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Abstract 

Adaptive Control of Thought-Rational (ACT-R) and the 
Linear Ballistic Accumulator (LBA) were compared in a 
model mimicry simulation of the Psychomotor Vigilance 
Task (PVT), a simple, reaction time (RT) task requiring 
sustained attention. The models use different formalisms to 
capture the full response profile of the PVT. The parameters 
were varied systematically to illustrate the ranges of the 
models’ predictions, to assess the models’ estimation 
properties, and to determine which parameters in the models 
correspond with each other. Both models produced skewed 
RT distributions typical of empirical data, including false 
starts and lapses. The simulation study demonstrated that both 
models and their parameters are recoverable. Lastly, isolated 
parameters in the LBA model captured the effects of varying 
parameters in the ACT-R model, but the reverse was not 
always true. These interesting correspondences across 
different modeling formalisms suggest the possibility of 
integrating ACT-R and the LBA in future work.  

Keywords: ACT-R, LBA, PVT, reaction time, fatigue, model 
comparison 

Introduction 
The ability to detect a single stimulus is fundamental to 
cognition. Although this skill is basic, the study and 
modeling of stimulus detection is worthwhile for several 
reasons. Stimulus detection has been extensively examined 
in laboratory tasks involving vigilance and simple reaction 
time (RT; Luce, 1986). Additionally, this ability underlies 
successful performance in applied contexts that require 
sustained attention, such as driving. Finally, intuition 
suggests that the cognitive processes involved in stimulus 
detection should be involved in more-complex multi-
alternative choices as well. 

Despite the simplicity of detection tasks, the RT 
distributions they produce are complex and empirically rich. 
This is well-illustrated by the psychomotor vigilance task 
(PVT; Dinges & Powell, 1985), a 10-minute detection task 
in which stimuli are presented at random inter-trial intervals 
ranging from 2 to 10 seconds. Participants are instructed to 
respond as quickly as possible once the stimulus appears 
while avoiding premature responses. The PVT response 
profile consists of three categories: false starts occur before 

or within 150 ms of stimulus presentation, alert responses 
occur between 150 and 500 ms of the stimulus onset, and 
lapses occur 500 ms after of the stimulus onset. The RT 
distribution on the PVT, which has a long right tail even 
when participants are well rested, becomes increasingly 
skewed to the right with greater fatigue from sleep loss, as 
reflected in increased lapses (Lim & Dinges, 2008). 
Additionally, participants commit more false starts. These 
features of the response profile reflect stable individual 
differences, both at baseline and following sleep loss (Van 
Dongen, Baynard, Maislin, & Dinges, 2004). 

A complete model of the PVT should explain the full 
response profile, yet most biomathematical accounts from 
the sleep research literature only predict aggregate measures 
of performance such as the proportion of lapses (for a 
review, see Van Dongen, 2004). More recent work has 
attempted to use statistical functions to characterize the full 
RT distribution (Lim & Dinges, 2008), but those efforts still 
fail to explain why the particular distributions arise. A 
promising alternative is to use computational cognitive 
models, which specify the cognitive processes underlying 
task performance, to simulate behavior in the PVT (e.g., 
Gunzelmann, Veksler, Walsh, & Gluck, 2015). 

In this paper, we compared two PVT models derived from 
very different formalisms. The first model is based on the 
integrated-cognitive architecture Adaptive Control of 
Though-Rational (ACT-R), in which RTs are determined by 
the durations of a sequence of discrete cognitive events. The 
second model is based on the Linear Ballistic Accumulator 
(LBA; Brown & Heathcote, 2008), an analytically tractable 
member of the class of sequential sampling models. In the 
LBA, RTs are determined by the combined durations of a 
decision process in which evidence accumulates 
continuously, and an overall non-decision time attributed to 
perceptual and motor processes. 

The PVT is an ideal test bed for comparing ACT-R and 
the LBA because (1) the PVT is simple, yet (2) it provides 
empirically rich data for inferring cognitive processes, and 
(3) both ACT-R and the LBA can be applied to the PVT. 
Rather than attempting to falsify one account, we sought to 
compare and contrast these differing formalisms. 

710



We addressed three primary questions in this research. 
First, can both ACT-R and LBA generate the complete RT 
profiles, including false starts and lapses, observed in PVT 
studies? ACT-R models have predominantly been used to 
predict mean RTs, and attempts to account for full RT 
distributions have been rare (but see Walsh et al., 2014). 
The LBA has only been used to model the correct and error 
responses in multi-alternative choice tasks (Brown & 
Heathcote, 2008), and it was unclear whether it could also 
account for the full response profile observed in the PVT, 
especially the occurrence of false starts and lapses. Second, 
how well can ACT-R and LBA recover their own 
parameters from simulated PVT data? Both models are 
complex, and the estimation properties of their parameters 
have not been assessed in the PVT. As such, it was 
unknown whether model parameters could be reliably 
estimated from PVT data, or whether the models could even 
be distinguished from one another based on data from the 
PVT. Third, what are the relationships between core 
parameters in the two models? Although the models are 
distinct, it was unclear which of their parameters are 
conceptually and/or functionally linked. 

Models 

LBA 
The LBA is a sequential sampling model that is similar to 
the drift diffusion model (DDM) in terms of parameter 
interpretation (Brown & Heathcote, 2008; Donkin et al., 
2011). In both models, information is sampled from a 
stimulus and accumulates over time. When accumulated 
evidence in favor of an alternative reaches a threshold, a 
decision occurs. Sources of variation in the DDM, such as 
intra-trial variability in evidence accumulation and inter-
trial variability in non-decision time, are absent from the 
LBA. These simplifications come with no loss of generality, 
making LBA a more parsimonious, complete account of 
basic empirical RT phenomena (Brown & Heathcote, 2008). 

In the standard LBA, the stimulus onset triggers an 
evidence accumulation process. Accumulated evidence 
begins from a variable starting point between 0 and the 
response threshold, and proceeds towards the response 
threshold in a linear and deterministic fashion. The speed of 
the accumulation process is controlled by the drift rate. 
Between-trial variability in the drift rate and starting point 
of the evidence accumulation process contribute to the 
shape and spread of the RT distribution. The drift rate is 
normally distributed across trials with a mean of V, and a 
standard deviation of 1. The starting point is uniformly 
distributed with an adjustable maximum starting point, A. 
Other processes such as encoding and motor execution are 
combined into a composite measure of non-decision time, t0. 

Several modifications were necessary to apply the LBA to 
the PVT (Fig. 1). Our modified LBA model involves two 
accumulation processes that occur in succession rather than 
one accumulation process. First, an inter-stimulus interval 
(ISI) accumulation process starts at the beginning of the 

trial. Although this process has a negative drift rate on 
average, stochasticity occasionally results in a positive drift 
rate and, consequently, a false start. Once the stimulus 
appears, the ISI accumulation process halts and a separate 
stimulus interval (SI) accumulation process starts. The trial 
ends once a response is given.  

The ISI and SI accumulation processes are identical, 
except for mean drift rate, V, and the maximum starting 
point, A. The ISI mean drift rate, VISI, is constrained to be 
negative, indicating that false starts are rare and produced 
randomly. Additionally, the ISI maximum starting point, 
AISI, is set to zero to reflect bias toward not responding. The 
threshold, b, is the same for the ISI and SI accumulation 
processes, as is non-decision time, t0. In total, the modified 
LBA model contains five free parameters: b, ASI, VISI, VSI, 
and t0. 
 
ACT-R 
ACT-R contains a set of specialized information-processing 
modules (e.g., a vision module, a declarative memory 
module, a motor module). These modules are connected to, 
and controlled by, a central procedural module (Anderson, 
2007). Procedural knowledge is represented in the form of 
production rules, which consist of selection criteria and 
actions that modify the internal state of the architecture and 
the external state of the world when the selection criteria are 
met. The temporal dynamics of cognition unfold across a 
sequence of production cycles. During each cycle, the 
conditions for each production are compared against the 
conditions of the current state, and a production is selected 
and enacted if its conditions are met. The resulting state 
serves as the starting point for the next production cycle. 

We adopted an ACT-R model of the PVT that consists of 
three productions: (1) wait for the stimulus to appear, which 
represents task engagement, (2) attend to the stimulus, and 
(3) respond to the stimulus (Walsh et al., 2014). Partial 
production matching allows productions whose conditions 
are not perfectly met to be selected in a stochastic fashion, 
producing occasional false starts. The probability that a 
production is selected is modulated by two adjustable 
parameters—a utility scalar (US) and a utility threshold (UT). 
Formally, production utility can be expressed as: 

 
Figure 1. The modified LBA has separate accumulators for 
the inter-stimulus and stimulus intervals. A denotes spread 
of start points for stimulus interval, and b denotes threshold 
for both intervals. The vertical bar marks stimulus onset. 
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(1)         U!"   =   U! U!  –   MMP!"   +   ϵ! 

where Uij is the utility of production i in state j, US is the 
utility scalar, Ui is the stored utility for production i, MMPij 
is the mismatch penalty for production i in state j, and εi is 
logistically distributed noise. The resulting payoff matrix is 
symmetric with 0 assigned to mismatches and 1 assigned to 
matches. The mismatch penalty ensures that productions 
whose conditions are not perfectly met will be selected with 
low probability. 

The production with highest utility is selected and enacted 
if its utility exceeds the utility threshold, UT, 

(2)   Production = max U!" if  max U!" >   U! 

If no production’s utility exceeds the utility threshold, a 
microlapse occurs and no production is enacted. Following a 
microlapse, the utility scalar in Eq. 1 is decremented by an 
adjustable scalar, FPdec, according to Us = Us·FPdec. This 
increases the likelihood of microlapses in subsequent 
production cycles. Across such a series of cycles, the 
probability of responding decreases progressively, causing 
behavioral lapses. The final adjustable parameter, cycle 
time, controls the duration of conflict resolution at the start 
of each production cycle. In total, the ACT-R model 
contains four free parameters: Us, UT, FPdec, and cycle time. 

Our model harnessed two sources of temporal variability. 
The first related to the variable sequence of productions 
selected in a trial, and the second related to the stochastic 
duration of production and cycle times. Each trial’s RT, 
then, was determined by the summed durations of the 
productions and their associated cognitive and motor 
processes. In this way, the ACT-R model can produce a full 
distribution of RTs, rather than an approximation of an 
aggregate mean RT (Walsh, et al., 2014). 

Simulation Method 
We simulated an idealized selective influence experiment 
(Donkin, et al., 2011) in which the parameters of each 
model were systematically varied one at a time while all 
others were set to default values. This approach allowed us 
to examine (1) our ability to accurately recover parameters 
of each model, (2) the extent to which the models mimicked 
each other and (3) how the parameters were correlated 
between models. Parameter ranges were drawn from the 
published model fits of PVT performance by 13 well-rested 
individuals in the control condition of a sleep deprivation 
experiment (Doran, Van Dongen, & Dinges, 2001; see also 
Walsh et al., 2014). We set the default value of each 
parameter to the median estimate from the individual model 
fits, and the range of each parameter to the complete range 
of estimates from the individual fits (Table 1). We varied 
parameters at ten equally spaced intervals over their ranges, 
resulting in 40 ACT-R parameter sets (10 levels per 
parameter by 4 parameters) and 50 LBA parameter sets (10 
levels per parameter by 5 parameters). We simulated 50,000 

PVT trials for each model and parameter set to minimize the 
role of sampling error and bias in our analyses. 

Each model was fit to the 90 simulated datasets using 
quantile maximum likelihood estimation (Heathcote, Brown 
& Mewhort, 2002). RTs that occurred prior to stimulus 
onset or within 150 ms of stimulus onset were combined 
into a false start bin (Lim & Dinges, 2008). The remaining 
portion of the distribution was further divided into 20 
quantile bins. Likelihood estimates were calculated from the 
observed and expected proportions of RTs within each 
quantile bin. A simplex algorithm embedded within a grid 
search was used to find the model parameters that 
maximized the likelihood of each simulated dataset. Large-
scale computing resources (Harris, 2008) were leveraged for 
ACT-R, as it is computationally intensive. 

Results 

Model RT Distributions 
Figure 2 shows four of the most distinctive RT distributions 
produced by ACT-R and the LBA. The distributions, which 
vary in terms of numbers of false starts and lapses as well as 
median RTs (Table 2), are within the ranges of those 
produced by well-rested and sleep deprived individuals (cf., 
Walsh et al., 2014). In the 90 simulated datasets, the models 
produced similar proportions of false starts and lapses and 
similar median RTs. However, the LBA model consistently 
yielded distributions with more pronounced skew. 

 
Table 2. Proportions of false starts and lapses, and median 
RTs from the simulated distributions in Fig. 2. 

Model Curve False 
Starts 

Lapses Median 
RT (ms) 

ACT-R Blue .006 .000 245 
 Red .008 .005 272 
 Black .010 .083 305 
 Green .101 .222 381 
LBA Blue .006 .000 242 
 Red .008 .010 271 
 Black .011 .085 306 
 Green .106 .210 381 
 

Table 1. Default parameters and ranges in the simulation. 
LBA b ASI VSI t0 VISI 
Default 0.68 0.44 3.42 0.15 -2.34 
Min 0.54 0.1 3 0.15 -2.95 
Max 0.98 0.56 3.9 0.18 -2.01 

ACT-R Us UT FPdec 
Cycle 
Time Us - UT 

Default 4.85 4.39 0.98 0.04 0.46 
Min 4.01 4.07 0.91 0.029 -0.38 
Max 5.6 5.02 0.99 0.057 1.21 
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Figure 2. Proportion of RTs in 10 ms bins ranging from 150 
ms to 500 ms. The first bin contains all RTs before 150 ms, 
and the last bin contains all RTs after 500 ms. Blue, red, 
black, and green lines show fast, medium, slow and sleep 
deprived RT distributions.  

Parameter Recovery 
The parameter recovery model fits address how accurately 
the parameters can be estimated from PVT data. In these 
analyses, the models were fit to their self-generated data. 
Two metrics were used to assess the quality of the 
parameter recovery: correlation to measure the linear 
association between the true and recovered parameters, and 
relative bias to measure the precision of the estimates. 

Table 3 (upper) shows the parameter recovery results for 
ACT-R. The high correlation for cycle time indicates that 
this parameter is recoverable. Correlations for Us and UT 
were moderate, but the correlation for the difference 
between Us and UT was high. This indicates that the utility 
scalar and threshold jointly influence performance dynamics 
in the ACT-R model. The low correlation for FPdec is due to 
the relatively infrequent occurrence of lapses in well-rested 
individuals. Relative bias was low across all parameters, 
indicating the high precision of the estimates. 

Table 3 (lower) displays the parameter recovery results 
for the LBA. The high correlations and low relative bias 
indicate that the parameter recovery was successful. 
Collectively, these results show that parameters from both 
models can be reliability estimated from their own 
simulations of PVT data. 

 
Table 3. Parameter recovery results for ACT-R and LBA. 

ACT-R Us UT FPdec Cycle 
Time 

Us - 
UT 

Correlation 0.85 0.77 0.56 0.99 0.99 
Relative Bias 1% 1% 0% 0% 4% 
LBA b ASI VSI t0 VISI 
Correlation 0.93 0.97 0.85 0.85 0.98 
Relative Bias -3% 2% -1% 3% 0% 

Model Mimicry 
The model mimicry analyses address whether ACT-R and 
the LBA produce different predictions on the PVT. In these 
simulations, the ACT-R and LBA models were cross-fit to 
data generated by each other. The Bayesian Information 
Criterion (BIC) was used to determine whether the data-
generating model provided a better fit to the RT 
distributions than the alternate model while adjusting for 
parametric sources of model complexity. Smaller values 
denote better fit. 

Figure 3 shows the BICs averaged across datasets for 
each model. In all 90 simulated data sets, both models 
provided better fits to their own data than the alternate 
model. This shows that although the models make very 
similar predictions they are identifiable in simulations with 
very large sample sizes. 

 

 
Figure 3. BIC averaged across datasets. Stars denote fit of 
data-generating model to itself. 

Parameter Correspondence 
We examined the manner in which parameters in the two 
models corresponded to one another. In our simulations, 
parameters were varied one at a time while the other 
parameters were fixed. In the simplest case, a change in one 
parameter would be captured by variation in a single, 
analogous parameter in the alternate model. For simplicity, 
we considered three core parameters in the ACT-R model 
(US - UT, FPdec, and cycle time), and four in the LBA (VSI, 
VISI, t0, and b – ASI/2). The composite parameter b – ASI/2, 
called response caution, is derived from the threshold and 
the center of the start point distribution, and measures the 
average amount of information that is needed to reach the 
decision threshold (Donkin, et al., 2009). 

We first examined how ACT-R responded to 
manipulations of the LBA parameters (Table 4). No 

.00

.05

.10

.15
ACT−R

D
en

si
ty

.00

.05

.10

.15
LBA

D
en

si
ty

Response Time (ms)
150 200 250 300 350 400 450 500

ACT−R LBA
3.01E5

3.02E5

3.03E5

B
IC

Data−Generating Model

*
*

 

 
LBA
ACT−R

Table 4. Correlations between LBA (data generating) and 
ACT-R (best fitting) parameter values. *p <.05 
 

  ACT-R  
LBA FPdec Cycle Time US - UT 
VISI -0.06 0.08 0.04 
VSI 0.10 -0.09 0.16 
t0

 0.04 0.20 0.22 
Response 
Caution 

-0.63* 0.91* 0.68* 
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parameters in the ACT-R model were selectively influenced 
by changes to VSI,,VISI and t0, but all parameters were 
affected by changes to response caution. Next, we examined 
how the LBA responded to manipulations of ACT-R 
parameters (Table 5). Changes to cycle time were captured 
by response caution, and changes to US - UT were captured 
by VSI. No parameter in the LBA was selectively influenced 
by changes to FPdec. In sum, there was a direct mapping 
between individual ACT-R parameter manipulations and 
LBA parameters, but not between individual LBA 
parameter manipulations and ACT-R parameters. 

Discussion 
The detection of a single stimulus is among the most-widely 
studied topics in cognitive science. Yet, despite the 
simplicity of one-choice RT tasks, the RT distributions they 
produce are complex and difficult to account for in detail. 
Here, we compared two computational cognitive models of 
the PVT. One model was based on ACT-R and consists of a 
sequence of discrete cognitive events while the other was 
based on the LBA, which involves continuous evidence 
accumulation. The results of our simulations support three 
findings. First, both models produced the qualitative shapes 
of RT distributions found in the PVT, including the long 
right tail of RT distribution, and occasional false starts and 
lapses (Fig. 2). Second, most model parameters were 
recoverable and the PVT was capable of distinguishing 
between the models. Third, isolated parameters in the LBA 
model captured the effects of varying ACT-R parameters, 
but the reverse was not always true. The correspondence 
between ACT-R parameters and LBA parameters suggests 
similarity between these differing modeling formalisms.  

Model Comparison 
The correspondence between parameters in the LBA and 
ACT-R models was complex. In some cases, parameters in 
one model were affected by parametric variations in the 
other in intuitive ways. For example, drift rate (VSI) in the 
LBA captured changes in the difference between the utility 
scalar and threshold (US - UT) in ACT-R. This makes sense 
because both fundamentally control the signal-to-noise ratio 
in the decision process. 

In other cases, unexpected model parameters 
corresponded to one another. For example, changes in 
response caution in the LBA were captured by cycle time in 
ACT-R and vice versa. Response caution is thought to be 

sensitive to instructions designed to prioritize speed or 
accuracy, whereas cycle time is conceptualized as a stable 
property of the cognitive architecture that only varies among 
individuals. ACT-R posits that production selection is 
instantiated in the basal ganglia, which receives input from 
multiple excitatory and inhibitory pathways. It is 
conceivable that the duration of production selection, 
represented by cycle time, varies with dynamic activity from 
these pathways. In other words, the relationship between 
response caution and cycle time may be real, despite the 
current standard of fixing cycle time within ACT-R models 
of individuals. 

In a third set of cases, we found little correspondence 
between model parameters. For example, ACT-R failed to 
capture manipulations of non-decision time in the LBA. 
This relationship was relatively symmetrical in that non-
decision time showed little or no systematic relationship to 
the manipulation of any ACT-R parameters. Such a lack of 
correspondence suggests that an experimental manipulation 
of non-decision time could potentially discriminate between 
ACT-R and the LBA. Moreover, this finding indicates that 
conclusions will depend critically upon which model is used 
to evaluate data. 

Effects of Fatigue on Psychomotor Vigilance 
We demonstrated that the ACT-R and LBA models produce 
a range of response profiles that are similar to each other, 
and similar to those observed in well-rested individuals. The 
models rarely responded before 150 ms of stimulus 
presentation (false starts), and they rarely responded more 
than 500 ms after the stimulus appeared (lapses). False starts 
and lapses, though present in baseline RT distributions, are 
greatly exacerbated by fatigue from sleep loss. As shown by 
Walsh et al. (2014), ACT-R can be integrated with a 
biomathematical model of fatigue to predict the effects of 
time awake and time of day on PVT performance. The LBA 
model has not been expanded to account for the effects of 
fatigue on PVT performance, yet it should be conceptually 
straightforward to do so. 

Evaluating the models under conditions of fatigue might 
also enhance model discriminability. More confidence can 
be placed in a model that captures normal as well as 
impaired cognitive functioning. Certain parameters that are 
essential to capturing the effects of fatigue minimally affect 
alert performance on the PVT  (FPdec and UT in ACT-R, and 
VISI in the LBA). In this sense, sleep deprivation protocols 
provide a unique opportunity to distinguish among models 
of the PVT (Walsh et al., 2014) and could be leveraged as a 
general strategy for model comparison.  

Towards an Integration of ACT-R and the LBA 
Sequential sampling models and ACT-R explain cognition 
using different modeling formalisms. Sequential sampling 
models provide detailed accounts of empirical RT 
distributions. This emphasis comes at the cost of limited 
generalizability beyond well-constrained decision-making 
tasks utilizing fixed trial structures. Cognitive architectures, 

Table 5. Correlations between ACT-R (data generating) and 
LBA (best fitting) parameter values. *p <.05 
 

 LBA 
ACT-R VISI VSI t0 Response 

Caution 

FPdec -0.22 0.16 0.08 0.30 
Cycle Time -0.18 -0.01 -0.08 0.89* 
US - UT 0.07 0.96* -0.41* 0.08 
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by contrast, focus on the unification and generalization 
necessary to model complex tasks. Because of this focus, 
cognitive architectures neglect certain details of low-level 
decision processes. 

Efforts to capitalize on the complimentary strengths of 
sequential sampling models and cognitive architectures have 
been made recently. Van Maanen, van Rijn, and Taatgen 
(2012) combined the DDM and ACT-R to form RACE/A, 
which accounts for the dynamics of declarative memory in a 
picture-word interference task. A DDM with multiple 
accumulators governs how the activation values of 
information in declarative memory change over time and 
determine retrieval latencies. ACT-R, in turn, provides the 
control structure necessary for coordinating the multitude of 
decision and non-decision processes evoked by the task. 

Within the context of the PVT, sequential sampling 
models could be used as a mechanism for production 
selection. Presently, the duration of production selection in 
ACT-R is treated as a uniform random variable with a mean 
of about 40 ms (Table 1). Each production could instead be 
represented as an accumulator with a drift rate determined 
by the match between the state of the world and the 
production’s conditions. Integrating these approaches would 
provide a theory of production selection (implemented as a 
sequential sampling model) along with a theory of task 
control (implemented as production rules). The LBA would 
be a natural choice for the sequential sampling model for 
three reasons: (1) it is applicable to selection among two or 
more alternatives, (2) it is more parsimonious than other 
sequential sampling models, and (3) parameter estimation is 
efficient and mathematically tractable.  

Incorporating a sequential sampling model into a 
cognitive architecture would provide a more detailed, 
formal account of the time course of production selection. 
Such an account would provide a rationale for changes in 
the stochastic duration of cycle time. Although such an 
account may be unnecessary for modeling the PVT, 
incorporating both representational levels would be useful 
for capturing complete performance dynamics in more 
complex tasks. Factors in multi-alternative choice tasks such 
as decision conflict and value influence decision times 
(Ratcliff & Frank, 2012). Likewise, factors in single-
alternative choice tasks such as stimulus contrast and 
luminosity influence decision times. Presently, these effects 
are difficult to explain in ACT-R. Implementing production 
selection as a sequential sampling process could overcome 
these challenges. 
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