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1Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400

2Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 
11794-5215

3Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, 
NY, 11794-5215

Abstract

Amyloid formation by islet amyloid polypeptide (IAPP) contributes to β-cell dysfunction in type-2 

diabetes. Perturbation of the β-cell membrane may contribute to IAPP induced toxicity. We 

examine the effects of lipid composition, salt and buffer on IAPP amyloid formation and on the 

ability of IAPP to induce leakage of model membranes. Even low levels of anionic lipids promote 

amyloid formation and membrane permeabilization. Increasing the percentage of the anionic 

lipids, POPS or DOPG, enhances the rate of amyloid formation and increases membrane 

permeabilization. The choice of zwitterionic lipid has no noticeable effect on membrane catalyzed 

amyloid formation, but in most cases affects leakage, which tends to decrease in the order 

DOPC>POPC>sphingomyelin. Uncharged lipids that increase membrane order reduce the ability 

of IAPP to induce leakage. Leakage is due predominately to pore formation rather than complete 

disruption of the vesicles under the conditions of these studies. Cholesterol at or below 

physiological levels significantly reduces the rate of vesicle catalyzed IAPP amyloid formation 

and decreases susceptibility to IAPP induced leakage. The effects of cholesterol on amyloid 

formation are masked by 25 mole percent POPS. Overall, there is a strong inverse correlation 

between the time to form amyloid and the extent of vesicle leakage. NaCl reduces the rate of 

membrane catalyzed amyloid formation by anionic vesicles, but accelerates amyloid formation in 

solution. The implications for IAPP membrane interactions are discussed, as is the possibility that 

loss of phosphatidylserine asymmetry enhances IAPP amyloid formation and membrane damage 

in vivo via a positive feedback loop.
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INTRODUCTION

Islet amyloid polypeptide (IAPP, amylin) is a 37 residue neuropancreatic polypeptide 

hormone that is co-secreted from the insulin producing β-cells in response to stimuli that 

lead to insulin release 1. Human IAPP (hIAPP) plays an adaptive role in metabolism, but 

converts into insoluble amyloid fibrils in the islets of Langerhans in type-2 diabetes 

(T2D) 2–17. β-cell dysfunction and the loss of β-cell mass are key components of T2D, and 

islet amyloidosis by hIAPP is an important contributor 1–16, 18–27. Islet amyloid is found in 

the pancreatic islets of Langerhans in the vast majority of individuals with T2D, and recent 

studies confirm a correlation between the extent of amyloid deposition and the loss of β-

cells 11, 12. Islet amyloidosis is a major factor in the failure of islet transplants and 

preventing amyloid deposition prolongs glycemic control 28–30. Aggregation of IAPP has 

also been linked to cardiovascular complications downstream of diabetes 31, 32. A variety of 

mechanisms of β-cell death have been ascribed to hIAPP including receptor mediated 

mechanisms, activation of the inflammasome, defects in autophagy and IAPP-induced 

membrane damage 11, 16, 20, 33–38.

A growing body of work has examined membrane induced aggregation of hIAPP in vitro. 

The vast majority of these studies have used simple binary model membranes containing a 

super physiological levels of an anionic lipid, typically 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-L-serine (POPS), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) or 1,2-

dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), together with a zwitterionic lipid, 

often 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC). IAPP is a cationic polypeptide (Figure-1); its amidated 

C-terminus and the lack of acidic residues ensure that it is positively charged except at very 

high pH values. The human polypeptide contains a Lys, an Arg, and a single His, thus the 

net charge at physiological pH will be between 2 and 4 depending upon the exact pKa of the 
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N-terminus and His sidechain. hIAPP amyloid formation is accelerated by interactions with 

membranes that contain a large fraction of anionic lipids and by interactions with negatively 

charged sulfated glycosaminoglycans 33, 39–56. IAPP also readily disrupts vesicles that 

contain significant percentages of anionic lipids 33, 39–50. The interaction of IAPP with 

membranes made up of more physiological lipid composition is much less well studied.

The β-cell plasma membrane is very different from most model membrane systems used for 

in vitro biophysical studies. The β-cell membrane contains cholesterol, gangliosides, 

sphingomyelins, and the level of anionic phospholipids is reported to range from 2.5 to 13.2 

mole percent of the total phospholipids 57. The vast majority of model systems typically 

contain a much higher percentage of anionic lipids and lack cholesterol and gangliosides, 

although the effects of cholesterol have been examined in a subset of systems 52, 57–59. 

Cholesterol is an important component of membranes; it modulates their biophysical 

properties and is important for the uptake of hIAPP in vivo 58, 60. The β-cell plasma 

membrane is also asymmetric, with the anionic lipids predominantly localized to the inner 

leaflet and the outer leaflet enriched in sphingomyelin. Thus, hIAPP will encounter a very 

different membrane environment if it interacts with the outer vs the inner leaflet. 

Extracellular hIAPP will face a membrane that contains a low percentage of anionic lipids, 

while cytosolic hIAPP will face the cytosolic leaflet with a higher fraction of anionic lipids, 

but even the cytosolic leaflet of the β-cell membrane contains a modest percentage of 

anionic lipids. Complicating interpretation of lipid effects, the initiation site of islet amyloid 

is not understood and there is evidence that both extracellular and intracellular hIAPP 

oligomers contribute to islet β-cell toxicity 11, 20, 61. Studies with transgenic mouse models 

that significantly overexpress hIAPP suggest that islet amyloid may have an intracellular 

origin, while histological studies show that the amyloid deposits associated with T2D are 

extracellular. Studies with a transgenic islet model that expresses human levels of hIAPP 

argue that secretion of hIAPP is required for amyloid formation 11, 62. Other work shows 

that toxic hIAPP oligomers can be taken up by cells 58. Intracellular oligomers in the 

cytoplasm will face the inner leaflet, but if intracellular oligomers are found in the lumen of 

an organelle they will face the non-cytosolic (exofacial) leaflet of the membrane, and thus 

the same lipids as those on the outer surface of the plasma membrane. Thus, it is important 

to study hIAPP membrane interactions using both mimics of the outer and inner leaflet of 

the β-cell membrane.

Here we explore the effects of varying the type and amount of anionic lipids, the choice of 

zwitterionic lipid, the amount of cholesterol and the inclusion of sphingomyelins as well as 

the effects of varying buffer and salt on IAPP amyloid formation and on IAPP induced 

membrane leakage. In total 33 different model membrane systems were examined. The 

studies reveal that standard model membranes behave very differently from membranes 

which contain physiologically relevant concentrations of cholesterol and anionic lipids and 

thus they provide guidance to the choice of appropriate model systems for studies of 

membrane catalyzed hIAPP amyloid formation and hIAPP induced disruption of 

membranes. The mechanism of IAPP induced membrane leakage is also examined.
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MATERIALS AND METHODS

Materials

DOPC, DOPG, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-

benzoxadiazol-4-yl) (NBD-DOPE), POPC, POPS, 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rho-DOPE), brain 

sphingomyelin, egg sphingomyelin, cholesterol were obtained from Avanti Polar Lipids. The 

concentrations of unlabeled lipids were determined by dry weight and that of fluorescent 

lipids by absorbance using εNBD-DOPE = 21, 000 M−1 cm−1 at 460 nm in methanol and 

εRho-DOPE = 95,000 M−1 cm−1 at 560 nm in methanol. 5(6)-carboxyfluorescein, DMSO, 

HFIP, thioflavin-T, triton X-100, sucrose and dextrans (FTIC-dextrans) of molecular weight 

molecular weight 5, 10, 70, 150 kD were obtained from Sigma-Aldrich.

Peptide Synthesis and Purification

Human islet amyloid polypeptide was synthesized on a 0.1 mmol scale using 9-

fluoronylmethoxycarbonyl (Fmoc) chemistry with a CEM microwave peptide synthesizer. 5-

(4’-fmoc-aminomethyl-3’, 5-dimethoxyphenol) valeric acid (Fmoc-Pal-PEG-PS) resin was 

used to provide an amidated C-terminus. Fmoc-protected pseudoproline dipeptide 

derivatives were incorporated at positions 9–10, 19–20 and 27–28 63. All pseudoprolines, 

Arg and β-branched residues were double coupled. To reduce racemization, a maximal 

temperature of 50 °C was used for the His and Cys coupling 64. Peptides were cleaved from 

the resin using standard trifluoroacetic acid (TFA) methods. The crude peptides were 

dissolved in 20% acetic acid (vol/vol) and lyophilized several times. The disulfide bond was 

formed by dissolving dry peptide in pure dimethyl sulfoxide at room temperature 65. The 

peptide was purified using reverse-phase high-performance liquid chromatography with a 

Proto 300 C18 preparative column (10 mm × 250 mm). A two-buffer system was used. 

Buffer A consisted of 100% H2O and 0.045% HCl (vol/vol), and buffer B consisted of 80% 

acetonitrile, 20% H2O and 0.045% HCl (vol/vol). HCl was used as the ion-pairing agent 

instead of TFA, since TFA can affect cell toxicity assays and impact amyloid formation 66. 

The molecular weight of the pure product was confirmed using a Bruker AutoFlexII 

MALDI-TOF/TOF mass spectrometer: human IAPP, expected 3903.3, observed 3902.9. 

Analytical HPLC was used to check peptide purity before experiments. This is an important 

control because IAPP can deamidate and this can affect IAPP amyloid formation 67, 68.

Preparation of Peptide Samples

Material from the same synthesis was used in all biophysical studies to ensure comparable 

conditions for all experiments. Peptide stock solutions were prepared by dissolving pure 

peptide in 100% HFIP at a concentration of 1.6 mM, filtering through a 0.22 µM Millex low 

protein binding durapore membrane filter to remove preformed aggregates and stored at 

4 °C. Aliquots were lyophilized for 20–24 hours to remove organic solvent and redissolved 

in buffer at the desired concentration immediately before the experiments started.
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Preparation of Large Unilamellar Vesicles

LUVs were prepared from multilamellar vesicles (MLV). MLVs were prepared by 

dissolving lipids in chloroform in a glass tube at the desired concentration. Mixtures were 

evaporated with nitrogen gas and were dried in high vacuum for at least 4 hours to 

completely remove the residual organic solvent. The resulting lipid mixtures were then 

dispersed in tris buffer (20 mM Tris·HCl, 100 mM NaCl at pH 7.4) and agitated at 55 °C for 

at least 30 minutes. Samples were cooled to room temperature before use. Large unilamellar 

vesicles (LUVs) were prepared from MLV by subjecting the MLVs to 7 freeze-thaw cycles 

and then passing through a 100 nm polycarbonate filter (Avanti Polar Lipids) 11 times to 

obtain uniform vesicle size. The phospholipid concentration was determined by the method 

of Stewart 69. For the membrane leakage experiments, LUVs containing 5(6)-

carboxyfluorescein were prepared using the same protocol except that 5(6)-

carboxyfluorescein was dissolved in tris buffer (20 mM Tris·HCl, 100 mM NaCl at pH 7.4) 

at a concentration of 80 mM before lipid hydration. Nonencapsulated 5(6)-

carboxyfluorescein was removed from 5(6)-carboxyfluorescein-filled LUVs using a PD-10 

desalting column (GE Healthcare Life Sciences) and elution with 20 mM Tris·HCl, 100 mM 

NaCl buffer, pH 7.4. Dynamic light scattering (DLS) was used to check the effective 

diameter and polydispersity of each vesicle before use. A fresh vesicle solution was used for 

each experiment.

Dynamic Light Scattering

Dynamic light scattering experiments were performed on a NanoBrook 90Plus Particle Size 

Analyzer with a 35 mW red diode laser. The wavelength of irradiation was 640 nm. 

Membrane samples were prepared to a final concentration of 400 µM with 20 mM Tris·HCl, 

100 mM NaCl buffer (pH 7.4). For each sample, three runs were taken at 25 °C with 60 

seconds per run. The average diameter (effective diameter) and the distribution width 

(polydispersity) were calculated using the 90Plus Particle Sizing Software.

Thioflavin-T Fluorescence Assays

Thioflavin-T fluorescence experiments were performed using a Beckman Coulter DTX880 

plate reader with excitation and emission wavelengths of 430 nm and 485 nm, respectively. 

Samples were incubated in 96-well quartz microplate at 25 °C. Samples contained 20 µM 

peptide in tris buffer (20 mM Tris·HCl, 100 mM NaCl, pH 7.4) with 32 µM Thioflavin-T. 

This concentration of IAPP was chosen to yield a peptide to lipid ratio of 1:20 since this is 

typical of values used for studies of hIAPP membrane interactions. Additional experiments 

were performed to test the effects of varying the buffer. Experiments in the presence of 

membrane were initiated by adding 400 µM LUVs. Uncertainties in T50 were estimated by 

conducting measurements in triplicate using different solutions of hIAPP.

Membrane Permeability Assays

Leakage experiments were performed using a Beckman Coulter DTX880 plate reader with 

excitation and emission wavelength filters of 485 nm and 535 nm, respectively. All of the 

samples were incubated in 96-well quartz microplate at 25 °C. 400 µM 5(6)-

carboxyfluorescein-encapsulated LUVs were used and the peptide concentration was 20 µM. 
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The fluorescence signal of the 5(6)-carboxyfluorescein-encapsulated LUVs was 

continuously measured during the course of each experiment. The maximum leakage for 

totally disrupted membranes was measured by adding the detergent Triton X-100 to a final 

concentration of 0.2% (vol/vol).

The percent change in 5(6)-carboxyfluorescein fluorescence is calculated as:

Where F(T) is the fluorescence intensity at time T, Fmax is the fluorescence intensity when 

all of the vesicles have been disrupted and Fbaseline is the base line fluorescence is observed 

before addition of hIAPP. Fmax was experimentally determined by disrupting the vesicles 

with Triton X-100. The percent change in fluorescence will equal the percentage change in 

leakage provided the 5(6)-carboxyfluorescein fluorescence response is linear. Control 

experiments indicate that this is a reasonable assumption for the studies reported here 

although when 5(6)-carboxyfluorescein trapping efficiency was high, the response may have 

been slightly non-linear (Figure-S1, S2). Uncertainties were estimated by repeating the 

measurements three times using different stock solutions of hIAPP.

Transmission Electron Microscopy

TEM was performed at the Life Science Microscopy Center at Stony Brook University. 

Aliquots of sample from the thioflavin-T fluorescence experiments were used as TEM 

samples. Eight microliters of the solution was blotted on a carbon-coated Formvar 300 mesh 

copper grid for 1 min and then negatively stained for additional 1 min with saturated uranyl 

acetate.

Sucrose Density Gradient Centrifugation Assays

Sucrose gradient centrifugation was performed using a Beckman L8-55M ultracentrifuge 

with an SW-60 rotor. Sucrose gradients were prepared by freezing 3.5 ml of 10% (w/w) 

sucrose at –20 °C in centrifuge tubes overnight and thawing to room temperature. Sucrose 

concentrations in the fractions were estimated using a refractometer. The highest density was 

20 percent sucrose (bottom layer) and the lowest was 5 percent sucrose (top layer). Vesicles 

contained 2 mole percent NBD-DOPE to allow visualization. Vesicles were incubated with 

hIAPP until amyloid formation was complete. 500 µl samples were loaded on top of the 

gradients and samples were then centrifuged for 45 minutes at 37,500 rpm. Vesicles that 

bind peptide segregate to the bottom layer of the gradient while those that do not float on top 

of the gradient. The two lipid-containing layers were removed and diluted into 1.2 ml tris 

buffer. The amount of NBD-DOPE were quantified using a SPEX FluoroLog 3 

spectrofluorometer with excitation and emission wavelengths of 465 nm and 534 nm. The 

slit bandwidths for fluorescence measurements were set to 4.0 nm for both excitation and 

emission. Background intensities in samples lacking fluorescent probe were negligible (1–

2%) and were generally not subtracted from the reported values.
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Entrapping FITC dextrans in LUVs

A mixture of 8 mM lipids comprising POPC, POPS, cholesterol, 0.5 mole percent Rho-

DOPE and 1.8 mg/ml FITC-dextran were dissolved in 20 mM tris buffer, 100 mM NaCl, pH 

7.4. Free FITC-dextran was separated from LUV-trapped dextran by dialysis against tris 

buffer pH 7.4. Typically, the final lipid concentration was 2–4 mM as determined by Rho-

DOPE fluorescence, i.e., by determining the ratio of the fluorescence of Rho-DOPE after 

sample preparation to that in the vesicles prior to fractionation, assuming that the loss in 

lipids during dialysis is minimal. The average vesicle diameter, as estimated by DLS, was 

106 nm. LUVs were diluted to 400 µM when tested.

FITC dextran leakage assays

FITC-dextran leakage was measured by incubating 400 µM LUVs with 20 µM human IAPP 

at 25 °C. Samples were incubated for defined time periods and then centrifuged for 50 min 

in a Beckman L8–55M ultracentrifuge with an SW-60 rotor at 37,500 rpm, 25 °C. After 

centrifugation, the supernatant containing leaked FITC-dextran was removed, and pellets 

containing the LUVs were resuspended in tris buffer at pH 7.4. Rho-DOPE and either FITC 

fluorescence was measured for both the supernatant and the pellet. The efficiency of vesicle 

pelleting was generally about 60–70% for vesicles without peptide and 70–80% for vesicles 

with hIAPP. Calculated values were corrected for incomplete pelleting of vesicles using 

established methods70.

Forster Resonance Energy Transfer (FRET) Measurements of Lipid Exchange and Vesicle 
Solubilization

A donor-acceptor pair of NBD-DOPE/Rho-DOPE was used. Fluorescence was measured 

using an Applied Phototechnology fluorescence spectrophotometer with an excitation 

wavelength of 465 nm and an emission wavelength of 534 nm. For FRET in labeled vesicles, 

F samples had a mixture of unlabeled lipid, lipid labeled with NBD, and lipid labeled with 

rhodamine, while Fo samples had a mixture of unlabeled lipid and lipid labeled with NBD. 

Background for F samples contained unlabeled lipid with same amount of acceptor as in the 

F samples. Background samples for Fo contained pure unlabeled lipid. The mole percent of 

labeled lipids in the “F sample” labeled vesicles was 0.5 mole percent NBD-DOPE and 1.0 

mole percent Rho-DOPE. For FRET experiments, LUVs were incubated in the presence and 

absence of hIAPP at a lipid to peptide ratio of 20:1 (20 µM hIAPP). Aliquots of each 

samples were diluted by a factor of 4 using tris buffer before fluorescence measurements. 

Uncertainties were estimated by conducting three independent experiments using samples 

from different solutions of hIAPP.

RESULTS

The primary sequence of hIAPP is displayed in Figure-1. The polypeptide contains an 

amidated C-terminus, a disulfide bond between residue 2 and 7 and has no acidic residues. 

Positively charged residues include Lys-1, Arg-11 and potentially His-18 depending upon its 

pKa. We first describe studies designed to test the ability of different model membrane 

systems to catalyze hIAPP amyloid formation using large unilamellar vesicles (LUVs) 

composed of different lipids with and without cholesterol. We then probe the ability of 
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hIAPP to permeabilize these model membranes using dye leakage assays and examined the 

mechanism of leakage using FRET assays and size dependent leakage assays.

Anionic lipids enhance the rate of hIAPP amyloid formation in mixed vesicles, but the 
effects are independent of the choice of zwitterionic lipids tested

We examined the effects of varying the percentage of anionic lipids, using mixed binary 

LUVs that contained differing amounts of anionic lipids, either DOPG or POPS, together 

with the zwitterionic lipid DOPC. We choose a lipid to peptide ratio of 20:1 and a hIAPP 

concentration of 20 µM for these and all following studies since this is typical of values used 

for biophysical studies of membrane catalyzed hIAPP amyloid formation 46, 52, 53. This 

concentration will result in an excess of peptide relative to the concentration of vesicles. 

hIAPP has a T50, defined as the time to reach 50 percent of the signal change in a thioflavin-

T amyloid assay, of 42 hours in 20 mM tris in solution, in the absence of membranes under 

the conditions of our studies (Table-1).

Amyloid formation was followed using fluorescence thioflavin-T assays. Thioflavin-T is a 

small fluorescent dye whose quantum yield is low in solution, but is enhanced upon binding 

to amyloid fibrils. Thioflavin-T assays are a well-documented approach to follow hIAPP 

amyloid in solution and in the presence of membranes. Transmission electron microscopy 

(TEM) was used to visualize the final products of the amyloid formation assays to provide 

an independent test of amyloid formation. This is an important control since thioflavin-T is 

an extrinsic probe and sometimes gives a low signal even in the presence of amyloid 

fibrils 71. As expected, and in agreement with earlier studies, the rate of hIAPP amyloid 

formation was notably enhanced in the presence of vesicles containing high percentages of 

anionic lipids (Figure-2) 42, 43, 49, 52, 57. However, significant effects are observed for even 

modest amounts of DOPG or POPS. The addition of just 2 mole percent anionic lipid had a 

detectable effect, reducing the value of T50 by 10 percent for both POPS and DOPG relative 

to the value in the presence of vesicles that contained only zwitterionic lipids, and by 30 

percent relative to value in the absence of vesicles. Addition of only 5 mole percent DOPG 

or POPS reduced T50 by almost 40 percent relative to the value in the presence of purely 

zwitterionic vesicles. Much larger effects were observed as the fraction of anionic lipids was 

increased with the value of T50 decreasing by over 90 percent with 50 mole percent anionic 

lipid (Figure-2, Table-1). Only modest differences were observed in the rate of amyloid 

formation when DOPG was substituted for POPS (Figure-2). The effect of POPS and DOPG 

are non-linear and are significant even at the lowest mole fractions tested (Figure-2). The 

data reveals that membranes with physiological concentrations of anionic lipids behave very 

differently than the systems commonly employed for biophysical studies, in which high 

concentrations of anionic lipids have been frequently used.

We next examined the effects of varying the zwitterionic lipid using POPS as the anionic 

lipid. Substitution of POPC for DOPC led to no significant differences in aggregation rates, 

as judged by the T50 values (Figure-S3). However, the choice of POPC vs DOPC did have 

an effect on the ability of hIAPP to induce leakage of vesicles, described below. TEM was 

used to probe the morphology of the amyloid fibrils which result from these experiments and 

the morphology of the vesicles. Vesicles containing only zwitterionic lipids and mixed 
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vesicles containing 25 mole percent anionic lipid and 75 mole percent zwitterionic lipid 

were examined. No detectable change in fibril morphology was observed at the level 

detectable by TEM and the presence of intact vesicles was confirmed (Figure-S4).

The addition of cholesterol reduces the ability of mixed anionic-zwitterionic LUVs to 
catalyze amyloid formation

Cholesterol is an important component of cellular membranes, and has been shown to be 

important for the uptake of IAPP by cells, however cholesterol is missing from, but not all, 

most commonly employed model vesicles used for IAPP studies of IAPP membrane 

interaction 51, 58. The effects of varying the mole percent of cholesterol from 0 to 40 percent 

in the presence of POPC have been examined 51. We examined the effects of cholesterol on 

membrane-catalyzed amyloid formation as a function of the percentage of cholesterol and 

POPS. LUVs composed of 0, 20 and 40 mole percent cholesterol with different amounts of 

POPS and POPC were studied. Cholesterol slowed the rate of fibril formation, consistent 

with prior results 51, 52 (Figure-3, Figure-S5). Recent studies conducted using a different 

buffer with an organic co-solvent (10 mM phosphate buffer, 100 mM NaCl, 1% DMSO), a 

different membrane composition and a different lipid to peptide ratio have also shown that 

cholesterol effects the rate of amyloid formation by IAPP. But in this case a modest 

acceleration was observed. Comparison of the data presented here with this study and with 

previous work 51, 52, 59 highlights the high sensitivity of IAPP membrane interactions to 

lipid composition. In the absence of POPS, addition of 20 mole percent cholesterol to 

zwitterionic LUVs increased the value of T50 by 1.5-fold relative to the value in the absence 

of cholesterol. Addition of 40 mole percent cholesterol further increased the value of T50 to 

2.6-fold that of the no cholesterol value. Similarly, in the presence of moderate levels of 

POPS, 5 or 10 mole percent, the addition of 20 mole percent cholesterol increased T50 by 

more than 2-fold, while 40 mole percent cholesterol exhibited larger effects, increasing T50 

by approximately 4-fold. However, added cholesterol had no detectable effect for the sample 

which contained 25 mole percent POPS, indicating that 25 mole percent POPS dominates 

cholesterol-dependent effects. This result indicates that studies which attempt to examine the 

effects of sterols on membrane mediated hIAPP amyloid formation should avoid moderate 

to high concentration of anionic lipids since they obscure the effects of cholesterol. TEM 

studies confirmed that the vesicles were intact at the end of the experiment and showed no 

significant change in fibril morphology (Figure-S4).

Sphingomyelin and POPC have similar effects on membrane catalyzed IAPP amyloid 
formation in the presence and absence of cholesterol

Sphingomyelin is an important component of biological membranes, and is found in the β-

cell plasma membrane, but is usually not included in studies of hIAPP model membrane 

interactions. Thus, we examined the effects of sphingomyelin on membrane-catalyzed 

amyloid formation in the presence and absence of cholesterol with different amounts of 

POPC. Amyloid formation is slightly slower in samples which contain an equal molar 

mixture of brain sphingomyelin and POPC compared to pure POPC, both in the presence 

and absence of 40 mole percent cholesterol (Figure-S6, Table-1), but the effect is modest. 

Both egg and brain sphingomyelin are widely used in model membrane systems, 

consequently we compared the effects of varying the type of sphingomyelin using 50 percent 
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sphingomyelin and 50 percent POPC. A 16 to 20 percent increase in T50 was observed when 

brain sphingomyelin was replaced with egg sphingomyelin (Figure-S7, Table-1). TEM 

studies confirmed that the vesicles were intact at the end of the experiment and showed no 

significant change in fibril morphology (Figure-S4).

The choice of buffer or addition of NaCl significantly impacts membrane catalyzed amyloid 
formation, but the effects are different from those observed in ordinary aqueous solution

The rate of IAPP amyloid formation in solution depends upon the amount of salt present, 

and detectable effects are observed even at relatively modest ionic strengths. The rate is 

sensitive to the choice of anion, but less sensitive to the choice of the cation 72. The salt 

dependence of hIAPP amyloid formation in solution depends upon Debye screening and 

anion binding at low to moderate salt concentrations with a contribution from Hofmeister 

effects at high salt concentrations 72. Salts might have different effects in the membrane 

environment since adding salt can modulate peptide-membrane interactions as well as 

peptide-peptide interactions. Tris and phosphate are probably the most commonly employed 

buffers for biophysical studies of hIAPP amyloid formation, and phosphate accelerates 

amyloid formation in ordinary aqueous solution relative to tris. To the best of our 

knowledge, no systematic investigations have been reported on the effect of varying buffer 

composition on membrane catalyzed IAPP amyloid formation and very little is known about 

the effects of varying buffer on IAPP amyloid formation in homogenous solution. Thus, we 

explored the effects of adding 100 mM NaCl and changing the buffer from tris to phosphate 

on membrane catalyzed amyloid formation.

Addition of 100 mM NaCl to the tris buffer slowed amyloid formation in the presence of 

LUVs containing 25 mole percent POPS, increasing the value of T50 about 5-fold. This is 

the opposite of its effect in ordinary aqueous solution. Changing the buffer from 20 mM tris 

with no added salt to 20 mM phosphate with no added salt also slowed membrane catalyzed 

amyloid formation, increasing T50 by over 2-fold. Again, this is the opposite of the effects 

observed in solution. Adding 100 mM NaCl to phosphate buffer further slowed LUV 

catalyzed hIAPP amyloid formation, but the relative effect, less than 2-fold, was not as 

substantial as observed when NaCl was added to tris. Again, this is the opposite of its effect 

in aqueous solution. Varying the concentration of phosphate also had a significant effect: 

amyloid formation in the presence of LUVs containing 25 mole percent POPS was 

accelerated when the phosphate concentration was decreased from 20 mM to 10 mM 

(Figure-S8). In contrast, in aqueous solution decreasing the phosphate concentration 

decreases the rate of amyloid formation (data not shown). Collectively, the data reveal that 

changing buffer and the salt concentration have opposite effects on membrane catalyzed 

amyloid formation and on amyloid formation in homogenous solution. The opposing effects 

of added salt in solution vs in a membrane environment are consistent with electrostatic 

interactions playing an important role in the interaction of hIAPP with membranes 

containing anionic lipids, while the strong dependence on buffer composition indicates that 

caution is required when comparing studies conducted using different conditions.
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hIAPP is more effective at permeabilizing LUVs which contain high concentrations of 
anionic lipids

We examined the effects of varying the amount of anionic lipid, DOPG or POPS, on 

membrane leakage using mixed binary LUVs with DOPC as the zwitterionic lipid. 

Membrane leakage was followed using fluorescence-detected 5(6)-carboxyfluorescein 

leakage assays. 5(6)-carboxyfluorescein is a highly fluorescent molecule whose fluorescence 

is self-quenched at high concentrations. High concentrations of the dye are encapsuled into 

LUVs, and upon membrane disruption by IAPP, the dye is released and the subsequent 

dilution leads to enhanced fluorescence. The percent membrane leakage is approximately 

equal to the percentage change in the fluorescence of the dye, although a plot of percent 

leakage vs percent change in dye fluorescence can deviate from linearity at higher dye 

concentrations (Figure-S2).

We measured leakage after 10 minutes of incubation and after incubating for a time long 

enough to form amyloid. Independent photochemical cross-linking and ion-mobility mass 

studies have shown that hIAPP forms oligomers in less than 10 minutes in solution of pH 

7.4, while time resolved toxicity assays have shown that pre-amyloid oligomeric species are 

toxic to cultured INS-1 β-cells.61, 73

Inclusion of either POPS or DOPG in DOPC-containing vesicles increases the fluorescence 

change measured after 10 minutes relative to the change observed with pure DOPC vesicles, 

indicating increased leakage (Figure-4, Table-1, Figure-S9). This incubation time is 

noticeably less than the time required to from amyloid indicating that significant leakage is 

induced by, presumably, oligomeric species formed early in the amyloid self-assembly 

process. Incubating pure DOPC LUVs with hIAPP for 10 minutes led to a fluorescence 

increase of approximately 20 percent of maximal, while addition of just 2 mole percent of 

anionic lipid increased the fluorescence change to 36 percent of maximal, illustrating that 

even very modest fractions of anionic lipid led to detectable effects. Higher concentrations 

of anionic lipids lead to a larger change in 5(6)-carboxyfluorescein fluorescence. Addition of 

50 mole percent of anionic lipid increased the observed fluorescence change to about 50–60 

percent for both POPS and DOPG after 10 minutes of incubation with hIAPP. No clear 

differences were observed between dye release for vesicles containing POPS vs DOPG.

Dye leakage was also measured after 40 hours of incubation with hIAPP, which corresponds 

to a time after amyloid formation is finished for the samples which were slowest to form 

amyloid in the absence of cholesterol. The fluorescence increase was around 40 percent of 

maximal for the pure DOPC LUVs. Addition of 2 mole percent anionic lipid increased the 

change in 5(6)-carboxyfluorescein fluorescence to more than 50 percent, while addition of 

50 mole percent of anionic lipid lead to release of almost all of the encapsulated dye. In 

summary, these studies demonstrate that increasing the mole fractions of anionic lipids leads 

to a significant increase in membrane leakage for both short and long incubation times with 

super physiological concentrations of anionic lipids leading to high levels of leakage.
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Vesicles that contain POPC instead of DOPC are more resistant to hIAPP induced 
membrane leakage

We next examined the effects of varying the zwitterionic lipid on hIAPP induced membrane 

leakage using POPS as the anionic lipid. Although substitution of POPC for DOPC had only 

a modest impact on the rate of amyloid formation it did influence membrane leakage 

significantly. Greater leakage was observed for the DOPC vesicles relative to POPC 

containing LUVs for all concentrations of POPS tested at both the 10 minute and 40 hour 

incubation times (Figure-5, Table-1, Figure-S9). For vesicles lacking POPS or with a low 

POPS percentage, leakage at 10 minutes was 2 to 3 fold more for vesicles with DOPC 

relative to those with POPC. This difference decreased somewhat at higher POPS 

percentages (Figure-5A, Table-1). Similar, but somewhat smaller differences in leakage were 

observed after 40 hours of incubation time (Figure-5B, Table-1). The different effects 

observed with POPC vs DOPC likely reflects the differing abilities of these two lipids to 

pack owing to the double bond in both of the acyl chains of DOPC.

Cholesterol reduces the ability of hIAPP to induce membrane leakage

We examined the effects of cholesterol on hIAPP induced membrane leakage as a function 

of the percentage of cholesterol and POPS. LUVs made up of 0, 20 and 40 mole percent 

cholesterol with different amount of POPS and POPC were studied. Addition of cholesterol, 

at both 20 and 40 mole percent, reduced membrane leakage for all concentrations of POPS 

tested (Figure-6, Table-1, Figure-S10). The percentage change in 5(6)-carboxyfluorescein 

fluorescence increased as the mole percent of POPS increased for all conditions tested 

except for the 10 minute time point for the samples that contained 40 mole percent 

cholesterol. In that case no significant leakage was observed even for the sample which 

contained 25 mole percent POPS.

We also examined the samples after 120 hours of incubation. Amyloid formation is slowed 

in the presence of cholesterol, so we choose 120 hours instead of 40 hours to ensure that 

amyloid formation was complete. The relative reduction in leakage due to addition of 20 or 

40 percent cholesterol was smaller for the 120 hour incubation times than for the 10 minute 

time point. Six percent leakage was observed for the vesicles with 40 mole percent 

cholesterol and no POPS, while 38 percent leakage was observed from vesicles that 

contained 40 mole percent cholesterol and 25 mole percent POPS (Figure-6B, Table-1). For 

comparison, the corresponding values for 0 mole percent cholesterol were 25 and 56 percent 

respectively.

Replacement of POPC with brain sphingomyelin decreases vesicle leakage in the absence 
and in the presence of cholesterol

We next examined the effects of replacing POPC with sphingomyelin on hIAPP induced 

membrane leakage for LUVs in the presence and absence of cholesterol. More leakage was 

detected for the pure POPC LUVs compared to LUVs that were made up of a 50 mole 

percent mixture of POPC and brain sphingomyelin after both 10 minutes and 120 hours 

incubation time. No significant difference in dye leakage was observed upon substituting 

brain sphingomyelin for egg sphingomyelin (Figure-S11, Table-1).
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Different results were obtained when 10 mole percent POPS was present. No detectable 

difference in the apparent leakage was observed when comparing LUVs composed of 90 

mole percent POPC and 10 mole percent POPS to LUVs containing 60 mole percent POPC, 

30 mole percent brain sphingomyelin, and 10 mole percent POPS (Table-1). This result 

further highlights the significant effect of even modest amounts of anionic lipids. The 

estimated mole percentage of POPS in the β-cell membrane is below 10 percent, thus even 

just 10 percent POPS represents a poor mimic of the outer leaflet of the β-cell plasma 

membrane. The addition of sphingomyelin also had an effect upon vesicles composed of 

POPC and cholesterol, reducing the leakage observed after 120 hours incubation (Figure-

S11, Table-1).

A correlation between leakage and peptide binding to vesicles

The observed percentage leakage does not reach 100%, and for some lipid compositions 

leakage remains at a low level for very long times even though hIAPP is added in excess in 

these experiments. A possible explanation is that a subset of the LUVs binds peptide and a 

fraction does not, or binds fewer peptides under the conditions of these studies. We 

conducted sucrose gradient experiments to test this possibility using LUVs that experience a 

high degree of membrane permeability and LUVs that do not. LUVs labeled at 2 mole 

percent with the fluorescence probe NBD-DOPE were centrifuged in a 5 to 20 percent 

sucrose gradient. Two fractions were observed in the presence of IAPP, a lighter fraction 

which floats at the top of the gradient in the same position observed for control LUVs in the 

absence of peptide, and a second fraction which pellets. Because vesicle-bound peptides 

increase vesicle density, the lighter fraction contains vesicles with little IAPP while those 

with a high peptide content form the heavier fraction that pellets. The sucrose gradient 

experiments reveal that not all vesicles bind peptide even though hIAPP is present in excess. 

This may be due to cooperative binding of hIAPP, so that it preferentially binds to a subset 

of vesicles. In addition, once amyloid fibrils are formed they might compete with 

membranes for the remaining soluble hIAPP and thereby limit the interactions of the soluble 

pool of hIAPP with LUVs. There is a strong correlation between the fraction of vesicles 

pelleted, i.e. those which bound peptide, and the observed leakage (Figure-S12, Table-1). 

This confirms that the extent of leakage reflects the fraction of vesicles that bind substantial 

amounts of peptide.

h-Amylin induces leakage via pore formation

The experiments described above have examined the effect of varying lipid composition on 

vesicle leakage, but they do not address the mechanism of leakage. The release of the 5(6)-

carboxyfluorescein dye could be due to formation of pores and / or more complete 

disruption of the vesicles by a detergent like mechanism. We conducted FRET experiments 

with labeled lipids to probe the intactness of the vesicles after incubation with hIAPP 

(Figure-S13). A small percentage of donor lipid (0.5 mole percent NBD-DOPE) and 

acceptor lipid (1 mole percent Rho-DOPE) were incorporated into the vesicles. Efficient 

FRET is observed in intact vesicles since the donor and the acceptor are in proximity. The 

FRET signal will be diminished if the vesicles are fully disrupted so that the lipids are 

solubilized and no longer in close proximity. In the absence of hIAPP significant FRET was 

observed with F/Fo = 0.2 (corresponding to 80% FRET efficiency) for pure POPC samples 
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without cholesterol. Fo is the fluorescence of vesicles which contain the donor lipid, but not 

the acceptor lipid and F is the fluorescence of vesicles which have both donor and acceptor 

lipids. The observed value is consistent with the Förster radius and the estimated donor 

acceptor separation74. The F/Fo value is 0.4 (corresponding to 60% FRET efficiency) for 

POPC samples with 20 mole percent cholesterol. As a control, we used triton X-100 to 

disrupt the vesicles and found that F/Fo was 0.9 (10% FRET efficiency), indicating, as 

expected, that FRET was significantly reduced when the vesicles were disrupted. We then 

examined the effect of treating POPC vesicles with h-amylin and found no change in FRET 

efficiency with or without 20 mole percent both after both10 minutes or 2 days of incubation 

(Figure-S13). Similar results were observed with vesicles composed of 3:1 POPC : POPS. 

We choose this vesicle composition because it provides an example of a system which shows 

very significant levels of leakage. This set of experiments argues that 5(6)-

carboxyfluorescein release does not involve complete solubilization of the vesicles. DLS 

was used to probe the integrity of the vesicles after 10 minutes incubation with hIAPP and 

confirmed the presence of intact vesicles (Table-S1).

The FRET studies are consistent with formation of some sort of pore, but they do not 

provide information about pore size. Consequently, we studied the ability of hIAPP to 

induce leakage of different sized fluorescence probes. We used a set of dextrans conjugated 

to fluorescein isothiocyanate (FITC-dextran) of different sizes ranging from 5 kDa to 150 

kDa. Three sets of vesicles were prepared; pure POPC vesicles, vesicles composed of 75 

mole percent POPC with 25 mole percent POPS and vesicles made up of 80 mole percent 

POPC with 20 mole percent of cholesterol. Dextran leakage was measured after 10 min, 1 h 

and 80 h of incubation with hIAPP. Significant leakage was observed for all samples, with 

slightly less leakage detected for higher molecular weight FITC-dextran. Dextran leakage 

was also slightly less than the leakage of 5(6)-carboxyfluorescein (which is smaller than all 

of the dextrans used) at the same incubation time (Figure-7). This indicates that average pore 

size is large, although it may be somewhat variable from vesicle-to-vesicle. The studies 

indicate that pore formation plays an important role in leakage, but do not distinguish 

between transiently formed pores or persistent pores.

DISCUSSION

The data presented here highlights the sensitivity of membrane-catalyzed hIAPP amyloid 

formation and the ability of hIAPP to permeabilize membranes to membrane composition. 

The strong non-linear dependence on the fraction of anionic lipid, and on the presence or 

absence of cholesterol demonstrated in our study has clear implications for the design of 

model membranes for biophysical studies. The data presented here shows that significant 

effects are observed even at the lowest level of anionic lipids. Addition of just 2 mole 

percent anionic lipid lead to a measurable effect. Anionic lipids are estimated to make up 

between 2.5 to 13.2 percent of the total phospholipid in the β-cell plasma membrane and are 

localized to the inner leaflet, however, the actual concentration of anionic lipids is lower 

since the membrane contains significant amounts of cholesterol. Overall, anionic lipids 

likely make up between 1.5 to 8 mole percent of the membrane. Figure-2C reveals that 

increasing the concentration of anionic lipids from 8 mole percent to just 25 mole percent, 

the latter being a value used in model membrane studies, has a dramatic effect, reducing the 
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T50 for the POPS containing binary LUVs by a factor of 5. 25 mole percent POPS is on the 

low side of the values used in many biophysical studies.

The detailed molecular mechanism of membrane enhanced amyloid formation is not 

understood, but it is likely related to specific structures formed on the membrane coupled 

with a reduction in dimensionality. hIAPP is thought to bind to membranes in a partial 

helical conformation and then associate on the membranes to form helical oligomeric 

structures which convert into β-sheet rich amyloid fibrils by an unknown 

mechanism 56, 75–81. Binding increases the local concentration of hIAPP and reduces 

hIAPP-hIAPP interactions to a two dimensional search. Faster aggregation is expected as the 

fraction of anionic lipids increases due to enhanced binding of the cationic peptide, but at 

sufficiently high concentrations of anionic lipids and at appropriate peptide to lipid ratios 

conversion to β-sheet structure could be slowed if interactions with a highly charged 

membrane over-stabilized the helical state56. Irrespective of the mechanism details, the 

present study clearly demonstrates that model membranes containing significant anionic 

lipids act very differently than membranes which contain physiologically relevant levels of 

anionic lipids.

A number of structures of hIAPP in membrane-mimetic environments have been reported 

based on NMR and EPR studies which are consistent with a role for α-helix formation 

during membrane catalyzed hIAPP amyloid formation. The structures differ in some of the 

details, but they all report a well ordered α-helix beginning near residue 7 and continuing to 

somewhere between residues 18 to 22 76–78, 80. Formation of an amphipathic helix in this 

region positions Arg-11 and His-18 on the same face of the helix 76, 78. The Cys-2 Cys-7 

disulfide bond prevents the N-terminal region from adopting a canonical α-helix structure, 

however NMR studies of hIAPP in micelles indicate that the N-terminal region can from a 

structure which places Lys-1 on the same face of the structure as Arg-11 and His-18 77, 80. 

This constellation of cationic residues will promote electrostatic interactions of hIAPP with 

anionic vesicles, and micelles and helps to rationalize the sensitivity of membrane-catalyzed 

amyloid formation to the fraction of anionic lipids. The salt dependent studies and the 

opposing effects of added salt on IAPP amyloid formation in solution vs in the membrane 

environment are consistent with electrostatic interactions playing an important role in 

membrane hIAPP interactions.

Cholesterol also had a significant effect, but in this case slowed amyloid formation. The 

contrasting effects of cholesterol and anionic lipids on membrane catalyzed amyloid 

formation and on hIAPP induced membrane leakage are noteworthy. An important 

observation in the present work is that the relative effect of adding cholesterol on amyloid 

formation is much less in the presence of 25 mole percent POPS. This highlights the strong 

influence anionic lipids have on IAPP amyloid formation and indicates that caution must be 

employed when studying the effect of other components in the presence of high 

concentrations of anionic lipids, since they can dominate the more subtle effects induced by 

varying other components. Further evidence of the complicating effects of high 

concentrations of anionic lipids are provided by the studies of the effect of sphingomyelin on 

vesicle leakage. Sphingomyelin decreased leakage in the absence of POPS, but adding 

sphingomyelin had no effect when 10 mole percent POPS was present. These experiments 
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reinforce the important fact that hIAPP experiences very different environments when 

interacting with the outer leaflet of the β-cell plasma membrane, with its reduced anionic 

lipid content, vs the inner leaflet with its higher anionic lipid content.

Membrane-catalyzed amyloid formation was largely independent of the choice of 

zwitterionic lipids including POPC, DOPC and sphingomyelin for the conditions studied 

here. This implies that the rate of amyloid formation is not strongly dependent on lipid acyl 

chain saturation, and is most easily rationalized by models which invoke hIAPP binding in 

an orientation perpendicular to the bilayer normal, since IAPP will interact with the 

headgroups in this orientation and does not have to significantly penetrate the membrane to 

form amyloid. In contrast, the extent of leakage was dependent on the choice of zwitterionic 

lipid with more leakage observed for lipids that form less ordered bilayers. The increased 

sensitivity of leakage to membrane composition likely reflects the requirement that hIAPP 

needs to insert into the membrane to promote leakage.

The salt and buffer dependent studies reveal that hIAPP membrane mediated amyloid 

formation is very sensitive to conditions and show that adding NaCl or changing buffer has 

different effects on amyloid formation in the presence of LUVs compared to their effects in 

homogenous solution. The differences reflect a competition between the effects of anions 

and salt on hIAPP-hIAPP interactions vs hIAPP-membrane interactions. Salts screen 

unfavorable hIAPP-hIAPP electrostatic interactions thereby speeding up aggregation in 

solution, but can reduce IAPP-membrane electrostatic interactions that promote amyloid 

formation, at least for vesicles containing anionic lipids. The net effect, under the conditions 

used here, is to slow membrane catalyzed amyloid formation by anionic LUVs. An 

important practical point is that minor variations in buffer or salt composition or 

concentration have a significant effect on hIAPP membrane interactions, making comparison 

of studies conducted under different conditions challenging. Low levels of Ca2+, also have 

significant effects upon hIAPP amyloid formation in the presence of anionic vesicles, but in 

this case the mechanism is different and the effects are due to cation binding to the head 

group of the anionic lipids 82.

The observation that even low levels of POPS promote amyloid formation and facilitate 

hIAPP induced leakage has potentially interesting biologically implications. It is known that 

that toxic hIAPP oligomers produced during amyloid formation induce apoptosis 11, 20, and 

that apoptosis leads to a break down in membrane asymmetry of phosphatidylserine 

(PS) 83–85. The loss of asymmetry could be due to a direct effect of hIAPP if it leads to 

membrane permeabilization, and permeabilization reduces PS asymmetry. Alternatively, the 

loss of PS asymmetry could be an indirect consequence of apoptosis induced by some other 

aspect of hIAPP toxicity. In either case this could lead to a feedback loop in which increased 

PS in the outer leaflet in one cell could promote additional formation of toxic hIAPP 

species, and additional deleterious hIAPP-membrane interactions, not necessarily involving 

the same cell. This would in turn result in further transfer of PS to the outer leaflet. Since the 

presence of PS in the outer leaflet promotes macrophage mediated destruction of cells, a 

breakdown in membrane asymmetry could also contribute to macrophage mediated loss of 

β-cells 86–88. Differentiating between these possibilities is beyond the scope of the present 

work.
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The ability of hIAPP to induce leakage appears to be even more sensitive to membrane 

composition than amyloid formation since varying some membrane components had a 

clearly measurable effect on membrane permeability, but not on the kinetics of amyloid 

formation. Collectively the data indicates that factors which lead to more ordered 

membranes 89, such as cholesterol or sphingomyelin or the replacement of DOPC with 

POPC reduce the susceptibility of model membranes to hIAPP induced leakage although 

this effect can be overcome when anionic lipid is present.

The observation of significant vesicle leakage after only 10 minutes of incubation for the 

systems studied here is consistent with the hypothesis that species populated during the lag 

phase are membrane-active since 10 minutes is significantly less than the time required to 

form amyloid in the presence of LUVs except for the samples with 50 percent anionic lipid. 

Nevertheless, a correlation is observed between T50 and the leakage detected after 10 

minutes of incubation. (Figure-8). The correlation likely arises because more effective 

hIAPP-membrane interactions promote more rapid amyloid formation and effective 

membrane interactions are also required to promote leakage. A stronger correlation is 

observed between the values of T50 and the extent of leakage measured after incubating for a 

time long enough to ensure that amyloid formation is complete (Figure-8). The correlation is 

even more striking if just the POPS plus POPC data is plotted, or if the data for the 

cholesterol dependent studies are examined separately (Figure-S14). The FRET studies and 

dextran leakage experiments demonstrate the dominate mechanism of leakage under the 

conditions used here is pore formation and reveals that the pores are of large diameter.
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ABBREVIATIONS

DLS dynamic light scattering

DMSO dimethyl sulfoxide

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

DOPG 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)

DOPS 1,2-dioleoyl-sn-glycero-3-phospho-L-serine

FITC-dextran fluorescein isothiocyanate–dextran

Fmoc fluoronylmethoxycarbonyl
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FRET Förster resonance energy transfer

HFIP hexafluoroisopropanol

hIAPP human islet amyloid polypeptide

HPLC high performance liquid chromatography

IAPP islet amyloid polypeptide

LUV large unilamellar vesicles

MALDI-TOF time-of-flight matrix-assisted laser desorption ionization

MLV multilamellar vesicles

NBD-DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-

nitro-2-1,3-benzoxadiazol-4-yl)

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine

PS phosphatidylserine

Rho-DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(lissamine rhodamine B sulfonyl)

T2D type-2 diabetes

T50 the time to reach 50% of the signal change in a thioflavin-T 

amyloid assay

TEM transmission electron microscopy

TFA trifluoroacetic acid
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Figure 1. 
(A) The sequence of hIAPP. The peptide has an amidated C-terminus and contains a 

disulfide bridge between residues 2 and 7. Residues which have the potential to be positively 

charged near physiological pH are colored red. (B) A schematic diagram of amyloid 

formation. The lag phase is followed by a growth phase which leads to a saturation phase. 

T50, the time required to reach the midpoint of the lag phase is illustrated. The TEM image 

is of in vitro hIAPP amyloid fibrils.
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Figure 2. Anionic lipids increase the rate of amyloid formation
POPS and DOPG were separately mixed in vesicles with the zwitterionic lipid DOPC. The 

results of thioflavin-T experiments are displayed. (A) The effect of increasing the mole 

percent of POPS and (B) The effect of increasing the mole percent of DOPG. Data is plotted 

for anionic lipid concentrations of 50 mole percent (dark cyan); 25 mole percent (pink); 15 

mole percent (cyan); 10 mole percent (blue); 5 mole percent (green); 2 mole percent (red); 

and 0 mole percent (black). (C) A plot of T50 vs the mole percent of anionic lipid: red, 
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POPS; blue, DOPG. Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 

7.4 at 25 °C with 400 µM lipid and 20 µM hIAPP.
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Figure 3. Cholesterol containing vesicles are less effective at promoting hIAPP amyloid 
formation
(A) Thioflavin-T assays for samples containing 10 mole percent POPS and different 

fractions of POPC and cholesterol are shown. Black, 10 mole percent POPS, 90 mole 

percent POPC; red, 10 mole percent POPS, 70 mole percent POPC, 20 mole percent 

cholesterol; blue, 10 mole percent POPS, 50 mole percent POPC, 40 mole percent 

cholesterol. (B) A comparison of the effects of 0, 20 and 40 mole percent of cholesterol on 

value of T50 using vesicles containing POPS and POPC as a function of POPS composition. 
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Solid circles, no cholesterol; open triangles, 20 mole percent cholesterol; open squares, 40 

mole percent cholesterol. Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, 

pH 7.4 buffer at 25 °C with 400 µM lipid and 20 µM hIAPP.
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Figure 4. Analysis of the effect of POPS and DOPG on membrane leakage
The percentage change in 5(6)-carboxyfluorescein fluorescence is plotted vs the mole 

percent of anionic lipid. Leakage induced after 10 minutes (solid circles) and 40 hours (open 

triangles) of incubation with hIAPP is shown for vesicles that contain (A) DOPC and POPS 

and (B) DOPC and DOPG. Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, 

pH 7.4 at 25 °C, 400 µM lipid, 20 µM hIAPP. hIAPP was added at time zero.
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Figure 5. Comparison of the effect of DOPC and POPC on membrane leakage
The percentage change in 5(6)-carboxyfluorescein fluorescence is plotted vs the mole 

percent of POPS for vesicles that contain: solid circles, POPS and POPC; open triangles, 

POPS and DOPC. (A) Leakage induced after 10 minutes of incubation with hIAPP. (B) 
Leakage induced after 40 hours of incubation with hIAPP. Experiments were conducted in 

20 mM Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C, 400 µM lipid, 20 µM hIAPP. hIAPP was 

added at time zero.
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Figure 6. Analysis of the effect of cholesterol on membrane leakage
The percentage change in 5(6)-carboxyfluorescein fluorescence is plotted vs the mole 

percent of POPS. The effects of 0, 20 and 40 mole percent cholesterol on vesicles that 

contain POPS and POPC are compared. Solid circles, no added cholesterol; open triangles, 

20 mole percent cholesterol; open squares, 40 mole percent cholesterol. (A) Leakage 

induced after 10 minutes of incubation with hIAPP. (B) Leakage induced after 120 hours of 

incubation with hIAPP. Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 

7.4 at 25 °C, 400 µM lipid, 20 µM hIAPP. hIAPP was added at time zero.
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Figure 7. Membrane leakage of 5(6)-carboxyfluorescein (defined as percentage fluorescence 
change) and of different sizes of FITC-dextrans
The results of membrane leakage assays for 5(6)-carboxyfluorescein (black) and four FITC-

dextrans of different sizes (red: 4100 Da; blue: 9400 Da; pink: 65600 Da; green: 154900 Da) 

are shown for: (A) 100 mole percent POPC (B) 75 mole percent POPC, 25 mole percent 

POPS and (C) 80 mole percent POPC, 20 mole percent cholesterol after incubation with 

hIAPP for 10 minutes, 1 hour and 80 hours. Experiments were conducted in 20 mM 

Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C with 400 µM lipid and 20 µM hIAPP.

Zhang et al. Page 32

Biochemistry. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Correlation between the extent of leakage and the value of T50
The percentage change in 5(6)-carboxyfluorescein fluorescence after (A) 10 minutes and (B) 
when amyloid formation is complete is plotted vs the value of T50 for all systems tested. 

Black: POPS(0–25 mole percent) + POPC; red: cholesterol(20 mole percent) + POPS(0–25 

mole percent) + POPC; blue: cholesterol(40 mole percent) + POPS(0–25 mole percent) + 

POPC; green: DOPG(0–25 mole percent) + DOPC; pink: POPS(0–25 mole percent) + 

DOPC; cyan: 30 mole percent brain sphingomyelin + 60 mole percent POPC + 10 mole 

percent POPS; 50 mole percent brain sphingomyelin + 50 mole percent POPC; 30 mole 
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percent brain sphingomyelin + 30 mole percent POPC + 40 mole percent cholesterol. 

Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C with 400 

µM lipid and 20 µM hIAPP.
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Table 1

Summary of the values of T50 for amyloid formation, the percentage 5(6)-carboxyfluorescein fluorescence 

change observed after 10 minutes of incubation with hIAPP and the percentage 5(6)-carboxyfluorescein 

fluorescence change observed after samples were incubated long enough to reach the saturation phase of 

amyloid formation.

Composition of Membrane T50 (hrs)
Percentage Fluorescence

Change after 10min
Final Percentage

Fluorescence Change

no membrane 41.8

100% DOPC 30.1 21.1 40.1

2% DOPG + 98% DOPC 27.5 35.5 53.6

5% DOPG + 95% DOPC 17.8 36.4 59.3

10% DOPG + 90% DOPC 16.9 40.2 62.1

15% DOPG + 90% DOPC 11.5 ND ND

25% DOPG + 75% DOPC 7.2 43.1 75.2

50% DOPG + 50% DOPC 2.4 58.0 91.0

2% POPS + 98% DOPC 26.7 35.9 50.7

5% POPS + 95% DOPC 20.2 39.1 54.5

10% POPS + 90% DOPC 12.2 42.0 59.0

15% POPS + 85% DOPC 5.0 ND ND

25% POPS + 75% DOPC 2.8 44.0 69.0

50% POPS + 50% DOPC 0.9 48.0 82.0

100% POPC 29.0 10.4 24.7

2% POPS + 98% POPC 25.7 13.9 29.0

5% POPS + 95% POPC 15.1 14.5 32.0

10% POPS + 90% POPC 10.6 23.7 44.0

25% POPS + 75% POPC 8.2 33.7 56.0

80% POPC + 20% Chol 42.6 5.0 19.0

2% POPS + 78% POPC + 20% Chol 36.1 7.3 21.8

5% POPS + 75% POPC + 20% Chol 32.0 9.3 25.0

10% POPS + 70% POPC + 20% Chol 27.3 9.4 28.2

25% POPS + 55% POPC + 20% Chol 8.2 30.0 52.2

60% POPC + 40% Chol 75.0 0.8 5.6

2% POPS + 58% POPC + 40% Chol 65.8 0.8 6.2

5% POPS + 55% POPC + 40% Chol 59.1 0.8 12.0

10% POPS + 50% POPC + 40% Chol 38.5 1.0 22.1

25% POPS + 35% POPC + 40% Chol 8.3 3.3 37.5

30% BrSM + 30% POPC + 40% Chol 82.0 1.7 2.6

30% BrSM + 30% POPC + 40% Chol + 0.5% POPS 76.2 0.3 1.9

30% BrSM + 60% POPC + 10% POPS 14.0 25.6 39.2

50% BrSM + 50% POPC 32.0 4.9 12.4

50% EggSM + 50% POPC 38.0 4.1 15.0

Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C, 400 µM lipid, 20 µM hIAPP. BrSM = Brain sphingomyelin; 
EggSM = egg sphingomyelin; Chol = cholesterol; ND = not determined.
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Table 2

Summary of the values of T50 for amyloid formation for different buffers.

Composition of Membrane T50(hrs) Buffer

25% POPS + 75% POPC 1.5 20 mM Tris, no salt

25% POPS + 75% POPC 8.1 20 mM Tris, 100 mM NaCl

25% POPS + 75% POPC 4.0 20 mM phosphate, no salt

25% POPS + 75% POPC 6.5 20 mM phosphate, 100 mM NaCl

25% POPS + 75% POPC 1.4 10 mM phosphate, no salt

Experiments were conducted at 25 °C, with 400 µM lipid containing 25 mole percent POPS and 75 mole percent POPC, 20 µM hIAPP.
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