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ABSTRACT 

The one-dlmensional t r ans i en t  two phase f l o v  
In a geothermal w e l l  has been modelled v i t h  a f in-  
i t e  difference approximation. 
mass, momentum and energy a r e  aolved using a par- 
t i a l l y  imrplicit method. Terms t h a t  would place a 
severe time r e s t r i c t i o n  00 t he  calculat ion are 
solved lmplieity while other terms are solved 
e x p l i c i t l y  f o r  computational ease and efficiency. 
The wellbore model includes heat and mass t r ans fe r  
and is coupled t o  a slnQle reservoir  model. It l a  
used t o  invest igate  the  t r ans i en t  behavior in a 
s ing le  or tvo  phase w e l l  during wel l  tes t ing.  
Results shov t h a t  vhcn the reservoir  has a re l a t -  
i ve ly  l a rge  r a k e  of Lb, as utists b a geother- 
mal f i e l d ,  the slope of the log (pressure) VI. log 
(time) curve 18 not necessar i ly  A unit slope. The 
e a r l y  time behavior of this curve l a  controlled by 
t h e  Interact ion of t h e  flow In t h e  reservoir  and 
t h a t  in t he  well ,  and can be used t o  determine near 
bore values of kh. Xeat l o s s  in t h e  vel lbore i. 
shown t o  a l s o  a f f e c t  the pressure -8. time plot. 

The equations of 

INTRODUCTION 

Well teat lng is me method of u r u s h g  reser- 
v o i r  properties.  
t h e  cunw le w e d  t o  determine t h e  value of Lb and 
dch of t he  reservoir.  
l a  generally much l a rge r  fn a geothermal reservoir  
than an o i l  o r  gas f i e l d ,  t h e  r r s e r r o i r  i t s e l f  re- 
sponds f a s t e r  in t h e  former case, and t h e  traori- 
en t  behavior in t he  wel l  i t a e l f  does mot d i e  Out  
before the  r e se tpo i r  starts t o  respond. R a s u r e  
traasimt cunrea derived la t h e  petroleum litera- 
t u r e  mauaie that the change8 in t he  well  a r e  rela- 
t i v e l y  uniform. This a i tua t ion  i. mt necersar i ly  
t r u e  In a geothermal f i e ld .  To f u l l y  analyze the 
w e l l  tat reau l t s  in a g t O t h e r ~ a 1  f i e l d ,  t h e  t ranr-  
l e n t  M t U r t  of t he  f l o v  in t h e  v e l l  i t s e l f  must be 
understood. yhile seve ra l  numerical code8 have 
been wr i t ten  t o  o h u l a t e  two phase f l w  in t he  
wellbore (Sugira, et  410, 1979; Could. 1974; 
Pyley, 1964; J u p r u e r t  and Sanyal, 19771, t h e  ones 
reported in t he  geothermal f i e l d  a l l  UsUme 
steady state. 
t h e  vellhead conditions a f t e r  t he  v e l l  has been 
floving f o r  r m e  time, but  they are l e a s  uaeful in 
analyzing ve l1  test data. A steady atate model 

equal t o  the  MSB aut  of t he  well, which is not 
t r u e  during the  ear ly  t e s t ing  of vell o r  d e n  t he  

The behavior of t he  pressure 

Because the  value Of kh 

n e  codes can be used to rclttn~ute 

na tura l ly  .S1umCI t h a t  the =E8 i n t o  t h e  We11 b 

f l u i d  temperature within the w e l l  Is ch.&ng 
signif icant ly .  
reservoir  ~tOde18 which assume Dorcy type f l o v  t o  
model t he  vellbore flov. The basic  mature of the  
flow i n  the hro cases is d i f f e ren t  when t r ans i en t s  
are Inportant. For the f lu id  In  t h e  w l l b o r e ,  the 
flow can be 8hovn t o  be governed by a ware equation 
with damplng, and in the  reservoir  the f l u i d  flow 
is controlled by a diffusion-like equation. 

Also, it  ir not possible t o  use 

A code to model me dFoensiona1 t ransient  
two phase flow in a vell has been developed. It 
is coupled v i t h  a reservoir  =del of simple, one 
phase r a d i a l  f l o v  in a porous media. ( l n i t i s l l y  
f lashing only in the  wellbore I s  being considered.) 
A t  e a r ly  t h e e ,  t he  f lov  in t he  reservoir is bssic- 
a l l y  r ad ia l ,  PO t he  w d e l  can be used t o  predict  
t he  dravdwn preisure  curve f o r  single phase flow 
and vhcn there  Is flashing In the  wellbore. Sone 
i n t e re s t ing  r e s u l t s  have been obtained using the 
model as w i l l  be l l l u a t r a t e d  a t  the  end. 

NlRIERICAL HODEL 

The basic problem is t o  solve the t r ans i en t  
equationa of mass. Qmementun, and energy f o r  one- 
d h e n s i o n a l  flow. For the  i n i t i a l  development of 
t h e  numerical method, two phase homogenous flow 
vas modelled. The equations solved were: 

a a 
continuity.  %(PI + p u )  - 0 

apu a d  a p  1 fPUZ 
mmentum, r+). + G + O g + i T  0 ( 2 )  

-eaY or+-+ T+~- 0 (3)  
ape Ooue p au &Lra(Tr - 2,) 

&ere e m d  e are the ma88 averwed values of den- 
r i t y  and mergy respect ively i n  the two phase reg- 
ion. 'Lhe veloci ty  Qf the  gas and l iqu id  a r e  as- 
6-d t o  be cquat, ;.e. S l ip= 0 ,  and furthermore 
i t  is assumed t h a t  thermodynamic equilibrium e x i s t s  
80 t h a t  P can be wri t ten as a function of P and e. 
Tbe u t t n s i o a  of the model t o  Include c l i p  is  
' r t r a i g h t f o m r d  (Hiller, 1979a) assuming t h a t  the 
boldup and f r i c t lon . f ac to r s  are kaovn. Nom-equl- 
l ibrium f l o v  can almo be Included but t h i s  caoe 
docs require  a second equation of mass- 
t i 0 d  e f f e c t s  are expressed as the f r i c t i o n  factor  
ti808 1/2 Ou2& 

The f r i c -  

Ikaniugful r e s u l t s  can be ob- 

r . '  
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taw mithout goipr t o  a am elaborate i r c r i p t -  
, ion of the f r i c t i o n  f a c t o r  and slip. 

The basic equations l i s t e d  & w e  wsn mlved 
using a f i n i t e  difference approximatin with a part- 
i a l l y  - l i c i t  method. 
r e s t r i c t i v e  t h e  ateps If evaluated a p l i c i t y  are 
evaluated implicity while al l  other terms are eval- 
uated exp l i c i t l y  f o r  computational efficiency. fn 
finite difference form. t h e  equations becme: 

Terms that muld inpoae 

. 

A t  Ax 

L 
f (vu2 1 

+ 4wH(Tr - Tv) 
D 

Note tha t  the veloci ty  Is not calculated a t  the 
sane nodal 
1.e. a t  1+1/2 instead of at 1. 

point 86 t he  thermodynamic variables.  

The solut ion procedures Involves cmbining 
the  three equations above in addi t ion t o  the equa- 
t i o n  of state. rf$yltiug in one equation f o r  the 
new pressures. Pi . To f a c i l i t a t e  t h i s  method. 
t he  equation of state Is writ ten i n  the  form. dv - 
(dP/dP)edP + (dP/de)pde Instead of 0 - fn(P,e). 
The f i n i t e  differenced form of t h i s  equation is 

P Note tha t  P (eL+' - e') is given by E q .  6, urd the  
term ( l / p )  fdo/be) varies l inea r ly  in the tvo phase 
region while (dp/de) changes abruptly. Because the  
der ivat ives  in Eq. 7 are evaluated exp l i c i t l y ,  t he  
nev value of P calculated with E q .  7 is e o q a r e d  
with the value computed from P - fn(?,c). 
di f ference bctveen the hto u l c u l a t i o n s  is grea te r  
than a specif ied value. an I t e r a t i o n  i s  occes8ary. 
I n  t h a t  u s e .  t he  p a r t i a l  der ivat ives  ut averaged 
between the new urd old values. 

I f  the 

Equations 4-7 are combined. In  the cont inui ty  
equation, t h e  expression f o r  the oev value of (PU) 
is given by Eq. 5. urd P is wri t ten  in terms of 
p r u s u r e -  The resul t ing expression f o r  the new 
pressure Is 

- (vu2 - 2PU2 + vu2 )P , 
i + h  I- + 1-3/2 

L 
t h e  difference p: (eP+' - ti) given by E q .  6. Equ- 
a t i o n  8 is a tri-di$onal matrix and the solut ion 
is s t r a i g h t  forward i f  the boundsry conditions a r e  
mpecified. 

The boundary conditione considered were (1) 
specif icat ion of pressure and mass flow r a t e  or 
veloci ty  at e i t h e r  the wellhead or downhole, and 
(2) spec i f ica t ion  of the pressure at both wellhead 
and downhole. The pressure must be specif ied a t  
one of the boundaries. The pressure a t  the second 
end Is e i t h e r  known or  is calculated from t h e  
momentum equation. %.e. . given a(vu)/at. t h e  pres- 
s u r e  at the boundary can be calculated using E q .  5-  

Oxice the  new pressures are calculated,  t h e  
nev energy is daterr ined v i t h  E q .  6. the  n e w  den- 
81ty i s  given by E p .  7, and the ve loc i t i e s  are com- 
puted from e i t h e r  t he  continuity or momentum equa- 
tion. If t he  mass flow rate ls specif ied as a 
function of t h e ,  t he  veloci ty  is ca&ylated v i t h  
t h e  continuity equation. Given (vu)i+,, t he  velo- 
c i t y  at posi i ton 1 is 

Because Pu Is him at  the wellhead. t he  v e l o c i t i e s  
can be computed successively down the  wellbore. I f  
instead of laroving t he  mass or  volune f lov ra t e  
out of t he  w e l l  the  pressure is given. t he  velo- 
cities are de terdned  v i t h  the momentum equation. 

The wellbore model vas connected t o  a reser- 
v o i r  model that assumed s ing le  phase r a d i a l  homo- 
genous flow in t he  porous medium. 
a l l w e d  t o  flow i n t o  the w l l b o r e  wer a f i n i t e  
length. 
t r ans i en t  vel lbore flow but the reservoir  flow was 
included so t ha t  the dravdovn pressure in the  well  
would be consistent with the mount of f l u i d  tha t  
f laved from the  reservoir  i n t o  the -11. The 
reservoir  flow equation, 

The f l u i d  was 

The i n t en t  vas t o  r a i n l y  inves t ig s t e  the 

uas aolved oil a variable  grid.  
t h e  reservoir  vas matched with the MIS f l o v  i n t o  
t h e  well. 

The mass flow from 

'Ihe temperature change around the wellbore was 

A var iab le  g r id  

aolved in a almilar  manner, 1.e.. t he  temperature 
change is calculated using the  conduction equation 
which Ir slmilar  in form t o  E p .  9. 

2 
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8y8 tm V(LS d o 0  Used  t h i s  use .  

Given the initial conditions in the vell a d  
i n  the reservoir ,  and the boundary conditions, the 
nwnerical model 8 0 l V e f i  f o r  the t r ans i en t  behavior 
in the vellbore.  The basic  nature of the interac- 
t i o n  of the v e l l f l o v  and reservoir  f l ov  can be 
understood. 

t3wspLE CbLcULATIOloS 

The numerical model bas been used t o  deter- 

Hiller 
In the #ingle  phue  region, t h e  pro- 

'Ihe osci l -  
t h e  eurface. 
p8gation of the rigam1 L. 8uch f u t e r .  
l a t i ons  are mainly i n  t he  tu0 phase region. 

One can use the  program t o  determine the pres- 
8ure dravdown during the ea r ly  time of a w e l l  test. 
It bas been 8havn (Miller, 1979b) tha t  the i n i t i a l  
r lope of a log log p lo t  of pressure versus time in 
v e l l  t e s t ing  .is not necessarily unity as derived b 
t he  petroleum l i t e r a tu re .  
above there  is a time delay u n t i l  the dovnhole 
pressure registers the change made at the wellhead. 

As seen in the  f igures  

S 

I 

mine the e a r l y  time behavior of the wellbore f lov  Uellbore storage curves are derived aaauming the 
f o r  both singit phase and tu0 phase flow. Examples 
of the calculations are given belov. Figure 1 i r  a 
p l o t  of the pressure changes tha t  propagrte down 
the vellbore 8fter 8 stepvise  change in flawrate at 
the vellhead. 
were done €or a l iquid-f i l led v e l l  f lovlng under a 
posi t ive head. 
rate and then the f lov ra t e  is increased. At e8rly 
times a f t e r  the f l av ra t e  change, t h e  increase in  
produced f l u i d  i s  removed from wellbore r torrgc 
instead of from the reservoir.  A pressure drop 
propagates dovn the ve l l .  After a ce r t a in  amount 
of timre, depending on the compressibli l i ty of t he  
f l u i d ,  the pressure pulse in t e rac t s  v i t h  t h e  for- 
mation/vell boundary. 
plot ted,  the reservoir  has a h r g e  value of &/re 
and it I s  capable of aupplying more f l u i d  f o r  t h i s  
presaure drop than the vel1 could. The case n- 
s u l t s  I n  8 reverse prersure pulse which propagates 
back up the vell, cancell ing p a r t  of the initial 
pressure drop. 
i t  is f i n a l l y  damped out by the in t e rac t ion  v i t h  
the  boundaries. 

In this f igure,  t h e  calculat ions 

The vell j4 flovfng s t ead i ly  at one 

In  the particular case 

The pressure pulse o s c i l l a t e r  u n t i l  

1.0 

om 

0.6 

.(-J 

04 

02 

0 

*% 
Figure 1. 

. - € o r  a s ing le  paUe fluid. 

Resaure  pulse propagating dorn t h e  
ut11 f o r  A atepvlse f l o v r a t t  change and 

Figure 2 shove the rame calculations f o r  a 
flaahed mystem. Again, t he  f l u i d  l e  alovly flw- 
ing and then the f lov ra t e  $6 suddenly facrestred. 
The pressure pulse propagates d m  the -11. 
ever in t h i r  case, there  ia a brine/tvo pase  
boundary. 
approrirnate location of the f l a sh  point. 
l y  as t he  flowrate is increased, t he  f l a s h  l e v e l  
drops.) When the preasure pulse r u c h e 8  t h i r  
boundary, it f a  par t ly  ref lected md partly tranb 
mit t ed .  Ihe  ref lected pulse propagates back tovard 

Bov- 

The dotted l i n e  i n  the f igure gives t he  
(Obvioue- 

I 2 4 6 8 IO 12 14 16 1 8 2 0  

APD 
Figure 2. Ressu re  pulse propagating dovn the ve l1  

f o r  a r tepvise  flowrate change and f o r  r 
f t U h  l.rcl at .bat Z/L 0.65. 

f l u i d  in t he  vell respond8 as r w e l l  mixed f luid.  
By being able  t o  model the t r ans i en t  f l w  i n  the 
vel lbore,  it has been possible t o  calculate  the 
expected dravdavn in the  vell taking i n t o  account 
t h e  n o n v n i f o r n i t i e s  in the wll. The r e s u l t s  shov 
that another non-dimensional time tRu Oust r h o  be 
deterained aa ~ l l  as the average wellbore storage 
coeff ic ient  C p  
flashed and unflaahed ve l l s .  'Lhe parameter t R W o f  
defined as 

'Lbe p lo t  a h w r  calculat ions f o r  

P $ 1  a0 (E) r; (s 1 

& kh/r deereaser, tl(V increases and the ea r ly  
time behavior of the log P va. log t approaches a 
one t o  one plot.  
and the slope of the log P vs. log t curve is 
ateeper  than unity. 

mine the  e f f e c t  of heat l o s s  t o  the rock surround- 
fng the wellbore during a w e l l  t e s t .  The calcula- 
t i on r  ahmi are done f o r  a well that has been flow- 
ing and ir rerrorubl~ "uarm." The arruaed tempera- 
t u r e  p r o f i l e  is given by the insert i n  Figure 4. 

& W r  increases,  t R w  decrersea 

The uumer iu l  model u n  rSro be used t o  deter- 

3 
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Figure 3. Effect of non-rmifordties i n  t h e  w e l l  
on t h e  expected e a r l y  t h e  behavlor of 
downhole pressure t ransients .  

-. - 

11- h M n )  trnhunnn t 

figure 1. Effect of h u t  1088 in t h e  wellbore on 
the dovnhole pressure transients. 

tbe w e l l  bas been floving a t u d i l y .  sen the flow- 
rate ir decreased. The f igure compares the buildup 
ant m d  rubr tqwnt  dravdwn curve d t h  m d  dtb- 
out  heat t r a m f e r .  It is aten by the ulculatiolrs 
that even ufaen t he  W l  h s  km flouimg for 
8rreral b u r r  m d  the rock u r o a n d  the bore hu 
been heated, h u t  t r a m f a r  during a w e l l  t e a t  la 
a t i l l  importent mid U t  be considered. When the 
w e l l  Wt data is plot ted,  the slope of the 0 me 
b g  t eUWt in the  pr t rd08tudy tcgion L algnifi- 
u n t l y  affected by the heat t ransfer .  Also the 
tfme t o  reach the pseudostmav region i s  longer 
when heat t r ans fe r  L importent. 

oDloCLDsIoli 

TO be able  to analyze mll test data in a 
gtotherul f i e l d ,  a t r ans i en t  e l l b o r e  rodel la 

ling tvo phase t r a m i e n t  flw in a wtllbore. %be 
bas ic  solut ion procedure is fundamentally d i f f e r e n t  
frm t he  wmy ateady atatc modela reported b e c a w t  
of the incluaion of the t r ans i en t  texu-  %e 

m t C u 8 a t 7 .  Ibt dcvtlOptd model la U p . b l e  of bmd- 

s t u d y  state 8OlUtlOn is 3-t l h l t i n g  U 8 t  Of 
t h e  traM1-t flw. 
the  UOn-UU%fOmitie8 in Q r t 8 8 U t t  in the wellbore 

&-le ~ l c u l a t 1 0 ~ ~  ahov Ut 

can r e s u l t  in d i f f e ren t  u r l y  t h e  behavior of t he  
presrure  ts. t h e  curve than described by a lrcmped 

model. 
a spec ia l  case when k h / L  i s  m a l l  as i n  an o i l  or  
gas f i e ld .  Also heat t r ans fe r  alters the slope of 
t h e  curve in the  pseudosteady region SO the  slope 
of P vs. log t is no longer qu/4vkh. 

rhe un i t  slope on t he  log log sca l e  is jut 

a 
C 

CD 
D 

f 
8 
fl 
kh 
P 
Po 
r 
t 
t D  
tRU 

Tr 
TW 

e 

u 
x 
2 
U 

P 
0 

POHENCLATURE 

& / A t  
reservoir  compressibil i ty 
vel lbore storage coeff ic ient  
v e l l  diameter 
specif  IC energy 
f r i c t i o n  f ac to r  
gravi ty  
heat t r ans fe r  coeff ic ient  
permeability-thickness 
pressure 
non dimentional pressure 
r ad ia l  d i r ec t ion  
time 
non dimensional time (4k/bucD2) t 

response 
reserrroir temperature 
temperature of f l u i d  in vell 
veloci ty  
u i a l  direct ion 
height above reservoir  

porosity 
density 

r a t i o  of reservoir  response t o  well 

absolute Vi8COSity 
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