A2 (W 0,)) = 0p(n~Y/2) by Chebyshev’s inequality and
Proposition 3.2; and for the second term n=1 3", (3(e2—02), 4€3) (12, —112) = Op(n~Y?poo (12; 1)) =
op(n~'/2) by Chebyshev’s inequality. Similarlyl'we can show that 62 — 02 =n=t>"" (€ —
o2)+op(n~'?), so B.4 with s, = ¢ —0? holds. By definitionl'G, =n='>", thyy, (X;)(—302,0) =
((— \/5‘707 0,...,0), (0,0, ...,0))". It follows that v, (Z;) = Gy, (¥, n/n)*wn(Xt)go(q)/Ego’(et) =

(=302n,,0)', where 1, = ¢(e;)/E¢'(€;). Thereforel'we have W, = (€2 — 302n,, (e} — 30}) —
602(e2 — 02))'. By the Lindeberg-Levy CLTTJ, /*n'/2W, —¢ N(0, I,), where

Jll J12
J12 J22

with Jy; = 1508 — 602E(e2n,) + 902 E(n?), Joy = 2408 and Jy, = —302E(e}n;) + 1802 E(e}n,).
Hencel'B.5 holds. B.6 also holds given J, by straightforward verification using appropriate
weak ULLN’s and poo (fin; tto) —P 0 by Proposition 3.2. The desired result then follows from
Theorem 3.4(i). (ii) Consistency follows immediately from Theorem 3.4(ii). B

Proof of Theorem 3.6: Given 4§, = n *, we choose a subset {rl, ... 7#%} from II,

such that for each m € II,[there exists at least one 7/ such that py(m, 7)) < d,, where
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G, = G,(0,) is a finite open covering of I1,, of cardinality of #G,,. This cardinality is finite
as II (and hence II,,) has finite metric entropy. For arbitrary € > 0,

P [SuPneH |Qn ()| > 6]

<P [maxKK#Gn SUD e, (i, ) Qu ()] > e]

< Pmaxi<icga, |Qn(m)] > e/2] + P [max)<i< 46, SUDrep, (ri g,) | @n(T) = Qu ()| > €/2]
< Pmaxi<icsa, |Qn(mh)] > €/2] + P [Supucn, SUDres, (5, [@n (1) — Qu(n)] > €/2]

where B, (7, 8,) = {7 € II,, : poo(m;7) < 8,}. For the first term

P [maxicicga, |@u(mh) > €/2] < 3F P|Qu(wh)| > ¢/2]
< #G, maxi<i<pa, PllQn(m))] > €/2]
< #Grsupyey, Pl|Qn(m)| > €/2]
< #G,Cin™

given (a). This holds in particular for Ay = A + dA;. NextI'for the second term

PISUD e, SWD e, w15,y | Q1) — Qu(r)]] > ¢/2 < 27100

by Markov’s inequalityl'given (b). Thereforel’
Plsup,cp, |Qn()] > €] < #G,,Cin~AFdA) 4 2¢-10n A,

Because II,, C II, #G,, < #G,(6,) for any §, > 0, where #G(d,) is the metric entropy
of II. Given II and 4§, = n~™, we have from Kolmogorov and Tihomirov [1961[ Section
2.3] that #G(6,) = An®'. (Kolmogorov and Tihomirov prove this only for d = 1, but the
proof for d > 1 follows analogously.) Substituting this into the above expression'we obtain

P [sup,cp, |Qn(7)] > €] < Con™ for some Cy. This completes the proof.

Proof of Theorem 3.7: Put (,; = (V) W,) Y24, (X}), 60 = 60(Xy), 04 = 0(X;) and 0¢ =
0o(X¢). Then Wy = €}, Cns€s070% /010, The proof consists of showing: (i) D>, (W (6y) —
War(06)) = 0 (pil*); (1) 3o pss (Wt () = Waa(00)) = 0p(pi*); and (i) (2, 32, Winss (00) —
pn)/(2pa)"? =7 N(0,1).

We first consider (i). Given E.2 and the 1dent1ty >t ChiCnt = Dn, we have | >, Wiy(6y,) —
Wait(00)] < Cpoo(0y 00) Do, €2C,1Cnt = 0p( ?) by Markov’s inequality.

NextI'we apply Theorem 3.6 to show (ii). Choose II, = {0 € 3. : pw(0,0,) < n7°}
for some 0 < ¢ < 1. Note that &, € II, in probability. Let Q,(0) = 32>, (Wu(6n) —
Wii(00)) = Zt o @nt, where Qpny = 2 Z ( Wiis(0) = Was(00)).

To show (i)t suffices to show sup,cy; |@n(0)| = 0p(p71/2). Given D.1(al/,c)[) 0, (Cnt =
pn and p,/n — 0 (as implied by E.3), we have E[sup(,, ,,)ep, (1) (@n(01) — Qu(02)]]

N
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cInM PP DI CHETIS ctn M Tp, < ¢ lnM*2 Hencel condition (b) of Theorem 3.6
holds by choosing A\; > A + 2. NextI'we verify condition (a). Since E(Q¢le1, €2,...,€,1) =0
given {X;} nonstochasticl' {Q;, Fi—1} is a martingale difference sequencel’ where {F;} is
the sequence of o-fields consisting of €;,s < ¢. By Holder’s inequality and Rosenthal’s
inequality (see Hall and Heyde [1980I'p.23|'or Hall [1989] for its application)['we have that
for k=1,2,..,
B (Q%0) < {Th, (e )"}

Conditional on ¢, Q,:(0) is sum of independent random variablesI'and so given D.1(c) and
3 Gl = Ty BQ(0) < c(k) ™ 24(0,0,) {071 (GG} < )™ 5250, 0) o). Tt
follows that EQ*(0) < (k)™ p%(0,00) {31y il }” < (k)= p% (0, 00)pk. Thereforel by
Markov’s inequalityl'we have for any n > 0 and for £ =1, 2, ...,

P [|Qu(0)] > npy*] < BQ7F(0)/ (™) = e(k) ™03 (0, 00) < (k) ~Hy~ 0%,

It follows from Theorem 3.6 that sup,cy, |@Qn(0)| = o(pﬁl/Q) a.s. ThusI'(ii) is proved. Finallyl

the proof of (iii) follows exactly that of Hong and White [1995I' Theorem A.1]. B

Proof of Theorem 3.8: We use the following notations: f = f(Xy, a,), Vaf? = Vaf (X, @),
1 = o(X0), 0r = 0(Xy), 07 = 0,(X0), O = 0,(X0), 02, = 05(X0), 00 = 0(Xy), 07 = 0,(X0),
Ot = 0,(Xy). Under H} we have my(v,) = (0 — f2/o0) (Y — f2)/07 = 0, Vamn(v,) =
V(Y — )00 + 0 — f2)op)/of) = 0 and dmg (8 — 0,im) = El(6 — 67)(Y; —
f2)/of] = 0 for 0 € Wy ,(X). It follows that (3.3) is a,-degenerate at v, under H} for
any given sequence a,. Hencel' Theorem 2.5 is relevant. (i) We first consider asymptotic
normality: A.1 is ensured by D.I1(ald',c); A.2 holds with (©,pe) = Wi (X), pso) and
(IL, pu1) = (X, poo). A.3(a) with a,, = n/p,l/2 holds because

i (110 (0t 0o, T) — M (0, 0o, ) = ann™ 350, (07 — f7/07) (Yo = f7)/0F
— 0 (1ot — o)
= op(1)
given D.1(alb'I¢) and E.2 by applying Theorem 3.6 (following the analogous reasoning of
(ii) in the proof of Theorem 3.7); A.3(b) also holds trivially since m2(c,, 0y, 7) = 0 for all
m =0 € X. C.1(a) holds given D.1(alb'I¢) and E.1; C.1(b) holds since

Vo (ao, éna ) — Vamn (o, én: Tn) = —n~t Ztnzl (Vaf?)0m)(Ye — £7)/ Ot
=-—n"' 300 Vaffe/of
—nt Z?:l Vaffafet(&gf - ‘7?72)
= Op(n=1/%)

= op(n'?/a,).
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Abovelthe first term is Op(n~'/?) by Chebyshev’s inequality and the second term is op (n /)
given E.2 by Theorem 3.6 following the analogous reasoning of (ii) of the proof of Theorem
3.7. C.1(c) holds under H; since

V8 (o, O, ) — Vi (Vo)

= " Y VOt — [0/ Gu) /G

= 0 Y (Va2 6mt) One — 07) + 0™t Y00, Vi fous(1/6n0f — 1/62,)

= Y (Vo f2 /o) Ony — 07) + 07t 320 Vi f2(1/ 60 — 1/07) By — 0)
+n Y, Vg (1/6mof —1/62,)

= op(pi* /n'/?),

where for the first term (a weighted average of 6, —#6,) we have n=' S, (V' f2/0?) (0ns —07) =
op(py/? /n}/?) by straightforward but tedious algebral'given D.1(a)T'E.2 and E.4. AlsoI'the
last two terms are op(py */n'/2) by the Cauchy-Schwarz inequality given E.2 and E.4.
We now verify the remaining conditions. Since (3.3) is linear in ¢, C.2 with A = oo holds.

C.3(a) also holds trivially since 6*m, (6 — 6,; @y, 6,, ™) = 0; for C.3(b)["

52 (6, 90,7rn)

_n—lzt( 02)e,0? /Gy

=n"! Zt( —Op)e0f o +nt 32 (0 — 07) €07 /G

=030 2007 /0 €6ChuGus€s (05 /0ns) + 17t 37, D0 (07 ) Gne) €Cons (117 /Gs — Ory)

+n Y (0 — 09)er0? G

=07 Y0, B €ChiCnses + o (pil* /)
by Theorem 3.6I'given E.2 and E.4. Alsol'C.3(d) holds since 612 (6, — fy;7) = 0 for all
m € 1I; C.4 is given directly; and C.5 with J? = 2 holds by Theorem 3.7. Finallyl'C.6 holds
with J, =2 and R,, = R? = p,/n. The result now follows from Theorem 2.5(i).

(i) Consistency follows immediately from Theorem 2.5(ii). W

Proof of Lemma 4.1: See Appendix B of Newey [1994]. Note that the proof for po(p, p,) =
Op([nb?/In(n)]~*/2 4 b%) follows analogously to that of Newey with ,; = 1. B

Proof of Proposition 4.2: Given F.4(a) and 6, = 7, /p,['we have
677_12(@” —0m) = Elg(X, 7rt))(én(X) —0,(X))]
— [ gl m)liule) = uohpule)lda

+ [ gt m) o) = (o) ) = Tz (AL6)
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For the first termI'we can write

/Xgmo)[n()—eu W(@))dr = / (e, 70)[n ! Ko (X, — 2)]dz

+n- Zet/ 2, 76) Ko (X — x)dx — g(Xy,7,)]
+nl Z/Xg(:r,ﬂ)(ﬁo(Xt) 0, () K (X, — x)da

= nt Z 9(Xy, o) + op(nH?) + Op(bF)
¢

= nt Z 9(Xy, 7o)€ + op(n1?) (A17)
¢

given nb?* — 0, where the second term is op(n~'/2) by Chebyshev’s inequality and the fact
that [, g(x, 7o) Kn(X; — 2)dx — g(Xy, ) = o(1) uniformly in ¢ given F.1(b)['F.2 and F.4(a).
AlsoI'the second term is O(bf) by Markov’s inequality and the fact that [, g(x, m,)(0,(z") —
0,(2)) K, (2" — z)dz = O(b¥) uniformly in 2’ € X given F.1(b) and F.2-F.4(a).

Next['we consider the last term of (A16). By the Cauchy-Schwarz inequalityl'we obtain

/Xg(fv 7o) [P () = 0o () P ()] [po () /Pn () — 1]dx

< sup |po() /P () = 1/ ( / g, o) || da) /3 /X[fn(x) — Op(2)py () *dx) /2
= Op(In"2(n) (nb?) =12 + ) Op((nb?) =12 + bk)
= op(n'/?) (A18)

given nb??/In(n) — oo, nb?* — 0, and 2k > d, where we have made use of the fact

that sup,cx [po(2)/Bn(2) — 1| = Op((nd}/In(n))~"/? + b) by Lemma 4.1Tand [, [f(x)
Oo(2)pp(2)]2dx = Op((nbl) L +02%) by Markov’s inequality given F.1-F.3. Combining (A16)-

(A18) yields n'/26mm8 (0, —00; 7o) = n~ 23, g(Xy, wo)er+0p(1). Because V, = E[g(X, 7,)g(X, 7,)'€?]
is O(1) and nonsingularl'n=2 3", ¢(X;, 7,)e; —¢ N(0,V,) by the Lindeberg-Levy CLT. W

Proof of Theorem 4.3: (i) We verify the conditions of Theorem 2.3(i). A.l is ensured
by F.1; A.2 holds with (O, pe) = (W5, (X), px) and 6, = fi, as in (4.1); A.3 and B.1 are
imposed directly. When (a) m(Z;, «, 6, 7) is linear in 6, B.2 with A = oo holds for any norm
pe; or when (b) B.2(alb) holdI'B.2(c) is ensured by Lemma 4.1 given n%+9p? Inn(n) — oo,

pAbE2IIN 111 () 5 00 and nbaF ™Y =5 0. B.3(a) is assumed directly; given F.4I'B.3(b)
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holds because

(5771,%(@“ - 90; 7é"n) = E[g(X, 7?'n)(?n()() - QO(X))]
= FElg(X, wo)(HAn(X) —0,(X))
= Elg(X,7)(0,(X) —0,(X))

where the second term is op(n~/2) by the Cauchy-Schwarz inequality[F.4(bI¢) and E(6, (X)—
0,(X))? = Op((nbe)L+b%). By Proposition 4.2I'B.3(c) holds with v,,(Z;) = g(X;, 7,)e;. B.4
is given directly; B.5 holds by the Lindeberg-Levy CLT given F.5. Finallyl'B.6 is imposed

E[(g(Xa 7Arn) - g(X7 7ro))(én(){) - QO(X))]

|+
] + Op(n_1/2),

directly. All conditions of Theorem 2.3(i) are satisfiedI'so the desired result follows.

(ii) Consistency follows immediately from Theorem 2.3(ii). W

Proof of Theorem 4.4: Put iy, = fin(X1), pf(X1e) = p3y, Pre = Pra(Xue), pfy = p7(X),
and 7y = fi14p1s. (i) We apply Theorem 4.3(i.a) as {m;} is linear in 6 = p;. Given that «
and 7 do not appearl’A.2 with (0, pg) = (W +(X), p2) holdsI'where p, (61, 602) = ([ (f2(z) —
01(7))?po(w)dz)*/?. A.3 and B.1 are null since A and II are null. The proofs of B.3(a) and
B.6 are deferred to the end.

NextI'we verify F.1-F.5. F.1 with § = 2 holds given (a); F.2 with s = 0 holds given (b);
F.3 (for x¢ and p9) holds given (d); F.4(a) holds with g(Xi, 7) = ¢g(X1;) sincel'with p, the
joint density of X,

57712(@,1 — 003 m0) = E((Xor) (fire — p13,)) = E(9(Xuwe) (e — 17,)),
where ¢ satisfies conditions in F.4(a) given (e); F.4(bl¢) are null. F.5 holds with W (Z;, 7,) =
(¥(Xg) — g(X1e))er given (a) and (b)['where e, = Y; — p8,. FinallyT'nb?% /1n*(n) — oo,
nb?* — 0, 2k > d; are imposed directly. All conditions of Theorem 4.3(i.a) are satisfied.
Hencel M,, —¢ x3, provided B.3(a) and B.6 hold.
It remains to prove B.3(a) and B.6. For B.3(a)I'note that

~

5B — 05m) =1t S, (X s — 42
=073 O(Xoe) (Fre — )PS0 30, 0(X) (Fre — pybue) (Dr — 05, )
=n"! Zt Y(Xog) (Fre — ,u(ftﬁlt)p(f;l + OP(n_1/2)=

where the second term is op(n~'/?) given the conditions on p¢, u¢ and ¢, by following rea-

soning analogous to (A18). Similarly['we can also obtain

01ty (O — 5 7) = /X 9(x1) (Fia(@1) — pf(21)P1a(21))d2y + 0p(n?).
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ThusT'to show 6me (0, — 0y;7) — 0mC (0, — 0, ) = op(n/?), it suffices to show
Ay = 07 (Xo) (P — pbua)pfy
¢

= [ gl iulan) - (oo + onn ). (A19)
Xy
For this purposel'we write

An = 0730 20 0(Xa) (Vs - PTG (X — X)
= n? > Zt;és P(Xae) (Y5 — N(ft)p(f;IKn(Xlt — Xig) + Dy
= U, + OP(nil/Q)a

where h,, = by  K(0)n=2Y", (Xa)eupl, ' = Op(n=/2b;,}) = op(n~'/?) by Chebyshev’s in-
equality given conditions (a)-(d). We now consider U,,.

Define Uy = [1(Xa0) (Ys — )0y " + 9 (Xo6) (Ve — p8,)p37 1K ( X1 — Xiy). Then U, =
n 2N U = (1= YEU,+n"2 Y3, _, Unss, where Uyys = Ups — EU,, EU, = EU,ys.
Given nb2™ In*(n) — oo, we have EU2, = O(b7%) = o(n). Hencel'by the extended U-
statistic projection theorem of Powell et al [1989TLemma 3.1]T'we have U,, = (1—n"")[EU,, +
n S, E(Unis| Z1)] 4 op(n=/?), where

E(Uns|Zi) = [0 — g (20))p ™ (1) K (X1e — 21)po(w)da
‘H/)(XZt p1t . fx N(f(xl) /L(lj(Xlt))Kn(Xlt - :rl)po(a:)d:r - EU,
= [y, 9(@) (Ve — p(210))p? " (21) Ko (X1e — 210)p3 (21)day — EU, + O(0);)

given the conditions on p{ and K. It follows that
Un = EUp +n 'Y, [ 9(@) (Y — 48 (20)) K (Xy — 21)dy + 0p(n1?)

given nb?* — 0. Therefore['(A19) holds. ThusI'B.3(a) holds. Finally['by Lemma 4.1T'we have
Poo(fln, 1) =P 0 and poo(Gn, g) = 0 given conditions (a)-(f). Hencel'it is straightforward
to show J, =7 J, = E((¢Y(Xy) — g(X1,))2€2,), so B.6 holds.

(ii) Consistency follows immediately from Theorem 4.3(ii). W

Proof of Proposition 4.5: Because E(W5|X;) = E(Wps| Xs) = 0,¢ # s, given F.1(a)l'we
have EW, = (nb%) 'K (0)oZ, where 02 = E(€}). Hencel'W,, — EW, =n 233" _, 2Wyy, +
(b)) TK(0)n=t Y (2 —02) =n=2 Y3, 2Wois +Op(n%?b; %) by Chebyshev’s inequality
given F.2(alt) with § = 2. Put a, = nb{*. Then a, (W, — EW,) = =04/ * S5, _, 2Wos +
op(1) given nb¢ — oo. Thereforel'to show a, (W, — EW,) —% N(0,1), it suffices to show
U, =% N(0,1), where U, = >3 _, Unts, Upis = 20 1bY?W,,,. Because E(Unys|Zy) =
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EUns|Zs) = 0 for t # s, U, is a degenerate second order U-statistic. de Jong’s [1987]
CLT for generalized forms then applies. By de Jong [1987T Proposition 3.2|T'it suffices for
JnPU, =4 N(0,1) that Gpi/J2 = o(1) for i = 1,2,4, where Gp; and J, are defined as
follows. Put KY = K, (X; — X,). Thenl'by change of variablel'it is straightforward to

compute that

o =var(Un) =323 EUL,,
= (1 —n ")205Elef e} (K,2)?]
= 2C(K)E (05 (X)po(X)) (1 + o(1))
= Jo(K)(1+0(1));

G = Zzsq EUétS < 8n_2bZdE[€1€2(K12) ]
S AZ —2b2dE(K12)
= A?n2b, ([, K*(v)dv) E(po(X))(1 + o(1));

= ZZZs<t<] [UgtsUT%tJ]
< 16n B[S (K )2) 22 (K13)?]
< ATt B(K ) (KP)?]
= A ' CHK)E(py (X)) (1 + o(1));

- Z Z Z Zz<]<s<t[ (UnijUnisUntjUnts) + E(UanUnztUnsjUnst) + E(UnzsUnztUnstn]t)]
<VE(EEEa KPP KB K2 K3)
< A2b2dE(K12K13K42K43)
= AZbZ(fT K()K(v+ w)K(w)dvdw)E(p2(X))(1 + o(1)).
It follows that G,,;/J? = o(1) for i = 1,2,4 given nb¢ — oo, b, — 0. Hencel'.J,(K)~'/2U, —¢
N(0,1), and therefore J,(K)~12nb¥* (W, — EW,) —»¢ N(0,1). ®

Proof of Proposition 4.6: Put 0,; = o(X;) — f1,(X;) and S, = 207233, _, €2,&2 K,
where K% = K, (X,—X,). Then J, = 2C(K)S,,. Straightforward but tedious algebra delivers
that

S =922 Sy EaKE 4+ nT2I S (8€7€0ns 4 46702 4 €160 Uns + 86,0002, + 202,07, ) KL
= Sn + 8A1n + 4A2n + 8A3n + 8A4n + 2A5n7 say
= Sn + OP(I),

where A;, = op(1), j = 1,...,5, by straightforward but tedious algebra. For examplel’
Agp < ALY Y e8)(nt Zs 02)) = Op(n~tb,* 4+ v2*~?) = op(1) given boundedness
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of K, nb}* — oo, b, — 0 and 2k > d, where we have also made use of n~ 'Y 02, =
Op(n~tb, ¢ + b2F).

NextI'we show S, = E(02(X)p,(X)) +0p(1). Since E[e€2e3(K?)%] = O(b;4) = o(n) given
nb? — oo, it follows by Powell et al [1989T Lemma 3.1] that

S’n =on + 2n~! Z?ﬂ[ﬁ? fx Ug(fr)Kn(Xt — x)po(x)dx — S + OP(nfl/Z),

where S, = b E[efe3 K. FurthermoreI'by Chebyshev’s inequalityl'y_;)" [ef [, 02(x)

Kn(Xy — 2)po(x)dz — S°] = Op(n=1/?) given F.1 (with § = 2) and F.2. It follows that
Sp = S% + Op(n~/?); on the other handl'S? = F(o*(X,)po(X;)) + o(1) by continuity of o2
and p,. Since .J,, = 2C’(K)S’n, we have J,, = .J, + op(l). W

Proof of Theorem 4.7: We first verify that (4.3) is degenerate under H} : noting f (X, o) =
to(Xy) and ¢, =Y, — f( X}, @), we have my(cw, 0y, ) = (10(Xy) — po(X) f(Xt, 0))er = 0 as,

V! M (o, 00, ) = E[=V! F( Xy, o) (To(Xy) —po(Xy) f( Xy ) +€,)] = 0, and 6m2 (0 —6,;7) =
E{[(r(Xy) = ro(X1)) = (p(X1) = po(X0)) f (X, o)} = 0 for all 6 = (r,p) € © = WL, (X) X
Wi »(X). It follows by Definition 2.4 that (4.3) is a,-degenerate at 7, under H; for any given
sequence a,. Theorem 2.5 is applicable. (i) We first show asymptotic normality; A.1 is en-
sured by F.1; A.2 holds with (0, pe) = (WL, .(X) x WL, . (X), p), where p(8,6") = poo (1, 1t') +

Poo (P, P'). A.3 is null because m does not appear. Given F.6I'(4.3) is twice differentiable a.s. on

A, with [Vamy (e, 0, 7)|| = [I[r(Xe) + p(X0)Y; — 2p(X0) [ (Xe, )] = 2p(Xo) Vo f (X, @) Vi f (X, )|
dominated by some integrable function. Hencel'C.1(a) holds; C.1(bl¢) are null since II is

null. NextI'because
my(a, 0, 1) = my(ay, 8, m) + dmy(0 — 0,; v, 0y, )
=m0, b, ) + [(r(Xe) = 7o(Xe)) = (P(Xe) = po(Xe)) [ (X, )]er,
C.2(a) with A = oo holds; and C.2(b) holds trivially. C.3(a) is null because 6%m;(c, 8, 7) = 0.
In additionI'since 6m2 (0 — 6,;7) = 0 for all # € © under H}, we have

5115 (B — 005 ) — 515 (B, — O,5m) + 62mS (6 — 6,5m)
=n! Zt[(fn(Xt) - To(Xt)) - (ﬁn(Xt) — pO(Xt))f(Xt, ao)]et-
Put fip = fin(Xy), pf = po(Xy) and K = K,,(X; — X;). Substituting expressions for 7, and

pnI'we obtain

~

omg (0, —0,;m) = n-> Zt Zs (Vs — N?)Kés
= n72 Zt Zs GtesKﬁ,S + n72 Zt Zs et(u? - /"L?)Kﬁ,s
= Wi + Op(n 1oy~ 4 n-1/20k)

=023, 3, Wt + 0p(n™'02""%).
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given nbi’”d — 0, where W,,;s = €6, K, and we have made use of
N2, Y, el — p) KL = Op(n~'bn % 4+ n7120k), (A20)

as is shown at the end of this proof. Thereforel'C.3(b) holds for a, = nb%?; C.3(cKl) are
null since IT is null. C.4 is given directly. C.5 holds with J? = J, = 2C(K)E(0(X;)p.(Xt))
by Theorem 4.5. Finallyl'C.6(a) is ensured by Proposition 4.6; and C.6(b) with R, =
n~'b, *K(0)o? holds because R, = n~ b, *K(0)6%, and

on — o0y =07t —03) + 207 30 e — 1) + 1t 30, (e — 1)
= Op(n™2) + Op(n="2, " + k) + Op(n~b;% + b2%)

= op(b%/?)

given nb3? — oo, nb**¢ — 0 and 2k > d. Thereforel'M,, —¢ N(0,1) by Theorem 2.5(i).
It remains to show (A20). Define Uy, = (e(110 — p0) + €,(1¢ — p0)) K%, and put Uyyy =
(Unts — Ut — Ups), Uy = E(Upnys| Zs). Then we can write

Uy = n? Zt Zs ‘ft(ﬁb(s) - M?)Kﬁs
= 7233 cs(elpg — pf) + e(pf — p)) K
= 02y > Uns +2(1 = h)n™ 1 37, Uy

Because E(Uns|Z;) = E(Uns|Zs) = 0 and EUZ,, < 2BUZ,, = O(b2~%), we have var (YY", _, Unis) =
DD EU?,, = O(n?2~%). Tt follows by Chebyshev’s inequality that n~2 P U,s =
Op(n_lb,ll_dm). NextI'noting that U,; = ¢ fx(uo(x)—uo(Xt))Kn(Xt—x)po(x)dx and E(U2,) =
O(b?) given F.1-F.3I'we have n 1Y, Uy, = Op(n~'/20%) by Chebyshev’s inequality. it fol-
lows that U, = Op(n~tbp 7 + n~1/2b%). This completes the proof for asymptotic normality.

(ii) Consistency follows immediately from Theorem 2.5(ii). W
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