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Summary. A major impediment to the implementation of visualization algorithms
on very-large unstructured scientific data sets is the suitable internal representation
of the data. Not only must we represent the data elements themselves, but we must
also represent the connectivity or topological relationships between the data. We
present three data structures for unstructured meshes that are designed to fully
represent the topological connectivity in the mesh, but also minimize the data
storage requirements in representing the mesh. The key idea is to represent the
topology of the mesh by the use of a single data item — the lath — which can be
used to encapsulate the topological relationships within the mesh. We present and
analyze algorithms that query the spatial relations and properties of these data
structures, and analyze the data structures of the dual mesh induced by each.

1 Introduction

With the rapid increase in the power of workstations, the development of
state-of-the-art imaging systems, and the increasing sophistication of com-
putational simulations, enormous quantities of information relevant to a par-
ticular problem area are now being produced. The primary difficulty faced
in many decision and planning situations is analyzing these massive data
sets and extracting the relevant information that provides solutions to the
problems at hand. These scientific data sets are usually multi-valued, mean-
ing that multiple dependent variables — e.g., velocity, pressure, temperature,
salinity, sound speed, chemical or nuclear contamination, or even entire “ma-
trices” (tensors) — are associated with each data point.

The topological structure underlying the data set may belong to various
topological types: it may be structured, where the faces or cells are topologi-
cally equivalent to a square or a cube, respectively; or it may be unstructured,
with a face arrangement consisting of triangular or quadrilateral element,
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cell arrangement consisting of hexahedral or tetrahedral elements, or combi-
nations of various types [19]. The underlying data structure for structured
data sets is completely defined by the indices of the data elements, e.g., each
node p; ; in a mesh is connected with the nodes p;—1,j, Pi+1,j, Pi,j—1, and
Pi,j+1. This connectivity simplifies the data representation dramatically, and
allows efficient algorithms for moving about the data. With the unstructured
mesh however, no such elegant data structure exists, as there is no rigid con-
nectivity rules at the vertices. In this paper, we discuss data structures that
represent, two-dimensional unstructured meshes.

The representation of these very large unstructured data sets impacts a
number of problems in computer graphics and visualization:

e The unstructured meshes generated by subdivision algorithms [5,4,8,7]
require a structure that can represent faces with an arbitrary number
of edges. The subdivision steps in these algorithms require additional
vertices to be inserted into the mesh, and a new connectivity structure
to be generated.

e The polygonal representations of implicit surfaces [13] requires the stor-
age of large, unstructured meshes and requires methods to easily traverse
these structures.

e The mesh-simplification routines for very-large data sets [14,10,12,22,17]
require a data structure that can be easily traversed and locally modified
as data elements are collapsed.

e Techniques based on Delaunay triangulations [6,18,3] or Voronoi dia-
grams require a general data structure that can represent an unstructured
mesh. The duality between the Delaunay Triangulation and the Voronoi
diagram requires a mesh structure that can easily product its dual mesh.
In these algorithms the grids are frequently generated or modified by
inserting points and performing local mesh modifications.

To service this variety of applications, a simple data structure is necessary
that defines the topology of the mesh, is compact, and facilitates the imple-
mentation of efficient algorithms that operate on the data.

We present a method of representing data structures on these unstruc-
tured meshes that is based upon the used of a single data type — the lath!. In
a lath representation, this single data type will be used to represent each of
the vertices, edges, and faces of the mesh — and give direct links to the data
held at each vertex. Traversals, or accesses of the elements of the mesh, can
be accomplished easily via a set basic set of traversal operators that take lath
elements as input and output, and a set of queries that take lath elements
and return sets of vertices, edges or faces in the neighborhood of the lath.
These queries can be used to develop in-place algorithms on the mesh.

! Laths are the thin strips of material fastened together to form the network of
elements forming a mesh or grid.
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In Section 2 we discuss data structures related to the winged-edge repre-
sentation that have been extensively used in non-manifold geometric mod-
eling. These edge-based data structures are the ones that have inspired this
work. In Section 3, we present three data structures for unstructured sur-
face meshes: the split-edge structure, the half-edge structure, and the corner
structure. We define five basic traversal operators on the elements of data
structure, and analyze the differences between these operators in the three
representations. We also examine the nine fundamental data-access opera-
tions that allow queries on the data structure and analyze the algorithms that
implement them. Implementation of the three structures is straightforward,
and is discussed in Section 4. Conclusions and future work are addressed in
Section 5.

2 Related work

Boundary representations have become the fundamental representation tech-
nique in geometric modeling. In these methods, surfaces, edges and vertices
of solid objects are represented explicitly, and the topological information
about geometrical relationships between these basic elements are represented
in a data structure. Various data structures have been presented in [1,2,20]
that both efficiently store these relationships and allow modeling operations
to be performed on the solids.

to the counter-clockwise t_o the clockwise
winged-edge node face 1 winged-edge node
infacel infacel
vertex 2

: T A
V\_/’|/|||\

vertex 1

to the counter-clockwise face 2
winged-edge node
inface?2

to the clockwise
winged-edge node
inface?2

Fig. 1. The winged-edge node: This node has two groups of links that represent
the uses of both “sides” of the edge. It contains a link to the vertex, as well as links
to both clockwise and counter-clockwise edges and the data structures for the faces
adjacent to the edge.
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Ideally, the boundary models are manifolds: any neighborhood on the
surface of the model is homeomorphic to an open disk in the plane. Unfortu-
nately, the results of many operations commonly used in geometric modeling
(specifically the Boolean set operations) produce non-manifold models — e.g.,
structures containing a single wire edge in space, structures with two surfaces
touching at a single point, or two distinct structures sharing a face. The data
structures representing these non-manifold boundary models have received
considerable study over the past two decades.

R

[

Fig. 2. The winged-edge node when used in a mesh.

Most edge-based data representation schemes are based upon the winged-
edge representation of Baumgart [2], who generated a data structure for mod-
els that represent the bounding surface of an arbitrary polyhedral structure.
Baumgart based his data structure on a single edge record which includes
both directional information and information about the faces containing the
edge. The winged-edge element, depicted in its most general form, is shown
in Figure 1. Each winged-edge node contains links to the two vertices that
bound the edge, the two faces that bound the edge, and the winged-edge
nodes in the clockwise and counter-clockwise direction around the two adja-
cent faces, forming a doubly-linked list. The face link is used to access a face
data structure, and the vertex link points to a separate vertex data structure.
Figure 2 illustrates the use of this element in a mesh.

The primary problem with the classic winged-edge structure is the bundling
of the two roles of the edges within one record, and most variations of edge-
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based data structure are based upon the splitting of the winged-edge element
— decoupling the two uses of the edge into two (or more) separate records (see
[1]). The first of these, the split-edge representation, is commonly credited to

clockwise
face

Y e
N :__ o
N .--:——:
- == T vl
vertex feommere
A
face .
clockwise

Fig. 3. The split-edge representation of an edge in a mesh.

Eastman [9]. This representation is achieved by splitting each winged edge
into two halves, one for each of the two adjacent faces (see Figure 3). Con-
nectivity is maintained by adding an explicit pointer in each edge record that
references the opposite “half”. Figure 4 illustrates the use of the split-edge
nodes in a mesh.

Other variations on the winged-edge data structure also attempt to give
a unique representation to the multiple uses of each edge. The hybrid-edge
representation of Kalay [15] and Mantyla [16]* attempts to use the best char-
acteristics of the winged-edge structure and the split-edge structure. It breaks
the representation of an edge into a single edge node that represents the edge
itself, and two directional nodes, called segments, that specify the directional
uses of the node.

By examining Figure 4, a symmetric representation of the structure can
be visualized by noting the seemingly dual role played by faces and vertices.
In this case two vertices bound an edge, as well as two faces, and the edge-
based structure can be constructed so that the representation of faces and
vertices is remarkably similar. This symmetry was first observed by Woo [21].

In mesh-based applications used in multiresolution analysis and visualiza-
tion, the meshes represent manifolds, and the data is held in the vertices of
the mesh. Here the primary operations focus on movement about the mesh
and queries that inquire about information in the neighborhood of a vertex

2 We note that Mantyla called his representation a half-edge data structure — a term
that we will use in Section 3. His representation is very close to the hybrid-edge
representation of Kalay.
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Fig. 4. The split-edge representation of an edge in a mesh.

or face. These operations are required for the in-place calculations necessary
for subdivision algorithms, mesh-reduction algorithms, or mesh-enhancement
methods. Thus, we define a mesh M to be a set of vertices {po,P1,--, Pn}
and an associated simplicial complex which specifies the connectivity of the
vertices. Each edge is defined by two vertices that are connected in the sim-
plicial complex. Each face is defined by a minimal connected loop of vertices.
We assume that the mesh is well-connected (i.e., no vertex lies on an edge not
containing that vertex), all faces are closed in a mesh, and no two adjoining
faces of the mesh intersect.

3 Lath-based data structures

In our representations, a data structure storing a mesh will be based upon a
single data type called a lath. Each lath will be identified with exactly one
vertex, one edge and one face of the mesh and each face-edge pair, face-vertex
pair, or edge-vertex pair in the mesh can be associated with a single lath.
Thus, each edge of the mesh will have two laths associated with it: one for
each face-edge pair (two faces per edge), or for each edge-vertex pair (two
vertices per edge). There is no need for edge-based elements or face-based
elements in the data structure, as each of these can be specified by specifying
a single lath element. Lists of laths can represent lists of edges, lists of faces
or lists of vertices.
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We assume that vertices contain the geometric information and laths con-
tain the topological, or connectivity, information in the mesh. The lath ele-
ments can be connected in various ways, and we present three examples of
lath-based data structures in the following sections.

3.1 The split-edge representation

In the split-edge data structure the topology of the mesh is carried by a lath
element that is similar to the split-edge element given in Section 2.® Here

A

face_clockwise

Fig. 5. The lath element for the split-edge representation of a mesh. Three links
are explicit in the lath element: a link to the vertex information, a link to the lath
that forms the edge companion of the element, and a link to the lath is the next
lath in a clockwise traversal of laths in the same face.

a lath element L contains three separate links: First, a link to the vertex
information associated with L; second, a link (the companion link) to a lath
that represents the same edge as L, but the opposite vertex; and third, a link
(the face_clockwise link) to the lath that follows L in a clockwise traversal of
the face that L represents. The split-edge lath can be pictured as in Figure 5
and its use in a mesh is illustrated in Figure 6. Every edge-face pair, edge-
vertex pair, and face-vertex pair in the mesh is associated with exactly one
lath, and each lath is identified with exactly one vertex, one edge, and one
face.

8 Here we have eliminated the face links for clarity.
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.

Fig. 6. The split-edge lath elements in a mesh. We note the basic loops induced by
the split-edge laths: One in a clockwise direction around the faces of the mesh, and
one in a counter-clockwise direction about the vertex.

From Figure 6, we can see that the lath structure sets up a contiguous
structure in the mesh, and induces two basic loops around the mesh elements:
one in a clockwise direction about the face of the mesh ( Figure 7), and one
in a counter-clockwise direction about the vertex (Figure 8).

We can traverse this structure in several ways, and for uniformity define
the following operators on laths: Given a lath L,

e ec(L) returns the edge companion of L — the lath element that represents
the same edge as L, but the opposite vertex and face.

e cf(L) returns the lath that follows L in a clockwise traversal of the face
that L represents.

e ccf(L) returns the lath that follows L in a counter-clockwise traversal of
the face that L represents.

e cv(L) returns the lath that follows L in a clockwise traversal of laths
about the vertex that L represents.

e ccv(L) returns the lath that follows L in a counter-clockwise traversal of
laths about the vertex that L represents.

In this case, the operators ec and cf are embodied in the split-edge data struc-
ture. The function ccv(L) is quickly identified as returning the lath defined
by cf(ec(L)). The function ccf(L) can be obtained in two ways:

(1) by traversing laths representing the face (via cf), until reaching the lath
L' where cf(L') = L, or
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Fig. 7. A face loop in the split-edge structure. Starting with the lath L and following
face_clockwise links, a sequence of laths is generated that all reference the same face.

(2) by traversing laths surrounding the vertex (using ccv) until we reach the
lath L' with cev(L') = L, then ccf(L) = ec(L’).

In the first case, this algorithm is linear in the number of edges in the face

represented by L. In the second case, this algorithm is linear in the number

of edges radiating from the vertex represented by L. The operators depend

only on the local complexity in the mesh, not the size of the entire mesh.
The function cv can also be defined in two ways:

(1) as cv(L) = ec(ccf(L)),

(2) or by successively traversing laths surrounding the vertex (using ccv).
The lath L' is returned by the algorithm, where L’ has the property that
cev(L') = L.

These operators allow us to move about the mesh by using the lath ele-

ments.

Boundary Considerations Boundaries are easily represented in this struc-
ture by storing Null values in the companion links (see Figure 9). This implies
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Fig. 8. A vertex loop in the split-edge structure. Starting with the lath L, and
following companion links and face_clockwise links, a sequence of laths is generated
that all reference the same vertex.

that the edge-companion function ec(L) may not return meaningful informa-
tion, and alternate steps must be substituted in the traversal operators. Since
cf is always defined in this structure, all operators can be implemented with-
out the ec operation if necessary.

Data access primitives in the split-edge data structure Given a lath
representing one of the three elements of the mesh (vertex, edge, or face), the
data structure can be queried for all of the neighboring elements of a given
type. We can identify 9 separate queries, each returning a list of laths that
represent the desired elements in the mesh:

e Ovv: Given a vertex V, find all vertices that share an edge with V.

e Ovyg: Given a vertex V, find all edges that radiate from V.

e Qvr: Given a vertex V, find all faces of the mesh that contain this vertex.
e Opy: Given an edge E, find its two vertices.

e Opg: Given an edge E, find all edges that share a vertex with E.

e Opp: Given an edge E, find all faces of the mesh that contain E.

e Qpv: Given a face F, find all its vertices.
e Opp: Given a face F, find all its edges.

* The result of this query is commonly called the one-neighborhood of the vertex.
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Fig. 9. The boundary of a mesh with an associated split-edge data structure. Here

the companion links of the split-edge elements are Null on the boundary.

e Orp: Given a face F, find all faces of the mesh that share an edge or a

vertex with F.°

The four basic queries are Qgr, Qrv, Qrk, and Qvg, as they either return
information stored explicitly in laths, or they return information stored in the

two basic loops introduced in the split-edge structure.

e Opp— Given a lath L representing an edge-face pair in the mesh, laths
representing the two faces bounding the edge are given by L and ec(L).
If the edge represented by L is on the boundary, then this query returns

only L, since ec(L) does not exist.

e Opy— Given a lath L representing an edge of the mesh, the two laths
that represent the vertices that bound the edge are given by L and cf(L).

11

e Opp— Given a lath L representing a face-edge pair in the mesh, laths

representing the edges of the face are given by successively applying the

cf operator — following the clockwise loop about the face.

e Oyg— Given a lath L representing an edge-vertex pair, laths representing

edges that radiate from the vertex are obtained by successively applying

the ccv operator — following the counter-clockwise loop about the vertex.

The remaining queries are implemented in terms of these basic queries.

e Opy— Given a lath L representing a face, the laths representing the ver-

tices of the face are the same as those of Qpg.

e Oyvy— Given an lath L, laths representing the vertices of the edges that
radiate from the vertex represented by L are given by applying cf(L) for

each lath L in Ovyg.

® The result of this query is commonly called the stencil of the face (see [11]).
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e Qvyris identical with Qvyg, as each lath identified by Qygbelongs to a
unique face.

e Opp— Given a lath L representing an edge F, Qpgproduces a set of laths
that correspond to the edges that radiate from the two vertices of E. This
is implemented by taking the union of the results of Qygfor both L and
cf(L). To insure that two laths do not exist in the output for the edge
represented by L, either L or ec(L) (which is generated by
Qvr(cf(L))) is removed before output.

e Opp— Given a lath L representing a face-edge pair, all such faces are
obtained by applying Qygto each lath returned by Qpg. Unfortunately,
this produces multiple laths in the output for each face. To obtain a single
lath for each face in the output, we use a marking strategy that operates
as follows:

— Mark each lath encountered in Qpg.

— For each lath L encountered by Qvg, if L is unmarked, insert it in
the output list. Then mark all laths corresponding to edges of the
face that L represents — i.e., all laths in Qpg(L).

The output list contains laths returned by this query, one lath per face.

It is possible that Qvg(and Qvp, which is identical in this structure) fails
on the boundary. For example, in Figure 9, Qvg(L) returns two laths before
encountering a Null link on the boundary. To retrieve all laths that represent
edges that radiate from the vertex, the query must use cv to traverse around
the vertex in the opposite direction.

3.2 The half-edge representation

In the half-edge data structure the topology of the mesh is carried by a
lath element that is defined as in Figure 10. Here a lath element L contains
three separate links: First, a link to the vertex information associated with L;
second, a link (the companion link) to a lath that represents the same edge
as L, but the opposite vertex; and third, a link (the vertex_clockwise link)
to the lath that is the next lath in a clockwise vertex traversal of the vertex
that L represents.

From Figure 11, we can see that the lath structure sets up a contiguous
structure in the mesh and again induces two basic loops around the mesh
elements: one in a counter-clockwise direction about the face (Figure 12) and
one in a clockwise direction about a vertex (Figure 13). We associate a lath
L with the face traversed by this counter-clockwise loop, and with the edge
bounded by the vertices given by the vertex pointers of L and L’s companion.
In this way, every edge-face pair, edge-vertex pair and face-vertex pair in the
mesh is associated with exactly one lath, and each lath is identified with
exactly one vertex, one edge, and one face.

We can traverse this structure by setting up the same operators as in the
split-edge representation. For a given lath L,
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vertex_clockwise \
A

companion

Fig. 10. The lath element for a half-edge representation of a mesh. Three links are
explicit in the lath element: a link to the vertex information, a link to the lath that
forms the edge companion of the element, and a link to the lath that is the next
lath in a clockwise traversal about the vertex defined by L.

Q
2

% e
O—, [, ['1'—a
% %
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Fig.11. The half-edge lath elements in a mesh. We note the basic loops induced
by the split-edge laths: One in a counter-clockwise direction around the faces of the
mesh, and one in a clockwise direction about the vertex.
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Fig.12. A face loop in the half-edge structure. Starting with the lath L, and
following vertez_clockwise links and companion links, a sequence of laths is generated
that all reference the same face.

ec(L) returns the edge companion of L — this information is contained
in the links of the lath element, and returns the lath that represents the
same edge, but opposite vertex and adjacent face that bound the edge.

cv(L) returns the lath that follows L in a clockwise traversal of laths
about the vertex that L represents. This information is contained in the
lath through the vertez_clockwise link.

ccf(L) returns the lath that follows L in a counter-clockwise traversal of
the face that L represents. It is implemented as ccf(L) = ec(cv(L))

cf(L) returns the lath that follows L in a clockwise traversal of the face
that L represents. This can be obtained in two ways: first by traversing
(through ccf) the edges of the face in a counter-clockwise manner until
reaching the lath L’ that has the property ccf(L') = L; or secondly, by
successively applying cv to ec(L) until reaching L'.

cev(L) returns the lath that follows L in a counter-clockwise traversal
of laths about the vertex that L represents. This can be obtained in two
ways: First by traversing (via cv) the clockwise link about the vertex until
obtaining a lath L' such that cv(L') = L; or alternatively, as cf(ec(L)).
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Fig.13. A vertex loop in the half-edge structure. Starting with the lath L, and
following verter_clockwise links, a sequence of laths is generated that all reference
the same vertex.

ec, ccf and cv can be implemented in constant time. cf and ccv are linear in
the number of edges belonging to a face, or the number of edges radiating
from a vertex, depending on the implementation.

Boundary Considerations Boundaries are represented in the half-edge
structure by storing Null values in the vertex_clockwise links (see Figure 14).
In this case, the cv operator may not be defined, and steps must be taken to
use alternate operators to move about the mesh in the area of the boundary.
However, since there are always two laths that exist on each edge, the ccf
operator and the ec operator are always defined.

Data access primitives in the half-edge data structure Given a lath
representing one of the three elements of the mesh (vertex, edge, or face), the
half-edge data structure can be queried for all of the neighboring elements of
a given type.

The four basic queries are Qpr, Qrv, QFr, and Qvg, as they either return
information stored explicitly in laths, or they return information stored in the
two basic loops introduced by the data structure. The queries are basically the
same here, except that we use ccf to traverse the edges of the face, and cv to
traverse the edges around the vertex. The boundaries are handled differently
as the ec and ccf operators are always defined, but the cv operator may not
be.
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Fig. 14. The boundary of a mesh with an associated half-edge data structure. Here
the vertez_clockwise links of the half-edge elements are Null on the boundary.

e Opr— Given a lath L representing an edge in the mesh, laths representing
the two faces bounding the edge are given by L and ec(L). In this case,
there are always two laths that represent an edge.

e Opy— Given a lath L representing an edge of the mesh, the two laths that
represent the vertices that bound the edge are given by L and ec(L).

e Org— Given a lath L representing a face-edge pair in the mesh, laths
representing the edges of the face are found by successively using the ccf
operator — following the counter-clockwise loop about the face.

e Oyg— Given a lath L representing an edge-vertex pair, the laths repre-
senting edges that radiate from the vertex are obtained by successively
using the cv operator — following the clockwise loop about the vertex.

The remaining queries are implemented in terms of these basic queries.

e Orv— Given a lath L representing a face, the laths representing the ver-
tices of the face are the same as those of Qpg.

e Qyv— Given an lath L, we can obtain the required laths by taking ec(L)
for each lath L in Qvyg.

e Qvyris identical with Qvyg, as each lath identified by Qygbelongs to a
unique face.

e Opp— Given a lath L representing an edge F, Qpgproduces a set of laths
that correspond to the edges that radiate from the two vertices of E. This
is implemented by taking the union of the results of Qygfor both L and
its companion ec(L). Again, we insert only one of L and ec(L) in order
to have only one lath per edge in the output.
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e Orris defined exactly as in the split-edge representation with the above
modifications to Qgyvand Qpg.

It is possible that Qvg(and Qyg, which is identical in this structure)
encounters Null links on the boundary. For example, in Figure 9, Qyg(L)
returns two laths before encountering a Null link on the boundary. To retrieve
all laths that represent edges that radiate from the vertex, the query must use
ccv to traverse around the vertex in the opposite direction until another Null
link is encountered. Unlike the split-edge structure, one always encounters
laths that represent an edge-vertex pair.

3.3 Duality

The dual of a mesh is constructed by swapping the roles of the faces and
vertices in the mesh. If, in each lath of the data structure, we replace the
vertex link by a link to a similar face structure, we obtain a data structure
for the dual mesh. If the mesh is represented by a half-edge structure (see
Figure 15), the counter-clockwise vertex loop is transformed into a clockwise
loop on the face of each element of the dual, and the counter-clockwise face
loop of the half-edge structure is transformed into a clockwise loop about each
vertex in the dual. That is, the half-edge structure induces a split-edge data
structure on the dual mesh. Conversely, if the original mesh is represented
with a split edge structure, a half-edge data structure is induced on the dual
mesh (see Figure 16).

3.4 The Corner Data Structure

In the corner data structure the topology of the mesh is carried by a lath
element that is defined as in Figure 17. Here an element L contains three
separate links: First, a link to the vertex information associated with L;
second, a link (the face_clockwise link) to a lath that represents the next lath
in a clockwise traversal of laths of the face L represents; and third, a link
(the wvertez_clockwise link) to the lath that is the next lath in a clockwise
traversal of the vertex that L represents. Here the lath elements are easily
identified with each vertex-face pair. The edge identified with each lath L is
that edge bounded by the vertex of L and the vertex of the lath identified by
the face_clockwise link.

From Figure 18, we can see that the lath structure sets up a contiguous
structure in the mesh. Again, there are two basic loops that can be identified,
one which traverses the clockwise laths about a face (Figure 19), and one
which traverses the clockwise laths about a vertex (Figure 20). We can
traverse this structure by setting up the same operators as in the split-edge
and half-edge representations. Given a lath L,

e cf(L) returns the lath that follows L in a clockwise traversal of the face
that L represents. This information is given directly in the face_clockwise
link of L.
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Fig. 15. Representing the dual of a mesh with a half-edge data structure. The
original mesh and data structure are shown in black with the dual mesh shown in
gray. The gray vertex links are the links to the face nodes in the dual structure.
Note the counter-clockwise loops about the face, and the clockwise loops about the
vertex in the dual mesh.

cv(L) returns the lath that lath follows L in a clockwise traversal of laths
about the vertex that L represents. This information is given directly in
the lath through the vertex_clockwise link of L.

ec(L) returns the edge companion of L — In the corner representation, this
information is not given directly in the lath links, but can be calculated
by cv(cf(L)). If L represents a boundary edge of the mesh, the edge
companion does not exist,.

ccf(L) returns the lath that follows L in a counter-clockwise traversal of
the face that L represents. It is implemented in two ways: as ccf(L) =
cv(ec(L)), or by traversing the face clockwise (via cf) until reaching the
lath L' where cf(L') = L.

cev(L) returns the lath that follows L in a counter-clockwise traversal of
laths about the vertex that L represents. This can also be obtained in two
ways: as ccv(L) = ec(cf(L)), or by traversing about the vertex clockwise
(via cv) until reaching the lath L' where cv(L') = L.
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Fig. 16. Representing the dual of a mesh with a split-edge data structure. The
original mesh and data structure are shown in black with the dual mesh shown in
gray. The gray vertex links are the links to the face nodes in the dual structure.
Note the counter-clockwise loops about the face and the clockwise loops about the
vertex in the dual mesh.

Unlike the split-edge and half-edge operations, these operators can all be
implemented in constant time except about the boundaries (see section 3.4
below). Along the boundary, cv is not available and in this case, ccf and ccv
are linear in the number of edges in a face, or the number of edges radiating
from a vertex, respectively.

Boundary Considerations Boundaries are represented in the corner struc-
ture by storing Null values in the vertez_clockwise links (see Figure 21). In
this case, the cv operator may not be defined, and steps must be taken to
use alternate operators to move about the mesh in the area of the boundary.
However, the cf operator is always defined.

Data access primitives in the corner data structure The four basic
queries are again Qgr, Qrv, Org, and Qvg, as they either return informa-
tion stored explicitly in laths, or they return information stored in the two
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, L vertex_clockwise
RN

Fig. 18. The corner data element in a mesh
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Fig.19. A face loop in the corner representation. Starting with the lath L, and
following clockwise links, a sequence of laths is generated that all reference the same
face.

basic loops introduced by the data structure. The queries are basically the
same here, except that we use cf to traverse the edges of the face, and cv to
traverse the edges around the vertex. The boundaries are handled differently
as only the cf operator is guaranteed to be defined, So, for a given lath L, we
implement the queries as follows:

e Opp— Given a lath L representing an edge in the mesh, laths representing
the two faces bounding the edge are given by L and ec(L). In the case
the lath L represents a boundary edge, only L is returned, as ec(L) does
not exist.

e Opy— Given a lath L representing an edge of the mesh, the two laths
that represent the vertices that bound the edge are given by L and cf(L).
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Fig. 20. A vertex loop in the corner representation. Starting with the lath L, and
following vertez_clockwise links, a sequence of laths is generated that all reference
the same vertex.

Fig. 21. The boundary of a mesh with an associated corner data structure. Here
the vertez_clockwise links of the corner elements are Null on the boundary.
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e Org— Given a lath L representing a face-edge pair in the mesh, laths
representing the edges of the face are given by successively using the cf
operator — following the clockwise loop about the face.

e Qygr— Given a lath L representing an edge-vertex pair, the laths repre-
senting edges that radiate from the vertex are obtained by successively
using the cv operator — following the clockwise loop about the vertex.

The remaining queries are implemented in terms of these basic queries.

e Orv— Given a lath L representing a face, the laths representing the ver-
tices of the face are the same as those of Qpg.

e Qyvy— Given an lath L, we can obtain the required laths by taking cf(L)
for each lath L in QOgy.

e Qvyris identical with Qvyg, as each lath identified by Qygbelongs to a
unique face.

e Opp— Given a lath L representing an edge F, Qpgproduces a set of laths
that correspond to the edges that radiate from the two vertices of E. This
is implemented by taking the union of the results of Qygfor both L and
cf(L). If ec(L) exists, we remove it from the list so that the original edge
is only referenced by only one lath.

e Orp— Given a lath L representing a face-edge pair, all such faces are
obtained by applying Qgvto each lath in Qpg, however this produces
multiple laths for each face in the output. To obtain a unique lath for
each face in the output, we use a marking strategy that marks each lath
output by Qgy. We only output those laths that are unmarked during
the traversal.

It is possible that Qvg(and Qyr, which is identical in this structure)
fails on the boundary. For example, given a lath L as in Figure 21, Qyg(L)
returns two laths before encountering a Null link on the boundary. To retrieve
all laths that represent edges that radiate from the vertex, the query must
use cv to traverse around the vertex in the opposite direction.

Similar to the split-edge representation, if we have n edges radiating from
the vertex represented by L, only n — 1 can be obtained through cv and ccv.
In this case we can obtain a lath that represents the nth edge by using cf(L),
but care must be taken with it’s use as this lath does not point to the same
vertex as L.

Duality If we form the dual of a mesh represented by a corner data structure
(see Figure 22), we see that the dual mesh induced by the original mesh is
also a corner data structure. The clockwise loop about a vertex transforms
to a clockwise loop about a face in the dual mesh, and the clockwise loop
about a face in the original mesh transforms to a clockwise loop about a
vertex in the dual mesh. This makes the corner data structure quite useful
for applications where finding and working with the dual mesh is necessary.
Only one set of operators and queries need be implemented, and each works
for both the original mesh and its dual.
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e

Fig. 22. Representing the dual of a mesh with a corner data structure. The original
mesh and data structure are shown in black with the dual mesh shown in gray. The
gray vertex links are the links to the face nodes in the dual structure.

4 TImplementation

These data structures are straightforward to implement, as most of the oper-
ations are simple and only need to be modified on the boundaries. We have
used them in a variety of applications and have found them to be most useful
when “in-place” operations on large mesh structures are required. The cor-
ner structure is the most efficient for traversals as all basic operations can be
implemented in constant time away from the boundary. It is also the most
useful when dealing with the dual mesh, as it induces another corner data
structure on the dual. The half-edge structure is most useful when frequent
boundary operations are necessary. Here, the data structure is slightly larger,
as not only are two laths kept for each interior edge of the structure, but two
laths are kept for each edge on the boundary. This implies that only one of
the basic operations is not available on the boundary and this this simplifies
the operations around the boundary.
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We should remark that there are other ways to connect laths. For exam-
ple, we could specify a lath element that has a counter-clockwise face link
and a counter-clockwise vertex link. Structurally this would be the same as
the corner structure, just reversing the two loops. By using the five links (
edge_companion, face_clockwise, face_counter_clockwise, vertex_clockwise, ver-
tex_counter_clockwise), and taking two at a time, there are 10 possibilities of
lath connection strategies available. As can be seen in Table 1, there is only
one useful representation that we did not cover completely in this article
(labeled corners in the table). In this representation, where each lath has a
face_clockwise link and a vertex_counter_clockwise link. The structure is very
similar to the corner structure, however it does not have constant-time im-
plementation of the basic operations, it has similar problems with the bound-
aries, and it induces a dual structure that has laths with face_counter_clockwise
and vertez_clockwise links. We have not found an occasion where such a struc-
ture would be useful.

vertez_counter_clockwise

(reverse orientation)

Lath Links Data Structure Type |Induced Dual Structure
edge_companion Split-Edge Half-Edge
face_clockwise
edge_companion Split-Edge Half-Edge

face_counter_clockwise | (reverse orientation) | (reverse orientation)
edge_companion Half-Edge Split-Edge
vertez_clockwise
edge_companion Half-Edge Split-Edge

(reverse orientation)

face_clockwise
face_counter_clockwise

Not a useful structure

vertez_counter_clockwise

(reverse orientation)

face_clockwise Corner Corner
vertez_clockwise
face_clockwise Cornerx* Cornerx*
vertezr_counter_clockwise (reverse orientation)
face_counter_clockwise Corner* Corner*
verter_clockwise (reverse orientation)
face_counter_clockwise Corner Corner

(reverse orientation)

vertez_clockwise
vertez_counter_clockwise

Not a useful structure

Table 1. Possible lath-based data structures.
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5 Conclusion

We have presented three data structures for unstructured meshes all based
upon a single data type — the lath. We have analyzed three connection strate-
gies for the lath elements, creating a split-edge, half-edge and corner data
structure, respectively. Each of these structures has several common opera-
tions that allow movement about the data, and nine basic queries that return
vertices, edges and faces in the neighborhood of a given lath. The corner data
structure is new and appears to be the most promising for future use in a
variety of algorithms that support multiresolution representations of data.

This paper represents a “minimalist” approach to these data structures.
Certainly we can add additional links for faces, or from vertices to laths, or
from faces to laths. This complicates the data structure and utilizes much
more storage per element, but can make for efficient operations and queries.

Future work should clearly focus on lath-based structures for three-dimensional
meshes, and eventually, multi-dimensional meshes. Each lath in these struc-
tures should represent an edge-face-cell, vertex-edge-cell, or vertex-face-cell
triple, and each lath should be identified with exactly one vertex, edge, face
and cell in the mesh.
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