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ABSTRACT

An important application of microarray technology is to relate gene expression profiles to var-

ious clinical phenotypes of patients. Success has been demonstrated in molecular classification

of cancer in which the gene expression data serve as predictors and different types of cancer

serve as a categorical outcome variable. However, there has been less research in linking gene

expression profiles to the censored survival data such as patients’ overall survival time or time

to cancer relapse. Due to large variability in time to certain clinical event among patients,

studying possibly censored survival phenotypes can be more informative than treating the

phenotypes as categorical variables. We propose to use the L1 penalized estimation for the

Cox model to select genes that are relevant to patients’ survival and to build a predictive

model for future prediction. The computational difficulty associated with the estimation in

the high-dimensional and low-sample size settings can be efficiently solved by using the latest

developed least angle regression method. Results from our simulation studies and applica-

tion to real data set on predicting survival after chemotherapy for patients with diffuse large

B-cell lymphoma demonstrate that the proposed procedure, which we call the LARS-Lasso

procedure, can be used for identifying important genes that are related to time to death due

to cancer and for building a parsimonious model for predicting the survival of future patients.

The LARS-Lasso regression gives much better predictive performance than the L2 penalized

regression or dimension-reduction based methods such as the partial Cox regression method.

Keywords: penalized estimation, least angle regression, microarray gene expression, censored

survival data, Lasso.
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INTRODUCTION

DNA microarray technology permits simultaneous measurements of expression levels for thou-

sands of genes, which offers the possibility of a powerful, genome-wide approach to the genetic

basis of different types of tumors. The genome-wide expression profiles can be used for molec-

ular classification of cancers, for studying varying levels of drug responses in the area of

pharmacogenomics and for predicting different patients’ clinical outcomes. The problem of

cancer class prediction using the gene expression data, which can be formulated as predicting

binary or multi-category outcomes, has been studied extensively and has been demonstrated

great promise in recent years (Alon et al., 1999; Golub et al., 199; Alizadeh et al., 2000;

Garber et al., 2001; Sorlie et al., 2001). However, there has been less development in relating

gene expression profiles to other phenotypes, such as quantitative continuous phenotypes or

censored survival phenotypes such as time to cancer recurrence or time to death. Due to large

variability in time to certain clinical event such as cancer recurrence among cancer patients,

studying possibly censored survival phenotypes can be more informative than treating the

phenotypes as binary or categorical variables.

The Cox regression model (Cox, 1972) is the most popular method in regression analysis

for censored survival data. However, due to the very high dimensional space of the predic-

tors, i.e., the genes with expression levels measured by microarray experiments, the standard

maximum Cox partial likelihood method cannot be applied directly to obtain the parameter

estimates. Besides the high-dimensionality, the genes expression levels of some genes are often

highly correlated, which creates the problem of high co-linearity. To deal with the problem

of collinearity, the most popular approach is to use the penalized partial likelihood, includ-

ing both the L2 penalized estimation, which is often called the ridge regression, and the L1

penalized estimation, which was proposed by Tibshirani (1995) and is called the least abso-

lute shrinkage and selection operator (Lasso) estimation. Such Lasso procedure minimizes

the negative log partial likelihood subject to the sum of the absolute value of the coefficients

being less than a constant, s. Comparing to the L2 penalized procedure with constraints on

the sum of the square of the coefficients, the Lasso procedure provides method for variable

selection. These penalized procedures have been investigated mainly in the setting where the

sample size is greater than the number of predictors. Li and Luan (2003) was the first to

investigate the L2 penalized estimation of the Cox model in the high-dimensional low-sample

size settings and applied their method to relate the gene expression profile to survival data.

To avoid the inversion of large matrix, they used the kernel tricks to reduce the computation
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to involving only inversion of matrix of the size of the sample size. They demonstrated that

the such procedure can be applied to build a predictive model for predicting the patients’s

future survival times.

One limitation of the L2 penalized estimation of the Cox model as presented in Li and Luan

(2003) is that it uses all the genes in the prediction and does not provide a way of selecting

relevant genes for prediction. However, from biological point of view, one should expect that

only a small subset of the genes is relevant to predicting the phenotypes. Including all the

genes in the predictive model introduces noises and is expected to lead to poor predictive

performance. Due to the high-dimensionality, the standard variable selection methods such

as stepwise and backward selection cannot be applied. Tibshirani (1997) further extended the

Lasso procedure for variable selection for the Cox proportional hazard models and proposed to

use the quadratic programming procedure for maximizing the L1 penalized partial likelihood

in order to obtain the parameter estimates. However, such quadratic programming procedure

cannot be applied directly to the settings when the sample size is much smaller than the

number of potential predictors, such as in the setting of microarray data analysis.

Recently, Efron et al. (2004) proposed the least angle regression (LARS) procedure for

variable selection in the linear regression setting. The LARS selects predictor by its current

correlation or angle with the response, where the current correlation is defined correlation

between the predictor and the current residuals. If the active set is defined as the set of

indices corresponding to covariates with the greatest absolute current correlations, as the

constraint constant s increases, the predictors are chosen one by one without deletion into

the active set. The special feature of LARS is that before a new predictor is chosen to the

active set as s increases, the corresponding increment of the coefficients only depends on all

predictors in the active set. Efron et al. (2004) further pointed out the link between LARS and

Lasso, showing that LARS can be modified to provide solution for Lasso. Instead of solving

Lasso discretely by quadratic programming, modified LARS can give the whole solution path

of all predictors. With this powerful algorithm, Lasso can be extended to perform subset

selection in the high-dimension and low-sample settings. We propose in this paper to use

LARS algorithm to obtain the solutions for the Cox model with L1 penalty in the setting of

very high dimensional covariates such as the gene expression data obtained by microarrays.

We call such estimation procedure the LARS-Lasso procedure.

The rest of the paper is organized as follows. We first present the model and briefly review

the Lasso estimation of the regression coefficients and present a modified LARS procedure for

the Lasso estimation. We then evaluate the LARS-Lasso procedure by simulation studies and
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applications to real data set of diffuse large B-cell lymphoma (DLBCL) survival times and

gene expression data (Rosenwald et al., 2002). Comparisons of results with methods proposed

previously by using simulations and analysis of real data set of patients with DLBCL are also

presented. Finally, we give a brief discussion of the methods and conclusions.

STATISTICAL MODELS AND METHODS

Cox proportional hazards model and Lasso estimation

Suppose that we have a sample size of n from which to estimate the relationship between

the survival time and the gene expression levels X1, · · · , Xp of p genes. Due to censoring, for

i = 1, · · · , n, the ith datum in the sample is denoted by (ti, δi, xi1, xi2, · · · , xip), where δi is

the censoring indicator and ti is the survival time if δi = 1 or censoring time if δi = 0, and

xi = {xi1, xi2, · · · , xip}′ is the vector of the gene expression level of p genes for the ith sample.

Our aim is to build the following Cox regression model for the hazard of cancer recurrence or

death at time t

λ(t) = λ0(t) exp(β1X1 + β2X2 + · · ·+ βpXp)

= λ0(t) exp(β
′
X), (1)

where λ0(t) is an unspecified baseline hazard function, β = {β1, · · · , βp} is the vector of the

regression coefficients, and X = {X1, · · · , Xp} is the vector of gene expression levels with the

corresponding sample values of xi = {xi1, · · · , xip} for the ith sample. We define f(X) = β
′
X

to be the linear risk score function.

Based on the available sample data, the Cox’s partial likelihood (Cox, 1972) can be written

as

L(β) =
∏
r∈D

exp(β
′
xr)∑

j∈Rr
exp(β ′xj)

,

where D is the set of indices of the events (e.g., deaths) and Rr denotes the set of indices

of the individuals at risk at time tr − 0. Let l(β) = log L(β), then the Lasso estimate of β

(Tibshirani, 1995, 1997) can be expressed as

β̂(s) = argmax l(β), subject to

p∑
j=1

|βj| ≤ s,

where s is a tuning parameter determining how many covariates with coefficients being zero.

Tibshirani (1997) proposed the following iterative procedure to reformulate this optimiza-

tion problem with constraint as a Lasso problem for linear regression models. Specifically, let
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η = β
′
X, µ = ∂l/∂η, A = −∂2l/∂ηηT and z = η + A−µ. Here since the sum of all elements in

each row (or column) of the matrix A is 0, A is clearly a singular matrix. We can however use

the generalized inverse. Alternatively, Tibshirani proposed to replace the information matrix

A with a diagonal matrix D, which has the same diagonal elements as A. However, in most of

applications, n is usually small and calculation of the generalized inverse is computationally

feasible. In addition, due the high-dimensionality of the predictors, it is important to make

the algorithm as accurate as possible. With this reparameterization, a one-term Taylor series

expansion for l(β) has the form of

(z − η)T A(z − η).

Although there are multiple choices of A−, it is easy to show that if rank(A) = n − 1,

for any A− that satisfies AA−A = A and z = η + A−µ, (z − η)T A(z − η) is invariant to the

choice of the generalized inverse of A. To show this, let Ci = {k : i ∈ Rk} denote the risk sets

containing individuals i, and Cii
′ = {k : i, i

′ ∈ Rk} denote the risk sets containing individuals

i and i
′
. Define

B =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

1 1 · · · 1




,

then it is easy to verify that BAB
′
=


 A(n−1)×(n−1) 0

0 0


 and (Bµ)

′
= (µ1, · · · , µn−1, 0). If

rank(A) = n− 1, then A− = B
′
CB, where

C =


 A−1

(n−1)×(n−1) ∗
∗ ∗


 ,

and * is used to represent any values. Therefore,

(z − η)T A(z − η) = µ
′
A−µ = (Bµ)

′
CBµ = µ

′
−nA−1

(n−1)×(n−1)µ−n,

where µ
′
−n = (µ1, · · · , µn−1).

The iterative procedure of Tibshirani (1997) involves the following four steps,

1. Fix s and initialize β̂ = 0.

2. Compute η, µ, A and z based on the current value of β̂.

3. Minimize (z − β
′
X)T A(z − β

′
X) subject to

∑ |βj| ≤ s.
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4. Repeat step 2 and 3 until β̂ does not change.

Tibshrani (1997) proposed to use the quadratic programming for solving Step 3. However, in

the high-dimension and low-sample size setting, i.e., in the case when p >> n, the quadratic

programming algorithm cannot be directly applied. We propose in the next section a simple

modification of the LARS algorithm of Efron et al. (2004) for Step 3.

LARS-Lasso procedure: a modification of LARS for solving Lasso

The LARS algorithm (Efron et al., 2004) is a new model selection algorithm developed for

linear regression model. The algorithm is a less greedy version of traditional forward selection

methods. One of the main advantages of LARS is its computational efficiency. Efron et al.

(2004) also provided a simple modification of the LARS in order to obtain all Lasso solutions.

We propose to apply a modified LARS algorithm for solving Step 3 of the iterative procedure

presented in last section. First, we apply the Choleski decomposition to obtain T = A1/2 such

that T
′
T = A, then Step 3 of the iterative procedure presented in the previous section can be

rewritten as

Step 3: minimize (y − β
′
X̂)T (y − β

′
X̂) subject to

∑ |βj| ≤ s,

where y = Tz and X̂ = TX. The original LARS procedure requires pre-processing data

by centering the response to have mean 0 and standardizing the covariates to have mean

0 and unit length. By standardizing the covariates, the LARS algorithm can be performed

based only on correlation calculations. However, the algorithm still works when the predictors

are not scaled. In this case, we can modify the original correlation-based LARS procedure to

select those variables having the largest absolute inner product between the predictor X̂ and

the current residuals of y (we call the current inner product for the rest of the paper) instead

of the largest absolute current correlation, where the current residual is defined as y − β
′
X̂

evaluated at the current estimate of β. We call the combined procedure the LARS-Lasso

procedure, which is computationally thrifty.

To determine the value of the tuning parameter s or the number of genes to be used in the

final model, one can choose s which minimizes the cross-validated partial likelihood (CVPL)

(Verwij and Van Houwelingen, 1993; Huang and Harrington, 2002), which is defined as

CV PL(s) = − 1

n

n∑
i=1

[
l(f̂ (−i)(s))− l(−i)(f̂ (−i)(s))

]
,
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where f̂ (−i)(s) is the estimate of the score function based on the LARS-Lasso procedure with

tuning parameter s from the data without the ith subject. The terms l(f) and l(−i)(f) are

the log partial likelihoods with all the subjects and without the ith subject, respectively.

The optimal value of s is chosen to maximize the sum of the contributions of each subject

to the log partial likelihood. This CVPL is a special case of a more general cross-validated

likelihood approach for model selections (Smyth, 2001; Van Der Laan et al., 2003) and has

been demonstrated to perform well in prediction in the context of the penalized Cox regression

(Huang and Harrington, 2002).

Evaluation of the predictive performance: the time dependent ROC curves and

area under the curves

In order to assess how well the model predicts the outcome, we propose to employ the idea

of time dependent receiver-operator characteristics (ROC) curve for censored data and area

under the curve (AUC) as our criteria. These methods were recently developed by Heagerty

et al. (2000) in the context of the medical diagnosis. For a given score function f(X), we can

define time dependent sensitivity and specificity functions as

sensitivity(c, t|f(X)) = Pr{f(X) > c|δ(t) = 1},
specificity(c, t|f(X)) = Pr{f(X) ≤ c|δ(t) = 0},

and define the corresponding ROC(t|f(X)) curve for any time t as the plot of sensitivity(c, t|f(X))

vs 1 − specificity(c, t|f(X)) with cutoff point c varying, and the AUC as the area under the

ROC(t|f(X)) curve, denoted by AUC(t|f(X)). Here δ(t) is the event indicator at time t. A

nearest neighbor estimator for the bivariate distribution function is used for estimating these

conditional probabilities accounting for possible censoring (Akritas, 1994). Note that larger

AUC at time t based on a score function f(X) indicates better predictability of time to event

at time t as measured by sensitivity and specificity evaluated at time t. In our application

presented in the next section, we study several different methods of constructing the score

function f(X) in the Cox model (1) and compare their predictive performance based on the

AUCs.
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EVALUATION OF THE METHODS BY SIMULATION

STUDIES

We performed simulation studies to evaluate how well the LARS-Lasso procedure performs

in the high-dimensional and low-sample size settings. We focus on whether the important

covariates that are related to survival endpoints can be selected by the LARS-Lasso procedure

and how well the model can be used for predicting the survival time for future patients.

In our simulation studies, we assume that 20 out of a total of 500 genes are related to

time to cancer recurrence through a Cox regression model with 10 coefficients generated from

an uniform U(-1,-0.1) distribution and 10 coefficients generated from an uniform U(0.1,1)

distribution (see first column of Table 1 for the coefficients generated). A Weibull distribution

with the shape parameter of 5 and the scale parameter of 2 is used for the baseline hazard

function, and a uniform U(2,10) is used for simulating the censoring times. Based on this

setting, we would expect about 40% censoring.

In order to generate gene expression data for 500 predictors (genes), we first generate an

100 × 500 dataset X from an uniform U(-1.5, 1.5) distribution. We assume that the first

20 genes with expression levels X1, X2, · · · , X20 are related to patient’s risk cancer recurrence

through a Cox model. In order to generate gene expression data for the rest of 480 genes which

are not related to the survival, we first use Gram-Schmidt orthonormalization to construct

its normalized orthogonal basis {α1, · · · , α20, β1, · · · , β80}, where α = {α1, α2, · · · , α20} is an

orthogonal basis of the linear space A expanded by X1, X2, · · · , X20 and β = {β1, β2, · · · , β80}
is a set of orthogonal basis of B, which is the orthogonal complement space of A. By Cauchy’s

inequality, it is easy to show that if {α1, · · · , α20, β1, · · · , β80} is a set of normalized orthogonal

basis, then for any 20 × 80 matrix T , we have corr(αy, (β + αT )x) ≤ λ/
√

1 + λ2, for ∀x ∈
R80, y ∈ R20, where λ2 is the largest eigenvalue of T

′
T . Based on this result, we can generate

the expression levels of genes which are unrelated to survival from the linear space C =

{β + αT} with appropriate choice of the maximum eigenvalue of T
′
T in order to control the

maximum correlation between vectors in space A and C. We considered the maximum possible

correlation of 0, 0.71, 0.82 and 0.87 in our simulations.

Effects of between-gene correlation on identifying relevant genes

For each chosen maximum possible correlation between the relevant genes and non-relevant

genes, we generated 100 data sets of sample size of 100 individuals. For each replication,
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we applied the LARS-Lasso procedure to build a model which includes 20 genes by selecting

an appropriate s value in the LARS-Lasso estimation. Table 1 summarizes the frequencies

that the 20 relevant genes are among the first 20 genes that are selected by the LARS-Lasso

procedure. We observe the following interesting results. First, as expected, the predictors with

larger coefficients are more likely to be selected by the LARS-Lasso procedure. Second, it is

interesting to observe that when the maximum possible correlation between the relevant and

non-relevant genes increases, i.e., when the linear space spanned by the non-relevant genes gets

close to the linear space expanded by those relevant genes, the chance of the relevant genes

with smaller coefficients being selected gets smaller. This is because that at each step, the

LARS-Lasso procedure only selects the gene with the largest absolute current inner product

in the model. Of course, the chance of these relevant genes being selected also depends on the

sample size. For example, for the maximum possible correlation of 0.85, more relevant genes

are selected if the sample size is increased to 200 (see the last column of Table 1).

Predictive performance and comparison with other methods

We then examined the predictive performance of the proposed method. We simulated a sample

size of 100 patients as the training data set to build the predictive model and evaluated the

predictive performance based on another new data set of 100 patients (test data set). For

each simulation, we generated 500 gene expression levels for each patients with the maximum

possible between-gene correlation of 0.82. For each replication, we built a predictive model

based on the training set. We applied the CVPL to choose the tuning parameter s used in

the model. As an example, Figure 1 (a) shows the CVPL plot for one simulated data set,

indicating that the tuning parameter of s = 9 gives the best predictive performance using the

CVPL criteria, which corresponds to 38 genes. We then predicted the risk scores for the 100

patients in the test set. We repeated this procedure 100 times. We used the time-dependent

AUC as a criteria to assess the predictive performance.

Figure 1 (b) shows the average of the estimated AUCs (+/-SE) over 100 replications using

the predictive scores for the test sets, indicating a very good predictive performance. The

AUC is over 75% at the beginning of the following-ups and remains high at later time. As

a comparison, Figure 1 (c) and (d) show the AUCs plots for the predicted scores based on

the L2 penalized procedure proposed by Li and Luan (2003) and the principal-components

based partial Cox regression (PC-PCR) procedure proposed by Li and Gui (2004). Note that

both the L2 penalized procedure and the PC-PCR procedure use all the genes in building
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Table 1: Simulation results based on 100 replications. The first column shows the true coeffi-

cients of the 20 genes which are related to the risk of cancer recurrence. Columns 2-5 shows

the frequency of each of these 20 relevant genes being selected by the LARS-Lasso procedure

under four different correlation structures. The sample sizes are 100 patients for all the sim-

ulations. For the maximum possible correlation of 0.87, sample size of 200 patients was also

considered and the results are presented in the last column.

Maximum Correlation

0 0.71 0.82 0.87

Coefficient 100 100 100 100 200

β1 = 0.19 50 15 3 0 3

β2 = 0.95 100 100 92 75 91

β3 = 0.96 100 100 95 80 94

β4 = 0.91 100 99 87 71 92

β5 = 0.19 53 15 2 0 7

β6 = 0.25 60 23 2 0 5

β7 = 0.69 100 95 67 45 56

β8 = 0.33 88 42 6 4 13

β9 = 0.34 88 50 16 6 2

β10 = 0.33 91 53 13 1 4

β11 = −0.92 100 100 92 61 84

β12 = −0.16 40 7 5 1 0

β13 = −0.83 100 98 86 59 84

β14 = −0.62 100 91 58 26 44

β15 = −0.65 100 96 60 32 46

β16 = −0.47 98 76 38 11 22

β17 = −0.72 100 95 70 39 62

β18 = −0.24 66 19 6 5 8

β19 = −0.41 100 68 24 5 14

β20 = −0.23 64 23 3 4 4
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Figure 1: Results of simulations. (a) CVPL plot for one simulated data set; (b) AUCs for

the test samples based on LARS-Lasso procedure; (c) AUCS for the test samples based on L2

penalized estimation; (d) AUCS for the test samples based on the PC-PCR procedure. For

each plot of (b) to (d), the three lines are the average AUCs over 100 replications together

with +/- 1SE.
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the predictive models. Clearly, neither of these procedures performed as well as the LARS-

Lasso procedure in predicting the survival times for future patients as measure by the AUCs.

We also performed L2 procedure and the PC-PCR procedure using genes selected based on

univariate Cox regression analysis and did not observe any improvement in their predictive

performances.

As another way of comparing these three different methods, for each replication, we divided

the patients in the test set into high and low-risk groups based on having positive or negative

predictive risk scores and tested the statistical significance in the risk of cancer recurrence

between the two groups. We observed that for a p-value of less than 10−5, all 100 replications

showed significant difference in risk between the high and low risk groups defined by the

LARS-Lasso predicted scores, as compared to only 38 and 22 replications showing significant

difference in risk between the high and low risk groups defined by the risk scores predicted by

the L2 penalized procedure and the PC-PCR procedure.

In summary, results from our simulation studies indicate that the LARS-Lasso procedure

can indeed select genes that are related to censored phenotypes, especially those genes with

relatively strong effects, although genes with smaller effects on survival are difficult to iden-

tify, especially when the correlations between the gene expression levels are high. When the

correlations between the gene expression levels of the relevant genes and non-relevant genes

are high, the CVPL procedure tends to select more genes in building the predictive models.

However, we observed much better predictive performance of the LARS-Lasso procedure than

the procedures proposed previously (Li and Luan, 2003; Li and Gui, 2004).

APPLICATION TO PREDICTION OF SURVIVAL TIME

OF PATIENTS WITH DLBCL

To further demonstrate the utility of the LARS-Lasso procedure in relating microarray gene

expression data to censored survival phenotypes, we re-analyzed a recently published data set

of DLBCL by Rosenwald et al. (2002). This data set includes a total of 240 patients with

DLBCL, including 138 patient deaths during the followups with median death time of 2.8

years. Rosenwald et al. divided the 240 patients into a training set of 160 patients and a

validation set or test set of 80 patients and built a multivariate Cox model. The variables

in the Cox model included the average gene expression levels of smaller sets of genes in four

different gene expression signatures together with the gene expression level of BMP6. It should
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be noted that in order to select the gene expression signatures, they performed a hierarchical

clustering analysis for genes across all the samples (including both test and training samples).

In order to compare our results with those in Rosenwald et al. (2002), we used the same

training and test data sets in our analysis.

The gene expression measurements of 7,399 genes are available for analysis. However,

there are a large number of missing gene expression values in the data set. Among the 7,399

genes, only 434 genes have no missing values. We first applied a nearest neighbor technique

(Troyanskaya et al., 2001) to estimate those missing values. Specifically, for each gene, we first

identified 8 genes which are the nearest neighbors according to Euclidean distance. We then

filled the missing with the average of the nearest neighbors. Our method is slightly different

from that of Troyanskaya et al. (2001) in that the nearest neighbors are not restricted to those

434 genes with no missing data. We also tried the method of Troyanskaya et al. (2001) for

filling the missing value, and the results of survival time prediction with two methods were

very close.

Selection of genes related to risk of death

Although the LARS-Lasso procedure can in principle be used to fit the Cox model with

n− 1 = 159 genes based on training sample of 160 patients, the algorithm becomes unstable

when the number of variables is close to the sample size. As it was pointed out by Osborne

et al. (1998), as s increases, when the number of nonzero coefficients are getting close to the

number of observations, Lasso may not have an unique solution. In the following analysis,

we only consider the Cox model with fewer than 100 genes. Figure 2 shows the path of the

coefficients of the first 100 genes selected by the LARS-Lasso procedure as s =
∑7399

i=1 |βi|
increases. Note that we only obtained coefficients at the turning points, where there is a

change (addition or deletion) in the set of genes selected in the LARS iterations. In this figure,

we add lines between those points to get an approximate of the full coefficient path. Note

that genes are chosen in order of their relevances in predicting survival. These genes would

provide a good list of candidate genes for further investigation. Table 2 shows the GenBank

ID and a brief description of the first 10 genes selected. It is interesting to note that seven of

these genes belong to the three gene expression signature groups defined in Rosenwald et al.

(2002). These three signature groups include Germinal-center B-cell signature, MHC class II

signature and Lymph-node signature. No genes in the proliferation signature group defined

by Rosenwald et al.(2002) were selected by LARS-Lasso. Based on our search of GenBank
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Figure 2: Approximated coefficients’ path for the first 100 genes estimated by the LARS-Lasso

procedure based on the 160 lymphoma patients in the training data set. Each line corresponds

to the estimated coefficient for a given gene as the tuning parameter s increases. For a given

s, the y-axis gives the current estimates of the coefficients of the genes selected.

(http://www.ncbi.nlm.nih.gov/Genbank/index.html), we found that the other three genes are

also related to lymphoma or death. The gene AA76074 is COX15 homolog and mutations

in this gene produce a defect in the mitochondrial heme biosynthetic pathway, causing early-

onset fatal hypertrophic cardiomyopathy. The gene A29003 is protein coding TCL1A gene

which has been demonstrated to be a powerful oncogene and when it is over-expressed in both

B and T cells, it predominantly yields mature B cell lymphomas. Finally, the gene L19872 is

Aryl hydrocarbon receptor (AHR), which is a ligand-activated transcription factor involved in

the regulation of biological responses to planar aromatic hydrocarbons. AHR has been shown

to regulate xenobiotic-metabolizing enzymes such as cytochrome P450, which belongs to the

lymph-node signature group.
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Table 2: GenBank ID and descriptions of the top 10 genes selected by the LARS-Lasso

procedure based on the 160 patients in the training data set. As indicated are the gene ex-

pression signature groups that these genes belong to; Germ=Germinal-center B-cell signature,

MHC=MHC class II signature, Lymph=Lymph-node signature. Genes AA760674, AA729003

and L19872 do not belong to these signature groups. No description was provided for gene

LC 29222 by Rosenwald et al.(2002).

GenBank ID Signature Description

AA760674 cytochrome oxidase assembly protein (yeast)

X00452 MHC major histocompatibility complex, class II, DQ alpha 1

AA729055 MHC major histocompatibility complex, class II, DR alpha

AA714513 MHC major histocompatibility complex, class II, DR beta 5

AA729003 T-cell leukemia/lymphoma 1A

AA805575 Germ thyroxine-binding globulin precursor

AA598653 Lymph osteoblast specific factor 2 (fasciclin I-like)

LC 29222 Lymph

X59812 Lymph cytochrome P450, subfamily XXVIIA polypeptide 1

L19872 hydrocarbon receptor

Evaluation of the predictive performance

We also examined how well the model built by the LARS-Lasso procedure predicts the survival

of a future patient. Using the training set of 160 patients, we built a predictive Cox model

with the LARS-Lasso procedure using the CVPL to select the optimal tuning value s. The

minimum CVPL was obtained when s = 0.28, which corresponds to selecting four genes in

the model. We also observed that the CVPL value increases by only 0.001 when the tuning

parameter s increase from 0.28 to 0.33, which corresponds to nine genes in the model. Matter

of fact, for s ranging from 0.28 to 0.33, the predictive performances of the resulting models are

very comparable. We chose the most parsimonious model with four genes. These four genes

are AA805575, LC 29222, X00452 and X59812 (see Table 2 for a description of these four

genes), belonging to three of the four signature groups defined in Rosenwald et al. (2002).

We obtained the estimates of the coefficients of these four genes using the LARS-Lasso

procedure, denoted by vector β̂. The estimated coefficients for all four genes were negative,

indicating that high expression levels of these genes reduce the risk of death among the patients
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with DLBCL. This agrees with what Rosenwald et al. (2002) has found (see Table 2 of

their paper). Based on the estimated model with four genes, we estimated the risk scores

(f(X) = β̂
′
X) for the 80 patients in the test data set based on their gene expression levels

of the four genes in the predictive model. Figure 3 (a) shows the time-dependent AUCs for 1

to 20 years after diagnosis based on the estimated scores for the patients in the test set. The

AUCs are between 0.66 and 0.68 in the first 10 years of followups, indicating a reasonable

predictive performance.

To further examine whether clinically relevant groups can be identified by the model, we

used zero as a cutoff point of the risk scores and divided the test patients into two groups based

on whether they have positive or negative risk scores. Figure 3 (b) shows the Kaplan-Meier

curves for the two groups of patients, showing very significant difference (p-value=0.0004) in

overall survival between the high risk group (36 patients) and low risk group (44 patients).

A Comparison with other methods

As a comparison, we also analyzed the lymphoma data set using two other methods, the

partial Cox regression methods in Li and Gui (2004) and the L2 penalized method using

linear kernels proposed by Li and Luan (2003). Figure 3 (c) and (d) show the survival curves

of the two groups of the patients in the test data set defined by the scores estimated by the

L2 penalized method and the PRC method. We observe that the two risk groups defined by

the LARS-Lasso estimated model showed more significant difference in risk of death than the

groups defined by the other two models (p-value of 0.0004 versus 0.003). Figure 3 (a) shows

the AUCs based on the risk scores estimated by the three different methods, again indicating

better predictive performance of the LARS-Lasso procedure.

DISCUSSION AND CONCLUSIONS

It is clinically relevant and very important to predict patient’s time to cancer relapse or time

to death due to cancer after treatment using gene expression profiles of the cancerous cells

prior to the treatment. Powerful statistical methods for such prediction allow microarray

gene expression data to be used most efficiently. In this paper, we have proposed and studied

the LARS-Lasso procedure for censored survival data in order to identify important predictive

genes for survival using microarray gene expression data. To solve the computational difficulty,

we modified the latest developed LARS procedure (Efron et al., 2004) to obtain the solutions

for the Lasso estimation of the Cox model. Since the risk of cancer recurrence or death
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Figure 3: Results of analysis of the lymphoma data set. (a): AUCs for the test samples based

on risk scores estimated by three different procedures. (b)-(d): the Kaplan-Meier curves for

the high and low risk groups defined by the estimated scores for the 80 patients in the test data

set. The scores are estimated based on the models estimated by the LARS-Lasso procedure

(plot (b)), L2 penalized procedure (plot (c)) and the PC-PCR procedure (plot (d)). The

number of patients in the high risk group is 36, 35 and 31, respectively.
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due to cancer may result from the interplay between many genes, methods which can utilize

data of many genes, as in the case of our proposed procedure, are expected to show better

performance in predicting risk. Our simulation studies demonstrated that the procedure can

indeed be used to identify genes which are related to censored survival outcomes and to built

a parsimonious model for predicting future patients survival. We have also demonstrated the

applicability of our methods by analyzing time to death of the diffuse large B-cell lymphoma

patients and obtained satisfactory results, as evaluated by both applying the model to the

test data set and time dependent ROC curves.

While we did not compare the new procedure with all the other procedures available, we

did compared the LARS-Lasso procedure with several other previously proposed methods

in predictive performance and found that the new procedure performed better than the L2

penalized or PC-PCR procedure (Li and Luan, 2003; Li and Gui, 2004) in predicting the future

patients’ survival. We would however expect that the LARS-Lasso procedure performs better

than other dimension-reduction based procedures such as the partial least squares (Nguyen

and Rocke, 2001; Park et al., 2002) or the principal components Cox regression because the

LARS-Lasso procedure automatically selects and utilizes only the relevant genes in building

the predictive model. A comprehensive comparison of different methods warrants further

research. It worth mentioning that the L1 penalized regression was also demonstrated to

perform better than other procedures in the settings of microarray gene expression data and

linear models (Segal et al., 2003)

The proposed LARS-Lasso procedure has no computational or methodological limitation

in term of the number of genes that can potentially be used in the prediction of patient’s

time to clinical event. The method can in principle select n− 1 genes, where n is the sample

size. However, when the number of predictors is close to the sample size, there is a risk of

over-fitting. One drawback of the LARS-Lasso procedure is that if there is a group of variables

or genes among which the pairwise correlations are very high, the LARS-Lasso tends to select

only one variable from the group and does not care which one is selected. For genes sharing the

same biological pathways, the correlations among them can be high (Zou and Hastie, 2003).

If the LARS-Lasso procedure is used mainly for selecting important and relevant genes, one

may want to include all these highly correlated genes, if one of them is selected. If the goal is

to build a model with good predictive accuracy, this problem may not be severe since simple

models are preferred for the scientific insight into the relationship between survival and gene

expressions. However, we may expect more robust prediction if the average gene expression

levels of highly correlated genes are used in the model. One way to extend the LARS-Lasso
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procedure is that at each LARS variable selection step, we selected not only one single gene

with the largest absolute current inner product, but a group of such genes with similar current

inner product. An alternative is to use the elastic net penalty as recently proposed by Zou

and Hastie (2003) for the penalized estimation.

The LARS-Lasso procedure assumes the Cox proportional hazards model, which is the

most popular model for censored survival data. However, the proportional hazards assump-

tion may not hold for gene expression data or for all diseases. It is possible to develop robust

procedures under misspecified proportional hazards models along the lines of Lin and Wei

(1989). In addition, model checking techniques analogues to those of Lin et al. (1993) can be

derived. As an alternative, we can consider similar L1 penalized estimation for the acceler-

ated failure time models (Wei, 1992) or more general semi-parametric transformation models

(Cheng et al., 1995). We are currently pursuing these alternative models.

In summary, an important application of microarray technology is to relate gene expression

profiles to various clinical phenotypes of patients such as time to cancer recurrent or overall

survival time. The statistical model built to relate gene expression profile to the censored sur-

vival time should have the property of high predictive accuracy and parsimony. The proposed

LARS-Lasso procedure in this paper can be very useful in building a parsimonious predictive

model that can be used for classifying the future patients into clinically relevant high and low

risk groups based on the gene expression profile and survival times of previous patients. The

procedure can also be applied to select important genes which are related to patients’ survival

outcome.
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