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Pre-conception clinical risk factors differ 
between spontaneous and indicated preterm 
birth in a densely phenotyped EHR cohort
Jean M. Costello1,2†, Hannah Takasuka3†, Jacquelyn Roger4, Ophelia Yin5, Alice Tang6, Tomiko Oskotsky1,2, 
Marina Sirota1,2*† and John A. Capra1,7*† 

Abstract 

Background Preterm birth (PTB) is the leading cause of infant mortality. Risk for PTB is influenced by multiple 
biological pathways, many of which are poorly understood. Some PTBs result from medically indicated labor follow-
ing complications from hypertension and/or diabetes, while many others are spontaneous with unknown causes. 
Previously, investigation of potential risk factors has been limited by a lack of data on maternal medical history 
and the difficulty of classifying PTBs as indicated or spontaneous. Here, we leverage electronic health record (EHR) 
data (patient health information including demographics, diagnoses, and medications) and a supplemental curated 
pregnancy database to overcome these limitations. Novel associations may provide new insight into the pathophysi-
ology of PTB as well as help identify individuals who would be at risk of PTB.

Methods We quantified associations between maternal diagnoses and preterm birth both with and without control-
ling for maternal age and socioeconomic factors within a University of California, San Francisco (UCSF), EHR cohort 
with 10,643 births (nterm = 9692, nspontaneous_preterm = 449, nindicated_preterm = 418) and maternal pre-conception diagnoses 
derived from International Classification of Diseases (ICD) 9 and 10 codes.

Results Thirty diagnoses significantly and robustly (False Discovery Rate (FDR) < 0.05) associated with indicated PTBs 
compared to term. We discovered known (hypertension, diabetes, and chronic kidney disease) and less established 
(blood, cardiac, gynecological, and liver diagnoses) associations. Essential hypertension had the most significant 
association with indicated PTB (adjusted  pBH = 4 ×  10–20, adjusted OR = 6 (95% CI 4-8)), and the odds ratios for the sig-
nificant diagnoses ranged from 2 to 23. The results for indicated PTB largely recapitulated the diagnosis associations 
with all PTBs. However, no diagnosis significantly associated with spontaneous PTB.

Conclusions Our study underscores the limitations of approaches that combine indicated and spontaneous births. 
When combined, significant associations were almost entirely driven by indicated PTBs, although the spontaneous 
and indicated groups were of a similar size. Investigating the spontaneous population has the potential to reveal new 
pathways and understanding of the heterogeneity of PTB.
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Background
Preterm birth (PTB) is the leading cause of infant mor-
tality worldwide [1] and can result in serious acute and 
long-term health consequences [2, 3]. There are multi-
ple proposed pathways for preterm birth, but its etiol-
ogy remains poorly understood [4–7]. About two thirds 
of PTBs in the US are classified as spontaneous pre-
term while the remaining third are medically indicated 
(iatrogenic) preterm [8]. An indicated preterm birth is 
typically initiated based on a list of risk factors, which 
includes preeclampsia, diabetes complications, intrau-
terine abnormalities, and placental abnormalities [9]. 
Maternal risk factors for indicated preterm birth include 
older maternal age, heart disease, hypertension, diabetes, 
tobacco use, previous preterm delivery, and socioeco-
nomic factors [8, 10]. Some of these risk factors, such as 
poorly managed hypertension, may be present prior to 
pregnancy. Spontaneous preterm birth, by contrast, lacks 
a defined set of known risk factors, and the pathophysiol-
ogy behind it remains poorly understood [8].

Several maternal risk factors for spontaneous preterm 
birth have been proposed, including prior spontaneous 
preterm birth, gynecological anatomy variation, short 
inter-pregnancy interval, and multiple gestations [10]. 
Prior spontaneous preterm birth is the strongest known 
risk factor. In the United States, racism is a risk factor 
for spontaneous preterm birth [11], with higher rates 
among non-Hispanic Black individuals when compared 
to white individuals, including after adjustment for soci-
oeconomic variables [12]. Some studies have explored 
whether gene–gene and/or gene-environment interac-
tions might exist to explain racial disparities, but these 
studies are limited to cohorts of a few hundred patients 
[10].

Improved understanding of pathways and clini-
cal factors leading to preterm birth could lead to better 
interventions to prevent preterm birth, especially spon-
taneous preterm birth. Investigating pre-pregnancy diag-
noses associated with subsequent PTB has the potential 
to generate hypotheses about pathways towards PTB. 
Many large studies of conditions associated with PTB 
rely on registry data, which provides limited diagnosis 
information [13, 14]. In contrast, EHR databases provide 
dense phenotyping including demographics, diagnoses, 
and medications over time that can provide insights dif-
ficult to obtain from other data sources. However, EHR 
systems may not distinguish between spontaneous and 
indicated deliveries [15, 16]. Nonetheless, EHR data are 
particularly well-suited to the study of pregnancy [17]. 

For instance, machine learning models have used EHR 
data to accurately predict preterm birth in thousands of 
patients [16]. While complex machine learning models 
have great potential to improve obstetric and gyneco-
logical care, novel insights from straightforward methods 
applied to EHR data could more easily translate to path-
way discovery and evidence-based care.

In this study, we explore the potential of an EHR sys-
tem combined with a curated delivery database to vali-
date known associations and identify novel associations 
between pre-conception diagnoses and spontaneous and 
indicated PTB. We expect that hypertension and diabetes 
will be strongly associated with indicated PTB but have 
weaker associations with spontaneous PTB. Additionally, 
we hope to find significant pre-conception spontaneous 
PTB risk factors that could later lead to the discovery of 
the currently unknown biological pathways preceding 
spontaneous PTB.

With our approach, we reproduce widely known pre-
term birth risk factors including major chronic diseases. 
Moreover, we discover several new preterm birth asso-
ciations with less-studied diagnoses such as decreased 
white blood count. We also demonstrate that all signifi-
cant associations with PTB are driven by indicated PTBs 
and that no diagnoses significantly associate with sponta-
neous preterm birth.

Methods
Birth data
We identified births using a perinatal database (PDB), 
which is maintained and curated by obstetricians at 
UCSF. This database contains detailed information about 
each delivery that takes place in the hospital and includes 
whether the delivery was spontaneous or indicated. New-
born patient IDs in this database are linked to newborn 
patient IDs in the EHR. The start of pregnancy was deter-
mined by subtracting gestational weeks from the delivery 
date.

Diagnosis data
Diagnosis information was obtained from UCSF’s Obser-
vational Medical Outcomes Partnership (OMOP) de-
identified EHR database, using mapped newborn patient 
IDs from the PDB. To be considered, diagnoses must have 
an ICD-9 or ICD-10 code, map to a phecode, and have a 
start date prior to the start of pregnancy. Each diagnosis 
was considered as a binary variable (present vs absent), 
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rather than a count. This was done so that chronic condi-
tion diagnoses (which may be recorded at multiple visits) 
would not overwhelm our results. Phecodes were trun-
cated after the first decimal point to provide an appropri-
ate level of detail to diagnoses (Figure S2).

Selection criteria
We selected our sample from all deliveries at UCSF 
between 2001 and 2022. To be included, PDB maternal 
patient IDs must map to maternal patient IDs in the 
UCSF EHR, and only one record per delivery may be 
present (Fig.  1a). Additionally, deliveries must be sin-
gleton, have a recorded gestational age, have a recorded 
delivery date, and be from an individual with at least 
one diagnosis prior to the start of pregnancy. To con-
struct the cohort for our sensitivity analysis, we did not 
remove those who lacked a diagnosis prior to concep-
tion. All other cohort creation and analytic steps were 
performed in the same manner as the main analysis.

Assigning diagnoses to pregnancies
For our main analysis, we included multiple deliver-
ies from the same individual. Diagnoses were assigned 
per pregnancy in the following way: the diagnosis must 
be prior to the start of the pregnancy but not in the 
six-month period following the most recent delivery 
(Fig. 1b). If no prior delivery was recorded, then diag-
noses at any time prior to the pregnancy were included.

Spontaneous and indicated preterm definitions
A team of clinicians manually marked all 10,668 preg-
nancies in this cohort with a PTB status of “No” (this 
indicates a term birth), “spontaneous,” “PPROM,” “med-
ically indicated,” “Termination Iatrogenic,” or “PTL with 
TOCO and TERM.” Additionally, pregnancies had data 
on gestational age, maternal age, maternal education 
level in years, and insurance type. Using the gestational 
age data, 975 of the newborns were delivered at fewer 
than 37  weeks, and 9,693 newborns were delivered 
at 37  weeks or more (Fig.  1a). Pregnancies that were 
labeled with a gestational age of less than 37  weeks 
and a PTB status of “medically indicated” or “Termina-
tion Iatrogenic” were classified as indicated. Pregnan-
cies that were labeled with a gestational age of less than 
37 weeks and a PTB status of “spontaneous,” “PPROM,” 
or “PTL with TOCO and TERM” were classified as 
spontaneous.

In some cases, the PTB status value did not align with 
the gestational age value. In these cases, the pregnan-
cies were dropped. Pregnancies marked with a gesta-
tional age of 37 + weeks and a spontaneous PTB status 

(n = 18) represent individuals who experienced medi-
cally interrupted spontaneous preterm labor and deliv-
ered after term. It is unknown why some pregnancies 
would be marked with a gestational age less than 37 
weeks and “No” PTB status (n = 106).

Diagnosis‑PTB association analysis
For all diagnoses occurring in at least one recorded 
birth, we applied adjusted logistic regression to test the 
associations between each diagnosis and unstratified 
PTB, indicated PTB, and spontaneous PTB. Odds ratios 
and p-values were calculated using the glm() function 
in R.

Covariates
Based on previous findings regarding PTB, we wanted 
to adjust for maternal age and socioeconomic status 
(SES). We have maternal age as a variable, and we use 
insurance status and maternal education as proxies 
for SES. A smoothing spline was applied to maternal 
age to capture the non-linear relationship between age 
and PTB [32] . Maternal education was reduced from 
the raw number of years value to categories: less than 
12th grade, 12th grade, and college. As missingness for 
covariates was present in the data, “unknown” was con-
sidered to be a separate category for each.

P‑value significance, bootstrapping and plotting
When classifying a diagnosis as significant or not sig-
nificant, p-values were adjusted for multiple hypothesis 
testing by controlling the false discovery rate using the 
Benjamini Hochberg correction and tested against the 
threshold  pBH < 0.05 for 100% of 50 bootstrap iterations 
(next paragraph). Significant diagnoses with unde-
fined odds ratios in the logistic regression (e.g. Intes-
tinal infection, OR = 1/∞, p = 0,  nindicated_preterm = 0, 
 nterm = 30) were dropped.

As most of the diagnoses occur in fewer than 3% or 
250 patients, we evaluated whether associations with 
each rare diagnosis were robust to small changes in 
the cohort. We retested all such associations 50 times 
removing one instance of each diagnosis. For each itera-
tion, a unique individual was selected. If the number of 
instances of the diagnosis was less than 50, then each 
instance was removed in exactly one iteration. If the 
number of instances of the diagnosis was 50 or greater, 
then each instance was removed at most in one iteration.

Manhattan and forest plots were generated using 
the R packages ggplot2 (version 3.4.2) [33]  and ggre-
pel (version 0.9.3) [34] . Figures  2c, S1, and S3 were 
plotted using the Python packages Matplotlib (version 
3.7.0) [35]  and Seaborn (version 0.12.0) [36] . Plots show 
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Fig. 1 Schematic of the Approach for Testing Associations Between Preterm Birth and Diverse Diagnoses. A Criteria for identifying the 10,642 
individuals studied and assigning them to overall preterm, indicated preterm, spontaneous preterm, and term groups for subsequent logistic 
regression analyses. We also tested associations in a larger cohort of 39,896 individuals identified without requiring a diagnosis recorded 
before pregnancy (Supplementary Material). B Diagnoses before conception are used in this study. For a person’s first recorded birth (or 
only recorded birth), diagnoses are recorded from the start of their record until the start of conception. If multiple births are recorded for the same 
individual, diagnoses for subsequent births are recorded starting 6 months from after the previous delivery to the start of the next conception. 
C Overview of the logistic regression analysis, covariates, evaluation, and interpretation for associations between preterm birth and the 1322 
diagnoses considered. P-values were adjusted for multiple hypothesis testing and a permutation test was used to ensure associations were robust
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Fig. 2 Many diagnoses associate with risk for indicated preterm birth, but none with spontaneous preterm birth. A P-values from logistic regression 
tests of the association of 1322 diagnoses with indicated preterm (n = 418) vs. term births (n = 9671). Thirty diagnoses passed the multiple testing 
correction at Benjamini–Hochberg FDR threshold of 5% (dashed line) and were robust to small changes in the data set. B P-values from logistic 
regression tests of the association of 1322 diagnoses with spontaneous preterm (n = 449) vs. term births (n = 9671). No diagnoses significantly 
associated with spontaneous preterm birth. C Comparison of the odds ratios for the 30 diagnoses significantly associated with indicated preterm 
birth between tests for indicated and spontaneous preterm birth. The odds ratios are correlated (r2 = 0.41, linear regression, left outliers dropped), 
but the relationships have systematically lower magnitude in the spontaneous cohort. The two most significant indicated diagnoses are labeled
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covariate-adjusted p-values. Odds ratio 95% confi-
dence intervals are not adjusted for multiple hypothesis 
testing.

Results tables for the overall and indicated analy-
ses show the phecode, phenotype, OR (95% CI), and 
adjusted p-value for all phecodes that were significant 
in at least one iteration of the robustness analysis. For 
the spontaneous analysis, the tables show all results 
with an adjusted p-value < 0.5.

Sensitivity analyses
The inclusion criteria for our main analysis require that 
a diagnosis exists prior to conception. To understand the 
impact of excluding individuals without pre-conception 
diagnoses, we repeated our analysis, including these 
individuals. We also repeated our analysis without any 
covariates.

Results
A densely phenotyped preterm birth cohort linked 
to electronic health records
To validate known clinical risk factors and identify poten-
tial new factors of PTB, we defined cohorts of preterm 
and term deliveries based on curated data from the UCSF 
Perinatal Database (PDB) and linked these to diagnoses 
from the UCSF electronic health record (EHR) data-
base. The cohort consisted of 10,643 deliveries to 9,399 
individuals from 2001 to 2022 (Fig. 1a). There were 975 
(9.2%) PTBs in the cohort, which we further classified 
as spontaneous PTBs (n = 449, 4.2%) or indicated PTBs 
(n = 418, 3.9%). The remaining 108 (1.0%) PTBs could not 
be classified. Each of the preterm groups (spontaneous, 
indicated, all) was compared to term “controls” born at 
37 weeks or later (n = 9671, 91%). More details about the 
cohorts are provided in the Methods section.

The demographics of the cohort reflected the popula-
tion of the San Francisco Bay area served by UCSF. Most 
individuals had more than 12 years of education (84%). A 
large majority also used private insurance for the delivery 
(93%). The mean maternal age was 34 years, and maternal 
age ranged from 14 to 55 years. There were no significant 
differences in maternal age between indicated, spontane-
ous, and term individuals (Figure S1a;  pindicated-term = 0.2, 
 pspontaneous-term = 0.1,  pindicated-spontaneous = 0.9, Mann–
Whitney U test). The two most represented self-reported 
racial categories were single-race white (48%) and single-
race Asian/Pacific Islander (25%) (Table 1).

For each individual, we identified all diagnoses present 
in their EHR before conception (Fig.  1b). We harmo-
nized diagnosis billing codes into phecodes, a curated 
grouping of ICD codes intended to capture clinically 
meaningful concepts (Figure S2). We identified 1,322 
unique diagnosis phecodes in 18 organ systems across 

the cohort (Table  S1), and individuals had an average 
of 8 unique diagnoses in their record prior to concep-
tion (Figure S1b). The top 5 diagnoses represented in 
our cohort (all births) are “Infertility, female” (n = 2,355), 
“Irregular menstrual cycle/bleeding” (2,149), “Abdominal 
pain” (1,657), “Miscarriage; stillbirth” (1,278), and “Pain 
in joint” (1,216). Most diagnoses (87%) were rare—occur-
ring in fewer than 1% of patients (Figure S3a). Most med-
ical visits with a diagnosis occurred within 2 years before 
conception (Figure S3b); over 95% of individuals’ EHR 
start date was less than 2.5 years before conception (Fig-
ure S1c); and the maximum EHR length was 21.7  years 
before conception (Figure S3b).

Diverse pre‑conception diagnoses associate with indicated 
PTB risk
We tested each of the 1,322 diagnoses present in the 
cohort for association with preterm vs. term birth using 
logistic regression with maternal age, maternal educa-
tion, and insurance status, as covariates (Fig. 1c). Of the 
covariates, maternal education had the highest rate of 
missingness at 7.9%. Race was missing for 1.7% of the 
cohort, and insurance classification was missing for 0.4% 
of the cohort (Table  1). We adjusted for multiple test-
ing by controlling the false discovery rate (FDR) at 5% 
using the Benjamini–Hochberg procedure and evaluated 
robustness of significant associations with an iterative 
data masking strategy (Methods and Fig. 1c).

We identified 30 significant and robust indicated pre-
term birth associations among the 1,322 diagnoses tested 
in the logistic regression (Figs. 2a and 3). As expected, the 
most significant associations aligned with well-established 
risk factors and clinical guidelines for inducing early labor: 
essential hypertension (adjusted PBH = 4 ×  10−20, OR = 6 
(95% CI 4-8)), type 1 diabetes (adjusted PBH = 4 ×  10–15, 
OR = 11 (95% CI 6-19)), and type 2 diabetes (adjusted 
PBH = 1.8 ×  10−12, OR = 6 (95% CI 4-10)).

After diabetes and hypertension-related diagnoses, 
chronic kidney disease (CKD) was the next strongest pre-
term birth association (adjusted PBH = 3 ×  10−9). Several 
other renal diagnoses were also among the significant 
associations, including a kidney replaced by transplant 
and other disorders of the kidney and ureters.

The remainder of the significant associations included 
blood disorders, cardiac conditions, pulmonary condi-
tions, liver conditions, electrolyte imbalances, and diges-
tive conditions. To explore the meaning of the unspecific 
diagnoses “Other disorders of liver” and “Other diseases 
of lung,” we extracted concepts from clinical notes using 
ctakes [18]. The “Other disorders of liver” (n = 55) diag-
nosis represents diagnoses including liver lesion (n = 20), 
liver cirrhosis (n = 15), liver mass (n = 15), liver carcinoma 
(n = 14), and fatty liver (n = 13). The “Other diseases of 
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lung” (n = 38) diagnosis represents diagnoses includ-
ing lung consolidation (n = 11), interstitial lung diseases 
(n = 5), and lung mass (n = 4). Odds ratios, P values, and 
sample sizes for associations between indicated PTB and 
all significant and robust diagnoses are in Table S2.

No pre‑conception diagnoses are associated 
with spontaneous preterm birth
Given the strong associations with indicated preterm 
birth, we next tested for associations between diagnoses 
and spontaneous preterm birth vs. term. In contrast to 

indicated PTB, no diagnoses were significantly associated 
with spontaneous preterm birth (Fig. 2b). The absence of 
significant associations with spontaneous preterm birth 
is not due to lower statistical power than for indicated 
preterm birth, given their similar sample size (nspontane-

ous = 449, nindicated = 418).
Of the 30 diagnoses associated with indicated preterm 

birth, 25 follow similar trends in spontaneous preterm 
birth, albeit at much lower effect sizes  (r2 = 0.41, linear 
regression, Fig. 2c). For example, hypertension has an odds 
ratio of 6 for indicated and 1.5 for spontaneous. There are 

Table 1 Demographics

Race, maternal age, maternal education level, insurance status (private, public, or unknown), and diagnosis distributions of individuals included in this study. 
“Diagnosis Time” represents the number of years before conception that diagnoses occurred, which we assume to be predominantly during medical visits. For “All visit 
times per individual,” we included duplicate diagnoses over multiple visits for the same individual and excluded duplicate dates (i.e., multiple diagnoses on the same 
date for the same individual)

Indicated Preterm Spontaneous Preterm All Preterm Term Overall
(N = 418) (N = 449) (N = 973) (N = 9671) (N = 10,643)

Race
 Single race-White 171 (40.9%) 205 (45.7%) 426 (43.8%) 4715 (48.8%) 5141 (48.3%)

 Single race-Black 55 (13.2%) 44 (9.8%) 108 (11.1%) 523 (5.4%) 631 (5.9%)

 Single race-Latina 57 (13.6%) 46 (10.2%) 111 (11.4%) 679 (7.0%) 790 (7.4%)

 Single race-Asian/Pacific Islander 79 (18.9%) 100 (22.3%) 200 (20.6%) 2466 (25.5%) 2666 (25.0%)

 Multi race-Latina + other race 23 (5.5%) 17 (3.8%) 48 (4.9%) 433 (4.5%) 481 (4.5%)

 Multi race-other races 10 (2.4%) 11 (2.4%) 23 (2.4%) 253 (2.6%) 276 (2.6%)

 Other race 17 (4.1%) 17 (3.7%) 37 (3.8%) 440 (4.6%) 477 (4.5%)

 Unknown 6 (1.4%) 9 (2.0%) 20 (2.1%) 162 (1.7%) 182 (1.7%)

Maternal age (Years)
 Mean (SD) 33.9 (6.1) 34.0 (5.4) 34.0 (5.64) 34.5 (4.84) 34.4 (4.92)

 Median [Min, Max] 35.0 [15.0,51.0] 35.0 [14.0,55.0] 35.0 [15.0, 54.0] 35.0 [14.0, 55.0] 35.0 [14.0, 55.0]

 Missing 0 (0%) 0 (0%) 0 (0%) 1 (0.0%) 1 (0.0%)

Private Insurance
 No 54 (12.9%) 40 (8.9%) 102 (10.5%) 579 (6.0%) 681 (6.4%)

 Yes 363 (86.8%) 407 (90.6%) 865 (88.9%) 9050 (93.6%) 9915 (93.2%)

 Unknown 1 (0.2%) 2 (0.4%) 6 (0.6%) 41 (0.4%) 47 (0.4%)

Maternal education
 < 12 years 13 (3.1%) 11 (2.4%) 25 (2.6%) 71 (0.7%) 96 (0.9%)

 12 years 124 (29.7%) 76 (16.9%) 218 (22.4%) 1348 (13.9%) 1566 (14.7%)

 > 12 years 230 (55.0%) 308 (68.6%) 589 (60.5%) 7550 (78.1%) 8139 (76.5%)

 Unknown 51 (12.2%) 54 (12.0%) 141 (14.5%) 702 (7.3%) 843 (7.9%)

Diagnosis count
 Number of unique diagnoses
Mean (SD)

10.9 (13.4) 8.8 (10.1) 9.6 (11.8) 7.3 (8.5) 7.5 (8.9)

 Median [Min, Max] 6 [1,101] 5 [1,88] 5 [1.0,101] 5 [1,118] 5 [1,118]

Diagnosis time
 All visit times per individual, years before con-
ception
Mean (SD)

1.8 (1.6) 1.7 (1.6) 1.7 (1.6) 1.5 (1.6) 1.6 (1.6)

 Median [Min, Max] 1.3 [0.0,8.7] 1.1 [0.0,9.0] 1.2 [0.0,9.0] 1.0 [0.0,21.7] 1.0 [0.0,21.7]

 First visit time per individual, years before con-
ception
Mean (SD)

2.4 (1.9) 2.1 (1.9) 2.3 (1.9) 1.9 (1.8) 2.0 (1.9)

 Median [Min, Max] 2.0 [0.0,8.7] 1.5 [0.0,9.0] 1.7 [0.0,9.0] 1.3 [0.0,21.7] 1.4 [0.0,21.7]
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five diagnoses with different directions of effect, includ-
ing acute laryngitis and tracheitis and congestive heart 
failure (CHF) not otherwise specified (NOS); these are 
significant, robust risk factors for indicated preterm birth 
but are in the protective direction (though not significant) 
for spontaneous preterm birth. Table S4 lists odds ratios, 
p-values, and sample sizes for associations between spon-
taneous PTB and all significant and robust diagnoses.

Associations in the combined analysis are driven 
by the indicated associations
Next, we combined indicated and spontaneous PTBs 
and discovered 19 significant diagnoses associated with 
all PTB (Figure S4). Of these 19, 16 diagnoses were also 
significant in the indicated subgroup (Fig.  4). Diabetes, 

kidney diseases, and hypertension were the main diag-
nosis categories associated with indicated (Fig.  2a) and 
overall (Figure S4 and Table  S3) PTB. The diagnoses 
associated with only indicated PTB but not the over-
all PTB cohort were spread across organs including the 
liver, lung, and heart. “Gastrointestinal complications,” 
“Secondary diabetes mellitus,” and “Kidney replaced by 
transplant” were significant and robust associations with 
overall PTB that were not found for indicated PTB.

Associations with rare diagnoses are not robust
To address the potential impact of small sample size 
for rare diagnoses, we performed a robustness analysis, 
described under “P-Value Significance, Bootstrapping 
and Plotting” in the Methods section. Briefly, in each 

Fig. 3 All significant and robust associations were associated with increased risk of indicated PTB. The odds ratios and confidence intervals for all 
significant phecode associations with indicated PTB. The associations spanned phecode categories (colors)
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iteration of the analysis, a patient with the diagnosis was 
dropped from the population and the results were rec-
omputed. Only diagnoses that remained significant in all 
50 iterations of this analysis were considered significant 
and robust. This analysis removed several rare diagnoses 
with a small number of patients (e.g., “diabetic retinopa-
thy”  nterm = 1  nindicated = 5). The rarest significant diagno-
sis that we report is “anemia of chronic disease,”  nterm = 7 
 nindicated = 9. The only other  nindicated < 10 or  nterm < 10 sig-
nificant diagnoses have at least 8 observations and are 
related to hypertension or renal disorders  (Table  S2), 
which are previously established indicators for indicated 
preterm birth.

Our main conclusions are robust to cohort definition 
and consideration of covariates
One of the inclusion criteria for our cohort is that a diag-
nosis exists prior to conception. While this increases 
our confidence that the health history of each person is 
known, it may bias the cohort towards individuals with 
more prior conditions. To explore the sensitivity of our 
conclusions to the cohort definition, we repeated our 
analysis removing this inclusion criterion.

The sample size for this sensitivity analysis was 38,896 
individuals with 2,048 indicated PTBs and 2,305 spon-
taneous PTBs. In the indicated subgroup, there were 17 
significant associations, all of which were also significant 
in the main analysis of the indicated subgroup (Figure 
S6 and Table S6). Consistent with the main analysis, no 

significant associations were found for the spontaneous 
subgroup (Figure S6 and Table S7). In the overall group, 
eight diagnoses were significantly associated with PTB, 
all of which were also significant in the main analysis. The 
most significant associations were hypertension, type 1 
diabetes, and type 2 diabetes (Figure S5 and Table S5).

In addition, we repeated our analysis without any 
covariates. As expected, this yielded more associations; 
in the indicated subgroup, 52 diagnoses were signifi-
cantly associated with PTB (Table S8, Figure S7). Similar 
to the main analysis with covariates, the most significant 
diagnoses were hypertension, diabetes, and renal dis-
eases. No diagnoses were significantly associated with 
spontaneous PTB in this analysis (Table S9). In the over-
all group, 45 diagnoses were significantly associated with 
PTB (Table S10 and Figure S8). In both the indicated and 
overall groups, all diagnoses that were significant in the 
main analysis adjusting for covariates  were also signifi-
cant in this analysis without covariates.

Discussion
Our study uses the rich phenotype data present in EHRs 
to generate hypotheses about the connection between 
pre-conception diagnoses and risk for indicated and 
spontaneous PTB. Using a densely phenotyped cohort 
with curated delivery details enabled us to investigate 
1322 diagnoses across 18 different phecode categories. 
In our analysis of indicated PTB, we replicated known 
associations, including hypertension, diabetes, and 

Fig. 4 The strongest associations with overall preterm birth are also associated with indicated preterm birth, but not spontaneous preterm birth. 
Many kidney, cardiac, liver, and pulmonary conditions and diabetes are associated with overall and/or indicated preterm birth. Three risk factors 
for overall preterm birth were not discovered in the indicated preterm birth analysis
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chronic kidney disease. We also found several associa-
tions that warrant further investigation. By contrast, we 
found no associations between preconception diagnoses 
and spontaneous PTB. This underscores the limitations 
of approaches that do not differentiate between indicated 
and spontaneous preterm birth.

The most significant hits of our study replicated well-
established risk factors for PTB, with the four most signif-
icant being type 1 diabetes, essential hypertension, type 
2 diabetes, and hypertensive heart and/or renal disease. 
These likely reflect clinical practice as they have existing 
recommendations for preterm delivery [9]. Additionally, 
several significant diagnoses relate to kidney function, 
such as chronic kidney disease, chronic renal failure, and 
other disorders of the kidney and ureters. Associations 
between preterm birth and CKD have been observed in 
studies around the world, but the mechanisms and rel-
evance to risk are not well understood [19]. Harel et. al 
propose that pre-pregnancy counseling, increased moni-
toring of the mother and fetus, and aspirin treatment to 
prevent preeclampsia would likely improve pregnancy 
outcomes for mothers with CKD, as indications for deliv-
ery are often hypertensive disorders, worsening renal 
function, fetal growth restriction, abnormal antenatal 
testing, or worsening maternal morbidity [19].

We found an association between decreased white 
blood cell count and overall PTB (Figure S4a and S4b). 
However, this relationship is inconsistent in the litera-
ture; some studies found no association [20] while others 
found support for this association [21, 22]. The connec-
tion between PTB and pre-conception lung conditions, 
including lung consolidation, interstitial lung diseases, 
and lung mass, is not well studied. Preterm birth causes 
lung conditions in the newborn through adulthood [23], 
and preterm birth risk is heritable in families [24]. This 
could contribute to the association observed between 
PTB and pre-conception lung diagnoses. Furthermore, 
we observed associations between PTB and liver condi-
tions, including liver lesions, liver cirrhosis, liver mass, 
liver carcinoma, and fatty liver. Connections between 
liver dysfunction and PTB have also been previously 
identified in more targeted studies [25–27].

Another major strength of our study is our use of a phy-
sician-curated births database to differentiate between 
spontaneous and indicated PTBs. This information can-
not be reliably extracted from most EHR data. Prior work 
has identified outcome misclassification as a concern for 
such EHR-based association studies [28]. Additionally, 
researchers investigating obstetric data quality in an EHR 
system found that quality was varied and recommended 
manual abstraction where possible [29]. By using a data-
base reviewed by physicians to define our outcome, we 
minimize the risk of misclassification.

We found multiple diagnoses associated with indicated 
PTB, but none associated with spontaneous PTB. This 
pattern is likely explained by the fact that established 
risk factors are key to clinicians’ decision-making when it 
comes to indicating delivery. When combined, significant 
associations were entirely driven by indicated PTBs, even 
though the spontaneous and indicated groups were of a 
similar size. Thus, our understanding of risk factors for 
spontaneous PTB remains limited.

There are several limitations in our study. Our data 
come from a tertiary care center. Thus, the patients and 
deliveries seen at this facility are not representative of 
the overall local population, and many patients seen for 
delivery do not have a previous clinical record at the facil-
ity. We present both patient demographics (Table 1) and 
sample selection (Fig. 1) to show the context in which the 
study was performed. Compared to the state of Califor-
nia, the PTB rate among our cohort is similar; however, 
our study population was generally older, more educated, 
and was privately insured at a high rate. The absence of 
a significant difference in age distribution between our 
indicated, spontaneous, and term cohorts may not repro-
duce in a US age-representative dataset (Figure S1a).

Major chronic health condition diagnoses are common 
in our cohort, yielding strong statistical power. While 
we captured diagnoses across all major medical special-
ties using EHRs, some diagnoses are under recorded and 
others are rare. Consequently, we expected and found 
low sample size and weak statistical power in our cohort 
for many diagnoses. More specifically, there are over 585 
diagnoses that occur in fewer than 10 individuals (Figure 
S3a), and over 300 of these are not present in any indi-
viduals who delivered preterm.

We expected that most diagnoses would be recorded 
in the short time before conception, and we found that 
over 50% of diagnoses occurred within 1  year of con-
ception (Figure S3b). This represents a common limita-
tion of EHR trajectory analysis research: patients often 
use many healthcare institutions over their lifetime, and 
a patient’s medical history at any individual institution 
is usually missing data from previous institutions. This 
may also explain the reason our sensitivity analysis found 
fewer associations – while we increased our sample size, 
we likely introduced exposure misclassification  (i.e., 
an incorrect  assumption that the absence  of a recorded 
diagnosis means that an individual does not have that 
diagnosis).

Medical practice changes over time, and this affects 
diagnosis classifications and diagnosis generality. Several 
relevant medical practices have changed in the time cov-
ered by our cohort—birth dates 2001–2022. For example, 
the American College of Cardiology and American Heart 
Association created a lower blood pressure definition of 
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hypertension in 2017 [30], and hundreds of new ICD-10 
codes are created each year [31]. These changes, among 
others, affect diagnosis consistency between years, but 
we anticipate that such changes would largely decrease 
power rather than lead to spurious associations.

Furthermore, it can be challenging to interpret associa-
tions given the lack of specificity of some diagnoses. For 
example, “Abnormal findings examination of lungs” is a 
very general concept and can represent a range of undi-
agnosed diseases and underlying conditions. Addition-
ally, the diagnoses codes do not fully capture the severity 
of disease: a diagnosis of alcoholism does not distinguish 
mild or moderate alcohol consumption; a diagnosis of 
type 2 diabetes applies to both well-managed and poorly 
managed disease. Nonetheless, in the poorly managed 
case, we are likely to see additional diagnoses represent-
ing additional complications. Future studies that sup-
plement diagnosis data with severity estimates could 
provide further insights about the relationships between 
disease severity and PTB. In EHR studies, this could be 
supplemented with lab, vitals, and/or clinical notes data.

Our study only investigated one stratification of 
PTB—spontaneous/indicated—and one gestational age 
threshold. We ran preliminary studies on stratifying 
early (< 32 weeks gestational age) and late (32–36 weeks) 
PTB, but the sample size for the early preterm group 
(n = 132) was too small to produce any meaningful results 
on potential diagnosis associations. Future work should 
explore associations for different stratifications such as 
early/late preterm, young/mid/old maternal age, rural/
suburban/urban maternal home, and low/middle/high 
maternal socioeconomic status. Identifying different risk 
factors and pathways for different subtypes of PTB could 
lead to a better understanding of this heterogeneous con-
dition and to targeted and effective prevention efforts.

Conclusions
Our study demonstrates that analyses that combine 
spontaneous and indicated PTB will have shortcomings. 
Due to established clinical practices and the apparent 
heterogeneity of spontaneous PTB, the indicated group 
will have higher rates of known risk factors and thus have 
an outsized effect on combined analyses. Further inves-
tigation focused on the spontaneous PTB population 
is imperative since it has the potential to uncover novel 
associations that may help reveal new pathways and 
understanding of PTB.

We propose two main areas of further research result-
ing from this work. The first is investigating the lesser-
known and new associations from our overall preterm 
analysis. Our work suggests several hypotheses that war-
rant more detailed study, especially in EHR systems com-
plemented by other data sets. For instance, further work 

investigating the gastrointestinal associations would ben-
efit from a combined EHR and gut microbiome cohort. 
The second area we suggest for future work is a thorough 
investigation into spontaneous PTB in this and other 
cohorts. We found no associations in this group, suggest-
ing that larger sample sizes and alternative approaches 
are required. We propose that dimensionality reduction 
and clustering techniques may help identify subtypes in 
this heterogeneous phenotype. We are also eager to study 
events and exposures during the pregnancies and self-
reported medical history at delivery.
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