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Abstract

Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their
similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among
Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities
in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved
among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four
osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus
ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration
index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction
feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian
hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-
feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one
ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been
identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly
to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion,
it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder
among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil
record of ichthyosaurs does not suggest the establishment of modern-style mesopelagic animal communities in the Triassic.
This new interpretation matches the fossil record of coleoids, which indicates the absence of soft-bodied deepwater species
in the Triassic.
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Introduction

Many large predators in the modern marine ecosystem are

mammals. A similar role was probably played by marine reptiles in

the Mesozoic, until their last members became extinct 65.5 million

years ago during the end-Cretaceous mass extinction [1,2], leaving

the niches open for marine mammals. However, it is not known

how similar their feeding ecology was to that of modern marine

mammals. Massare [3] was the first to identify feeding guilds

among Mesozoic marine reptiles using tooth morphology and

stomach contents. However, limited progress has been made in

this field since her pioneering study, although some studies are

being conducted [4,5].

Ichthyopterygia must be considered when comparing modern

marine mammals with Mesozoic marine reptiles because they

were the Mesozoic analog of cetaceans. Being derived from four-

legged reptiles, they evolved a fish-shaped body profile about 200

million years before cetaceans. Also, their fossil record is more

complete than that of other marine reptile groups [6]. They were

probably the most abundant marine reptiles in the Triassic and

Jurassic seas, although they became extinct in the mid-Cretaceous

[7]. They are the only group of Mesozoic marine reptiles for which

deep diving has been proposed [8]. If an abrupt change in their

feeding ecology is inferred from the fossil record, it probably

reflects the changes in their prey community and its environment.

Therefore, it is important to reconstruct the evolution of

ichthyosaurian feeding ecology through geologic time.

Among the major questions in the evolution of feeding ecology

in marine reptiles is the evolution of suction feeding. Suction

feeding is the most common strategy for prey capture among

extant marine vertebrates [9], yet its evolution among marine

reptiles has attracted limited attention. Recently, it was suggested

that Triassic shastasaurid ichthyosaurs contained three species of

suction feeders based on their superficial resemblance to beaked

whales (Ziphiidae) [10]. This expanded an earlier suggestion [11]

that one of the three species, Shonisaurus sikanniensis, was a suction
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feeder analogous to beaked whales. If true, the feeding mode

interpretation would have many ecological implications. Most

importantly, it raises a question of whether a suitable environment

for beaked-whale-type predators, including their prey community

in the meso-/bathypelagic zones, was available in the Triassic.

This question has remained unaddressed until now. Prior to these

two studies, suggestions of suction feeding among Mesozoic

marine reptiles were made for various stem sauropterygians

including the placodont Henodus [12], and for the protorosaur

Dinocephalosaurus [13]. Henodus is known only from the Upper

Triassic of Germany in a lagoonal setting, whereas Dinocephalo-

saurus is a coastal species that is known only from the Middle

Triassic of China. The other species are also coastal dwellers (sensu

[14]) and have little relevance to mesopelagic ecology; therefore,

they will not be mentioned hereafter.

The proposal of suction feeding in these shastasaurid ichthyo-

saurs was based on their resemblance to beaked whales, namely

‘short’ snout, tooth reduction, and ‘enlarged’ hyobranchial rod

[10,11]. These features were loosely defined and never tested

quantitatively. However, a functional inference based on super-

ficial resemblance, or ‘‘intuitive functional morphology’’ sensu [15],

is often misleading. As with most functional questions, suction

feeding in ichthyosaurs should be examined based on mechanical

reasoning and quantitative tests. Re-evaluation of hyobranchial

morphology is especially wanting because a recent study [16]

showed that the hyobranchial size of Guanlingsaurus was likely

overestimated by the previous study [10]. Also, new studies of

hyobranchial structure in modern suction feeding vertebrates have

been published since [10], e.g., [17,18]. The hyobranchial

apparatus is considered the most important hard-tissue correlate

in the discussion of suction feeding in vertebrates [17–19] because

it underlies the mechanism of subambient pressure generation for

suction (see below).

The purpose of the present study is twofold: first to re-evaluate

the hypothesis of suction feeding in ichthyosaurs through

quantification of osteological features related to the mechanisms

of suction; and second to discuss if a modern-style meso-/

bathypelagic animal community existed in the Triassic and Early

Jurassic, from the perspective of the large predators of the time.

We will also review the feeding ecology of extant suction feeders

among air-breathing marine vertebrates to make comparisons.

Materials and Methods

Data Collection
We measured 18 ichthyosaurian specimens in which at least one

hyobranchial rod is preserved. The small sample size is a

consequence of the scarcity of such specimens. The samples span

15 genera and 18 species. They are Chaohusaurus geishanensis (AGM,

Anhui Geological Museum, Hefei, China CH-628-22), Eurhino-

saurus longirostris (SMNS, Staatliches Museum für Naturkunde,

Stuttgart, Germany 57922), Guanlingsaurus liangae (Guanling

National Geopark, Guanling, China dq-50), Guizhouichthyosaurus

tangae (Wuhan Institute of Geology and Mineral Resources of

China, Wuhan, China TR00001), Hauffiopteryx typicus (SMNS

81962), Ichthyosaurus communis (NHMUK, Natural History Muse-

um, London, UK 36256), Leptonectes moorei (NHMUK R14370), L.

tenuirostris (NHMUK 24300), Mixosaurus cornalianus (Paläontolo-

gisches Institut und Museum der Universität, Zurich T2414),

Qianichthyosaurus zhoui (Institute of Vertebrate Paleontology and

Paleoanthropology, Beijing, China 11838), Shastasaurus alexandrae

(UCMP, University of California Museum of Paleontology,

Berkeley, US 9017), Shonisaurus sikanniensis (Royal Tyrrell Museum

of Paleontology, Drumheller, Canada 94.378.2), Stenopterygius

quadriscussus (SMNS 50165), St. triscissus (SMNS 55074), Suevole-

viathan integer (SMNS 4652), Temnodontosaurus platyodon (Oxford

University Museum, Oxford, UK J29170), Te. trigonodon (SMNS

50000), and Toretocnemus zitteli (UCMP 8099). All but one specimen

were in the existing collection of each institution and studied on-

site in respective collections with permission. AGM CH-628-22

was excavated by a joint team of AGM, Peking University,

University of California, Davis, and Università degli studi di

Milano, with permits from the Ministry of Land and Resources of

the People’s Republic of China. The current study did not involve

any purchase, loan, or donation of a specimen. Of the 18

specimens, mandibular width could reasonably be estimated in 15,

and mandibular length in 12 specimens (Table 1)–mandibular

rami were sometimes splayed beyond their natural angle and it

was necessary to estimate the original width using the skull width

when possible. Measurements taken are: hyobranchial rod length

(HL), hyobranchial rod width at mid length (HW), mandibular

ramus length (ML), mandibular width (MW), and mandibular

width at the end of tooth row (TW). Fig. 1 summarizes the

measurements taken, and Table 1 their values. TW for edentulous

taxa was estimated by the mandibular width at the anterior margin

of the orbit. This scheme may lead to a slight underestimation of

the true values if applied to tooth-bearing taxa, and slight

overestimation of suction feeding ability. However, such a bias

does not affect the outcome of the study. Digital calipers were used

for most measurements, which were recorded to the nearest

0.1 mm. Larger measurements were made by large calipers or

tape measures and recorded to the nearest 1 mm. The mechanical

importance of these measurements will be discussed later.

Data for sharks were taken from [18], which used CT scans of

sharks for measurements. Cetacean hyobranchial metrics were

derived from [17], whose measurements were taken from dry

specimens. Mandibular measurements of extant marine tetrapods

were taken from [4].

Identity of Ossifications in Ichthyosaurian Hyobranchial
Apparatus

The hyobranchial apparatus is usually a composite of hyoid and

branchial elements, some of which are ossified/calcified while the

rest are not. In mammals and sharks, the hyoid part is more

dominant than the branchial part whereas in reptiles, the

branchial part tends to be more dominant [18,21,30]. The

apparatus comprises a median body (hyoid corpus) and at least one

pair of horns (hyobranchial cornua). Each horn often has multiple

segments, some of which may be ossified/calcified. There is

usually a pair of ossified/calcified horn segments that is dominant

within a given hyobranchial apparatus, and it tends to play a

major role in the suspension of the entire apparatus. We will refer

to these dominant horn segments as hyobranchial rods in this

contribution.

The hyobranchial apparatus of ichthyosaurs is usually preserved

as a pair of curved hyobranchial rods. These rods have variously

been referred to as ceratohyals or hyoid rods [20], hypohyals [11]

or simply hyoids, e.g., [6]. In the present contribution, the ossified

rod is identified as the first ceratobranchial (CB1), given that when

there is only one pair of rods ossified in the hyobranchial

apparatus of extant reptiles, it is usually considered CB1 [21] in

squamates [22,23], crocodylians [24], and turtles [25]; the

homology of the elements with those of fish, however, has been

questioned [26].

Functionally, ichthyosaurian CB1 probably played two impor-

tant roles. Given its position, it is likely that CB1 was involved in

the suspension of hyobranchial apparatus, with its postero-lateral

margin fixed, maybe via soft tissue, to the otic region of the

Absence of Suction Feeding Ichthyosaurs
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cranium. The identity of the hyobranchial rod differs from clade to

clade–it is the stylohyal in cetaceans, CB1 in reptiles, and the

ceratohyal in sharks. We therefore compare the morphology of

these hyobranchial rods across taxa because of functional

similarity in suspension although they are not developmentally

homologous with each other. CB1 of ichthyosaurs likely had other

functions in addition to suspension: it most likely provided

attachment surfaces for muscles that linked between the tongue

anteriorly (M. hyoglossus, M. geniohyoideus, and M. mandibulo-

hyoideus) and shoulder girdle posteriorly (M. sternohyoideus and

M. omohyoideus), as in many extant reptiles [19,27–29]. A similar

role is played by thyrohyals in odontocete cetaceans [30,31],

although the stylohyal also provides attachment for an extrinsic

tongue muscle (M. styloglossus). In sharks, it is the basihyal that

provides attachment for the muscle to the shoulder (M.

coracohyoideus) [32], whereas sharks generally do not have a

muscular tongue [33].

Definition of Suction Feeding and ‘Ram Feeding’
Despite the prevalence of suction feeding among aquatic

vertebrates [9], the definition of the term ‘‘suction feeding’’ has

been taxon-dependent and variable (Table 2), preventing broad

comparisons across major vertebrate groups, such as sharks and

cetaceans. When a jawed vertebrate (gnathostome) opens its

mouth in water, a pressure gradient is necessarily produced,

usually leading to subambient pressure in the mouth [34,35].

Therefore, some level of ‘suction’ pressure is incurred during

feeding in virtually all aquatic gnathostomes. However, the term

suction feeder sensu stricto is applied only to those aquatic

gnathostomes that draw prey closer by suction prior to capture.

In contrast, those predators that capture their prey mainly by

moving their body toward prey are called ‘ram feeders’ [36], even

when the pressure gradient around the mouth helps the prey from

being pushed away [34,37].

Suction is usually used in combination with various degrees of

ram feeding [38–40]. The relative contribution of suction versus

ram during feeding is often quantified by the Ram Suction Index

(RSI), which compares the relative contribution of prey versus

predator movements in regard to the total distance of movements

by the two [41]. Despite its weaknesses, e.g., [39,42], use of the

RSI is common in the study of feeding kinematics in chon-

drichthyans, osteichthyans, and chelonians.

Suction feeding in the literature on whales has been defined less

strictly: it variously contains suction feeding sensu stricto as defined

above, as well as feeding where prey is captured by ram, followed

by intraoral transpiration of prey for swallowing with help from

subambient pressure induced by tongue movements [43]. This

broader definition, however, obscures the status of suction feeding

in cetaceans because it contains two mechanisms of prey capture.

It also prevents comparisons with suction feeders among other

major vertebrate groups.

Recent kinematic studies are shedding light on the status of

cetacean suction feeding in comparison to that in other major

vertebrate groups. A study of the feeding kinematics of the pygmy

and dwarf sperm whales (Kogia sima and K. breviceps) and bottlenose

dolphin (Tursiops truncatus) found that Kogia was a suction feeder

and Tursiops a ‘ram feeder’ based on RSI [44]. The average

suction distance was negative for Tursiops (i.e., the prey was pushed

away, indicating that it barely used suction for prey capture). Also,

an analysis of the feeding kinematics of three species of cetaceans,

namely the beluga whale (Delphinapterus leucas), Pacific white-sided

dolphin (Lagenorhynchus obliquidens), and long-finned pilot whale

(Globicephala melas) found that all were capable of drawing prey

toward them through suction by about 2.8 to 4.1 cm, whereas

these cetaceans also used various degrees of ‘ram feeding’ in

combination with suction [35]. In terms of RSI values, only

Delphinapterus had feeding sequences that qualified as suction

feeding, although many of the feeding sequences of the same

species represented ‘ram feeding’.

The use of the word ‘ramming’ for the movement of the

predator toward its prey during capture is not universal across taxa

(Table 2). Despite its use in a part of the cetacean literature

[35,44], it has been suggested that it is inappropriate to use this

term for vertebrates without gills given its derivation [45,46]–the

term ‘ram feeding’ was first used in reference to ram ventilation,

where water runs through the gills of certain fishes through

swimming, rather than pumping. In this paper, we use the term

‘ram feeding’ to describe any feeding mode where movement of

Table 1. Measurements (in mm) of ichthyopterygian
mandible and hyobranchial rod.

ML MW HL HW TW

Chaohusaurus geishanensis 103.4 — 11.7 1.3 —

Eurhinosaurus longirostris 650 200 143.0 13.1 45.0

Guanlingsaurus liangae — 230 108.9 7.1 115.5

Guizhouichthyosaurus tangae 877 — 130.9 10.5 —

Hauffiopteryx typicus — 134.0 98.0 9.0 —

Ichthyosaurus communis 376 83.1 88.1 6.0 44.2

Leptonectes tenuirostris 549 164.8 77.4 6.8 86.3

Leptonectes moorei 335 132.3 87.9 9.0 49.8

Mixosaurus cornalianus 184 — 30.0 2.5 —

Qianichthyosaurus zhoui 223 100.6 61.0 5.2 41.9

Shastasaurus alexandrae — 205 227 16.7 —

Shonisaurus sikanniensis — 1451 1220 78.8 1365

Stenopterygius quadriscissus 547 124.6 81.0 9.9 17.3

Stenopterygius triscissus 426 130.0 63.6 8.4 17.2

Suevoleviathan integer 537 192.9 103.2 9.9 104.1

Temnodontosaurus platyodon 1333 577 265 23.6 401

Temnodontosaurus trigonodon — 420 365 21.9 190

Toretocnemus zitteli — 82.3 57.4 5.2 35.5

See Fig. 1 for abbreviations and text for specimen number.
doi:10.1371/journal.pone.0066075.t001

Figure 1. Measurements taken from ichthyopterygian speci-
mens. a, schematic drawing of mandible with a pair of ceratobranchial
I. b, magnified view of a single ceratobranchial I. HL: hyobranchial rod
length; HW, hyobranchial rod median width; ML, mandibular ramus
length; MW, mandibular width; TW, mandibular width at the end of
tooth row. Brown, mandible; orange, hyobranchial rod.
doi:10.1371/journal.pone.0066075.g001
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the body or jaws is mainly used to overtake prey, in order to

permit a simple comparison across major vertebrate groups.

Statistical Analyses
We used R 2.15.2 for all calculations. Bivariate regressions are

based on Model II regression [47], which is also called

Standardized Major Axis (SMA) regression. The package smatr

[48] of R was used for this purpose. All variables were log-

transformed before statistical analyses to account for scaling

effects. All ratios were log-transformed because ratios between two

normally distributed variables with different means are highly

skewed. Analysis of covariance (ANCOVA) is based on the aov

function of R.

Mechanically Important Hard-Tissue Features

Hyoid Corpus Ossification/Calcification
The mechanism to produce subambient pressure in the oral

cavity for suction feeding is almost uniform among jawed

vertebrates, that is, posterior retraction and depression of the

hyobranchial apparatus allowing expansion of the volume of the

pharyngeal region, e.g., [18,19,49]. The muscles that connect the

apparatus to the shoulder girdle, such as M. coracohyoideus (via

M. coracoarcualis) or M. sternohyoideus, are recruited during the

retraction, and the stress is applied to components of the

apparatus, especially the central element (hyoid corpus) and the

cornua that suspend the apparatus from the cranium (CB1 in

reptiles, ceratohyal in sharks, and stylohyal in mammals). This

common mechanism poses similar mechanical constraints on the

morphology of the hyobranchial apparatus across taxa, allowing

inference of suction capability based on hyobranchial morphology.

One such mechanism-related feature is found in the hyoid corpus,

or the central element of the hyobranchial apparatus. Suction-

feeding jawed vertebrates have an ossified hyoid corpus that rigidly

integrates with the right and left hyoid horns, in whales [50],

turtles [19,24,42,51], and sharks (TT pers. obs.; see also Fig. 2). It

was specifically stated [24] that the absence of an ossified hyoid

corpus in Sternotherus impaired the suction ability of this turtle. This

is mechanically expected because the hyoid corpus is the central

element of the hyobranchial apparatus that maintains its integrity

and rigidity.

Hyobranchial Rod Robustness
The second feature that is rooted in the same mechanical

constraints concerns the hyobranchial cornua, especially the

suspensory element. The suspensory ‘rods’ of suction-feeding

jawed vertebrates are known to be more robust compared to those

of closely-related ‘ram feeders’ [17–19,42,52]. This observation

is deeply rooted in suction mechanics because, as pointed out

earlier, suspensory hyobranchial elements of suction-feeding

jawed vertebrates need to withstand the stress incurred by

abrupt rotation that ultimately results from posterior pulling by

M. coracohyoideus or M. sternohyoideus muscles during suction

pressure generation [18,19]. It should be noted that this value is

biased by change in the degree of ossification/calcification

through ontogeny. Juvenile CB1 of ichthyosaurs, for example, is

expected to have had cartilaginous ends that are not preserved

in fossils in addition to the ossified center part that is preserved.

As a result, the CB1 of juveniles may appear more robust in

fossils than it was in life. We tried to avoid this bias by

measuring mature specimens; however, it was not possible for

taxa that are known only from juvenile specimens. However, the

effect of this bias is probably small, judging from the uniformity

of CB1 robustness across ichthyosaurs that is reported later in

this paper.

Mandibular Pressure Concentration Index
Subambient pressure produced in the oral cavity is projected

beyond the gape plane to suck prey toward the predator. The

propagation of pressure beyond the gape needs to be controlled

so that it is concentrated and directed toward the prey [37,49].

It has been pointed out that shorter and smaller gapes perform

better in achieving this goal. Many teleost fish, for example,

have mouths that can be protruded to form a small semi-

circular margin with minimal gape incision that enables

concentrated projection of pressure [37]. The suction system

may be compared to a syringe, with the mouth opening

corresponding to its aperture and the hyobranchial apparatus to

the cylinder. Given that the square of the ratio between

aperture and cylinder diameters of a syringe describes the

pressure concentration that occurs between the pressure

generator (cylinder) and propagator (aperture), a similar ratio

for the predator’s feeding system may be used to approximately

describe the pressure concentration that occurs during suction.

One way to calculate such a ratio is to divide the mandibular

width at the jaw articulation by that at the end of the toothrow,

the former approximating the width of hyobranchial apparatus,

and the latter the mouth width at the gape angle. This ratio is

here called the Mandibular Pressure Concentration Index

(MPCI). MPCI is expected to be higher in suction feeders than

in ‘ram feeders’. Measurements from extant marine mammals

confirm this expectation (Fig. 3A).

Table 2. Taxon dependence of definition of suction and ‘ram’ feeding.

Taxon Ref.
Suction moves prey toward
predator for capture

‘Suction’ re-orients and
transports prey in predator’s
mouth

Predator moves toward prey for
capture

Teleost Fish 37 suction feeding na ‘ram feeding’

Shark 53 suction capture suction transport ram feeding

Turtle 34 suction feeding na ‘ram feeding’

45 inertial suction na compensatory suction

Whale 43 suction feeding raptorial feeding

17 capture suction feeding combination feeding raptorial feeding

Comparative This study suction feeding na ‘ram feeding’

doi:10.1371/journal.pone.0066075.t002

Absence of Suction Feeding Ichthyosaurs
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Mandibular Bluntness
In odontocete cetaceans, it was found that shorter snouts were

better suited for concentrating pressure projection based on

measurements of suction pressure from the heads of three

odontocete species with varying snout lengths [49]. For this

mechanical reason, it is expected that mandibular bluntness

[17,49] is a feature of suction-feeding jawed vertebrates. It should

be noted that mandibular bluntness, as measured by mandibular

width/mandibular ramus length, has its limitation for being a

simple ratio. Mandibular width exhibits a negative interspecific

allometry against mandibular ramus length; therefore the larger

the animal, the less blunt the mandible. However, given that the

cetaceans and ichthyosaurs in question span similar size ranges,

the range of mandibular bluntness in each group is still a useful

indicator of average suction ability.

Figure 2. Mandible and hyobranchial apparatus of selected vertebrate groups. Suction feeders are in the top row, and ‘ram’ feeders
bottom row. Brown fill, mandible; green fill, hyoid corpus; orange fill , ossified/calcified hyobranchial rods that are discussed; white fill with real
outline, other ossified hyobranchial elements; white fill with dotted outline: cartilaginous hyobranchial element. Taxa: a, Mata Mata Turtle Chelus
fimbriatus; b, Japanese Angel Shark Squatina japonica; c, Pygmy Sperm Whale Kogia breviceps; d, Common Musk Turtle Sternotherus odoratus; e,
Sharpnose Sevengill Shark Heptranchias perlo; f, Bottlenose Dolphin Tursiops truncatus; and g, Triassic Ichthyosaur Qianichthyosaurus zhoui.
Derivations: a based [19]; b and e from CT data; c and f based on [52]; d based on [24]; and g based on IVPP 11838. Not to scale.
doi:10.1371/journal.pone.0066075.g002

Figure 3. Bivariate SMA regression of features related to Mandibular Pressure Concentration Index and Hyobranchial Robustness.
a. Mandibular Pressure Concentration Index; b. Mandibular Robustness. Lower intercept values in a and b indicate: a, higher pressure concentration
within the oral cavity; and b, less robust suspensory element of hyobranchial apparatus. Ichthyopterygians has limited pressure concentration (high
intercept in a) and slender hyobranchial rod (low intercept in b). E, G, Sha, and Sho denote Eurhinosaurus, Guanlingsaurus, Shastasaurus, and
Shonisaurus, respectively. Note that the latter three were considered suction feeders by [10].
doi:10.1371/journal.pone.0066075.g003

Absence of Suction Feeding Ichthyosaurs
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Features Not Considered
Tooth reduction is another feature that has been discussed in

the literature on whales [17,43] and sharks [53]. The word

‘reduction’, however, is used with different connotations in the two

clades. In sharks, it is the reduction of size, as seen in the bottom-

feeding nurse shark (Ginglymostoma cirratum), whitespotted bamboo

shark (Chiloscyllium plagiosum), and the planktivorous whale shark

(Rhincodon typus) [53,54]. In whales, reduction usually refers to the

reduction of tooth count [43], which may or may not be

associated with decrease in tooth size. Therefore, it is difficult to

define the term uniformly across taxa. To complicate the problem

further, Werth [43](fig. 4) showed that tooth count reduction was

clearly correlated with shortening of the mandible; this is

expected because shorter mandibles have less space for teeth.

Given that mandible bluntness has a hydromechanical reason to

affect suction ability, this correlation has to be removed before

the contribution of tooth reduction to suction ability can be

tested. Also, extreme reduction in tooth count is only known

among beaked whales (apart from Tasmacetus), mysticetes, and in

Monodon, whose suction feeding has not been directly observed

(i.e., a large contribution of ‘ramming’ may be possible, as in

Globicephala and most feeding sequences of Delphinapterus). The two

cetacean genera for which strict suction feeding has directly been

established through kinematic studies (Kogia and some feeding

sequences of Delphinapterus) have multiple pairs of teeth at least in

the lower jaws. Furthermore, filter feeding mysticetes also exhibit

completely reduced dentition; however only one mysticete, the

gray whale Eschrichtius robustus, is a reported suction feeder

[55,56]. Thus tooth reduction alone is not an unequivocal

indicator of suction feeding.

Results

Hyoid Corpus Ossification/Calcification
The fossilized hyobranchial apparatus of ichthyosaurs comprises

a pair of CB1, whose posterior ends are located near that of the

mandible in virtually all specimens examined, although the bones

were preserved more anteriorly or posteriorly in some specimens

than in others (Fig. 4). The only exception is Shonisaurus sikanniensis,

which seems to have a small second pair of bones [11]. There was

no evidence for ossified hyoid corpus in all but one specimen

examined. The exception is Hauffiopteryx from the Toarcian (Lower

Jurassic), in which a bone exists in front of the pair of CB1

(Fig. 4D). Given its symmetrical shape and position, it is tentatively

identified as the hyoid corpus. As preserved, there is no evidence to

suggest that the hyoid corpus and CB1 were strongly integrated in

this taxon. The preservation suggests that a large part of the

hyobranchial apparatus remained cartilaginous in ichthyosaurs, as

in many reptiles [20].

Hyobranchial Rod Robustness
The shape of CB1 varies from strongly curved to almost

straight, probably reflecting different degrees of compression

during preservation rather than taxonomic differences. The effect

of compaction is especially evident in one specimen of Ichthyosaurus

(Fig. 4C), where the right CB1 is straight while the left one is

curved. Virtually all CB1 were expanded toward both ends, with a

slight constriction near the mid-shaft region. The anterior

expansion is usually larger than the posterior one when the bone

is well preserved, but there were some exceptions depending on

the angle of fossil exposure. Many of them were somewhat

sigmoidal in shape.

Figure 4. Hyobranchial apparatus of selected ichthyopterygians. a., Qianichthyosaurus zhoui (IVPP 11838); Guanlingsaurus liangae (GNG dq-
50);c, Ichthyosaurus communis (OUM J10313); and d, Hauffiopteryx typicus (SMNS 81962). cbi, ceratobranchial I; hc, hyoid corpus; l, left; r, right. Scale
bars are five centimeters.
doi:10.1371/journal.pone.0066075.g004
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The CB1 of ichthyosaurs are more slender compared to

suspensory hyobranchial elements of suction-feeding turtles (CB1),

sharks (ceratohyal), and cetaceans (stylohyal)(Fig. 2; Fig. 5A). This

can be quantified by comparing the mid-shaft diameter and length

(Fig. 3B), although this ratio scales with size to some extent,

revealing weakly negative interspecific allometry with a slope of

0.93 (Fig. 3B). It was also observed that the slenderness of the

ichthyosaurian CB1 is similar to that of ceratohyals in ‘ram-

feeding’ sharks (Fig. 3B). Notably, ichthyosaurian CB1 slenderness

does not vary as widely as in sharks (Fig. 3B), suggesting that the

mechanical function of the hyobranchial apparatus was largely

uniform among ichthyosaurs. ANCOVA revealed a significant

difference between regressions for suction-feeding sharks and

ichthyosaurs (p = 9.6061028, df = 1, F = 62.78) but not between

those of ‘ram-feeding’ sharks and ichthyosaurs (p = 0.777, df = 1,

F = 0.082). ‘Ram-feeding’ cetaceans have more robust suspensory

hyobranchial elements than do ‘ram-feeding’ sharks or ichthyo-

saurs (Fig. 5A). This anomaly, however, can be explained by

suction feeding being plesiomorphic for cetaceans [17]. The close

similarity in robustness of hyobranchial rods across clades is

surprising given the expected difference in material properties of

calcified cartilage of sharks and bones of tetrapods. Note, however,

that the hyobranchial rod is slightly more slender in ichthyosaurs

than in ‘ram-feeding’ sharks based on the median value, possibly

reflecting the difference in material property. A careful literature

search for the material property of calcified shark cartilage proved

unsuccessful, and it is currently difficult to investigate this aspect.

Mandibular Pressure Concentration Index
The MPCI of ichthyosaurs has a small variation, but it fits in the

range of ‘ram-feeding’ marine mammals, with one exception of

Eurhinosaurus (Fig. 3A). This observation is supported by AN-

COVA: when plotting the mandibular width at the end of the

tooth row against the maximum mandibular width as in Fig. 3A,

there was a significant difference between regressions of suction-

feeding marine mammals and ichthyosaurs excluding Eurhinosaurus

(p = 4.5761023, df = 1, F = 10.9), but not between those of ‘ram-

feeding’ marine mammals and ichthyosaurs (p = 0.122, df = 1,

F = 2. 46).

Mandibular Bluntness
Ichthyosaurs are generally longer-snouted and therefore have

low mandibular bluntness compared to odontocete cetaceans or

sharks (Fig. 5B). Even the shortest-snouted ichthyosaurs in our

data set, such as Qianichthyosaurus and Guanlingsaurus, have

mandibular bluntness of about 0.42 or lower. These low bluntness

values are found only in some beaked whales among suction-

feeding odontocetes, whereas all others have much higher

bluntness (Fig. 5B). Note that relatively low mandibular bluntness

of beaked whales is compensated for by the precoronoid crest of

the mandible that shortens the effective gape size.

Discussion

Possibility of Suction Feeding
The hyobranchial apparatus of Triassic and Early Jurassic

ichthyosaurs strongly suggests that these marine reptiles were

incapable of suction feeding. All but one species (Hauffiopteryx

typicus) lacked an ossified hyoid corpus, whereas robust integration

between ossified hyoid corpus and cornua has been identified as

essential for amniote suction feeders as pointed out earlier. Even in

H. typicus, such a robust integration is questionable (Fig. 4D). Also,

the CB1 of ichthyosaurs, including H. typicus, is not very robust

compared to suspensory hyobranchial elements of suction-feeding

turtles (CB1), whales (stylohyals), and sharks (ceratohyals) (Figs. 2,

3, and 5). Therefore, it seems reasonable to conclude that all

ichthyosaurs examined were ‘ram feeders’ because they lacked

hyobranchial adaptation toward suction feeding. Notably, two of

the presumed suction feeders [11] have the most slender CB1

among ichthyosaurs examined; this makes them the least likely

candidates for suction feeders among ichthyosaurs.

Lack of variation in the slenderness of the CB1 in ichthyosaurs is

noteworthy. The ceratohyals of sharks show a broad range of

slenderness depending on their prey capture ecology (Fig. 3B). The

contrasting absence of such variation among ichthyosaurs seems to

indicate that the use of the hyobranchial apparatus during feeding

did not vary much among different types of ichthyosaurs, whether

small or large, long- or short-snouted. We infer that the

hyobranchial apparatus played a similar role during feeding

across ichthyosaurian species.

Figure 5. Boxplots of two ratios across taxa and feeding types. a, hyobranchial robustness; b, mandibular bluntness. The thick line in the
center denotes the median, the box surrounding it contains the middle 50% of the data points, and the whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range from the box. The data outside the whisker are considered outliers, plotted as small
circles.
doi:10.1371/journal.pone.0066075.g005
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The ‘ram-feeding’ hypothesis for ichthyosaurs is further

strengthened by two independent pieces of morphological

evidence that are rooted in the mechanics of suction feeding.

First, as evident from MPCI values, syringe-like suction pressure

concentration that occurs between the throat and mouth opening

was not very high in ichthyosaurs, unlike in suction-feeding

cetaceans. The MPCI values of ichthyosaurs are similar to those of

‘ram-feeding’ marine mammals, again suggesting that ichthyosaurs

were ‘ram feeders’. One exception is Eurhinosaurus that is discussed

later. Second, ichthyosaurian mandibles are much more elongated

than those of odontocete cetaceans on average (Figs. 2 and 5B).

The most elongated mandibles among suction-feeding cetaceans

are found in beaked whales, which are about as acute as the least

elongated mandible of ichthyosaurs. Despite the unusually

elongated mandibles for a suction feeder, beaked whales are able

to suction feed thanks to the presence of superficial tissues around

the corners of the gape, which in effect shorten the span of gape,

while allowing a more rounded opening that is suitable for

concentrating pressure projection [50]. This effective decrease in

gape also has an osteological basis: beaked whales have the

precoronoid crest of the mandible, a unique structure that enables

the mandible to overlap the upper jaw far anterior to the jaw joint.

There is no evidence for such soft- or hard-tissues in ichthyosaurs.

A previous study [10] mentioned the presence of dorsally

convex coronoid region in Guanlingsaurus. This feature, however, is

not well exposed in the specimens that they described. The newer

specimen reported in [16] has a complete exposure of the

mandible, where no special structure analogous to the precoronoid

crest of beaked whales exists. Mandibular morphology of

Guanlingsaurus is not very different from those of some deep-jawed

ichthyosaurs of the Middle and Upper Triassic except its relative

shortness. Also, even if a special structure existed in the region, it

probably could not shorten the gape and narrow the mouth

opening effectively because of its location (see below).

A part of the reason why suction feeding did not evolve in

ichthyosaurs may be the basic skull design of the Ichthyosauria,

which is a clade within the Ichthyopterygia [6]. In comparison

with cetaceans, the jaw joint of this clade tends to be located much

more posteriorly relative to the snout, at or behind the occiput that

is often inclined to contribute to the posterior displacement of the

joint as in Guanlingsaurus. Because of this posterior location,

ichthyosaurs are destined to have more elongated mandibles than

cetaceans even when the snout lengths are similar. Also, this design

leads to posterior location of the coronoid region in ichthyosaurs,

which is usually found at the level of the occipital condyle. Thus,

the region is too far away from the snout to function as the gape-

shortening apparatus–note that the precoronoid crest of beaked

whales is located at the posterior part of the snout. This apparent

constraint from the jaw-joint location is not applicable to basal

Ichthyopterygia, so it may be possible to find a suction feeder

among basal members of the clade in the future.

Eurhinosaurus merits a separate discussion because of its uniquely

low MPCI value. There is an anatomical reason why this taxon

exhibits an anomalous value in this index. The genus is known for

extreme shortening of the mandible, leading to an extensive

overbite that is analogous to that seen in swordfish [6]. A large

part of its upper dentition is anterior to the mandible, which starts

to widen immediately posterior to the tip but is still not very wide

at the point where the dentition ends. Apart from the overall

shortening, the mandibular morphology is not unusual for an

ichthyosaur. For example, the jaw symphysis is short, unlike in

suction-feeding cetaceans that have low MPCI values. Given that

the CB1 of Eurhinosaurus is slender as in other ichthyosaurs and that

its hyoid corpus is unossified, it lacked the ‘equipment’ to generate

suction. Therefore, it was most likely a ‘ram feeder’ as with other

ichthyosaurs.

Paleoecological Implications
Suction feeders among extant air-breathing marine vertebrates

have a limited range of feeding ecology. This is partly because

suction is only effective over a short distance [39], which is usually

less than 6 cm in the cetaceans measured so far [35,44]. These air-

breathing suction feeders almost exclusively feed on stationary or

slow-moving prey and capture them with limited pursuit. For

example, suction-feeding pinnipeds and sharks feed from the sea

floor [57]. With the exception of Delphinapterus, which use suction

feeding during shallower benthic foraging [35], ‘true’ suction

feeders among cetaceans feed in the mesopelagic and bathypelagic

zones [58–60]) to catch squid and fish [61–63]). Most mesopelagic

and bathypelagic squid and fish are considered to be slow moving

[64], with the exception of some large squids [65–67]. Beaked

whales and sperm whales tend to swim through concentrations of

these prey items in the lower DSL (Deep Scattering Layer) and

benthopelagic layers during feeding dives [60,68], although sperm

whales reportedly pursue large squids from time to time [68]. If

some shastasaurid ichthyosaurs were suction feeders resembling

beaked whales as once suggested [10], then they would have

needed concentrations of slow-moving, soft-bodied prey, most

likely coleoid cephalopods, as in the modern mesopelagic/

bathypelagic zones. None of the benthic feeders among suction-

feeding, air-breathing marine predators is edentulous except the

gray whale that uses side-suction [55], so benthic feeding is

probably inappropriate for these ichthyosaurs.

Evidence for the presence of deep-water coleoid communities in

the Triassic is scant, although its possibility cannot be completely

excluded. The time period predates the common ancestor of

extant decabrachian coleoids in the Late Jurassic or Early

Cretaceous [69,70]–this clade has extant members that are

vertical migrants [69]. The oldest belemnites are known from

the Carnian of Sichuan, China [71,72], although they did not

spread worldwide until the Early Jurassic [73,74]. This clade has

evidence for vertical migration reaching at least below the mixed

surface layers in the Jurassic, while most belemnites are considered

epipelagic organisms [75–77]. The habitat depth of the only

Triassic belemnites is unknown; however they appear to be

shallow water forms as with most belemnites, judging from

published cross-section photographs [71] (pls.III and IV) and the

premises of [75]. The Triassic saw two other lineages of coleoids

(Fig. 6). Aulacocerids, which spread worldwide in the Late

Triassic, especially along the Tethys Sea [78], may have inhabited

deepwater [75]. It has even been suggested that they were not very

active [78], as expected for deepwater organisms [64,65]. The

other coleoid lineage in the Triassic, namely phragmoteuthids, had

a limited geographic distribution [78] and, judging from the

phragmocone angle [79] and generalization by [75], probably

lived in shallower waters. Thus, aulacocerids would have been the

only possible prey coleoid group for deep-diving air-breathers. At

his point, it is not known if the biomass of this group was

sufficiently large to support deep-diving, air-breathing predators.

Moreover, aulacocerids are considered to have had an extensive

shell with a ‘living chamber’ as in nautiloids but unlike modern

coleoids or belemnites [80]; thus, they may not have been suitable

prey of suction feeders, and certainly were not analogous to

modern deepwater coleoids in terms of their characteristics as

prey.

Hypothetically, it may be possible that some slow moving, soft-

bodied coleoids, comparable to today’s deepwater forms, inhab-

ited shallow waters in the Triassic and could have served as
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potential prey for suction feeding marine reptiles. However, such a

form has not been recognized to date, despite the fact that the

fossil record of shallow water cephalopods is much richer than that

of their deepwater counterparts. Absence of such slow moving

forms in shallow water may be reasonable because the slowness of

extant deepwater coleoids has been linked to the relaxed visually

mediated predator/prey interactions in light-limited environments

[65].

Another question is whether Triassic ichthyosaurs were capable

of deep diving. Deep diving ability has been suggested for

ichthyosaurs in the past but only for more derived ichthyosaurs in

the Jurassic [8,15], which had large scleral ring apertures that

enabled dim-light adapted vision and a thunniform body plan that

facilitated cruising ability. It is unlikely that shastasaurid ichthyo-

saurs were thunniform, judging from complete skeletons from

China. Also, their eyes were not particularly large for ichthyosaurs,

with apertures that were small for the eye size, indicating a lack of

dim-light adaptation. It is thus likely that these shastasaurids were

not deep divers.

Hypothetically, it may be possible that some slow-moving, soft-

bodied coleoids, comparable to today’s deepwater forms, inhab-

ited shallow waters in the Triassic, providing a viable prey source

for suction feeders. However, such a form has not been recognized

to date, even though shallow water fossils are far more abundant

than their deepwater counterparts. Absence of such shallow water

forms may be reasonable because the slowness of extant deepwater

coleoids has been linked to the paucity of nutrients in deep sea

layers [65].

A recent study suggested that ichthyosaurian eyes evolved in

response to large predators rather than deep diving [81].

However, this suggestion is not well-supported optically [82] or

by fossil evidence. First, the authors mainly discussed Temnodonto-

saurus and its possible predators, whereas deep diving was

suggested for Ophthalmosaurus and possibly other thunnosaurs that

are more derived than Temnodontosaurus [8]. Second, Temnodonto-

saurus, when it first appeared in the Hettangian (earliest Jurassic),

was by far the largest of the coeval marine reptiles despite the

claim of [81]. The very large Rhomaleosaurus that [81] mentioned,

which was comparable in body length to Temnodontosaurus but was

much smaller in gape size than the latter, is known from the

Toarcian [83], some ten million years later. Predator-driven

evolution has also been proposed for deep diving in ichthyosaurs

[84]; however the discussion remains qualitative, especially

concerning the involvement of predators. We suggest that the

availability of deepwater prey (see below) can explain the data

presented in [84] as well.

The appearance of deep-diving ichthyosaurs, such as Ophthal-

mosaurus, may predate that of the common ancestors of the

Decabrachia [69] (Fig. 6). However, isotopic records suggest that

belemnites that were coeval with Ophthalmosaurus included vertical

migrants [77]. Also, one belemnite that co-occurs with Ophthalmo-

saurus, namely Cylindrotheuthis, is thought to have been capable of

withstanding shallow mesopelagic water pressure [75]. The

interpretation of [75] has been challenged in the past but the

basic principle of his study remains justified [85–88]. Additionally,

coleoids belonging to the lineage of vampyromorphs are known as

early as the Toarcian of the Early Jurassic [88] (Fig. 6). Although

Figure 6. Stratigraphic ranges of major coleoid and key ichthyosaur groups being discussed. Divergence time and tree topology is based
on [70]. Ranges of fossil coleoid groups are based on [79,89]. The shastasaurid ichthyosaurs of the Late Triassic, which were previously interpreted as
suction feeders resembling beaked whales [10], did not co-exist with slow-moving and soft-bodied coleoid prey suitable for such suction feeders. The
deep-diving ichthyosaur Ophthalmosaurus was coeval with some soft-bodied coleoid vertical migrants. Dark blue indicates deep habitat (reaching
the mesopelagic zone) and light blue shallow (epipelagic). The color gradation for vampyromorphs indicates uncertainty in habitat depths of early
forms. The upper range of vertically migrating belemnites is extended to the level indicated by [90].
doi:10.1371/journal.pone.0066075.g006
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the habitat depths of these early forms are debatable, the only

extant member of the lineage, vampire squid Vampyroteuthis

infernalis, is a mesopelagic inhabitant.

Conclusions

Triassic and Early Jurassic ichthyosaurs were most likely ‘ram-

feeders’ based on functional inference from hyobranchial and

mandibular morphology. Together with the inferred lack of deep-

diving ability and dim-light vision in suspected suction feeders

among Triassic ichthyosaurs, it is unlikely that these ichthyosaurs

were meso-/bathypelagic feeders resembling beaked whales.

Therefore, the evolutionary history of ichthyosaurs does not

necessitate the formation of deepwater soft-bodied coleoid and fish

communities in the Triassic. The coleoid fossil record also suggests

the lack of deepwater coleoids with soft bodies in the Triassic.

Such communities may have been available by the time

Ophthalmosaurus, the postulated deep diving ichthyosaur, emerged.

Hyobranchial morphology of marine reptiles has been largely

understudied, despite its importance in inferring feeding ecology of

these animals. It will be important to study it further, to

understand the early evolution of modern marine ecosystems in

the Mesozoic. Such a study is underway.
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Milner (NHMUK), Heinz Furrer (Paläontologisches Institut und Museum

der Universität, Zurich), Brandon Strilisky (Royal Tyrrell Museum of

Paleontology, Drumheller, Canada), Rainer Schoch (SMNS), Pat Holroyd

and Kevin Padian (UCMP) and Xiao-hong Chen and Long Cheng

(Wuhan Institute of Geology and Mineral Resources of China, Wuhan,

China) facilitated access to the specimens in their care.

Author Contributions

Conceived and designed the experiments: RM CJ TT DJ. Performed the

experiments: RM CJ TT NPK EM. Analyzed the data: RM. Contributed

reagents/materials/analysis tools: RM DJ. Wrote the paper: RM.

Manuscript revision: RM CJ TT NPK EM DJ PMS.

References

1. Motani R (2009) The evolution of marine reptiles. Evolution: Education and

Outreach 2: 224–235.

2. Motani R (2010) Warm blooded sea dragons? Science 328: 1361–1362.

3. Massare JA (1987) Tooth morphology and prey preference of Mesozoic marine

reptiles. J Vertebr Paleontol 7: 121–137.

4. Kelley NP (2012) Trophic ecomorphology of Triassic marine reptiles. Unpubl

Ph.D. dissertation, University of California, Davis.

5. Kelley N, Motani R, Jiang D, Rieppel O, Tintori A (2009) Rapid diversification

of dental and jaw morphology among marine reptiles during the Triassic
Recovery. J Vertebr Paleontol 29: 125A.

6. McGowan C, Motani R (2003) Ichthyopterygia. Handbuch der Paläoherpeto-
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