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Signatures of infinity: Nonergodicity and resource scaling in prediction, complexity, and learning
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2Redwood Center for Theoretical Neuroscience and Department of Physics, University of California at Berkeley, Berkeley,
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(Received 1 April 2015; published 27 May 2015)

We introduce a simple analysis of the structural complexity of infinite-memory processes built from random
samples of stationary, ergodic finite-memory component processes. Such processes are familiar from the well
known multiarm Bandit problem. We contrast our analysis with computation-theoretic and statistical inference
approaches to understanding their complexity. The result is an alternative view of the relationship between
predictability, complexity, and learning that highlights the distinct ways in which informational and correlational
divergences arise in complex ergodic and nonergodic processes. We draw out consequences for the resource
divergences that delineate the structural hierarchy of ergodic processes and for processes that are themselves

hierarchical.
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I. INTRODUCTION

Truly complex stochastic processes—the infinitary pro-
cesses [1] whose mutual information between past and future
diverges—arise in many physical and biological systems
[2-5], such as those in critical states. They are implicated in
many natural phenomena, from the geophysics of earthquakes
[6] and physiological measurements of neural avalanches [7]
to semantics in natural language [8] and cascading failure
in power transmission grids [9]. Their apparent infinite
memory makes empirical estimation and modeling particularly
challenging. The difficulty is reflected in the computational
complexity of inference [10]: the resources required to predict
and model them diverge in sample size, in memory for storing
model parameters, and in memory required for prediction.
Resource scaling suggests that for infinitary processes we
look for statistical signatures that track divergences. Since
resource divergences are sensitive to a process’s inherent
randomness and organization, one hopes that their scaling
forms are uniquely revealing indicators of process complexity
and can guide the selection of appropriate models.

To date, though, there are few tractable constructions
with which to explore possible general relationships between
prediction, complexity, and learning for infinitary processes.
One of the few tractable and general constructions is the
class of Bandit processes consisting of repeated trials of
an experiment whose properties are, themselves, varying
stochastically from trial to trial [11,12]. Even if each individual
trial is arealization generated by a stationary process with finite
memory and exponentially decaying correlations, the resulting
process over many trials can be infinitary [3-5].

Why can the past-future mutual information of Bandit
processes diverge? The answer is remarkably simple: Bandit
processes are nonergodic. More to the point, the diver-
gence is driven by memory in the nonergodic part of their
construction—the mechanism in each trial that selects and
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then remembers the operant ergodic component. Here, we
use that insight to provide a simple, alternative derivation
of information divergence for this class of infinitary process:
a structural complexity scaling that directly accounts for
nonergodicity.

Information divergence in Bandit processes has been
interpreted as reflecting a universal property of learning: a
unique indicator of the number of process parameters [3]. The
derivation presented here recovers the connection between
the complexity of parameter estimation and divergence in
past-future information. However, it also identifies other
structural features, such as infinitary ergodic components,
that can drive divergences. Thus, information divergences
in Bandit processes reflect particular structural properties of
this class, rather than overarching principles of prediction,
complexity, and learning for infinitary processes. Nonetheless,
the issues raised highlight the need for a more balanced view
of truly complex processes and their challenges. We hope
our simplified analysis introduces tools appropriate to further,
detailed scaling analysis of both ergodic and nonergodic
infinitary processes.

Analyzing structural complexity is often conflated with
statistical and computation-theoretic approaches to complex
processes. To ameliorate this, the next section reviews these
alternatives. Then we move on to construct Bandit processes
and analyze their structural complexity. We then discuss
the results, draw out contrasts with computation-theoretic
and statistical approaches, highlight the structural hierarchy
of ergodic processes, and close with a brief discussion of
hierarchical processes with nested organization.

II. PREDICTION, COMPLEXITY, AND LEARNING

There is a relationship between, on the one hand, the
inherent unpredictability and memory in a process and, on
the other, the difficulty of learning a model from time series
samples and predicting the time series. Alternative framings
lead to different views of this relationship. There are those
that attempt to exactly describe a time series, those that try
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to express persistent regularities, and those that consider the
consequences for inference. Their methods are closely related.

The Kolmogorov-Chaitin complexity monitors the compu-
tational resources—specifically, length of the minimal pro-
gram for a given universal Turing machine (UTM)—required
to reconstruct an individual time series [13-18]. It is a
measure of randomness: A random time series has no smaller
description than itself. Elaborating on this, logical depth [19]
and sophistication [20] track complementary computational
resources. Logical depth is the number of compute steps the
minimal UTM program requires to generate the time series.
Sophistication is the length of that part of the UTM program
which captures regularities and organization, effectively dis-
counting the time series’ irreducible randomness. All these
are uncomputable, though, even if one is given a generative
model.

Fortunately, for a process’ typical realizations the
Kolmogorov-Chaitin complexity grows linearly with time
series length, with coefficient equal to Shannon source entropy
rate h, (a measure of a process’ unpredictability) and offset
equal to the statistical complexity C, (a measure of a process’
memory) [21, and references therein]. Given a generative
model called the e-machine—a process’ minimal maximally
predictive model—both the entropy rate and statistical com-
plexity are computable; if the e-machine is finite, they are
calculable in closed form [22].

We say that h,, C,, and the finite-time excess entropy
discussed later are intrinsic measures of a process’ structure,
randomness, and organization. By intrinsic, we mean that these
measures exist independently of the amount of data that we
have observed. The aforementioned algorithmic complexities
explicitly depend on the amount of data seen so far, but
if the process is ergodic, then algorithmic complexities are
also (almost always) intrinsic to a process in the limit of an
arbitrarily large amount of data.

Such analyses of intrinsic properties should be contrasted
with how statistical inference approaches complex processes.
Statistical learning theory [23,24] analyses and machine
learning complexity controls [25-28] are not intrinsic in the
sense that they show how to choose the best in-class model,
but the choice of that class remains subjective. The problem of
out-of-class modeling always exists as a practical necessity,
but it is rarely, if ever, tackled directly. Of course, in the
happy circumstance a correct generative model is in-class,
then one has identified something intrinsic about a process.
This, however, begs the question of discovering the class in
the first place. And, practically, such luck is rarely the case.
Worse, when they do not work well, complexity controls give
no prescription for choosing an alternative class.

Intrinsic complexity characterizations have been most
constructively and thoroughly developed for finite-memory,
finite-randomness processes, despite the fact that many im-
portant natural processes are infinitary. The latter include
the critical phenomena [29] of statistical physics and the
routes to chaos in nonlinear dynamics [2], to mention
only two. They exhibit arbitrarily long-range spatiotem-
poral correlations, infinite memory, and infinite parameter
space dimension. The relationship between prediction, com-
plexity, and learning is especially interesting when con-
fronted with infinitary processes and, paralleling Ref. [3],
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we reinvestigate that relationship for nonergodic Bandit
processes.

III. BANDIT PROCESS CONSTRUCTION

The simplest construction of a Bandit process is the
following. Consider the stochastic process generated by a
biased coin whose bias P is itself a random variable. First, a
coin bias p is chosen from a user-specified distribution Pr(P);
next, a bi-infinite sequence x' = ... x_xox x> .. .is generated
from a coin with this particular bias; then, this is repeated for an
arbitrarily large number of such trials, generating an ensemble
{x',x2,x3, ...} of sequences at different biases. The process
of interest is this sequence ensemble. We denote the random
variable block between times a and b, but not that at time
b,as X,p = Xy X441 ... Xp—1. We suppress denoting indices
that are infinite. And so, the process of interest is denoted
X.. To denote the random variable block conditioned on a
random variable Z taking realization z we use X | Z = z. So
here, the subprocess X.|P = p is that produced by a coin with
bias p.

A single one of these bi-infinite sequences comes from
an ergodic process that is memoryless in every sense of the
word. In particular, since in each trial past and future are
independent, the conditional past-future mutual information
I[X _p0; Xo.n|P = p] vanishes for any M, N, and p. How-
ever, each of these bi-infinite chains is statistically distinct.
The mean number of heads, say, in one is very different than
the mean number of heads in another. For sufficiently long
chains, such differences are almost surely not the consequence
of finite-sample fluctuations.

The overall process X. does not distinguish between
sequences generated by different biased coins. So, by making
the coin bias a random variable, the past and future are
no longer independent. Both share information about the
underlying coin bias p. As we will now show, the shared
information or excess entropy E(M,N) = I[X_p.0; Xo:n]
diverges with M and N when P is a continuous random
variable.

IV. INFORMATION ANALYSIS

To see why, we abstract to a more general case. What
follows is an alternative, direct derivation of results in Ref. [3,
Sec. 4] that, due to its simplicity, lends additional transparency
to the mechanisms driving the divergence.

Let ® be a random variable with realizations 6 in a (param-
eter) space of dimension K. ® has some as-yet unspecified re-
lationship with observations X. = ... X _»,X_1,X0, X1y, ....
We can always perform the following information-theoretic
decomposition of the composite process’s excess entropy:

I[XfM:O;XO:N] = I[XfM:O; XO:N|®]
+ I[X _p0; Xov; O (D

The first term quantifies the range of temporal correlations of
the observed process given ©, and the second term quantifies
the dependencies between past and future purely due to ©.
When the fixed-parameter process X.|® = 6 is ergodic and
the composite process X . is not, then Eq. (1) can be viewed as a
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decomposition of 1[X _,;.0; Xo.x] into ergodic and nonergodic
contributions, respectively.

The second term I[X_jp.0; Xo.v; ®] is a multivariate
mutual information [30] or coinformation [31]. It is closely
related to parameter estimation, as expected [3], since it
provides information about the dimension K of ®. Standard
information-theoretic identities yield

I[X _p.0; Xon; ©] = H[O] + H[O|X _p.n]
—H[O|X_y0]l — H[O|Xo.n]. (2)

The first term H|[®] quantifies our intrinsic uncertainty in
the bias. When ® is a continuous random variable, H[®]
is a differential entropy. The subsequent terms describe how
our uncertainty in ® decreases after seeing blocks of lengths
M+ N, M,or N.

Altogether, Egs. (1) and (2) give

I[XfM:O; XO:N]
= I[X_m:0; Xon O]+ H[O] + H[O|X _p:n]
— H[O|X_y0] — H[O|Xo.N]. 3)

Thus, assuming one chose a prior with finite entropy H|[®],
divergences in I[X _jr0; Xo.n] can come from divergences
in I[X _p.0; Xo.n|®] or from divergences in H[®|X _j;.n] —
H[O|X_y.0] — H[O|Xo.n].

Let us take the cases covered in Ref. [3, Secs. 4.1-4.4].
There, ® consists of the model parameters, 6 are realizations
of ®, and X.|® = 0 consists of (noisy, potentially temporally
correlated) sequences generated by the model with parameters
0. For instance, ® could be the firing rate of a Poisson neuron
and X.|® = 0 could be the time-binned spike trains at firing
rate 6. Or, ® could be transition probabilities in a finite hidden
Markov model (HMM) and X.|® = 6 could be the generated
process given transition probabilities 6. The result, in any case,
is a nonergodic process X. constructed from a mixture of
ergodic component processes X.|® = 6.

In these examples, the component-process excess entropy
I[X _p1:0; Xo:n O] = {(I[X _pr.0; Xo:n|© = 0])p does not di-
verge with M or N, since finite HMMs have finite excess
entropy, which is bounded by the internal state entropy [4,32].
In fact, the excess entropy for many ergodic stochastic pro-
cesses is finite, even if generated by infinite-state HMMs. Any
divergence in the composite process I[X _p.0; Xo.n] therefore
comes from divergences in H[O|X _j.n] — H[O|X _p0] —
H[O[Xg.n]- '

Since the composite process includes sequences x' from
trials with different 6, one’s intuition might suggest that
Pr(® = 0|X _p.0 = x_p0) 1s multimodal for most x_,..
However, existing results [33—36] on the asymptotic normality
of posteriors carry over to this setting, since they essentially
rely on the log-likelihood function In Pr(X _ 1.0 = x_4.0|® =
0) being sufficiently well behaved.

For instance, consider the Bandit process construction of
Sec. III. A crude derivation of the asymptotic normality of
Pr(® = 60|X _p.0 = x_p0) [37] starts with Bayes rule:

Pr(® = 01X _p.0 = x_m0)
_ Pr(X_p0 = x_p0|® = 0)Pr(© = 0)
B Pr(X_p.0 = x_m20) )
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The denominator Pr(X _s.0 = x_p.0) is quite complicated to
calculate, but this normalization factor does not affect the
0 dependence of Pr(® = 0|X_j.0 = Xx_p.0). More to the
point, the prior’s contribution Pr(® = ) is dwarfed by the
likelihood:

Pr(1X a0 = x-arl® = ) = 9250 ¥(1 — )M X',

in the large-M limit. Let 6* be the unique maximum
of Pr(® = 0|X_pr0 = X_ar0): 0 = & S0 i + 01/ M).
Taylor-expanding In Pr(® = 0| X _j.0 = x_j,0) about 8* sug-
gests that Pr(® = 6|X _j.0 = x_0) is approximately normal
in the large-M limit, with variance decaying as ~1/M.
(Any one of the many sources [33-36] on asymptotic
normality of posteriors provides rigorous and generalized
statements.)

Armed with such asymptotic normality, we now turn
our attention to find the asymptotic form of H[®|X _j.0 =
X_mo0l, H[®O|Xo.xy = xo.n],and H[O|X 3.y = x_p.y]inthe
large-M and -N limits. The differential entropy of a normal
distribution is % In | det X|, where X is the covariance matrix;
here, det ¥ ~ 1/M. This captures the error distribution for
each of the K parameters. So, this and asymptotic normality of
the posterior imply that H[®|X _;.0 = x_p1:0] ~ —%K InM,
plus corrections of O(1) in M, and thus H[®|X_p.0] ~
—%K In M, where K is the parameter space dimension.

At first blush, the result is counterintuitive. In the limit
that M and N tend to infinity, and we see longer and longer
sequences x_ .0, we become more certain as to ®’s value. This
increasing certainty should mean that the conditional entropy
H[®|X _p.0 = x_p-0] vanishes. However, if ©® is a continuous
random variable (such as a Poisson rate), then H[®|X _j.0 =
X_ 0] is a differential entropy. As our variance in ®| X _ .0 =
X_p0 decreases to 0, the differential entropy H[®|X _p.0 =
X_p0] diverges to negative infinity. It is exactly this well
known divergence that causes a divergence in /[ X _.0; Xo:n]
for the nonergodic processes we are considering.

From these results and Eq. (3), one has

I[X ; Xoy; ©] ~ K | MN
[X-p0; Xonv; O] TR
And, recalling that the ergodic-component information does
not diverge, we immediately recover

I[X 3 X ~ Kl MN
[X_m:05 Xo:n] TN
Lower-order terms in M and N include the expected log
determinant of the Fisher information matrix for maximum
likelihood estimates of ® [38]. The joint divergence in past
(M) and future (N) lengths is new here; cf. Ref. [3] which
examined the case of E(—o0,N).

A similar information-theoretic decomposition can be used
to upper bound the excess entropy of ergodic processes as
well. For instance, the Appendix uses a similar decomposition
to show that the temporal excess entropy of an Ising spin on a
two-dimensional Ising lattice at criticality is finite.

Logarithmic divergences in excess entropy also occur in
stationary ergodic processes, such as exhibited at the onset of
chaos through period doubling [2]. And, alternative scalings
are known, such as power-law divergences [3, Sec. 4.5]. For
natural language texts there is empirical evidence that the

“4)
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excess entropy diverges. One form is referred to as Hilberg’s
law [8,39,401: 1[X _n:0; Xo.n] & v/N.

In contrast with Sec. IV’s rather direct calculation, it is far
less straightforward to analyze these power-law divergences:
I[X.0; Xo.n] ~ N7, with y € [0,1). While there are results
on asymptotics of posteriors for nonparametric Bayesian
inference, many aim to establish asymptotic normality of the
posterior; e.g., as in Refs. [41,42]. As far as we know, no
result yet recovers the aforementioned power-law divergence;
likely, since existing asymptotic analyses avoid the essential
singularity for the prior utilized in Ref. [3, Sec. 4.5] to obtain
power-law divergence.

V. DISCUSSION

We investigated one large, but particular class of infinitary
processes in terms of how information measures diverge;
recovering, in short order, a previously reported logarithmic
divergence in Bandit-like process past-future mutual informa-
tion. Practically, this suggests that one could use the scaling
of empirical estimates of past-future information as a function
of sequence length to estimate a process’s parameter space
dimension.

Section IV’s scaling analysis left open the possibility
that information divergences can be driven by the ergodic
components themselves. So, what is known about information
divergences in ergodic processes? An information divergence
hints at a structural level in the space of ergodic processes;
a space that is itself highly organized. This is seen in the
hierarchy of divergences separating processes into classes of
distinct architecture, depicted in Fig. 1 (see also Table 1,
Fig. 18, and Sec. 5 in Ref. [43]). Processes at each level are
distinguished by different scalings for their complexity and in
how difficult they are to learn and predict.

At the lowest level (Markov) are processes described by
finite e-machines with finite history dependence (finite Markov
order R); e.g., those described by existing maximum caliber
models [44] or by measure subshifts of finite type [45].
Though very commonly posited as models, they inhabit a
vanishingly small measure in the space of processes [46].
At the next level (Sofic) of structure are processes described
by e-machines with finite C,. These typically have infinite
Markov order; e.g., the measure-sofic processes. Above this
level are processes generated by general (that is, nonunifilar)
HMMs with uncountable recurrent causal states and divergent
statistical complexity that, nonetheless, have finite generative
complexity, Cgen < 00 [32]. Processes at the generative level
not only have infinite Markov order and storage, but also
require a growing amount of memory for accurate prediction.
One consequence is that they are inherently unpredictable
by any observer with finite resources. Note, however, that
predictability is complicated at all levels by cryptic processes
[47]—those with arbitrarily small excess entropy, but large
statistical complexity. When the smallest generative model is
infinite but the process still has short-term memory, we arrive
at the class of finitary processes (E < 00).

Processes with divergent excess entropy—infinitary
processes—inhabit the upper reaches of this hierarchy. Pre-
dicting such processes necessarily requires infinite resources,
but accurate prediction can also return infinite dividends. We
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agree, here, with Ref. [3]: the asymptotic rate of information
divergence is a useful proxy for process complexity. Histori-
cally, this view appears to have been anticipated in Shannon’s
introduction of the dimension rate [48, Appendix 7] of an en-
semble of functions: A = lims_0c—07-00 N(€,8,T)/T loge,
where N(€,58,T) is the smallest number of elements that can
be chosen such that all elements of the ensemble, apart from
a set of measure §, are within the distance € of at least one of
those chosen.

However, it is as important to know which process mech-
anism drives the divergence as it is to know the divergence
rate. Infinitary Bandit processes store memory entirely in their
nonergodic component. Our analysis identified the divergence
in this memory with the well known divergence in the
differential entropy of highly peaked distributions of vanishing
width. Generalizing Bandit processes to have structured
ergodic components, we now see that even finite e-machines
trivially generate infinitary processes when their transition
probabilities are continuous random variables.

Thus, in this case, we also agree that information
divergence is a “necessary but not sufficient” criterion for
process complexity [S]. (The Appendix A, however, calls out
a caveat.) This leaves open a broad challenge to understand
the sufficient mechanisms for information divergences. For
example, we have yet to develop similar informational and
computation-theoretic analyses for the infinitary ergodic
processes in Refs. [4,5].

Looking forward, the simplicity of our structural complex-
ity analysis opens up the possibility to better frame information
in hierarchical processes [43, Sec. 5], such as the structural

Infinitary

E — o

Finitary
Cgen — 0

Generative

C, — o0

Sofic

R — o0

Markov

FIG. 1. Prediction hierarchy for stationary ergodic processes:
Each level describes a process class with finite informational
quantities. A class above finitely models the processes in the class
below. Classes are separated by divergence in the corresponding
informational quantity. Moving up the hierarchy corresponds to it
diverging. Example processes that are finitely presented at each
level, but infinitely presented at the preceding lower level. Sofic:
typical unifilar HMMs, e.g., the Even Process [1]; Generative: typical
nonunifilar HMMs [32]; Finitary: typical infinite nonunifilar HMMs;
Infinitary: highly atypical infinite HMMs with long-range memory,
e.g., the ergodic construction in Ref. [4].
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hierarchy in biology [49, Fig. 6], epochal evolution [50], and
knowledge hierarchies in social systems such as semantics in
human language [51]. These are processes in which multiple
levels of mechanism are manifest and operate simultaneously
and in which each level is separated from those below via phase
transitions that lead to distinct signatures of informational and
structural divergence.
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APPENDIX: TRULY COMPLEX SPIN SYSTEMS?

Reference [5] pointed out that many infinitary processes do
not satisfy intuitive definitions for complexity: divergence in
E is a “necessary but not sufficient condition” for a process
being truly complex. While intuitively compelling, perhaps
divergent E is not even a necessary condition. Let us explain.

Spin systems at criticality are one of the most familiar
examples of truly complex processes: global correlations
emerge from purely local interactions [29]. Evidence of this
complexity appears even if we are only allowed to observe
a single spin’s interaction with another on the lattice. At the
critical temperature, the interaction has a power-law autocor-
relation; at all other temperatures, the spin’s autocorrelation is
asymptotically exponential. The configurations’ spatial excess
entropy appears to diverge at criticality [52], too. However,
does the temporal excess entropy E(M,N)—roughly, the
interaction of a single spin with itself at later times—also
diverge at criticality?

Surprisingly, it is finite, even at the critical temperature,
unless there are nonlocal spatial interactions between lattice
spins. Consider evolving the lattice configurations via Glauber
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dynamics for concreteness [29]. That is, spin j’s next state U,j+l

is determined stochastically by its previous state o; and its
effective magnetic field 7/ = Y. Jijo! . In other words, h] and
O',j causally shield the past (E,j from the future & ,’ , implying
that 1[0} 430/, 1.,4n B 1 = 11070/, 1h]1 < H[o]]. Given
a finite set of spin values and local interactions, h,’ can only
take a finite number of values. Thus, H [h,j ] < o0, and so
|1[GIJ;M:,;atj+1:,+N;h;i]| < H[h!] < 00, as well.

A more familiar example makes this concrete. For the
standard two-dimensional Ising lattice J;; = J, if i and j

are nearest neighbors, and J;; =0, otherwise. There, h,j
can only take five possible values—h’/ € {0, J, 2J, 3J, and
4Jy—giving [I[0]_.;; 0/, 1.on3 b 1l < H[R]] < log, 5 bits.

The information-theoretic decomposition in Eq. (1) applies
in this particular situation. Here, observed variables X, are
spins o;, and the parameters ® are replaced by 4/. The bounds
above then directly imply that E(M,N) < oo for all M and
N. In fact, for the standard two-dimensional Ising lattice,
we find that E(—o00,00) < 14 log, 5 =~ 3.4 bits. We expect
excess entropy to diverge only when 4/ is a continuous random
variable. This can happen when J;; is nonzero for an infinite
number of i’s. However, this necessitates global, not local,
spin-spin couplings.

This does not negate E’s utility as a generalized order
parameter [53]. It is still likely maximized at criticality, even
if its temporal version does not diverge. Rather, our analysis
shows that phenomena—here, spin lattices with purely local
couplings—do not necessarily have divergent E even when
many would consider their dynamics to be truly complex at
criticality.

At first glance, this contradicts the experiments in
Fig. 1 of Ref. [3] for the Ising lattice with local interactions. A
careful look reveals that there is none: coupling strengths were
randomly changed every 400 000 iterations. So, the resultant
time series is a concatenation of samples from a Bandit process.
Section IV then predicts the observed logarithmic scaling
in Fig. 1 there for N < 25. However, it also implies that
E(—o0,N) will stop increasing logarithmically at or before
N = 400000.
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