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Professor B. Kelsey Jack
Professor Kyle C. Meng

June 2021



The Dissertation of Di Wang is approved.

Professor B. Kelsey Jack

Professor Kyle C. Meng

Professor Olivier Deschênes, Committee Chair

June 2021



Economic Analyses of Environmental Change in China

Copyright © 2021

by

Di Wang

iii



Dedication

This dedication is wholeheartedly dedicated to my beloved parents Junwei Wang

and Xueling Zhang, who have been my source of inspiration and gave me strength

when I though of giving up, who continually provide the moral, spiritual. emotional

and financial support.

To my beloved girlfriend Yubo Han who shared her experience, words of advice and

encouragement to finish this dissertation and my PhD study.

And lastly, I dedicate this work to my dissertation defense committee: Olivier De-

schenes, Kelsey Jack and Kyle Meng. Thank you all for the guidance, strength, power

of mind, protection, support and skills and for giving me a healthy PhD life. All of

these, I credit to you.

iv



Acknowledgements

Throughout the writing of this dissertation I have received a great deal of support and

encouragement. Foremost, I would like to express my sincere gratitude to my advisor

Professor Olivier Deschênes for the continuous support of my PhD study and research,

for his patience, motivation, enthusiasm and immense knowledge. His guidance helped

me in all the time of research and writing of this thesis. I could not have imagined

having a better advisor and mentor for my PhD study.

Besides my advisor, I would like to thank the rest of my dissertation committee:

Professor Kelsey Jack and Professor Kyle Meng for their encouragement, insightful

comments and enlightening questions.

My sincere thanks also go to Professor Ted Bergstrom, Professor Chengzhong Qin,

Professor Marek Kapicka, Professor Xiaoning Li, Professor Danyang Li and Professor

Hongbo Jia who opened the gate of modern economics for me and supported me to

pursue a PhD degree in economics.

I thank my fellow classmates at UC, Santa Barbara: Ken Bao, Danae Hernandez-

Cortes, Samuel Collie, Jeffrey Cross, Yang Gao, Jacob Gellman, Dave Hales, Hongyuan

Jin, Xin Jiang, Yongwook Kim, Ziteng Lei, Andrew Liu, Chris Malloy, Alec Mc-

quilkin, Ganghua Mei, Charlie Nusbaum, Hakan Ozyilmaz, Emily Robertson, Vin-

cent Thivierge, Lawrence Wei, Guangli Zhang and Shuo Zhang, who gave me valuable

comments on improving this dissertation.

Last but not the least, I would like to thank my family: my parents Junwei Wang

and Xueling Zhang for giving birth to me at the first place and supporting me spiritually

throughout my life, my grandma for raizing me for 18 years, my girlfriend Yubo Han

for wholeheartedly accompanying me, my cousin Horace Zhang for giving me a hand

whenever I need his help.

v



Curriculum Vitæ
Di Wang

Education

2021 Ph.D. in Economics (Expected), University of California, Santa
Barbara.

2015 M.A. in Economics, University of California, Santa Barbara.
2012 B.A. in Economics, Peking University.
2012 B.A. in Public Administration, Beijing University of Aeronautics

and Astronautics.

Research

Wang, D., Chen, S. and Zhang, P. 2020. Adaptation to Tem-
perature Extremes in Chinese Agriculture, 1981 to 2010.
Wang, D. 2021. The Environmental Consequences of Creating
Cities: Evidence from the County-to-City Upgrading Policy in
China.
Wang, D. 2021. How Does Temperature Affect the Agricultural
Growth in China: 1981 to 2015

vi



Abstract

Economic Analyses of Environmental Change in China

by

Di Wang

China has experienced drastic climate change and severe environmental pollution

since the 1980s. This dissertation provides economic analyses of these two types of

environmental changes in China by focusing on the temporal evolution of agricultural

sensitivity to extreme heat and the political economy explanations for severe air pollu-

tion in China. Chapter 1 examines the time-varying impacts of extreme temperatures

on Chinese agriculture over 1981 to 2010. By estimating a period-specific panel re-

gression model using nationwide county-level agriculture production data combined

with fine-scale meteorological data, I primarily find the impact of a daily exposure to

extreme temperatures on corn and soybean yields in the post-1996 period is 40% to

50% less than that in the pre-1996 period and the decline in the extreme temperature

impacts on crop yields mainly occurs in counties with expanding irrigation coverage.

Chapter 2 explores reasons for severe air pollution from the perspective of political

economy by examining the environmental consequences of the county-to-city upgrad-

ing policy which delegates the autonomy of building cities to upgraded counties. In

a centralized system like China, economic decentralization without changing the pro-

motion metrics centered around economic performance for local government officials

would likely lead to worse environmental quality because local officials compete for

promotion on economic performance. Using a comprehensive county-level dataset on

economic performance indicators and air pollutant concentrations, I primarily find sig-
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nificantly positive policy effects on economic growth and air pollutant concentrations,

suggesting that the upgraded counties promoted economic performance at the cost of

local air quality. I also calculate the total loss due to the increasing air pollution as

valued in terms of statistical life to indicate the magnitude of the social cost of the

upgrading policy.

Following the finding of decline in agricultural sensitivity to extreme heat in Chap-

ter 1, Chapter 3 quantifies the contribution of the temporal evolution of extreme tem-

perature impacts to the growth of agricultural revenue during 1981-2010 using an

Oaxaca-Blinder decomposition which attributes the growth of agricultural revenue to

the change in the levels of predictors and to the change in the coefficients for the pre-

dictors. I find extreme temperature impacts on agricultural revenues per hectare in the

post-1996 period is more than 60% lower than that in the pre-1996 period, contribut-

ing 6.1 percentage points of revenue growth over the two periods, which is 5.4% of the

overall growth of agricultural revenue. The significant increase in marginal benefit of

irrigation in terms of moderating extreme temperature impacts may have contributed

about 40% of the decline in the extreme temperature impacts on agricultural revenue

per hectare.
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Chapter 1

Adaptation to Temperature Extremes

in Chinese Agriculture, 1981 to 20101

1.1 Introduction

Agriculture is one of the most vulnerable sectors to climate change. The impacts

of climate change on agriculture have important implications for food security and

relevant well-beings, especially in developing countries in which agriculture is a funda-

mental source of income. Although literature accumulates on the link between weather

and agricultural outcomes, studies of the evolution of agricultural sensitivity to tem-

perature extremes remain limited (Mendelsohn et al., 1994; Deschênes and Greenstone,

2007; Schlenker and Roberts, 2009; Welch et al., 2010; Fisher et al., 2012; Roberts et al.,

2012; Lobell et al., 2013; Chen et al., 2016; Burke and Emerick, 2016; Zhang et al.,

2017; Chen and Gong, 2021). Understanding the temporal evolution of relationship

1 The authors of Chapter 1 are Di Wang, Department of Economics, University of California, Santa Bar-
bara, USA, email: dwang01@ucsb.edu; Shuai Chen, China Academy for Rural Development(CARD),
Zhejiang University, China, email: shuaichen@zju.edu.cn; Peng Zhang, School of Management and
Economics, The Chinese University of Hong Kong, Shenzhen, China; email: zhangpeng@cuhk.edu.cn
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Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

between temperature and agricultural outcomes helps develop reliable estimates of the

costs of climate change and identify solutions that moderate the risks imposed by such

change.

Crop yield–the amount of crop production per unit of land area–determines grain

supply in the long run, given we can only claim a limited amount of farmland from

nature. This study examines the temporal evolution of the temperature-yield rela-

tionship in the world’s most populous country and provides evidence of a significant

decline in extreme temperature impacts on yields that is larger than those in the liter-

ature (Schlenker and Roberts, 2009; Roberts and Schlenker, 2011; Bleakley and Hong,

2017; Ortiz-Bobea et al., 2018). The decline in extreme temperature impacts on yields

implies the effect of adaptation to extreme weather conditions. According to the Inter-

governmental Panel on Climate Change (IPCC, 2007), adaptation generally refers to

adjustments by economic agents in response to actual or expected change of weather

conditions, which moderates harm or exploits beneficial opportunities.2 The essence of

adaptation is adjustment of inputs.

Since 1980s, as part of the modernization campaign initiated by China’s central gov-

ernment, farming methods in Chinese agriculture have been improved through mecha-

nization, irrigation expansion and fertilizer use (OECD, 2013). Especially after 1996, a

number of agricultural policies are collectively designed to achieve a food self-sufficiency

objective set in 1996 (The State Council of China, 1996). Agricultural subsidies aim

to provide farmers with an incentive to replace traditional labor-intensive and low-

2 The formal definition of adaptation by the Intergovernmental Panel on Climate Change is adjustment
in natural or human systems in response to actual or expected climatic stimuli or their effects, which
moderates harm or exploits beneficial opportunities" (2007,6). However, this paper focuses on adapta-
tion to temperature extremes. To reconcile the difference in the subject matter, we define adaptation
as adjustment to a change of weather conditions including a new long-lasting climate normal and a
new temporary weather condition. Extreme temperatures are predicted to be more frequent under
climate change. This study, by focusing on adaptation to temperature extremes, can also shed light
on the potential adaptive capacity for long-lasting climate change.

2
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productivity methods of farming with modern mechanized production systems, which

will increase productivity and reduce production vulnerability to extreme heat (Huang

et al., 2013). We empirically find that the decline in extreme temperature impacts is

significantly associated with the expansion of irrigation coverage since 1996, suggesting

that input-driven decline in temperature sensitivity across time periods can be used to

infer the effect of adaptation to extreme temperatures.

When the timing of input adjustment is taken into consideration, adaptation can

be classified as ex ante adaptation that is taken before weather realizes and ex post

adaptation that is taken after weather realizes (Shrader., 2020). This paper focuses

on the effect of an extreme temperature shock that realizes within growing seasons of

crops. Given ex ante inputs such as seed variety and irrigation infrastructure that are

determined before the growing season, farmers can adjust inputs in response to the

actual weather shock such as spraying water on crops to cool the canopy temperature.

Therefore, weather realization identifies a combination of the direct impact of extreme

temperatures without adaptation and ex post adaptation effect conditioning on ex ante

adaptation, which decreases the estimated size of the direct effect.

This research is one of the most comprehensive studies of the temporal evolution

of temperature-yield relationship in China using thirty-year (1981-2010) county-level

agriculture production data combined with fine-scale meteorological data. We focus on

the yields of corn and soybean, two major grain crops accounting for more than 20% of

cropland in China that are important raw materials for edible oil making and livestock

feed. Over 1981 to 2010, China experienced noticeable climate change. Annual aver-

age temperature increased by 0.02-0.03 ◦C annually in these three decades based on

a calculation using our meteorological data. As China has the world’s largest agricul-

tural economy and is a major importer of feed grains (Food Agricultural Organization,

3
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2012), adaptation effect implied by the decline in temperature sensitivity is crucial for

evaluating the risks imposed to domestic food security and the global grain market by

climate change.

The empirical analysis is divided into three parts. The first part documents the

decline in extreme temperature impacts on crop yields by estimating a period-specific

panel fixed effect model. We estimate the period-specific extreme temperature effects

on crop yields and conduct an F test to examine whether the estimated extreme temper-

ature effects are significantly different across periods in a nested model. We primarily

find the impact of daily exposure to extreme temperature (measured by degree days

above an endogenously-selected temperature threshold) for corn and soybean produc-

tion in 1996 to 2010 is 40-50% less than that in the period of 1981 to 1995. This results

in a loss reduction of national aggregate corn production by about 155,000 tons and of

soybean production by about 11,000 tons compared to the scenario in which pre-1996

extreme temperature impacts on crop yields prevailed.3 A secondary result shows that

yield loss of the two crops due to temperature extremes in the southern regions has

declined by a larger percentage than that of the northern regions, which is consistent

with the idea that hotter places adapt to temperature extremes better than cooler ones.

The estimation of extreme temperature effects relies on controlling for a full set of fixed

effects and county-specific time trends, which are added to account for confounding fac-

tors that may affect the temperature-yield relationship through mechanisms other than

ex post adjustment of input quantities.

The second part of the analysis aims to examine potential adaptation mechanisms

that may mute the relationship between crop yields and high temperatures by esti-

mating marginal adaptation effects of each input. We focus on four inputs–irrigation,

3 In Section 6.1.1, we provide detailed numerical derivation of the yield loss reduction.

4



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

fertilizer, agricultural machinery and electricity. We estimate an augmented panel

model with temperature-input interactions where the temporal change in inputs is in-

teracted with all the temperature variables. The empirical results point to irrigation as

the only effective adaptive input. Irrigation expansion is associated with a significant

reduction in yield losses due to extremely high temperatures. By contrast, we find that

the use of fertilizer, agricultural machinery and electricity are not statistically related

to reductions in heat-related yield losses. Due to data limitation, instead of observing

water used for irrigation, we observe irrigation coverage or the proportion of arable

land effectively irrigated, which serves as a measure about irrigation capital stock that

is determined by farmers ex ante. Based on the reasonable assumption that irrigation

capital (e.g. pipelines, drainage ditches, wells and dams) facilitates the ex post use of

irrigation water, we use irrigation coverage as a proxy for the quantity of irrigation

water.

Quasi-experimental variation in irrigation is not available, imposing an upward bias

on the estimation of the irrigation effect if irrigation co-varies with other temperature-

directed adaptation measures (e.g. heat-resilient seed varieties). Three additional

results lend credibility to the findings on the adaptation effects of irrigation. First,

the temporal change in irrigation is negatively correlated with the change in extreme

temperature variables, suggesting that the estimation of the irrigation effect may be

downward biased, which is a less severe problem than the effect being upward biased.

Second, irrigation does not affect the yield consequences of exposure to low temper-

atures below a threshold, suggesting that irrigation expansion is not coincident with

factors that determine the overall yields. Third, the estimation of irrigation effect is

robust to a model including parametric proxies for confounding factors. Temperature-

by-year trends which are generated by the interactions of the year with all the temper-

5



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

ature variables, allows for the possibility that the effects of temperature extremes on

crop yields change over time for reasons co-varying with irrigation. The interactions

between temperature change and the change of economic development indicators such

as GDP and cargo quantities by road (a proxy for road kilometers) control for other

time-varying observables in parallel with input adoption. But we cannot rule out all

sources of bias. Therefore, we only claim the association between irrigation expansion

and temperature sensitivity reduction as suggestive evidence for the adaptation effect

of irrigation.

Following the second part pointing to irrigation as the central adaptive input, the

third part of the empirical analysis provides evidence of the mechanisms for adapta-

tion through the change of irrigation. The role of irrigation in attenuation of tem-

perature sensitivity can be quantified by the heterogeneous adaptation effect by the

extent of temporal change in irrigation coverage.4 We create a category variable spec-

ifying whether a county has experienced increases or decreases in irrigation coverage

and interact the category variable with the temperature and precipitation variables in

the baseline period-specific panel model. Only counties with an increase in irrigation

coverage experienced a significant decline in agricultural sensitivity to extreme temper-

atures, implying that irrigation may be one of the mechanisms for the evolving effects of

temperature extremes on yields. The estimated marginal adaptation effect of irrigation

and average size of irrigation expansion suggests that expansion of irrigation coverage

over time accounts for 25% to 30% of the decline in extreme temperature impacts.

We also find that only yields in counties with an increase in irrigation coverage above

9.5 percentage points which is the 75th percentile of the distribution of the change

4 As 1996 serves as the dividing year of the whole period (1981 to 2010), the irrigation variation over
time periods is calculated by the difference between the 1981-1995 average of irrigation and 1996-2010
average.
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in irrigation coverage, became less sensitive to excessive precipitation (measured by

precipitation above a threshold) over the two periods suggesting irrigation also affects

adaptation to a precipitation shock.

This study contributes to four threads of literature. First, it is the first compre-

hensive study of the temperature-yield relationship over a period of unprecedented

economic structural change in the world’s most populous country. Our finding shows

a decline in the impacts of extreme temperatures on crop yields over time that is

larger than that in the previous literature (Schlenker and Roberts, 2009; Roberts and

Schlenker, 2011; Bleakley and Hong, 2017; Ortiz-Bobea et al., 2018) . Three of the

four papers on temporal evolution of temperature-yield relationship in the US find no

evolution of temperature sensitivity or increasing temperature sensitivity in the most

recent decades of the 20th century. The only exception is Bleakley and Hong (2017),

which find the temperature sensitivity of farm value in the US of the 20th century was

significantly lower than that in the 19th century but they do not show how the farm

value had evolved within the 20th century. The findings of this study suggest that

estimates of temperature sensitivity from an earlier period may not be a good guide

to predicting climate-change impacts in the future.

Second, this paper provides new evidence on the importance of irrigation for adap-

tation to temperature extremes (Taraz, 2017; Tack et al., 2017; Fishman, 2018; Zaveri

and Lobell, 2019). Taraz (2017) and Fishman (2018) focus on the use irrigation to

adapt to precipitation shocks and find no adaptation effects of irrigation to precipita-

tion change. Tack et al. (2017) and Zaveri and Lobell (2019) find that temperature

sensitivity of yields in irrigated farming areas is lower than that in the pure rain-fed

farming areas. The major difference between this study and those by Tack et al. (2017)

and Zaveri and Lobell (2019) is that they focus on a cross-sectional comparison of tem-
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perature sensitivity across areas grouped by the extent of irrigation coverage while we

provide a longitudinal comparison of temperature sensitivity over time that varies by

irrigation coverage. The variation in irrigation coverage over time allows us to restrict

the correlation between irrigation adoption and unobserved confounding factors such

as crop varieties adapted to local climates.

Third, this studies shows the complementarity between ex ante and ex post adapta-

tion: the expansion of irrigation coverage is associated with a stronger ex post adapta-

tion effect. The literature assumes that all adaptive adjustments are made ex ante (Dell

et al., 2009, 2012; Burke and Emerick, 2016; Lemoine, 2017; Shrader., 2020; Chen and

Gong, 2021). This is how researchers argue that weather realizations cannot identify

adaptation effect. But this paper shows theoretically and empirically that weather re-

alizations identify a combination of without-adaptation effect of extreme temperatures

and ex post adaptation effect, similar to adaptation in the aspect of heat-related mor-

tality (Barreca et al., 2016) and amelioration behavior after the state realizes (Graff-

Zivin and Neidell, 2013). However, the ex post adaptation effect cannot be overstated

because the effectiveness of ex post adaptation relies on ex ante adaptation inputs.

Weather realizations, with a panel fixed effect model conditional on ex ante adapta-

tion, bound the direct effect without adaptation from above. The estimated adaptation

effect may be downward biased estimated when the without-adaptation effect identi-

fied by weather fluctuations is compared to the with-adaptation effect identified by

the variation in subsample weather averages (See Dell et al. (2014) for a review). The

downward bias may be exacerbated by the complementarity between ex ante adapta-

tion and ex post adaptation. A stronger ex ante adaptation effect is associated with

stronger ex post adaptation effect due to complementarity. Thus, the direct effect

estimated by weather realization is more attenuated upward by the stronger ex post
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adaptation effect and the downward bias is more salient as a result.

Finally, this studies contributes to the literature on the overall effects of adapta-

tion in developing countries. Earlier literature about adaptation in developing countries

have been focused on effects of explicitly observed adaptative measures (Kurukulasuriya

and Mendelsohn, 2008a,b,c; Wang et al., 2010; Huang et al., 2018) and determinants

of farmers’ adaptation decisions (Bryan et al., 2009; Di Falco et al., 2011; Di Falco and

Veronesi, 2013; Di Falco, 2014). A few more recent studies focus on farmers’ ex post

adjustments of agricultural inputs in response to short-run extreme temperature shock

(Aragon et al., 2021; Jagnani et al., 2020) but do not evaluate how these adjustments

moderate the extreme temperature impacts on agricultural outcomes. The main dif-

ference between this study and those above is that this study estimates the overall ex

post adaptation effects with the approach of examining the temporal evolution of the

extreme temperature effects driven by the temporal change in irrigation, a mechanism

that is not formally investigated in those studies.

The remainder of the paper is organized as follows. Section 2 introduces the back-

ground of agricultural policies after 1996. Section 3 introduces a conceptual framework

that explains how the link between temperature and crop yields can be used to iden-

tify adaptation effects as well as the mechanisms through which agricultural inputs

may mute the temperature-yield relationship. Section 4 describes the data sources and

reports the summary statistics. Section 5 presents the econometric models used to ex-

amine the temporal evolution of the temperature-yield relationship and the potential

explanations of its change over the past 30 years. Section 6 reports the results from

fitting the models in Section 5. Section 7 concludes.
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1.2 Background

This section introduces several policies launched after 1996 to encourage invest-

ments on agriculture and may improve agricultural adaptation (i.e., 1996 marks the

starting year of the change in the temperature–yield relationship). In 1996, the Chinese

government set an objective for grain self-sufficiency, aiming to satisfy a minimum of

95% of domestic consumption of rice, wheat, corn, coarse grains, soybeans and pota-

toes through domestic production (The State Council of China, 1996; Hyde and Syed,

2014). This state objective stems from the Chinese government’s view that China’s

food security is best maintained by meeting its domestic food demand with domesti-

cally produced food, thereby minimizing its reliance on international markets. While

the target explicitly focuses on these crops, the production of other food is generally

supported by a range of other policies (Hyde and Syed, 2014; Siebert et al., 2014).

The self-sufficiency objective is one of the main reasons why the Chinese govern-

ment intervenes in China’s agricultural market. Self-sufficiency is supported by market

price support and agricultural subsidies that encourage agricultural production. Price

support refers to a minimum purchase price set by the Chinese government for each

targeted crop (OECD, 2005, 2013), which is shown to increase monthly average prices

and reduce the price volatility (Li and Chavas, 2018). Therefore, price support may

increase farmers’ income and stimulate investment on agriculture through the income

effect. Agricultural subsidies for private farmers are designed to improve uptake of

modern agricultural practices, thereby providing farmers with an incentive to adopt

capital-intensive inputs that may include adaptive inputs (OECD, 2013).5 Other sub-

5 An example is the "One Exemption and Three" policy. "One Exemption" refers to the exemption of
agricultural taxes. "Three Subsidies" refers to subsidies to farmers based on individual’s total planted
area to increase their income, subsidies for high-quality seed varieties and subsidies for the purchase of
mechanized agricultural inputs. The adaptation effect of adopting heat-resilient seed varieties cannot
be explicitly investigated because of data limitations. Hence, we use county-specific time trends in
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sidies known as awards are paid directly to county governments in areas that have high

grain production. These subsidies are aimed to encourage public investment in both

infrastructure and research to support production (Gentzkow, 2013).

Although the policies supporting the national objective of food self-sufficiency are

designed to ensure food security and increase farmers’ income, rather than targeting

climate change, they may improve adaptation to extreme weather condition because

they encourage the adoption of more efficient agricultural inputs such as fertilizer,

irrigation and agricultural machinery. Understanding how input utilization driven by

these agricultural policies moderates extreme temperature impacts is thus important

for developing effective adaptive strategies.

1.3 Conceptual Framework

1.3.1 Identifying Ex post Adaptation

In this section, we present the theoretical framework used to formalize how temporal

evolution of extreme temperature impacts implies effect of adaptation to temperature

extremes and the relationship between ex ante adaptation and ex post adaptation,

which helps us understand the identification strategy for the ex post adaptation ef-

fect and the linkage between theory-predicted input adjustment and the real input

adjustment that can be observed in the data. The key factor to understanding the

relationship between ex ante adaptation and ex post adaptation is the timing of adap-

tive inputs. For extreme temperature shocks that occur after the start of the growing

season, farmers can adjust inputs in response to realization of extreme temperatures

the panel model to account for the smooth change in crop yields that may be driven by technology
advancement including high-quality seeds.
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(e.g. using irrigation water). Ex ante adaptive inputs can facilitate the use of ex post

adaptive inputs. For example, it is very costly to extract irrigation water after ex-

treme temperature realizes unless irrigation system (e.g. drainage ditches, wells, dams,

canals) has been built up ex ante.

Consider a farmer producing a single type of crop on a unit parcel of land in year

t. Conditioning on the capital stock K∗ for adaptation, which is determined before

weather realizes, the farmer chooses input xt after weather realizes to maximize the

profits in equality (1). The yield is a function of realized weather wt during the growing

season of year t, adaptive capital stock K and an adaptive flow input xt determined

after weather wt realizes.6 The adaptive capital stockK∗t (e.g. irrigation infrastructure)

is ex ante adaptation input that is determined before weather realizes while the flow

input xt is ex post adaptive input that is determined after weather realizes. Therefore,

the farmer’s problem can be written as

max
xt

πt(K
∗
t , wt) = Pt · F (xt, K

∗
t (Et−1(wt)), wt)− Px,t · xt − PK,t ·K∗t (Et−1(wt)) (1.1)

The farmer chooses K∗t in year t − 1 based on Et−1(wt) which is farmer’s expected

weather of year t conditional on information about the weather in all years up to and

including the most recent year t− 1.7 Pt, Px,t and PK,t denote the crop price and input

prices. Assume that production function F (x,K,w) is continuous, twice differentiable

and concave. The marginal productivity of the two inputs is assumed to be strictly

decreasing. Ex ante adaptive capital Kt is assumed to be complementary to ex post

6 As we aim to estimate effects of realized extreme temperatures during the growing season, seed variety
and cropping area are determined prior to weather realizations and therefore are not arguments of the
realized production function.

7 For a derivation of ex ante investment as a decision in anticipation of future weather conditions, see
Lemoine (2017).
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adaptive input xt such that F ′w < 0, F ′′wx > 0, F ′′wK > 0, F ′′xK > 0.8 Conditioning on a

fixed K∗ and a realization of weather wt, the first order condition is

Pt · F ′x(xt, K∗t (Et−1(wt)), wt) = Px,t

The first-order condition clarifies that optimal x∗t is a function of realized weather

wt and ex ante input K∗. Differentiating the first order condition with respect to K∗t

and wt, we can show that ∂x∗t/∂wt > 0 given the ex ante adaptive input K∗t and

dx∗t/dK
∗
t > 0 conditioning on weather realization wt. The former implies that ex post

adaptation is positively responsive to rising temperatures and the latter suggests ex

ante adaptation facilitates use of ex post adaptation. The complementary relationship

between ex ante and ex post adaptive inputs provides a basis for using the change in

the ex ante input as a proxy for the change in the ex post input. This is applicable

to estimating the adaptation effect of irrigation. In the data, we can only observe

irrigation coverage (i.e. the fraction of arable land that is irrigated) which is a measure

more about ex ante adaptation. The complementary relationship between irrigation

capital and irrigation water use allows us to use the change in irrigation coverage as a

proxy for ex post use of irrigation water.

Denote yt = F (x∗t (K
∗
t , wt), K

∗
t , wt) as realized crop yield at the optimal input level.

The aggregate effect of a temperature shock on crop yields can be expressed as

∂yt
∂wt

=
∂F

∂wt
+
∂F

∂x∗t

∂x∗t
∂wt

(1.2)

The first term is the direct effect of an extreme temperature shock without adaptation

8 F ′w = ∂F
∂w , F

′′
wx = ∂2F

∂w∂x , F
′′
wK = ∂2F

∂w∂K , F
′′
xK = ∂2F

∂x∂K .
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and the second term is the ex post adaptation effect. The effect of weather realization

is a combination of the direct effect of realized weather without an adaptation effect

and ex post adaptation effect. This implies that the effect of weather realization on

economic outcomes estimated through a panel fixed effect model conditional on ex ante

adaptation bounds the direct effect without adaptation from above. Therefore, the

adaptation effect may be downward biased when estimated by comparing the without-

adaptation effect identified by weather fluctuations with the with-adaptation effect

identified by the variation in subsample weather averages (See Dell et al. (2014) for

a review). The downward bias may be exacerbated by the complementarity between

ex ante adaptation and ex post adaptation. A stronger ex ante adaptation effect is

associated with a stronger ex post adaptation effect due to complementarity. Thus,

the direct effect estimated by weather realization will be more attenuated upwards by

the stronger ex post adaptation effect and the downward bias will be more salient as a

result.

The adaptation effect consists of marginal adaptation effect of the ex post input

(∂F/∂x∗) and responsiveness of the ex post input to weather realization (∂x∗/∂w).

Hence, mechanisms for ex post adaptation are either a quantity change in inputs in

response to weather realizations or a efficiency change in inputs in terms of adapting

to temperature extremes, which may be related to technological innovation (e.g. drip

irrigation is more efficient than sprinkler irrigation which is more efficient than surface

irrigation). Because we only observe agricultural inputs rather than technological in-

novation in the data, this study aims to estimate the ex post adaptation effect through

the mechanism of quantity change in inputs. Our approach is to compare extreme tem-

perature impacts on crop yields (∂y/∂w) over time periods based on the assumption

that the direct effect (∂F/∂w) remains constant over time periods. We use a model
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specification of province-by-year fixed effects and local time trends to account for the

temporal change in input efficiency in terms of moderating extreme temperature im-

pacts on yields. In this way, we can disentangle the adaptation mechanism of change in

input benefits from the mechanism of change in inputs quantity to quantify the share

of decline in temperature sensitivity that is explained by temporal change in inputs.

Figure 1.1 illustrates the empirical strategy by depicting the evolution of temperature-

yield relationship over time periods. This relationship is modeled as an inverted U

shaped parabola because the literature has documented the nonlinear effects of tem-

perature on crop yields (Schlenker and Roberts, 2009; Lobell et al., 2013). The steeper

parabola denotes the temperature-yield relation in Period 1 and the flatter one de-

notes the relation in Period 2. In Period 1, an unanticipated increase of temperature

from the yield-maximizing T0 to T1 generates yield loss measured by AB = Y0 − Y1.

If farmers have more access to adaptive inputs in Period 2, the yield loss caused by

the same temperature increase reduces to AC = Y0 − Y2. The adaptation benefit is

BC = Y2− Y1, which represents the reduction in temperature-related yield loss due to

increased use of adaptive inputs. The evolutionary effects of extreme temperatures on

crop yields can be estimated by a period-specific panel fixed effect model following the

empirical strategy by Barreca et al. (2016). Instead of estimating AB and AC directly,

we can only estimate marginal effects of temperature rise. The coefficients for the high

temperature variable provide the estimate of |AB|
|T1−T0| and

|AC|
|T1−T0| .

1.3.2 The Ideal Econometric Model and A Practical Substitute

The temperature-yield relationship derived above suggests that contemporaneous

crop yield is a function of both realized weather and expectation of current weather

conditions from the previous standing point. Therefore, the ideal econometric model
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on this relationship would be

yit = b0 + b1 · wit + b2 · Ei,t−1(wit) + νit (1.3)

where i denotes the cross-sectional unit (e.g. counties). wit is the current local real-

ization of weather. Ei,t−1(wit) is individual i’s expectation about the future weather

based on previous realized weather up to and including year t − 1, as described in

equality (1). The term of weather realization is to estimate the marginal effect of a

temperature shock including the direct effect and the ex post adaptation benefit. The

term of weather expectation is to estimate the ex ante adaptation benefit.

However, observing private expectation is impossible in this study and finding good

proxies for farmers’ beliefs is challenging in general. Leaving the expected weather term

into the error term would threaten the identification assumption for weather realization

(i.e. E(witνit) = 0) because weather expectation as a function of previous weather may

be correlated with the current weather under climate change wherein temperatures at

locals have been stably increasing over time. A panel model with two-way fixed effects

is thus the preferred substitute for the ideal model.

By conditioning on county and province by year fixed effects, the weather variation

comes from county-specific deviations in weather around the county averages after

controlling for shocks common to all counties in a province (Deschênes and Greenstone,

2007) which is less likely to suffer from the serial correlation problem. In addition,

we estimate spatial heteroskedasticity- and autocorrelated-consistent (HAC) standard

errors to allow for county-specific serial correlation (Hsiang, 2010). Therefore the
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practical model for estimation is

yit = αi + b0 + b1 · wit + ηpt + νit (1.4)

where αi are the county fixed effects and ηpt is province-by-year fixed effect. We extend

equation (4) to a period-specific panel fixed effect regression model in Section 4.

1.4 Data Sources and Summary Statistics

1.4.1 Data Sources

Agricultural production data. We collect a county-level agricultural dataset on

China from 1981 to 2010. The county-level agriculture data comes from the Chinese

Academy of Agricultural Sciences, which collected this data jointly with the Ministry

of Agriculture. The Chinese Academy of Agricultural Sciences sent agricultural survey

teams to villages where surveyors interviewed farmers. The data were then aggregated

to the county level. Agricultural data on the Xizang Autonomous Region (Tibet) and

Qinghai Province are limited. These two provinces are located on the Qinghai–Tibet

Plateau with an average elevation of over 4000 m; hence, agricultural activities involv-

ing the three major crops are scarce. Thus, the impact of these missing data on our

analysis should be limited.

The variables in the agricultural data relevant to this research include the county-

level production and planted area for the two investigated crops, corn and soybean,

as well as agricultural inputs that may alleviate extreme temperature effects. These

inputs include the irrigated sown area (in hectares), agricultural machinery power

(in kilowatts), aggregate labor inputs (labor employed in the crop farming, forestry,
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husbandry, and fishery sector as a whole), fertilizer use, and electricity use (in kilowatt

hours) in each county’s rural area. In the analysis of agricultural inputs as adaptation

measures, we use irrigation coverage (i.e., proportion of farmland irrigated; calculated

as the ratio of the irrigated area to the arable area), per hectare agricultural machinery

power (kilowatt/ha), per hectare fertilizer use (ton/ha), and per capita electricity use

(kilowatt hour per capita). However, we cannot observe agricultural inputs for a single

crop, preventing us from accurately estimating the role of agricultural inputs for each

crop in mitigating the heat-related yield loss.

Crop region division and growing season. Corn and soybean are planted across

China but they differ in variety and growing season by region because of spatially

varying climatic conditions. Liu (1993) provide us with the division of the corn and

soybean regions and corresponding growing seasons, as illustrated in Figure A.1 and

A.2 Figures A.1 and A.2, respectively. Corn and soybean in China can be categorized

by season (Chen et al., 2016). Spring corn and soybean, typically planted in April

and harvested in late September, are concentrated in the northeast, northwest inland

areas, and southwest mountainous areas. Summer corn and soybean are grown in June

and have a slightly shorter growing season than spring corn does and are primarily

produced in the Huang-Huai-Hai (HHH) Plain area. Autumn corn and soybean are

mainly planted in the mountainous areas of the south and southwest regions. A small

amount of winter corn and soybean is planted in the tropical areas of the south and

southwest regions, accounting for less than 5% of national production (Zhang et al.,

2017). Figure A.2 shows that the growing seasons of the two crops are concentrated

around April to September (i.e., spring and summer) when the country is experiencing

frequent heat shocks. This provides us more data variation for estimating the heat-

related yield loss.
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Weather. The weather data are from the National Meteorological Information Cen-

ter of China, which is the official institute of weather data gathering and publishing.

We collected station-day data for 824 stations across China from 1981 to 2010 (see

Figure A.3). To transform the weather data from the station level to the county level,

we use the inverse distance weighting method, a standard method commonly used in

the literature (Mendelsohn et al., 1994; Deschênes and Greenstone, 2007, 2011; Zhang

et al., 2017). First, we choose a circle with a 200 km radius for each county’s centroid.

We then take the weighted average of the weather data for all the stations within the

circle, where the weights are the inverse of the distance between each station and the

county’s centroid. Finally, we assign the weighted average to each county.9

1.4.2 Summary Statistics

Weather Statistics. Table 1.1 summarizes the corn and soybean productivity and

climate conditions within the growing season of each crop. The mean value of each

variable is the national mean of county’s average within each time period (1981-1995

and 1996-2010) weighted by county’s planted area for each crop. To highlight differ-

ences over time, Table 1.1 reports summary statistics separately for the 1981-1995 and

1996-2010 periods. From the pre-1996 period to the post-1996 period, the average

annual corn(soybean) yield increased from 4262 kg/ha (1361 kg/ha) to 5698 kg/ha

(1819 kg/ha). Climate conditions are described by two parts: regular climate vari-

9 Auffhammer et al. (2014) suggest using a relatively continuous weather record for weather stations
when averaging daily station-level data across space. This is to avoid the large pseudo-variation
generated by missing station-level data, which is crucial for estimating standard errors because the
weather variation should be small in the panel setting relative to the cross-sectional setting. This is
a minor issue, as the proportion of missing values in all the observations is less than 0.01% for all the
climate variables except evaporation (Zhang et al., 2017). The share of missing values for evaporation
is about 25% and the stations with a large amount of missing observations for evaporation are all
located in the Tibet–Qinghai Plateau, which is dropped from the analysis.
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ables including temperature and precipitation and additional climate variables includ-

ing relative humidity, sunshine duration, wind speed, evaporation and ground surface

temperature. Evolution of these climate conditions over the two time periods suggests

that the climate has become hotter, drier, less humid and exposed to less sunshine in

the historical long run.

Figure 1.2 presents the spatial distribution of the change in temperature and pre-

cipitation change in the corn and soybean area over time. The climate has changed

largely and the extent of change vary substantially over space. As shown in Figure 1.2,

China has experienced a nationwide temperature rise from 1981 to 2010, with the an-

nual average temperature increase varies from less than 0.2 ◦C to more than 1 ◦C. Only

a few counties in the south and southwest of the corn and soybean area experienced

a decreasing temperature. Counties in the north experienced a more rapid temper-

ature increase. At the same time, annual average of precipitation decreased in the

north or increased in the south as much as 10 mm (1 cm). The spatial difference and

changing climate provide large variation for reliably estimating the temperature-yield

relationship.

Agricultural production statistics. Figure 1.3 depicts spatial distribution of annual

average of crop yields over 1981-2010 and of percentage change of annual average of

1981-1995 relative to 1996-2010. The majority of counties had increasing yields of the

two crops (See Figure 1.3, Panel b and d) but counties experiencing larger temperature

increase in Figure 1.2 tend to have a lower increasing rate of crop yields, implying that

high temperature deteriorate crop productivity.

The agricultural data set provides data on irrigation coverage, fertilizer use, agri-

cultural machinery and electricity. These four inputs are the potential measures that
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can effectively mitigate the extreme temperature effect on crop yields.10 Irrigation

coverage is measured by the fraction of arable land that is effectively irrigated i.e. the

ratio of irrigated land area over arable land area; agricultural machinery is measured

by agricultural machinery power used for each hectare of total planted area; fertilizer

is measured by fertilizer inputs used for each hectare of total planted area; electricity is

measured by electricity consumption per capita of rural population. The total planted

area is the aggregate planted area for all crops. We cannot observe separate inputs for

each crop in the data.

We are more interested in the change in the four inputs over time than the level

because we aim to estimate the extent to which the change in potential adaptive inputs

accounts for the change in temperature sensitivity. Figure 1.4 depicts the distribution

of the change between the pre-1996 and post-1996 periods for each adaptive input.

The change in input variables is calculated by the difference between the 1981–1995

average and 1996–2010 average. The mean value of each input change, as depicted by

the dashed line in each histogram, is positive, implying that agricultural inputs have

increasingly been used in China over time, which is consistent with the rapid growth

in the Chinese economy in the past three decades. There is large variation in the

change in each input across counties, allowing us to accurately estimate the effects of

inputs in mitigating extreme heat impacts. In contrast to those inputs increasingly

used in most counties, almost as many counties show irrigation expansion as irrigation

10 The four inputs may help farmers mitigate extreme temperature effects in different ways based on
agronomic theory. Irrigation may reduce heat stress by offsetting the additional evapotranspiration
demand due to higher temperatures (Lobell et al., 2013) and cooling the canopy temperature (Siebert
et al., 2014). Fertilizer use enhances plant growth by providing the nutrients essential to leaf growth
(nitrogen) as well as the development of roots, flowers, seeds, and fruit (phosphorus) and strong stem
growth, moving water in plants, and promoting flowering and fruiting (potassium). Apart from at
the start of the growing season for sowing, agricultural machinery also plays an important role in
plant protection (mobile sprayers) and harvesting (Edwards and Hanna, 2020), the timing of which is
sensitive to daily weather conditions. Electricity, as a necessary fuel to power agricultural activities,
should be regarded as a potential mechanism for mitigating extreme temperature effects.

21



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

contraction, generating a close-to-zero mean value of irrigation change. Considering

the distributional characteristics for irrigation coverage, we compare the temperature

sensitivity of crop yields in counties with irrigation expansion to that in counties with

irrigation contraction to explain the change in temperature sensitivity.

1.5 Empirical Strategy

This section describes the models estimated to infer the relationship between crop

yields and weather shocks over time periods as well as factors that modify the rela-

tionship over time.

1.5.1 The Econometric Model for Temperature-Yield Relation-

ship

We first describe the regression model used to estimate the temperature-yield rela-

tionship. Since we use a panel setting with county and province-by-year fixed effects,

the responses of crop yields to weather shocks are identified through the plausibly ex-

ogenous variation in weather over time at the county level after adjusting for common

shocks to all counties within a province in a year. We interact all the weather variables

with a dummy variable of period indicator to capture the evolution of temperature-

yield relationship due to adaptation. The baseline regression model we estimate is as

follows:
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yit =
D∑
d=1

GDDit,l0:l1 · 1{period = d} · β1,d +
D∑
d=1

GDDit,l1:∞ · 1{period = d} · β2,d

+
D∑
d=1

Precit,p<p0 · 1{period = d} · β3,d +
D∑
d=1

Precit,p>p0 · 1{period = d} · β4,d

+
D∑
d=1

wit · 1{period = d} · β5,dβ5,dβ5,d +
D∑
d=1

w′it ·wit · 1{period = d} · β6,dβ6,dβ6,d

+ αi + ηpt + λi,1t+ λi,2t
2 + εit (5)

where yit is the log of annual crop yields in county i and year t. D denotes the number of

periods in the panel. The baseline period is 15 years i.e. the first period is 1981 to 1995

and the second period is 1996 to 2010. The motivation for the 15-year division is based

on a series of agriculture policies formulated in the post-1996 period, as introduced in

the background section. In addition, the 15-year division allows us to construct two

balanced time periods as there are 30 years of data in total.

GDDit and Precit denote growing degree days and precipitation, respectively; the

measurement of these two variables is introduced in the following paragraph. The

vector wit denotes the additional climate variables other than temperature and pre-

cipitation including relative humidity, sunshine duration, wind speed, evaporation and

ground surface temperature as mentioned in Section 4.2 and their quadratic forms cap-

tured by the inner product of vector wit. Additional climate variables are controlled

for because the full set of climate variables are correlated (Lawrence, 2005; Wooten,

2011; Zhang et al., 2017) and omitting climate variables other than temperature and

precipitation can overestimate the extreme temperature effects on crop yields (Zhang

et al., 2017). The indicator variable 1{period = d} specifies the time period denoted
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by d and this interacts with all climate variables.

The specification includes a full set of fixed effects. αi are the county fixed effects

to account for county-specific time-invariant determinants of crop yields such as soil

quality; ηpt denotes province-by-year fixed effects to account for province-level shocks.

For example, agricultural subsidies provided by provincial-level governments can af-

fect agricultural productivity, while province-level price shocks especially government-

procuring crop prices provide incentives of adjusting inputs such as cropland and la-

bor and therefore affect crop productivity. Omitting policy-wise distinctions across

provinces may lead to comparison of counties in different policy regimes, which may

bias the estimation of temperature-yield relationship if climate conditions are inputs

for agricultural-policy making.

Along with the province-by-year fixed effects, county-specific time trends account

for province-level differences and county-specific heterogeneity in adaptation mecha-

nisms other than ex post adjustment of input quantities. We adopt two potential

confounding adaptation mechanisms for the ex post adaptation. The first case is ex

ante adjustment of inputs in anticipation of local climate trends. For example, farmers

adopt more heat-resilient seed varieties before the start of growing season in anticipa-

tion of evolution of local climate. The second case is increasing marginal adaptation

effect of inputs over time that may moderate extreme temperature impacts without

adjusting input quantities. For example, water-saving irrigation technologies allow

farmers to irrigate more extensively with the same amount water as used under old

technologies.

The variable of central interest is extreme temperatures. The literature has demon-

strated strong nonlinearities in the relationship between temperature and agricultural

outcomes (Schlenker and Roberts, 2009). Nonlinearities are generally captured using
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the concept of growing degree days (GDD), which measure the amount of time a crop is

exposed to temperatures between a given lower and upper bound. Following Schlenker

and Roberts (2009) and Burke and Emerick (2016), we use the within-day distribution

of temperatures to calculate the percentage of each day that each county is exposed

to temperatures between given lower and upper bounds , and then sum these daily

exposures over a fixed growing season (e.g. April 10 to October 20 for corn in North

region) to get a measure of annual growing degree days for those bounds.11 The lower

temperature piece GDDit,l0:l1 is the sum of GDD between bounds l0 and l1 and the

upper temperature piece GDDit,l1:∞ has a lower bound l1 and is unbounded at the

upper end.

Similarly, we measure precipitation in a county as a piece-wise linear function with

a kink at p0. The variable Precit,p<p0 is the difference between precipitation and p0

interacted with an indicator variable for precipitation being below the threshold p0.12

Precit,p>p0 is similarly defined for precipitation above the threshold. In the estimation,

we set l0 = 8 since 8 ◦C is considered as the minimum temperature for crop growth

Chen et al. (2016) and allow the data to determine l1 and p0 by looping over all possible

thresholds and selecting the model that best fit the data based on the Bayesian Infor-

mation Criterion. This selection process is applied to both the full sample (nationwide)

and each single region described in Figure A.1 (in Appendix A). The selected thresh-

olds for growing degree days and precipitation by region are presented in Table 1.2.13

11 We use trigonometric sine curve to approximate the within-day distribution following Snyder (1985).
But in the following simple example, we assume instantaneous temperature within a day is identical.
If l0 = 0 and l1 = 30, a set of daily average temperature of -1, 0, 5, 10, 29, 31 and 35 would generate
GDDit,l0:l1 equal to 0,0,5,10,29,30 and 30 and GDDit,l1:∞ equal to 0,0,0,0,0,1 and 5. This example is
the same as the one in Burke and Emerick (2016).

12 We use a simple example to illustrate the idea of piece-specific linear measurement of precipitation.
Suppose a county with precipitation of 60 cm this year and the kink point is 48cm, then Precit,p<p0 = 0
and Precit,p>p0 = 12.

13 We do not estimate a separate temperature–yield relationship for the Loess Plateau region of soybean.
Both the northeast region and the Loess Plateau are subregions of the north region in the primary
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The Choice of period length, either 10 or 15 years as a period does not make a big dif-

ference to the selected thresholds both for the nationwide sample and regional samples,

implying the thresholds of GDD and precipitation have remained stable over time and

verifying that evolution of temperature-yield relationship is mainly reflected by flatten-

ing the temperature response function instead of shifting temperature thresholds over

time, as illustrated by Figure 1.1. We also conduct robustness checks with multiple

thresholds other than the selected ones in Table 1.2 to avoid threshold misspecifici-

ation. The results of robustness analysis on threshold selection will be presented in

Figure 1.8.

The key coefficient of the model in equation (5) is the β2 in each period, which

measures how crop yields are impacted by exposure to extreme heat in each time

period. If economic agents adapt significantly to extreme temperatures, we would

expect β2,d=1 < β2,d=2 < 0; in other words, the estimated marginal effect of a daily

exposure to temperature above the threshold in the later period should be significantly

lower than that in the earlier period. The value (β2,d=1 − β2,d=2)/β2,d=1 provides the

percentage of the short-run impacts of extreme heat offset in the long run and is our

measure of the effect of ex post adaptation to extreme heat.

1.5.2 The Econometric Model for Quantifying the Marginal

Adaptation Effects of Inputs

This part of empirical analysis aims to figure out inputs that may have muted

the temperature-yield relationship overtime. As shown in Section 3.2, the temporal

classification of soybean production according to the Chinese cropping system (Liu, 1993). Although
they share a common growing season (see Figure A.2), the two subregions have different planted areas.
The county-level average soybean planted area of the northeast region (14,502 ha) is 6.7 times as large
as that of the Loess region (2162 ha). Restricting the analysis to the northeast subregion only does
not make a difference to our conclusion of the adaptation effects in the north of China.
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evolution evolution of temperature sensitivity is driven by changes in the quantities

of adaptive inputs over time periods given the assumption that the direct effect of an

extreme temperature shock and the marginal adaptation effects of inputs remain stable

over time. In the augmented panel model described in equation (6), the interactions

of temperature variables and inter-temporal change of adaptive inputs are added to

estimate the marginal adaptation effect of inputs.

yit =GDDit,l0:l1 · β1 +GDDit,l0:l1 ·∆Inputsi · θ1 +GDDit,l1:∞ · β2 +GDDit,l1:∞ ·∆Inputsi · θ2

+∆Inputsi · φ+ Precit,p<p0 · β3 + Precit,p>p0 · β4 + wit · β5β5β5 + w′it ·witβ6β6β6

+αi + ηpt + λi,1t+ λi,2t
2 + εit (6)

where Inputsit is a vector of four inputs including irrigation, machinery, fertilizer and

∆Inputsi = 1
15

∑2010
t=1996 Inputsit −

1
15

∑1995
t=1981 Inputsit. Equation (6) is different from

equation (5) in two ways. First, equation (6) includes the main effects for the inputs

(denoted by Inputsit · φ) and their interactions with the temperature variables (GDD

low piece and high piece). Second, equation (6) is estimated using the entire 30-year

data without specifying the period-specific effects, which echoes the stability assump-

tion of the direct weather effect (without-adaptation effect) and marginal adaptation

effects of inputs. In this specification, the evolution of temperature effects on yields is

captured by the change in inputs across the pre-1996 and post-1996 period so that we

can quantify the role of each input in reducing the temperature sensitivity. The adap-

tation effect through each input is estimated by comparing the temperature sensitivity

of yields in counties with a larger increase of input adoption to that in counties with a

smaller increase or even decrease (e.g. irrigation as shown in Figure 1.4).

The interaction term estimates the extent to which the effect of a daily exposure
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to temperatures above the threshold l1 can be altered by the adaptive inputs. Our

hypothesis is that the coefficient on the interaction term (θ2) is positive. A positive

coefficient would be interpreted as evidence that the diffusion of a particular input

reduces a crop’s vulnerability to temperature extremes. The province-by-year fixed

effects along with county-specific time trend account for the same type of confounding

factors that may threat the stability assumption, the same as we stated in Section

5.1. For example, adoption of new irrigation technologies such as switching from sur-

face irrigation to sprinkling irrigation may improve the marginal adaptation effect of

irrigation even without change in water use. The interaction between inputs and the

low temperature category (e.g. GDDl0:l1) serves as a placebo check because adaptive

inputs will not directly protect crops from low temperatures.

A traditional challenge to identification of the inputs’ adaptation effects is that the

variation in inputs is not experimental, so the estimated θ2 coefficient is likely to be bi-

ased. One type of bias is caused by the correlation between inputs and temperature. If

the investigated four inputs co-vary with other temperature-directed adaptation mea-

sures that are unobserved, the estimates of the marginal adaptation effects of inputs

may be upward biased. Figure 1.5 shows the extent to which the estimates of the input

effects are upward-biased, demonstrating the correlation between the change in an in-

put and change in exposure to extreme temperatures. Extreme temperature exposure

is measured by degree days for temperature above the selected threshold presented in

Table 1.2 and the unit of the extreme temperature variable is 100 degree days. The

positive correlations for fertilizer use and electricity use with extreme temperature

exposure become insignificant after province fixed are controlled for, suggesting that

province-level differences are the common driver for the temporal change in irrigation

and extreme temperature exposure. Thus, controlling for province fixed effects is nec-
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essary for eliminating confounding effects. The correlation between irrigation coverage

change and temperature change remains significantly negative even after province fixed

effects are controlled for, implying that the estimation of irrigation effect in equation

(6) may be downward biased. If the downward-biased estimate is still significantly

positive, the endogeneity problem for irrigation may be a less severe problem.

Although we cannot rule out all sources of bias, we adopt the following strategies

to minimize the confounding effects generated by factors move in parallel with the

four inputs. First, when using province-by-year fixed effects and county-specific time

trends, the bias generated by confounding factors cannot occur through province-by-

year differences (e.g. Province A expanded irrigation coverage this year relative to

Province B as A encountered a growing season with abnormally high temperature) or

county-specific gradual changes in crop yields (e.g. investment in irrigation is increased

in anticipation of temperature rise and exacerbating temperature sensitivity of crop

yields).

Second, we add a temperature-by-year trend to equation (6) as a robustness check.

The local temperature trend consists of the interaction between all the temperature

variables and a linear year trend. This specification allows for the possibility that the

effects of temperature extremes on crop yields change over time for reasons co-varying

with any of the four inputs. Third, in addition to local temperature trend, we further

control for time-varying observables moving in parallel with the four inputs. For exam-

ple, irrigation expansion is supported by local economic prosperity and road building

is complementary to the use of agricultural machinery. In light of this, interactions of

temperature variables with temporal change of local GDP and change in cargo quan-

tities by road are added to equation (6) as another robustness check. The results for

these two robustness checks are provided in Section 6.2.
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1.5.3 The Econometric Model for Mechanisms Explaining the

Decline in Temperature Sensitivity

The result for estimating equation (6) presented in Section 6.2 will point to ir-

rigation as the central adaptive input that effectively mitigate extreme temperature

impacts. This suggests that the decline in temperature sensitivity of yields may be ex-

plained by the change in irrigation coverage across the pre-1996 and post-1996 period

to some extent. To quantify the extent of this explanation, we estimate equation (7)

yit =
4∑
j=1

1996∑
d=1981

GDDit,l0:l1 · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βT<l1j,d

+
4∑
j=1

1996∑
d=1981

GDDit,l1:∞ · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βT>l1j,d

+
4∑
j=1

1996∑
d=1981

Precit,p<p0 · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βP<p0j,d

+
4∑
j=1

1996∑
d=1981

Precit,p>p0 · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βP>p0j,d

+
1996∑
d=1981

witγ1,d · 1{period = d}+
1996∑
d=1981

w′it ·witγ2,d · 1{period = d}

+ αi + ηpt + λi,1t+ λi,2t
2 + εit (7)

where 1{∆Irrigationi ∈ Ij} is an indicator variable specifying whether each county’s

variation in irrigation coverage ∆Irrigationi belongs to a specific category of the

national distribution of irrigation variation denoted by Ij. The inter-temporal varia-

tion ∆Irrigationi is calculated by the difference in the average of irrigation coverage

between the pre-1996 and post-1996 period. We classify all the counties into four

30



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

categories based on the distribution of irrigation variation: strictly below the 25th

percentile (denoted by I1), above the 25th percentile but strictly below the 50th per-

centile (denoted by I2), above the 50th percentile but strictly below the 75th percentile

(denoted by I3) and above the 75th percentile (denoted by I4). We also interact irri-

gation with precipitation which affects water resources for irrigation. All other model

specifications remain the same as equation (5).

According the distribution of irrigation variation depicted in Figure 1.4 (a), the

25th, 50th, and 75th percentile are -0.022, 0.029, and 0.095, respectively. With the

triple interaction of extreme temperature variable, irrigation category and period in-

dicator, we estimate the heterogeneous evolution of yield sensitivity to temperature

extremes by category which indicates the extent to which irrigation has changed over

time. Our hypothesis for the extreme temperature effect on yields is that for j ≥

3, βT>l1j,1996 > βT>l1j,1981 significantly while for j ≤ 2, βT>l1j,1996 = βT>l1j,1981. If irrigation is one of

the main mechanisms driving the reduction in temperature sensitivity over time, we

expect that the reduction of temperature sensitivity in counties with irrigation expan-

sion (Category I3 and I4) will be significantly larger than that in the counties with

irrigation contraction (Category I1 and I2).

1.6 The Evolution of the Temperature-Yield Rela-

tionship Over 1981-2010

This section presents the estimates of temperature-yield relationship over time peri-

ods. Our primary analysis focuses on the period-specific effects of random year-to-year

variation in temperature on the yields of corn and soybean, two important grain crops

in China in terms of total area sown and total production. The yield (production per
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hectare) of these two crops is the basic measure of agricultural productivity. We also

estimate the effects of the four agricultural inputs on reducing the heat-related yield

loss and examine the extent to which the decline in temperature sensitivity of yields

can be explained by the expansion of inputs over time. The unit for the temperature

variables in all the tables and figures reporting estimation results hereafter is 100 degree

days and the unit for precipitation is 100 cm.

1.6.1 Temporal Evolution of the Temperature-Yield Relation-

ship

Corn and Soybean Yields

Table 1.4 provides the results based on equation (5) for corn yields. In our piece-wise

linear approach, yield is expected to increase linearly up to an endogenous threshold

and then decrease linearly beyond that threshold. The temperature threshold for the

whole country is selected at 28 ◦C and the precipitation threshold is at 51 cm. Columns

1-3 of Table 1.4 vary on the specification of fixed effects as articulated in the table.

Columns 4 and 5 are different from 1-3 on estimation of standard errors. In Columns

1-3, the standard errors are clustered at the county level, whereas we use spatial HAC

robust standard error in Columns 4 and 5. Exposure to growing degree days (GDD)

below 28 ◦C in 1981-1995 and 1996-2010 has small and generally insignificant effects

on yields but increases in exposure of corn to temperatures above 28 ◦C result in sharp

declines in yields, as shown in the third and fourth row in Table 1.4. In the period

of 1981-1995, the point estimate of yield loss due to additional 100-day exposures to

temperature above 28 ◦C ranges from -37 % to -23 % while the corresponding estimates

in the period of 1996-2010 ranges from -11% to -4%, significantly lower than the yield
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loss estimation of 1981-1995, as shown by the row of p values which are derived from

an F test of the null hypothesis β1981 = β1996. The comparison among Columns 1 to 3

shows the relatively robust estimates of the temperature-yield relationship in the two

periods and that the province-by-year differences and county-specific gradual changes

in unobserved determinants of corn yields to some extent affect the yield loss caused by

extreme temperatures. As shown in Columns 1 to 3, the relative adaptation effect are

90%, 71% and 50%, respectively; hence, it declines as the model specifications become

more restrictive.14 The province-by-year fixed effects and county-specific trends to

some extent account for province-level differences and county-specific heterogeneity

in adaptation mechanisms other than the pure change in input quantities, which can

be partially verified by the decrease in the estimated adaptation effects under more

restrictive specifications. Therefore, the most conservative estimation of the adaptation

potential is 50%. Moreover, our estimation of adaptation benefits is robust when using

spatial HAC robust standard errors, as reported in Columns 4 and 5.15

Precipitation impacts also exhibit a nonlinear pattern. Corn yields significantly

increase as annual precipitation increase up to 51 cm, beyond which an additional 100

additional centimeter of rainfall decreases corn yields by about 15% to 30%. However,

the yield loss due to excessive precipitation has not significantly decline over time

periods. Irrigation may influence how excessive precipitations affects crop yields in a

number of ways. For example, surface drainage can solve the waterlogging problem

due to excessive rain (Konukcu et al., 2006). We speculate that yields of counties with

14 The relative adaptation effects for different model specifications are estimated through the uniform
formula shown in the previous section: (β2,d=1 − β2,d=2)/β2,d=1.

15 We obtain different point estimates when we switch from cluster robust standard errors to spatial
HAC robust standard errors (compare Column 2 with Column 4 and Column 3 with Column 5). The
difference between the point estimates is the calculation error generated by manually demeaning the
variables for the regression in terms of the province-by-year fixed effects and local time trends for
the spatial HAC model. The Stata package for calculating spatial HAC standard errors provided by
Hsiang (2010) can only be applied to cross-sectional data.
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irrigation expansion will be less sensitive to extreme amount of precipitation. This

speculation is verified in Section 6.3 after we introduce the irrigation effect. Table A.1

in Appendix B.1 presents the effects of additional climate change variables (humidity,

sunshine duration, wind speed, evaporation, and ground surface temperature) on corn

yields.

Table 1.5 shows the results for soybean yields in the same format as Table 1.4.

The temperature threshold for the linear piece-wise temperature-yields for soybean is

selected at 26 ◦C and the precipitation threshold is at 44 centimeter (cm). Exposure

to GDD below 26 ◦C in the period of 1981-1995 and 1996-2010 both has small and

generally insignificant effects on yields, whereas increases in the exposure of corn to

temperatures above 26 ◦C result in sharp declines in yields, as shown in the third and

fourth rows in Table 1.5. The estimated temperature-yield relationships of soybean us-

ing the different specifications exhibit similar pattern with the relationships of corn in

Table 1.4. In the period of 1981-1995, the point estimate of yield loss due to additional

100-day exposures to temperature above 26 ◦C ranges from -16% to -3% while that in

the period of 1996-2010 ranges from -8% to 6%, significantly lower than the yield loss

estimation of pre-1996 period, as shown by the row of p values which are derived from

an F test of the null hypothesis β1981 = β1996. The comparison between Columns 1

and 3 reveals the relatively robust estimates of the temperature–yield relationship in

the two periods. As shown in Columns 2 to 5, the relative adaptation effect ranges

between 44% and 56%, declining as more constraints for the models are added.16 Pre-

cipitation impacts exhibit an inverted V-shaped pattern as well. The yield loss due

to an additional 100 cm of precipitation above 44 cm is approximately 20% and does

16 Column 1, which is the specification only controlling for the county and year fixed effects, provides an
estimate of relative adaptation as high as 300%. We do not take this result seriously, as this specifica-
tion doesn’t control province-level differences that can confound the temperature-yield relationship.
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not significantly decline over time periods. Results for impacts of additional climate

change variables are presented in Table A.2 of Appendix B.1.

As shown in Table 1.1, the annual average corn yield in the post-1996 period is

4262.52 kg. Therefore, it saves about 4.68 kg (4262.52 × 0.12%) of corn per hectare if

the effect of daily exposure to temperature above 28 ◦C is reduced from 0.23% to 0.11%.

The annual planted area of corn in the post-1996 is 24.8 million hectares. Therefore,

the loss reduction of national aggregate corn production is about 155,000 tons per year

(0.00468 ton/hectare × 24.8 million hectares) compared with the scenario in which

the pre-1996 extreme temperature impacts prevailed. The loss reduction of aggregate

soybean production is about 11,000 tons per year based on the same reasoning. To

obtain a sense of the magnitude of the effects of extreme temperatures, it is necessary

to compare the temporal evolution of effects on yields to that of aggregate area planted

for each crop. Formal estimation of temperature-area relationship requires a different

approach than the panel model, which is out of the scope of this study. Figure 1.6

demonstrates the time trend of the area planted with corn and soybean as well as the

proportion of the two crops accounting for the total planted area. In contrast to the

rapid expansion of corn production, the scale of soybean production remains stable over

the last 30 years suggesting that there have been more of increased planted area that

is planted to corn than to soybean. Given the decline in yield sensitivity to extreme

temperatures and the evolutionary pattern of planted area, climate change is predicted

not to alter the growing trend of corn production nor significantly reduce soybean

production of China. The 95% self-sufficiency objective on corn can be maintained.

However, the stagnant growth of soybean production has forced China to import about

80% of its domestic soybean consumption. Hence, the growing demand of soybean from

China will impose a large impact to the international soybean market.
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Heterogeneous Temperature-Yield Relationships by Region

In Figure 1.5 and Figure 1.6, we estimate heterogeneous temperature-yield relation-

ship of corn and soybean by region (the regions depicted in Figure A.1) to understand

heterogeneity in the response functions across crop regions and to test whether regions

that are more accustomed to temperature extremes have adapted better such that

they have a more muted temperature-productivity. For example, regions that experi-

ence high-temperature days more frequently (i.e. HHH and South versus North and

Northeast in Figure 1.4) may have higher adoption rates of technologies that mitigate

the detrimental impacts of extreme heat.

Each column in Table 1.6 comes from a single regression in which the sample is

restricted to the corresponding corn regions in Figure A.1. The point estimates of

the corn yield loss generated by an additional-day exposure to temperature above the

regional threshold vary largely across regions for both of the two periods. Northern

regions generally suffer more from extreme temperature than the southern regions

(Northwest is an exception among the northern regions but the estimated coefficient

of the high temperature category is not significant). All the regions except the inland

Northwest experienced a dramatic decline on the extreme temperature impacts over

the two periods, indicating prevalent adaptation effects all over the country. For the

North, HHH, South and Southwest region, the relative adaptation effects are 60%,

75%, 74% and 76%, respectively. The finding of large cross-sectional and longitudinal

variation in temperature-generating yield losses is consistent with the idea that hotter

places adapt to higher temperatures better than colder places do.

Table 1.7 reports the regional differences in the temperature-yield relationships of

soybean. Each column presents the same of information as in Table 1.6. An additional-

day exposure to temperatures above the regional threshold generates a significant loss
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on annual soybean yields for all the regions except the South. The detrimental impacts

of extreme temperatures vary largely across regions for both periods. Northern regions

suffer more from extreme temperatures than southern regions, which is consistent with

the idea that hotter places adapt to high temperature better than the cooler places

do. Only the HHH and Northwest region show significant declines in the yield loss

due to extreme heat and the adaptation effect is about 80%. the decline in extreme

temperature impacts in the Southwest is not significant and high temperatures are not

even harmful to soybean yields in the South. The nationwide decline in the heat-related

yield loss estimated in Table 1.5 is thus mostly driven by the HHH and Northwest

region.

Robustness Check

The Standard error estimation is changed to a spatial HAC standard error esti-

mation in the robustness check to account for heteroskedasticity, county-specific serial

correlation and cross-sectional spatial correlation (Hsiang, 2010). The nonparametric

estimation of the variance-covariance matrix for the error term allows for contempo-

raneous spatial correlations between counties whose centroids lie within d km of one

another Conley (1999). Following Conley (2007), the weights in the matrix are uniform

up to the cutoff distance d. Moreover, nonparametric estimates of county-specific serial

correlation are estimated using linear weights that decrease to zero after a lag length of

q years (Newwey and West, 1987). In our model, the cutoff distance d takes the value

from 100 km to 400 km with an increment of 100 km and the length of years q is 3 years

and 5 years. The results in Figure 1.7 show the estimated impacts of an additional 100

days of exposure to extreme temperatures in the pre-1996 period and the difference in

the impact estimates between the pre-1996 and the post-1996 periods. We find that
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the spatial HAC standard errors do not change the estimation of temperature-yield

relationships for the two crops compared with clustering-robust standard errors.

Varying temperature thresholds are applied to check the sensitivity of estimation

to variation in temperature thresholds. It is a concern that the selected temperature

thresholds are misspecified. Figure 1.8 reports the estimation of temperature-yield re-

lationships of corn and soybean for the full sample using five temperature thresholds.17

The significance of the yield loss decline is robust to variation in temperature thresh-

olds. The impacts of extreme temperatures on crop yields in the period of 1981 to

1995 are obviously exacerbated as temperature threshold increases but are relatively

stable in the later period of 1996 to 2010. For example, as shown in Panel (a) of

Figure 1.8, the national average yield loss of corn caused by an additional 100 days of

exposure to extreme temperatures in the pre-1996 period increases from 22% to 42%

as the threshold increases from 28 ◦C to 32 ◦C, while the decline in the temperature

sensitivity (marked by the triangle) in the post-1996 period rises with an increase in

the threshold. As a result, the yield loss due to extreme temperature exposures is

stable around 10% in the post-1996 period with respect to the temperature threshold.

The length of time period is varied to test the sensitivity of estimation results

to the choice of endpoint years of time periods and the number of years in a time

period. In the robustness check, we use 5 years and 10 years as the period lengths

and rerun regression in equation (5).18 The results are shown graphically in Figure

17 We use five consecutive temperature thresholds that include the threshold reported in Table 1.2 but fix
the precipitation thresholds at the values in Table 1.2 for all the regions, as we find that changing the
precipitation thresholds does not change the estimation of coefficients of temperature variables. The
estimates for the same robustness analysis for crop regions on temperature thresholds are presented
in Figure A.4 and Figure A.5 of Appendix B.

18 An alternative way of checking the robustness of the results to the ending years of the time periods
is running panel regressions over rolling time periods such as 1950 to 1965 compared with 1966 to
1980, 1966 to 1980 compared with 1981 to 1995, 1981 to 1995 compared with 1996 to 2010, and so
on. However, we only collected 30 years of data from 1981 to 2010. Hence, using rolling time periods
is not feasible.
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1.9. We display the point estimates and 95 % confidence intervals of the extreme

temperature impacts on crop yields in the first period (1981-1986 is the first period

in the 5-year setting and 1981-1990 is the first period in the 10-year setting) and

of the change in the extreme temperature impacts in later periods relative to the

first period. The extreme temperature variable remains annual growing degree days

above the endogenous temperature threshold used before (28 ◦C for corn and 26 ◦C for

soybean). Temperature thresholds other than 28 ◦C for corn and 26 ◦C are applied;

see Figure 1.6–1.9 in Appendix B.2. For the two period lengths, we obtain significant

estimates of the extreme temperature impacts in the initial period when farmers were

less prepared for climate change and invested less in adaptive inputs. Compared to

the 15-year-period setting in Table 1.4 and Figure 1.5, the heat-related yield losses of

the 5-year and 10-year settings are more severe in the initial period. This is reasonable

because the yield impacts of extreme heat in the first 15-year period (1981 to 1995)

might have already incorporated the effects of adaptation occurring after the first 5-year

period or 10-year period. The significantly positive point estimates of the difference

between the initial period and later periods show that our conclusion of significant

adaptation effects is insensitive to the choice of the number of years in a time period

or the ending years of the time periods. Another interesting result is that in the 5-year

setting, the improvement of temperature sensitivity to extreme heat for the 1986-1990

period and 1991-1995 period relative to the initial 1981-1995 period is not statistically

significant at 5% level and also smaller than the improvement in the post-1996 periods.

This echoes our findings on the irrigation mechanism that can explain the drop in the

temperature sensitivity of crop yields.

The model specification is changed from a period-specific panel model to a more

flexible panel model that allows all the climate variables to interact with polynomials
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of calendar years such that the impact of extreme temperature can change smoothly

and flexibly over time (Roberts and Schlenker, 2011) . The polynomial takes linear,

quadratic and cubic form in this study. Specifically, the new regression model is

yit =GDDit,l0:l1 · β1 +GDDit,l0:l1 · f1,L(t) +GDDit,l1:∞ · β2 +GDDit,l1:∞ · f1,H(t)

+ Precit,p<p0 · β3 + Precit,p<p0 · f2,L(t) + Precit,p>p0 · β4 + Precit,p>p0 · f2,H(t)

+ wit · β6β6β6 + wit · f3(t) + w′it ·wit · β6β6β6 + w′it ·wit · f4(t) + αi + ηpt + fy(t) + εit

where the functions f(·) are the polynomial of years and all the other variables are

defined in the same way as in equation (1). We continue to use l1 = 28 for corn and

l1 = 26 for soybean. Figure 1.10 displays the evolution of marginal impacts of extreme

temperatures on crop yields, i.e., β2 + f1,H(t). The linear and quadratic form of year

trend exhibit a steadily rising tolerance of crop yields to extreme temperatures. In

the model of linear and quadratic form, the marginal impacts of extreme temperatures

decrease by 40% to 50%. In the linear(quadratic) model, marginal impacts of degree

days above 28 ◦C on corn yields increases from -0.23% (-0.27%) to -0.09% (-0.13%),

consistent with the results provided by the period-specific panel model. We have a

similar evolutionary pattern on soybean. The model of cubic time trend depicts a

more complex evolutionary path but exhibits an improving trend of heat tolerance.

Estimation of polynomial-trend model with other temperature thresholds are presented

in Figure B.7 and B.8 of Appendix B.2.
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1.6.2 Estimating the Marginal Adaptation Effects of Agricul-

tural Inputs

The analysis in Section 6.1 showed a large decline in the temperature sensitivity

of crop yields. The question that arises is why the temperature sensitivity declines

over time periods. We address this question in two steps. The first step, presented in

this subsection, estimates the marginal adaptation effects of agricultural inputs, which

is the parameter of ∂F/∂x∗ in the conceptual framework of Section 3, which serves

as the backbone element for quantifying the proportion of the decline in temperature

sensitivity explained by some central input. It also helps us determine which inputs

contribute to the decline in temperature sensitivity of crop yields. The moderating

effects are estimated by the interactions of extreme temperatures with temporal changes

in the inputs in equation (6).

We now describe the estimation results of equation (6), the augmented model to

quantify how agricultural inputs mitigate the impacts of extreme temperatures on crop

yields. The data allows us to examine four inputs. Irrigation is measured by the fraction

of arable land that is effectively irrigated i.e. the ratio of irrigated land area over arable

land area. Agricultural machinery is measured by the machinery power used for each

hectare of total planted area. Fertilizer is measured by fertilizer inputs used for each

hectare of total planted area. Electricity is measured by electricity consumption per

capita of rural population.19 The total planted area is the aggregate planted area for
19 According to Technical Terminology for Irrigation and Drainage by Ministry of Water Resources of

China (1993), effective irrigation area is defined as the area of arable land that is relatively flat,
accompanied by water sources nearby, equipped with irrigation infrastructure and can be irrigated
normally in the situation without extreme weather intervention. So effective irrigation area refers to
part of arable land. Another measurement for irrigation coverage in the literature is effective irrigation
area over total planted area which is different from arable land area in the sense that crops can be
planted in arable and non-arable land (Chen et al., 2016; Zhang et al., 2017).
For a robustness check, we provide estimation of irrigation effects using the ratio of effective irriga-

tion area over total planted area in Table A.5 and A.6. As shown in Table A.5 and A.6, the results of
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all crops.

Due to data limitations, we cannot observe separate inputs for each crop. We use

the change in irrigation coverage as a proxy for the change of ex post use of irrigation

water based on the relation that ex ante adaptation facilitates ex post adaptation.

Using equation (6) we estimate the adaptation effects through the change in inputs by

comparing yield sensitivity to extreme temperatures in counties with a higher increase

of input adoption with a lower increase (or even decrease as illustrated in Panel (a)

of Figure 1.4). This part of empirical analysis helps us to find which of the four

inputs are effective at moderating the extreme temperature impacts and contribute

to the decline in the temperature sensitivity of crop yields. Table 1.8 and 1.9 only

report the direct impacts of extreme temperatures (growing degree days above the

threshold) and interaction effects of the input change with extreme temperatures. We

find that none of the agricultural inputs significantly affect the relationship between

low temperatures and crop yields (see Table A.3, A.4 and A.7 in Appendix B.2). We

consider the specification in which each input enters individually (Columns 1—4 in

Table 1.8 and Table 1.9) as well as the one in which all the inputs enter the same

specification (Column 5 in Table 1.8 and 1.9).

Columns 1 in Table 1.8 and Table 1.9 shows that the diffusion of irrigation is

associated with a sizable and significant decrease in crop yield loss due to extreme

temperatures. Table 1.8 demonstrates that an expansion of irrigation coverage from

0% to 100% in a county is associated with a reduction in the impact of 100-day exposure

to extreme temperatures on corn yields by 23 to 25 percentage points on average. Table

1.9 demonstrates that the moderating effect for soybean yields is 13 to 15 percentage

points. On the contrary, none of the other three inputs generate significant adaptation

sizable and significant adaptation effects uniquely by irrigation still hold.
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effects to extreme temperatures. We conduct two robustness analyses on the findings

of adaptation effects through temporal changes in inputs. First, we show that none of

the modifiers affect yield sensitivity to low temperatures, suggesting that adoption of

these modifiers is not coincident with factors that determine the overall crop yields.

The results are provided in Table A.3 and A.4 in Appendix B.2. Second, we measure

irrigation coverage by the ratio of irrigated area to the total planted area as used in

the previous literature (Chen et al., 2016; Zhang et al., 2017).

Finally, we add a temperature-by-year trend and interactions of temperature with

observed factors in parallel with inputs to equation (6) to account for confounding

effects that co-vary with the four inputs (Barreca et al., 2016). Table 1.10 reports the

results of this robustness check. Columns 1 and 3 only add temperature-by-year trends

(i.e. interactions between calendar year and the two temperature variables) in the

baseline specification to control for unobserved factors that may lead to smooth change

of temperature sensitivity. Columns 2 and 4 add interactions of temperature with

observed confounding factors to the specifications in Column 1 and 3. Table 1.10 only

reports the interaction effects between the change in inputs and temperature variables.

The comparison of Table 1.10 with Table 1.8 and Table 1.9 suggests that controlling for

potential confounding factors through the above specifications does not significantly

change the estimates of the adaptation effects of inputs. The robustness analysis thus

supports the key finding in Table 1.8 and Table 1.9 that irrigation is the most effective

input among the four examined ones to moderate the extreme temperature impacts

on yields. Although the variations in inputs over time have exogenous characteristics

(shown in Figure 1.5) and the estimation is robust to specifications with confounding

factors, the evidence on adaptation effects of inputs is only suggestive rather than

causal.
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1.6.3 The Mechanism for the Decline in Temperature Sensitiv-

ity Through Irrigation

This section examines the mechanism for the decline in temperature sensitivity

through the temporal change of the most promising input–irrigation. If the change in

irrigation partially explains the decline in extreme temperature impacts, the extent of

decline in counties with a larger increase in irrigation coverage should be at least larger

than that in the counties with lower increase. Given the distributional characteristics

of irrigation change shown in Panel (a) of Figure 1.4, we classify the distribution

of the irrigation coverage change into four categories based on the percentiles of the

distribution. Category 1 to 4 cover the counties with irrigation change ranging from

the 25th percentiles, the 25th to the 50th percentiles, the 50th to the 75th percentiles,

and the 75th percentile to 1, respectively. The 25th percentile, the 50th percentile and

the 75th percentile are -0.022, 0.029 and 0.095 respectively, indicating that most of the

counties covered in Categories 1 and 2 have experienced irrigation contraction while

all the counties in Categories 3 and 4 have experienced irrigation expansion.

We estimate the heterogeneous evolution of temperature sensitivity by these cat-

egories of irrigation change in equation (7), a triple-interaction panel model where

temperature variables interact with the category and period indicators. Our hypoth-

esis for the effect of extreme temperatures on yields is that for j ≥ 3, βT>l1j,1996 > βT>l1j,1981

significantly, while for j ≤ 2, βT>l1j,1996 = βT>l1j,1981. In other words, the decline in temper-

ature sensitivity in counties with irrigation expansion (Categories I3 and I4) will be

significantly larger than that in the counties with irrigation contraction (Category I1

and I2). Figure 1.11 presents the estimation of the heterogeneous irrigation effects.

There are five pairs of estimates in each panel. The first pair is for the estimate of the
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temporal evolution of extreme temperature effects for the model in equation (5) with-

out the category interaction. The remaining four pairs are for heterogeneous evolution

by the categories of irrigation change. In each pair, the black circle denotes the ex-

treme temperature effects in the first 15-year period and the blue triangle denotes the

difference in the extreme temperature effects between the first 15-year and the second

15-year period. Only in counties of category 3 and 4 (counties with irrigation expan-

sion) is there significant attenuation towards zero on the extreme temperature effects

from the first period to the second period. The decline in Categories 3 and 4 is approx-

imately 50%, consistent with that in the full sample estimated by the uninteracted

model. Thus, the decline in temperature sensitivity mainly occurs in counties with

irrigation expansion, suggesting that irrigation is a mechanism for ex post adaptation

to temperature extremes.

We can derive the share of temperature sensitivity decline explained by irrigation

expansion using the estimates of the adaptation effects of irrigation in Section 6.2. Ta-

bles 7 and 9 show that an increase in irrigation coverage from 0% to 100% is associated

with a decrease in extreme temperature effects on corn yields by 20 to 26 percentage

points. The average change in irrigation coverage for counties with irrigation expansion

(Categories 3 and 4) is approximately 0.14.20 An increase in irrigation coverage by 14

percentage points reduces the heat-related yield loss by 2.83 to 3.68 percentage points

(0.2 × 0.14 to 0.26 × 0.14) accounting for 25.7% to 33.4% of the 11 percentage-point

decline in the corn yield loss for the full sample. Similarly, an average increase in irri-

gation coverage for the counties planting soybean by 13.3 percentage points accounts

for 24.8% to 28.6% of the 7 percentage-point decline of soybean yield loss.

20 The average change in irrigation coverage is weighted by each county’s average of corn planted area,
which is consistent with the panel regression weighted by annual planted area of corn. The unweighted
average change in irrigation coverage for counties with irrigation expansion is 0.12.
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There are two caveats about the benefits of irrigation in terms of temperature

sensitivity reduction that may improve decision making on irrigation investment. First,

the ex post adaptation effect of irrigation is conditioned on ex ante investment in

irrigation systems such as drainage ditches, wells and reservoirs. Ex ante investment

in irrigation capital stock is complementary instead of substitutable for the ex post use

of irrigation water after weather realizes. Second, irrigation may be a maladaptation

to longer-term climate change. Climate change in the long run may alter precipitation

distribution and therefore the availability of irrigating water. investment in irrigation

may be less efficient if viewed in relation to the longer-term projections of drying in the

region. Economic agents should thus consider the longer-term risk of water shortages

when expanding irrigation coverage without technological improvements in irrigation.

Finally, we analyze why there is no adaptation to precipitation shocks. Because

some irrigation equipment such as drainage can protect crops from waterlogging due to

excessive rainfall, we hypothesize that crop yields in counties with irrigation expansion

become less sensitive to an extreme precipitation shock compared with counties with

irrigation contraction. Figure 1.12 verifies this hypothesis by presenting the hetero-

geneous change in extreme precipitation effects over time by categories of irrigation

change. The format of Figure 1.12 is the same as that of Figure 1.11 except it reports

the results for precipitation. The impacts of excessive precipitation decrease only in

Category 4 counties both for corn and soybean. As a result, the decline in extreme pre-

cipitation effects across the two periods is not significant for the full sample estimated

by the uninteracted model.
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1.7 Conclusion

Using a comprehensive county-level dataset on agricultural production and weather

conditions during the period of unprecedented economic growth in China, this study

makes three primary findings on the temperature-yield relationship over the past 30

years. First, we find a decline in the effects of extreme temperatures on crop yields: the

impact of daily exposure to temperatures above a threshold on corn and soybean yields

has declined by 40-50% from 1981-1995 to 1996-2010, saving approximately 155,000

tons of corn and 11,000 tons of soybean per year compared with the scenario in which

the pre-1996 extreme temperature impacts prevailed. The decline in temperature sensi-

tivity implies large opportunities of adaptation to climate change and relaxes concerns

over food security in the world’s most populous country. A full set of fixed effects and

local time trends help control for factors that confound the evolutionary temperature-

yield relationship through mechanisms other than change in input quantities.

Second, the empirical results indicate that irrigation is the most effective input

among the four examined in terms of moderating the production risk associated with

extreme temperatures. Specifically, an expansion of irrigation coverage from 0% to

100% in a county is associated with a reduction the impact of 100-day exposure to ex-

treme temperatures on corn (soybean) yields by 23 to 25 (12 to 14) percentage points

on average. By contrast, we find that the use of fertilizer, agricultural machinery and

electricity is not statistically related to attenuation of temperature sensitivity. Cor-

responding to the conceptual framework that decomposes the aggregate adaptation

effect into the marginal adaptation effect of each input and responsiveness of inputs

to temperature rises, this part of empirical analysis estimates the marginal adaptation

effects of all the four inputs. The specification with rich fixed effects and local time

trends allows us to control for endogenous factors that may generate adaptation effects

47



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

through mechanisms other than ex post adjustments of the four examined inputs. The

results of the baseline model with temperature-inputs interactions are robust to speci-

fications controlling for a proxy for overall temperature-related adaptation mechanisms

and observable confounders in parallel with the four inputs.

Third, the decline in the temperature sensitivity of crop yields mainly occurs in

counties with irrigation expansion, suggesting that irrigation is a mechanism for the ex

post adaptation effect. Our calculation shows that irrigation coverage has increased by

about 14 percentage points in counties with irrigation expansion and can explain about

25% to 30% of the decline in the temperature sensitivity of crop yields. This opens a

new avenue for future research to explore additional adaptation mechanisms such as

technology innovation. In addition, the decline in the impacts of extreme precipitation

only occurs in 25% of all the counties which experience the highest level of increase

in irrigation coverage. The majority in the whole sample do not adapt to extreme

precipitation shocks.

Adjustment of inputs is generally regarded as adaptation. We define ex ante adap-

tation as inputs adjusted before weather realizes and ex post adaptation as inputs

adjusted after weather realizes. The input-driven decline in the impacts of unantici-

pated temperature shock across time periods reflects effect of ex post adaptation to

experienced weather. This implies that weather realization can identify ex post adap-

tation effects, which extends the classical panel approach to the area of adaptation

estimation. The irrigation coverage used in this paper reflects irrigation capital stock

and therefore is a measure of ex ante adaptation. The statistical association of tem-

perature sensitivity reduction with increase in irrigation coverage suggests that ex ante

adaptation is complementary to rather than substitute for ex post adaptation, which is

a new statement of the relationship between ex ante adaptation and ex post adaptation
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that has not been stressed in the literature.

As a critical strategy for climate change, adaptation is believed to be taken only

ex ante. With strong evidence that ex ante adaptation facilitates ex post adaptation,

this paper demonstrates that ex ante investment in inputs benefits both the ex ante

adaptation effect and ex post adaptation effect. Focusing only on ex ante adaptation

effect may thus underestimate the benefits of ex ante adoption of adaptive inputs such

as irrigation. There are at least two promising areas for future research in addition

to adaptation mechanisms other than irrigation. First, causal evidence on the adapta-

tion effects of agricultural inputs with quasi-experimental variation is highly needed.

Second, it is important to understand adaptation costs. We cannot evaluate adapta-

tion against greenhouse gas mitigation for the importance of climate change unless we

understand the benefits and costs of adaptation equally well.
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1.8 Tables for Chapter 1

Table 1.1: Summary Statistics

1981-1995 1996-2010

Mean Min Max Std.Dev. Mean Min Max Std.Dev.
Corn
Yields(kg/ha) 4262.52 111.49 14764.87 1772.02 5697.73 100.24 14359.79 1898.82
Temperature (◦C) 20.33 6.01 29.65 3.41 20.80 6.18 30.57 3.39
Precipitation (cm) 45.29 0.27 294.01 16.56 43.62 0.31 280.23 17.53
Humidity (%) 73.29 24.88 94.83 8.08 70.41 27.00 93.51 9.29
Sunshine Hours 6.45 0.94 11.34 1.65 6.41 0.32 11.29 1.61
Wind Speed (m/s) 2.20 0.20 7.25 0.79 2.14 0.19 7.00 0.67
Evaporation (mm) 5.44 0.03 17.75 1.40 3.24 0.00 16.46 2.60
Ground Surface 23.11 0.20 34.89 3.67 23.80 0.83 36.15 3.39
Temperature (◦C)
Observations 29083 31917
Soybean
Yields(kg/ha) 1361.23 66.82 7101.01 569.40 1818.71 103.64 7748.96 629.56
Temperature (◦C) 20.59 7.13 29.11 3.11 20.37 7.82 28.97 3.18
Precipitation (cm) 57.24 0.45 327.68 27.33 53.96 1.05 339.64 28.63
Humidity (%) 73.53 24.85 90.04 6.40 70.67 27.20 90.99 7.06
Sunshine Hours 6.66 2.37 11.20 1.24 6.77 0.33 10.94 1.51
Wind Speed (m/s) 2.41 0.34 6.27 0.67 2.29 0.33 6.93 0.60
Evaporation (mm) 5.63 0.13 17.53 0.94 3.63 0.00 16.36 2.59
Ground Surface 23.57 0.70 34.56 3.16 23.63 0.69 35.04 2.94
Temperature (◦C)
Observations 27772 28084

Notes: The mean value of each variable is weighted by the corn and soybean planted area. Crop yields are
defined as products divided by planted area.
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Table 1.2: Thresholds of Temperature (T) and Precipitation (P) for Linear Piecewise
Temperature-Yield Relationship for Corn

Period Length Nationwide North Northwest HHH South Southwest
10 years 28 ◦C, 49 cm 30 ◦C, 51cm 32 ◦C,26cm 28◦C, 55 cm 30 ◦C, 62 cm 30 ◦C, 41 cm
15 years 28 ◦C, 51 cm 30 ◦C, 51 cm 32 ◦C,24cm 28 ◦C, 54 cm 30 ◦C, 58 cm 30 ◦C, 41 cm

Table 1.3: Thresholds of Temperature (T) and Precipitation (P) for Linear Piecewise
Temperature-Yield Relationship for Soybean

Period Length Nationwide Northeast Northwest HHH South Southwest
10 years 26 ◦C, 48 cm 26 ◦C, 46 cm 29 ◦C, 19 cm 27 ◦C, 56 cm 27 ◦C, 60 cm 28 ◦C , 62 cm
15 years 26 ◦C, 44 cm 26 ◦C, 45 cm 28 ◦C, 25 cm 26 ◦C, 54 cm 27 ◦C, 60 cm 30 ◦C , 64 cm
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Table 1.4: Marginal Impacts of Temperature and Precipitation On Corn Yields Over
Time Periods

(1) (2) (3) (4) (5)
Log Yields Log Yields Log Yields Log Yields Log Yields

period=1981 × GDD below T 0.0453∗∗∗ -0.0081 0.0071 -0.0096 0.0086
(0.0065) (0.0097) (0.0087) (0.0122) (0.0115)

period=1996 × GDD below T 0.0065 -0.0059 0.0029 -0.0057 0.0045
(0.0069) (0.0100) (0.0094) (0.0121) (0.0110)

period=1981 × GDD above T -0.3741∗∗∗ -0.2912∗∗∗ -0.2316∗∗∗ -0.2879∗∗∗ -0.2295∗∗∗
(0.0280) (0.0328) (0.0306) (0.0478) (0.0431)

period=1996 × GDD above T -0.0375∗ -0.0827∗∗∗ -0.1146∗∗∗ -0.0834∗∗ -0.1147∗∗∗
(0.0204) (0.0277) (0.0286) (0.0364) (0.0382)

period=1981 × Prec below T 0.1622∗∗∗ 0.1233∗∗ 0.1522∗∗∗ 0.1298 0.1781∗∗
(0.0533) (0.0542) (0.0474) (0.0916) (0.0700)

period=1996 × Prec below T 0.1916∗∗∗ 0.0795∗ 0.1085∗∗ 0.0936 0.1144∗∗
(0.0412) (0.0451) (0.0440) (0.0633) (0.0567)

period=1981 × Prec above T -0.3824∗∗∗ -0.1431∗∗∗ -0.2418∗∗∗ -0.1548∗∗ -0.2595∗∗∗
(0.0395) (0.0427) (0.0411) (0.0647) (0.0571)

period=1996 × Prec above T -0.3273∗∗∗ -0.2876∗∗∗ -0.1939∗∗∗ -0.2908∗∗∗ -0.1892∗∗∗
(0.0306) (0.0356) (0.0359) (0.0532) (0.0418)

p-Value for GDD below T: 0.0000 0.7332 0.5614 0.5538 0.5976
β1981 = β1996

p-Value for GDD above T: 0.0000 0.0000 0.0002 0.0000 0.0114
β1981 = β1996

p-Value for Prec. below P: 0.6577 0.5303 0.4905 0.7207 0.4541
β1981 = β1996

p-Value for Prec. above P: 0.2424 0.0070 0.3180 0.0494 0.2991
β1981 = β1996

Observations 59269 59269 59269 59274 59274
R squared 0.7525 0.7981 0.8421 0.0338 0.0210
Fixed Effects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
County Quadratic Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm
Distance N/A N/A N/A 500km 500km
Years of Lag N/A N/A N/A 5 years 5 years

Note: Each column corresponds to a separate regression varying on specifications of fixed effects and
estimation of standard errors. The dependent variable is log annual corn yields from 1981 to 2010. The re-
gressions are weighted by annual corn hectares. Temperature threshold is 28 ◦C and precipitation threshold
is 51 cm. County-specific quadratic trends are controlled and standard errors are clustered at the county
level. * p<0.1, ** p<0.05, *** p<0.01.
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Table 1.5: Marginal Impacts of Temperature and Precipitation On Soybean Yields
Over Time Periods

(1) (2) (3) (4) (5)
Log Yields Log Yields Log Yields Log Yields Log Yields

period=1981 × GDD below T 0.0106 0.0245 0.0436∗∗∗ 0.0257∗ 0.0457∗∗∗
(0.0088) (0.0159) (0.0144) (0.0141) (0.0119)

period=1996 × GDD below T 0.0001 0.0197 0.0254∗ 0.0210 0.0272∗∗
(0.0091) (0.0161) (0.0147) (0.0140) (0.0110)

period=1981 × GDD above T -0.0323 -0.1642∗∗∗ -0.1527∗∗∗ -0.1621∗∗∗ -0.1563∗∗∗
(0.0218) (0.0294) (0.0261) (0.0273) (0.0273)

period=1996 × GDD above T 0.0626∗∗∗ -0.0737∗∗ -0.0882∗∗∗ -0.0747∗∗∗ -0.0873∗∗∗
(0.0194) (0.0295) (0.0266) (0.0249) (0.0262)

period=1981 × Prec below T 0.5136∗∗∗ 0.4807∗∗∗ 0.5274∗∗∗ 0.4968∗∗∗ 0.5393∗∗∗
(0.1259) (0.1263) (0.1196) (0.1470) (0.1137)

period=1996 × Prec below T 0.5910∗∗∗ 0.4020∗∗∗ 0.3906∗∗∗ 0.3991∗∗∗ 0.3913∗∗∗
(0.1111) (0.1097) (0.1140) (0.1146) (0.0989)

period=1981 × Prec above T -0.1885∗∗∗ -0.2408∗∗∗ -0.2035∗∗∗ -0.2455∗∗∗ -0.2059∗∗∗
(0.0477) (0.0516) (0.0443) (0.0404) (0.0339)

period=1996 × Prec above T -0.1890∗∗∗ -0.1610∗∗∗ -0.1382∗∗∗ -0.1559∗∗∗ -0.1366∗∗∗
(0.0312) (0.0349) (0.0340) (0.0312) (0.0258)

p-Value for GDD below T: 0.0001 0.2019 0.0003 0.1408 0.0036
β1981 = β1996

p-Value for GDD above T : 0.0000 0.0001 0.0067 0.0000 0.0059
β1981 = β1996

p-Value for Prec. below P : 0.6573 0.6637 0.4546 0.5936 0.3386
β1981 = β1996

p-Value for Prec. above P : 0.9921 0.1574 0.1814 0.0646 0.0930
β1981 = β1996

Observations 54327 54322 54322 54323 54323
R squared 0.6819 0.7265 0.7869 0.0238 0.0239
Fixed Effects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Note: This table presents the same content as Table 1.5 except that the dependent variable is log annual
soybean yields. The temperature threshold for soybean is 26 ◦C and precipitation threshold is 44 cm in all
specifications. * p<0.1, ** p<0.05, *** p<0.01.
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Table 1.6: Marginal Impacts of Temperature and Precipitation On Soybean Yields
Over Time Periods

(1) (2) (3) (4) (5)
North HHH Northwest South Southwest

period=1981 × GDD below T 0.0426∗∗ -0.0172 -0.0300 0.0449∗∗ -0.0158
(0.0174) (0.0129) (0.0195) (0.0207) (0.0130)

period=1996 × GDD below T 0.0255 -0.0294∗∗ -0.0296 0.0257 0.0027
(0.0181) (0.0134) (0.0198) (0.0211) (0.0133)

period=1981 × GDD above T -0.9987∗∗∗ -0.2054∗∗∗ 0.0915 -0.2963∗∗∗ -0.1509∗∗
(0.2115) (0.0501) (0.1549) (0.0797) (0.0706)

period=1996 × GDD above T -0.4029∗∗ -0.0516 0.0696 -0.0607 -0.0293
(0.1777) (0.0360) (0.1417) (0.0497) (0.0502)

period=1981 × Prec below P 0.1068 0.2638∗∗∗ 0.1236 0.0429 -0.1584∗∗
(0.1458) (0.0689) (0.4096) (0.0942) (0.0756)

period=1996 × Prec below P 0.3085∗∗∗ 0.0674 0.2998 0.0483 0.0319
(0.1130) (0.0444) (0.2614) (0.0556) (0.0526)

period=1981 × Prec above P -0.4479∗∗∗ -0.1591∗ -0.2592 -0.0543 -0.0554
(0.0870) (0.0840) (0.6325) (0.0494) (0.0600)

period=1996 × Prec above P -0.4036∗∗∗ -0.1803∗∗∗ -0.3608 -0.1012∗∗∗ -0.1703∗∗
(0.1153) (0.0430) (0.3986) (0.0270) (0.0702)

p-Value for GDD below T : 0.3915 0.2936 0.9825 0.1049 0.0869
β1981 = β1996

p-Value for GDD above T : 0.0256 0.0018 0.9174 0.0115 0.0949
β1981 = β1996

p-Value for Prec. below P : 0.3041 0.0105 0.7151 0.9563 0.0152
β1981 = β1996

p-Value for Prec. above P : 0.7298 0.8059 0.8987 0.3748 0.1912
β1981 = β1996

Observations 10532 16852 3031 16513 12341
R squared 0.8288 0.7909 0.9032 0.8912 0.8956
Fixed Effects Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
County Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 30 ◦C 28 ◦C 32 ◦C 30 ◦C 30 ◦C
P threshold 51 cm 54 cm 24 cm 58 cm 41 cm

Note: Each column is from a separate regression corresponding to a particular corn region. The regression
model is presented in equation (5). The North region includes Heilongjiang, Jilin, Liaoning, Inner Mongo-
lia, Northern Shaanxi, Northern Hebei (north to the Great Wall) and Southern Gansu. The Huanghuaihai
(HHH) region includes Beijing, Tianjin, Southern Hebei (south to the Great Wall), Shandong, Henan,
Shanxi, Middle Shaanxi, Northern Jiangsu (north to Huai River) and Northern Anhui (north to Huai
River). The Northwest region includes Xinjiang, Ningxia and Northern Gansu. The South region includes
Southern Jiangsu(south to Huai River), Southern Anhui(south to Huai River), Eastern Hubei, Eastern
Hunan, Jiangxi, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi and Hainan. The Southwest region
includes Southern Shaanxi, Western Hubei, Western Hunan, Chongqing, Sichuan, Guizhou and Yunnan. *
p<0.1, ** p<0.05, *** p<0.01.
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Table 1.7: The Heterogeneous Temperature-Yield Relationships of Soybean By Regions

(1) (2) (3) (4) (5)
Northeast HHH Northwest South Southwest

period=1981 × GDD below T 0.0609∗ 0.0075 0.3351∗∗∗ 0.0098 0.0259
(0.0347) (0.0306) (0.1225) (0.0106) (0.0247)

period=1996 × GDD below T 0.0562 0.0477 0.3191∗∗ 0.0111 -0.0024
(0.0346) (0.0312) (0.1244) (0.0103) (0.0277)

period=1981 × GDD above T -0.5078∗∗∗ -0.1590∗∗∗ -1.6760∗∗∗ 0.0200 -0.2450∗∗
(0.1457) (0.0597) (0.5607) (0.0256) (0.1032)

period=1996 × GDD above T -0.5659∗∗∗ -0.0345 -0.1357 0.0407 -0.1334
(0.1190) (0.0547) (0.3495) (0.0302) (0.0865)

period=1981 × Prec below P 0.3211 0.2350∗∗ -3.9404 -0.2040∗ 0.7679∗∗∗
(0.2669) (0.1106) (2.4742) (0.1110) (0.2470)

period=1996 × Prec below P 0.2609 0.1326 -1.4733 -0.0135 0.4525∗∗∗
(0.1938) (0.1033) (1.0640) (0.0576) (0.1732)

period=1981 × Prec above P -0.1273 -0.7281∗∗∗ 0.7403 -0.0652∗∗∗ -0.1034
(0.1027) (0.1707) (0.6737) (0.0242) (0.0789)

period=1996 × Prec above P -0.2637∗ -0.1654∗∗ -0.6868∗∗ -0.0846∗∗∗ 0.0243
(0.1394) (0.0743) (0.3144) (0.0194) (0.0463)

p-Value for GDD below T : 0.9110 0.2674 0.9386 0.7258 0.1514
β1981 = β1996

p-Value for GDD above T : 0.7580 0.0316 0.0230 0.1753 0.1802
β1981 = β1996

p-Value for Prec. below P : 0.8722 0.4811 0.3353 0.1343 0.2632
β1981 = β1996

p-Value for Prec. above P : 0.4277 0.0023 0.0390 0.5100 0.1502
β1981 = β1996

Observations 5870 16393 1750 21438 5860
R squared 0.6758 0.7983 0.7998 0.8941 0.8661
Fixed Effects Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
County Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 28 ◦C 27 ◦C 30 ◦C
P threshold 45 cm 54 cm 25 cm 60 cm 64 cm

Note: Each column is from a separate regression corresponding to a particular soybean region. The North-
east region includes Heilongjiang, Jilin, Liaoning, Eastern Inner Mongolia. The Huanghuaihai (HHH) region
includes Beijing, Tianjin, Southern Hebei (south to the Great Wall), Shandong, Henan, Southern Shanxi,
Middle Shaanxi, Southeastern Gansu, Northern Jiangsu (north to Huai River) and Northern Anhui (north
to Huai River). The Northwest region includes Western Inner Mongolia, Xinjiang and Most of Gansu.
The South region includes Southern Jiangsu(south to Huai River), Southern Anhui(south to Huai River),
Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Hainan, Hubei, Eastern Hunan, Jiangxi, Chongqing and
Eastern Sichuan. The Southwest region includes Western Hunan, Western Sichuan, Guizhou and Yunnan.
* p<0.1, ** p<0.05, *** p<0.01.
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Table 1.8: Interaction Effects of Inputs Change with High Temperatures for Corn
Counties

(1) (2) (3) (4) (5)
GDD above T -0.3005∗∗∗ -0.1516∗∗∗ -0.1387∗∗∗ -0.1532∗∗∗ -0.2640∗∗∗

(0.0484) (0.0371) (0.0406) (0.0364) (0.0489)

GDD above T × 0.2576∗∗∗ 0.2310∗∗∗
∆ Irrigation (%) (0.0558) (0.0594)

GDD above T × 0.0016 -0.0023
∆ Machinery (Kw./Ha.) (0.0050) (0.0037)

GDD above T × -0.0676 -0.0839
∆ Fertilizer(Tons of Ha.) (0.0970) (0.0878)

GDD above T × 0.0015 -0.0024
∆ Electricity (Kwh. per capita) (0.0168) (0.0117)
Observations 59255 53655 53645 58332 53475
R squared 0.8664 0.8444 0.8444 0.8423 0.8727
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Note: The dependent variable is log corn yields. The change of all the agricultural inputs
are calculated with the difference in the mean values between the pre-1996 and post-1996
period. The low temperature variable for interactions is the growing degree days above
28 ◦C. Precipitation and additional climate variables are included. The standard error is
clustered at county level and the regressions are weighted by annual corn planted area. *
p<0.1, ** p<0.05, *** p<0.01.
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Table 1.9: Robustness Analysis of the Adaptation Effects of Agricultural Inputs on the
Relationship between Extreme High Temperatures and Yields over 1981 to 2010

(1) (2) (3) (4) (5)
GDD above T -0.1881∗∗∗ -0.1347∗∗∗ -0.1334∗∗∗ -0.1294∗∗∗ -0.2080∗∗∗

(0.0376) (0.0242) (0.0241) (0.0228) (0.0417)

GDD above T × 0.1293∗∗∗ 0.1486∗∗∗
∆ Irrigation (%) (0.0478) (0.0524)

GDD above T × 0.0007 -0.0002
∆ Machinery (Kw./Ha.) (0.0005) (0.0035)

GDD above T × 0.0040∗ 0.0050
∆ Fertilizer (Tons of Ha.) (0.0024) (0.0250)

GDD above T × -0.0151 -0.0163
∆ Electricity (Kwh. per capita) (0.0272) (0.0228)
Observations 54263 54287 54287 54252 54174
P1
R squared 0.8175 0.8201 0.8201 0.8201 0.8211
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Note: The dependent variable is log corn yields. The change of all the agricultural inputs
are calculated with the difference in the mean values between the pre-1996 and post-1996
period. The low temperature variable for interactions is the growing degree days above
28 ◦C. Precipitation and additional climate variables are included. The standard error is
clustered at county level and the regressions are weighted by annual soybean planted area.
* p<0.1, ** p<0.05, *** p<0.01.
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Table 1.10: Robustness Analysis of the Adaptation Effects of Agricultural Inputs on
the Relationship between Extreme High Temperatures and Yields over 1981 to 2010

(1) (2) (3) (4)
Corn Corn Soybean Soybean

GDD above T × 0.2297∗∗∗ 0.2032∗∗∗ 0.1491∗∗∗ 0.1293∗∗
∆ Irrigation (%) (0.0472) (0.0555) (0.0525) (0.0644)

GDD above T × -0.0026 -0.0009 -0.0002 0.0013
∆ Machinery (Kw./Ha.) (0.0029) (0.0030) (0.0035) (0.0037)

GDD above T × -0.0809 -0.0321 0.0056 -0.0055
∆ Fertilizer (Tons /Ha.) (0.0826) (0.0976) (0.0250) (0.0261 )

GDD above T × -0.0021 0.0037 -0.0159 -0.0070
∆ Electricity (Kwh. per capita) (0.0102) (0.0155) (0.0228) (0.0298)

∆ GDP × Temperature No Yes No Yes
∆ (Cargo by Road) × Temperature No Yes No Yes
Temperature × Year Yes Yes Yes Yes
Observations 53475 37617 54174 40178
R squared 0.8727 0.8601 0.8211 0.8176
County FE Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 26 ◦C 26 ◦C
P threshold 51 cm 51 cm 44 cm 44 cm

Note: This table presents the adaptation effects of agricultural inputs on the
extreme-temperature-yield relationship. Each column is from a separate regres-
sion. The dependent variable is log crop yields. All the agricultural inputs, local
GDP and cargo amount by road are measured with the difference in the mean
values between the pre-1996 and post-1996 period. The GDP and cargo amount
are in the prefecture level. The temperature variables used for interactions are
the growing degree days above the thresholds. Precipitation and additional
climate variables are included. The standard error is clustered at county level
and the regressions are weighted by annual soybean planted area. * p<0.1, **
p<0.05, *** p<0.01.
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1.9 Figures for Chapter 1

Figure 1.1: Crop Productivity of Two Periods As A Function of Temperature
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Figure 1.2: Temperature and Precipitation Change in the Corn and Soybean Area
Over Time

(a) Temperature Change in the Corn Area (b) Precipitation Change in the Corn
Area

(c) Temperature Change in the Soybean
Area

(d) Precipitation Change in the Soybean
Area

Notes: Panel (a) and (c) plot county-level average of corn and soybean yields over 1981-2010,
respectively. Panel (b) and (d) plot county-level percentage change in the average of corn and
soybean yields during 1981-1995 relative to that during 1996-2010, respectively.

60



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

Figure 1.3: Annual Average of Crop Yields and Crop Yield Change Over Time

(a) 30-year Average of Corn Yields (b) Percentage Change of Period-
Averaged Corn Yields

(c) 30-year Average of Soybean Yields (d) Percentage Change of Period-
Averaged Soybean Yields

Notes: Panel (a) and (c) plot county-level annual average of corn and soybean yields over
1981-2010, respectively. Panel (b) and (d) plot county-level percentage change in the average
of corn and soybean yields in the pre-1996 period relative to that in the post-1996 period,
respectively.
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Figure 1.4: Distribution of Temporal Change of Agricultural Inputs

(a) Distribution of Irrigation Coverage
Change (%)

(b) Distribution of Machinery Power
Change (kilowatt/ha.)

(c) Distribution of Fertilizer Change
(ton/ha.)

(d) Distribution of Change (kw · h per
capita)

Notes: This figure presents the distribution of input change over 1981 to 2010. The change of
the input variables is calculated by the difference between the 1981-1995 average and 1996-
2010 average. The solid line depicts zero and the dashed line is the mean of the change. The
mean value for the change of each input is presented in the histogram.
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Figure 1.5: Correlation of Inputs Change with Temperature Change

(a) Corn Counties (b) Soybean Counties

Notes: Figure 1.5 presents the correlations between the temporal change in the four inputs
and that in extreme temperature exposure. The correlation is estimated by regressing input
change on temperature change. The change of temperature and inputs is calculated by the
difference of the mean values between the pre-1996 period and the post-1996 period. The
extreme temperature exposure for corn (soybean) counties is measured by degree days for
temperature above 28 (26) ◦C. The unit of the extreme temperature exposure is 100 degree
days. The regressions estimating the correlations denoted by triangles control for the province
fixed effect while the regressions for correlations denoted by circles do not. The stand errors
for both types of regressions are clustered at the county level.
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Figure 1.6: The Planted Area of Corn and Soybean and the Corresponding Share in
the Total Planted Area Over Time

(a) The Planted Area of Corn and Soy-
bean

(b) The Percentage of Total Farmland
Planted to Corn and Soybean

Notes: The planted area of corn or soybean for each year is calculated by aggregating the corn
or soybean planted area of all the counties in each year. The corresponding share is calculated
with the percentage of aggregate corn or soybean area accounting for the total planted area
for all crops.
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Figure 1.7: Robustness Analysis of Temperature-Yield Relationship Using Spatial HAC
Standard Errors

(a) Corn: Lag=3 years (b) Corn: Lag=5 years

(c) Soybean: Lag=3 years (d) Soybean: Lag=5 years

Notes: In Figure 1.7, we estimate the model in equation (5) with spatial heteroskedastic au-
tocorrelated standard error using the stata code provided by Hsiang (2010). The regression is
weighted by annual planted area for each crop. In each panel, the cutoff distance is specified
at the horizontal axis. For each distance choice, we report the point estimate and the corre-
sponding confidence interval at the 95% significance level for the effects of 100-day exposure
to temperature above the threshold in the pre-1996 period (denoted by the circle symbol)
and the difference in the effects between the pre-1996 and post-1996 period (denoted by the
triangle symbol).
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Figure 1.8: Marginal Impacts of Extreme Temperatures on Corn and Soybean Yields
by Temperature Thresholds

(a) Corn: Nationwide (b) Soybean: Nationwide

Note: Figure 1.8 presents heterogeneous impacts of extreme temperature on corn and soybean
yields by temperature threshold. The alternative thresholds are specified below the horizontal
axis. We estimate the model in equation (5) using the specified temperature thresholds. The
regressions are weighted by annual planted area for each crop and the standard error is
clustered at the county level. For each threshold choice, we report the point estimate and
the corresponding confidence interval at the 95% significance level for the effects of 100-day
exposure to temperature above the threshold in the pre-1996 period (denoted by the circle
symbol) and the difference in the effects between the pre-1996 and post-1996 period (denoted
by the triangle symbol). Heterogeneous impacts of extreme temperature by temperature
threshold for each region are reported in Figure A.4 and Figure A.5 of Appendix B.

66



Adaptation to Temperature Extremes in Chinese Agriculture, 1981 to 2010 Chapter 1

Figure 1.9: Sensitivity of Results to Starting Year and Length of Time Period
–Using 5 years or 10 years as a Period

(a) GDD above 28 ◦C: 5 years (b) GDD above 28 ◦C: 10 years

(c) GDD above 26 ◦C: 5 years (d) GDD above 26 ◦C: 10 years

Note: Figure 1.9 presents the evolution of extreme temperature effect on crop yields estimated
with model in equation (5) using 5 years or 10 years as a period. The regressions are weighted
by annual planted area for each crop and the standard error is clustered at the county level.
In each panel, we report the point estimate and the corresponding confidence interval at the
95% significance level for the effects of 100-day exposure to temperature above the threshold
in the first period (period 1981-1985 or period 1981-1990 denoted by the circle symbol) and
the difference in the effects between the following period and the first period (denoted by the
triangle symbol). The initial year for each period is specified below the horizontal axis. The
analysis of sensitivity to period length using alternative temperature thresholds are reported
in Figure A.6 to Figure A.9 of Appendix B.
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Figure 1.10: Sensitivity of Results to Model Specification Using Polynomial Time Trend
–The Evolution of Marginal Impacts of Extreme Temperatures on Crop Yields

(a) Corn:Evolution of Marginal Impacts of GDD above 28 ◦C

(b) Soybean: Evolution of Marginal Impacts of GDD above
26 ◦C
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Figure 1.11: The Heterogeneous Evolution of Extreme Temperature Impacts by Cate-
gories of Irrigation Coverage Change

(a) Corn: GDD above 28 ◦C (b) Soybean: GDD above 26 ◦C

Note: Underneath the horizontal axis in each panel, the uninteracted model is the model in
equation (6) and the rest four labels correspond to the evolution of the extreme temperature
effects by the category of irrigation coverage change, which is estimated with equation (7).
"<25%" denotes the category of counties with irrigation coverage change below the 25th per-
centile of the nationwide distribution; "25%∼50%" denotes the category of counties with irri-
gation coverage change above the 25th percentile but below the 50th percentile; "50%∼ 75%"
denotes the category of counties with irrigation coverage change above the 50th percentile but
below the 75th percentile; ">75%" denotes the category of counties with irrigation coverage
change above the 75th percentile. We report the point estimate and the corresponding confi-
dence interval at the 95% significance level for the effects of 100-day exposure to temperature
above the threshold in the pre-1996 period (denoted by the circle symbol) and the difference
in the effects between the pre-1996 and post-1996 period (denoted by the triangle symbol).
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Figure 1.12: The Temporal Evolution of Excessive Precipitation Impacts by Categories
of Irrigation Coverage Change

(a) Corn: Prec above 51 cm (b) Soybean: Prec above 44 cm

Note: Underneath the horizontal axis in each panel, the uninteracted model is the model in
equation (6) and the rest four labels correspond to the evolution of the extreme precipita-
tion effects by the category of irrigation coverage change, which is estimated with equation
(7). "<25%" denotes the category of counties with irrigation coverage change below the
25th percentile of the nationwide distribution; "25%∼50%" denotes the category of coun-
ties with irrigation coverage change above the 25th percentile but below the 50th percentile;
"50%∼ 75%" denotes the category of counties with irrigation coverage change above the 50th
percentile but below the 75th percentile; ">75%" denotes the category of counties with ir-
rigation coverage change above the 75th percentile. We report the point estimate and the
corresponding confidence interval at the 95% significance level for the effects of 100-day expo-
sure to temperature above the threshold in the pre-1996 period (denoted by the circle symbol)
and the difference in the effects between the pre-1996 and post-1996 period (denoted by the
triangle symbol).
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Chapter 2

The Environmental Consequences of

Creating Cities in China 1

2.1 Introduction

It has been discussed in the literature that China is under-urbanized (World Bank,

2008), (Au and Henderson, 2006a,b).2 In order to promote urbanization and economic

growth, the Chinese government adopted a "county-to-city upgrading" policy from 1993

to 1997, which gave the upgraded counties the autonomy to create new urban adminis-

trative units.The upgrading policy is not only about administrative change but also a

decentralization reform that delegates higher levels of autonomy to upgraded counties

on land use, tax collection, government expansion and administrative power etc. (more

details in subsection 2.1). Because China’s local entities for environmental regulation

1 The full title of Chapter 2 is "The Environmental Consequences of Creating Cities: Evidence from
the County-to-City Upgrading Policy in China".

2 Apart from the household registration (hukou) system that has constrained migration of population,
China has a hierarchical and centralized structure of governance, under which neither the citizens nor
the local governments have the discretion to expand the current size of cities or create new ones (Fan
et al., 2012).
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(Bureau of Environment Protection) are mainly responsible to local governments, lo-

cal governments have full control over environmental regulation. Decentralization on

local governance as a result of the upgrading policy implies decentralization on local

environmental regulation (more details in subsection 2.2).

It has been long argued that decentralization of local governance can improve the

quality of governance because local governments have better access to information

about local constituents’ preferences and the competition among local jurisdictions to

attract residents and capitals achieves a market-like outcome in the provision of pub-

lic goods (Tiebout, 1956). Preservation of local environment due to decentralization

of environmental regulation in developed countries has been supported by a series of

empirical studies (List and Gerking, 2000; Levinson, 2003; Konisky, 2007). But the

preservation effect is based on the presumption that local governments are accountable

for local constituents who vote for them. In contrast, China’s regionally decentralized

authoritarian system (RDA) featuring a combination of regional economic decentral-

ization and political centralization makes a regional government only accountable for

its upper-level government who will promote the head of the regional government who

wins a tournament for economic growth among all the regional governments under the

jurisdiction of the upper-level government (Li and Zhou, 2005; Zhou, 2007).

Motivated by the common objective for promotion, local officials are predicted to

focus more on economic growth and less on environmental protection. The situation

will become worse if economic growth and environmental regulation are conflicting

tasks: higher environmental standard implies lower economic growth (He et al., 2020).

Officials in the upgraded counties may intentionally deteriorate the environment for a

higher economic growth rate and therefore a higher chance of promotion. Formally we

ask "does decentralization affect environmental quality when local officials are selected
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but not democratically elected?"

Previous literature assessing the upgrading policy has focused on the policy effect

on economic performance (Li, 2011a,b; Fan et al., 2012; Tang, 2014). But a more com-

prehensive evaluation calls for estimating the economic costs caused by this nationwide

policy that may affect the welfare of more than half of Chinese population. The un-

precedented economic growth in China has generated severe environmental pollution,

which also substantially undermines people’s health. Omission of the environmental

consequences and resulting health effect of the economic stimulating policy will over-

state the policy benefits and generate misleading policy implications for environment-

development balance. The main objective of this paper is to evaluate the upgrading

policy from the perspective of environmental consequence by examining the impact of

the policy effect on ambient air quality, which affects people’s health status substan-

tially.

To empirically investigate environmental consequences of the upgrading policy, we

compiled data that covers economic performance indicators, fiscal situation and air

pollution from 1980s to the most recent. The empirical analysis has two parts. The

first part is about causally estimating the effects of the upgrading policy on economic

performance proxied by night light intensity and per capita industrial revenue, which

is used as estimation of economic benefits of the policy and a mechanism for the policy

effects on air pollution that will be investigated in the second part. The second part

is about causally estimating the effects of the upgrading policy on the concentrations

of PM2.5 and SO2, two major air pollutants in China. The most widely used empiri-

cal methodology in the quasi-experiment setting is the difference-in-difference method

(DID) which takes advantage of the rich spatial variations in the timing of upgrading

policy adoption. The validity of the DID method and causal inference of the result
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rely on the assumption that counties remaining the county status and counties that

were upgraded later are valid counterfactuals for what would have happened to earlier

upgraded ones in absence of the upgrading policy.

There are two challenges to the assumption for identifying the causal effect of the

policy. First, the upgraded counties are not randomly selected but selected based on

a set of criteria with regard to industrialization, urbanization and fiscal revenue(more

details in Table 2.2). We call these official requirements de jure criteria. Second, the

upgrading decisions did not strictly follow the de jure criteria in practice (Li, 2011b;

Fan et al., 2012), which implies that unobserved characteristics may affect the chance of

obtaining city status. However, previous studies also show that meeting more criteria

increases the chance of obtaining the city status and the city status is more likely to

awarded to counties with higher economic growth rate, implying that economic growth

rate serves as a de facto criterion for upgrading selection (Li, 2011a). To address the

identification challenges, we control for county specific year trends to account for each

county’s characteristics that lead to the pre-treatment differences in the trends of the

outcome variable between treatment and control. County fixed effects and province-

by-year fixed effects are controlled for to account for time invariant characteristics that

may affect the chance of obtaining the city status such as special geographic locations

(e.g. border counties and counties with seaports) as well as shocks that are common

to counties within a province and affect outcome variables.

In addition, we conduct an event study to estimate the year-wise changes in air

pollution and economic performance before and after the upgrading policy with a

window from 10 years before the policy adoption and 20 years after that. The event

study helps us test whether the policy effect has significant pre-trend i.e. pre-treatment

outcome variable (economic performance and air pollution) can predict how likely a
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county can be upgraded to a city. We also conduct a placebo test by randomly assigning

the adoption of upgrading policy to counties to check the extent to which the policy

results are influenced by any omitted variables. Finally, to select a subset of the control

units comparable to the treated units and hence in alleviating the bias due to systematic

differences between the treated and control units, we use the propensity score matching

method to match each upgraded county with its nearest neighboring non-upgraded

county based on their propensity scores which are scalar summaries of pre-treatment

characteristics consisting of the de jure and de facto criteria for upgrading selection.

After matching, we conduct the DID estimation using the matched sample.

In the first part of the empirical analysis, we investigate the policy effects on local

economic performance which is proxied by night light intensity and industrial revenue

per capita as an estimation of policy benefits and a mechanism for the policy effects

on air pollution that will documented in the second part of the empirical analysis.

Previous literature shows that upgraded counties did not perform better than their

counterparts remaining the county status in terms of economic growth in the period

of 1993 to 2004 (Fan et al., 2012). In contrast, we find that the average treatment

effects on economic performance are significant after 2004–10 years after the policy

adoption. The night light intensity for the upgraded counties is 2.14 higher than that

for the non-upgraded counties. As the average night light intensity for the treatment

and control group altogether before 1993 (excluding 1993) is 1.07, the increase in the

night light intensity of the treated (upgraded) counties compared with the untreated

counties by 2.14 is very substantial. The industrial output measured by the industrial

revenue per capita in the price of 2010, is 17419 CNY (2573 USD) higher than that for

the non-upgraded counties after 2004 while the average industrial revenue per capita

for the treatment and control group is only 1055 CNY (155 USD) before 1993.
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Inspired by the benefit that upgraded counties are authorized to build a larger gov-

ernment, we estimate the average treatment effects on the administrative expenditure

and construction expenditure of governments as an explanation for the lagging policy

effects on economic performance. We find that upgraded counties significantly hire

more employees and spend more on administrative expenditure for each employee than

the remaining counties on average from 1993 to 2000 but the construction expendi-

ture of the upgraded counties is not significantly higher than the remaining counties

in the same period. This evidence suggests that upgraded counties focused on ex-

panding governments rather than boosting the economy at the beginning of the policy

adoption, which can provide an explanation for the lagging policy effect on economic

performance.

In the second part of the emipirical analysis, we continue to show that the adoption

of the county-to-city upgrading policy significantly increases the PM2.5 concentration

by 0.8 µg/m3 and the SO2 concentration by 0.49 µg/m3. The results are robust to the

placebo test and estimation using the PSM-DID method. The event study shows that

the policy impact on air pollution does not come into effect until 10 years after the

policy adoption. PM2.5 (SO2) concentration in the upgraded counties is 1.9 µg/m3 (1.23

µg/m3) higher than that in the rest counties that remained county status after 2004

but the upgrading policy effect on the pollutant concentration is not significant, which

is consistent with the period-specific policy effects on economic performance. Because

economic performance proxied by night light intensity and industrial revenue is a good

indicator for pollution (Wang et al., 2017; Yue et al., 2019; Ji et al., 2019), the consistent

evolutionary pattern of the dynamic policy effects on economic performance and air

pollution indicates that economic growth leads to more severe pollution. Our result of

environmental degradation due to decentralization is opposite to the findings for the
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developed countries where decentralization that adjusts the provision of local public

goods based on local people’s need can preserve the environmental quality(List and

Gerking, 2000; Levinson, 2003; Konisky, 2007). This reflects an intrinsic deficiency of

China’s decentralization reform–failing to respond to residents’ preferences for balanced

economic prosperity and provision of public services.

After documenting the policy effects on air pollution, we further quantified the

social costs of air pollution increase as a result of upgrading policy. The literature

points to the impacts of air pollution on health as one of the major sources for the

social costs of air pollution (Ebenstein, 2012; Chen et al., 2013; Ebenstein et al., 2015;

Deschênes et al., 2020; Qi et al., 2020). Lacking data on health prevents us from

directly estimating the impacts of air pollution on health. We conduct a back-of-

envelop calculation of the cost by multiplying the marginal effect of pollution on life

expectancy obtained from the relevant literature with the estimated policy effect on

air pollution. Without policy interventions or avoidance behaviors reducing exposure

to air pollution, lifetime additional exposure to pollutant concentration increase of the

magnitude caused by the upgrading policy is associated with 4.25 years of life lost,

which amounts to 13536 CNY loss in terms of value of statistical years for each person

in the upgraded counties or 10 billion CNY in total for an average county-level city

(average population of upgraded counties is 740,000). The aggregate value of the years

of life lost for an average city is equal to 10 times of an average city’s fiscal revenue in

2010. The substantial health cost suggests assessing the upgrading policy only based

on the economic performance can generate a biased assessment of the policy.

This paper mainly contributes to three strands of literature. First, this paper

complements to the literature of assessing reforms of administrative divisions in China.

Earlier studies mainly focused on quantifying the effects of those reforms on economic
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performance (Li, 2011b; Fan et al., 2012; Li et al., 2016; Bo, 2020; Jia et al., 2020). This

paper focuses on county-to-city upgrading policy, a formula-based policy to promote

urbanization and economic growth and documents significantly positive policy effects

on PM2.5 and SO2 concentration and resulting substantial health costs. The main

result of this paper on pollution increase implies that previous literature assessing the

reforms of administrative divisions only through the lens of economic efficiency may be

biased in the sense that the policy benefits net of social costs may be overstated.

As the county-to-city upgrading policy has been used as an instrument by the cen-

tral government to promote economic growth and urbanization, this paper contributes

to the literature on the environmental consequences and relevant social cost of China’s

industrialization and urbanization process(Almond et al., 2009; Ebenstein, 2012; Chen

et al., 2013; Ebenstein et al., 2015). Ebenstein (2012) estimated that a deterioration

of water quality by a single grade (on a six-grade scale) increased the digestive cancer

death rate by 9.7% by exploiting variation in pollution across China’s river basins with

aid of instrument variables of rainfall and distance from a river’s headwaters. Using

the variation of distance to the North-South boundary that is formed by the Huai

River and Qinling Mountain range and determines discontinuous provision of winter

heating across the boundary, Almond et al. (2009) and Chen et al. (2013) documented

substantial increase in total suspended particulates air pollution and consequent lose

of life years in Northern China relative to Southern China.

As a comparison, the DID approach in this paper allows us to estimate the environ-

mental consequence of China’s development policy on a nationwide scale as compared

to the local scale suggested by the regression discontinuity design. Almond et al.

(2009) and Chen et al. (2013) only find significant increase in concentrations of total

suspended particulates as a result of the heating policy in Northern China. This paper
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also finds a significant increase in SO2 concentration as a result of industrialization

and urbanization promoted by the county-to-city upgrading policy, which implies that

previous studies may underestimate the air pollution caused by economic activities in

China.

Third, this paper contributes to the literature on the strategic interactions among

governments within the hierarchy of the governance system, which falls more broadly

into the literature on decentralization. Despite decentralization is promoted as a means

to improve the quality of governance by scholars, it has been long argued that the lack of

coordination among local jurisdictions makes them fail to internalize regional spillovers

and spatial externalities, which would lead to Pareto inefficient outcomes (Oates, 1972;

Zodro and Mieszkowski, 1986; Wildasin, 1991; Wilson, 1999; Saavedra, 2000). In the

literature on decentralization of environmental governance, the phenomenon of "pollut-

ing your neighbor" has been documented extensively (Sigman, 2002, 2005; Fredriksson

and Millimet, 2002; Gray and Shadbegian, 2004; Fredriksson et al., 2006; Konisky and

Woods, 2010; Burgess et al., 2012; Lispcomb and Mobarak, 2017). This paper provides

evidence that higher levels of autonomy incentivize government officials to boost the

economy at the cost of reduced environmental quality of their own cities. Using the ex-

ample of the upgrading policy, this paper reveals the possibility that a decentralization

reform that features economic decentralization and political centralization may dis-

tort the provision of local public goods (environmental protection in this paper) when

local governments are only accountable for the upper-level governments who hinge ap-

pointment, removal and promotion of officials for the lower-level governments upon the

economic performance of the lower-level jurisdictions. Therefore, this paper provides

a new possibility of decentralization failure in addition to the fact that decentralized

jurisdiction fails to internalize regional spillovers.
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The rest of the paper is organized as follows. Section 2 introduces the background

of the county-to-city upgrading policy and the decentralized system of environmental

regulation in China. The latter can explain why a decentralization reform on economic

governance can lead to a decentralized system of environmental regulation. Section 3

provides an analytical framework with elements of local government officials’ objectives

and constraints for accomplishing their objectives in order to predict how higher levels

of autonomy affect officials’ constraints and therefore affect the local environmental

quality. Section 4 introduces the data source. Section 5 introduces the empirical

strategy based on the data variation in policy adoption and how robustness analysis

will be conducted. Section 6 presents the empirical results for the policy effects on

economic performance based on the empirical strategy in Section 5. Section 7 provides

the empirical results for the policy effects on air pollution and quantifies the resulting

health effects. Section 8 concludes with policy implications of the main findings.

2.2 Background

2.2.1 County-to-City Upgrading

In the Chinese civil administrative structure, there are four levels of local gov-

ernment: province, prefecture (diqu), county and town(See Figure B.1). Cities as an

administrative status conferred by the central government to a local government, ex-

ists at three levels: provincial-level municipality, prefecture-level cities and county-level

cities. Provincial-level municipalities (Beijing, Tianjin, Shanghai and Chongqing) are

under the direct jurisdiction of the central government; prefecture-level cities are un-

der the direct jurisdiction of provincial-level governments. There are three types of

county-level administrative divisions: counties, county-level cities and urban districts,
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which are all under the direct jurisdiction of prefecture-level cities.

County-to-city upgrading discussed in this paper refers to the reclassification from

a county into a county-level city at the same rank. After such upgrading, an entire

county is labeled as a city. From 1983 to 1997 nearly 15% of China’s more than 2000

counties obtained city status through upgrading, i.e., reclassifying the whole county.

Although achieving county-level city status does not change a county’s rank in the

administrative hierarchy illustrated by Figure B.1, the autonomy in taxation, finance,

trade and transportation for a county-level city is largely expanded, which is why we use

the term upgrading. Table 2.1 lists the detailed benefits associated with the upgraded

counties (county-level cities) that are summarized by a series of studies about the

upgrading policy. For example, cities are authorized to raise certain taxes including

urban maintenance and construction tax (Chan, 1994). Probably the most important

advantage is that cities are entitled wit more land quotas with which more agricultural

land can be converted to nonagricultural use. Local governments can obtain a huge

amount of revenues from such conversion of land use (Lichtenberg and Ding, 2009).

The policy objective of increasing the number of small cities through upgrading is

to speed up local economic growth by shifting surplus labor from rural areas to cities

and reducing the rural-urban income gap (Kamal-Chaoui et al., 2015). The upgrading

policy was initially designed as a formula-based policy to promote urbanization. Official

rules and criteria for the upgrading were issued by the central government of China

as early as 1983 when the demand for the city status soared as the the economy grew

rapidly. The Ministry of Civil Affairs initiated a set of simple guidelines for county-

to-city upgrading and nearly 100 counties obtained the city status between 1983 and

1986. As the number of cities and demand for the city status continued to increase,

the central government raised the minimum requirements in 1993. The 1993 criteria
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classify counties into three groups based on their population density. For each group,

there are criteria on urban population, industrialization and fiscal condition. In this

paper, we will only investigate the upgrading policy between 1993 and 1997 because (1)

the criteria for upgrading before 1993 were very different from those after 1993 and (2)

a large amount of upgraded counties that obtained city status before 1993 continued

to be upgraded to urban districts which have less autonomy than regular counties and

county-level cities and therefore are not not comparable to counties that remaining the

county status (Fan et al., 2012; Tang, 2014).

Table 2.2 lists the criteria on industrialization level, population engaged in non-

agricultural activities, and fiscal strength. Each criterion has an absolute criterion and

a relative criterion (per capita or share as a percentage). These upgrading criteria vary

with population densities. However, studies have observed that the official upgrading

criteria are not enforced in practice (Chung and Lam, 2004; Li, 2011b). (Li, 2011b)

examined the extent to which the de jure criteria were fulfilled for the upgraded counties

and non-upgraded counties and found that 6 out of 36 counties that met all the three

criteria were upgraded, 39 of 463 counties that met two criteria were upgraded and 30

out of 1313 counties that met only one criterion were upgraded. It is obvious that the

probability for upgrading is increased as more official criteria are fulfilled. Li (2011b)

further documented economic growth rate measured by growth rate of the gross value

of industrial and agricultural outputs was the key factor in determining which counties

obtained city status in practice (the de facto criterion). The above finding inspires us

to use both the de jure (official) criteria and de facto criteria for the upgrading as the

variables for matching. Largely because the de jure criteria were not enforced strictly

and the upgraded counties did not perform better than counties that non-upgraded

counties in terms of economic growth from 1993 to 1997, the upgrading policy was
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called off in 1997 by the central government.

2.2.2 Decentralized System of Environmental Regulation in China

Unlike the environmental regulation system in the US, where regional or local en-

vironmental enforcement is under the direct control of the federal Environmental Pro-

tection Agency (EPA), China’s local entities for environmental regulation are mainly

responsible to local governments (Zhang et al., 2018). The Ministry of Environmen-

tal Protection (MEP), the entity for environmental regulation at the level of central

government, only provides guidance to provincial and sub-provincial regulatory ad-

ministrations (Yang, 2017). Therefore, local governments have considerable discretion

over environmental regulations in the local areas. Here is introduced the background

of China’s local environmental regulation system (Zhang et al., 2018).

China first announced an environmental regulation system at the beginning of the

reform era that has converted China to a market-oriented economy (OECD, 2006). In

1978, the National People’s Congress (NPC) added Article 11, Section 1 to China’s con-

stitution, stating that "the state protects and improves the living environment and the

ecological environment and prevents and controls pollution and other public hazards".

The Environmental Protection Law (EPL) was passed in the same year and required

the central government and regional governments at all levels (provincial, prefectural,

county and township) to establish environmental regulatory institutions. According

to EPL(1989), "the local people’s governments at various levels shall be responsible

for the environment quality of areas under their jurisdiction and take measures to im-

prove the environment quality".3 The environmental legislation thereby provides a

3 For more details, see Article 16, Chapter 3 of the EPL(1989), which can be reached http://www.la
winfochina.com/display.aspx?id=1208&lib=law&SearchKeyword=Environmental%20Protectio
n%252%200Law&SearchCKeyword=.
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legal foundation for the decentralized system of environmental regulation in China.

As the environmental challenge has become increasingly severe, Chinese environ-

mental institutions have undergone remarkable expansion. At the central government

level, the Environmental Protection Leadership Group (EPLG) of the State Council

was upgraded from a department within a ministry to the State Environmental Pro-

tection Administration (SEPA) in 1998 and finally to the Ministry of Environmental

Protection (MEP) in 2008. At the local level, a system of jurisdictional management

was established stipulating that local governments are responsible for environmental

regulation within their jurisdictions.

The main principle of this system is to make local governments accountable for the

implementation of central environmental policies. As a result, more than 3000 Envi-

ronmental Protection Bureaus (EPB) have been established and subordinated to local

governments. These EPBs are the primary environmental regulators that conduct daily

regulatory activities such as monitoring polluting firms, analyzing environmental com-

plaints, suing for environmental damage and enforcing sanctions, all of which determine

the stringency of environmental regulations (Zhang et al., 2018). However, in practice,

local EPBs are more controlled by the local government through budgetary allocation

and personnel appointment than by the upper-level EPBs. Because the local EPBs

are not independent of the local governments, local governments have large discretion

over the strictness of the environmental regulation which can be tailored to fit the local

economic development plan. Lacking independent local entities for environmental reg-

ulation creates a decentralized local environmental regulation system. A decentralized

reform that gives local governments higher autonomy thereby makes the environmental

regulation system decentralized as well in the sense that local governments have more

discretion over environmental regulation.
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2.3 An Analytical Framework

The county-to-city upgrading policy aims to promote local urbanization and indus-

trialization in China by creating small cities. The enforcement of the upgrading policy

is compatible with local bureaucrats’ objectives for promotion because of China’s re-

gionally decentralized authoritarian (RDA) system featuring a combination of political

centralization and regional economic decentralization(Xu, 2011). On the one hand,

China’s political and personnel governance structure has been highly centralized. The

upper-level governments has substantial control over the appointment and promotion

of the officials of lower-level governments. And the appointment and promotion serve as

powerful instruments for the upper-level governments to induce regional lower-ranking

officials to follow the policies made by the upper-level governments especially by the

central government in Beijing. On the other hand, the governance of the national

economy is delegated to local governments (following the hierarchies of the governance

system in China as illustrated in Figure B.1). The local (subnational) governments

from the province level to the county level, have responsibilities of initiating economic

reforms, providing public services and making and enforcing laws within their juris-

dictions. They also have direct control over a substantial amount of resources such as

land, energy, minerals and financial resources.This feature of economic decentralization

qualitatively distinguishes the Chinese economy from a centrally planned economy.

Under the RDA institution, the central government uses a tournament-style com-

petition among local officials of the same administrative ranking to make the central

government’s objective compatible with local officials’ private incentives based on their

career concerns (Li and Zhou, 2005; Zhou, 2007).4 Regions (provinces, prefectures,

4 See Maskin et al. (2000) for the relationship between the RDA system and high-powered incentives
associated with regional competition which includes tournament-like competition. See Section 3 in
Xu (2011) for the necessary conditions for tournament-style competition to function.
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counties and townships) compete against those of the same administrative ranking

within the jurisdiction of the common upper-level government and regional officials’

careers are determined by their performance in the tournaments. During the last four

decades, promoting economic growth was the first priority for China’s central govern-

ment. Indexes indicating economic development such as GDP (total and per capita)

and GDP growth rate, FDI have been the most important indicators used in evaluat-

ing regional officials’ performances.5 If a region (e.g. a county) has a higher economic

growth rate than other regions within the jurisdiction of the upper-level government

(e.g. a prefecture), the head of the region have a better chance to be promoted. Moti-

vated by their career concerns that are about climbing ladders within the government

hierarchy, regional officials will put more efforts on growth-enhancing policies or prac-

tices but neglect those that are less valued by the upper-level governments.

It has been widely reported that China’s environment has been severely deteriorated

as a result of the rapid economic growth(Ebenstein et al., 2015). The environmental

deterioration is closely related to a lack of interest from the regional officials who find

that enforcing environmental regulations detracted from their ability to promote local

economic growth (Li, 2006). This feature of the RDA institution reflects its intrinsic

deficiency–failing to respond to residents’ preferences for balanced economic prosperity

and provision of public services. Though China’s RDA institution has the feature

of decentralization, it is fundamentally different from the federalism institution where

governors or mayors are elected and they are supposed to represent and be accountable

to their constituents.

The county-to-city upgrading policy can be regarded as a decentralization policy

5 Before GDP was introduced and used in China’s national economic accounting in 1997, gross value of
industrial and agricultural outputs or gross value of industrial outputs is used as an index measuring
regional economic performance.
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because it delegates more autonomous power on tax collection and allocation of land

quota to the upgraded counties. Heads of counties are motivated by the common

objective for promotion, the chance of which depends on local economic performance

rather than other indicators including environmental protection. The upgrading policy

relaxes the constraints for the upgraded counties to develop the economy by delegating

higher levels of autonomy to the officials of upgraded counties and therefore incen-

tivizes the upgraded counties to insert more efforts on economic growth compared with

non-upgraded counties. Assuming that environmental protection is conflicted with eco-

nomic growth, upgraded counties are predicted to deteriorate the environment more

intensively than the non-upgraded counties. In addition to the traditional point of

view that regards environmental degradation as a byproduct of economic growth, this

proposed analytical framework elaborates the relationship between economic growth

and environmental deterioration from the perspective of political economy featuring

China’s institutions.

2.4 Data and Summary Statistics

2.4.1 Economic Performance Data: 1980-2017

The data for economic performance comes from two sources. As the primary data

source for economic performance, the Public Finance Statistical Materials of Prefec-

tures, Cities and Counties (henceforth, "public finance data") collected the data about

the de jure and de facto criteria from 1993 to 2009 (I have complied the public fi-

nance data from 1993 to 2000) including industrialization level, population engaged in

non-agricultural activities, fiscal revenue and economic growth rate. The Social and

Economic Yearbook of Counties and Cities (henceforth, "social and economic year-
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book") collecting county-level panel data of economic performance from 1980 to 2017

complements the public finance data by providing the data on the criteria before treat-

ment. Before-treatment data for the criteria will be used in the matching method.

2.4.2 Night Light Data 1992-2013

We adopt the global night light data from 1992 to 2013 that was recorded and issued

by the Defense Meteorological Satellite Program (DMSP) in the National Geophysical

Data Center(NGDC) now part of National Oceanic and Atmospheric Administration

(NOAA). This data records images of the earth captured from 8:30 pm to 10:00 pm at

local time. Natural firelight, temporary lights and other background noisy lights are

technically excluded such that the recorded data is a good measure of luminosity of

artificial light sources. Light intensity is reported as a six-bit digital number for every

30-by-30 arc-second output pixel (approximately 0.86 km2 at the equator). The values

for the light intensity range from 0 to 63 where a higher value reflects a higher intensity

of luminosity. The problem that the light intensity is trimmed by the upper bound

restriction is not influential to our analysis because there are only 5 urban districts

that reach the upper bound but our analysis will only use counties and county-level

cities.

We calculate each county’s average light intensity in each year using the aggregate

light intensity of all the pixels within the county divided by the total number of pixels.

Hereafter, the term light intensity specially refers to county’s average light intensity

unless confusion arises. Night light intensity is believed to serve as an objective proxy

for economic prosperity (Chen and Nordhaus, 2011; Henderson et al., 2012; Hodler

and Raschky, 2014). Use of night light data can effectively resolve the problems of the

official statistics of China’s economic performance.
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First, local bureaucrats have strong incentives to upward manipulate the statistics

of local performance to obtain a higher probability of promotion conditioning on that

local economic growth is evaluated as the most important indicator for local bureau-

crats’ performances. Manipulation of official data calls for a more objective proxy for

local economic performance. Second, apart from the issue of data manipulation, the

quality of official data is degraded because official datasets cannot provide important

economic indicators such as GDP, gross value of industrial outputs for period before

1997 in China. China did not introduce the accounting method of GDP until 1997;

the most comprehensive county-level datasets mentioned in Section 4.3 (public finance

data and social and economic yearbook) only provide county-level economic indicators

in 1989 and 1991, which also has a problem of lacking observations. The night light

data is a strong balanced panel from 1992 to 1993 which can make up the drawback of

official data.

2.4.3 Air Pollution Data: 1980-2017

The data on air pollution are derived from the satellite-based AOD retrievals. This

technique is particularly popular for estimating air pollutants in areas lacking ground-

level measurements (Van Donkelaar et al., 2010). AOD essentially measures the amount

of sunshine duration that are absorbed, reflected, and scattered by the particulates sus-

pended in the air, and can be used to estimate particular matter concentrations. The

AOD-based pollution data closely match the ground-based monitoring station mea-

sures (Gupta et al., 2006; Kumar et al., 2011). We obtain the AOD data from the

product M2TMNXAER version 5.12.4 from the Modern-Era Retrospective analysis

for Research and Applications version 2 (MERRA-2) released by the National Aero-

nautics and Space Administration (NASA) of the U.S.. The data are reported at each

89



The Environmental Consequences of Creating Cities in China Chapter 2

0.5degree×0.625degree (around 50km×60km) latitude by longitude grid in each month

since 1980. The concentration of SO2 is reported in the data, while the concentration

of PM2.5 is calculated following Buchard et al. (2016). The daily pollution data are

then aggregated from grid to county. We then average to annual level across all days

within a calendar year for each county.

2.4.4 Summary Statistics

In Table 2.2 we present the summary statistics and compare the upgraded coun-

ties (treatment) to non-upgraded counties (control) in both pre- and post-treatment

periods. Table 2.2 lists the trends of the upgrading criteria for the upgraded counties

and non-upgraded counties from the pre-treatment period (before 1993) to the post-

treatment (after 1993). Table 2.2 lists mean values of the de jure and de facto criteria

for upgrading and outcomes variables including air pollutant concentration and night

light intensity. The time span for each variable covered by the data is also articulated

in Table 2.2. The treatment group includes 121 county-level cities that upgraded from

counties during 1993 to 1997 and the control group includes 1522 ordinary counties that

have never been converted to other types of county-level jurisdictions. It is obvious

that the treatment group has both higher levels and growth rate in industrialization,

urbanization and fiscal strength as well as air pollution and economic performance

proxied by night light intensity. This is also consistent with 2.2 and Figure 2.4 which

depict the trend of air pollution and light intensity for the treatment and control group

since 1980s.
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2.5 Empirical Strategy

2.5.1 Empirical Framework

To identify the effect of county-to-city upgrading policy on outcomes of interest, we

use time and geographic variations in the upgrading policy during 1993-1997. Specially,

the difference-in-difference estimation involves comparing the outcomes of interest be-

fore and after they were upgraded with those of counties which had not been upgraded

yet during the same period.

Figure 2.1 and 2.2 illustrate the validity of our identification strategy. They show

the time trends of the outcome variables of air pollution and land development of the

counties that were upgraded to cities during 1993–1997 and those that were not adopt

it during the same period. The treatment and the control group show similar trends

before 1993. The baseline DID estimation has the following specification:

yipt = β · Upgradedipt + αi + γpt + εipt (2.1)

where i, p and t indicates county, province and year, respectively; yipt represents an

outcome variable measuring economic performance proxied by nightlight intensity and

industrial revenue per capita or environmental quality such as PM2.5 and PM2.5 con-

centration in the air or indicating economic performance such as local GDP and its

growth rate; αi is the county fixed effect capturing all the time-invariant characteristics

of a county, γpt is the province-by-year fixed effects, controlling province-specific shocks

in a particular year affecting all counties in each province and εipt is the error term.

Upgradedipt is the regressor of interest indicating the county’s city status. Specifically,

Upgradedipt = Treatmenti · Postit where Treatmenti = 1 if county i adopts a city
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status during 1993-1997 and 0 otherwise. Postct is a post-treatment indicator, taking

a value of 1 if t ≥ ti0 where ti0 is the year county i received the city status and 0 other-

wise. To address the potential serial correlation and heteroskadesticity, we cluster the

standard error at the county level.

2.5.2 Identifying Assumptions and Modifications

The identifying assumption underlying the DID estimation is that the upgraded

counties would have followed the same time trends as the non-upgraded counties if

the treated had not received the city status. A primary threat to this identifying

assumption is that the upgraded counties were definitely not randomly selected as

discussed in Section 2. The divergence of air pollutant concentration between upgraded

counties and non-upgraded ones after the occurrence of the policy, as illustrated by

Figure 2.1 and Figure 2.2, may be caused by pre-existing differences between these two

groups of counties. To address this concern and improve the identification, we follow

an approach used by Gentzkow (2006) and Li et al. (2016) to control for quadratic

treatment-specific trends or county-specific trends to account for the differences in the

trends of outcomes between the upgraded counties and non-upgraded counties. The two

trend specifications allow us to control for the differences in the chronological evolution

of the outcome variables whose correlation with the upgrading policy is caused by the

endogenous pattern of upgrading selection. The augmented DID equations with the

two trend specifications are presented in the following.

yipt = β · Upgradedipt + αi + γpt + Treatmenti · t+ Treatmenti · t2 + εipt (2.2)

yipt = β · Upgradedipt + αi + γpt + λ1,i · t+ λ2,i · t2 + εipt (2.3)
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where Treatmenti = 1 if county i adopts a city status during the sample period and

0 otherwise. The treatment-specific trends control for the differences in factors that

affect the outcome variable between the treatment and the control group. Equation

(3) controls for county-specific time trends to allow the factors that affect the trend of

the outcome variable to differ for each specific counties. Equation (3) is a more flexible

specification than equation (2) in terms of the time trend specification.

To address concerns about the identifying assumptions and confirm the empirical

results estimated via equation (2) and (3), a set of robustness checks will be conducted.

2.5.3 Event Study

An important assumption for the DID method is that the trends of the outcome

variable for the treatment group and the control group are parallel before the im-

plementation of the upgrading policy. If the outcome variable for the treatment and

control group had the parallel chronological evolution, we could construct the coun-

terfactual evolution of the treatment group using the evolution of the control group

when the policy did not take place. The difference in the outcome variable between

the treatment and control group after the implementation of the upgrading policy is

the treatment effect of interest. An event study is conducted where year-wise changes

in the outcome of interest before and after the upgrading are estimated to test the

hypothesis of parallel pre-trend. Equation (4) presents the estimated equation for the

event study.

yipt =
20∑

k=−10,k 6=−1

Dip,ti0−k · βk + αi + γpt + λ1,i · t+ λ2,i · t2 + εipt (2.4)
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where the dummy variables Dip,ti0−k jointly represent a window of 20 periods around

the upgrading policy event and the fixed effect and trend specifications have the same

definition with those in Equation (3). In particular, ti0 denotes the year when county

i received the city status. The omitted time category is k = −1 i.e. one year prior to

the occurrence of the upgrading policy. All the non-upgraded counties and upgraded

counties when upgrading did not happen are regarded as controls.

2.5.4 A Placebo Test

To check the extent to which the results are influenced by any omitted variables,

a placebo test will be conducted by randomly assigning the city status to counties

(Li et al., 2016). Table B.1 provides the timeline for the county-to-city upgrading

policy, which shows that there are five years (1993-1997) that the upgrading policy

took place. To preserve this fact (i.e. five years with city status adoption 41,40,15,21,4

shown in Table B.1) while allowing for at least one year before and one year after the

upgrading policy adoption as required by the DID method, we select 5 years between

1981 and 2016 (the whole data covers the period 1980-2017) at random and within

each year counties are randomly assigned a city status as the treatment group without

replacement. For instance, consider that t1, ..., t5 are first randomly selected from

the time set of 1981-2016. Then, for time t1, 41 counties are selected randomly and

assigned the city status. For time t2, 40 counties are randomly selected from the

remaining non-upgraded counties to become upgraded counties since t2. This random

selection process continues until t5 where the last 4 upgraded counties are selected from

the remaining non-upgraded counties by then. With this false city status variable, we

conduct a placebo DID estimation using the specification in equation (3). Given the

random data generation process, the false upgrading variable should have produced no
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significant effect of the upgrading policy with a magnitude close to zero; otherwise, it

would imply a mis-specification of the DID model in equation (2) and (3). To increase

the inference power if the permutation test, it is repeated 500 times. The results will

be presented in Section 6 and 7.

2.5.5 PSM-DID strategy

DID estimation is only appropriate when the treatment is randomly assigned. How-

ever, practical policies in the real world do not easily meet the requirements of random

experiments. In the absence of an experiment, researchers usually alternatively find

or construct a comparable control group using matching techniques. Matching on the

propensity score–the probability of receiving the treatment conditional on covariates is

suggested and proved to succeed in selecting a subset of the control units comparable

to the treated units and hence in alleviating the bias due to systematic differences be-

tween the treated and control units (Rosenbaum and Rubin, 1983; Dehejia and Wahba,

2002). Hence, the PSM method is widely used in the field of program evaluation such

as the environmental effects of the US Clean Air Act (Greenstone, 2004; Laurenceson

and Chai, 2003).

The assignment of the city status in the upgrading policy is not random but relies on

de jure and de facto criteria for city upgrading that are listed in Table 2.1. Therefore, we

use the PSM approach to construct a comparable control group. A logistic regression

is used in the PSM approach in which the dependent variable is equal to 1 for upgraded

counties and is equal 0 otherwise and the predictors for the propensity score consist of

pretreatment characteristics that may affect the propensity to be an upgraded county.

The predictors for the propensity score are the de jure and de facto criteria for the city

status as summarized in Table 2.3. The propensity score predicts the probability that
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a county will be assigned the city status for a set of given observable characteristics

(P (X) = Prob(D = 1|X)). We choose industrial revenue per capita, industrialization

level, urbanization level, fiscal strength and economic growth rate as the predictors.6

The predictors are lagged by one year and the post-upgrading observations for the

treatment group are not included in the estimation because city status is assigned based

on previous performance and post-treatment levels of predictors would be affected by

the city status. Counties are matched with their nearest neighbor (NN) based on their

propensity scores, which are scalar summaries of pretreatment characteristics from a

logistic regression.

The treated counties are also matched with the control counties based on kernel

matching method. The basic idea of the nearest neighboring matching method is

matching a treated units with one unique or multiple comparison units (ties on the

propensity score) in the control group with the closest estimated propensity scores to

that of the very treated unit in terms of absolute value. The basic idea of the kernel

matching method is matching an existing treated unit and a constructed comparison

unit that is generated by an weighted average of all the control units where the weight

is determined by the kernel function of the propensity score distance between the very

treated unit and all control units.

6 In our data, industrial revenue is measured by the gross value of industrial outputs, the industrial-
ization level is measured by the share of the gross value of industrial outputs in the gross value of
industrial and agricultural outputs. The urbanization level is measured by the size of non-agricultural
population and the share of non-agricultural population in the county’s whole population. Fiscal
strength is measured by fiscal revenue per capita.
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2.6 The Policy Effects on Economic Performance

Section 3 elaborates that environmental degradation may be a result of economic

growth in the sense that regional officials want to pursue better economic performance

and thereafter higher chance of promotion at the cost of air quality and they are able

to do so because of higher autonomy on local economic governance and environmental

regulation due to the upgrading policy. This section will investigate the policy effects

on economic performance as an estimation of the pecuniary benefits of the upgrading

policy and a potential mechanism for the policy effects on air pollution which will be

studied in the next section.

With data on local fiscal and economic statistics from 1993 to 2004, (Fan et al.,

2012) found that the upgraded counties did not perform better than their counterparts

that remained county status in terms of economic growth before 2004. It remains an

open question how the upgraded counties perform in terms of economic growth as op-

posed to the non-upgraded counties after 2004. Table 2.4 reports the comparison of

the upgrading policy effects on air pollutant concentration and economic performance

before 2004 with the counterparts after 2004 (excluding 2004). In Table 2.4, using

the DID model in equation (3) controlling for the pre-treatment characteristics that

may affect the chance of obtaining the city status, we estimate the average treatment

effects on economic performance by period which is divided by 2004 as suggested by

the literature (Fan et al., 2012). It is clear that only treatment effects after 2004 are

significant for economic performance. As an indicator for urbanization and industrial-

ization (Huang et al., 2012; Ma et al., 2012), the night light intensity for the upgraded

counties is 2.14 higher than that for the non-upgraded counties. As the average night

light intensity for the treatment and control group altogether before 1993 (excluding

1993) is 1.07, the increase in the night light intensity of the treated (upgraded) counties
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compared with the untreated counties by 2.14 is very substantial. The industrial out-

put per capita for the upgraded counties, which is measured by the industrial revenue

per capita in the price of 2010, is 17419 CNY (2573 USD) higher than that for the

non-upgraded counties after 2004 while the average industrial revenue per capita for

the treatment and control group is only 1055 CNY (155 USD) before 1993.

Figure 2.3 presents the event study of the upgrading policy on economic perfor-

mance that is measured by night light intensity (Panel a) and gross value of industrial

output per capita (Panel b). After pre-treatment characteristics of each county are

controlled for, we do not find significant pre-trend of the policy effects, excluding the

possibility of reversal causality that the pre-treatment outcome variable may affect the

chance of being upgraded to a city. It is also clear that the policy impact on eco-

nomic performance does not come into effect until about 10 years after adoption of

the upgrading policy. We conduct a placebo test with regard to night light intensity

and industrial output by randomly generating fake upgraded counties and estimate the

policy effect on these two outcome variables with a PSM-DID approach. The results

are presented in Figure B.2, Table B.2 and Table B.3.

Night light intensity and industrial output are good predictors of air pollutant

emission. Based on the estimation of the correlation between pollutant concentration

and economic performance indicators using our data, one unit increase in the night

light intensity is significantly associated with 0.26 µg/m3 (0.15 µg/m3) increase in

the concentration of PM2.5 (SO2) and 10,000 CNY increase in the industrial output

is significantly associated with 0.15 µg/m3 (0.10 µg/m3) increase in the concentration

of PM2.5 (SO2). The literature documents similar relationship between air pollutant

concentration (or emissions) and economic performance.Wang et al. (2017) show that

construction sector, machinery manufacturing sector and power and gas sector which

98



The Environmental Consequences of Creating Cities in China Chapter 2

are important contributors to industrial output, dominate other sectors in terms of

emissions of SO2, NOx and dust (an important source of particulate matter). Yue

et al. (2019) explored the relationship between spatial temporal variations of industrial

SO2 emissions in China the nighttime brightness and confirmed that there was a pos-

itive correlation between these two variables. Because we can only provide evidence

or literature support for the correlation between the air pollutant concentration (or

emission) and economic performance, the explanation of the dynamic policy effects

on pollutant concentration through the lens of economy-environment relationship is

only suggestive rather than causal. Ji et al. (2019) analyzed the correlation between

the inter-calibrated Defense Meteorological Satellite Program (DMSP) Operational

Linescan System (OLS) sensor nighttime stable light (NSL) data and statistical PM2.5

emissions at the provincial level from 1992 to 2012, respectively and demonstrated that

there was a positive correlation between the inter-calibrated DMSP-OLS NSL data and

PM2.5 emission.

A following question we ask is why the policy impact on economic performance

comes into effect about 10 years after the adoption of the city status. Inspired by

the benefit of the upgrading policy that upgraded counties can build more government

branches and employ a larger number of public employees (see Table 2.1), we make

a conjecture that the governments of the upgraded counties focus on expanding the

government size rather than supporting economic development at the beginning of the

policy adoption. Our fiscal dataset provides data on number of public employees em-

ployed by the government, administrative expenditure and construction expenditure

of each county-level government up to 2000 and therefore allows us to test the above

conjecture.7 Table 2.5 reports the results of the average policy treatment effects on the

7 Administrative expenditure as an item of fiscal expenditure for all-level governments, refers to ex-
penditure for all-level state power organs to exercise their authorities. Based on the purpose of use,

99



The Environmental Consequences of Creating Cities in China Chapter 2

employment of public employees, administrative expenditure and construction expen-

diture from 1994 to 2000. The counties obtaining the city status in 1993 are excluded

from the treatment group to preserve data at least one year before the policy adoption.

Column (1) shows that governments of upgraded counties hired 1732 more em-

ployees than counties remaining the county status, suggesting the government size of

upgraded counties was expanded as motivated by the policy benefit. Column (2) shows

that governments of upgraded counties even hired more employees for every 10,000 cit-

izens than those of the non-upgraded counties do, suggesting that the city governments

hire more employees than the need for population management. As a result, admin-

istrative expenditure of the upgraded counties was significantly higher than that of

the remaining counties on the aggregate level, per capita level and the share in the

total fiscal expenditure as shown by Columns (3), (4) and (5). The average higher

administrative expenditure per employee implies that the public employees working in

the upgraded counties may have more resources as a support including their salaries

and benefits and financing for operational activities, which strengthens the demand

for higher administrative expenditure. In contrast, upgraded counties didn’t spend

significantly higher on construction than the remaining counties in terms of the ag-

gregate level and per capita level of construction expenditure as well as its share in

total fiscal expenditure. It is possible that expansion of government size and increase

in administrative expenditure occupied financial resources that should have been used

for economic construction. Because China as a developing country had scare capital

in the time period when the upgrading policy was designed to stimulate capital accu-

administrative expenditure can be classified into two categories: (1) personnel expenditure includ-
ing payments for salaries, stipends and benefits of employees; (2) operational expenditure including
construction and maintenance of work places, procurement, maintenance and replacement of office
equipment and motor vehicles as well as travel allowance, financing of operational activities for gov-
ernment employees (Wang et al., 1991).
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mulation and economic growth, the lack of government support in investment would

suppress economic development and the growth of pollution emissions. As economic

growth is an important driver of pollution, we expect that air pollution takes on a

similar evolutionary pattern as the economic performance.

2.7 The Policy Effects on Air Pollution

This section presents the main results of the impacts of the county-to-city upgrading

policy on air quality, robustness checks on the main results, the mechanisms whereby

air pollution increased for the upgraded counties.

2.7.1 Effects on the Environment

We first test the effects of county-to-city upgrading policy on air quality. The

policy effects are reported in Table 2.6. The outcome variables are PM2.5 and SO2

concentration (µ/m3). We use the specifications for the fixed effects and treatment-

specific trends in equation (2) and (3) . The county-specific fixed effects account for

county’s time-invariant characteristics that affect the probability of city status and

therefore affect the pollution level. For example, counties nearby rivers and coastal

lines are usually are more likely to be upgraded to cities as they have more access

to trade. Province-by-year fixed effects account for shocks of provincial-level policies

that are correlated with the timing of the upgrading policy. Columns (1) and (2) show

that upgraded counties are exposed to a significantly 0.8 µ/m3 higher concentration of

PM2.5 than non-upgraded counties. Columns (4) and (5) show that the concentration

of SO2 in the upgraded counties has been significantly 0.5µ/m3 higher than counties

remaining the county status. In Column (4) and (6), we investigate the policy effect
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on air pollutant concentration for period before 2004 and after 2004. PM2.5 (SO2)

concentration in the upgraded counties is 1.9 µg/m3 (1.23 µg/m3) higher than that

in the rest counties that remained county status after 2004 but the upgrading policy

effect on the pollutant concentration is not significant, which is consistent with the

period-specific policy effects on economic performance in Table 2.4.

2.7.2 Event Study

In this section, we test the parallel pre-trend hypothesis for the DID estimation in

section 5.1. We use the model in equation (4) with pre-treatment characteristics are

controlled for. Figure 2.4 depicts the dynamic effects of the upgrading policy on the

air quality estimated through the event study approach. None of the pre-treatment

indicators for the years to the policy adoption shows any statistical significance, sug-

gesting that upgraded and non-upgraded counties followed similar time trends at least

10 years before the upgrading. However, the policy effect on the pollution concentra-

tion does not become significant until 10 years after the upgrading policy adoption.

We conduct a robustness analysis to verify the lagging pattern of the policy effect on

pollution by rolling the time window for the event study. We restrict the sample to be

in 1980-2005, 1985-2010 and 1990-2015 as the alternative time windows for the event

study, all covering the full period of policy implementation (1993-1997). The results

of the rolling-window event studies for PM2.5 and SO2 are presented in Figure 2.5 and

Figure 2.6, respectively. The rolling window analysis demonstrates consistent lagging

pattern of the policy effect on air pollutant concentration–the treatment does not come

into effect until 8-10 years after the policy adoption.
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2.7.3 Randomly Generated City Status

Figure 2.7 shows the distribution of the estimates of the falsified policy effects using

randomly generated city status along with the benchmark estimate of the true policy

effect on PM2.5 (SO2) concentration from Column (3) (Column (6)) in Table 2.6. To

increase the inferential power of the test, we run the simulation that randomly gener-

ates city status following the timetable of upgrading policy in Table B.1 for 500 times.

The distribution of estimates from the random assignments is clearly centered around

zero and the standard deviation is small enough (0.22 for PM2.5 and 0.15 for SO2) such

that there is no effect with the randomly constructed upgrading policy. Additionally,

the benchmark estimate lies outside the entire distribution. These features of the dis-

tribution suggest that the positive and significant effect of the county-to-city upgrading

policy on air pollution is not driven by unobserved confounding factors.

2.7.4 PSM-DID Approach

The PSM-DID strategy is suitable for the case that assignment of treatment is

determined by pre-treatment characteristics. The pre-treatment characteristics that

may affect the city status assignment are industrialization rate, urbanization rate, fiscal

strength and economic growth which are listed in Table 2.2 as the de jure criteria. These

characteristics are supposedly determinants of city status assignment. Although it has

been found that these criteria are not stringently enforced in practice, they might still

be predictive of whether a county can be upgraded to a city (Fan et al., 2012). The

economic growth rate (measured by the growth rate of the gross value of industrial and

agricultural outputs) is included in the logit estimation to attenuate the estimation bias

because economic growth is found to be an important determinant for city status (Li,
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2011b). These criteria are classified as de jure and de facto criteria. The post-upgrading

observations for the treatment group are not included in the estimation because they

already obtained city status and the characteristics would have been affected by the

city status. All the predictors for the propensity scores are lagged by 1 year because

previous economic performance instead of the current performance are more likely to

affect the chance of obtaining city status for a county. The logit estimation results are

presented in Table 2.7. It is clear that the two types of criteria have a positive and

significant effect on the chance of obtaining the city status.

Before introducing the results for the matching estimation, we first check whether

the propensity scores are balanced across the treatment and control group. Figure

2.8 demonstrates biases between the treated and control before and after matching.

Upgraded counties are one-to-one matched with their nearest neighbors in terms of

propensity score distance. We find that the bias for most of the propensity-score

predictors between the two groups decreases substantially after matching.

We then use the matching technique to combine counties and cities (upgraded

counties) with similar propensity scores. We use two matching techniques–nearest

neighboring matching and kernel matching. Using the nearest neighboring matching

method, we match 118 pairs of upgraded counties and their counterparts that remain

county status. Table 2.8 reports the results of the policy effect estimated with the DID

method after matching. The model specification for the fixed effects is the same as

the specification in equation (3). Columns (1) and (2) present the estimated policy

effect on PM2.5 concentration for which the nearest neighboring matching and kernel

matching are used,respectively. Columns (3) and (4) do the same for SO2. We also test

the significance of the difference between the DID estimates and PSM estimates. The

estimates via the DID model controlling for county-specific year trends are used in the
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test. The second row in Table 2.8 presents the p value for the test. The standard error

for the hypothesis test is simply calculated by the summation of the DID standard

error and the PSM standard error because we assume that separate regressions are

independent (i.e. the covariance between the DID estimate and PSM estimate is zero).

2.7.5 Interpretation of the Policy Effects on Air Pollution

The main results and the following robustness analyses have verified significant but

lagging policy effects on air pollution and the dynamic policy effects on air pollution

share the common trend with the policy effects on economic performance–policy effects

on the two types of outcomes came into significant effect only 10 years after the policy

adoption. As economic outcomes proxied by night light intensity and industrial output

are good predictors of air pollutant emission, the common evolutionary trend of the

dynamic policy effects on economic performance and air pollution provides suggestive

evidence that economic growth leads to more severe pollution using exogenous variation

in economic activities.

The policy effects on economic performance and air pollution also lend support to

the validity of our analytical framework that leverages decentralization and tourna-

ment competition theory to predict the tradeoff between pursuing economic perfor-

mance and protecting local environment. Decentralized economic governance in the

centralized system like China that evaluates local official’s qualities for promotion pri-

marily based on the economic performance incentivizes local officials to promote local

economic growth at the cost of environmental quality given that pollution is positively

associated with economic growth when the upgrading policy lifts the constraints of

finance and land for boosting economies. The result of environmental degradation

due to decentralization are opposite to the findings for the developed countries where
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decentralization that adjusts the provision of local public goods based on local peo-

ple’s need can preserve the environmental quality(List and Gerking, 2000; Levinson,

2003; Konisky, 2007). This reflects an intrinsic deficiency of China’s decentralization

reform–failing to respond to residents’ preferences for balanced economic prosperity

and provision of public services.

2.7.6 Economic Costs of Air Pollution due to the Upgrading

Policy

The above analysis documents a statistically significant and positive effect of an

urbanization policy on air pollutant concentration in China. This subsection interprets

the economic cost of the increase in the air pollutant concentration as a result of this

upgrading policy to help people understand the magnitude of the policy effect. As

estimating economic cost of air pollution is out of scope of this paper, we rely on

introducing relevant literature that empirically estimates the social cost of air pollution

in terms of health impacts of the pollution.

A large body of evidence has linked air pollution with morbidity and mortality

(Schwartz, 1994; Stieb et al., 2002; Organization, 2006; Huang et al., 2013; Raaschou-

Nielsen and et al, 2013; Kan et al., 2009; Shang and et al., 2013; Li et al., 2013; Lai

et al., 2013; He et al., 2016). The majority of previous literature that estimated the

effect of air pollution on mortality used daily death counts as the dependent variable

in their regression models (He et al., 2016). The approach of daily death counting

ignores the difference in ages of dying, implicitly giving equal weights to the deaths

occurring at a younger age and those occurring at an older age (Huang et al., 2012).

However, from the perspective of public health, deaths at different ages are not equally

important because younger people’s life expectancy is longer than that of older people,
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which means dying at a young age leads to more potential years of life lost (Huang

et al., 2012). Therefore, years of life lost (YLL) is more accurate than daily death

counts to calculate premature deaths and could be an important index to measure

mortality (Brustugun et al., 2014; Rabl, 2003) .

More recent studies examine the effect of air pollution on YLL in China in the

period with unprecedented economic growth. It is documented that a daily increase of

10 µg/m3 in PM2.5 concentration is associated with 2.97 increase in YLL and a daily

increase of the same magnitude in SO2 concentration is associated with 29.98 increase

in YLL (He et al., 2016; Qi et al., 2020). Because our annual data of the PM2.5 and

SO2 concentration is derived from a daily average of the pollutant concentration in a

year, the policy effect of a yearly increase of 1.90 µg/m3 in PM2.5 concentration for

the upgraded counties is equivalent to an average increase of 1.90 µg/m3 for every day.

Similarly, a yearly increase of 1.23 µg/m3 in SO2 is equivalent to an increase of the

same magnitude for every day. Therefore, YLL is predicted to increase by 4.25 YLL

on average: the portion due to increase in PM2.5 concentration is 1.9×2.97/10=0.56

YLL and the portion due to increase in SO2 concentration is 1.23 × 29.98/10=3.69

YLL. Using air purifier sales in China, Ito and Zhang (2020) estimated willingness to

pay for removing air pollution and inferred the value of a statistical life year was $455

USD or 3185 CNY. The 4.25 years of life lost amounts to 13536 CNY loss in terms of

value of statistical years for each person in the upgraded counties or 10 billion CNY

in total for an average county-level city. The aggregate value of the years of life lost

for an average city is equal to 10 times of an average city’s fiscal revenue in 2010.

The substantial health cost suggests assessing the upgrading policy only based on the

economic performance can generate a biased assessment of the policy.

Note that we do not provide a clear-cut estimation for the net benefits of the up-
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grading policy because we can only develop a partial estimation of the benefits and

costs of the upgrading policy. The DID estimates of air pollutant concentration using

the year-to-year variation cannot take people’s avoidance behaviors for air pollution

(e.g. migration and purchasing of air filter) into consideration so the increase in air

pollution due to the upgrading policy may overestimate the people’s exposure to pol-

lution. Therefore, the health cost of air pollution caused by the upgrading policy may

also be overestimated. In regard of the economic benefits of the upgrading policy, due

to data limitation, we are not able to examine the policy effect on local GDP but

only the manufacturing sector, which may underestimate the economic benefits of the

upgrading policy. The per capita industrial revenue increased by 17,400 CNY, which

is larger than the health cost of 13536 CNY. We cannot rule out the possibility that

policy benefits might be larger than the policy costs.

2.8 Conclusion

Previous literature on evaluating reforms of administrative divisions in China has

focused on effects of relevant reforms on economic performance. This paper comple-

ments to the literature on such reform evaluation by providing causal evidence of the

environmental consequences of county-to-city upgrading policy which is about delegat-

ing upgraded counties based on a set of criteria with higher levels of autonomy in order

to promote economic growth, industrialization and urbanization. To get a comprehen-

sive understanding of the impacts, we compile a comprehensive panel dataset consisting

of information about the administrative records of the county-to-city transformation,

indicators of economic performance and air pollutant concentration (PM2.5 and SO2).

With the difference-in-difference method in a quasi-experiment setting, we exploit rich
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geographic variations in the timing of upgrading policy adoption, which enables us to

estimate the environmental consequence of China’s industrialization and urbanization

process on a nationwide scale as compared to the regression discontinuity design taking

advantage of the discontinuous pollution level across China’s North-South Boundary

before this study.

Our empirical results show that the PM2.5 and SO2 concentrations in the upgraded

counties are significantly higher than those in the remaining non-upgraded counties on

average but the effect of significant increase in air pollution took place about 10 years

after the policy adoption. We also find lagging policy effect on economic performance–

the night light intensity and industrial output per capita of the upgraded counties

became significantly higher than the non-upgraded counties about 8 years after the

policy adoption. Motivated by the policy benefit of supporting a larger government,

upgraded counties spent significantly higher fiscal expenditure on hiring more public

employees in the first 8 years after the policy was implemented. At the same time,

construction expenditure on the aggregate level and per capita level in the upgraded

counties was not significant higher than that the non-upgraded counties, which suggests

that governments of upgraded counties has focused on activities that benefit themselves

most rather than promoting economic growth at the beginning and therefore provides

a suggestive mechanism for the lagging policy effects on economic performance and air

pollution.

Our back-of-envelop calculation of the consequent health cost shows that the long-

term increase in PM2.5 and SO2 concentration as a result of the upgrading policy is

associated with 4.25 years of life lost for each person, which amounts to a loss of about

10 billion CNY in total for an average upgraded county in terms of value of statistical

life. The aggregate loss in the value of statistical life is equal to 10 times of the fiscal
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revenue of an average upgraded county in 2010. It is important to note that our findings

do not yield a clear-cut estimation for the net benefits imposed by the upgrading policy.

Our calculation of the health cost assumes people’s exposure to the air pollutants are

constant over lifetime, which may be overstated if people’s avoidance behaviors such

as migration and purchasing of air filter are taken into consideration. Though more

research is needed for more accurate estimation of the health cost of air pollution on

a nationwide scale in China, the apparent overestimation of the health cost by this

paper provides a counterfactual for the health cost of air pollution in the scenario that

no actions against pollution are taken. Due to data limitation, we are not able to

examine the policy effect on local GDP but only the manufacturing sector, which may

underestimate the economic benefits of the upgrading policy. The per capita industrial

revenue increased by 17,400 CNY, which is larger than the health cost of 13536 CNY.

We cannot rule out the possibility that policy benefits might be larger than the policy

costs.

Our findings have important policy implications. The phenomenon of developing

economy at the cost of environmental quality is deeply rooted in China’s regionally de-

centralized authoritarian system (RDA) where lower-level governments are incentivized

to focus on improving their performance on some single task required by upper-level

governments (e.g. economic growth), which cannot match local people’s demand for

public goods (e.g. environmental protection). There are two ways to handle the mis-

match problem without abolishing the RDA system. First, the central government

which is hard to be held up by local governments’ interests, can compose a more com-

prehensive set of standards with a higher weight on public services for evaluating local

officials’ qualifications. Second, monitoring and law enforcement functions including

regulation should be separated from regional governments and be carried out by an

110



The Environmental Consequences of Creating Cities in China Chapter 2

independent entity such as specialized regulatory bodies or special courts (Xu, 2011).

Future research work are needed for evaluating reforms against the inherent deficiencies

of the RDA system.

2.9 Tables for Chapter 2

Table 2.1: Benefits of the County-to-City Upgrading Policy

Category Contents of Benefits Sources

Tax and fee (1) Cities are entitled with a higher Chan (1994)
urban construction tax
(7% compared to 5% for counties)

(2) In Liaoning province, cities can get 1-2 million
additional subsides annually after being upgraded.

Land Cities have higher land quota Zhang and Zhao (1998);
to convert to construction use and Chung and Lam (2004);
retain a larger share of revenue from land sale. Ping (2006)

Favorable Policy (1) Cities can be specially designated
in the state plan by the province government
such that cities can report directly to
the provincial administration to
ask for investment projects. Su (2000)

Administrative Power (1) Cities have more authority
on foreign trade and exchange management; Zhang and Zhao (1998)

(2) Cities have authority over police recruitment
and vehicle administration; Chung and Lam (2004)

(3) Cities can establish the branch of
custom and large state-owned banks.

Government Size Cities can establish more branches of government Du (1993);
and have a larger number of public employees. Ren and Wang (1999)

Salary Officials’ salaries can be raised after upgrading. Liu (2005)

Reputation Cities generally carry greater prestige and Gu (1997);
are more attractive to investors from outside. Wang et al. (1998)

Chung and Lam (2004))
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Table 2.2: Criteria for Upgrading to City Status

Criteria Indicators for the Criteria Counties by Population Density
(persons/km2)

>400 100-400 <100

Urbanization Non-agricultural population (NAP) ≥150K ≥120K ≥100K
Share of NAP in total population ≥ 30% ≥25% ≥20%

Industrialization Industrial output value (in billion CNY) ≥1.5 ≥1.2 ≥0.8
Share of industrial output value in GVIAO ≥80% ≥70% ≥60%

Fiscal Strength Fiscal revenue (in million CNY) ≥60 ≥50 ≥40
Per capita fiscal revenue (CNY) ≥100 ≥80 ≥60

Source: Re-examining China’s "Urban" Concept and the Level of Urbanization. The China Quarterly: 331-380.
(Zhang and Zhao, 1998)
Notes: GVIAO is the abbreviation of the gross value of the industrial and agricultural outputs. CNY stands for the
Chinese currency. Non-agricultural population is the population engaged in non-agricultural activities.
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Table 2.3: Summary Statistics

Data Coverage Upgraded Counties Non-upgraded Counties
N = 112 N = 1522

Before 1993 After 1993 Before 1993 After 1993
De jure Upgrading Criteria

Gross value of industrial and 1989, 1991, 31.99 117.19 10.85 28.95
agricultural outputs 1993-2000
(GVIAO, billion CNY)

Industrial output value 1989, 1991, 15.87 94.34 3.34 17.99
(billion CNY) 1993-2016

Share of industrial output 1993-2000 0.43 0.71 0.25 0.48
in GVIAO

Size of nonagricultural 1993-2000 N/A 12.19 N/A 4.86
population (10,000 people)

Share of nonagricultural 1993-2000 N/A 0.20 N/A 0.14
population

Fiscal revenue (billion CNY) 1992-2000 1.85 9.17 0.66 3.00

Fiscal revenue per ca pita 1992-2000 326.03 933.54 198.33 567.59

De facto Upgrading Criteria

Annual growth rate of GVIAO 1991-2000 0.08 0.18 0.07 0.09

Annual growth rate of 1991, 0.07 0.08 0.06 0.07
agricultural output 1993-2000

Annual growth rate of 1991, 0.12 0.19 0.11 0.10
industrial output 1993-2000

Outcome variables

Concentration of PM2.5 1980-2017 39.77 61.41 33.14 49.52
(µ ·m−3)

Concentration of SO2 1980-2017 12.24 20.55 8.13 14.03
(µ ·m−3)
Night Light Intensity 1992-2013 3.04 6.56 0.96 2.12

Notes: Table 2.3 presents the mean values of the selection criteria and outcome variables of interest for the treatment
and control group in the pre-treatment period (before 1993) and in the post-treatment period (after 1993). All the
output and revenue measures have been adjusted to 2010 constant prices using the annual GDP deflator.
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Table 2.4: The Upgrading Policy Effects on Economic Performance Before 2004 and
After 2004

(1) (2)
Night Light Industrial Output
Intensity Per Capita (10,000 CNY)

Upgraded Before 2004 0.2454∗ 0.4924
(Including 2004) (0.1350) (0.4254)

Upgraded After 2004 2.1461∗∗∗ 1.7419∗∗∗
(Excluding 2004) (0.2861) (0.3523)
Time Coverage 1992-2013 1989, 1991, 1993-2016
Observations 36674 35803
R squared 0.9079 0.5740
County FE Yes Yes
Prov. Year FE Yes Yes
County Trend Yes Yes
Cluster County County

Note: *** denotes significance at 1%, ** at 5% and * at 10%. All
observations are at the county-year level. The regressions control
for county fixed effects, province-by-year fixed effects and county-
specific time trends. The time trends are in quadratic forms. The
standard errors are reported in parentheses, clustered by counties.
The standard robust errors for the coefficients are clustered at the
county level.
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Table 2.5: The Upgrading Policy Effects on Fiscal Expenditure from 1993 to 2000

(1) (2) (3) (4)
Public Employees Public Employees Administrative Administrative

per 10000 people Expenditure Expenditure
(10,000 CNY) per Public Employee

Upgrading Before 2000 1732.2030∗∗∗ 11.7963∗∗∗ 394.7947∗∗∗ 10.6565∗∗
(Including 2000) (658.3302) (4.0962) (109.7653) (5.1933)

Observations 9506 9505 12562 9401
R squared 0.6922 0.6534 0.7710 0.6936
County FE Yes Yes Yes Yes
Prov. Year FE Yes Yes Yes Yes
County Trend Yes Yes Yes Yes
Cluster County County County County

(5) (6) (7) (8)
Share of Construction Construction Share of

Administrative Expenditure Expenditure Construction
Expenditure (10,000 CNY) per capita Expenditure

(10,000 CNY)
Upgrading Before 2000 0.0445∗∗∗ 2.7746 -0.0700 -0.0012
(Including 2000) (0.0154) (3.8821) (0.0800) (0.0037)

Observations 11589 6397 2377 6397
R squared 0.8491 0.5524 0.6609 0.5945
County FE Yes Yes Yes Yes
Prov. Year FE Yes Yes Yes Yes
County Trend Yes Yes Yes Yes
Cluster County County County County

Note: *** denotes significance at 1%, ** at 5% and * at 10%. All observations are at the county-year
level. The regressions control for county fixed effects, province-by-year fixed effects and county-specific time
trends. The time trends are in quadratic forms. The standard errors are reported in parentheses, clustered
by counties. The standard robust errors for the coefficients are clustered at the county level. All the out-
come variables with regard to expenditure are in the price level of 2010.
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Table 2.6: Effects of County-to-City Upgrading on PM2.5 and SO2 Concentration

(1) (2) (3) (4) (5) (6)
PM2.5 PM2.5 PM2.5 SO2 SO2 SO2

Upgraded 0.7692∗∗ 0.8003∗∗ 0.4721∗∗∗ 0.4889∗∗∗
(0.3388) (0.3483) (0.1525) (0.1566)

Upgraded Before 2004 -0.0420 -0.1355
(0.2161) (0.1095)

Upgraded After 2004 1.9006∗∗∗ 1.2360∗∗∗
(0.5406) (0.3067)

Observations 63612 63612 63612 63612 63612 63612
R squared 0.9802 0.9952 0.9854 0.9751 0.9751 0.9822
County FE Yes Yes Yes Yes Yes Yes
Prov. Year FE Yes Yes Yes Yes Yes Yes
Treatment Trend Yes No No Yes No No
County Trend No Yes Yes No Yes Yes
Cluster County County County County County County

Note: *** denotes significance at 1%, ** at 5% and * at 10%. All observations are at the
county-year level. The regressions control for county fixed effects, province-by-year fixed effects,
either treatment-specific time trends or county-specific time trends. The time trends are in
quadratic forms. The standard errors are reported in parentheses, clustered by counties.

116



The Environmental Consequences of Creating Cities in China Chapter 2

Table 2.7: Logit Estimation for the Propensity Scores

Prob(Upgrading = 1|X)
Growth Rate of GVIAO 0.0927∗

(0.0536)

Log(Gross Value of Industrial Outputs per capita) 0.0434
(0.0414)

Share of Industrial Outputs in GVIAO 3.2617∗∗∗
(0.5853)

Log(Nonagricultural Population) 2.4422∗∗∗
(0.1505)

Share of Nonagricultural Population 2.0723∗∗∗
(0.7308)

Population Density 0.0003
(0.0003)

Log(Fiscal Revenue per capita) 1.6259∗∗∗
(0.1636)

Constant -2.9147∗∗∗
(0.6697)

Observations 4563
R squared 0.3935

Note: *** denotes significance at 1%, ** at 5% and * at 10%. GVIAO stands for
the gross value of industrial and agricultural outputs, which is the summation
of industrial revenue and agricultural revenue. The growth rate is calculated by
the change in GVIAO in the last year relative to the year before last year. The
standard robust errors for the coefficients are clustered at the county level.
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Table 2.8: Estimation of Policy Effects on PM2.5 and SO2 Concentration Using PSM-
DID Approach

(1) (2) (3) (4)
PM 2.5 PM 2.5 SO2 SO2
NN Kernel NN Kernel

City Upgrading 0.6805∗∗ 0.6904∗∗ 0.3963∗∗ 0.4034∗∗
(0.3072) (0.3068) (0.1640) (0.1641)

p-Value for test:
βPSM = βDID 0.8550 0.8666 0.7727 0.7898
Observations 8968 36033 8968 36033
R squared 0.9954 0.9954 0.9959 0.9959
County FE Yes Yes Yes Yes
Prov.-Year FE Yes Yes Yes Yes
County Trend Yes Yes Yes Yes
Cluster County County County County

Note: *** denotes significance at 1%, ** at 5% and * at 10%.
"NN" stands for the nearest neighboring matching and "Ker-
nel" stands for the kernel matching. The regressions control for
county fixed effects, province-by-year fixed effects and county-
specific time trends. The time trends are in quadratic forms.
The standard errors are reported in parentheses, clustered by
counties.
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2.10 Figures for Chapter 2

Figure 2.1: Trend of Air Pollutant Concentration: Treatment versus Control

(a) Time Trend of PM2.5 Concentration (µ/m3)

(b) Time Trend of SO2 Concentration (µ/m3)

Note: Figure 2.1 presents the trend of air pollutant concentration from 1980 to 2017. The
data point of each year in the figure is the average over the treatment group or the control
group. The treatment group is the upgraded counties (cities) consisting of 121 counties and
the control group is the non-upgraded counties consisting of 1522 counties.
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Figure 2.2: Trend of Night Light Intensity: Treatment versus Control

Note: Figure 2.2 presents the trend of night light intensity from 1992 to 2013. The data point
of each year in the figure is the average over the treatment group or the control group. The
treatment group is the upgraded counties (cities) consisting of 121 counties and the control
group is the non-upgraded counties consisting of 1522 counties.
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Figure 2.3: Dynamic Effects of the Upgrading Policy on Economic Performance

(a) Dynamic Effects on Night Light Intensity

(b) Dynamic Effects on Industrial Output per capita

Notes: Figure 2.3 depicts the point estimates of the policy effects on economic performance
for each year before and after the policy adoption relative to the first lagged year to the policy
adoption and the corresponding 95 confidence intervals. The omitted time category is the first
lagged period to the policy adoption. As the data of night light intensity is from 1992 to 2013,
we can only test the pretrend up to 5 years prior to the policy adoption in Panel (a). As the
data of industrial output per capita covers 1989, 1991, 1993-2016, we can test the pretrend
up to more than 5 years but less than 10 years prior to the policy adoption in Panel (b). So
the time indicator "-5" in Panel (a) denotes 5 years prior to the policy adoption while the
time indicator "-5" in Panel (b) includes 5 years and more before the policy adoption.
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Figure 2.4: Dynamic Effects of the Upgrading Policy on the Air Quality

(a) Dynamic Effects on PM2.5 Concentration (µ/m3)

(b) Dynamic Effects on SO2 Concentration (µ/m3)

Notes: Figure 2.4 depicts the point estimates of the effects of the upgrading policy for each
year before and after counties were upgraded and the corresponding 95 confidence intervals.
The omitted time category is the first lagged period to the occurrence of the upgrading. The
time indicator denoted as "-10" includes the 10 years and more prior to the policy adoption
while the one denoted as 10 includes 10 years and more after the policy implementation. We
have similar specification for the time indicator denoted as "20"
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Figure 2.5: Dynamic Effects of the Upgrading Policy on PM2.5 Concentration with
Rolling Windows

(a) PM2.5: 1980-2005 (b) PM2.5: 1985-2010

(c) PM2.5: 1990-2015

Notes: From (a) to (c), the omitted time category is the first lagged period to the occurrence
of the upgrading. The model used for the event study is equation (4). In panel (a), the sample
is restricted to be in 1980-2005. The time indicator denoted as "-10" includes the 10 years
and more prior to the policy adoption while the one denoted as 10 includes 10 years and more
after the policy implementation. We have similar specification for the ending points of the
time windows in Panel (b) and (c).
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Figure 2.6: Dynamic Effects of the Upgrading Policy on SO2 Concentration with
Rolling Windows

(a) SO2: 1980-2005 (b) SO2: 1985-2010

(c) SO2: 1990-2015

Notes: From (a) to (c), the omitted time category is the first lagged period to the occurrence
of the upgrading. The model used for the event study is equation (4). In panel (a), the sample
is restricted to be in 1980-2005. The time indicator denoted as "-10" includes the 10 years
and more prior to the policy adoption while the one denoted as 10 includes 10 years and more
after the policy implementation. We have similar specification for the ending points of the
time windows in Panel (b) and (c).
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Figure 2.7: Distribution of Estimated Coefficients for Falsification Test

(a) Falsified Effects on PM2.5 Concentration

(b) Falsified Effects on SO2 Concentration

Notes: This figure depicts the probability density distribution of the estimated coefficients
from 500 simulations randomly assigning the city status to counties. The vertical line presents
the results of Columns 3 and 6 in Table 2.6.
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Figure 2.8: Bias of County Characteristics

Notes: This figure depicts the biases of counties’ characteristics based on the de jure and
de facto criteria for city selection between the treated and control group before and after
matching.
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Chapter 3

How Does Temperature Affect the

Agricultural Growth in China: 1981

to 2010

3.1 Introduction

Understanding the major drivers of Chinese agricultural growth is important for

making policies regarding maintaining agricultural growth and food security. Previous

literature has analyzed the contribution of inputs change, technical change, institu-

tional change and price effects (McMillan et al., 1989; Fan, 1991; Lin, 1992, 1997;

Kalirajan et al., 1996; Gong, 2018). Despite recent work on the climate-agriculture re-

lationship in China (Chen et al., 2016; Zhang et al., 2017; Chen and Gong, 2021; Wang

et al., 2020), few studies have analyzed how the impacts of extreme hot temperatures

on agricultural outcomes account for the growth of agricultural productivity in China

(Zhang and Carter, 1997).
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Omission of weather in agricultural growth accounting may overestimate the con-

tributions of inputs and technologies to the growth because farmers may choose levels

of inputs and new technologies based on weather conditions (Frisvold and Murugesan,

2013; Haigh et al., 2015). Farmers are more likely to increase inputs under favorable

weather conditions (e.g. labor increases in cooler days) while increase of inputs use

and favorable weather conditions are both beneficial to agricultural growth. Wang

et al. (2020) has documented that the agricultural sensitivity to extreme temperatures

(i.e. marginal impact of one daily exposure to temperatures above some threshold on

agricultural outcomes) declined over time. If we could quantify the contribution of

decline in agricultural sensitivity and document the decline is associated with input

adjustments or technology advancement, this paper can help people understand that

input increase or technology advancement can promote agricultural growth not only

by directly increasing outputs but also by reducing impacts of potential risks.

In this paper, we examine the temporal evolution of the extreme temperature im-

pacts on agricultural revenue per hectare and the contribution of the temporal evolution

to the growth of agricultural revenue. Formally, we ask "to what extent the growth rate

of agricultural revenue would have decreased if the extreme temperature sensitivity of

agricultural revenue did not decline over time". Inspired by the labor economics lit-

erature on decomposition methods starting with the seminal papers of Oaxaca (1973)

and Blinder (1973), we apply the decomposition method to partition the agricultural

growth into the portion attributable to the changes in the predictors and the one at-

tributable to changes in how predictors are associated with the outcome variable and

to quantify each portion’s contribution to the overall growth of agricultural outcome

Percentage. Our main finding is that the sensitivity of agricultural revenue to extreme

hot temperatures declined by about 60% from the pre-1996 period to the post-1996
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period, which accounts for 5.4% of the overall growth of agricultural revenue per unit

of land.

The Oaxaca-Blinder decomposition is a regression-based decomposition method

that partitions the gap in the outcome of interest between two groups that are clas-

sified based on some time-invariant characteristics (e.g.race) into a portion attributed

to change in the predictors and a portion attributed to change in the predictability of

the predictors. We extend the traditional decomposition method by dividing the whole

sample into two periods: 1981-1995 and 1996-1996. We first estimate a period-specific

Cobb-Douglas log linear production function that models county’s agricultural revenue

as a function of agricultural inputs and weather interacted with period indicators as

well as county fixed effects and province-year fixed effects to obtain the marginal ef-

fect of each predictor for each period. By conditioning on county and province-year

fixed effects, the period-specific impacts of extreme temperatures are identified by

county-specific deviations from the county averages after controlling for time-invariant

unobservables for each county and time-trending unobservables shocks for all counties

in a province. We then conduct the OB decomposition on the period-specific produc-

tion function by subtracting the sample average of agricultural revenue in the period

1981-1995 from that in the period 1996-2010.

We collect a county-level agricultural data for more than 2400 counties combined

with a station-level meteorological data from 1981 to 2010, which allows us to inves-

tigate the temporal evolution of elasticity of labor, machinery, fertilizer and irrigation

and of marginal impacts of extreme hot temperature and precipitation. The empirical

analysis is divided into two parts. The first part is documenting the temporal evolution

of the agricultural sensitivity to extreme temperatures and estimating the extent to

which the temporal evolution of temperature sensitivity explains the growth of agri-
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cultural revenue with the Oaxaca-Blinder decomposition regression. Period 1981-1995

and 1996-2010 are the baseline period specification because a number of agricultural

policies have been collectively designed to achieve a food self-sufficiency objective set

in 1996 (The State Council of China, 1996). Agricultural subsidies provide farmers

with an incentive to replace traditional labor-intensive and low-productivity methods

of farming with modern mechanized production systems, which will increase produc-

tivity and reduce production vulnerability to extreme heat.

We find that the extreme temperature impact on agricultural revenue per hectare in

the post-1996 period was more than 60% lower than that in the pre-1996 period, con-

tributing 6.1 percentage points growth of the agricultural revenue. If the temperature

sensitivity in the post-1996 period remained the one in the pre-1996 period, the growth

rate of the agricultural revenue would have reduced by 6.1 percentage points, which is

about 5.4% of the overall growth of agricultural revenue. We conduct robustness anal-

ysis on the sensitivity of the results to the choices of period length and temperature

specification. The result is robust to 10-year period with rolling time windows and

binning specification of growing degree days that calculate the accumulation of heat

for 3◦C and 5◦C interval, various thresholds for extreme temperatures as well as model

specification without input variables as an investigation of the bad control problem.

The empirical results show that labor elasticity is decreasing while machinery elas-

ticity and fertilizer elasticity are increasing, which is consistent with the trend of input

elasticity documented in previous studies (Gong, 2018). The extreme temperature im-

pact on agricultural revenue in the post-1996 period is about 70% lower than that in

the pre-1996 period, contributing 6.1 percentage points of growth of agricultural rev-

enue, which is about 5.4% of the overall growth of agricultural revenue. The result is

robust to the specification of 10-year period with rolling time window, binning speci-
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fications of growing degree days that calculate the accumulation of heat for 3 ◦C and

5 ◦C interval as well as model specification without input variables as an investigation

of the bad control problem. We provide suggestive evidence that irrigation plays an

important role in moderating extreme temperature effects and precipitation effects.

Dramatic increase in the marginal benefit of irrigation in terms of moderating extreme

temperature effects and precipitation effects dominates increase in the irrigation cov-

erage generates significant in contributing to the agricultural growth. Increase in the

coefficient for irrigation’s moderation effect (interaction between extreme temperature

and irrigation coverage) contributes 2.36 percent of the agricultural growth, which ac-

counts for about 40% of the contribution of the decline in the temperature sensitivity

to the overall revenue growth. In addition to moderating extreme temperature effects,

irrigation also contributes to the growth of agricultural revenue directly.

The second part of the empirical analysis is estimating moderation effects of agri-

cultural inputs on temperature sensitivity and quantifying the contribution of the mod-

eration effects of inputs to agricultural growth. Wang et al. (2020) investigates effects

of input expansion on moderating the extreme temperature impacts but did not evalu-

ate the contribution of agricultural inputs to growth of agricultural outcomes. In this

paper, we assess roles of agricultural inputs in the growth of agricultural revenue by

incorporating the interactions between the temperature and precipitation variables and

inputs into the decomposition regression. The data allows us to examine the modera-

tion effects of four inputs: labor, machinery, fertilizer and irrigation. We find that only

irrigation can moderate the effects of extreme temperatures on agricultural revenue

with a substantial increase over time in the marginal moderation effects on extreme

temperature impacts rather than increase in the irrigation coverage. Expansion of ir-

rigation coverage from 0 to 100% in the post-1996 period is associated with a 12.27
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percentage-point decrease in the temperature sensitivity of agricultural revenue while

the moderation effect of irrigation in the pre-1996 period is negligible. The increase

in the moderation effects of irrigation contributes 2.68 percentage points of the agri-

cultural growth. The decline in the temperature sensitivity through mechanisms other

than irrigation contributes about 3.84 percentage points of agricultural growth, imply-

ing that irrigation accounts for about 40% of the contribution of the decline in the

temperature sensitivity to the overall agricultural growth. Without experimental vari-

ation in irrigation, we can only provide suggestive evidence for the irrigation benefits

in terms of moderating extreme temperature effects.

This paper contributes to the literature in the following aspects. First, it contributes

to the literature that evaluates the agricultural impacts of climate change. Previous

literature has focused on identifying the impacts of short-run or long-run climate change

on economic outcomes for both developed countries and developing countries using

cross-sectional variation or inter-annual variation in weather (Mendelsohn et al., 1994;

Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009; Welch et al., 2010;

Lobell et al., 2013; Burke and Emerick, 2016; Chen et al., 2016; Zhang et al., 2017;

Chen and Gong, 2021). A more recent development of the literature using the inter-

annual variation in weather investigates the temporal evolution of extreme temperature

effects on economic outcomes (Schlenker and Roberts, 2009; Roberts and Schlenker,

2011; Barreca et al., 2016; Bleakley and Hong, 2017; Ortiz-Bobea et al., 2018; Wang

et al., 2020).

Among the literature on the weather-agriculture relationship, this paper is closest

to Wang et al. (2020) which documents a significant decline in the extreme tempera-

ture impacts on corn and soybean yields (production per hectare) and attributes part

of the decline to expansion of irrigation coverage. This paper not only documents
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substantial decline in extreme temperature impacts on agricultural revenue but also

quantifies the contribution of the decline in temperature sensitivity to the growth of

agricultural revenue of unit land, which has not been sufficiently studied in the litera-

ture including Wang et al. (2020). Growth of agricultural revenue determines growth

of rural population’s income and standard of living. As agriculture is one of the most

vulnerable sectors to climate change, knowledge about the role of extreme temperature

impacts in agricultural growth is important for understanding how economic impacts

of climate change evolve over time. Temporal evolution of extreme temperature effects

can be regarded as an indicator for adaptive capabilities to climate change (Barreca

et al., 2016). By examining temporal evolution of extreme temperature impacts on

revenue, this paper can provide a more comprehensive estimation of pecuniary benefits

of adaptation to climate change than counterpart estimation of adaptation benefits

using crop yields in Wang et al. (2020). In addition, this paper finds that improvement

of marginal moderation effects of irrigation over time dominates expansion of irriga-

tion coverage in explaining the decline of the extreme temperature effects, which is not

documented in Wang et al. (2020).

Second, this paper contributes to the literature on agricultural growth accounting.

1980s to 1990s witnessed market-oriented reforms in developing countries (transitional

countries) that promoted decollectivization in agricultural production. Literature on

agricultural growth accounting during 1980s to 1990s focused on estimating the con-

tribution of inputs change, technical change, institutional change and price effects to

the agricultural production growth in those reformed countries (McMillan et al., 1989;

Fan, 1991; Lin, 1992, 1997; Kalirajan et al., 1996). More recent studies have introduced

weather effects into the accounting approach and concentrated on decomposing agri-

cultural TFP growth in the US into weather effects, technological progress, technical
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efficiency and scale and mix efficiency changes (O’Donnell, 2012; Yang and Shumway,

2016; Njuki et al., 2018; Sabasi and Shumway, 2018; Chambers and Pieralli, 2020).

To our best knowledge, Zhang and Carter (1997) is the only study that incorporated

weather effects into accounting the agricultural growth in China from the 1980s to

the 1990s prior to this paper. The major difference between Zhang and Carter (1997)

and this paper in empirical strategy is that Zhang and Carter (1997) assume constant

parameters that measure elasticities of inputs and weather effects in the Cobb-Douglas

production function while this paper estimates time-varying production function that

can help us document change in the input elasticities and weather effects as an impor-

tant driver of agricultural growth.

Third, this paper provides a new framework for evaluating the roles of technological

or input changes in moderating extreme temperature effects and agricultural growth.

Incorporating both levels of inputs and interactions between inputs and temperature

variables allows us to separate the direct contribution to growth of agricultural revenue

from the contribution via inputs’ moderation effects on temperature sensitivity of agri-

culture. With the OB decomposition, we can further separate the moderation effects

on temperature sensitivity due to the expansion of inputs from the moderation effects

due to improvement of marginal moderation effects over time with levels of inputs

fixed. With the new setup for empirical strategy, this paper finds that improvement of

marginal moderation effects of irrigation over time dominates expansion of irrigation

coverage in explaining the decline of the extreme temperature effects, which is not

documented in previous literature (Tack et al., 2017; Zaveri and Lobell, 2019; Wang

et al., 2020). The new finding implies that investment in irrigation should not only be

focused on increasing the quantities of irrigating facilities but also on improving the

efficiency of irrigation technology.
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Fourth, this paper contributes to the literature of applying the OB decomposition by

conducting time-wise decomposition to explain the difference in the outcome variable

over time. Traditional Oaxaca-Blinder decomposition is a regression-based decompo-

sition method that attributes between-group differences in an outcome to differences

in levels of predictors (explanatory variables) and differences in the corresponding co-

efficients. Groups (subsamples) of the whole sample are divided based on some time

invariant characteristics (e.g. race). The method has frequently been applied to an-

alyze gender and racial differences in wage gaps (Oaxaca, 1973; Blinder, 1973; Blau

and Beller, 1988; Sandefur and Sakamoto, 1988; Wellington, 1993, 1994; Zipp, 1994;

Sakamoto et al., 2000).

As researchers have become increasingly interested in research questions of develop-

ments over time, a dynamic OB decomposition approach using repeated cross-sectional

or panel data has been developed to investigate what explains the changes in group dif-

ferences over two points in time (Smith and Welch, 1989; Wellington, 1993; Makepeace

et al., 1999; Deleire, 2000; Kim, 2010; Blau and Kahn, 2017; Kroger and Hartmann,

2020). The dynamic decomposition approach expresses the change in the outcome

gap between groups over time as the temporal change in the component of predictors’

differences between groups and the temporal change in the component of predictors’

coefficient differences between groups.1

This paper extends the OB decomposition method from conducting group-wise de-

composition to time-wise decomposition with the aid of time-varying panel fixed effect

model. Previous applications of the Oaxaca-Blinder decomposition in the longitudinal

data setting aims to investigate drivers of the temporal evolution of group differences

1 To illustrate the dynamic OB decomposition, consider two groups A and B for which we have data
for at least two points in time, t and s with t > s, the temporal change in the outcome difference
between the two groups is given by ∆Y = ∆Yt −∆Ys = (E(Y At )− E(Y Bt ))− (E(Y As )− E(Y Bs )).
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on the outcome of interest (e.g. wages) and conduct decomposition either by subtract-

ing the difference between groups at one time point from another or by subtracting the

difference between time-points within one group from that within the other group. As

a comparison, the time-wise decomposition in this paper aims to investigate the drivers

for the temporal evolution of the outcome of interest and only subtracts the average

of the outcome variable in one period from the other period. The contributions of

changes in predictors and of changes in the corresponding coefficients to the temporal

change in the outcome variable are identified by the county-specific deviations from

the county averages after controlling for the shocks common to all counties. Compared

to the traditional decomposition method that relies on cross-sectional comparison of

two groups, the advantage of our time-wise decomposition approach allowing us to re-

strict the endogeneity problem for the predictors by controlling for the time-invariant

unobservables and time-trending unobservables.

The remainder of the paper is organized as follows. Section 2 describes the data

sources and reports the summary statistics. Section 3 presents the econometric models

used to examine the temporal evolution of the agricultural production function incor-

porating inputs and weather conditions and quantify the contributions of the change in

predictors as well as changes in the coefficients to the growth of agricultural revenue.

Section 4 reports the results from fitting the models in Section 3. Section 5 provides

suggestive evidence for the mechanisms of the decline in the temperature sensitivity by

examining the moderation effects of agricultural inputs on the temperature sensitivity.

Section 6 concludes.
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3.2 Data and Summary Statistics

3.2.1 Agricultural Data

We collect a county-level panel on the agricultural production in China from 1981

to 2010. The data is collected from the County-level Agricultural Database by the

Ministry of Agriculture and Rural Affairs of China.2 This dataset includes agricultural

revenue, aggregate planted area, labor, fertilizer and machinery in each county on a

yearly basis. We follow the literature in inputs and outputs selection for the agriculture

in China (Wang et al., 2016). The output variable is the agricultural revenue per

unit of planted area, which is the deflated gross value of agricultural outputs per

hectare using the constant price in 1980. There are four inputs: labor (agricultural

labor force per hectare), fertilizer (the gross weight of nitrogen, phosphate, potash and

complex fertilizers per hectare) and machinery (kilowatts of total power per hectare)

and irrigation (fraction of land that is effectively irrigated).

3.2.2 Weather

The weather data is from China Meteorological Data Service Center (CMDC) af-

filiated with the National Meteorological Information Center of China.3 The CMDC

collects weather conditions collected by 820 weather stations on a daily basis includ-

ing minimum, maximum and average temperatures, precipitation, relative humidity,

evaporation, wind speed and sunshine duration.4 To transform the weather data from

the station level to the county level, we use the inverse distance weighting method, a

standard method commonly used in the literature (Mendelsohn et al., 1994; Deschênes

2 http://zzys.agri.gov.cn/nongqingxm.aspx.
3 The data can be obtained at http://data.cma.cn/
4 See the map of the 820 weather stations in Figure C.1

137

 http://zzys.agri.gov.cn/nongqingxm.aspx.
http://data.cma.cn/


How Does Temperature Affect the Agricultural Growth in China: 1981 to 2010 Chapter 3

and Greenstone, 2007, 2011; Zhang et al., 2017). First, we choose a circle with a 200

km radius for each county’s centroid following Deschênes and Greenstone (2011). We

then take the weighted average of the weather data for all the stations within the circle,

where the weights are the inverse of the distance between each station and the county’s

centroid. Finally, we assign the weighted average to each county.

3.2.3 Summary Statistics

Table 3.1 summarizes the agricultural revenue, inputs and climate conditions by

period. The average of each variable is the national average of county’s average within

each time period (1981-1995 and 1996-2010) weighted by county’s total planted area.

To highlight differences over time, the summary statistics are reported separately for

the 1981-1995 and 1996-2010 periods. From the pre-1996 period to the post-1996 pe-

riod, the agricultural revenue of per unit of land in China more than doubled, increasing

from 5,200 CNY to 13,100 CNY at a 1980’s constant price. The increase in the agricul-

tural revenue has been supported by sizable increase in the use of machinery, fertilizer

and irrigation. Less use of labor and more use of the other three inputs echoes the

agricultural modernization in China, which aims to convert the reliance on intensive

labor input by encouraging mechanization and fertilizer use.

3.3 Empirical Strategy

This section first introduces a period-specific production function that models the

agricultural production process for each period in which the parameters for the marginal

productivity of the inputs and weather are not identical (hereafter we call the whole

vector of inputs and weather variables as predictors). The production function serves
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as a data generating process to construct the empirical model for the relationship

between weather and agricultural revenue by time periods. After estimating the pa-

rameters Using the Oaxaca-Blinder decomposition technique, we then estimate the

effects of temporal change in the levels of inputs and weather conditions and of the

temporal change in the marginal productivity of these predictors. We also quantify

the contribution of the two components to the growth of agricultural revenue over time

periods.

3.3.1 Period-specific Production Function

We construct a period-specific production function which incorporates agricultural

inputs in logarithm form including labor, machinery, fertilizer and irrigation as well as

climate variables including temperature and precipitation. We assume the production

function to have a log-linear Cobb-Douglas form in order to justify the linear regression

presented in equation (1).

log yit = φi +
b∑

d=a

X ′it · 1{period = d} · βd + ηpt + εit

= φi +
b∑

d=a

M∑
m=1

βm,d · 1{period = d} · log xm,it︸ ︷︷ ︸
inputs

+
b∑

d=a

J∑
j=1

βj,d · 1{period = d} · zj,it︸ ︷︷ ︸
weather

+ηpt + εit

(3.1)

where yit is county i’s unit land revenue in year t (agricultural revenues per hectare)

and the value of agricultural output is calculated by the county-level summation of

the revenues of all crops; φi is county fixed effect controlling for county-specific time-

invariant factors; Xit has two components: xit is the input vector that includes labor,

machinery(capital), fertilizer and irrigation; zit is the climate vector that includes tem-

139



How Does Temperature Affect the Agricultural Growth in China: 1981 to 2010 Chapter 3

perature and precipitation (regular climate variables) as well as humidity, evaporation,

sunshine duration and wind speed (additional climate variables); a, b denotes the peri-

ods that indicate change in the production function. Following Wang et al. (2020), we

choose 1981-1995 (the first 15 years in the data) and 1996-2010 (the second 15 years in

the data) as the baseline specification for the periods. The period division is justified

by the food self-sufficiency policy that was launched in 1996 by the central government

of China and aims to achieve 95% self-sufficiency on grain consumption. This national

priority of self-sufficiency has been supported by a series of agricultural policies that

promote investment in agriculture, which may improve agricultural productivity and

moderate the impacts of extreme heat on the agricultural revenue. In addition, the

15-year division allows us to construct two balanced time periods as there are 30 years

of data in total.

ηpt is province-by-year fixed effect that accounts for the province-level shocks that

may be correlated with inputs and weather conditions and affect the outcome variable.

For example, shocks of product prices affect outputs but may be affected by weather

shocks. Input price shocks are expected to affect the level of input use. According

to Compilation of the Revenue and Cost Materials of Agricultural Products in China

published by the central government of China, market prices and government-procuring

prices of agricultural products and input prices are determined at the province level.

Without high-quality data on product and input prices, the province-year fixed effects

can control for the effects of input and product prices on revenue to some extent. With

price controlled, the extreme temperature impacts on agricultural revenue is mostly

driven by the extreme temperature impacts on outputs. εit is the error term.
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3.3.2 Oaxaca-Blinder Decomposition

Oaxaca (1973) and Blinder (1973) initiated a regression-based decomposition to

partition the gap in an outcome of interest between two groups into an "explained

" component and an "unexplained" component. The explained portion of the gap is

the difference in the outcome variable attributed to group differences in the levels of

a set of predictor variables between the two groups. The unexplained portion arises

from the differences in how the predictors are associated with the outcome for the two

groups (i.e. the marginal effects of the predictors). This component would persist

even if the discriminated (disadvantageous) group were to obtain the same average

levels of predictors as the indiscriminated group (advantageous). The method has

been frequently applied to analyze gender and racial differences in wage or earning

gaps (Blau and Andrea, 1988; Sandefur and Sakamoto, 1988; Wellington, 1993, 1994;

Zipp, 1994; Sakamoto et al., 2000; Deleire, 2000) and health status (Charasse-Pouee

and Fournier, 2006; Sen, 2014).

The standard Oaxaca-Blinder decomposition relies on cross-sectional comparison

of the relationship between two groups that are divided based on time-invariant char-

acteristics (e.g. race). In this paper, we apply the decomposition method in a panel

setting where the whole sample are divided by two periods based on the hypothesis

that the relationship between the predictors and revenue varies over the two periods.

We use the period-specific production function in equation (1) as the data generating

process for the predictor-outcome relationship.

We construct long-run economic outcomes and temperature averages for a given

location at two different points in time, over which the marginal effects of predictors

on the outcome variable are assumed to change. The difference in the average of the

outcome variable between the earlier period and the later period is decomposed into
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a portion attributable to the intertemporal change in the levels of predictors and the

portion attributable to the change in the coefficients for the predictors. Consider two

multiyear periods denoted "a" and "b" where period a stands for period 1981-1995 and

period b stands for period 1996-2010. The OB decomposition approach expresses the

mean outcome difference as the difference in the linear prediction at the group-specific

means of the predictors. That is,

E(log yib)− E(log yia) = E(φi +X ′ibβb + ηpb)− E(φi +X ′iaβa + ηpa)

= E(X ′ib −X ′ia)βa︸ ︷︷ ︸
Predictors Change

+E(X ′ib)(βb − βa)︸ ︷︷ ︸
Coefficients Change

+E(∆η) (3.2)

The decomposition shown in equation (2) is formulated from the viewpoint of period

a because we are interested in the growth of the outcome variable and predictors and

corresponding coefficients from period a to period b. The estimation of the components

of the decomposition in equation (2) is straightforward. Let β̂a and β̂b be the least-

squares estimates for βa and βb obtained from estimating the pooling model with period

interactions shown in equation (1). Furthermore, we use the period(group) means Xa

and Xb as estimates for E(Xa) and E(Xb). The estimates for the OB decomposition

can be derived as

log yb − log ya =
1

N

1

T

N∑
i=1

t̄b∑
t=tb

log yit −
1

N

1

T

N∑
i=1

t̄a∑
t=ta

log yit

= (X
′
ib −X

′
ia)β̂a︸ ︷︷ ︸

Predictors Change

+ X
′
ib(β̂b − β̂a)︸ ︷︷ ︸

Coefficients Change

+∆η̄ + ∆ε̄ (3.3)

N is the total number of counties, T is the number years of a period. The temporal
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change in the province-year fixed effect ∆η = 1
P

1
T

∑P
i=p

∑t̄b
t=tb

ηpt − 1
P

1
T

∑P
p=1

∑t̄a
t=ta

ηpt

and so ∆ε is defined. ∆ε should be very close to zero and negligible.

In the period-specific data generating process, the unobserved differences in the av-

erage county-level predictor-outcome relationship are accounted for by the county fixed

effect φi and any common shocks across counties within a given period are accounted

for by the year fixed effects ηt. Because the decomposition regression in equation (3) is

directly derived from the data generating process in equation (1), the β coefficients for

the two periods are identified through within-county differences in the predictors over

time after having controlled for the shocks common to all counties. We can obtain the

standard errors for the coefficient estimators simply from the OLS regression and the

variances for each decomposition components are derived in Appendix B according to

Jann (2008).

(X
′
ib −X

′
ia)β̂a is the portion of the outcome difference over periods attributable to

the change in the predictors while the predictability (coefficients) remain unchanged,

which measures the contribution of the change in the levels of predictors to the growth

of the outcome variable. X
′
ib(β̂b − β̂a) is the portion of the outcome difference at-

tributable to the change in how the predictors are associated with the outcome variable

while the level of predictors changed to the second period (period b). This piece gives

us a measurement of the counterfactual effect if the marginal effects of the predictors

in the second period remained to be the one in the first period (period a).

The variable of central interest is the extreme temperature. The literature has

demonstrated strong nonlinearities in the relationship between temperature and agri-

cultural outcomes (Schlenker and Roberts, 2009). Nonlinearities are generally captured

using the concept of growing degree days (GDD), which measure the amount of time

a crop is exposed to temperatures between a given lower and upper bound. Following
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Schlenker and Roberts (2009) and Burke and Emerick (2016), we use the within-day

distribution of temperatures to calculate the percentage of each day that each county is

exposed to temperatures between given lower and upper bounds , and then sum these

daily exposures over a calendar year to get a measure of annual growing degree days

for those bounds.5 The lower temperature piece GDDit,l0:l1 is the sum of GDD between

bounds l0 and l1 and the upper temperature piece GDDit,l1:∞ has a lower bound l1 and

is unbounded at the upper end.

Daily average of precipitation, humidity, evaporation, sunshine duration and wind

speed within a year and their quadratic forms are incorporated in the decomposition

regression to succinctly account for the nonlinear impacts of these climate variables.

In the estimation of equation (4), we set l0 = 10 since GDD above 10 ◦C is beneficial

to the agricultural sector (Chen and Gong, 2021) and allow the data to determine l1

by looping over all possible thresholds from 26◦C to 40◦C and selecting the model that

best fit the data based on the Bayesian Information Criterion. The selected thresholds

for growing degree days is 33 ◦C which is consistent with the literature (Chen and

Gong, 2021). We also conduct robustness checks with multiple thresholds other than

the selected ones to avoid threshold misspecificiation.

3.4 Empirical Results

This section presents the estimates of the relationship between inputs, weather

and revenue over time periods using the Oaxaca-Blinder decomposition method. Our

5 We use trigonometric sine curve to approximate the within-day distribution following Snyder (1985).
But in the following simple example, we assume instantaneous temperature within a day is identical.
If l0 = 0 and l1 = 30, a set of daily average temperature of -1, 0, 5, 10, 29, 31 and 35 would generate
GDDit,l0:l1 equal to 0,0,5,10,29,30 and 30 and GDDit,l1:∞ equal to 0,0,0,0,0,1 and 5. This example is
the same as the one in Burke and Emerick (2016).
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primary analysis focuses on the evolutionary effects of period-to-period variation in

temperature on the agricultural revenue per unit of land, which is a basic measure

of agricultural productivity and a key determinant of farm income and welfare. We

then conduct robustness checks on the temperature thresholds for the high piece of

the growing degree days and functional forms of the growing degree days. At last,

we explore the temporal evolution of the role of irrigation in moderating the extreme

temperature impacts as a mechanism study.

3.4.1 The Temporal Evolution of Temperature-Revenue Rela-

tionship

Table 3.2 reports the estimation of the period-specific temperature-revenue relation-

ship using the Oaxaca-Blinder decomposition method. The early period is 1981-1995

and the later period is 1996-2010. The first two columns present the estimates of the

marginal effects of the inputs and climate variables. The "Decomposition" column

for β̂1981(X1996 − X1981) presents the estimation of the decomposition component of

the change in the levels of the predictors and the corresponding "Percent" column

presents the share of the predictors’ change component in the overall change of the

outcome variable which is estimated by β̂1981(X1996−X1981)

Y 1996−Y 1981
. The "Decomposition" col-

umn for X1996(β̂1996 − β̂1981) presents the estimation of the decomposition component

for the change in the marginal effects of predictors (coefficients) and the corresponding

"Percent" column reports the share of the coefficients’ change in the overall change of

the outcome variable, which is estimated by X1996(β̂1996−β̂1981)

Y 1996−Y 1981
.6 Period 1981-1995 is the

6 The negative sign implies the contribution of the component to the agricultural growth is negative. For
example, in Table 2, for the labor input, β̂1981(X1996−X1981) = −0.0171, which can be interpreted as
that the growth rate of the agricultural revenue would have increased by 1.71 percentage points (the
outcome variable is log of revenue) if the average labor level in the post-1996 period is the same as
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reference period. We control for four inputs–labor, machinery, fertilizer and irrigation

as well as climate variables–temperature (measured by degree days), precipitation, hu-

midity, sunshine duration, evaporation and wind speed. To keep the table succinct,

we report the aggregate effects of the additional climate variables due to change in the

additional climate variables and the change in their marginal impacts.

The overall increase in the agricultural outputs from 1981-1995 to 1996-2010 is

113.25% (Y 1996 − Y 1981). We first describe the evolutionary effects of the agricultural

inputs. The roles of labor, machinery, fertilizer and irrigation in the agricultural growth

have evolved significantly over time. Specifically, the role of labor has declined because

both the elasticity of labor (marginal effects of the log labor on revenue) and labor input

has significantly decreased over the two periods as shown in Table 1 about summary

statistics. Both the production elasticity of machinery and levels of machinery use

significantly increased in the last 30 years, contributing about 50 percentage points

increase of agricultural revenue in total (0.2699+0.2239), which accounts for about 44%

of the overall growth of agricultural revenues per hectare. The elasticity of fertilizer

has doubled implying that fertilizer is used more efficiently over time and stimulating

double expansion of fertilizer use from 1981-1995 to 1996-2010. The finding on the

elasticity of machinery and fertilizer is consistent with the trend of mechanization of

Chinese agricultural and previous studies about the evolution of Chinese agricultural

production function (Gong, 2018). Irrigation expansion contributes about 23% of the

that in the pre-1996 period (X1981 = X1996). In other words, that the average labor input per hectare
decreased from 4.21 people per ha. in pre-1996 period to 3.92 people per ha. as summarized in Table
3.1 or by 7% has made the growth rate of revenue decrease by 1.71 percentage points, which is about
1.51% of the whole growth corresponding to X1996(β̂1996−β̂1981)

Y 1996−Y 1981
= −1.51%. The regression coefficient

for log labor is the labor elasticity of production. X1996(β̂1996 − β̂1981) = −0.1229 means that the
decrease of labor elasticity from 0.24 to 0.13 as shown in Table 2 has made the agricultural growth
decrease by 12.29 percentage points accounting for 10.86% of the whole growth, which corresponds to
X1996(β̂1996−β̂1981)

Y 1996−Y 1981
= −10.86%.
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output growth mainly through the increase in the marginal benefits of expansion of

irrigation coverage.

Second, the decline in the extreme temperature effects on the agricultural revenue

has made substantial contribution to the revenue growth. β̂1981(X1981−X1981) denotes

the portion of the extreme temperature effects due to the change in the exposure

to extreme temperatures while the temperature sensitivity remained as in the initial

period. The increase in the extreme temperature exposure has caused 6.10 log points

decrease in the agricultural revenue, which accounts for about 5.40% of the overall

growth of agricultural growth in the last 30 years.

However, the impact on agricultural revenue of one additional daily exposure to

temperatures above 33 ◦C every year on average during 1996-2010 is about 10 per-

centage points less than that during 1981-1995, which substantially contribute to the

agricultural growth in the last 30 years. If the temperature sensitivity in the 1996-2010

period had been the one in the 1981-1985 period and the average level of extreme tem-

perature exposure increased to the higher level in the 1996-2010 period, the revenue

growth would have decreased by 6.10 percentage points, which accounts for 5.4% of

the overall growth of the agricultural revenue. The growth rate of agricultural revenue

would have decreased by about 6.1 percentage points if the temperature sensitivity

had not declined. This finding is consistent with (Wang et al., 2020) which documents

that the temperature sensitivities of corn and soybean yields (production of a unit

piece of land) has declined in the same period of this study but does not quantify the

contribution of the decline in the temperature sensitivity to the agricultural growth.

The results for the precipitation show that agricultural sensitivity to mild and

excessive precipitation, which corresponds to the coefficient for the linear and quadratic

form of annual average of daily precipitation respectively, is stable over the two periods.
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In both the pre-1996 period and post-1996 period, the annual agricultural revenue

increases as the daily average precipitation increases up to around 5mm beyond which

revenue decreases as response to more precipitation. In Section 5, we will provide

suggestive evidence on the role of irrigation in smoothing effects of precipitation shocks

as a suggestive explanation for the stable evolution in the precipitation sensitivity.

The aggregate contribution made by the additional climate variables is sizable but

not significant, which makes it difficult to evaluate the role of those variables in the

agricultural growth.

3.4.2 Robustness Check

The length of time periods and the time window used in the estimation are varied to

test the sensitivity of estimation results to the choices of endpoint years of time periods

and the number of years in a time period. We use 10 years as a period and choose

1981-2000 and 1991-2010 as the two time windows for robustness check.7 The results

for the window of 1981-2000 and 1991-2010 are shown in Figure 3.1 and Figure 3.2,

respectively. In the two figures, we display the period-specific marginal effects of the

predictors in Panel (a), the decomposition components of the revenue growth due to

predictors’ change and coefficients’ change in Panel (b) and the corresponding shares

of these two components in the overall growth in Panel (c). We find (1) temporal

evolution of inputs elasticities and (2) the decline in the sensitivity of agricultural

revenue to temperatures above 33 ◦C make contributions to the overall agricultural

growth that are consistent with the decomposition results in the 15-year period setting

7 An alternative way of checking the robustness of the results to the ending years of the time periods
is running panel regressions over rolling time periods such as 1950 to 1965 compared with 1966 to
1980, 1966 to 1980 compared with 1981 to 1995, 1981 to 1995 compared with 1996 to 2010, and so
on. However, we only collected 30 years of data from 1981 to 2010. Hence, using rolling time periods
is not feasible.
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that is reported in Table 3.2.

Varying temperature thresholds are applied to check the sensitivity of decomposi-

tion estimation to variation in temperature thresholds. It is a concern that the selected

temperature threshold 33 ◦are misspecified. Figure 3.3 reports the estimated share that

the temporal changes in the predictors’ marginal effects account for the overall growth

of the outcome variable (X1981(β1996−β1981)

Y 1996−Y 1981
) in equation (1) using the temperature thresh-

olds from 30◦C to 35 ◦C except 33 ◦C. Panel (a) to (e) demonstrates similar temporal

evolution of inputs elasticity estimated with models using the alternative thresholds.

The role of labor in the growth of agricultural revenue has declined over time periods

while the role of machinery, fertilizer and irrigation has increased. The marginal im-

pact of extreme temperature on revenue has significantly declined over periods, which

contributes 3 to 6 percentage points of the overall agricultural growth. Because the

exposure to temperature above the thresholds decreases in response to threshold in-

crease, the estimated share decreases as the temperature threshold rises from 30◦C to

35◦C.

The specification for the growing degree days is changed from a linear piece-wise

specification to a more flexible binning specification that calculate the accumulation

of heat for each 3◦C or 5◦C temperature interval that allows the data instead of para-

metric assumptions to determine the temperature-revenue relationship (Deschênes and

Greenstone, 2011) . The specifications for precipitation, additional climate variables

and agricultural inputs remain the same as those for the baseline regression. The re-

sults are presented in Figure 3.4. The results of significant decline in the sensitivity of

revenue to extreme temperatures (above 33 ◦C for the 3◦C interval or above 35 ◦C for

the 5 ◦C interval) and the consequential effects on the growth of agricultural revenue

remain to be robust when the specification for the growing degree days is switched
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from a linear piecewise form to a more flexible binning form.

A model without controlling for the input variables as an alternative for the model

in equation (1) is estimated to investigate the impacts of input variables as bad controls

on the empirical results. Inputs may be responsive to weather shocks and will generate

a problem of bad control that may bias the weather effects on revenue if inputs are

incorporated into the model of production function (Angrist and Pischke, 2008). We

first evaluate the degree of bias caused by the input variables as bad controls in the

following illustrative example. Suppose the outcome variable y is determined by a single

input x, an index for extreme weather conditions z (e.g. extreme high temperatures)

and the error term ν in equation (4). In equation (5) the input is also determined by

the weather index and an error term e which is uncorrelated with the error term ε for

the outcome variable. Leaving the input variable aside, we can estimate equation (6).

yi = β · xi + γ · zi + νi (3.4)

xi = ρ · zi + ei (3.5)

yi = π · zi + ui (3.6)

It is straightforward to derive that π = γ + β · ρ and the estimator π̂ = γ̂ + β̂ · ρ̂

where β̂, γ̂, ρ̂ is the least-squares estimator for β, γ and ρ, respectively. If extreme

weather exposure negatively affects use of inputs, i.e. ρ < 0 and inputs increase

agricultural outputs i.e. β > 0, the estimate of extreme weather effect on agricultural

outputs (measured by revenue per capita) in equation (4) will be attenuated towards

zero compared the estimate in equation (6). If we estimate a period-specific version

of the model in equation (6), the Oaxaca-Blinder decomposition for the growth of the

150



How Does Temperature Affect the Agricultural Growth in China: 1981 to 2010 Chapter 3

agricultural outputs between period a and b can be derived as following:

yb − ya = π̂a(zb − za) + zb(π̂b − π̂a)

= π̂a∆z + zb(γ̂b + β̂b · ρ̂b − γ̂a − β̂a · ρ̂a)

= π̂a∆z + zb(∆γ̂ + β̂a ·∆ρ̂+ ∆β̂ · ρ̂b) (3.7)

where ∆β̂ = β̂b − β̂a, ∆γ̂ = γ̂b − γ̂a and ∆ρ = ρ̂b − ρ̂a. ∆γ̂ is the temporal change in

weather effects estimated in the model incorporating the input variable. If the input

sensitivity to extreme weather shock ρ declined from period a to period b and the

decline ∆ρ is sizable such that ρb is close to zero, ∆π̂>∆γ̂ > 0 i.e. the portion of the

agricultural growth due to change in the weather sensitivity estimated in the model

without controlling for input variables should be larger than that estimated in the

model controlling for inputs variables. This is intuitive because the decline in weather

sensitivity captured by the model omitting input variables incorporates the decline in

the direct effects of extreme weather conditions on agricultural outcomes as well as the

decline in the effects of extreme weather on inputs.

We next examine the input sensitivity to weather and how estimation of the decom-

position components will be changed if input variables are dropped. Table 3.3 reports

the impacts of weather shocks on use of inputs by time periods. The baseline 15-year

period specification is used. It shows that labor and fertilizer input is significantly

used less when there is additional exposure to temperatures above 33 ◦C or additional

precipitation. Machinery and irrigation coverage are little responsive to extreme tem-

perature shocks but are more responsive to precipitation shocks. Machinery may be

used to substitute for labor when it is hard for farmers to work in the field. Excessive

precipitation can provide sufficient water sources for irrigation. On the other hand, the
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temperature sensitivity of labor and fertilizer declined significantly as shown by the p

value for the test of whether the temperature sensitivity of inputs remain unchanged

across the two periods while precipitation sensitivity of the two inputs remained stable.

Due to the substantial decline, the temperature sensitivity of labor and fertilizer in the

post-1996 period is close to zero. In a nutshell, the temperature sensitivity of inputs

either declined to a level close to zero or minimal, suggesting that (1) the negative im-

pact of extreme temperature on agricultural revenue will become larger in magnitude

and (2) the contribution of decline in the extreme temperature effects to the growth of

agricultural revenue will become larger in the model without input variables.

Table 3.4 reports the empirical results of the OB decomposition model without

input variables. The extreme temperature effects on the agricultural revenue become

larger in magnitude compared to those in the model with inputs. This is intuitive

because estimate of the extreme temperature impacts in the model without input vari-

ables captures both the direct impacts and impacts of extreme temperatures through

the mechanism of negatively affecting inputs use. The extreme temperature effects

decreased by 11.64 log points from the pre-1996 period to the post-1996 period, con-

tributing to 7.15 log points of growth of agricultural revenue. The point estimate of the

decomposition component for the decline in the extreme temperature effects is higher

than the point estimate in the model with inputs controlled, which is 6.1 log points

shown in Table 3.2. This is because decline in temperature sensitivity of labor and fer-

tilizer adds to the decline in the direct effects of extreme temperatures on agricultural

revenue, generating a larger extent of decline in the aggregate extreme temperature

effects. However, we cannot conclude that the estimated components of the decline in

temperature sensitivity in the two models are significantly different given the difference

between the two estimates is less than the summation of the corresponding standard
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errors. So incorporation of inputs as outcomes of weather conditions does not generate

significant bias on estimation.

3.5 Benefits of Inputs in Terms of Moderating Ex-

treme Heat Impacts

Though the empirical analysis above documents the substantial contribution of the

decline in the temperature sensitivity to the growth of agricultural revenue in the last

30 years but what are the mechanisms for the decline in the temperature sensitivity

remains an open question. Following Wang et al. (2020), we will quantify the extent to

which moderating extreme temperature impacts through the four inputs contributes to

the growth of agricultural revenue. The Oaxaca-Blinder decomposition method allows

us not only to quantify the contribution of the moderation effects through each input

but also to figure out the respective role of inputs expansion and evolution of marginal

moderation effects of each input in promoting the growth of revenue. To do this, we

incorporate interactions of all the temperature and precipitation variables with the four

inputs (labor, machinery, fertilizer and irrigation) into the period-specific production

function in equation (1). We stick to the baseline 15-year period specification.

The results are reported in Table 3.5. The moderation effect of irrigation on temper-

ature sensitivity has significantly increased from the pre-1996 period to the post-1996

period. Expansion of irrigation coverage from 0 to 100% in the post-1996 period is

associated with about 12.27 percentage points decrease in the impacts of temperatures

above 33 ◦C while the moderation effect in the pre-1996 period is only 2.64 percentage

points decrease in extreme temperature effects. The significant improvement of the

irrigation effects in terms of moderating extreme temperature impacts generates 2.68
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percentage points of agricultural growth which account for 2.36% of the overall growth

of agricultural revenue in the last 30 years. Irrigation coverage only increased by 3 per-

centage points from the pre-1996 period to the post-1996 period, contributing minimal

of the growth. Therefore, improvement of marginal moderation effect of irrigation plays

a dominant role in moderating extreme temperature impacts. The interaction effects

between inputs and low temperature bins are presented in Table C.1 in Appendix C.

The extreme temperature impact on agricultural revenue that are not moderated

through irrigation are captured by the variable of GDD above the threshold (GDD

above T) and decreased by 7.08 percentage points (0.1556-0.848) , which contributes

3.84 percentage points of revenue growth accounting for 3.37% of the overall revenue

growth. The decline in extreme temperature impacts either through the mechanism of

irrigation or other unknown mechanisms generates 6.44 percentage points of revenue

growth in total (0.0384+0.0268) and the increase in the moderation effects through

irrigation explains about 41% of the aggregate effects of the decline in extreme tem-

perature impacts in terms of agricultural growth.

This paper complements to Wang et al. (2020) that find that irrigation expansion

can explain about 30% of the decline of extreme temperature impacts on crop yields

by (1) quantifying the contribution of irrigation to the growth of agricultural revenue

through the mechanism of moderating the temperature sensitivity and (2) pointing out

that the irrigation benefits are achieved through improving the marginal benefits of ir-

rigation in terms of moderating the extreme temperature effects rather than expanding

irrigation coverage.

Irrigation is found to moderate the effects of precipitation shocks on agricultural

revenue. Expansion of irrigation coverage from 0 to 100% is associated with 10.63

percentage points of decrease in the mild precipitation impacts on agricultural revenue
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and with 1.05 percentage points of increase in the excessive precipitation impacts.

Agricultural sensitivity to extra amount of mild and excessive precipitation decreased

significantly mainly because of improvement of marginal moderation effects of irrigation

on precipitation effects rather than expansion of irrigation coverage. We do not find

significant moderation effects of inputs other than irrigation.

3.6 Conclusion

A series of fundamental agricultural reforms since 1978 has dramatically stimulated

the growth of agricultural productivity (Lin, 1992). During the same time period,

China has experienced rapid temperature rise Wang et al. (2020). Though there are

intensive studies on the climate-agriculture relationship in China (Chen et al., 2016;

Zhang et al., 2017; Chen and Gong, 2021; Wang et al., 2020), few studies have analyzed

how the impacts of extreme hot temperatures on agricultural outcomes account for the

growth of agricultural productivity (Zhang and Carter, 1997). Inspired by the labor

economics literature on decomposition methods starting with the seminal papers of

Oaxaca (1973) and Blinder (1973), we apply the decomposition method to partition

the agricultural growth into the changes in the predictors and the change of how the

predictors are associated with the outcome variable and quantify the contribution Per-

centage of each predictor including extreme hot temperature, to the overall growth of

agricultural outcome.

The empirical results show that labor elasticity is decreasing, machinery elasticity

remains and fertilizer elasticity are increasing. The extreme temperature impact on

agricultural revenue in the post-1996 period is more than 60% lower than that in the

pre-1996 period, contributing 6.1 percentage points of growth of agricultural revenue,
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which is about 5.4% of the overall growth of agricultural revenue. The result is robust

to the specification of 10-year period with rolling time window, binning specifications

of growing degree days that calculate the accumulation of heat for 3 ◦C and 5 ◦C in-

terval as well as model specification without input variables as an investigation of bad

control problem. We provide suggestive evidence that irrigation plays an important

role in moderating extreme temperature effects and precipitation effects. Dramatic in-

crease in the marginal benefit of irrigation in terms of moderating extreme temperature

effects and precipitation effects dominates increase in the irrigation coverage generates

significant in contributing to the agricultural growth. Increase in the coefficient for

irrigation’s moderation effect (interaction between extreme temperature and irrigation

coverage) contributes 2.36 percent of the agricultural growth, which accounts for about

40% of the contribution of the decline in the temperature sensitivity to the overall rev-

enue growth. In addition to moderating extreme temperature effects, irrigation also

contributes to the growth of agricultural revenue directly.

The empirical results can be interpreted in some lights. Perhaps the most rel-

evant to the topic of climate change is to link the decline in extreme temperature

impacts to climate change adaptation (Barreca et al., 2016; Wang et al., 2020). The

irrigation-driven decline in the extreme temperature impacts suggest substantial ef-

fects of adaptation to climate change in Chinese agriculture. The sizable contribution

of decline in extreme temperature impacts implies the pecuniary benefits of adaptation

in terms of agricultural revenue. Irrigation contributes to agricultural growth through

both the mechanism of moderating extreme temperature impacts and direct mechanism

to fuel the growth of agricultural productivity, which implies that irrigation benefits

are twofold and should not be underestimated when the investment decision is being

made. Irrigation’s contribution attributable to the increase of marginal moderation
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effects implies that more technology innovation to improve the moderation effects of

irrigation are needed for controlling the extreme temperature impacts.

3.7 Tables for Chapter 3

Table 3.1: Summary Statistics

1981-1995 1996-2010

Mean Min Max Std.Dev. Mean Min Max Std.Dev.
Outcome Variable
Agricultural Revenue (10,000 CNY/Ha) 0.52 0.04 19.76 0.33 1.31 0.06 62.18 126.86
Observations 26212 28921

Inputs Variables
Labor (persons/Ha) 4.21 0.01 51.18 2.33 3.92 0.00 129.28 2.58
Machinery (Kilowatt/Ha) 3.50 0.17 136.00 2.87 7.60 0.14 217.05 6.43
Fertilizer (Tons/Ha) 0.33 0.02 8.13 0.23 0.62 0.02 17.71 0.51
Irrigation (%) 0.57 0.00 1.00 0.28 0.60 0.00 1.00 0.27
Observations 26212 28865

Weather Variables
Temperature (Daily Average: ◦C) 14.00 -6.34 26.37 4.68 14.67 -5.77 27.00 4.76
Precipitation (Daily Average: mm) 2.60 0.01 34.42 1.39 2.59 0.00 9.89 1.43
Humidity (Daily Average: %) 71.80 25.83 90.62 8.88 69.95 25.30 89.64 8.88
Sunshine Duration (Daily Total: Hours) 5.63 1.91 9.63 1.43 5.49 0.19 9.72 1.42
Wind Speed (Daily Average: m/s) 2.26 0.30 9.51 0.96 2.17 0.21 8.29 0.88
Evaporation (Daily Average: mm) 4.13 1.83 13.02 0.90 3.54 0.40 12.02 1.18
Observations 26212 28921

Notes: The mean value of each variable is weighted by the aggregate planted area.
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Table 3.2: The Result for Oaxaca-Blinder Decomposition

β̂1981 β̂1996 β̂1981(X1996 −X1981) X1996(β̂1996 − β̂1981)

Decomposition Percent Decomposition Percent
Y 1996 − Y 1981 0.4036∗∗∗ 35.64%∗∗∗ 0.7289∗∗∗ 64.36%∗∗∗

( 0.0289) (0.0247) (0.0302) (0.0247)

Log Labor 0.2437∗∗∗ 0.1303∗∗∗ -0.0171∗∗∗ -1.51%∗∗∗ -0.1229∗∗∗ -10.86%∗∗∗
(0.0103 ) (0.0071) (0.0042) (0.0038) (0.0415) (0.0361)

Log Machinery 0.1648∗∗∗ 0.2845∗∗∗ 0.2699∗∗∗ 23.83%∗∗∗ 0.2239∗∗∗ 19.77%∗∗∗
(0.0062) (0.0084) (0.0192) ( 0.0167) (0.0455) (0.0401)

Log Fertilizer 0.2069∗∗∗ 0.2674∗∗∗ 0.1840∗∗∗ 16.25%∗∗∗ -0.0395∗∗∗ -3.49%∗∗
(0.0075) (0.0066) (0.0157) ( 0.0136) (0.0162) ( 0.0143)

Irrigation (%) 0.1597∗∗∗ 0.5687∗∗∗ 0.0101∗∗∗ 0.89%∗∗∗ 0.2580∗∗∗ 22.78%∗∗∗
(0.0221) ( 0.0170) (0.0030) (0.0026) ( 0.0409) ( 0.0363)

GDD between -0.0062∗∗∗ -0.0073∗∗∗ -0.0191∗∗∗ -1.68%∗∗∗ -0.1349 -11.91%
0◦C and 10 ◦C (0.0006) (0.0005) (0.0049) (0.0043) (0.2390) (0.2106)

GDD between 0.0035∗∗∗ 0.0051∗∗∗ 0.0314∗∗∗ 2.77%∗∗∗ 0.1946∗∗ 17.18%∗∗
10 ◦C and T (0.0003) (0.0002) (0.0055) (0.0049) (0.0976) (0.0858)

GDD above T -0.1421∗∗∗ -0.0510∗∗∗ -0.0251∗∗∗ -2.22%∗∗ 0.0610∗∗∗ 5.40%∗∗∗
(0.0105) (0.0092) (0.0101) (0.0098) (0.0201) (0.0184)

Precip. 0.1466∗∗∗ 0.1615∗∗∗ -0.0041∗∗ -0.36%∗ 0.0385 3.40%
(0.0143) (0.0121) (0.0021) (0.0019) (0.0782) (0.0691)

Precip. Square -0.0159∗∗∗ -0.0112∗∗∗ 0.0003 0.02% 0.0376∗∗ 3.30%∗∗
(0.0018) (0.0015) (0.0014) (0.0013) ( 0.0157) (0.0141)

Additional N/A N/A -0.0437∗∗∗ -3.86%∗∗∗ -0.3074 -26.96%
Climate Vars. N/A N/A (0.0096) (0.0073) (0.5770) (0.5096)

Average. of -0.9405∗∗∗ -0.4751∗∗∗ N/A N/A 0.4654∗∗ 41.19%∗∗
Province-Year FEs (0.1042) (0.0831) N/A N/A (0.2211) ( 0.2021)
Observations 54584 54584 54584 54584 54584 54584
R squared 0.8820 0.8820 N/A N/A N/A N/A
T threshold 33 ◦C 33 ◦C 33 ◦C 33 ◦C 33 ◦ C 33 ◦ C
No. of Clusters 1955 1955 1955 1955 1955 1955

Notes: The outcome variable is the difference in the average agricultural revenue between 1981-
1995 and 1996-2010. The regression is weighted by the county-average farmed area from 1981 to
2010. Additional weather variables include linear and quadratic forms of accumulative precipitation,
sunshine duration, average relative humidity, evaporation and wind speed. Standard errors listed in
parentheses are clustered at the county level. The average of province-year fixed effects by time period
are estimated by 1

29
1
15

∑29
p=1

∑1995
t=1981 η̂pt and

1
29

1
15

∑29
p=1

∑2010
t=1996 η̂pt, where there are 29 provinces in

the sample data. ***p<0.01, **p<0.05, * p<0.1
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Table 3.3: The Impacts of Weather Shocks on use of Inputs by Period: 1981-1995
versus 1996-2010

(1) (2) (3) (4)
Log Labor Log Machinery Log Fertilizer Irri. Ratio

period=1981 × GDD btw. 0.0011 0.0010 0.0010 0.0011
0◦C and 10 ◦C (0.0009) (0.0012) (0.0013) (0.0006)

period=1996 × GDD btw. -0.0018 0.0009∗∗∗ -0.0001 0.0005
0◦C and 10 ◦C (0.0011) (0.0003) (0.0014) (0.0004)

period=1981 × GDD btw. 0.0032∗∗∗ 0.0010 -0.0005 0.0007
10◦C and 33◦C (0.0009) (0.0009) (0.0008) (0.0005)

period=1996 × GDD btw. 0.0025∗∗∗ -0.0007 -0.0002 0.0001
10◦C and 33◦C (0.0008) (0.0009) (0.0008) (0.0003)

period=1981 × GDD above 33◦C -0.0381∗∗∗ -0.0062 -0.0201∗∗∗ -0.0053
(0.0082) (0.0041) (0.0036) (0.0033)

period=1996 × GDD above 33◦C -0.0079∗∗∗ 0.0015 -0.0052∗∗ -0.0065∗
(0.0023) (0.0012) (0.0025) (0.0035)

period=1981 × Precip. -0.0128∗∗∗ 0.0290 -0.0793∗∗∗ 0.0080
(0.0045) (0.0166) (0.0167) (0.0055)

period=1996 × Precip. -0.0156∗∗∗ 0.0311∗∗∗ -0.0769∗∗∗ 0.0092
(0.0054) (0.0174) (0.0157) (0.0059)

period=1981 × Precip. Square -0.0020∗∗∗ -0.0012∗∗∗ -0.0003 0.0002∗∗
(0.0002) (0.0003) (0.0002) (0.0001)

period=1996 × Precip. Square -0.0005∗∗∗ -0.0008∗∗∗ -0.0007∗∗ 0.0003∗
(0.0002) (0.0002) (0.0003) (0.0002)

Constant 2.4168∗∗∗ 2.1105∗∗∗ -0.0669 0.6250∗∗∗
(0.2473) (0.3367) (0.3432) (0.1089)

p-Value for test of 0.0005 0.1162 0.0000 0.8010
β1981

GDD above T = β1996
GDD above T

Observations 48404 48140 48404 48117
R squared 0.9158 0.8986 0.8582 0.8825
Add. Climate Vars. Yes Yes Yes Yes
County FE Yes Yes Yes Yes
Province-Year FE Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered

Notes: Regressions are weighted by the county-average farmed area from 1981 to 2010.
Additional climate variables include linear and quadratic forms of sunshine duration, aver-
age relative humidity, evaporation and wind speed. Standard errors listed in parentheses
are clustered at the county level. ***p<0.01, **p<0.05, * p<0.1
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Table 3.4: The Result for Oaxaca-Blinder Decomposition without Controlling Agricul-
tural Inputs

β̂1981 β̂1996 β̂1981(X1996 −X1981) X1996(β̂1996 − β̂1981)

Decomposition Percent Decomposition Percent
Y 1996 − Y 1981 -0.0122 -1.07% 1.1528∗∗∗ 101.07%∗∗∗

( 0.0127) (0.0101) (0.0188) (0.0111)

GDD between 0.0119∗∗∗ 0.0107∗∗∗ 0.0354∗∗∗ 3.10%∗∗∗ -0.0862∗∗∗ -7.56%∗∗∗
0◦C and 10 ◦C (0.0007) (0.0006) (0.0065) (0.0053) (0.0129) (0.0107)

GDD between 0.0021∗∗∗ 0.0034∗∗∗ 0.0188∗∗∗ 1.65%∗∗∗ 0.1691∗∗ 14.83%∗∗
10 ◦C and T (0.0003) (0.0004) (0.0086) (0.0054) (0.838) (0.0706)

GDD above T -0.1688∗∗∗ -0.0624∗∗∗ -0.0371∗∗∗ -3.25%∗∗∗ 0.0715∗∗ 6.27%∗∗
(0.0127) (0.0109) (0.0125) (0.0106) (0.0312) (0.0262)

Precip. 0.1291∗∗∗ 0.1320∗∗∗ -0.0063∗∗ -0.55%∗∗ 0.0072 0.63%
(0.0177) (0.0122) (0.0028) (0.0026) (0.0091) (0.0082)

Precip. Square -0.0088∗∗∗ -0.0072∗∗∗ 0.0004 0.03% 0.0132 1.16%
(0.0022) (0.0020) (0.0013) (0.0010) (0.0271) (0.0201)

Additional N/A N/A -0.0234∗∗ -2.05%∗∗ -0.2888 -25.33%
Climate Vars. N/A N/A (0.0108) (0.0095) (0.6901) (0.6054)

Average of -2.8120∗∗∗ -1.5452∗∗∗ N/A N/A 1.2668∗∗∗ 111.12%∗∗
Province-year FEs (0.1572) (0.1317) N/A N/A (0.4167) ( 0.4029)
Observations 55132 55132 55132 55132 55132 55132
R squared 0.7214 0.7214 N/A N/A N/A N/A
T threshold 33 ◦C 33 ◦C 33 ◦C 33 ◦C 33 ◦C 33 ◦C
No. of Clusters 1957 1957 1957 1957 1957 1957

Notes: The outcome variable is the difference in the average agricultural revenue between 1981-
1995 and 1996-2010. The regression is weighted by the county-average farmed area from 1981 to
2010. Additional weather variables include linear and quadratic forms of accumulative precipitation,
sunshine duration, average relative humidity, evaporation and wind speed. Standard errors listed
in parentheses are clustered at the county level. The average of province-year fixed effects by
time period are estimated by 1

29
1
15

∑29
p=1

∑1995
t=1981 η̂pt and

1
29

1
15

∑29
p=1

∑2010
t=1996 η̂pt, where there are 29

provinces in the sample data. ***p<0.01, **p<0.05, * p<0.1
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Table 3.5: The Benefits of Inputs in terms of Moderating Extreme Temperature Im-
pacts

β̂1981 β̂1996 β̂1981(X1996 −X1981) X1996(β̂1996 − β̂1981)

Decomposition Percent Decomposition Percent
Y 1996 − Y 1981 0.3842∗∗∗ 33.92%∗∗∗ 0.7483∗∗∗ 66.08%∗∗∗

(0.0258) (0.0217) (0.0254) (0.0228)
Log Labor 0.2998∗∗∗ 0.1875∗∗∗ -0.0230∗∗∗ -2.02%∗∗∗ -0.1256∗∗∗ -11.02%∗∗∗

(0.0101 ) (0.0185) (0.0079) (0.0038) (0.0305) (0.0281)
Log Machinery 0.1712∗∗∗ 0.2970∗∗∗ 0.2573∗∗∗ 23.83%∗∗∗ 0.2203∗∗∗ 19.32%∗∗∗

(0.0171) (0.0199) (0.0484) ( 0.0417) (0.0456) (0.0402)
Log Fertilizer 0.2273∗∗∗ 0.2814∗∗∗ 0.1786∗∗∗ 15.67%∗∗∗ -0.0381∗∗ -3.49%∗∗

(0.0255) (0.0217) (0.0372) ( 0.0336) (0.0192) ( 0.0153)
Irrigation (%) 0.0936∗∗∗ 0.3292∗∗∗ 0.0056 0.49% 0.1487∗∗∗ 13.04%∗∗∗

(0.0185) ( 0.0155) ( 0.0070) (0.0026) ( 0.0309) ( 0.0263)
GDD between -0.0046∗∗∗ -0.0071∗∗∗ -0.0142∗∗∗ -1.68%∗∗∗ -0.3033 -26.78%
0◦C and 10 ◦C (0.0007) (0.0006) (0.0047) (0.0043) (0.2382) (0.2095)
GDD between 0.0031∗∗∗ 0.0052∗∗∗ 0.0275∗∗∗ 2.77%∗∗∗ 0.2560∗∗∗ 22.61%∗∗
10 ◦C and 33◦C (0.0003) (0.0002) (0.0055) (0.0049) (0.0955) (0.0839)
GDD above 33◦C -0.1556∗∗∗ -0.0848∗∗∗ -0.0248∗∗ -2.18%∗∗ 0.0384∗∗ 3.37%∗∗

(0.0232) (0.0168) (0.0106) (0.0095) (0.0185) (0.0159)
Log Labor × -0.0094 -0.0050 -0.0022 -0.19% 0.0351 3.08%
GDD above 33◦C (0.0185) (0.0103) (0.0021) (0.0240) (0.0284) (0.0250)
Log Machinery × 0.0063 0.0102 0.0058 0.51% 0.0497 3.83%
GDD above 33◦C (0.0095) (0.0084) (0.0101) (0.0086) (0.0434) (0.0384)
Log Fertilizer × -0.0068 -0.0048 -0.0097 0.85% -0.0071 -0.63%
GDD above 33◦C (0.0165) (0.0154) (0.0111) (0.0098) (0.0114) (0.0101)
Irrigation × 0.0264∗∗∗ 0.1227∗∗∗ 0.0008 0.07% 0.0268∗∗ 2.36%∗∗∗
GDD above 33◦C (0.0082) (0.0197) (0.0022) (0.0017) (0.0126) (0.0097)
Precip. 0.1578∗∗∗ 0.2477∗∗∗ -0.0044 -0.36%∗ 0.2242∗∗∗ 19.67%∗∗

(0.0143) (0.0210) (0.0039) (0.0019) (0.0701) (0.0691)
Precip. Square -0.0155∗∗ -0.0146∗∗ 0.0001 0.02% 0.0072 0.63%

(0.0071) (0.0055) (0.0025) (0.0013) ( 0.0107) (0.0091)
Log Labor × -0.0096 -0.0050 -0.0036 -0.32% 0.0153 1.34%
Precip. (0.0208) (0.0103) (0.0058) (0.0044) (0.0201) (0.0184)
Log Machinery × 0.0073∗ 0.0059∗ 0.0174 1.53% -0.0025 -0.22%
Precip. (0.0039) (0.0031) (0.141) (0.0122) (0.0192) (0.0178)
Log Fertilizer × -0.0276 -0.0168 -0.0611 -5.39% 0.0207 1.81%
Precip. (0.0197) (0.0154) (0.0794) (0.0701) (0.0167) (0.0154)
Irrigation × -0.0192 -0.1063∗∗∗ -0.0096 -0.84% -0.0450∗∗ -3.95%∗∗
Precip. (0.0158) (0.0242) (0.0076) (0.0062) (0.0101) (0.0179)
Log Labor × -0.0044 -0.0029 -0.0048 -0.42% 0.0196 1.72%
Precip. Square (0.0046) (0.0033) (0.0064) (0.0062) (0.0301) (0.0292)
Log Machinery × 0.0047 0.0054 0.0360 3.16% 0.0101 0.88%
Precip. Square (0.0034) (0.0032) (0.0413) (0.0314) (0.0107) (0.0094)
Log Fertilizer × 0.0036 -0.0039 0.0253 2.19% 0.0306 2.68%
Precip. Square (0.0033) (0.0026) (0.0111) (0.0103) (0.0301) (0.0232)
Irrigation × 0.0010 0.0105∗∗ 0.0019 0.17%∗∗ 0.0484∗∗ 4.24%∗∗∗
Precip. Square (0.0018) (0.0042) (0.0027) (0.0073) (0.0231) (0.0184)
Observations 54584 54584 54584 54584 54584 54584
R squared 0.9239 0.9239 N/A N/A N/A N/A
No. of Clusters 1955 1955 1955 1955 1955 1955
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3.8 Figures for Chapter 3

Figure 3.1: Sensitivity of Results to the Period Length of 10 Years:
1981-1990 and 1991-2010

(a) Coefficients for Predictors by time pe-
riods

(b) The Decomposition Components
of Predictors’ Change and Coefficients’
Change

(c) The Share of Predictors’ Change
and Coefficients’ Change in the Overall
Growth of Agricultural Revenues

Notes: Panel (a) depicts β̂1981 and β̂1991 that are estimated in equation (1) using time pe-
riods of 1981-1990 and 1991-2000. Equation (1) is weighted by the county-level average of
farmed area. Panel(b) depicts the estimates of β̂1981(X1991−X1981) (predictors’ change) and
X1991(β̂1991 − β̂1981) (coefficients’ change), respectively. Panel (c) depicts β̂1981(X1991−X1981)

Y 1991−Y 1981

and X1991(β̂1991−β̂1981)

Y 1991−Y 1981
,the corresponding share of the two components in the overall growth of

agricultural revenues per hectare.
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Figure 3.2: Sensitivity of Results to the Period Length of 10 Years:
1991-2000 and 2001-2010

(a) Coefficients for Predictors by time pe-
riods

(b) The Decomposition Components
of Predictors’ Change and Coefficients’
Change

(c) The Share of Predictors’ Change
and Coefficients’ Change in the Overall
Growth of Agricultural Revenues

Notes: Panel (a) depicts β̂1991 and β̂2001 that are estimated in equation (1) using time pe-
riods of 1991-2000 and 2001-2010. Equation (1) is weighted by the county-level average of
farmed area. Panel(b) depicts the estimates of β̂1991(X2001−X1991) (predictors’ change) and
X2001(β̂2001 − β̂1991) (coefficients’ change), respectively. Panel (c) depicts β̂1991(X2001−X1991)

Y 2001−Y 1991

and X2001(β̂2001−β̂1991)

Y 2001−Y 1991
,the corresponding share of the two components in the overall growth of

agricultural revenues per hectare.
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Figure 3.3: The Shares of Predictors’ Change and Coefficients’ Change in the Growth of
Agricultural Revenues from 1981-1995 to 1996-2010 for Varying Temperature Thresh-
olds:
–Sensitivity of Decomposition Estimation to Temperature Thresholds

(a) Temperature Threshold T = 30 ◦C (b) Temperature Threshold T = 31 ◦C

(c) Temperature Threshold T = 32 ◦C (d) Temperature Threshold T = 34 ◦C

(e) Temperature Threshold T = 35 ◦C
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Figure 3.4: Sensitivity of Decomposition Estimation to A Temperature Bin Specifica-
tion

(a) Coefficients for Predictors by time pe-
riods: 3 ◦C Temperature Interval

(b) The Shares of Predictors’ Change and
Coefficients’ Change in the Growth of
Agricultural Revenues: 3 ◦C Temperature
Interval

(c) Coefficients for Predictors by time pe-
riods: 5 ◦C Temperature Interval

(d) The Shares of Predictors’ Change and
Coefficients’ Change in the Growth of
Agricultural Revenues: 5 ◦C Temperature
Interval

Notes: Figure 4 depicts depicts the period-specific temperature-revenue relationship that is
estimated in equation (1) using a binning specification for growing degree days (in Panel
(a) and (c)) and the shares of predictors’ change and coefficients’ change in the growth of
agricultural revenues i.e. β̂1996(X1996−X1981)

Y 1996−Y 1981
and X1996(β̂1996−β̂1981)

Y 1996−Y 1981
(in Panel (b) and (d)). Panel

(a) and (b) are for the setting of 3 ◦C temperature interval while Panel (c) and (b) are for the
5 ◦C interval. The period 1981-1995 and 1996-2010 are used as the specification for period
division. Each regression is weighted by the county-level average of farmed area.
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Appendix for Chapter 1

A.1 Figures and Tables on Summary Statistics of Data

Figure A.1: The Maps of Crop Regions: Corn and Soybean

(a) The Map of Corn Regions (b) The Map of Soybean Regions

Notes: Figure A.1 depicts the growing regions of corn and soybean. Most of the regions
are directly named after their geographical locations. The HuangHuaiHai (HHH) region is
largely located on the HuangHuaiHai Plain which is a alluvial plain created by the deposition
of sediment over a long period of time by Huang (Yellow) River, Huai River and Hai River.
Similarly, the Loess region is largely the area of the Loess Plateau which is named for its most
distinctive feature, the highly friable loess soil that has been deposited by wind storms over
the ages.
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Figure A.2: Growing Seasons of Crops By Region: Corn and Soybean

(a) Growing Seasons of Corn By Region (b) Growing Seasons of Soybean By Re-
gion

Notes: This graph exhibits the full growing season of all the main types of crops in terms of
planted hectares. For example, the main types of soybean planted in the South are spring,
summer and autumn and the consecutive growing seasons of the three types of soybean span
over the period from April to August.

167



Appendix for Chapter 1 Chapter A

Figure A.3: The Locations of Weather Stations from 1981 to 2010

Notes: The black dots in the map denote the locations of all the 824 weather stations. All
the 824 stations remained to be active from 1981 to 2010, avoiding selection bias created by
opening and closure of weather stations from time to time.

A.2 Temperature-Yield Relationship

A The Role of Additional Climate Variables in the Temperature-
Yield Relationship
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Table A.1: The Evolution of Temperature-Yield Relationship of Corn: the Impacts of
Additional Climate Variables

(1) (2) (3) (4) (5)
period=1981 × Humidity 4.8558∗∗∗ 3.5170∗∗ 5.4263∗∗∗ 3.4188∗ 5.2651∗∗∗

(1.3424) (1.4536) (1.3551) (1.8339) (1.6802)
period=1996 × Humidity 3.0706∗∗∗ 1.0243 2.4456∗∗ 0.9064 2.5533∗∗

(0.7100) (0.9627) (0.9502) (1.2051) (1.0983)
period=1981 × Humidity 2 -2.7303∗∗∗ -2.5158∗∗ -3.4348∗∗∗ -2.4548∗ -3.3423∗∗∗

(0.9218) (0.9907) (0.9095) (1.2996) (1.1992)
period=1996 × Humidity 2 -2.0531∗∗∗ -0.5720 -1.4890∗∗ -0.4797 -1.5943∗∗

(0.5002) (0.6679) (0.6532) (0.8403) (0.7463)
period=1981 × Sunshine 4.5166∗ -1.5612 0.3593 -3.1237 -0.0303

(2.4985) (2.6176) (2.2980) (3.7980) (3.2589)
period=1996 × Sunshine 2.7386∗ 8.7506∗∗∗ 4.9695∗∗ 8.6309∗∗∗ 4.4465∗

(1.5250) (2.3257) (1.9995) (3.0080) (2.6196)
period=1981 × Sunshine 2 1.1678 31.9171 14.2726 40.7551 16.7578

(18.4792) (20.4081) (19.3290) (29.8051) (26.1956)
period=1996 × Sunshine 2 0.1462 -53.1059∗∗∗ -26.4431 -50.6477∗∗ -23.5103

(14.0209) (20.0276) (18.5532) (24.1883) (21.8004)
period=1981 × Wind 12.6822∗∗∗ 2.9003 1.7830 3.1931 1.9452

(4.4450) (4.3263) (4.2325) (4.0846) (3.8398)
period=1996 × Wind -2.5224 -4.5894 -1.9539 -4.7509 -2.1635

(3.9878) (4.0738) (4.3082) (4.0699) (4.0810)
period=1981 × Wind 2 -284.8097∗∗∗ 16.3355 74.9892 13.8005 70.4159

(94.9079) (87.9925) (93.9014) (76.2907) (75.1698)
period=1996 × Wind 2 100.4426 178.5359∗∗ 111.2850 181.6654∗∗ 115.4660

(86.8305) (86.6485) (98.2608) (82.4844) (81.9532)
period=1981 × Evaporation -12.4397∗∗∗ -12.8965∗∗∗ -6.6016∗∗∗ -11.0622∗∗∗ -6.8851∗∗

(3.5828) (2.7598) (2.4201) (3.0015) (2.8389)
period=1996 × Evaporation -1.2328∗ -0.7532 -0.7776 -0.6220 -0.6315

(0.6641) (0.7929) (1.0957) (0.7254) (0.8274)
period=1981 × Evaporation 2 77.3252∗∗∗ 75.6097∗∗∗ 46.8512∗∗ 62.5565∗∗∗ 47.4403∗∗

(26.5534) (21.5832) (20.8486) (19.5488) (19.8966)
period=1996 × Evaporation 2 2.7237 1.9537 4.0656 0.2661 1.6231

(6.4317) (8.8349) (9.9723) (8.0898) (7.7328)
period=1981 × GSTDD below T 0.0052 0.0136∗∗∗ 0.0078∗ 0.0137∗∗∗ 0.0081∗∗

(0.0047) (0.0036) (0.0041) (0.0044) (0.0041)
period=1996 × GSTDD below T 0.0136∗∗∗ -0.0011 -0.0002 -0.0016 -0.0000

(0.0041) (0.0037) (0.0041) (0.0046) (0.0041)
period=1981 × GSTDD above T -0.0012 -0.0051 -0.0014 -0.0052 -0.0008

(0.0070) (0.0060) (0.0052) (0.0076) (0.0071)
period=1996 × GSTDD above T -0.0187∗∗∗ -0.0153∗∗ -0.0131∗ -0.0149∗∗ -0.0125∗∗

(0.0068) (0.0072) (0.0079) (0.0061) (0.0059)
Observations 59269 59269 59269 59274 59274
R squared 0.7525 0.7981 0.8421 0.0338 0.0210
Fixed Effects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Note: This table follows Table 1.4 to present the impacts of additional climate variables on corn yields.
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Table A.2: The Evolution of Temperature-Yield Relationship of Soybean: the Impacts
of Additional Climate Variables

(1) (2) (3) (4) (5)
period=1981 × Humidity 0.4105 3.3967 1.8653 3.3451 2.0624

(2.4224) (2.9606) (3.0894) (2.8254) (2.2054)
period=1996 × Humidity 4.9127∗∗ 3.0832 2.8996 3.4287 2.7038

(1.9167) (2.5472) (2.3184) (2.5587) (1.9574)
period=1981 × Humidity 2 -0.6570 -2.4395 -1.3947 -2.3723 -1.5312

(1.5859) (1.9907) (2.0197) (1.8879) (1.5082)
period=1996 × Humidity 2 -3.1913∗∗ -1.5905 -1.9717 -1.8375 -1.8703

(1.2839) (1.7860) (1.6238) (1.7915) (1.3251)
period=1981 × Sunshine 11.5723∗∗ 3.3262 0.5132 3.2316 -0.0231

(4.8105) (6.4674) (5.7232) (5.5624) (4.8487)
period=1996 × Sunshine -0.1673 3.1777 11.7199∗∗ 3.3445 11.5340∗∗∗

(3.9256) (5.1432) (5.4419) (5.1919) (4.3031)
period=1981 × Sunshine 2 -46.3149 9.1336 25.5045 10.7672 29.0898

(38.8951) (53.1490) (48.2396) (48.5647) (39.7375)
period=1996 × Sunshine 2 -8.6529 4.2461 -64.2970 2.7104 -64.6412∗

(28.8306) (40.0742) (40.2122) (43.4510) (36.1032)
period=1981 × Wind -0.6193 -2.9659 1.5109 -3.3065 1.4699

(7.0333) (6.9804) (7.4539) (5.9724) (4.8800)
period=1996 × Wind -4.7204 0.2266 1.8803 -0.4208 1.2214

(7.3825) (7.5822) (7.6391) (6.0988) (4.9070)
period=1981 × Wind 2 63.8687 41.4636 68.0034 47.4491 64.0503

(124.5652) (129.5193) (141.3947) (146.0938) (104.6091)
period=1996 × Wind 2 240.8413 79.0646 80.3120 92.1338 89.1135

(157.8163) (160.5469) (167.4935) (148.4572) (110.2699)
period=1981 × Evaporation -1.3909 1.3168 0.4985 -0.1275 -0.4049

(4.5617) (4.9764) (4.6616) (4.7136) (3.4755)
period=1996 × Evaporation 0.1464 1.0166 -0.8119 1.0141 -0.6465

(1.1356) (1.3028) (1.5506) (1.1316) (1.1587)
period=1981 × Evaporation 2 -60.6455 -45.8914 -18.5320 -32.4938 -9.7248

(42.6463) (45.9285) (42.6171) (40.9255) (30.2648)
period=1996 × Evaporation 2 -24.2417∗ -21.2860 -13.9129 -21.0577 -16.1461

(12.7238) (15.4893) (16.3715) (15.6708) (15.3188)
period=1981 × GSTDD below T 0.0128∗∗∗ 0.0027 0.0008 0.0030 0.0006

(0.0037) (0.0042) (0.0038) (0.0034) (0.0030)
period=1996 × GSTDD below T 0.0192∗∗∗ 0.0079∗ 0.0115∗∗ 0.0080∗∗∗ 0.0113∗∗∗

(0.0036) (0.0041) (0.0051) (0.0029) (0.0034)
period=1981 × GSTDD above T -0.0207∗∗∗ -0.0050 -0.0062 -0.0051 -0.0062

(0.0075) (0.0074) (0.0070) (0.0052) (0.0042)
period=1996 × GSTDD above T -0.0227∗∗∗ -0.0133∗∗ -0.0211∗∗ -0.0126∗∗∗ -0.0211∗∗∗

(0.0065) (0.0065) (0.0085) (0.0044) (0.0046)
Observations 54327 54322 54322 54323 54323
R squared 0.6819 0.7265 0.7869 0.0238 0.0239
Fixed Effects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Note: This table follows Table 1.5 to present the impacts of additional climate variables on soybean yields.
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Figure A.4 and A.5 report the estimation of marginal impacts of extreme tempera-
tures on corn and soybean yields using multiple temperature thresholds for the whole
nationwide sample and sub-regions based on cropping regions for each crop. The divi-
sion of cropping regions for corn and soybean are based on Figure A.1. The two figures
are the robustness analysis of estimation sensitivity to temperature thresholds. The
thresholds are introduced as the labels for x-axis. Figure A.4 is about corn and Figure
A.5 is about soybean. All the figures depict the point estimate and the corresponding
95 % confidence interval for the coefficient for GDD above the threshold.
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Figure A.4: Marginal Impacts of Extreme Temperatures on Corn Yields by Regions

(a) Corn: Nationwide (b) Corn: North

(c) Corn: Huanghuaihai (HHH) (d) Corn: Northwest

(e) Corn: South (f) Corn: Southwest

172



Appendix for Chapter 1 Chapter A

Figure A.5: Marginal Impacts of Extreme Temperatures on Soybean Yields by Regions

(a) Soybean: Nationwide (b) Soybean: North

(c) Soybean: Huanghuaihai (HHH) (d) Soybean: Northwest

(e) Soybean: South (f) Soybean: Southwest
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Figure A.6 to A.9 report the estimation of marginal impacts of extreme temper-
atures on corn and soybean yields estimated through a period-wise panel model in
equation (5) using 5 years or 10 years as a period to test the sensitivity of results to
the choice of endpoints and length of time periods. In addition, we try other temper-
ature thresholds apart from 28 ◦C for the corn and 26 ◦C for the soybean to avoid
misspecification of temperature threshold for the growing degree days (we only control
province-by-year fixed effects when we select the thresholds). Figure A.6 and A.7 are
about corn yields and Figure A.8 and A.9 are about soybean yields. All the figures
depict the point estimate and the corresponding 95 % confidence interval for the co-
efficient for GDD above the threshold of each period which is denoted by the starting
year of the period on the horizontal axis. For example, 1981 denotes the period 1981-
1985 if 5-year period is used in the regression. The coefficient of the first period is the
marginal impact of extreme high temperature (measured by GDD above the threshold)
and the coefficients of all the later periods are the differences of the marginal impacts
of extreme temperature in the corresponding period relative to the impact in the first
period. The initial year of each period is specified in the label of the horizontal axis.
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Figure A.6: Marginal Impacts of Extreme Temperatures on Corn Yields By Tempera-
ture Thresholds: 5 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 30 ◦C

(c) GDD above 31 ◦C (d) GDD above 32 ◦C
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Figure A.7: Marginal Impacts of Extreme Temperatures on Corn Yields By Tempera-
ture Thresholds: 10 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 30 ◦C

(c) GDD above 31 ◦C (d) GDD above 32 ◦C
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Figure A.8: Marginal Impacts of Extreme Temperatures on Soybean Yields By Tem-
perature Thresholds: 5 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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Figure A.9: Marginal Impacts of Extreme Temperatures on Soybean Yields By Tem-
perature Thresholds: 10 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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Figure A.10 and A.11 presents the evolutionary trajectory of marginal impacts of
extreme high temperature on crop yields. The extreme high temperature is measured
by growing degree days above four temperature thresholds different from the proceeding
thresholds. This is to avoid misspecification of the temperature threshold used in the
growing degree days since we don’t separately select the threshold for the polynomial
model introduced in equation (3). Figure A.10 is about corn and Figure A.11 is about
soybean.

Figure A.10: Marginal Impacts of Extreme Temperatures on Corn Yields By Temper-
ature Thresholds: Using Polynomial Model of Time Trend

(a) GDD above 29 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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Figure A.11: Marginal Impacts of Extreme Temperatures on Soybean Yields By Tem-
perature Thresholds: Using Polynomial Model of Time Trend

(a) GDD above 27 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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B The Effects of Agricultural Inputs on the Relationship Be-
tween Crop Yields and Low Temperatures

Table A.3 and A.4 report the effects of agricultural inputs on the relationship
between yields and low temperatures, which are measured by the interaction effects
between temporal change in inputs and low temperatures (GDD below the threshold)
using the model in equation (6). Table A.5 and A.6 reports the robustness analysis
of the interaction effects of inputs with low temperatures by adding the temperature-
by-year trend and interactions of economic controls with temperatures. The analysis
on the interaction effects of inputs with low temperatures is a placebo test of the
moderation effects of inputs on extreme temperature impacts. We do not expect that
inputs can protect yields from low temperatures. Insignificant interaction effects of
inputs with low temperatures suggest that the adoption of inputs is not coincidental
with factors that determine the overall crop yields.
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Table A.3: Interaction Effects of Inputs Change with Low Temperatures for Corn
Counties

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD below T 0.0053 -0.0016 -0.0113 -0.0016 -0.0039
(0.0095) (0.0089) (0.0097) (0.0082) (0.0102)

GDD below T × -0.0002 0.0110
∆ Irrigation (%) (0.0130) (0.0132)

GDD below T × -0.0012 -0.0012
∆ Machinery (Kw./Ha.) (0.0011) (0.0012)

GDD below T × 0.0487 0.0365
∆ Fertilizer (Tons of Ha.) (0.0313) (0.0278)

GDD below T × -0.0049 -0.0047
∆ Electricity (Kwh. per capita) (0.0053) (0.0050)
Observations 59255 53655 53645 58332 53475
R squared 0.8664 0.8444 0.8444 0.8423 0.8727
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Note: The dependent variable is log corn yields. The change of all the agricultural inputs
are calculated with the difference in the mean values between the pre-1996 and post-1996
period. The low temperature variable for interactions is the growing degree days below
28 ◦C. Precipitation and additional climate variables are included. The standard error is
clustered at county level and the regressions are weighted by annual corn planted area. *
p<0.1, ** p<0.05, *** p<0.01.
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Table A.4: Interaction Effects of Inputs Change with Low Temperatures for Soybean
Counties

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD below T 0.0335∗ 0.0332∗∗∗ 0.0324∗∗∗ 0.0301∗∗ 0.0401∗∗
(0.0175) (0.0119) (0.0118) (0.0119) (0.0174)

GDD below T × 0.0011 -0.0066
∆ Irrigation (%) (0.0242) (0.0241)

GDD below T × -0.0010∗∗∗ -0.0003
∆ Machinery (Kw./Ha.) (0.0003) (0.0018)

GDD below T × -0.0092∗∗∗ -0.0066
∆ Fertilizer (Tons of Ha.) (0.0024) (0.0130)

GDD below T × 0.0202 0.0195
∆ Electricity (Kwh. per capita) (0.0285) (0.0275)
Observations 54263 54287 54287 54252 54174
R squared 0.8175 0.8201 0.8201 0.8201 0.8211
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Note: The dependent variable is log soybean yields. The change of all the agricultural
inputs are calculated with the difference in the mean values between the pre-1996 and
post-1996 period. The low temperature variable for interactions is the growing degree days
below 26 ◦C. Precipitation and additional climate variables are included in the regressions.
The standard error is clustered at county level and the regressions are weighted by annual
corn planted area. * p<0.1, ** p<0.05, *** p<0.01.
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Table A.5: Effects of Agricultural Inputs on Mitigating Heat-related Losses of Corn
Yields
–Using A Different Measurement of Irrigation

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD above T -0.2223∗∗∗ -0.1564∗∗∗ -0.1535∗∗∗ -0.1400∗∗∗ -0.1952∗∗∗
(0.0308) (0.0280) (0.0267) (0.0254) (0.0324)

GDD above T × 0.2082∗∗∗ 0.1658∗∗∗
∆ Irrigation Coverage (%) (0.0435) (0.0403)

GDD above T × 0.0021 0.0009
∆ Machinery Power (Kw./Ha.) (0.0017) (0.0018)

GDD above T × 0.0455 0.0209
∆ Fertilizer (Tons /Ha.) (0.0431) (0.0477)

GDD above T × 0.0231∗ 0.0226∗
∆ Electricity (Kwh. per capita) (0.0135) (0.0131)
Observations 56054 56124 56269 54167 51587
R squared 0.8437 0.8690 0.8434 0.8395 0.8690
County Fixed Effect Yes Yes Yes Yes Yes
Prov-Year Fixed Effect Yes Yes Yes Yes Yes
County Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Note: The irrigation coverage is measured by effective irrigated area over total planted area, which
is the only difference to Table 1.8. Each column corresponds to a regression in which an agricultural
input is interacted with extreme temperature measured by the annual GDD above the endogenous
threshold. The regression equation is specified by equation (5). Only coefficients on GDD above the
threshold and relevant interactions are reported in the table. All the regressions are weighted by
annual planted area of corn. Only coefficients on GDD above the threshold and relevant interactions
are reported but GDD below the threshold, precipitation and additional climate variables are in-
cluded in the regressions. * p<0.1, ** p<0.05, *** p<0.01.
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Table A.6: Effects of Agricultural Inputs on Mitigating Heat-related Losses of Soybean
Yields
–Using A Different Measurement of Irrigation

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD above T -0.1752∗∗∗ -0.1266∗∗∗ -0.1142∗∗∗ -0.1181∗∗∗ -0.1670∗∗∗
(0.0351) (0.0231) (0.0236) (0.0233) (0.0374)

GDD above T × 0.1118∗∗ 0.0855∗∗
∆ Irrigation Coverage (%) (0.0544) (0.0415)

GDD above T × -0.0002∗∗∗ 0.0036
∆ Machinery Power (Kw./Ha.) (0.0001) (0.0028)

GDD above T × -0.0019∗∗∗ -0.0290∗
∆ Fertilizer (Tons /Ha.) (0.0004) (0.0153)

GDD above T × -0.0035 -0.0036
∆ Electricity (Kwh. per capita) (0.0029) (0.0029)
Observations 51314 51602 51454 49175 46668
R squared 0.8220 0.8181 0.7858 0.8171 0.8217
County Fixed Effect Yes Yes Yes Yes Yes
Prov-Year Fixed Effect Yes Yes Yes Yes Yes
County Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Note: The irrigation coverage is measured by effective irrigated area over total planted area, which
is the only difference to Table 1.9. Each column corresponds to a regression in which an agricultural
input is interacted with extreme temperature measured by the annual GDD above the endogenous
threshold. The regression equation is specified by equation (6). Only coefficients on GDD above the
threshold and relevant interactions are reported in the table. All the regressions are weighted by
annual planted area of soybean. Only coefficients on GDD above the threshold and relevant interac-
tions are reported but GDD below the threshold, precipitation and additional climate variables are
included in the regressions. * p<0.1, ** p<0.05, *** p<0.01.
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Table A.7: Robustness Analysis of the Interaction Effects of Agricultural Inputs with
Low Temperatures for Corn and Soybean

(1) (2) (3) (4)
Corn Corn Soybean Soybean

GDD below T × ∆ Irrigation 0.0107 0.0074 -0.0073 0.0316
(0.0135) (0.0159) (0.0243) (0.0269)

GDD below T × ∆ Machinery -0.0011 -0.0013 -0.0003 -0.0009
(0.0012) (0.0012) (0.0018) (0.0019)

GDD below T × ∆ Fertilizer 0.0383 0.0386 -0.0069 -0.0029
(0.0282) (0.0346) (0.0130) (0.0134)

GDD below T × ∆ Electricity -0.0047 -0.0076 0.0196 0.0283
(0.0050) (0.0052) (0.0275) (0.0306)

∆ GDP × Temperature No Yes No Yes
∆ (Cargo by Road) × Temperature No Yes No Yes
Temperature × Year Yes Yes Yes Yes
Observations 53475 37617 54174 40178
R squared 0.8727 0.8601 0.8211 0.8176
County FE Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 26 ◦C 26 ◦C
P threshold 51 cm 51 cm 44 cm 44 cm

Note: This table presents the robustness analysis on the interaction effects of
agricultural inputs with low temperatures. Each column is from a separate re-
gression using different endogeneous controls. The dependent variable is log crop
yields. The agricultural inputs, local GDP and cargo amount by road are mea-
sured with the difference in the mean values between the pre-1996 and post-1996
period. The GDP and cargo amount are in the prefecture level. The temperature
variables used for interactions are the growing degree days below the thresholds.
Precipitation and additional climate variables are included in the regressions.
The standard error is clustered at county level and the regressions are weighted
by annual corn and soybean planted area. * p<0.1, ** p<0.05, *** p<0.01.
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B.1 Background of the County-to-City Upgrading Pol-
icy

Figure B.1: The Structure and Hierarchies of the Governance System in China

Note: Counties, county-level cities and urban districts are all county-level administrative di-
visions. Below the county-level division there are townships as the fourth level administrative
units.
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Table B.1: The Timetable for the County-to-City Upgrading Policy

Year Number of
Upgraded Counties

1993 41
1994 40
1995 15
1996 21
1997 4
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B.2 Robustness Checks on the Policy Effects on Air
Pollutant Concentration and Economic Perfor-
mance After 2004

Figure B.2: Distribution of Estimated Falsified Policy Effect After 2004 for Falsification
Test

(a) The Falsified Policy Effects on PM2.5

Concentration
(b) The Falsified Policy Effects on SO2

Concentration

(c) The Falsified Policy Effects on Night
Light Intensity

(d) The Falsified Policy Effects on Indus-
trial Output per capita

Notes: This figure depicts the probability density distribution of the estimated policy effects
after 2004 from 500 simulations randomly assigning the city status to counties as a robustness
check of the results presented in Table 2.4. The vertical line presents the results in Table 2.4.
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Table B.2: Policy Effects on Air Pollution and Economic Performance Estimated by
PSM-DID Approach Based on Nearest Neighboring Matching Method: Before 2004
versus After 2004

(1) (2) (3) (4)
PM 2.5 SO2 Night Light Gross Value of

Industrial Outputs
Per Capita

(10,000 CNY)
Upgrading Before 2004 0.7486 0.3304 0.2512 0.7097

(0.4898) (0.2824) (0.2275) (0.4581)

Upgrading After 2004 1.5942∗∗∗ 1.0082∗∗∗ 1.9258∗∗∗ 2.5842∗∗∗
(0.5710) (0.3164) (0.2970) (0.4817)

Observations 8968 8968 5192 6136
R squared 0.9801 0.9749 0.9062 0.5995
County FE Yes Yes Yes Yes
Prov-by-Year FE Yes Yes Yes Yes
County Trend Yes Yes Yes Yes
Cluster County County County County
PSM NN Matching NN Matching NN Matching NN Matching

Note: *** denotes significance at 1%, ** at 5% and * at 10%. "NN" stands for the nearest
neighboring matching The regressions control for county fixed effects, province-by-year fixed
effects and county-specific time trends. The time trends are in quadratic forms. The standard
errors are reported in parentheses, clustered by counties.
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Table B.3: Policy Effects on Air Pollution and Economic Performance Estimated by
PSM-DID Approach Based on Kernel Matching Method: Before 2004 versus After
2004

(1) (2) (3) (4)
PM 2.5 SO2 Night Light Gross Value of

Industrial Outputs
Per Capita

(10,000 CNY)
Upgrading Before 2004 0.7416∗∗∗ 0.3254∗∗ 0.2422 0.6758∗∗∗

(0.2450) (0.1412) (0.1473) (0.1384)

Upgrading After 2004 1.6015∗∗∗ 1.0133∗∗∗ 1.9370∗∗∗ 2.6185∗∗∗
(0.5708) (0.3164) (0.2988) (0.4836)

Observations 36033 36033 21619 24654
R squared 0.9801 0.9749 0.9061 0.5988
County FE Yes Yes Yes Yes
Prov. Year FE Yes Yes Yes Yes
County Trend Yes Yes Yes Yes
Cluster County County County County
PSM Kernel Matching Kernel Matching Kernel Matching Kernel Matching

Note: *** denotes significance at 1%, ** at 5% and * at 10%. "Kernel" stands for kernel matching The re-
gressions control for county fixed effects, province-by-year fixed effects and county-specific time trends. The
time trends are in quadratic forms. The standard errors are reported in parentheses, clustered by counties.
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C.1 Figures and Tables on Summary Statistics of Data

Figure C.1: The Locations of Weather Stations from 1981 to 2010

Notes: The black dots in the map denote the locations of all the 824 weather stations. All
the 824 stations remained to be active from 1981 to 2010, avoiding selection bias created by
opening and closure of weather stations from time to time.
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C.2 Derivation of Standard Errors for Components of
the Oaxaca-Blinder Decomposition

According to Jann (2008), we can derive the variances for each decomposition com-
ponents as the following.

V ar((Xb −Xa)
′ · β̂a) = V ar(∆X

′ · β̂a) ≈ ∆X
′
V ar(β̂a)∆X + β̂′aV ar(∆X)β̂a (B.1)

V ar(X
′
b · (β̂b − β̂a)) = V ar(X

′
b ·∆β) ≈ X

′
bV ar(∆β)Xb + ∆β′V ar(Xb)∆β (B.2)

(C.1)

The last variance that needs to be estimated is the variance of the share of each
decomposition component in the overall change in the outcome variable. Let R be
one decomposition component and S be the overall change in the outcome variable
(Y b − Y a). The variance for the share can be derived thorough the delta method as
the following.

V ar(R/S) ≈ 1

(µS)2
V ar(R)− 2

(µR)

(µS)3
Cov(R, S) +

(µR)2

(µS)4
V ar(S) (B.4)
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C.3 The Effects of Interactions between Inputs and
Low Temperatures

Table C.1: The Effects of Interactions between Inputs and Low Temperatures

β̂1981 β̂1996 β̂1981(X1981 −X1981) X1981(β̂1996 − β̂1981)

Decomposition Percent Decomposition Percent
Log Labor ×
GDD between 0.0012 0.0018 -0.0052 -0.0046% 0.0880 7.72%
0◦C and 10 ◦C (0.0009) (0.0015) (0.0042) (0.0033) (0.0534) (0.0489)

Log Machinery ×
GDD between -0.0052 -0.0044 -0.6218 -54.91%∗∗∗ 0.2640 23.16%
0◦C and 10 ◦C (0.0036) (0.0025) (0.4078) (0.3824) (0.2456) (0.2106)

Log Fertilizer ×
GDD between -0.0001 0.0008 -0.0102 -0.89% -0.0638 -5.63%
0◦C and 10 ◦C (0.0008) (0.0007) (0.0.1643) (0.1450) (0.1686) (0.1490)

Irrigation ×
GDD between 0.0012 0.0041 0.0136 1.21% 0.2322 20.51%
0◦C and 10 ◦C (0.0013) (0.0027) (0.0279) (0.0246) (0.2157) (0.1907)

Log Labor ×
GDD between -0.0052 -0.0016 -0.0182 -1.60% 0.5416 47.50%
10◦C and 33 ◦C (0.0042) (0.0015) (0.0102) (0.0091) (0.4426) (0.4212)

Log Machinery ×
GDD between 0.0015 -0.0020 0.1861 16.43% -0.8020 -70.82%
10◦C and 33 ◦C (0.0010) (0.0014) (0.1669) (0.1253) (0.6964) (0.6616)

Log Fertilizer ×
GDD between 0.0014 0.0019 0.1313 11.59% -0.0347 -3.07%
10◦C and 33 ◦C (0.0015) (0.0013) (0.1395) (0.1014) (0.0799) (0.0705)

Irrigation ×
GDD between 0.0004 -0.0031 0.0053 0.47% -0.2852 -25.19%
10◦C and 33 ◦C (0.0012) (0.0026) (0.0278) (0.0245) (0.1859) (0.1668)

Additional N/A N/A -0.0453∗∗∗ -0.40%∗∗∗ -0.2421 -21.24%
Climate Vars. N/A N/A (0.0082) (0.0073) (0.2420) (0.2163)

Average of -1.1057∗∗∗ -0.7417∗∗∗ N/A N/A 0.3640∗∗ 31.93%∗∗
Province-year FEs (0.1202) (0.1039) N/A N/A (0.1604) ( 0.1569)
Observations 54584 54584 54584 54584 54584 54584
R squared 0.9239 0.9239 N/A N/A N/A N/A
T threshold 33 ◦C 33 ◦C 33 ◦C 33 ◦C 33 ◦ C 33 ◦ C
No. of Clusters 1936 1936 1936 1936 1936 1936

Notes: This table presents the results for the regressors that are not reported in Table 3.5
***p<0.01, **p<0.05, * p<0.1
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