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ABSTRACT OF THE DISSERTATION

Structure and Randomness in Complexity Theory and Additive Combinatorics

by

Seyed Kaave Hosseini

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Shachar Lovett, Chair

This dissertation involves the interplay between structure, randomness, and pseudoran-

domness in theoretical computer science and additive combinatorics. Such interplay in particular

materializes when one is extracting algebraic structure in scenarios where only weak combinatorial

information is available. We develop new tools to address some problems of this type where the

objects are sumsets and its bilinear generalizations, set of large Fourier spectra, and protocols in

communication complexity. Later we move on to constructions of objects with certain pseudo-

random properties. We construct a highly irregular set showing the limits of regularity lemma in

the algebraic setting which is a major tool in pseudorandomness. Moreover, we introduce a new

framework to construct pseudorandom generators and give some applications.
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Chapter 1

Overview

The contribution of this dissertation is two-fold. The first part involves some problems in

additive combinatorics and computer science that have to do with extracting algebraic structure

in situations where only weak structural information is available. The second part is about

pseudorandomness and explicit constructions in computer science and combinatorics. In the

following, we give a summary of the contributions of this dissertation .

First we discuss the problems that involve extracting algebraic structure. A fundamental

result in additive combinatorics is Bogolyubov-Ruzsa lemma. In particular the quantitative bounds

obtained by Sanders, plays a central role in obtaining effective bounds for the inverse U3 theorem

for the Gowers norms. Recently, Gowers and Milićević [GM17b] applied a bilinear Bogolyubov-

Ruzsa lemma as part of a proof of the inverse U4 theorem with effective bounds. Here we obtain

quantitative bounds for the bilinear Bogolyubov-Ruzsa lemma which are similar to those obtained

by Sanders for the Bogolyubov-Ruzsa lemma. We show that if a set A⊂ Fn×Fn has density α ,

then after a constant number of horizontal and vertical sums, the set A would contain a bilinear

structure of co-dimension r = logO(1)
α−1. This improves the results of Gowers and Milićević

[GM17a] which obtained similar results with a weaker bound of r = exp(exp(logO(1)
α−1)) and by

Bienvenu and Lê [BL17] which obtained r = exp(exp(exp(logO(1)
α−1))). This work is published

in [HL19].
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Another instance of extracting algebraic structure which has close connections to sumsets

is in the study of communication protocols for XOR functions. Let f be a boolean function on

n variables. Its associated XOR function is the two-party function f⊕(x,y) = f (x⊕ y). We show

that, up to polynomial factors, the deterministic communication complexity of f⊕ is equal to the

parity decision tree complexity of f . we develop a variation of the energy increment technique to

study protocols for XOR functions. Most of previous techniques in communication complexity are

local in the sense that they work by isolating one combinatorial rectangle. Here we combine tools

such as Bogolyubov-Ruzsa theorem with a novel entropy decrements method to study the global

structure of the protocols. This work is published in [HHL18].

The final contribution in extracting structure involves study of combinatorial structure

of the set of large Fourier coefficients of subsets of abelian groups. Let G be a finite abelian

group and A a subset of G. The spectrum of A is the set of its large Fourier coefficients. Known

combinatorial results on the structure of spectrum, such as Chang’s theorem, become trivial in the

regime |A|= |G|α whenever α ≤ c, where c≥ 1/2 is some absolute constant. On the other hand,

there are statistical results, which apply only to a noticeable fraction of the elements, which give

nontrivial bounds even to much smaller sets. One such theorem (due to Bourgain) goes as follows.

For a noticeable fraction of pairs γ1,γ2 in the spectrum, γ1 + γ2 belongs to the spectrum of the same

set with a smaller threshold. Here we show that this result can be made combinatorial by restricting

to a large subset. That is, we show that for any set A there exists a large subset A′, such that the

sumset of the spectrum of A′ has bounded size. Our results apply to sets of size |A|= |G|α for any

constant α > 0, and even in some sub-constant regime. Proving this result also involves advancing

the energy increment method. Here we deal with a process involving two energy functions where

we want to increase both, but increasing one might result in decreasing the other. We developed

some delicate analysis to show that the process needs to stop after a few iterations. This work is

published [HL17].

The second part of the dissertation involves two problems related to pseudorandomness. The

first one is about regularity lemma in the algebraic setting which is a fundamental tool. Arithmetic
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regularity lemma due to Green [Gre05b] is an analog of Szemerédi’s regularity lemma. Similar to

Gowers’ tower type lower bound for Szemerédi’s regularity lemma, Green proved a lower bound of

tower of 2’s of height log1/ε for arithmetic regularity lemma [Gre05b]. We show a lower bound

of tower of 2’s of height 1/
√

ε ; So it’s similar to Szemerédi’s regularity lemma in this sense. This

work is published in [HLMS16].

Finally, we consider explicit construction of pseudorandom generators. We propose a

new framework for constructing pseudorandom generators for n-variate Boolean functions. It is

based on two new notions. First, we introduce fractional pseudorandom generators, which are

pseudorandom distributions taking values in [−1,1]n. Next, we use a fractional pseudorandom

generator as steps of a random walk in [−1,1]n that converges to {−1,1}n. We prove that this

random walk converges fast (in time logarithmic in n) due to polarization. As an application, we

construct pseudorandom generators for Boolean functions with bounded Fourier tails. We use

this to obtain a pseudorandom generator for functions with sensitivity s, whose seed length is

polynomial in s. Other examples include functions computed by branching programs of various

sorts or by bounded depth circuits. This work is published in [CHHL18].

1.1 Organization

This dissertation is organized as follows. First in Chapter 2 we provide the necessary

background and motivation, and introduce the results of the dissertation. The actual proofs are

deferred to chapters 3-7.
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Chapter 2

Background and Introduction

In this chapter we provide the necessary background, history, and motivation. Almost

all the results of this dissertation have to do with Fourier analysis over finite abelian groups and

therefore, before proceeding to the main results, we give a brief introduction to Fourier analysis in

section 2.1.

2.1 Basics of Fourier Analysis

Most of the results of this dissertation is concerened with the groups Fn
2 or more generally

Fn
q, the n-dimensional vector space over the finite field Fq. However, in some chapters such as

chapter 5 we discuss all abelian groups and so we discuss Fourier analysis over all abelian groups

in this section.

Let G be a finite abelian group and let L2(G) be the inner product space of all complex-

valued functions f : G→ C where the inner product of f , f ′ : G→ C is defined by

〈 f , f ′〉= E
x∈G

f (x) f ′(x)

where f ′(x) is the complex-conjugate of f ′(x). A linear character γ : G→ C× of G is a multi-

plicative homomorphism to the group C×. The dual group of G, denoted by Ĝ, is the group of all

4



linear characters of G. The group Ĝ has the group structure introduced by (γ1+γ2)(x) = γ1(x)γ2(x)

and is isomorphic to G. Moreover, it is easy to see that Ĝ forms an orthonormal basis for L2(G).

Therefore given any function f : G→ C, we can write f in its Fourier basis as

f (x) = ∑
γ∈Ĝ

〈 f ,γ〉γ(x).

Denote the Fourier coefficient 〈 f ,γ〉 by f̂ (γ) and so we have

f (x) = ∑
γ∈Ĝ

f̂ (γ)γ(x).

In the special case of f : Fn
2→ R, we can simplify the notation to

f̂ (γ) = E
x∈Fn

2

f (x)(−1)〈x,γ〉

where 〈x,γ〉 is computing the inner product over Fn
2. The function f̂ : Ĝ→C defined by γ 7→ 〈 f ,γ〉

is called the Fourier transform of f . We endow the functions in the physical space with uniform

measure, and functions in the Fourier space with counting measure. That is, given f : G→ C and

p > 0, let

‖ f‖p =

(
E

x∈G
| f (x)|p

) 1
p

.

Moreover for g : Ĝ→ C,

‖g‖p =

∑
γ∈Ĝ

|g(γ)|p
 1

p

.

The inner product is also defined for g,g′ : Ĝ→ C by

〈g,g′〉= ∑
x∈G

f (x) f ′(x).
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Given this , one can check the Plancherel identity,

〈 f , f ′〉= 〈 f̂ , f̂ ′〉

for given f , f ′ : G→ C. In the special case where f = f ′, this is called Parseval’s identity which

can be restated as

‖ f‖2 = ‖ f̂‖2.

Convolution A particularly useful operation especially when working with sumsets is

convolution. The convolution of f and f ′ is a function denoted by f ∗ f ′ : G→ C and is defined by

f ∗ f ′(x) = E
y∈G

f (x− y) f ′(y).

One can check that Fourier transform turns convolution into multiplication, namely f̂ ∗ f ′ = f̂ · f̂ ′.

Convolution has a particularly useful meaning when one is dealing with sumsets. Suppose we have

a subset A⊂ G. In this case we make a small abuse of notation and show the indicator function of

A by A instead of 1A. Note that, A∗A(x) equals (up to a normalization factor of |G|) the number

of ways one can write x as the sum a+ a′ = x for a,a′ ∈ A. Particularly, we obtain an analytic

description of the combinatorial notion of sumset. Let A+A = {a+a′ : a,a′ ∈ A}. Then we have

A+A = {x : A∗A(x)> 0}.

Convolution of sets also may be interpreted as measure of relative density. Suppose we have two

sets A,B⊂ G and define the function ϕB = |G|
|B|1B. Then for every x we have

|A∩ (B+ x)|
|B|

= A∗ϕB(x).

We finally introduce a useful fact, which is uncertainty principle.

Lemma 2.1.1 (Uncertainty principle). For any function f : G→ C that is not the constant zero
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function, we have

|supp( f )| · |supp̂( f )| ≥ |G|.

Proof. Using Parseval’s identity,

‖ f‖2
2 = ‖ f̂‖2

2 ≤ sup
γ∈Ĝ

(| f̂ (γ)|) · ∑
γ∈Ĝ

| f̂ (γ)|= E
x∈G
| f (x)| · ∑

γ∈Ĝ

| f̂ (γ)|.

Moreover, using Cauchy-Schwartz we have that Ex∈G | f (x)| ≤
√
|supp( f )|
|G| · ‖ f‖2 and ∑

γ∈Ĝ | f̂ (γ)| ≤√
supp( f̂ ) · ‖ f̂‖2. This finishes the proof.

2.2 Approximate Structure

The first part of the dissertation is related to approximate algebraic structure which is a

fundamental part of theoretical computer science. Understanding notions of approximate linear

maps, groups, polynomials, and so on have deep applications in a wide range of areas. In particular,

it is quite useful to be able to extract algebraic information from a given object, where only some

weak combinatorial information has been provided. This will open the way to being able to choose

from a wide variety of algebraic tools to say develop algorithms, or prove lower bounds for the

given object. It turns out, that the notion of sumsets in additive combinatorics provides a flexible

enough theory to deal with a diverse variety of objects such as approximate groups, linear and

multilinear maps, polynomials, communication protocols, linear sketching, and so on. Here we

start with the basics of sumsets and its applications. Later on, we consider a generalization of

the notion of sumset that has recently played a crucial role in obtaining quantitative bounds for

inverse U4 theorem for Gowers’ norm. Then we move on to communication complexity and the

applications of structure theory of sumsets in communication complexity of XOR functions. Finally

we study the sumset of the set of large Fourier coefficients of sparse sets.
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2.2.1 Standard theory of sumsets

We start with introducing the notion of approximate subgroup. Suppose we have an abelian

group G, and A is a subset of G. On one hand, if A was a subgroup, then we would know that

by definition ∀x,y ∈ A, x+ y ∈ A. However, typically we are dealing with a subset A that doesn’t

satisfy the rigid structure of a subgroup, and only satisfies it approximately, and yet we would

like to extract some algebraic conclusion about A. There are two ways to formalize the notion of

approximate subgroup which both turn out to be equivalent up to polynomial factors. The first

involves the notion of additive energy and is more statistical and weaker compared to the second

definition which involves the notion of doubling and is more combinatorial. We start with additive

energy.

Definition 2.2.1. Let A⊂ G. Then the additive energy of A is defined by

E(A) = |{(a,b,c,d) : a−b = c−d,a,b,c,d ∈ A}|.

Observe that if A is a coset of a subgroup of G, then E(A) = |A|3. The second important

definition is that of doubling constant. First define the sumset

A+A = a+a′ : a,a′ ∈ A.

The doubling constant of A is defined by |A+A|
|A| . Moreover, note that if A has doubling constant

K, then its additive energy E(A)≥ Ω(K−1)|A|3. The following result initially due to Balog and

Szemerédi [BS94] and with polynomial bounds obtained by Gowers [Gow01] establishes an

equivalence between the two. The strongest bound is due to Schoen [Sch15] which we state in the

following without proof.

Theorem 2.2.2 (BSG theorem[Sch15]). Let α ∈ (0,1) and A be a subset of an abelian group such

8



that E(A) = α|A|3 . Then there exists A′ ⊂ A with |A′| ≥ α|A| so that

|A′−A′| ≤ α
−4|A′|

Given the BSG theorem, we can focus on the study of the structure of sets with bounded

doubling. Let K be a constant and H ≤ G be a subgroup. Observe that if A is a subset of H

with |A| ≥ K−1|H| then we would have |A+A| ≤ K|A|. A natural question if we can have an

inverse to this. Suppose that we have a arbitrary subset A⊂ G satisfying |A+A|
|A| ≤ K. The so called

inverse theorems are formulating that in this case A should have a structure close to a subgroup

or some other nice sets such as Arithmetic progressions over the integers. Exactly formalizing

such a statement depends on the ambient group G, so here for the sake of simplicity we assume

that the ambient group is G = Fn
p, the n-dimensional vector space over Fp. Observe that in Fn

p the

subgroups are the subspaces. The first way to formalize an inverse theorem is to show that the

given set A is trapped inside a subspace whose size is not much larger than the size of A itself.

This type of result was originally formulated and proved by Freiman [Fre73, Fre87] in the case of

integers, (the ambient group being Z). It was later generalized and improved in a long sequence of

work [Ruz99, Kon08, Sch11, EZ12, EZL14]. We state the result in Fn
2 due to [EZ12].

Theorem 2.2.3 (Freiman’s theorem over Fn
2 [EZ12]). Suppose A⊂ Fn

2 and |A+A| ≤ K|A|. Then

|〈A〉|
|A|
≤ 2K1+o(1)

.

One drawback of this result is that the bound on |〈A〉||A| is exponential on K and this is

inevitable. An example showing this is taking A to be a union of a subspace of size K, and K

independent vectors. However, in this example, a big portion of the set A namely the subspace part,

does not expand, and therefore one may hope that similar thing happens in general. We would

like to show that a big portion of the set A is trapped inside a subspace. In this direction, the first

breakthrough bound was obtained by Schoen [Sch11] via Fourier analysis. Then Sanders [San12a]

employed a fundamentally new tool due to Croot and Sisask [CS10] and obtained the following.
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Theorem 2.2.4 (Quasi-polynomial Freiman-Ruzsa theorem [San12a]). Suppose A⊂ Fn
2 and also

|A+A| ≤ K|A|. Then there is a subset A′ ⊂ A with |A′| ≥ L−1|A| so that

|〈A′〉|
|A′|

≤ L

where L = 2O(log4 K).

Moreover, using a bootstrapping argument due to Konyagin, Sanders [San12b] improved

the bound log4 K to log3+o(1)K. The famous polynomial Freiman-Ruzsa Conjecture speculates

whether one can make the dependence on K to be a polynomial.

Conjecture 2.2.5 (Polynomial Freiman-Ruzsa conjecture). Suppose A⊂ Fn
2 and |A+A| ≤ K|A|.

Then there is a subset A′ ⊂ A with |A′| ≥ L−1|A| so that

|〈A′〉|
|A′|

≤ L

where L = KO(1).

It’s known that one can not take the bound better than L = K1.4 [GT09]. There is yet

another family of results called Bogolyubov-Ruzsa type theorems that only deal with sets that have

constant density but give a strong conclusion regarding structure of kA for k = O(1). Sanders in

fact proved the following result which by a standard method essentially due to Ruzsa implies the

previously mentioned Theorem 2.2.4.

Theorem 2.2.6 (Bogolyubov-Ruzsa lemma [San12a]). Suppose A⊂ Fn
p and |A| ≥ K−1|Fn

p|. Then

there is a subspace V of co-dimension O(log4 K) with V ⊂ 4A.

It turns out that inverse theorems on the structure of sumsets can be used to study other

approximate algebraic structures such as approximate linear maps and polynomials. In particular,

one can directly prove an inverse theorem for linear maps with very good bounds. We don’t discuss

such inverse theorem here, although we will state and use it in section 3.1. On the other hand,
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inverse theorems for approximate degree-d polynomials is more technical and is the subject matter

of the so called area of Higher order Fourier analysis, which was pioneered by Gowers [Gow98].

In general there are no good bounds for polynomials with degree more than 3. Nevertheless, it

turns out that the inverse theorems for sumsets play a crucial role here as well. We discuss this in

the next section.

2.2.2 Higher order theory of sumsets

One of the key ingredients in the proof of quantitative inverse theorem for Gowers U3 norm

over finite fields, due to Green and Tao [GT08] and Samorodnitsky [Sam07], is an inverse theorem

on the structure of sumsets. More concretely, the tool that gives the best bounds is the improved

Bogolyubov-Ruzsa lemma which we recall in the following.

Theorem 2.2.6 (Bogolyubov-Ruzsa lemma [San12a]). Suppose A⊂ Fn
p and |A| ≥ K−1|Fn

p|. Then

there is a subspace V of co-dimension O(log4 K) with V ⊂ 4A.

In fact the link between the inverse U3 theorem and inverse sumset theorems is deeper. It

was shown in [GT10, Lov12] that an inverse U3 conjecture with polynomial bounds is equivalent

to the polynomial Freiman-Ruzsa conjecture, one of the central open problems in additive combi-

natorics. Given this, one can not help but wonder whether there is a more general inverse sumset

phenomena that would naturally correspond to quantitative inverse theorems for Uk norms. In a

recent breakthrough, Gowers and Milićević [GM17b] showed that this is indeed the case, at least

for the U4 norm. They used a bilinear generalization of Theorem 2.2.6 to obtain a quantitative

inverse U4 theorem.

To be able to explain this result we need to introduce some notation. Let A ⊂ Fn×Fn.

Define two operators, capturing subtraction on horizontal and vertical fibers as follows:

φh(A) := {(x1− x2,y) : (x1,y),(x2,y) ∈ A},

φv(A) := {(x,y1− y2) : (x,y1),(x,y2) ∈ A}.
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Given a word w ∈ {h,v}k define φw = φw1 ◦ . . .◦φwk to be their composition. A bilinear variety

B⊂ Fn×Fn of co-dimension r = r1 + r2 + r3 is a set defined as follows:

B = {(x,y) ∈V ×W : b1(x,y) = . . .= br3(x,y) = 0},

where V,W ⊂ Fn are subspaces of co-dimension r1,r2, respectively, and b1, . . . ,br3 : Fn×Fn→ F

are bilinear forms.

Gowers and Milićević [GM17a] and independently Bienvenu and Lê [BL17] proved the

following, although [BL17] obtained a weaker bound of r = exp(exp(exp(logO(1)
α−1))).

Theorem 2.2.7 ([GM17a]). Let A⊂ Fn×Fn be of density α and let w = hhvvhh. Then there exists

a bilinear variety B⊂ φw(A) of co-dimension r = exp(exp(logO(1)
α−1)).

To be fair, it was not Theorem 2.2.7 directly but a more analytic variant of it that was used

(combined with many other ideas) to prove the inverse U4 theorem in [GM17b]. However, we will

not discuss that analytical variant here.

Here we improve the bound in Theorem 2.2.7 to r = logO(1)
α−1. Our proof is arguably

simpler and is obtained only by invoking Theorem 2.2.6 a few times, without doing any extra

Fourier analysis. The motivation behind this work — other than obtaining the right form of bound

— is to employ this result in a more algebraic framework to obtain a modular and simpler proof of

an inverse U4 theorem.

One more remark before explaining the result is that Theorem 2.2.7 generalizes Theo-

rem 2.2.6 because given a set A ⊂ Fn, one can apply Theorem 2.2.7 to the set A′ = Fn×A and

find {x}×V ⊂ φw(A′) where x is arbitrary, and V a subspace of co-dimension 3r. This implies

V ⊂ 2A−2A.

Theorem 2.2.8. Let A ⊂ Fn×Fn be of density α and let w = hvvhvvvhh. Then there exists a

bilinear variety B⊂ φw(A) of co-dimension r = O(log80
α−1).

Note that the choice of the word w in Theorem 2.2.8 is w = hvvhvvvhh which is slightly

longer than in Theorem 2.2.7 being hhvvhh. However, for applications this usually does not matter
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and any constant length w would do the job. In fact allowing w to be longer is what enables us to

obtain a result with a stronger bound.

A robust analog of Theorem 2.2.8

Going back to the theorem of Sanders, there is a more powerful variant of Theorem 2.2.6

which guarantees that V enjoys a stronger property rather than just being a subset of 2A−2A. The

stronger property is that every element y ∈V can be written in many ways as y = a1 +a2−a3−a4,

with a1,a2,a3,a4 ∈ A. This stronger property of V has a number of applications such as obtaining

upper bounds for Roth theorem in four variables. We refer the reader to [SS16] where Theorem 3.2

is similarly obtained from Theorem 2.2.6 and also for the noted application.

Theorem 2.2.9 ([San12a, SS16]). Let A⊂Fn be a subset of density α . Then there exists a subspace

V ⊂ 2A− 2A of co-dimension O(log4
α−1) such that the following holds. Every y ∈ V can be

expressed as y = a1 +a2−a3−a4 with a1,a2,a3,a4 ∈ A in at least αO(1)|F|3n many ways.

In Theorem 2.2.10 we also state a statistical analog of Theorem 2.2.9 by slightly modifying

the proof of Theorem 2.2.8. To explain it, we need just a bit more notation.

Fix an arbitrary (x,y) ∈ Fn×Fn, and note that (x,y) can be written as (x,y) = φh((x+

x1,y),(x1,y)) for any x1 ∈ Fn. Moreover, for any fixed x1, each of the points (x+ x1,y),(x1,y) can

be written as (x+x1,y) = φv((x+x1,y+y1),(x+x1,y1)) and (x1,y) = φv((x1,y+y2),(x1,y2)) for

arbitrary y1,y2 ∈ Fn. So over all, the point (x,y) can be written using the operation φvh in exactly

|Fn|3 many ways, namely, the total number of two-dimensional parallelograms (x+x1,y+y1),(x+

x1,y1),(x1,y+ y2),(x1,y2) where (x,y) is fixed. We can continue this and consider an arbitrary

word w ∈ {h,v}k. Then (x,y) can be written using the operation φw in exactly |Fn|2k−1 many ways.

Now, we have a set A⊂ Fn×Fn and fix a word w ∈ {h,v}k. Define φ ε
w(A) to be the set of

all elements (x,y) ∈ Fn×Fn that can be obtained in at least ε|Fn|2k−1 many ways by applying the

operation φw(A).

The following is an extension of Theorem 2.2.8 similar in spirit to Theorem 2.2.9.
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Theorem 2.2.10. Let A⊂Fn×Fn be of density α and w= hvvhvvvhh and ε = exp(−O(log20
α−1)).

Then there exists a bilinear variety B⊂ φ ε
w(A) of co-dimension r = O(log80

α−1).

As a final comment, we remark that if one keeps track of dependence on the field size in

the proofs, then the bound in Theorem 2.2.8 and Theorem 2.2.10 is r = O(log80
α−1 · logO(1) |F|).

We prove theorems theorem 2.2.8 and theorem 2.2.10 in sections section 3.1 and section 3.2

respectively.

2.2.3 Communication Complexity of XOR functions

Basics of Communication Complexity Communication complexity is a surprisingly

flexible theory to prove lower bounds in various uniform and non-uniform models of computation.

In fact, communication complexity is used in contexts where there is no explicit computation

happening at all, and one is working with a static mathematical structure such as a polytope.

Communication complexity, originally introduced by Yao [Yao79] is defined as follows. Informally

communication complexity captures or at least lower bounds the amount of information that has

to be moved around inside a computation model to do a certain computation. The most basic

definition is as follows. Say we have a function F : {0,1}n×{0,1}n→{0,1}. We have two parties

Alice and Bob where Alice has input x ∈ {0,1}n, and Bob has input y ∈ {0,1}n, and they would

like to jointly compute F(x,y), by sending bits to each other. We assume that each party has full

computational power as we are only concerned with the amount of communication between Alice

and Bob. After fixing the function F , the parties can agree on a communication protocol so that

they can jointly compute F(x,y) for any input (x,y). The most trivial protocol is to have Alice

send her entire input x to Bob and let Bob compute the function F(x,y). However, the question is

whether they can do better if the function F is not too complicated.

One may think of the function F , as a matrix, with the rows corresponding to inputs

x ∈ {0,1}n, and the columns corresponding to the inputs y ∈ {0,1}n. A protocol Π corresponds

to a specific type of binary tree for F as follows. For simplicity suppose that the protocol has the

property that Alice and Bob every time send one bit and they alternate speaking. So Alice sends a
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bit at odd time steps and Bob sends a bit a even time steps. Alice and Bob start at the root of the

tree, and Alice (depending her input x) sends a bit to Bob and they both go to the corresponding

child of the root. Then Bob sends a bit to Alice and they both go the corresponding node. At the

end, the reached leaf is labeled with 0,1 which should be the output f (x,y). Every leaf corresponds

to a monochromatic combinatorial rectangle of the matrix F , namely an all-0 or all-1 submatrix of

the form A×B where A,B are subsets of rows and columns respectively. After fixing a protocol Π,

the cost of the protocol Π is the total number of the bits communicated between Alice and Bob

in order to computer F(x,y), maximized over x,y. The communication complexity of F denoted

by D(F) here, is the minimum cost of a deterministic protocol computing F . Note that D(F) is

always between 0 and n, since there is always the trivial protocol of Alice sending all of her input

x ∈ {0,1}n to Bob.

There are several natural questions one may ask about communication complexity.

1. Which functions have bounded communication complexity?

2. Is there a fast algorithm that computes an optimal or close to optimal protocol for a given

function F?

3. What does such an optimal protocol look like? Can we obtain a rough classification of

structure of protocols?

All of these questions are wide open. A fundamental conjecture in the area is called Log-rank

conjecture and is related to these questions. The Log-rank conjecture originally formulated by

Lovasz and Saks [LS93], asks whether deterministic communication complexity of a matrix is

roughly equivalent to logarithm of its rank over the real numbers. As a first observation, notice

that if a matrix has communication complexity k, then it decomposes the matrix into at most 2k

monochromatic combinatorial rectangles and since each such monochromatic rectangle is a rank 1

matrix, then the rank of the given matrix is at most 2k. The log-rank conjecture is that the reverse

of this roughly holds.
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Conjecture 2.2.11 (Log-rank conjecture [LS93]). Is it true that for every boolean function F :

X×Y →{0,1},

D(F)≤ polylog(rank(F))

where D(·) is the deterministic communication complexity and rank(·) is matrix rank over the

reals.

Despite a great deal of effort, this conjecture is still wide open. The best known bound in

this direction is the following due to Lovett [Lov14b].

Theorem 2.2.12 ( [Lov14b]). For every boolean function F : {0,1}n×{0,1}n→{0,1},

D(F)≤ O(
√

rank(F) logrank(F))

The purpose here is to make progress towards these questions by restricting to a class of

matrices that have an algebraic structure. To do so, we identify {0,1}n with the vector space Fn
2 .

Moreover suppose we have a function f : Fn
2→ 0,1. We may define the matrix

f⊕(x,y) = f (x+ y)

where + is the addition operation of Fn
2. Note that one may more generally, consider more

general abelian groups instead of Fn
2, however, here we are more concerned with the group Fn

2 to

simplify notation. This class of matrices is called XOR functions in the literature. The class of

XOR functions has been studied in recent years, see [MO09, ZS10, TWXZ13, Zha14, STlV17].

This class of functions is sufficiently large to capture many interesting examples (e.g., equality

and Hamming distance functions), but it is also especially attractive for it allows use of tools

from discrete Fourier analysis. This is because the eigenvalues of f⊕ as a matrix are the same

as the Fourier coefficients of f ; therefore, the rank of f⊕ is equal to the Fourier sparsity of f ,

which is the number of non-zero Fourier coefficients of f . Moreover, if A×B ⊆ Fn
2×Fn

2 is a

monochromatic rectangle in f⊕, then f is constant on all of A+B, where the sum-set A+B is
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defined as {a+b : a ∈ A,b ∈ B}. This directly links communication complexity of XOR functions

to the structure of sum-sets in additive combinatorics. We will discuss this relation in more detail

later.

Going back to the log-rank conjecture for XOR functions, an interesting approach to settle

the conjecture is via another complexity measure, called the parity decision tree complexity (PDT

in short), denoted pdt(·). A parity decision tree for a boolean function f is an extension of the usual

notion of decision trees. While in a regular decision tree, intermediate nodes query variables, in a

parity decision tree they are allowed to query an arbitrary linear function of the inputs. A depth-k

parity decision tree for a boolean function f can be used to construct a 2k-bit communication

protocol for f⊕(x,y). Indeed for every linear function L, since L(x⊕ y) = L(x)⊕L(y), Alice and

Bob need to exchange only 2 bits to evaluate L(x⊕ y). Hence they can simulate the PDT by

exchanging only 2k bits, and thus D( f⊕)≤ 2 ·pdt( f ).

In the opposite direction, since Fourier characters are exponentials of linear functions and

f has Fourier sparsity at most 2D( f⊕), we have pdt( f ) ≤ 2D( f⊕). Our main interest in this work

is whether this direction can be made efficient. Namely, is is true that an efficient deterministic

protocol for an XOR function implies a polynomial-depth parity decision tree for the corresponding

boolean function. Our main result is a polynomial relation between the two.

Theorem 2.2.13 ([HHL16]). For any f : Fn
2→{0,1} we have pdt( f )≤ O(D( f⊕)6).

This theorem can be put into a broader context as follows. Consider a function f :

{0,1}m → {0,1} and a function g : {0,1}k × {0,1}k → {0,1} (called a gadget). Then one

can define the composed function f ◦ gm : {0,1}km × {0,1}km → {0,1} where f ◦ gm(x,y) =

f (g(x1,y1), · · · ,g(xm,ym)), where x = (x1, · · · ,xm) ∈ ({0,1}k)m and similarly for y. There exists

several results in the literature that relate query complexity of f to communication complexity of

f ◦gm when a gadget g (such as the inner product function) is chosen with k≈ logm. This line was

initiated by Raz and McKenzie in [RM97]; for example, see also [GPW15, WYY17, GPW17]. In

this paper however, the gadget g is ⊕ which depends on two bits.
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Open problems There are two natural open problems which stem directly from our work.

The first is whether our result can be extended to randomized protocols vs randomized parity

decision trees. This will be discussed in the next paragraph. The second question asks about

what happens if we replace XOR with other gadgets. Sherstov [She11] showed that for many

gadgets, including some natural 2-bit gadgets, efficient protocols imply low-degree approximating

polynomials, which by the work of Nisan and Szegedy [NS94] imply efficient (standard) decision

trees. This however does not hold for 1-bit gadgets. Except for XOR functions, the other class

of gadgets that can be considered are AND gadgets (any other 1-bit gadget is either trivial or

equivalent to either XOR or AND).

That is, for a boolean function f : {0,1}n→{0,1} define its corresponding AND function

as f∧(x,y) = f (x∧ y), where ∧ is bitwise AND function. An example of an AND function is

disjointness. The analog class of decision trees are AND decision trees, where each internal node

may query the AND of a subset of the inputs or their negations.

Problem 2.2.14. Let f : Fn
2→{0,1} be a function. Assume that f∧ has a deterministic protocol

with complexity k. Does there exist a deterministic AND decision tree of depth poly(k) which

computes f ?

Randomized Communication Complexity All of the questions that were asked in the

the beginning of previous section regarding deterministic communication become significantly

harder in the case of randomized communication. In particular the following concrete question

seems elusive, which is a randomized analog of Theorem 2.2.13.

Problem 2.2.15. Let f : Fn
2→ {0,1} be a function. Assume that f⊕ has a randomized protocol

with complexity k. Does there exist a randomized parity decision tree of depth poly(k) which

computes f ?

One may simplify the model by considering one-way randomized communication com-

plexity where each party speaks once when it is their turn. In this setting, one can classify the
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structure of one-way protocols for three parties and more. The reader is referred to [HLY18] for

more details.

2.2.4 Structure of the Fourier spectrum of sparse sets

The objects that we were dealing with in the previous sections all were involving dense

sets, i.e. a set whose size is at least a polynomial of the size of ambient space. However, for

many applications one necessarily deals with sets that are much smaller, in particular we have no

assumptions on the size of the set or if we do, the size of the set is sub-polynomial in the size of

the ambient space. The purpose of this section to obtain some combinatorial information about

the structure of Fourier coefficients of arbitrary small sets. The applications we have in mind are

in computer science which we will briefly describe afterwards. In the following we give some

basic structural information regarding the structure Fourier coefficients of sets and explain how

they break down in the sparse setting.

One of the fundamental methods in analyzing several questions regarding subsets of abelian

groups is by analyzing the set of large Fourier coefficients the indicator functions of the set. Let

G be a finite abelian group, and let A be a subset of G. Fix a parameter ε ∈ [0,1]. For a character

γ ∈ Ĝ, the corresponding Fourier coefficient of 1A is

1̂A(γ) = ∑
x∈A

γ(x).

The spectrum of A is the set of characters with large Fourier coefficients,

Specε(A) = {γ ∈ Ĝ : |1̂A(γ)| ≥ ε|A|}.

Note that the spectrum of a set is a symmetric set, that is Specε(A) =−Specε(A), where we view

Ĝ as an additive group (which is isomorphic to G).

Understanding the structure of the spectrum of sets is an important topic in additive

combinatorics, with several striking applications discussed below. As we illustrate, there is a gap
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in our knowledge between combinatorial structural results, which apply to all elements in the

spectrum, and statistical structural results, which apply to most elements in the spectrum. The

former results apply only to large sets, typically of the size |A| ≥ |G|c for some absolute constant

c > 0, where the latter results apply also for smaller sets. The goal here is to bridge this gap.

Our interest in this problem originates from applications of it in computational complexity,

where a better understanding of the structure of the spectrum of small sets can help to shed light on

some of the main open problems in the area, such as constructions of two source extractors [Bou05b,

Rao07, RB11] or the log rank conjecture in communication complexity [BLR12]. We refer the

interested reader to a survey on applications of additive combinatorics in theoretical computer

science [Lov14a].

We assume from now on that |A|= |G|α where α > 0,ε > 0 are arbitrarily small constants,

which is the regime where current techniques fail. In fact, our results extend to some range of

sub-constant parameters, but only mildly. First, we review the current results on the structure of the

spectrum, and their limitations.

Size bound The most basic property of the spectrum is that it cannot be too large. Parse-

val’s identity bounds the size of the spectrum by

|Specε(A)| ≤
|G|

ε2|A|
=
|G|1−α

ε2 .

However, this does not reveal any information about the structure of the spectrum, except from a

bound on its size.

Dimension bound A combinatorial structural result on the spectrum was obtained by

Chang in [Cha02]. She discovered that the spectrum is low dimensional. For a set Γ⊆ Ĝ, denote its

dimension as the minimal integer d, such that there exist γ1, . . . ,γd ∈ Ĝ with the following property:

any element γ ∈ Γ can be represented as γ = ∑εiγi with εi ∈ {−1,0,1}. With this definition,
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Chang’s theorem asserts that

dim(Specε(A))≤ O(ε−2 log(|G|/|A|)).

Chang [Cha02] used this result to obtain improved bounds for Freiman’s theorem on sets with

small doubling, and Green [Gre02] used it to find arithmetic progressions in sumsets. Moreover,

Green [Gre04] showed that the bound in Chang’s theorem cannot in general be improved, at least

when A is not too small. Recently, Bloom [Blo] obtained sharper bounds for a large subset of the

spectrum. He showed that there exists a subset Γ⊆ Specε(A) of size |Γ| ≥ ε · |Specε(A)| such that

dim(Γ)≤ O(ε−1 log(|G|/|A|)).

He applied these structural results to obtain improved bounds for Roth’s theorem and related

problems. However, we note that in our regime of interest, where |A|= |G|α with 0 < α < 1, both

results become trivial if ε is a small enough constant. This is because both give a bound on the

dimension of the form O(ε−c(1−α)) · log |G| with c ∈ {1,2}. However, any set Γ⊆ Ĝ trivially

has dimension at most log |G|. As our interest is in the regime of any arbitrarily small constant

α,ε > 0, we need to turn to a different set of techniques.

Statistical doubling Bourgain [Bou05a] showed that for many pairs of elements in the

spectrum, their sum lands in a small set. Concretely,

Pr
γ1,γ2∈Specε (A)

[γ1 + γ2 ∈ Specε2/2(A)]≥ ε
2/2,

where we note that by Parseval’s identity, |Specε2/2(A)| ≤ O(|G|1−α/ε4). He used these results

to obtain improved bounds on exponential sums. Similar bounds can be obtained for linear

combinations of more than two elements in the spectrum, for example as done by Shkredov [Shk08].

If we assume that |Specε2/2(A)| ≤ K|Specε(A)| and apply the Balog-Szemerédi-Gowers theorem

[BS94, Gow98], this implies that there exists a large subset Γ ⊆ Specε(A) such that |Γ+Γ| ≤
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(K/ε)O(1)|Γ|. However, it does not provide any bounds on the sumset of the entire spectrum, that

is on |Specε(A)+Specε(A)|. In fact, we will later see an example showing that this sumset could

be much large than the spectrum, whenever ε ≤ 1/2.

Combinatorial doubling The motivating question for the current work is to understand

whether the statistical doubling result described above, can be applied for the entire spectrum.

That is, can we obtain combinatorial structural results on the sumset of the entire spectrum

Specε(A)+Specε(A).

As a first step, we ask for which α,ε > 0 is is true that, for any set A of size |A|= |G|α , the

sumset Specε(A)+Specε(A) is much smaller than the entire group. There are two regimes where

this is trivially true. First, when α > 1/2, it is true since by Parseval’s identity, Specε(A) is smaller

than the square root of the group size, and hence

|Specε(A)+Specε(A)| ≤ |Specε(A)|2 ≤
|G|2−2α

ε4 .

Also, when ε > 1/2 then Specε(A)+Specε(A)⊆ Spec2ε−1(A) (see, e.g., [TV06] for a proof) and

hence again by Parseval’s identity, the size of the sumset is bounded by

|Specε(A)+Specε(A)| ≤ |Specε(A)|2 ≤
|G|1−α

(2ε−1)2 .

As the following example shows, the thresholds of α = 1/2,ε = 1/2 are tight.

Example 2.2.16. Let G = Z2n
2 and A = (Zn

2 × {0n})∪ ({0n} ×Zn
2). Then |A| = 2|G|1/2 − 1,

Spec1/2(A) = A and A+A = G.

So, it seems that such structural results are hopeless when α,ε < 1/2. However, there is

still hope: in the example, if we restrict to a large subset A′ = Zn
2×{0n} ⊆ A, then Spec1/2(A

′) =

{0n}×Zn
2 is a subgroup, and specifically the size of Spec1/2(A

′)+Spec1/2(A
′) is bounded away

from the entire group. Our first result is that this is true in general. In fact, the size of the sumset is

close to the bound given by Parseval’s identity, which is approximately |G|1−α .
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Theorem 2.2.17. Fix 0 < δ < α < 1/2 and 0 < ε < 1/2. Let A⊆G of size |A| ≥ |G|α . Then there

exists a subset A′ ⊆ A of size |A′| ≥ |A|/C such that

∣∣Specε(A
′)+Specε(A

′)
∣∣≤ (1/ε)O(1/δ ) · |G|

1+δ

|A′|

where C ≤ exp((1/ε)O(1/δ )).

A more refined notion of structure is that of bounded doubling. Here, we say that a set Γ has

a doubling constant K if |Γ+Γ| ≤ K|Γ|. Note that if |Specε(A
′)| has size close to the bound given

by Parseval’s identity, which is roughly |G|1−α , then Theorem 2.2.17 would show that Specε(A
′)

has a small doubling constant K =C|G|δ . We conjecture that this is always the case. However, we

could only show it if we are allowed to change the value of ε somewhat. We state both the theorem

and the conjecture below.

Theorem 2.2.18. Fix 0 < δ < α < 1/2 and 0 < ε < 1/2. Let A⊆G of size |A| ≥ |G|α . Then there

exists a subset A′ ⊆ A of size |A′| ≥ |A|/C and ε ′ ≥ ε21/δ

such that

|Specε ′(A
′)| ≥ |Specε(A)|/C

and

|Specε ′(A
′)+Specε ′(A

′)| ≤C|G|δ · |Specε ′(A
′)|,

where C ≤ exp
(
(1/ε)O(24/δ )

)
.

Conjecture 2.2.19. Fix 0 < δ < α < 1/2 and 0 < ε < 1/2. Let A ⊆ G of size |A| ≥ |G|α . Then

there exists a subset A′ ⊆ A of size |A′| ≥ |A|/C such that

|Specε(A
′)+Specε(A

′)| ≤C|G|δ · |Specε(A
′)|,

where C =C(ε,δ ).
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The original motivation for establishing these results was in pseudorandomness and in

particular that the inner produce function over Fn
p is a certain kind of extractor called affine-

malleable extractor. However, the results of this section fall short of achieving this application

which requires a stronger conjecture regarding the doubling of the spectrum to be true. We refer

the reader to [AHL16] for more details and some partial results.

2.3 Pseudorandomness

In the next two sections we discuss two different aspects of pseudorandomness. The first

is the notion of regularity of sets and structure vs randomness dichotomy. The second involves

explicit constructions of pseudorandom sets.

2.3.1 Limits of Regularity Lemma

In many applications, obtaining some global information about a given object, say a graph

is necessary. For example, suppose we have a big dense graph and would like to estimate the

number of triangles in the graph. There are two kinds of graphs for which we know how to easily

estimate the number of triangles. One is a complete graph (or a graph with a fixed constant weight

on all its edges). Another example is a random graph. A powerful method to handle a given

arbitrary graph G is to decompose it into two parts, Gstr and Gpsd where Gstr is a structured part

of low complexity, similar to a complete graph, and Gpsd is pseudorandom. We might possibly

have a third error component Gerr. Then one can estimate the number of triangles in each part

separately using known methods and combine them. This decomposition is achieved by Szemerédi’s

regularity lemma which is a fundamental tool in combinatorics and pseudorandomness. As an

analogue of Szemerédi’s regularity lemma in graph theory [Sze75], Green [Gre05b] proposed an

arithmetic regularity lemma for abelian groups. Given an abelian group G and a bounded function

f : G→ [0,1], Green showed that one can find a subgroup H ≤G of bounded index, such that when

restricted to most cosets of H, the function f is pseudorandom in the sense that all of its nonzero
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Fourier coefficients are small. Quantitatively, the index of H in G is bounded by a tower of twos of

height polynomial in the error parameter. The goal of this note is to provide an example showing

that these bounds are essentially tight. This strengthens a previous example due to Green [Gre05b]

which shows that a tower of height logarithmic in the error parameter is necessary; and makes the

lower bounds in the arithmetic case analogous to these obtained in the graph case [Gow97].

We restrict our attention here to the group G = Zn
2, and note that our construction can be

generalized to groups of bounded torsion in an obvious way. We first make some basic definitions.

Let A be an affine subspace (that is, a translation of a vector subspace) of Zn
2 and let f : A→ [0,1]

be a function. The Fourier coefficient of f associated with η ∈ Zn
2 is

f̂ (η) =
1
|A| ∑x∈A

f (x)(−1)〈x,η〉 = E
x∈A

[ f (x)(−1)〈x,η〉] .

Any subspace H ≤ Zn
2 naturally determines a partition of Zn

2 into affine subspaces

Zn
2/H = {H +g : g ∈ Zn

2} .

The number
∣∣Zn

2/H
∣∣= 2n−dimH of translations is called the index of H.

For an affine subspace A = H +g of Zn
2, where H ≤ Zn

2 and g ∈ Zn
2, we say that a function

f : A→ [0,1] is ε-regular if all its nontrivial Fourier coefficients are bounded by ε , that is,

max
η /∈H⊥

∣∣ f̂ (η)
∣∣≤ ε .

Note that a trivial Fourier coefficient η ∈ H⊥ satisfies | f̂ (η)|= |Ex∈A f (x)|. Henceforth, for any

f : Zn
2→ [0,1] we denote by f |A : A→ [0,1] the restriction of f to A.

Definition 2.3.1 (ε-regular subspace). Let f : Zn
2→ [0,1]. A subspace H ≤ Zn

2 is ε-regular for f if

f |A is ε-regular for at least (1− ε)
∣∣Zn

2/H
∣∣ translations A of H.

Green [Gre05b] proved that any bounded function has an ε-regular subspace H of bounded

index, that is, whose index depends only on ε (equivalently, H has bounded codimension). In the
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following, twr(h) is a tower of twos of height h; formally, twr(h) := 2twr(h−1) for a positive integer

h, and twr(0) = 1.

Theorem 2.3.2 (Arithmetic regularity lemma in Zn
2, Theorem 2.1 in [Gre05b]). For every 0< ε < 1

2

there is M(ε) such that every function f : Zn
2→ [0,1] has an ε-regular subspace of index at most

M(ε). Moreover, M(ε)≤ twr(d1/ε3e).

A lower bound on M(ε) of about twr(log2(1/ε)) was given in the same paper [Gre05b],

following the lines of Gowers’ lower bound on the order of ε-regular partitions of graphs [Gow97].

While Green’s lower bound implies that M(ε) indeed has a tower-type growth, it is still quite far

from the upper bound in Theorem 2.3.2.

Our main result here nearly closes the gap between the lower and upper bounds on M(ε),

showing that M(ε) is a tower of twos of height at least linear in 1/ε . Our construction follows the

same initial setup as in [Gre05b], but will diverge from that point on. Our proof is inspired by the

recent simplified lower bound proof for the graph regularity lemma in [MS16].

Theorem 2.3.3. For every ε > 0 it holds that M(ε)≥ twr(b1/16εc).

2.3.2 Explicit construction of pseudorandom objects

One of the greatest questions in computer science is whether randomness helps speed up

computation. Namely, whether BPP equals P or not. Motivated by this question, a rather more

general approach has been pursued over the past 40 years or so via the construction of an object

called pseudorandom generator. In the following we give a brief description of pseudorandom

generators. and introduce a new approach to construct them.

Pseudorandom generators (PRG) are widely studied in complexity theory. There are several

general frameworks used to construct PRGs. One is based on basic building blocks, such as small

bias generators [NN93, AGHP92], k-wise independence, or expander graphs [HLW06]. Another

approach is based on hardness vs randomness paradigm, which was introduced by Nisan and

Wigderson [NW88] and has been very influential. Many of the hardness results used in the latter
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framework are based on random restrictions, and the analysis of how they simplify the target class

of functions. The number of papers in these lines of work is on the order of hundreds, so we do

not even attempt to give a comprehensive survey of them all; instead we refer the reader to survey

articles [Gol10, Vad12]. The purpose of this work is to introduce a new framework for constructing

PRGs based on polarizing random walks. Let us first introduce the standard notion of PRGs.

Definition 2.3.4. (PRG) Let F be a class of Boolean functions f : {−1,1}n→{−1,1} and ε > 0

be an error parameter. A PRG for F is a random variable X ∈ {−1,1}n such that

∀ f ∈F , |E
X
[ f (X)]−E

U
[ f (U)]| ≤ ε,

where U denotes a random variable with the uniform distribution in {−1,1}n. Moreover, X has

seed length r if X = G(U) for some function G : {−1,1}r→ [−1,1]n.

We relax this definition by introducing a new object called a fractional PRG. To prepare

the notation for the definition, identify f with a real multi-linear polynomial, namely its Fourier

expansion. This extends f : {−1,1}n → {−1,1} to f : Rn → R, although, we would only be

interested in inputs from [−1,1]n. Observe that if x ∈ [−1,1]n then f (x) = EX [ f (X)] where

X ∈ {−1,1}n is a random variable sampled as follows: for every i ∈ [n] sample Xi ∈ {−1,1}

independently with E[Xi] = xi. In particular, f on [−1,1]n is bounded, namely f : [−1,1]n→ [−1,1].

Also, f (0) = EU [ f (U)]. The following is a key definition.

Definition 2.3.5 (Fractional PRG). Let F be a class of Boolean functions f : [−1,1]n→ [−1,1]

that are multi-linear and ε > 0 be an error parameter. A fractional PRG for F is a random

variable X ∈ [−1,1]n such that

∀ f ∈F , |E
X
[ f (X)]− f (0)| ≤ ε.

One trivial construction of a fractional PRG is X ≡ 0 but this is not going to be useful

for our purpose of constructing PRGs. To disallow such examples, we require each coordinate
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of X to be far from zero with some noticeable probability. Formally, X ∈ [−1,1]n is called p-

noticeable if E[X2
i ]≥ p for all i = 1, . . . ,n. A good example to keep in mind is the following. Let

G : {−1,1}r→{−1,1}n be a (Boolean valued) function, and set X = pG(U), where U ∈ {−1,1}r

is uniform. Notice that X is p2-noticeable.

The main result here is that via doing a certain polarizing random walk we can combine

a few independent copies of a fractional PRG and obtain a standard PRG. Let F be a family of

n-variate Boolean functions that is closed under restrictions.

Theorem 2.3.6 (Main theorem, informal version of Theorem 7.1.6). Let X ∈ [−1,1]n be a symmet-

ric p-noticeable fractional PRG for F with error ε . Set t = O(log(n/ε)/p) and let X1, . . . ,Xt be

i.i.d. copies of X. There is an explicit random variable G = G(X1, · · · ,Xt) ∈ {−1,1}n so that G is

a PRG for F with error (t +1)ε .

In fact, the function G is simulating a certain polarizing random walk over [−1,1]n that

converges very quickly to the vertices of the hypercube {−1,1}n. The details are deferred to

chapter 7.

Fractional PRG for functions with bounded Fourier growth

Fractional PRGs are easier to construct than standard PRGs, since they can take values in

[−1,1]n. For example, assume that f has Fourier tails bounded in L1. That is, there exist parameters

a,b≥ 1 for which

∑
S⊆[n]:|S|=k

| f̂ (S)| ≤ a ·bk ∀k = 1, . . . ,n.

We show (in Lemma 7.3.4) that if X ∈ {−1,1}n is roughly (ε/a)-biased, then pX is a fractional

PRG for f with p≈ 1/b and error ε . The reason is that this choice of p controls all the Fourier

coefficients of f with large Hamming weight, while X controls the ones with small weight. (In fact,

to optimize parameters one can choose X to be almost k-wise independent; see Lemma 7.3.4 for

details). In any case, note that pX is p2-noticeable as pX takes values in {−p, p}n.
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PRG for functions with bounded Fourier growth

An example of families of Boolean functions that are fooled by our PRG include ones that

satisfy the following two properties: (i) being closed under restrictions; (ii) having bounded L1

Fourier tails.

Theorem 2.3.7 (PRG for functions of bounded L1 Fourier tail, informal version of Theorem 7.3.5).

Let F be a family of n-variate Boolean functions closed under restrictions. Assume that there exist

a,b≥ 1 such that for every f ∈F ,

∑
S⊆[n]:|S|=k

| f̂ (S)| ≤ a ·bk.

Then, for any ε < ε ≤ 1
poly(b logn) there exists an explicit PRG X ∈ {−1,1}n which fools F with

error ε > 0, whose seed length is O(log(n/ε)(log logn+ log(a/ε))b2).

It is shown that several major classes of boolean functions such as functions of bounded

sensitivity, read-once branching programs of bounded width, and bounded depth circuits have

bounded Fourier tails. We refer the reader to [CHHL18] for details of the applications of this result.

We also discuss a few technical open problems regarding this result in chapter 7.
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Chapter 3

Higher order Theory of Sumsets

In this chapter we prove the following two theorems. The reader is referred to section 2.2.2

for an introduction to these results.

Theorem 2.2.8. Let A ⊂ Fn×Fn be of density α and let w = hvvhvvvhh. Then there exists a

bilinear variety B⊂ φw(A) of co-dimension r = O(log80
α−1).

Theorem 2.2.10. Let A⊂Fn×Fn be of density α and w= hvvhvvvhh and ε = exp(−O(log20
α−1)).

Then there exists a bilinear variety B⊂ φ ε
w(A) of co-dimension r = O(log80

α−1).

We recall necessary definitions. Let A⊂ Fn×Fn. Define two operators, capturing subtrac-

tion on horizontal and vertical fibers as follows:

φh(A) := {(x1− x2,y) : (x1,y),(x2,y) ∈ A},

φv(A) := {(x,y1− y2) : (x,y1),(x,y2) ∈ A}.

Given a word w ∈ {h,v}k define φw = φw1 ◦ . . .◦φwk to be their composition. A bilinear variety

B⊂ Fn×Fn of co-dimension r = r1 + r2 + r3 is a set defined as follows:

B = {(x,y) ∈V ×W : b1(x,y) = . . .= br3(x,y) = 0},
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where V,W ⊂ Fn are subspaces of co-dimension r1,r2, respectively, and b1, . . . ,br3 : Fn×Fn→ F

are bilinear forms. We proceed to the definition of φ ε
w(·). Fix an arbitrary (x,y) ∈ Fn×Fn, and note

that (x,y) can be written as (x,y) = φh((x+ x1,y),(x1,y)) for any x1 ∈ Fn. Moreover, for any fixed

x1, each of the points (x+x1,y),(x1,y) can be written as (x+x1,y)= φv((x+x1,y+y1),(x+x1,y1))

and (x1,y) = φv((x1,y+ y2),(x1,y2)) for arbitrary y1,y2 ∈ Fn. So over all, the point (x,y) can be

written using the operation φvh in exactly |Fn|3 many ways, namely, the total number of two-

dimensional parallelograms (x+ x1,y+ y1),(x+ x1,y1),(x1,y+ y2),(x1,y2) where (x,y) is fixed.

We can continue this and consider an arbitrary word w ∈ {h,v}k. Then (x,y) can be written using

the operation φw in exactly |Fn|2k−1 many ways. Now, we have a set A⊂ Fn×Fn and fix a word

w ∈ {h,v}k. Define φ ε
w(A) to be the set of all elements (x,y) ∈ Fn×Fn that can be obtained in at

least ε|Fn|2k−1 many ways by applying the operation φw(A).

Organization We prove Theorem 2.2.8 in Section 3.1 and Theorem 2.2.10 in Section 3.2.

3.1 Proof of Bilinear Bogolyubov-Ruzsa theorem

We recall theorem 2.2.6 which we will frequently use in the proof:

Theorem 2.2.6 (Bogolyubov-Ruzsa lemma [San12a]). Suppose A⊂ Fn
p and |A| ≥ K−1|Fn

p|. Then

there is a subspace V of co-dimension O(log4 K) with V ⊂ 4A.

We prove Theorem 2.2.8 in six steps. It corresponds to applying chain of operators

φh ◦φvv ◦φh ◦φv ◦φvv ◦φhh to A. In the proof, we invoke Theorem 2.2.6 (or Theorem 2.2.9, or the

Freiman-Ruzsa theorem (theorem 2.2.4) which is a corollary of Theorem 2.2.6), four times in total,

in steps 1,2,4, and 5.

We will assume that A⊂ Fm×Fn, where initially m = n but where throughout the proof

we update m,n independently when we restrict x or y to large subspaces. It also helps readability,

as we will always have that x and related sets or subspaces are in Fm, while y and related sets or

subspace are in Fn.
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We use three variables r1,r2,r3 that hold the total number of linear forms on x, linear forms

on y, and bilinear forms on (x,y) that are being fixed throughout the proof, respectively. Initially,

r1 = r2 = r3 = 0, but their values will be updated as we go along and at the end, r = max(r1,r2,r3)

will be the codimension of the final bilinear variety.

Step 1 Decompose A =
⋃

y∈Fn Ay×{y} with Ay ⊂ Fm. Define A1 := φhh(A), so that

A1 =
⋃

y∈Fn

(2Ay−2Ay)×{y}.

Let αy denote the density of Ay. By Theorem 2.2.6, there exists a linear subspace V ′y ⊂ 2Ay−2Ay

of co-dimension O(log4
α−1

y ). Let S := {y : αy ≥ α/2}, where by averaging S has density ≥ α/2.

Note that for every y ∈ S the co-dimension of each V ′y is O(log4
α−1). We have

B1 :=
⋃
y∈S

V ′y×{y} ⊂ A1.

Step 2 Consider A2 := φvv(B1). It satisfies

A2 =
⋃

y1,y2,y3,y4∈S

(
V ′y1
∩V ′y2

∩V ′y3
∩V ′y4

)
×{y1 + y2− y3− y4}.

By Theorem 2.2.6, there is a subspace W ′ ⊂ 2S− 2S of co-dimension O(log4
α−1). Note that

the co-dimension of W ′, as well as the co-dimension of each V ′y1
∩V ′y2

∩V ′y3
∩V ′y4

, is at most

O(log4
α−1). We thus have

B2 :=
⋃

y∈W ′
Vy×{y} ⊂ A2,

where Vy =V ′y1
∩V ′y2

∩V ′y3
∩V ′y4

for some y1,y2,y3,y4 ∈ S which satisfy y = y1 + y2− y3− y4.

Update r2 := codim(W ′), where we restrict y ∈W ′. To simplify notations, identify W ′ ∼=
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Fn−codim(W ′) and update n := n− codim(W ′). Thus we assume from now that

B2 :=
⋃

y∈Fn

Vy×{y},

where each Vy has co-dimension d = O(log4
α−1).

Step 3 Consider A3 := φv(B2). It satisfies

A3 =
⋃

y,z∈Fn

(Vz∩Vy+z)×{y}.

Step 4 Consider A4 := φh(A3). It satisfies

A4 =
⋃

y,z,w∈Fn

((Vz∩Vy+z)+(Vw∩Vy+w))×{y}.

Define Uy :=V⊥y , so that dim(Uy) = d and

A4 =
⋃

y,z,w∈Fn

((Uz +Uy+z)∩ (Uw +Uy+w))
⊥×{y}.

We pause for a moment to introduce one useful notation. We recall that an affine map

L : Fn → Fm is L(y) = My+ b where M ∈ Fm×n,b ∈ Fm. Given a set of affine maps L = { fi :

Fn→ Fm, i ∈ [k]} and y ∈ Fn, let L (y) = { f1(y), . . . , fk(y)} ⊂ Fm, and also let L denote the linear

span of L . Our goal in this step is to find a small family of affine maps L with |L | ≤ O(d), and

a fixed choice of z,w, so that

Pr
y∈Fn

[
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L (y)

]
� 1. (3.1)

as this will give us a dense set T ⊂ Fn so that

⋃
y∈T

L (y)⊥×{y} ⊂ A4.
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Now we explain how to get Equation (3.1). For every a ∈ Fn, let La be a collection of affine maps

where initially La = {0} for all a’s. We keep adding affine maps to some of the La’s, while always

maintaining |La| ≤ 2d for all a ∈ Fn, until we satisfy

Pr
y,z,w∈Fn

[
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L z(z)+L y+z(y+ z)+L w(w)+L y+w(y+w)

]
≥ 1

2
(3.2)

and then we will pick some popular affine maps L ⊂ ∪a∈FnLa with |L |= O(d) that will give us

Equation (3.1). For now, we show how to get Equation (3.2). We need the following lemma.

Lemma 3.1.1. For each y ∈ Fn, let Uy ⊂ Fm be a subspace of dimension d. Assume that

Pr
y,z,w∈Fn

[
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L z(z)+L y+z(y+ z)+L w(w)+L y+w(y+w)

]
≤ 1

2
.

Then there exists an affine function L : Fn→ Fm such that

Pr
y∈Fn

[
L(y) ∈Uy \L y(y)

]
≥ exp(−O(d4)).

In the following we prove Lemma 3.1.1. We will use a modified version of a function

version of the Freiman-Ruzsa theorem, with the quasi-polynomial bounds obtained by Sanders

[San12a]. We first recall the standard version. For details how it is derived from Theorem 2.2.6 we

refer the reader to [Gre05a].

Theorem 3.1.2. (Frieman-Ruzsa theorem; function version). Let f : Fn → Fm be a function.

Suppose that

Pr
y,z,z′∈Fn

[
f (y+ z)− f (z) = f (y+ z′)− f (z′)

]
≥ α.

Then there exists an affine map L : Fn→ Fm such that

{z ∈ Fn : L(z) = f (z)} ≥ exp(−O(log4(α−1)))|Fn|.

Now, this result may be strengthened as follows.
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Lemma 3.1.3. Let f : Fn→ Fm be a function and Z ⊂ Fn with |Z| ≥ α|Fn|. Suppose that

Pr
y∈Fn,z,z′∈Z

[
f (y+ z)− f (z) = f (y+ z′)− f (z′)

]
≥ α.

Then there exists an affine map L : Fn→ Fm such that

{z ∈ Z : L(z) = f (z)} ≥ exp(−O(log4(α−1)))|Fn|.

Proof. Let Γ = {(x, f (x)) : x ∈ Fn} and Γ′ = {(x, f (x)) : x ∈ Z}. The additive energy E(Γ,Γ′)

satisfies

E(Γ,Γ′) = |{(a,b,c,d) : a−b = c−d,a,c ∈ Γ,b,d ∈ Γ
′}| ≥ α

O(1)|Γ|3.

Using the Cauchy-Schwartz inequality for additive energy (Corollary 2.10 from [TV06]), we have

E(Γ,Γ′)≤
√

E(Γ,Γ) ·E(Γ′,Γ′).

Using the fact that |Γ′| ≥ α|Γ|, we get that E(Γ′,Γ′) ≥ αO(1)|Γ|3. Let M ≥ m be large enough,

and define a function f ′ : Fn→ FM by setting f ′(z) = f (z) if z ∈ Z, and otherwise f takes random

values in FM. Apply Theorem 3.1.2 to f ′. The obtained linear function L has to necessarily agree

with f ′ (and hence with f ) on a subset Z′ ⊂ Z of the claimed density.

Now we may go back to the proof of Lemma 3.1.1.

Proof of Lemma 3.1.1. Consider a choice of y,w,z for which

(Uy+z +Uz)∩ (Uy+w +Uw) 6⊂L y+z(y+ z)+L z(z)+L y+w(y+w)+L w(w).

This directly implies that there is an ordered quadruple (a,b,c,d) so that a ∈Uy+z,b ∈Uz,c ∈
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Uy+w,d ∈Uw with and a−b = c−d 6= 0, and

([
a /∈L y+z(y+ z)

]
OR
[
b /∈L z(z)

])
AND

([
c /∈L y+w(y+w)

]
OR
[
d /∈L w(w)

])
.

Consider all the possible solutions of the above formula, namely:

•
[
a /∈L y+z(y+ z)

]
AND

[
c /∈L y+w(y+w)

]
•
[
b /∈L z(z)

]
AND

[
c /∈L y+w(y+w)

]
•
[
a /∈L y+z(y+ z)

]
AND

[
d /∈L w(w)

]
•
[
b /∈L z(z)

]
AND

[
d /∈L w(w)

]
One of these cases occur for at least 1/4 of the choices of y,w,z; assume without loss of generality

that it is the last one.

Next, sample a random function f : Fn→ Fm by picking f (x) ∈Ux uniformly and indepen-

dently for each x ∈ Fn. Note that the quadruple a,b,c,d depends on y,w,z, and that for each such

choice

Pr
f
[ f (y+ z) = a, f (z) = b, f (y+w) = c, f (w) = d]≥ |F|−4d.

Note that when this event happens, by construction we have f (y+ z)− f (z) = f (y+w)− f (w).

Combining this with the assumption of the lemma, we get

Pr
y,z,w∈Fn, f

[
f (y+ z)− f (z) = f (y+w)− f (w), f (z) ∈Uz \Lz(z), f (w) ∈Uw \Lw(w)

]
≥ 1

8
·|F|−4d.

Fix f where the above bound holds. Let Z = {z : f (z) ∈ Uz \Lz(z)}. Then, surpassing the

dependence on the field size, we have |Z| ≥ exp(−O(d))|F|n and

Pr
y∈Fn,z,w∈Z

[ f (y+ z)− f (z) = f (y+w)− f (w)]≥ exp(−O(d)).

By Lemma 3.1.3, there is an affine map L : Fn→ Fm and a set Z′ ⊂ Z with |Z′| ≥ exp(−O(d4))|Fn|
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such that for all z′ ∈ Z′, f (z′) = L(z′) and hence L(z′) ∈Uz′ \Lz′(z′).

Next, we proceed as follows. As long as Equation (3.2) is satisfied, apply Lemma 3.1.1

to find an affine map L : Fn→ Fm. For every x that satisfies L(x) ∈Ux \Lx(x), add the map L to

Lx. This process needs to stop after t = exp(O(d4)) many steps. Let L1, . . . ,Lt : Fn→ Fm be the

affine maps obtained in this process. Using this notation, set L ′ = ∪x∈FnLx. For every subspace

Ux, there is a set L ′
x ⊂L ′ of size |L ′

x | ≤ d such that

Lx(x)⊂L ′
x(x).

This implies that

Pr
y,z,w∈Fn

[(
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L ′

z (z)+L ′
y+z(y+ z)+L ′

w(w)+L ′
y+w(y+w)

)]
≥ 1

2
.

Consider the most popular quadruple L ′
1,L

′
2,L

′
3,L

′
4 ⊂L ′ so that

Pr
y,z,w∈Fn

[(
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L ′

1(z)+L ′
2(y+ z)+L ′

3(w)+L ′
4(y+w)

)]
≥ 1

2
·
(

t
d

)−4

.

Let L := L ′
1∪L ′

2∪L ′
3∪L ′

4. Recall that t = exp(O(d4)) and hence
( t

d

)
= exp(O(d5)). We have

Pr
y,z,w∈Fn

[
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L (z)+L (y+ z)+L (w)+L (y+w)

]
≥ exp(−O(d5)).

By averaging, there is some choice of z,w such that,

Pr
y∈Fn

[
(Uz +Uy+z)∩ (Uw +Uy+w)⊂L (z)+L (y+ z)+L (w)+L (y+w)

]
≥ exp(−O(d5)).

Recall that each L ∈L is an affine map and that |L | ≤ 4d. Thus, L (z),L (y+ z),L (w),L (y+

39



w)⊂L (y)+Q where Q⊂ Fm is a linear subspace of dimension O(d). We thus have

B4 :=
⋃
y∈T

(L (y)+Q)⊥×{y} ⊂ A4,

where T ⊂ Fn has density exp(−O(d5)).

To simplify the presentation, we would like to assume that the maps in L are linear maps

instead of affine maps, that is, that they do not have a constant term. This can be obtained by

restricting x to the subspace orthogonal to Q and to the constant term in the affine maps in L .

Correspondingly, we update r1 := r1 +dim(Q)+ |L |= O(d). So, from now we assume that L is

defined by 4d linear maps, and that

B4 :=
⋃
y∈T

L (y)
⊥×{y} ⊂ A4,

where T ⊂ Fn has density exp(−O(d5)).

Step 5 Consider A5 := φvv(B4) so that

A5 =
⋃

y1,y2,y3,y4∈T

(
L (y1)

⊥∩L (y2)
⊥∩L (y3)

⊥∩L (y4)
⊥)×{y1 + y2− y3− y4}.

By Theorem 2.2.4 there exists a subspace W ⊂ 2T −2T with co-dimension O(d20). However, this

time, this is not enough for us. We need to use Theorem 2.2.9 instead. The following equivalent

formulation of Theorem 2.2.9 will be more convenient for us: there is a subspace W ⊂ Fn of

co-dimension O(log4
α−1) such that, for each y ∈W there is a set Sy ⊂ (Fn)3 of density αO(1), for

which

∀(a1,a2,a3) ∈ Sy : a1,a2,a3,a1 +a2−a3− y ∈ A.
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Apply Theorem 2.2.9 to the set T to obtain the subspace W and the sets Sy. We have

B5 :=
⋃

y∈W

 ⋃
(y1,y2,y3)∈Sy

(
L (y1)+L (y2)+L (y3)+L (y1 + y2− y3− y)

)⊥×{y} ⊂ A5.

To simplify the presentation we introduce the notation L (y1,y2,y3) := L (y1)+L (y2)+L (y3).

Next, observe that for any y,y′ ∈ Fn, L (y′)+L (y+ y′) = L (y′)+L (y). Thus we can simplify

the expression of B5 to

B5 =
⋃

y∈W

 ⋃
(y1,y2,y3)∈Sy

(
L (y1,y2,y3)+L (y)

)⊥×{y},
which can be re-written as

B5 =
⋃

y∈W

 ⋃
(y1,y2,y3)∈Sy

L (y1,y2,y3)
⊥∩L (y)

⊥

×{y}.
Step 6 Consider A6 := φh(B5). It satisfies

A6 =
⋃

y∈W

 ⋃
(y1,y2,y3)∈Sy
(y′1,y

′
2,y
′
3)∈Sy

L (y1,y2,y3)
⊥∩L (y)

⊥
+L (y′1,y

′
2,y
′
3)
⊥∩L (y)

⊥

×{y}.

In order to complete the proof, we will find a large subspace V such that for every y ∈W ,

V ∩L (y)
⊥ ⊂

⋃
(y1,y2,y3)∈Sy
(y′1,y

′
2,y
′
3)∈Sy

L (y1,y2,y3)
⊥∩L (y)

⊥
+L (y′1,y

′
2,y
′
3)
⊥∩L (y)

⊥
.

In fact, we will prove something stronger: there is a large subspace V such that for each y ∈W ,
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there is a choice of (y1,y2,y3),(y′1,y
′
2,y
′
3) ∈ Sy for which

V ∩L (y)
⊥ ⊂L (y1,y2,y3)

⊥∩L (y)
⊥
+L (y′1,y

′
2,y
′
3)
⊥∩L (y)

⊥
.

The following lemma is key. Given a set L of linear maps from Fn to Fm, let dim(L )

denote the dimension of linear span of L as a vector space over F.

Lemma 3.1.4. Fix δ > 0. Let L be a set of linear maps from Fn to Fm with dim(L ) = k. Then

there is a subspace Z ⊂ Fm of dimension at most k(2k+ logδ−1 +3) such that the following holds.

For every subset S⊂ Fn of density at least δ , and arbitrary y ∈ Fn, at least half the pairs s,s′ ∈ S

satisfy that

(L (s)+L (y))∩ (L (s′)+L (y))⊂ Z +L (y).

Proof. The proof is by induction on dim(L ). Consider first the base case of dim(L ) = 1 and

suppose L = 〈L〉 for some map L. We consider two cases based on minimum rank of maps in L .

First suppose that rank of every non-zero map in L (which is the same as rank of L) is bigger than

logδ−1 +5. Fix arbitrary L1,L3 ∈L \{0} and L2,L4 ∈L and s,y ∈ Fn and observe that

Pr
s′∈S

[
L1(s)+L2(y) = L3(s′)+L4(y)

]
<
|F|−(logδ−1+5)

Prs′∈Fn [s′ ∈ S]
≤ |F|−(logδ−1+5)

δ
−1.

By applying the union bound over all quadruples L1, · · · ,L4 ∈L , we obtain that

Pr
s,s′∈S

[(
L (s)+L (y)

)
∩
(
L (s′)+L (y)

)
6= L (y)

]
≤ |F|4|F|−(logδ−1+5)

δ
−1 ≤ 1

2
.

Therefore, we can safely choose Z = {0} in the lemma. Now, for the second case, suppose

that rank(L) ≤ logδ−1 + 5. Let Z = Im(L). Then for all s ∈ Fn, L (s) ⊂ Im(L) = Z, and so

(L (s)+L (y))∩ (L (s′)+L (y))⊂ Z ⊂ Z +L (y).

Now let dim(L ) = k. First, suppose that ∀L ∈ L , rank(L) > 4k + logδ−1 + 1. Then
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similar to the base case, for all y ∈ Fn,

Pr
s,s′∈S

[(
L (s)+L (y)

)
∩
(
L (s′)+L (y)

)
6= L (y)

]
≤ |F|4k|F|−(4k+logδ−1+1)

δ
−1 ≤ 1

2
.

Otherwise, suppose there is some L ∈L \ {0} with rank at most 4k+ logδ−1 + 1. Let Y be a

subspace so that Y ⊕ Im(L) = Fm. Let ProjY : Fn→ Y be the projection map along Im(L) with

ProjY (Im(L)) = 0. Consider the new family of maps

L ′ = {ProjY ◦M : M ∈L }.

Note that L ′ has dimension ≤ k−1 because ProjY ◦L≡ 0 and so by induction hypothesis, there

exists a subspace Z′ of dimension at most (k−1)(2(k−1)+ logδ−1 +3) such that, for all y ∈ Fn,

for least half the pairs s,s′ ∈ S it holds that

(L ′(s)+L ′(y))∩ (L ′(s′)+L ′(y))⊂ Z′+L ′(y).

The above implies that

ProjY ((L (s)+L (y))∩ (L (s′)+L (y)))⊂ Z′+ProjY (L (y))⊂ Z′+L (y)+ Im(L).

So we can take Z = Z′+ Im(L).

We note that for Theorem 2.2.8 we only need a weaker form of Lemma 3.1.4, which

states that at least one pair y,y′ ∈ S exists; however, we would need the stronger version for

Theorem 2.2.10.

We apply Lemma 3.1.4 as follows. Define a new family of linear maps L ∗ from F3n to Fm
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as follows. For each L ∈L define three linear maps Li, i ∈ {1,2,3} by:

Li : (Fn)3→ Fm,Li(y1,y2,y3) = L(yi)

and let

L ∗ := {Li : L ∈L , i ∈ [3]}.

Apply Lemma 3.1.4 to the family L ∗ with δ = exp(−O(d5)) and obtain a subspace V ⊂ Fm of

codimension O(d2 log(exp(−O(d5))) = O(d7) so that, for every Sy ⊂ (Fn)3 with y∈W , there exist

(y1,y2,y3),(y′1,y
′
2,y
′
3) ∈ Sy for which

V ∩L ∗((y,y,y))⊥ ⊂ (L ∗((y1,y2,y3))
⊥∩L ∗((y,y,y))⊥)+(L ∗((y′1,y

′
2,y
′
3))
⊥∩L ∗((y,y,y))⊥).

This directly implies that

V ∩L (y)⊥ ⊂ (L (y1,y2,y3)
⊥∩L (y)⊥)+(L (y′1,y

′
2,y
′
3)
⊥∩L (y)⊥).

Define

B6 :=
⋃

y∈W

(
V ∩L (y)

⊥)×{y} ⊂ A6.

Observe that B6 is a bilinear variety defined by codim(V ) many linear equations on x, codim(W )

linear equations on y and |L | bilinear equations on (x,y).

To complete the proof we calculate the quantitative bounds obtained. We have d =

O(log4
α−1) where α was the density of the original set A, and

r1 = O(d)+ codim(V ) = O(d7),

r2 = O(d)+ codim(W ) = O(d20),

r3 = |L |= O(d).
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Together these give the final bound of r = max(r1,r2,r3) = O(log80
α−1).

3.2 Proof of a robust version of Bilinear Bogolyubov-Ruzsa

theorem

In this section we prove Theorem 2.2.10 by slightly modifying the proof of Theorem 2.2.8.

We point out the necessary modifications to proof of Theorem 2.2.8. In this proof we use the

Theorem 2.2.9 which we recall in the following.

Theorem 2.2.9 ([San12a, SS16]). Let A⊂Fn be a subset of density α . Then there exists a subspace

V ⊂ 2A− 2A of co-dimension O(log4
α−1) such that the following holds. Every y ∈ V can be

expressed as y = a1 +a2−a3−a4 with a1,a2,a3,a4 ∈ A in at least αO(1)|F|3n many ways.

Step 1 In this step, we use Theorem 2.2.9 instead of Theorem 2.2.6, and directly obtain

B1 ⊂ φ
ε1
hh(A) (3.3)

for ε1 = αO(1).

Step 2 Similarly in this step as well, using Theorem 2.2.9 instead of Theorem 2.2.6 gives

B2 ⊂ φ
ε2
vv(B

1) (3.4)

with ε2 = αO(1). To recall, we assume for simplicity of exposition from now on that B2 =⋃
y∈Fn Vy×{y}.

Steps 3 and 4 This step is slightly different than steps 1 and 2. Here, we are not able to

directly produce some set B4 that would satisfy B4 ⊂ φ
ε4
hv(B

2). But what we can do is to apply the

remaining operation φhvvhv altogether to B2 and obtain the final bilinear structure B6 that satisfies

what we want, which is

B6 ⊂ φ
ε6
hvvhv(B

2) (3.5)
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for ε6 = exp(−poly logα−1). Combining Equations (3.3) to (3.5) gives

B6 ⊂ φ
ε
hvvhvvvhh(A)

for ε = exp(−poly logα−1).

We establish Equation (3.5) in the rest of the proof. Recall that previously we showed that

the following holds: there is a set of affine maps L , with |L |= O(d), such that

Pr
y,w,z∈Fn

[(
L (z)+L (y+ z)+L (w)+L (y+w)

)⊥ ⊂ (V⊥z ∩V⊥y+z

)
+
(

V⊥w ∩V⊥y+w

)]
≥ exp(−O(d5))

and consequently

Pr
y,w,z∈Fn

[(
L (y)+L (z)+L (w)

)⊥ ⊂ (V⊥z ∩V⊥y+z

)
+
(

V⊥w ∩V⊥y+w

)]
≥ exp(−O(d5)).

Remember that d = O(log4
α−1). Furthermore, we may assume the maps in L are linear (instead

of affine) after we update r1 := r1 + |L |= O(d).

Then what we did in the proof of Theorem 2.2.8 was to fix one popular choice of w,z.

However, here we can’t do that, as we need many pairs of w,z. Let T be the set of y’s that satisfy

Pr
w,z∈Fn

[(
L (y)+L (z)+L (w)

)⊥ ⊂ (V⊥z ∩V⊥y+z

)
+
(

V⊥w ∩V⊥y+w

)]
≥ exp(−O(d5)), (3.6)

and so T has density exp(−O(d5)). We deduce something stronger from Equation (3.6) but we

need to introduce some notation first.

For A,B⊂ Fn let A−η B denote the set of all elements c ∈ A−B that can be written in at

least η |Fn| many ways as c = a−b for a ∈ A,b ∈ B. To use this notation, note that if A,B are two

subspaces of co-dimension k, then A−B = A−η B for η = exp(−O(k)). This is because every

element c ∈ A−B can be written as c = (a+ v)− (b+ v) where v is an arbitrary element in the
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subspace A∩B of codimension at most 2k. So we can improve the Equation (3.6) to

Pr
w,z∈Fn

[(
L (y)+L (z)+L (w)

)⊥ ⊂ (V⊥z ∩V⊥y+z

)
−η

(
V⊥w ∩V⊥y+w

)]
≥ exp(−O(d5)), (3.7)

for η = exp(−O(d))

Step 5 Similar to before, consider the subspace W ⊂ 2T − 2T of co-dimension O(d20)

that is given by Theorem 2.2.9. This subspace W has the following property: fix arbitrary y ∈W .

Sample y1,y2,y3 ∈ Fn uniformly and independently, and set y4 = −y+ y1 + y2− y3. Then with

probability at least exp(−O(d5)) we have y1,y2,y3,y4 ∈ T . This means that if we furthermore

sample w1,w2,w3,w4,z1,z2,z3,z4 ∈ Fn uniformly and independently, then, with probability at least

exp(−O(d5)), the following four equations simultaneously hold:

(
L (yi)+L (zi)+L (wi)

)⊥ ⊂ (V⊥zi
∩V⊥yi+zi

)
−η

(
V⊥wi
∩V⊥yi+wi

)
∀i = 1, . . . ,4.

By computing the intersection of the left hand sides and the right hand sides we obtain that with

probability at least exp(−O(d5)), it holds that

(
L (y)+

3

∑
i=1

L (yi)+
4

∑
i=1

L (zi)+
4

∑
i=1

L (wi)

)⊥
⊂

4⋂
i=1

((
V⊥zi
∩V⊥yi+zi

)
−η

(
V⊥wi
∩V⊥yi+wi

))
.

(3.8)

For a given y ∈ Fn,sss = (y1,y2,y3,w1,w2,w3,w4,z1,z2,z3,z4) ∈ (Fn)11, let

Vy,sss =
4⋂

i=1

((
V⊥zi
∩V⊥yi+zi

)
−η

(
V⊥wi
∩V⊥yi+wi

))
,

where to recall y4 =−y+ y1 + y2− y3. Observe that for any sss,

⋃
y∈W

Vy,sss×{y} ⊂ φvvhv(B2).
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We rewrite Equation (3.8) more compactly as

Pr
sss

[(
L (y)+L (sss)

)⊥ ⊂ Vy,sss

]
≥ exp(−O(d5)), (3.9)

where we use the notation L (sss) = ∑
3
i=1 L (yi)+∑

4
i=1 L (zi)+∑

4
i=1 L (wi).

Step 6 Now we consider applying the operation hvvhv altogether to B2. Only the last

operation h remains to be applied, which after doing so, we will find a subspace V ⊂ Fm of

co-dimension O(d7) that satisfies the following: for any y ∈W , choose s1,s2 ∈ (Fn)11 uniformly

and randomly. Then with probability exp(−O(d5)),

V ∩L (y)⊥ ⊂ Vy,s1−η Vy,s2.

where to recall η = exp(−O(d)).

Fix y ∈W and let Sy be the set of all tuples sss = (y1,y2,y3,w1,w2,w3,w4,z1,z2,z3,z4) ∈

(Fn)11 that satisfy Equation (3.9). Note that the density of each Sy is at least exp(−O(d5)). To

simplify notation denote sss=(s1, . . . ,s11). We call up Lemma 3.1.4 in a similar way as we did before.

Define a family L ∗ of linear maps, containing linear maps Li for each L ∈L and i = 1, . . . ,11,

where

Li : (Fn)11→ Fm,Li(sss) = L(si).

Apply Lemma 3.1.4 to L ∗ and density parameter exp(−O(d5)). So, we obtain a subspace V ⊂ Fm

of co-dimension O(d7) such that for each y ∈W ,

Pr
s1,s2∈Sy

[
V ∩L (y)⊥ ⊂ (L (s1)+L (y))⊥+(L (s2)+L (y))⊥

]
≥ 1

2
, (3.10)

which implies

Pr
s1,s2∈(Fn)11

[
V ∩L (y)⊥ ⊂ Vy,s1−η Vy,s2

]
≥ exp(−O(d5)). (3.11)
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Define the final bilinear structure as

B6 :=
⋃

y∈W

(
V ∩L (y)

⊥)×{y}.
It satisfies

B6 ⊂ φ
ε6
hvvhv(B

2)

for ε6 = exp(−O(d5)) and so over all

B6 ⊂ φ
ε
hvvhvvvhh(A)

for ε = exp(−O(d5)).
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Chapter 4

Sumsets and Communication Complexity

of XOR functions

The purpose of this chapter is to prove the following result.

Theorem 2.2.13 ([HHL16]). For any f : Fn
2→{0,1} we have pdt( f )≤ O(D( f⊕)6).

Recall that f⊕(x,y) = f (x+y), and pdt(·) is the parity-decision-tree complexity and D( f⊕)

is deterministic communication complexity.

Organization We start with giving a proof overview in section 4.1. Then we give some

preliminary definitions in Section 4.2. We establish the key steps required in the proof of the-

orem 2.2.13 in Sections 4.3.1, 4.3.2, 4.3.3, and we apply them in Section 4.3.4 to prove of

Theorem 2.2.13.

4.1 Proof overview

Fix f : Fn
2→{0,1}, where we assume that f⊕ has an efficient deterministic protocol. Our

goal is to design a low-depth PDT for f .

Reduction to monochromatic subspaces Note that if f has a PDT of depth k, then in

particular, the leaves of the PDT determine affine subspaces of co-dimension at most k on which f
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is constant. We call such subspaces monochromatic subspaces for f . From here onwards, we use

“subspace" as a shorthand for “affine subspace".

It turns out that in order to design a PDT for f , it suffices to show that there exists a large

monochromatic subspace for f . This follows from [TWXZ13] who showed (among other things)

that if f is constant on a subspace V , then the Fourier sparsity of f restricted to any coset of V

reduces by at least a factor of two. This is sufficient for our application, as the existence of an

efficient deterministic protocol for f⊕ implies in particular that f has low Fourier sparsity. This

reduces Theorem 2.2.13 to the following question, which is the main problem we investigate in

this paper.

Question 4.1.1. Let f : Fn
2→{0,1} with D( f⊕)≤ k. Is there a subspace V of co-dimension poly(k)

on which f is constant?

In the next few paragraphs we give a brief discussion of how to find such a subspace. We

first describe a natural approach, which only tries to exploit the existence of a large monochromatic

rectangle for f⊕ (many techniques in communication complexity follow this approach; in the

randomized settings, one needs to replace “monochromatic rectangle" with “biased rectangle").

However, as we discuss below, a direct application of this technique fails, and a more careful

application requires unproven conjectures in additive combinatorics. As such, we follow a different

route, which exploits the entire structure of the protocol. This is uncommon in communication

complexity, and we view this is as a conceptual contribution of this work.

Using a large monochromatic rectangle, and why it fails The existence of an efficient

deterministic protocol for f⊕ implies that it is constant on a large rectangle A×B, and consequently

f is constant on A+B. As a first attempt, one may hope that if A,B ⊆ Fn
2 are large sets, then

A+B must contain a large subspace. This would directly imply that f is constant on this subspace.

Unfortunately this is false, as the following example of Green [Gre04] shows.

Example 4.1.2. Let A = B = B(n/2−
√

n) where B(r)⊂ {0,1}n is the hamming ball of radius

r. Then |A|= |B|= Ω(2n), A+B = B(n−2
√

n) but the largest subspace contained in A+B has
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co-dimension 2
√

n. For example, such a subspace can be obtained by fixing the first 2
√

n bits to

zero.

The situation improves for sum-sets involving more than two sets. Sanders [San12a] showed

that for a set A ⊂ Fn
2 with |A| ≥ ε2n, 4A = A+A+A+A contains a subspace of co-dimension

O(log4(1/ε)). As Yao showed [Yao16], it follows directly from this result that a k-bit deterministic

protocol for the 4-party function F(x,y,z,w) = f (x⊕ y⊕ z⊕w) implies a parity decision tree of

depth O(k5) for f .

Going back to two-fold sum-sets, we note that despite Example 4.1.2, for our application

one might still be able to use other properties of f to find a large monochromatic subspace in A+B.

For example, since f has low Fourier sparsity, if we find a subspace V on which f is nearly constant,

then f will be in fact constant on this subspace. More precisely, since the Fourier sparsity of f is at

most 2k, using uncertainty principle, lemma 2.1.1, we deduce the following: E[ f |V ]< 2−k implies

f |V ≡ 0, and E[ f |V ]> 1−2−k implies f |V ≡ 1. Therefore, given large sets A,B⊆ Fn
2, rather than

showing the existence of a large subspace in A+B, it suffices to show that A+B contains most

of a large subspace, and then the Fourier sparsity of f implies that f is constant on this subspace.

Working out the details, it turns out that we would need the following conjecture:

Conjecture 4.1.3. Let A⊂ Fn
2 be of size |A| ≥ ε2n. Then for any δ > 0 there exists a subspace V

such that |2A∩V | ≥ (1−δ )|V |, where the co-dimension of V is at most polylog(1/εδ ).

For this and related conjectures see [SS16] (in particular Section 9, the paragraph on

correlations of 2A,3A,4A). We note that two partial results towards Conjecture 4.1.3 are known,

both due to Sanders:

• [San10] proves the existence of a subspace with co-dimension O((1/ε) log(1/δ )).

• [San12a] proves the existence of a subspace with co-dimension O((1/δ 2) log4(1/ε)).

Unfortunately, neither of these two bounds is strong enough for our application. If f⊕ has a

k-bit deterministic protocol, then the largest monochromatic rectangle satisfies |A|, |B| ≥ 2n−k. We
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thus have ε = 2−k. Furthermore, f⊕ has at most 2k nonzero Fourier coefficients, which means that

we need a subspace which is 2−k close to being monochromatic, and thus we need to set δ < 2−k.

Hence to achieve our goal of finding a subspace of co-dimension poly(k), we need poly-logarithmic

dependency on both ε and δ .

Our approach: utilizing the entire protocol We circumvent the need to use unproven

conjectures by devising an alternative route based on information theory, which exploits the entire

structure of the protocol. Fix a deterministic protocol for f⊕ which sends k bits, and let K = 2k.

Let Ai×Bi for i ∈ [K] be the partition of Fn
2×Fn

2 induced by the protocol. For an input (x,y), let

Πxy ∈ [K] denote the index of the unique rectangle that contains (x,y). By our assumption f⊕ is

constant on each Ai×Bi (or equivalently the value of f⊕(x,y) is determined by Πxy), which means

that f is constant on each Ai +Bi.

Let µ = E[ f ] be the average of f on the entire space, and assume without loss of generality

that µ ≥ 1/2. We may use the existence of a large monochromatic rectangle to find a large subspace

V on which the average of f is far from the global average. Concretely, let A×B be the largest

rectangle on which f equals to zero. It can be shown that |A|, |B| ≥ 2n−2k. The result of [San12a]

implies the existence of a subspace V such that |V ∩ (A+B)| ≥ (3/4)|V |, where the co-dimension

of V is O(k4). This implies that E[ f |V ] ≤ 1/4. For x ∈ Fn
2, let x̃ be the unique element in Fn

2/V

satisfying x ∈ V + x̃. Note that x+ y ∈ V if and only if x̃ = ỹ. Let X ,Y be random variables,

independently and uniformly sampled from Fn
2. As is conventional, here and throughout the rest of

the paper we use the notation XY for the random variable (X ,Y ). We have

E[ f (X +Y )]−E[ f (X +Y )|X̃ = Ỹ ]≥ 1
2
− 1

4
=

1
4
. (4.1)

This shows that ΠXY is not independent from X̃Ỹ . However, we need to quantify this, and to this

end, in Lemma 4.3.4 we show that (4.1) implies that the mutual information between ΠXY and X̃Ỹ

is large:

I(ΠXY ; X̃Ỹ ) = H(ΠXY )−H(ΠXY |X̃Ỹ )≥ 2−8.

53



In other words, knowing which shifts of V , X and Y belong to, decreases the entropy of ΠXY

significantly on average. In particular, there exists a coset (V +w1)×(V +w2) on which the entropy

decreases by at least 2−8. We may now iterate this process. As originally we have H(ΠXY )≤ k

(since the partition P is to K = 2k rectangles), after O(k) iterations we will reach a constant

function on a subspace of co-dimension O(k5).

4.2 Preliminaries

Combinatorial Rectangles and Partitions The Cartesian product of two sets A,B⊆ Fn
2

is called a combinatorial rectangle. It is well-known that the inputs that lead to a particular leaf in

a deterministic communication protocol form a combinatorial rectangle, and thus every protocol

taking input from Fn
2×Fn

2 provides a partition of Fn
2×Fn

2 into combinatorial rectangles.

We will use functions Π : Fn
2×Fn

2→ [K] to denote partitions of Fn
2×Fn

2. Here Π maps

every input to the index of the unique rectangle that contains it. For every vector space V over F2

we extend these definitions to V ×V by identifying V ∼= Fn
2 for n = dim(V ).

Entropy, Mutual Information, and Divergence The entropy of a discrete random vari-

able X is defined as

H(X) = ∑
a∈supp(X)

Pr[X = a] log
1

Pr[X = a]
,

where here and throughout the paper, logarithms are in base two. The entropy of X conditioned on

a random variable Y is defined as

H(X |Y ) = ∑
y

Pr[Y = y]H(X |Y = y) = H(XY )−H(Y ),

and corresponds to the amount of information that is left in X after knowing Y . Here and throughout

the paper, as is customary in information theory, we use XY to denote (X ,Y ).
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The mutual information between X and Y is defined as

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) = H(XY )−H(X)−H(Y ).

Mutual information is symmetric, it is always non-negative, and it measures the amount of the

information shared between two random variables. Let µ and ν be two probability distributions on

the same space. The Kullback-Leibler divergence (or KL-divergence, or simply divergence) of ν

from µ is defined as

D(µ‖ν) = E
a∼µ

[
log

µ(a)
ν(a)

]
.

The divergence D(µ‖ν) is non-negative, and it is not symmetric in µ and ν . It is equal to +∞ if

supp(µ) 6⊆ supp(ν). The so called Pinsker’s inequality states that divergence can be used to bound

the distance between the two probability measures:

∑
a
|µ(a)−ν(a)| ≤

√
2D(µ‖ν). (4.2)

Mutual information can be expressed using divergence. Indeed if p(x,y) denotes the joint

distribution of (X ,Y ), then

I(X ;Y ) = D(p(x,y)‖p1(x)p2(y)), (4.3)

where p1(x) is the marginal distribution of X and p2(y) is the marginal distribution of Y .

4.3 Proof of Main theorem

As we have discussed in the introduction, the proof of Theorem 2.2.13 can be divided into

the following three steps:

• Step I: Applying Sanders’s result [San12a] together with Fourier sparsity of f to find a large
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subspace V such that

|E[ f ]−E[ f |V ]| ≥ 1
4
.

• Step II: Applying information theoretic techniques to deduce from Step I that there exist

w′,w′′ ∈ Fn
2 with

H(Π|XY ∈ (V +w′)× (V +w′′))≤ H(Π)−2−8.

Repeated application of Steps I and II will show the existence of a large subspace V such

that f |V is constant; this answers Question 4.1.1.

• Step III: Using Fourier sparsity of f to deduce from Step II that f can be computed by a

parity decision tree of low depth.

Next we will show how these three steps are carried out.

4.3.1 Step I: A large subspace on which the average changes significantly

We use the following result of Sanders [San12a] (see also [CS10] and [CLS13]).

Theorem 4.3.1. Let A,B⊆ Fn
2 be sets of size |A|, |B| ≥ 2n/K. For any η > 0, there exists an affine

subspace V of co-dimension d ≤ O(log(K)4/η) such that

|(A+B)∩V | ≥ (1−η)|V |.

We also recall a corollary of the uncertainty principle, lemma 2.1.1, which implies that

Fourier-sparse boolean functions cannot be too close to constant without actually being constant.

Lemma 4.3.2. Let f : Fn
2→{0,1} be a function which has at most 2s nonzero Fourier coefficients.

If E[ f ]< 2−s then f ≡ 0, and if E[ f ]> 1−2−s then f ≡ 1.

The following corollary establishes Step I of the proof.
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Corollary 4.3.3. Let Π : Fn
2×Fn

2→ [2k] be a partition into f⊕-monochromatic rectangles. There

exists a subspace V ⊆ Fn
2 of co-dimension O(k4) such that

|E[ f ]−E[ f |V ]| ≥ 1
4
.

Proof. Assume without loss of generality that E[ f ]≥ 1/2 (otherwise replace f with 1− f ). By

Lemma 4.3.2, we have E[ f⊕] = E[ f ]≤ 1−2−k. Considering all the 0-rectangles in the partition,

there must exist a rectangle A×B in the partition such that f (A+B) = 0 and |A×B| ≥ 22n−2k. In

particular, |A|, |B| ≥ 2n−2k. Applying Theorem 4.3.1 to A,B with K = 22k,η = 1/4, we deduce the

existence of an affine subspace V of co-dimension O(k4) such that |(A+B)∩V | ≥ (3/4)|V |. In

particular, E[ f |V ]≤ 1/4.

4.3.2 Step II: Decreasing the entropy of the partition

Consider f : Fn
2 → {0,1}, a partition Π : Fn

2×Fn
2 → [K] into rectangles such that f⊕ is

constant on each rectangle, and a subspace V of Fn
2. For x ∈ Fn

2, let x̃ be the unique element in

Fn
2/V satisfying x ∈V + x̃.

Lemma 4.3.4. If |E[ f ]−E[ f |V ]| ≥ ε and (X ,Y ) takes values in Fn
2×Fn

2 uniformly at random,

then for ΠXY = Π(X ,Y ), we have

I(ΠXY ; X̃Ỹ )≥ ε
2/16.

Proof. Denote W = Fn
2/V , and for every t ∈ [K] and w ∈W , let pt = Pr[ΠXY = t] and pt|w,w =

Pr[ΠXY = t|X̃ = Ỹ = w]. It follows from the assumption

|E[ f ]−E[ f |V ]|= |E[ f (X +Y )]−E[ f (X +Y )|X̃ = Ỹ ]| ≥ ε
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that ∑t |pt−Ew∈W
[
pt|w,w

]
| ≥ ε . In particular

∑
t

E
w∈W

[
|pt− pt|w,w|

]
≥ ε.

Since the function Π gives a partition into rectangles, for every w ∈W and t ∈ [K], we have

pt|w,w =
Pr[X̃ = Ỹ = w|ΠXY = t]× pt

Pr[X̃ = Ỹ = w]
= pt×

Pr[X̃ = w|ΠXY = t]
Pr[X̃ = w]

× Pr[Ỹ = w|ΠXY = t]
Pr[Ỹ = w]

.

Consequently, using max(0,1−ab)≤ |1−a|+ |1−b| and Pinsker’s inequality (4.2) we have

ε ≤ ∑
t

E
w∈W

[
|pt− pt|w,w|

]
= 2∑

t
E

w∈W

[
max(0, pt− pt|w,w)

]
= 2∑

t
pt E

w∈W

[
max

(
0,1− Pr[X̃ = w|ΠXY = t]

Pr[X̃ = w]
× Pr[Ỹ = w|ΠXY = t]

Pr[Ỹ = w]

)]
≤ 2∑

t
pt E

w∈W

[∣∣∣∣1− Pr[X̃ = w|ΠXY = t]
Pr[X̃ = w]

∣∣∣∣+ ∣∣∣∣1− Pr[Ỹ = w|ΠXY = t]
Pr[Ỹ = w]

∣∣∣∣]
≤ 2

√
2I(ΠXY ; X̃)+

√
2I(ΠXY ;Ỹ )≤ 4

√
I(ΠXY ; X̃)+ I(ΠXY ;Ỹ ).

where we used (4.3) to show that I(ΠXY ; X̃) = D(pt,w ‖ ptqw) with pt,w = Pr[ΠXY = t, X̃ = w] and

qw = Pr[X̃ = w], and the similar identity for I(ΠXY ;Ỹ ). Finally since X̃ and Ỹ are independent

(even after conditioning on ΠXY = t), we have I(ΠXY ; X̃Ỹ ) = I(ΠXY ; X̃)+ I(ΠXY ;Ỹ ).

Note that X̃ = Ỹ can be a very small-probability event (this is the case when V is a small

subspace), and thus in the first glance it might be surprising that it is possible to use |E[ f ]−E[ f |V ]|

to obtain a lower bound for I(ΠXY ; X̃Ỹ ), independent of the size of V . Indeed Lemma 4.3.4 exploits

the assumption that ΠXY is defined by a partition into combinatorial rectangles and as the following

example shows this is not true for partitions into generic sets.

Example 4.3.5. Let V = {x ∈ Fn
2 : x1 = 0} so that x̃ = (x2, . . . ,xn) for x = (x1, . . . ,xn) ∈ Fn

2. Con-
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sider the following partition of Fn
2×Fn

2 into three sets

Πxy =


1 x̃ = ỹ

2 x̃ 6= ỹ,x1 = 0

3 x̃ 6= ỹ,x1 = 1

,

and let f (x,y) = 1 if Πxy = 2 and f (x,y) = 0 otherwise. Then E[ f ] ≈ 1
2 while E[ f |X̃ = Ỹ ] = 0.

However I(ΠXY ; X̃Ỹ ) = o(1). Similarly it is easy to construct examples showing that it is essential

that X and Y are independent.

Remark 4.3.6. Note that the proof of Lemma 4.3.4 shows that the following general statement is

true. Let µ and ν be two distributions on Fn
2, and let A and B be two functions on Fn

2 such that

A(X) and B(Y ) have the same distribution if (X ,Y )∼ µ×ν . If Π : Fn
2×Fn

2→ [K] is a partition

into rectangles, and g : Fn
2×Fn

2→{0,1} is constant on each rectangle, then

|E[g(X ,Y )]−E[g(X ,Y )|A(X) = B(Y )]| ≤ 4
√

I(Π(X ,Y );A(X)B(Y )).

4.3.3 Step III: Constructing the PDT

Tsang et al. [TWXZ13] showed that in order to design a parity decision tree, it suffices to

find a large subspace on which the function is constant; and then recurse. For completeness, we

reproduce their argument. Let rank( f ) denote the rank of the real matrix Mx,y = f (x+ y). It equals

the number of nonzero Fourier coefficients of f . Note that logrank( f )≤ D( f⊕).

Lemma 4.3.7. Let T : N→ N be a function for which the following holds. For any function

f : Fn
2→{0,1}, if D( f⊕) = k then there exists an affine subspace V of co-dimension T (k) on which

f is constant. Then for any function f : Fn
2→{0,1}, pdt( f )≤ T (D( f⊕)) · (D( f⊕)+1).

Proof. The main idea is that if f is constant on V , then its rank on any coset of V reduces by at
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least a factor of two, which then allows for induction. To see that, assume that rank( f ) = r. Then

f (x) =
r

∑
i=1

f̂ (αi)(−1)〈x,αi〉,

for some α1, . . . ,αr ∈ Fn
2. We know by assumption that f is constant on an affine subspace V

of co-dimension t = T (D( f⊕)). We may assume that V is linear subspace, by replacing f (x)

with f (x+ v) for some v ∈ V (note that this does not change D( f⊕) or rank( f )). Let W be the

quotient subspace Fn
2/V so that dim(W ) = t and Fn

2 =V +W . Note that any x ∈ Fn
2 can be uniquely

decomposed as x = v+w with v ∈V,w ∈W . Let πV : Fn
2→V and πW : Fn

2→W be the projection

maps to V and W , respectively, mapping x = v+w to πV (x) = v and πW (x) = w. Then

f |V (v) =
r

∑
i=1

f̂ (αi)(−1)〈v,πV (αi)〉,

In particular, as f is constant on V , it must be the case that for every non-zero αi there exists some

α j such that πV (αi) = πV (α j), or equivalently αi +α j ∈W . Thus

|{πV (αi) : i ∈ [r]}| ≤ r+1
2

.

Let V +w be any coset of V . Then

f |V+w(v+w) =
r

∑
i=1

f̂ (αi)(−1)〈w,πW (αi)〉(−1)〈v,πV (αi)〉.

In particular, rank( f |V+w)≤ |{πV (αi) : i ∈ [r]}| ≤ rank( f )+1
2 .

We now construct the parity decision tree for f . We first query w = πW (x), which re-

quires depth dim(W ) = T (D( f⊕)). Each restricted function f |V+w has D(( f |V+w)⊕)≤ D( f⊕) and

rank( f |V+w) ≤ rank( f )+1
2 , and hence by induction can be computed by a parity decision tree of

depth at most T (D( f⊕)) · (log(rank( f ))+1)≤ T (D( f⊕)) · (D( f⊕)+1). The lemma follows.

60



4.3.4 Proof of Theorem 2.2.13

Let f : Fn
2 → {0,1} be a boolean function. The associated XOR function is f⊕(x,y) =

f (x+ y). Let D( f⊕) denote the minimum complexity of a deterministic protocol which computes

f⊕. We restate Theorem 2.2.13, which we prove in this section, for the convenience of the reader.

Theorem 2.2.13 ([HHL16]). For any f : Fn
2→{0,1} we have pdt( f )≤ O(D( f⊕)6).

Proof. Let k = D( f⊕). By Corollary 4.3.3 there exists an affine subspace V of co-dimension O(k4)

such that

|E[ f ]−E[ f |V ]| ≥ 1
4
.

Let W = Fn
2/V so that Fn

2 =V +W . Applying Lemma 4.3.4, we obtain

I(Π; X̃Ỹ )≥ 2−8.

In particular, there exists a choice of w′,w′′ ∈W such that

H(Π|X̃ = w′,Ỹ = w′′)≤ H(Π)−2−8.

By restricting the rectangles of Π to (V +w′)× (V +w′′), we obtain a partition Π|(V+w′)×(V+w′′) of

(V +w′)× (V +w′′) into f |V+w′+w′′-monochromatic rectangles with

H(Π|(V+w′)×(V+w′′)) = H(Π|X̃ = w′,Ỹ = w′′)≤ H(Π)−2−8.

Since H(Π)≤ k, iterating this procedure at most 28k times, we find an affine subspace V such that

f |V is constant. Furthermore since each iteration increases the co-dimension by at most O(k4), the

subspace V will have co-dimension O(k5). Finally, we can apply Lemma 4.3.7 to conclude the

theorem.
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Chapter 5

Fourier structure of sparse sets

The purpose of this chapter is to prove the following two results. The reader is referred

to Section 2.2.4 for the background regarding these results. In the following G is a finite abelian

group.

Theorem 2.2.17. Fix 0 < δ < α < 1/2 and 0 < ε < 1/2. Let A⊆G of size |A| ≥ |G|α . Then there

exists a subset A′ ⊆ A of size |A′| ≥ |A|/C such that

∣∣Specε(A
′)+Specε(A

′)
∣∣≤ (1/ε)O(1/δ ) · |G|

1+δ

|A′|

where C ≤ exp((1/ε)O(1/δ )).

Theorem 2.2.18. Fix 0 < δ < α < 1/2 and 0 < ε < 1/2. Let A⊆G of size |A| ≥ |G|α . Then there

exists a subset A′ ⊆ A of size |A′| ≥ |A|/C and ε ′ ≥ ε21/δ

such that

|Specε ′(A
′)| ≥ |Specε(A)|/C

and

|Specε ′(A
′)+Specε ′(A

′)| ≤C|G|δ · |Specε ′(A
′)|,

where C ≤ exp
(
(1/ε)O(24/δ )

)
.
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Also we remind the reader of the following conjecture.

Conjecture 2.2.19. Fix 0 < δ < α < 1/2 and 0 < ε < 1/2. Let A ⊆ G of size |A| ≥ |G|α . Then

there exists a subset A′ ⊆ A of size |A′| ≥ |A|/C such that

|Specε(A
′)+Specε(A

′)| ≤C|G|δ · |Specε(A
′)|,

where C =C(ε,δ ).

Organization We prove Theorem 2.2.17 in Section 5.1 and Theorem 2.2.18 in Section 5.2.

5.1 Proof of Theorem 2.2.17

We begin by introducing some notation. For A⊆ G and Γ⊆ Ĝ, define an |A|× |Γ| complex

matrix M = M(A,Γ), with rows indexed by A and columns by Γ, as follows. First, denote by

γ(A) := Ea∈A[γ(a)] the average value of the character γ on A. Define

Ma,γ := γ(a)
γ(A)
|γ(A)|

.

With this definition, we have that for any Γ⊆ Specε(A),

∣∣1T
AM(A,Γ)1Γ

∣∣= ∑
γ∈Γ

∣∣∣∣∣∑a∈A
γ(a)

∣∣∣∣∣≥ ε|A||Γ|. (5.1)

We next define a notion of regularity for M(A,Γ).

Definition 5.1.1 (Regularity for M(A,Γ)). Let A⊆ G,Γ⊆ Ĝ. The matrix M = M(A,Γ) is called

λ -regular if for every pair of functions f : A→ C, g : Γ→ C such that 〈 f ,1A〉= 0 or 〈g,1Γ〉= 0

or both, it holds that

| f T Mg|< λ‖ f‖∞‖g‖∞|A||Γ|.
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It is conventional to use the L2-norm in definition of regularity, however in our case, the

use of L∞-norm makes the argument more straightforward and gives better bounds.

The argument informally goes as follows. We divide into two cases. First, we show if

M = M(A,Specε(A)) is λ -regular for a suitable choice of λ , then Specε(A) has bounded doubling.

Otherwise, if M is not λ -regular, we find large subsets A′ ⊆ A,Γ′ ⊆ Specε(A) such that M(A′,Γ′)

has higher average. This allows us to revert to study M(A′,Specε ′(A
′)) where ε ′ = ε +λ O(1) and

iterate.

First, we analyze the case where M is regular.

Lemma 5.1.2. Fix some 0 < ε,ρ < 1 and Γ⊆ Specρ(A). If M = M(A,Γ) is ερ/150-regular, then

for any γ ∈ Specε(A), there is a subset Γγ ⊆ Γ, |Γγ | ≥ 0.9|Γ| such that

γ +Γγ ⊂ Specερ/2(A).

Proof. Suppose towards contradiction that there is some γ◦ ∈ Specε(A) for which the claim does

not hold. That is, there exists a subset Γ′ ⊆ Γ of size |Γ′|> 0.1|Γ| such that ∀γ ′ ∈ Γ′,

γ◦+ γ
′ /∈ Specερ/2(A).

Define a pair of functions f : A→ C and g : Γ→ C by

f (a) = γ◦(a),

g(γ) =
|Γ|
|Γ′|

1Γ′(γ).
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We have

f T Mg = ∑
γ∈Γ

[
∑
a∈A

γ◦(a)γ(a)
γ(A)
|γ(A)|

][
|Γ|
|Γ′|

1Γ′(γ)

]

=
|Γ|
|Γ′| ∑

γ∈Γ

γ(A)
|γ(A)| ∑a∈A

γ◦(a)γ(a)1Γ′(γ)

=
|Γ|
|Γ′| ∑

γ ′∈Γ′

γ ′(A)
|γ ′(A)| ∑a∈A

(
γ◦+ γ

′)(a).
By our assumption, ∀γ ′ ∈ Γ′,γ◦+ γ ′ /∈ Specερ/2(A). Therefore

∣∣ f T Mg
∣∣≤ (ερ/2) · |Γ||A|.

Decompose f as f = f1+ f2 with f1 = Ea∈A[ f (a)] ·1A and g as g = g1+g2 with g1 = Eγ∈Γ[g(γ)] ·

1Γ = 1Γ. Then

f T Mg = f T
1 Mg1 + f T

2 Mg1 + f T
1 Mg2 + f T

2 Mg2. (5.2)

We have that 〈 f2,1A〉= 0, 〈g2,1Γ〉= 0 and

∣∣ f T
1 Mg1

∣∣= ∣∣∣∣ Ea∈A
f (a) ·

(
1T

AM1Γ

)∣∣∣∣≥ ∣∣∣∣ Ea∈A
[γ◦(a)]

∣∣∣∣ ·ρ|Γ||A| ≥ ερ|Γ||A|.

We show that the other terms in Equation (5.2) are too small to cancel out the contribution of

f T
1 Mg1. Consequently, we reach a contradiction.

In each one of the terms f T
1 Mg2, f T

2 Mg1, f T
2 Mg2 at least one of the functions are orthogonal

to the identity function. Therefore, we can bound the size of these terms using the ερ

150-regularity

assumption. We have ‖ f1‖∞ ≤ 1,‖ f2‖∞ ≤ 2,‖g1‖∞ ≤ 1,‖g2‖∞ ≤ 10, and hence

∣∣ f T
2 Mg1 + f T

1 Mg2 + f T
2 Mg2

∣∣≤ (20+10+20) · (ερ/150)|A||Γ|= (ερ/3)|A||Γ|.

This implies that
∣∣ f T Mg

∣∣≥ 2
3ερ|A||Γ|, which is a contradiction.
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Next, we show how to use Lemma 5.1.2 to infer that if M = M(A,Specρ(A)) is ερ

150 -regular

then |Specε(A)−Specε(A)| is small as long as |Specερ/2(A)| ≈ |Specρ(A)|.

Lemma 5.1.3. If M = M(A,Specρ(A)) is ερ

150 -regular, then

|Specε(A)−Specε(A)| ≤ 2

∣∣∣Specερ/2(A)
∣∣∣2∣∣∣Specρ(A)
∣∣∣ .

Proof. Fix arbitrary γ1,γ2 ∈ Specε(A). By Lemma 5.1.2 there exist sets Γ1,Γ2 ⊆ Specρ(A) of size

|Γ1|, |Γ2| ≥ 0.9|Specρ(A)| such that γ1 +Γ1,γ2 +Γ2 ⊆ Specερ/2(A). For any γ ∈ Γ1∩Γ2 we can

then write

γ1− γ2 = (γ1 + γ)− (γ2 + γ)

where γ1 + γ,γ2 + γ ∈ Specερ/2(A). This gives |Γ1∩Γ2| ≥ 0.8|Specρ(A)| distinct ways to write

γ1− γ2 as the difference of a pair of elements in Specερ/2(A). Consequently

|Specε(A)−Specε(A)| ≤

∣∣∣Specερ/2(A)
∣∣∣2

|Γ1∩Γ2|
≤

∣∣∣Specερ/2(A)
∣∣∣2

0.8
∣∣∣Specρ(A)

∣∣∣ .

Next, we consider the case that the matrix M is not λ -regular for λ = ερ/150. In the

following we denote E[M] := Ea,γ [Ma,γ ].

Lemma 5.1.4. If M = M(A,Γ) is not λ -regular, then there exist subsets A′ ⊆ A, Γ′ ⊆ Γ such that

∣∣E[M(A′,Γ′)
]∣∣≥ |E [M(A,Γ)]|+ cλ

15,

where |A′| ≥ cλ 15|A|, |Γ′| ≥ cλ 15|Γ|, and c > 0 is an absolute constant.

Assuming that M = M(A,Γ) is not λ -regular, there are functions f : A→ C and g : Γ→ C

with ‖ f‖∞ = ‖g‖∞ = 1, at least one of which is orthogonal to the identity function, such that
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∣∣ f T Mg
∣∣ ≥ λ |A||Γ|. As a first step towards proving Lemma 5.1.4, we approximate f ,g by step

functions f̃ and g̃, respectively.

Claim 5.1.5. Fix η > 0. Let f : A→ C be a function with ‖ f‖∞ = 1. Then there exists a function

f̃ : A→ C such that

‖ f − f̃‖∞ ≤ η

with f̃ = ∑
k
i=1 αi1Ai , where Ai ⊆ A are disjoint subsets and αi ∈C with |αi| ≤ 1. Moreover, k≤ 100

η2 .

Proof. We partition A based on the phase and magnitude of f . For r = d10/ηe define

A j,k = {a ∈ A : j/r < | f (a)| ≤ ( j+1)/r and 2πk/r < arg f (a)≤ 2π(k+1)/r} .

We partition A to subsets A j,k for j,k ∈ {0, . . . ,r−1}. Define the step function f̃ as

f̃ =
r−1

∑
j,k=0

j/r · e(2πi)k/r ·1A j,k .

It is easy to verify that for all a ∈ A, | f (a)− f̃ (a)| ≤ η as claimed.

We proceed with the proof of Lemma 5.1.4.

Proof of Lemma 5.1.4. Let ρ := E[M] be the average of M, and define a matrix M′ by M′a,γ =

Ma,γ − ρ , so that E[M′] = 0. Note that |M′a,γ | ≤ 2 for all a ∈ A,γ ∈ Γ. We may assume for

simplicity that ρ is real and non-negative, by multiplying all entries of M by an appropriate phase

eiθ , as this does not change any of the properties at hand.

As we assume M is not λ -regular, there exist functions f : A → C ,g : Γ → C with

‖ f‖∞,‖g‖∞ = 1, one of which at least sums to zero, such that | f T Mg| ≥ λ |A||Γ|. Note that

f T M′g = f T Mg. Let f̃ , g̃ be their step function approximations given by Claim 5.1.5 for η = λ/8,

where f̃ = ∑
k
i=1 αi1Ai, g̃ = ∑

k
i=1 βi1Γi and k ≤ 100

η2 . Moreover

∣∣∣ f̃ T M′g̃
∣∣∣≥ | f T M′g|− |( f − f̃ )T M′g|− | f̃ T M′(g− g̃)| ≥ λ/2 · |A||Γ|.
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That is, ∣∣∣∣∣ k

∑
i, j=1

αiβ j1T
Ai

M′1Γ j

∣∣∣∣∣≥ λ/2 · |A||Γ|.

In particular, there must exist Ai,Γ j such that

∣∣1T
Ai

M′1Γ j

∣∣≥ (λ/2k2) · |A||Γ| ≥ c1λ
5 · |A||Γ|,

where c1 > 0 is an absolute constant.

If we knew that 1T
Ai

M′1Γ j is real and non-negative, say, then we would be done by choosing

A′ = Ai,Γ
′ = Γ j as then E[M(A′,Γ′)]≥ ρ + c1λ 5. However, it may be that its real part is negative,

cancelling the average. To overcome this, we consider choosing A′ ∈ {Ai,Ac
i },Γ′ ∈ {Γ j,Γ

c
j} (where

Ac
i = A\Ai,Γ

c
j = Γ\Γ j) and show that one of the choices satisfies the required properties. Set

α1 := 1T
Ai

M′1Γ j ,α2 := 1T
Ac

i
M′1Γ j ,α3 := 1T

Ai
M′1Γc

j
,α4 := 1T

Ac
i
M′1Γc

j

and

β1 := |Ai||Γ j|,β2 := |Ac
i ||Γ j|,β3 := |Ai||Γc

j|,β4 := |Ac
i ||Γc

j|.

Fix δ = cλ 15 for an absolute constant c > 0 to be chosen later. We will show that for some

i ∈ {1,2,3,4}, we have |βi| ≥ δ |A||Γ| and |αi +ρβi| ≥ (ρ + δ )βi. This implies that if we take

A′,Γ′ to be the corresponding sets, then |A′| ≥ δ |A|, |Γ′| ≥ δ |Γ| and |1A′M1Γ′| = |αi + ρβi| ≥

(ρ +δ )|A′||Γ′|.

In order to show that, let us note that ∑αi = 0, |α1| ≥ c1λ 5|A||Γ|, β1 ≥ c1λ 5|A||Γ|, and the

βi are real non-negative numbers with ∑βi = |A||Γ|. If for some i we have Re(αi)≥ δ |A||Γ| then

|αi +ρβi| ≥ Re(αi +ρβi) ≥ δ |A||Γ|+ρβi ≥ (ρ + δ )βi and we are done. If Re(αi) ≤ −δ |A||Γ|

then, since ∑αi = 0, there exists some j 6= i for which Re(α j) ≥ δ/3 · |A||Γ|, and we are done

by the previous argument. So, we may assume that |Re(αi)| ≤ δ |A||Γ| for all i. In particular
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|Re(α1)| ≤ (δ/c1λ 5)β1. Hence

|α1 +ρβ1|2 = |ρβ1 +Re(α1)|2 + Im(α1)
2

≥ ρ
2
β

2
1 + |α1|2−2ρβ1|Re(α1)|

≥ β
2
1 (ρ

2 + c2
1λ

10−2δ/c1λ
5).

≥ β
2
1 (ρ

2 +(c2
1−2c/c1)λ

10),

where we used our choice of δ = cλ 15. If we choose c > 0 small enough, we conclude that also

in this case, |α1 +ρβ1| ≥ (ρ + δ )β1. Note that the condition βi ≥ c1λ 5|A||Γ| is automatically

satisfied for all i, by making sure, let’s say, |Ai| ≤ |A|/2 and |Γ j| ≤ |Γ|/2.

We now combine Lemma 5.1.3 and Lemma 5.1.4 in order to prove Theorem 2.2.17. The

high level idea is the following. Initialize ρ = ε,Γ = Specε(A). If M(A,Γ) is λ -regular for

λ = ερ/150, and |Specερ/2(A)| ≈ |Γ|, then the proof follows from Lemma 5.1.3 and Parseval’s

identity. Otherwise, one of two cases must occur. The first case that could occur is that M(A,Γ) is

not λ -regular. Then by Lemma 5.1.4 we can replace A,Γ with A′,Γ′ and increase ρ by a noticeable

amount. This cannot occur too many times, as ρ ≤ 1. The second case that could occur is that

|Specερ/2(A)| � |Γ| ≈ Specρ(A). In such a case, we set ρ → ερ/2 and increase the spectrum of

A by a noticeable amount. As the spectrum is bounded by |G|, this again cannot happen too many

times. Combining these steps together requires a somewhat delicate balance act.

Let K = K(ε,δ ) be a parameter to be optimized later. We define a sequence of sets Ai ⊆ A

and parameters ρi ∈ [0,1] for i≥ 1, where initially A0 = A,ρ0 = ε . Given Ai,ρi set λi = ερi/150

and run the following procedure:

(i) If M(Ai,Specρi
(Ai)) is λi-regular and |Specερi/2(Ai)| ≤ K|Specρi

(Ai)|, then set A∗ = Ai and

finish.

(ii) If M(Ai,Specρi
(Ai)) is not λi-regular then apply Lemma 5.1.4 to Ai and Specρi

(Ai). Let
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A′ ⊆ Ai,Γ
′ ⊆ Specρi

(Ai) be the resulting sets such that |A′| ≥ cλ 15
i |Ai|, |Γ′| ≥ cλ 15

i |Γi| and

|E[M(A′,Γ′)]| ≥ ρi + cλ 15
i . Set Ai+1 = A′ and ρi+1 = ρi +(c/2)λ 15

i . Return to step (i).

(iii) If |Specερi/2(Ai)|> K|Specρi
(Ai)| then set Ai+1 = Ai and ρi+1 = ερi/2. Return to step (i).

Next, we analyze this procedure. First, note that if the procedure ends with A∗ = Ai then by

Lemma 5.1.3 and Parseval’s identity we have that

|Specε(A
∗)−Specε(A

∗)| ≤ 2K|Specερi/2(Ai)| ≤
8K|G|

ε2ρ2
i |Ai|

. (5.3)

So, we need to show that ρi, |Ai| are never too small. Suppose that stages (ii) and (iii) occur k1 and

k2 times, respectively. Let η : {1, . . . ,k2}→ {1, . . . ,k1 + k2} be the ordered indices of occurrences

of stage (iii). We first bound k1.

Claim 5.1.6. If i < η( j) then ρi ≥ (ε/2) j.

Proof. The value of ρi increases in step (ii), and decreases in step (iii) by a factor of ε/2. If

i < η( j) then we applied step (iii) at most j−1 times, hence ρi ≥ (ε/2) j−1ρ0 ≥ (ε/2) j.

Claim 5.1.7. For ∀ j ∈ {1, . . . ,k2−1}, |η( j+1)−η( j)| ≤ (1/ε)O( j).

Proof. Consider a step i for η( j)≤ i≤ η( j+1). We have that ρi+1 ≥ ρi +(c/2)(ρiε/150)15 ≥

ρi + c′ε15( j+2), where c,c′ > 0 are absolute constants. As ρi never exceeds 1 for all i, this process

cannot repeat more than (1/c′)(1/ε)15( j+2) times. As we assume ε < 1/2, this is bounded by

(1/ε)c′ j for a large enough c′ > 0.

Corollary 5.1.8. k1 ≤ (1/ε)O(k2).

Proof. By claim 5.1.7, k1 ≤ ∑
k2
j=1(1/ε)O( j) ≤ (1/ε)O(k2).

We next upper bound k2. To do so, we will show that in step (ii) we have that Specρi+1
(Ai+1)

is not much smaller than Specρi
(Ai).
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Claim 5.1.9. Assume that we run step (ii) in iteration i. Then

|Ai+1| ≥ cλ
15
i |Ai|

and

|Specρi+1
(Ai+1)| ≥ cλ

30
i |Specρi

(Ai)|,

where c > 0 is an absolute constant.

Proof. We apply in step (ii) Lemma 5.1.4 to Ai,Specρi
(Ai). We get subsets Ai+1 ⊆ Ai,Γ

′ ⊆

Specρi
(Ai) such that |Ai+1| ≥ cλ 15

i |Ai|, |Γ′| ≥ cλ 15
i |Specρi

(Ai)| and ρi+1 ≤ |E[M(Ai+1,Γ
′)]| −

(c/2)λ 15
i . Let S = Γ′∩Specρi+1

(Ai+1). Then

|E[M(Ai+1,Γ
′)]| ≤ |S|

|Γ′|
+

(
1− |S|
|Γ′|

)
ρi+1.

Hence |Specρi+1
(Ai+1)| ≥ |S| ≥ (c/2)λ 15

i |Γ′| and the claim follows.

Combining Claim 5.1.7 and Claim 5.1.9, we deduce that, for any j ∈ {1, . . . ,k2−1}, the

ratio in the size of the spectrums immediately after the j-th application of step (iii), and immediately

before the j+1 application of step (iii), is lower bounded by

Tj :=
|Specρη( j)

(Aη( j))|
|Specρη( j+1)−1

(Aη( j+1)−1)|
≤

η( j+1)−2

∏
i=η( j)

1
cλ 30

i
≤

(
1
c

(
150 ·2 j

ε j+1

)30
)η( j+1)−η( j)

≤ (1/ε)O( j·(1/ε)O( j)) ≤ exp
(
(1/ε)O( j)

)
.

We will choose K large enough so that Tj ≤ K1/2 for all j < k2, and hence

|Specρη( j+1)
(Aη( j+1))| ≥ K · |Specρη( j+1)−1

(Aη( j+1)−1)| ≥ K1/2 · |Specρη( j)
(Aη( j))|.

Fix K = |G|δ and C = exp((1/ε)O(1/δ )). We may assume that |G| ≥C, as otherwise our bounds
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are trivial. Then, we must have k2 ≤ 2/δ and hence k1 ≤ (1/ε)O(1/δ ). We conclude that

|A|
|A∗|
≤

k1+k2

∏
i=1

1
cλ 15

i
≤ exp

(
(1/ε)O(1/δ )

)

and that plugging these estimates into Equation (5.3) implies that

|Specε(A
∗)−Specε(A

∗)| ≤ (1/ε)O(1/δ ) · |G|1+δ/|A∗|.

Since the definition of the spectrum is symmetric, Specε(A
∗) =−Specε(A

∗), this implies the same

bounds on |Specε(A
∗)+Specε(A

∗)|.

5.2 Proof of Theorem 2.2.18

The proof of theorem 2.2.18 is very similar to the proof of theorem 2.2.17, with a few small

tweaks. First, we use Lemma 5.1.2 and Lemma 5.1.3 in the special case of ρ = ε . We restate

Lemma 5.1.3 in this special case.

Lemma 5.2.1. If M = M(A,Specε(A)) is ε2

150 -regular, then

|Specε(A)−Specε(A)| ≤ 2

∣∣∣Specε2/2(A)
∣∣∣2

|Specε(A)|
.

We combine Lemma 5.2.1 with Lemma 5.1.4 to prove Theorem 2.2.18. The difference

is in the iterative refinement process. Here, instead of setting λi = ερi/150, we instead set λi =

ρ2
i /150. To be more precise, initialize Γ = Specε(A). If M(A,Γ) is λ -regular for λ = ε2/150, and

|Specε2/2(A)| ≈ |Γ|, then the proof follows from Lemma 5.2.1 and Parseval’s identity. Otherwise,

one of the following two cases must occur. The first case that could occur is that M(A,Γ) is

not λ -regular. In this case, by Lemma 5.1.4 we can replace A, Γ with A′,Γ′ and increase ε by a

noticeable amount. This can not occur many times as ε ≤ 1. The other case that can occur is that

|Specε2/2(A)| � |Γ| ≈ Specε(A). In this case, we set ε = ε2/2 and increase the spectrum of A.
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Since the spectrum is bounded by |G|, this also can not occur too many times. In the following we

formalize this high level argument.

Let K = K(ε,δ ) be a parameter to be optimized later. Define a sequence of sets Ai ⊆ A

and parameters ρi ∈ [0,1] for i≥ 1, and initialize A0 = A and ρ0 = ε . Recall that δ is a parameter,

chosen so that the final doubling constant is bounded by |G|δ . Given Ai,ρi set λi = ρ2
i /150 and

run the following procedure:

(i) If M(Ai,Specρi
(Ai)) is λi-regular and |Spec

ρ2
i /2(Ai)| ≤ K|Specρi

(Ai)|, then set A∗ = Ai and

finish.

(ii) If M(Ai,Specρi
(Ai)) is not λi-regular then apply Lemma 5.1.4 to Ai,Specρi

(Ai). Let A′ ⊆

Ai,Γ
′ ⊆ Specρi

(Ai) be sets such that |A′| ≥ cλ 15
i |Ai|, |Γ′| ≥ cλ 15

i |Γi| and |E[M(A′,Γ′)]| ≥

ρi + cλ 15
i . Set Ai+1 = A′ and ρi+1 = ρi +(c/2)λ 15

i .

(iii) If |Spec
ρ2

i /2(Ai)|> K|Specρi
(Ai)| then set Ai+1 = Ai and ρi+1 = ρ2

i /2.

The analysis of this procedure is similar to the analysis of the procedure in the proof of

Theorem 2.2.17. First note that if the procedure ends with A∗= Ai and ε∗= ρi then by Lemma 5.2.1

we have that

|Specε∗(A
∗)−Specε∗(A

∗)| ≤ 2K|Spec
ε∗2/2(A

∗)| ≤ 2K2|Specε∗(A
∗)|. (5.4)

Therefore, we need to show that ε∗ and |A∗| are not too small. Suppose that stages (ii)

and (iii) occur k1 and k2 times, respectively. Let η : {1, · · · ,k2}→ {1, · · · ,k1 + k2} be the ordered

indices of occurrences of stage (iii). We first bound k1.

Claim 5.2.2. If i < η( j) then ρi ≥ (ε/2)2 j
.

Proof. The value of ρi increases in step (ii), and decreases in step (iii). If i < η( j) then we applied

step (iii) at most j−1 times, hence ρi ≥ (ε/2)2 j
.

Claim 5.2.3. For ∀ j ∈ {1, . . . ,k2−1}, |η( j+1)−η( j)| ≤ (1/ε)O(2 j).
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Proof. Consider a step i for η( j) ≤ i ≤ η( j + 1). We have that ρi+1 ≥ ρi + c(ρ2
i )

15 ≥ ρi +

c((ε/2)30·2 j
). As ρi never exceeds 1 for all i, this process cannot repeat more than (1/c)(2/ε)30·2 j

times.

Corollary 5.2.4. k1 ≤ (1/ε)O(2k2).

Proof. By claim 5.2.3, k1 ≤ ∑
k2
j=1(1/ε)O(2 j) ≤ (1/ε)O(2k2).

We next upper bound k2. To do so, we will show that in step (ii) we have that Specρi+1
(Ai+1)

is not much smaller than Specρi
(Ai). We restate Claim 5.1.9 which was proved before.

Claim 5.2.5. Assume that we run step (ii) in iteration i. Then

|Ai+1| ≥ cλ
15
i · |Ai|

and

|Specρi+1
(Ai+1)| ≥ cλ

30
i · |Specρi

(Ai)|.

As in the proof of Theorem 2.2.17, if we combine Claim 5.2.3 and Claim 5.2.5, then for

any j ∈ {1, . . . ,k2−1}, the ratio in the size of the spectrums immediately after the j-th application

of step (iii), and immediately before the j+1 application of step (iii), is lower bounded by

Tj :=
|Specρη( j)

(Aη( j))|
|Specρη( j+1)−1

(Aη( j+1)−1)|
≤ exp

(
(1/ε)O(2 j)

)
.

We will choose K large enough so that Tj ≤ K1/2 for all j < k2, and hence

|Specρη( j+1)
(Aη( j+1))| ≥ K · |Specρη( j+1)−1

(Aη( j+1)−1)| ≥ K1/2 · |Specρη( j)
(Aη( j))|.

Fix K = |G|δ/2 and C = exp((1/ε)O(24/δ )). We may assume that |G| ≥C, as otherwise our bounds

are trivial. Then we deduce that k2 ≤ 4/δ , k1 ≤ (2/ε)O(24/δ ). We get that

|A|
|A∗|
≤

k1+k2

∏
i=1

1
c(λi)15 = exp

(
(1/ε)O(24/δ )

)
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and then by plugging these estimates into Equation (5.4) we conclude that

|Specε∗(A
∗)−Specε∗(A

∗)| ≤ exp
(
(1/ε)O(24/δ )

)
|G|δ · |Specε∗(A

∗)| .

Since the definition of the spectrum is symmetric, Specε∗(A
∗) = −Specε∗(A

∗), this implies the

same bounds on |Specε∗(A
∗)+Specε∗(A

∗)|.
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Part II

Pseudorandomness
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Chapter 6

Limits of regularity lemma

In this chapter we construct a function with a tower type lower bound on its regularity.

Namely, we prove the following theorem that we discussed in Section 2.3.1.

Theorem 2.3.3. For every ε > 0 it holds that M(ε)≥ twr(b1/16εc).

Organization We recall the basic definitions in Section 6.1. Then we prove Theorem 2.3.3

in Section 6.2. Furthermore, in Section 6.2.3 we show how the construction can be modified to

give a binary valued function.

6.1 Preliminaries.

We recall the necessary definitions. Let A be an affine subspace (that is, a translation of a

vector subspace) of Zn
2 and let f : A→ [0,1] be a function. The Fourier coefficient of f associated

with η ∈ Zn
2 is

f̂ (η) =
1
|A| ∑x∈A

f (x)(−1)〈x,η〉 = E
x∈A

[ f (x)(−1)〈x,η〉] .

Any subspace H ≤ Zn
2 naturally determines a partition of Zn

2 into affine subspaces

Zn
2/H = {H +g : g ∈ Zn

2} .

78



The number
∣∣Zn

2/H
∣∣= 2n−dimH of translations is called the index of H.

For an affine subspace A = H +g of Zn
2, where H ≤ Zn

2 and g ∈ Zn
2, we say that a function

f : A→ [0,1] is ε-regular if all its nontrivial Fourier coefficients are bounded by ε , that is,

max
η /∈H⊥

∣∣ f̂ (η)
∣∣≤ ε .

Note that a trivial Fourier coefficient η ∈ H⊥ satisfies | f̂ (η)|= |Ex∈A f (x)|. Henceforth, for any

f : Zn
2→ [0,1] we denote by f |A : A→ [0,1] the restriction of f to A.

Definition 2.3.1 (ε-regular subspace). Let f : Zn
2→ [0,1]. A subspace H ≤ Zn

2 is ε-regular for f if

f |A is ε-regular for at least (1− ε)
∣∣Zn

2/H
∣∣ translations A of H.

Theorem 2.3.2 (Arithmetic regularity lemma in Zn
2, Theorem 2.1 in [Gre05b]). For every 0< ε < 1

2

there is M(ε) such that every function f : Zn
2→ [0,1] has an ε-regular subspace of index at most

M(ε). Moreover, M(ε)≤ twr(d1/ε3e).

6.2 Proof of Theorem 2.3.3

6.2.1 The Construction

To construct a function witnessing the lower bound in Theorem 2.3.3 we will use pseudo-

random spanning sets.

Claim 6.2.1. Let V be a vector space over Z2 of dimension d. Then there is a set of 8d nonzero

vectors in V such that any subset of 3
4 of them spans V .

Proof. Choose random vectors v1, . . . ,v8d ∈ V \ {0} independently and uniformly. Let U be a

subspace of V of dimension d− 1. The probability that a given vi lies in U is at most 1
2 . By

Chernoff’s bound, the probability that more than 6d of our vectors vi lie in U is smaller than

exp(−2(2d)2/8d) = exp(−d). By the union bound, the probability that there exists a subspace
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U of dimension d−1 for which the above holds is at most 2d exp(−d)< 1. This completes the

proof.

We now describe a function f : Zn
2→ [0,1] which, as we will later prove, has no ε-regular

subspace of small index. Henceforth set s= b1/16εc. Furthermore, let di be the following sequence

of integers of tower-type growth:

di+1 =


2Di if i = 1,2,3

2Di−3 if i > 3
where Di =

i

∑
j=1

d j and D0 = 0 .

Note that the first values of di for i ≥ 1 are 1,2,8,28,2264, etc., and it is not hard to see that

di ≥ twr(i− 1) for every i ≥ 1. Set n = Ds (≥ twr(s− 1)). For x ∈ Zn
2, partition its coordinates

into s blocks of sizes d1, . . . ,ds, and identify x = (x1, . . . ,xs) ∈ Zd1+···+ds
2 = Zn

2.

Let 1 ≤ i ≤ s. Bijectively associate with each v ∈ ZDi−1
2 = Zd1+···+di−1

2 a nonzero vector

ξi(v) ∈ Zdi
2 such that the set of vectors {ξi(v) : v ∈ ZDi−1

2 } has the property that any subset of 3
4

of its elements spans Zdi
2 . The existence of such a set, which is a subset of size 2Di−1 in a vector

space of dimension di, follows from Claim 6.2.1 when i > 3, since then 2Di−1 = 8di. When i≤ 3

the existence of such a set is trivial since d(3/4)ie = i, hence any basis would do (and we take

2Di−1 = di). With a slight abuse of notation, if x ∈ Zn
2 we write ξi(x) for ξi((x1, . . . ,xi−1)).

We define our function f : Zn
2→ [0,1] as

f (x) =

∣∣{1≤ i≤ s : 〈xi,ξi(x)〉= 0}
∣∣

s
.

The following is our main technical lemma, from which Theorem 2.3.3 immediately follows.

Lemma 6.2.2. The only ε-regular subspace for f is the zero subspace {0}.

Proof of Theorem 2.3.3. The index of {0} is
∣∣Zn

2/{0}
∣∣= 2n ≥ twr(s) = twr(b1/16εc).
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6.2.2 Proof of Lemma 6.2.2

Let H be an ε-regular subspace for f , and assume towards contradiction that H 6= {0}. Let

1≤ i≤ s be minimal such that there exists v ∈ H for which vi 6= 0. For any g ∈ Zn
2, let

γg = (0, . . . ,0,ξi(g),0, . . . ,0) ∈ Zn
2

where only the i-th component is nonzero. We will show that for more than an ε-fraction of the

translations H +g of H it holds that γg /∈ H⊥ and

f̂ |H+g(γg)> ε .

This will imply that H is not ε-regular for f , thus completing the proof.

First, we argue that γg /∈ H⊥ for a noticeable fraction of g ∈ Zn
2. We henceforth let

B = {g ∈ Zn
2 : γg ∈ H⊥} be the set of "bad" elements.

Claim 6.2.3. |B| ≤ 3
4

∣∣Zn
2

∣∣.
Proof. If g ∈ B then 〈ξi(g),vi〉= 0. Hence, {ξi(g) : g ∈ B} does not span Zdi

2 . By the construction

of ξi, this means that {(g1, . . . ,gi−1) : g ∈ B} accounts to at most 3
4 of the elements in ZDi−1

2 , and

hence |B| ≤ 3
4

∣∣Zn
2

∣∣.
Next, we argue that typically f̂ |H+g(γg) is large. Let W ≤ Zn

2 be the subspace spanned by

the last s− i blocks, that is, W = {w ∈ Zn
2 : w1 = . . .= wi = 0}. Note that for any g ∈ Zn

2,w ∈W

we have γg+w = γg. In particular, g+w ∈ B if and only if g ∈ B.

Claim 6.2.4. Fix g ∈ Zn
2 such that γg /∈ H⊥. Then

E
w∈W

[
̂f |H+g+w(γg)

]
=

1
2s

.

Proof. Write f (x) = 1
s ∑

s
j=1 B j(x) where B j(x) : Zn

2→{0,1} is the characteristic function for the
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set of vectors x satisfying 〈x j,ξ j(x)〉= 0. Hence, for any affine subspace A in Zn
2,

f̂ |A(γg) =
1
s

s

∑
j=1

B̂ j|A(γg) . (6.1)

Set A = H +g+w for an arbitrary w ∈W . We next analyze the Fourier coefficient B̂ j|A(γg) for

each j ≤ i, and note that in these cases we have ξ j(x) = ξ j(g) for any x ∈ A. First, if j < i then

for every x ∈ A we have x j = g j, which implies that B j|A is constant. Since a nontrivial Fourier

coefficient of a constant function equals 0, we have

B̂ j|A(γg) = 0, ∀ j < i. (6.2)

Next, for j = i, write Bi|A(x) = 1
2((−1)〈x

i,ξi(x)〉+1). Since 〈x,γg〉= 〈xi,ξi(x)〉, we have

B̂i|A(γg) = E
x∈A

[
1
2
((−1)〈x

i,ξi(x)〉+1) · (−1)〈x
i,ξi(x)〉

]
= E

x∈A
[Bi(x)] =

1
2
. (6.3)

Finally, for j > i we average over all w ∈W . Let H +W be the subspace spanned by H,W . Writing

B j(x) = 1
2((−1)〈x

j,ξ j(x)〉+1), the average Fourier coefficient is

E
w∈W

E
x∈H+g+w

[
B j(x)(−1)〈x

i,ξi(x)〉
]
=

1
2 E

x∈H+W+g

[
(−1)〈x

i,ξi(g)〉+〈x j,ξ j(x)〉
]
.

Note that for every fixing of x1, . . . ,x j−1, we have that x j is uniformly distributed in Zd j
2 (due to

W ), and that (−1)〈x
i,ξi(g)〉 is constant. Since ξ j(x) 6= 0, we conclude that

E
w∈W

[
̂B j|H+g+w(γg)

]
= 0, ∀ j > i. (6.4)

The proof now follows by substituting (6.2), (6.3) and (6.4) into (6.1).

Since ̂f |H+g+w(γg)≤ 1, we infer (via a simple averaging argument) the following corollary.

Corollary 6.2.5. Fix g ∈ Zn
2 such that γg /∈ H⊥. Then for more than 1/4s fraction of the elements
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w ∈W,

̂f |H+g+w(γg)>
1
4s

.

We are now ready to conclude the proof of Lemma 6.2.2. Partition Zn
2 into translations of

W , and recall that γg depends just on the translation g+W . By Claim 6.2.3, for at least 1
4 of the

translations, γg /∈ H⊥. By Corollary 6.2.5, in each such translation, more than 1/4s-fraction of the

elements g+w satisfy ̂f |H+g+w(γg)> 1/4s. Since 1/16s≥ ε , the subspace H cannot be ε-regular

for f .

6.2.3 A variant of Theorem 2.3.3 for binary functions

One can also deduce from Theorem 2.3.3 a similar bound for ε-regular sets, that is, for

binary functions f : Zn
2→{0,1}. For this, all we need is the following easy probabilistic argument.

Claim 6.2.6. Let τ > 0 and f :Zn
2→ [0,1]. There exists a binary function S :Zn

2→{0,1} satisfying,

for every affine subspace A of Zn
2 of size |A| ≥ 4n2/τ2 and any vector η ∈ Zn

2, that

∣∣Ŝ|A(η)− f̂ |A(η)
∣∣≤ τ.

Proof. Choose S : Zn
2→{0,1} randomly by setting S(x) = 1 with probability f (x), independently

for each x ∈ Zn
2, Let A,η be as in the statement. The random variable

Ŝ|A(η) =
1
|A| ∑x∈A

S(x)(−1)〈x,η〉

is an average of |A| mutually independent random variables taking values in [−1,1], and its

expectation is f̂ |A(η). By Hoeffding’s bound, the probability that
∣∣Ŝ|A(η)− f̂ |A(η)

∣∣> τ is smaller

than

2exp(−τ
2 |A|/2)≤ 2−2n2+1 .

The number of vector subspaces over Zn
2 can be trivially bounded by 2n2

, the number of sequences
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of n vectors in Zn
2. Hence, the number of pairs (A,η) is bounded by 2n2+n. The claim follows by

the union bound.

Applying Claim 6.2.6 with τ = ε/2 (say) implies that if f : Zn
2→ [0,1] has no ε-regular

subspace of index smaller than twr(b1/16εc) then, provided n is sufficiently large in terms of ε ,

there is S : Zn
2→{0,1} that has no ε/2-regular subspace of index smaller than twr(b1/16εc).
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Chapter 7

Pseudorandom generators via polarizing

random walks

In this chapter we describe the details of framework we discussed in section 2.3.2, to

construct pseudorandom generators based on the notion of fractional pseudorandom generator. In

particular we develop the theory to prove the formal analog of the following statement that we

described in section 2.3.2.

Theorem 7.1.4 (Main theorem, informal version of Theorem 7.1.6). Let X ∈ [−1,1]n be a symmet-

ric p-noticeable fractional PRG for F with error ε . Set t = O(log(n/ε)/p) and let X1, . . . ,Xt be

i.i.d. copies of X. There is an explicit random variable G = G(X1, · · · ,Xt) ∈ {−1,1}n so that G is

a PRG for F with error (t +1)ε .

As an application, we obtain the following unified PRG for all classes of boolean functions

with bounded Fourier growth in L1 norm.

Theorem 2.3.7 (PRG for functions of bounded L1 Fourier tail, informal version of Theorem 7.3.5).

Let F be a family of n-variate Boolean functions closed under restrictions. Assume that there exist
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a,b≥ 1 such that for every f ∈F ,

∑
S⊆[n]:|S|=k

| f̂ (S)| ≤ a ·bk.

Then, for any ε < ε ≤ 1
poly(b logn) there exists an explicit PRG X ∈ {−1,1}n which fools F with

error ε > 0, whose seed length is O(log(n/ε)(log logn+ log(a/ε))b2).

Organization We describe the general framework in detail in Section 7.1. We prove

Theorem 7.1.6 in Section 7.2. We describe applications in Section 7.3.

7.1 General framework

7.1.1 Boolean functions

Let f : {−1,1}n→ [−1,1] be an n-variate Boolean function, identified with its multilinear

extension, also known as its Fourier expansion. For x ∈ [−1,1]n define f (x) = ∑S⊆[n] f̂ (S)xS where

xS = ∏i∈S xi. As f is multilinear, a convenient viewpoint is to view f (x) as computing the expected

value of f on a product distribution on {−1,1}n. That is, let W =W (x) ∈ {−1,1}n be a random

variable, where W1, . . . ,Wn are independently chosen so that E[Wi] = xi. Then f (x) = E f (W ). In

particular, f (0) = E f (U), where U ∈ {−1,1}n is uniformly chosen.

A family F of n-variate Boolean functions is said to be closed under restrictions if for any

f ∈F and any function f ′ : {−1,1}n→{−1,1} obtained from f by fixing some of its inputs to

{−1,1} it holds that also f ′ ∈F .

7.1.2 Pseudorandom generators

Let F be a family of n-variate Boolean functions. The following is the standard definition

of a pseudorandom generator (PRG) for F , adapted to our notation.
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Definition 7.1.1 (PRG). A random variable X ∈ {−1,1}n is a PRG for F with error ε , if for any

f ∈F it holds that
∣∣ f (0)−E f (X)

∣∣≤ ε .

We introduce the notion of a fractional PRG. It is the same as a PRG, except that the

random variable is allowed to take values in [−1,1]n, instead of only Boolean values. We assume

that X has finite support.

Definition 7.1.2 (Fractional PRG). A random variable X ∈ [−1,1]n with finite support, is a

fractional PRG for F with error ε , if for any f ∈F it holds that
∣∣ f (0)−E f (X)

∣∣≤ ε .

Our main goal will be to “amplify” fractional PRGs for F in order to obtain PRGs for F .

To that end, we need to enforce some non-triviality conditions on the fractional PRG. For example,

X = 0 is a fractional PRG for any function. We require that for any coordinate i ∈ [n], the value of

Xi is far from zero with noticeable probability. Formally, we require a noticeable second moment.

Definition 7.1.3 (p-noticeable random variable). A random variable X ∈ [−1,1]n is p-noticeable

if for every i ∈ [n], E[X2
i ]≥ p.

For technical reasons, we would also need X to be symmetric, which means that the

distribution of −X is the same as the distribution of X . This is easy to achieve, for example by

multiplying all elements of X with a uniformly chosen sign.

Fractional PRG as steps in a random walk

Let X ∈ [−1,1]n be a fractional PRG for f with error ε . That is,

|E
X
[ f (X)]− f (0)| ≤ ε.

The goal is to construct a random variable Y ∈ {−1,1}n such that EY [ f (Y )] ≈ f (0), where the

fractional PRG X provides a “small step" towards this approximation. If we can combine these

small steps in a way that they converge fast to {−1,1}n, then we would be done. To be a bit more

precise, consider a random walk starting at 0 with the following properties:
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1. The value of f at each step on average does not change by too much.

2. The random walk converges fast to {−1,1}n.

Observe that if we take X as the first step, then property 1 is satisfied for the first step.

Considering later steps leads to the following question: given a point y ∈ [−1,1]n, can we find a

random variable A = A(y,X) such that

|E[ f (A)]− f (y)| ≤ ε,

and such that A takes values closer to Boolean values? We show that this is indeed the case if we

assume that X not only fools f , but also fools any possible restriction of f .

To formalize this, let F be a family of n-variate Boolean functions f : {−1,1}n→{−1,1}.

We say that F is closed under restrictions if for any f ∈F , if we fix some inputs of f to constants

{−1,1}, then the new restricted function is still in F . Most natural families of Boolean functions

studied satisfy this condition. Some examples are functions computed by small-depth circuits,

functions computed by bounded width branching programs, and functions of low sensitivity.

We show that if X is a fractional PRG for such F , then it can be used to approximate f (y)

for any y∈ [−1,1]n. Define δy ∈ [0,1]n by (δy)i = 1−|yi|. For x,x′ ∈ [−1,1]n define x◦x′ ∈ [−1,1]n

to be their coordinate-wise product, (x◦ x′)i = xix′i. Note that under this definition, the sub-cube

{y+δy ◦ x : x ∈ [−1,1]n} is the largest symmetric sub-cube of [−1,1]n centered at y.

We show (Claim 7.2.3) that if X ∈ [−1,1]n is a fractional PRG for F which is closed under

restrictions, then for any f ∈F and any y ∈ [−1,1]n it holds that

|E[ f (y+δy ◦X)]− f (y)| ≤ ε.

Technically, we need to also assume that X is symmetric, which means that Pr[X = x] = Pr[X =−x]

for all x. This is easy to achieve from any X which is not symmetric, for example by multiplying X

with a uniform bit (thus, increasing its seed length by 1 bit).
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Polarization and fast convergence

Our next goal is to show fast convergence of the random walk to {−1,1}n. To that end, we

need to analyze the following martingale:

Y1 = X1

Yi = Yi−1 +δYi−1 ◦Xi

where X1,X2, . . . are independent copies of a fractional PRG. We show that for some t not too large,

Yt is close to a point in {−1,1}n. But why would that be true? This turns out to be the result of

polarization in the random walk. It suffices to show this for every coordinate individually.

So, let Z1,Z2, . . . ∈ [−1,1] be independent random variables (which are the i-th coordinate

of X1,X2, . . . for some fixed i), and define the following one-dimensional martingale:

W1 = Z1

Wi =Wi−1 +(1−|Wi−1|)Zi.

Claim 7.2.5 shows that if (i) Zi is symmetric, and (ii) E[Z2
i ]≥ p (which follows from our assumption

that the fractional PRG is p-noticeable), then it holds that

Pr[|Wt | ≥ 1−δ ]≥ 1−δ

for t = O(log(1/δ )/p). Setting δ = ε/n guarantees that with probability 1− ε all the coordinates

of Yt are ε/n close to {−1,1}. Then a simple argument shows that rounding the coordinates gives

a PRG with error O(ε), as desired.

We now state our main theorem.

Theorem 7.1.4 (Main theorem, informal version of Theorem 7.1.6). Let F be a family of n-variate

Boolean functions that is closed under restrictions. Let X ∈ [−1,1]n be a symmetric p-noticeable
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fractional PRG for F with error ε . Set t = O(log(n/ε)/p) and let X1, . . . ,Xt be i.i.d. copies of X.

Define the following random variables taking values in [−1,1]n:

Y0 = 0; Yi = Yi−1 +δYi−1 ◦Xi i = 1, . . . , t.

Let G = sign(Yt) ∈ {−1,1}n obtained by taking the sign of the coordinates in Yt . Then G is a PRG

for F with error (t +1)ε .

Note that computing this PRG only involves basic operations such as addition and multipli-

cation over the reals with bounded error.

7.1.3 Polarizing random walks

The main idea is to view a fractional PRG as steps in a random walk in [−1,1]n that

converges to {−1,1}n. To that end, we define a gadget that implements the random walk; and

moreover, that allows for fast convergence. As we will see later, the fast convergence is an effect of

polarization.

Definition 7.1.5 (Random walk gadget). For any t ≥ 1 define the random walk gadget gt :

[−1,1]t → [−1,1] as follows. Let a1, . . . ,at ∈ [−1,1]. Define g1(a1) := a1 and for t > 1,

gt(a1, . . . ,at) := gt−1(a1, . . . ,at−1)+(1−|gt−1(a1, . . . ,at−1)|)at .

We extend the definition to act on bit-vectors. Define gn
t : ([−1,1]n)t → [−1,1]n as follows. For

x1, . . . ,xt ∈ [−1,1]n define

gn
t (x1, . . . ,xt) = (gt(x1,1, . . . ,xt,1), . . . ,gt(x1,n, . . . ,xt,n)) .

Equivalently, we can view gn
t as follows: construct a t×n matrix whose rows are x1, . . . ,xt; and

then apply gt to each column of the matrix to obtain a resulting vector in [−1,1]n.
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The following theorem shows how to “amplify" fractional PRGs using the random walk

gadget to obtain a PRG. Below, for x ∈ [−1,1]n we denote by sign(x) ∈ {−1,1}n the Boolean

vector obtained by taking the sign of each coordinate (the sign of 0 can be chosen arbitrarily).

Theorem 7.1.6 (Amplification Theorem). Let F be a family of n-variate Boolean functions which

is closed under restrictions. Let X ∈ [−1,1]n be a symmetric p-noticeable fractional PRG for F

with error ε . Set t = O(log(n/ε)/p) and let X1, . . . ,Xt be iid copies of X. Define a random variable

G ∈ {−1,1}n as follows:

G := G(X1, . . . ,Xt) = sign(gn
t (X1, . . . ,Xt)).

Then G is a PRG for F with error (t +1)ε .

7.2 Proof of Amplification Theorem

We prove Theorem 7.1.6 in this section. From here onwards, we fix a family F of n-variate

Boolean functions which is closed under restrictions. The proof is based on the following two

lemmas. The first lemma amplifies a p-noticeable fractional PRG to a (1−q)-noticeable fractional

PRG. The second lemma shows that setting q = ε/n, the latter fractional PRG can be rounded to a

Boolean-valued PRG without incurring too much error.

Lemma 7.2.1 (Amplification lemma). Let X1, . . . ,Xt ∈ [−1,1]n be independent symmetric p-

noticeable fractional PRGs for F with error ε . Define a random variable Y ∈ [−1,1]n as

Y := gn
t (X1, . . . ,Xt).

Then Y is a (1−q)-noticeable fractional PRG for F with error tε , where q = 2−Ω(pt).

Lemma 7.2.2 (Rounding lemma). Let Y ∈ [−1,1]n be a (1−q)-noticeable fractional PRG for F

with error ε . Then sign(Y ) ∈ {−1,1}n is a PRG for F with error ε +qn.
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Theorem 7.1.6 follows directly by applying Lemma 7.2.1 with t = O(log(n/ε)/p) to obtain

q = ε/n and then applying Lemma 7.2.2.

7.2.1 Proof of Lemma 7.2.1

We prove Lemma 7.2.1 in this section. We need to prove two claims: that gn
t (X1, . . . ,Xt)

is a fractional PRG for F with error εt, and that it is (1−q)-noticeable. This is achieved in the

following sequence of claims.

First we need some notations. For y ∈ [−1,1]n define δy ∈ [−1,1]n by (δy)i := 1− |yi|.

For two vectors x,y ∈ [−1,1]n define x ◦ y ∈ [−1,1]n to be their point-wise product, namely

(x◦y)i := xiyi. Observe that {y+δy ◦x : x ∈ [−1,1]n} is the largest symmetric sub-cube in [−1,1]n

centered at y.

Claim 7.2.3. Let X ∈ [−1,1]n be a fractional PRG for F with error ε . Then for any f ∈F and

any y ∈ [−1,1]n, ∣∣ f (y)−E f (y+δy ◦X)
∣∣≤ ε.

Proof. Consider a distribution over F ∈F obtained from f by fixing the i-th input to sign(yi) with

probability |yi|, independently for each i. That is,

F(x) := f (R(x)),

where R(x) ∈ [−1,1]n is a random variable obtained by sampling R1, . . . ,Rn independently where

each Ri is chosen as follows. Pick Ri(x) = sign(yi) with probability |yi| and with probability 1−|yi|

do as follows: pick Ri(x) = 1 with probability (xi +1)/2 and pick Ri(x) =−1 otherwise. It’s easy

to check that ER(R(x)) = y+δy ◦ x. By multi-linearity of f , and as R(x) is a product distribution,

for all x ∈ [−1,1]n,

E
F
[F(x)] = E

R
[ f (R(x))] = f (E

R
[R(x)]) = f (y+δy ◦ x).
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Setting x = X and averaging over X gives

∣∣∣∣ f (y)−E
X
[ f (y+δy ◦X)]

∣∣∣∣= ∣∣∣∣EF [F(0)]− E
F,X

[F(X)]

∣∣∣∣≤ E
F

∣∣∣∣F(0)−E
X
[F(X)]

∣∣∣∣≤ ε,

since F ∈F with probability one and X is a fractional PRG for F with error ε .

Claim 7.2.4. Let X1, . . . ,Xt ∈ [−1,1]n be independent fractional PRGs for F with error ε . Then

for any f ∈F , ∣∣∣∣ f (0)− E
X1,...,Xt

[ f (gn
t (X1, . . . ,Xt))]

∣∣∣∣≤ tε.

Proof. The proof is by induction on t. The base case t = 1 follows by definition as gn
1(X1) = X1.

For t > 1 we will show that

∣∣E[ f (gn
t−1(X1, . . . ,Xt−1))]−E[ f (gn

t (X1, . . . ,Xt))]
∣∣≤ ε,

from which the claim follows by the triangle inequality. In fact, we will show a stronger inequality:

for any fixing of x1, . . . ,xt−1 ∈ [−1,1]n, it holds that

∣∣∣∣ f (gn
t−1(x1, . . . ,xt−1))−E

Xt
[ f (gn

t (x1, . . . ,xt−1,Xt))]

∣∣∣∣≤ ε.

The first inequality then follows by averaging over x1 = X1, . . . ,xt−1 = Xt−1. To see why this latter

inequality holds, set y = gn
t−1(x1, . . . ,xt−1). Then by definition,

gn
t (x1, . . . ,xt−1,Xt) = y+δy ◦Xt .

The claim now follows from Claim 7.2.3.

We have so far proved that gn
t (X1, . . . ,Xt) is a fractional PRG for F with slightly worse

error. Although we do not need it, it is worth noting that it is symmetric since X1, . . . ,Xt are

symmetric and −gn
t (X1, . . . ,Xt) = gn

t (−X1, . . . ,−Xt). To conclude, we show that it converges fast
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to a value close to {−1,1}n. This is the effect of polarization. It will be enough to analyze this for

one-dimensional random variables.

Claim 7.2.5. Let A1, . . . ,At ∈ [−1,1] be independent symmetric random variables with E[A2
i ]≥ p.

For i = 1, . . . , t define

Bi := gi(A1, . . . ,Ai) = Bi−1 +(1−|Bi−1|)Ai.

Then E[B2
t ]≥ 1−q where q = 3exp(−t p/16).

Proof. Let Ci := 1− |Bi| be the distance to {−1,1} at step i. We show that Ci converges to 0

exponentially fast. Observe that Ci satisfies the following recursive definition:

Ci =


Ci−1(1−Ai · sign(Bi−1)) if Ci−1(1−Ai · sign(Bi−1))≤ 1

2−Ci−1(1−Ai · sign(Bi−1)) if Ci−1(1−Ai · sign(Bi−1))> 1
.

In either case one can verify that Ci ∈ [0,1] and that

Ci ≤Ci−1(1−Ai · sign(Bi−1)).

Now observe that Ci−1 and Ai · sign(Bi−1) are independent. This is because Bi−1 is symmet-

ric(because A j’s are symmetric), and so |Bi−1| and sign(Bi−1) are independent. So we can write,

E
[√

Ci

]
≤ E

[√
Ci−1

]
E
[√

1−Ai · sign(Bi−1)
]
.

The Taylor expansion of
√

1− x in [−1,1] is

√
1− x = 1− x

2
− x2

8
− x3

16
− . . .

In particular, all the coefficients except for the constant term are negative. As Ai · sign(Bi−1) is
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symmetric, E[(Ai · sign(Bi−1))
k] = 0 for any odd k, so

E
[√

1−Ai · sign(Bi−1)
]
≤ 1− E[A2

i ]

8
≤ 1− p

8
≤ exp(−p/8).

Thus

E
[√

Ct

]
≤

t

∏
i=1

E
[√

1−Ai · sign(Bi−1)
]
≤ exp(−t p/8).

Now we use Markov’s inequality. We know Pr[
√

Ct ≥ λ E
[√

Ct
]
] ≤ λ−1. By choosing λ =

exp(t p/16) we get Pr[Ct ≥ exp(−t p/8)] ≤ exp(−t p/16). If Ct ≤ exp(−t p/8) then 1− B2
t ≤

2exp(−t p/8). If not, then we can trivially bound 1−B2
t ≤ 1. Putting these together gives

E[1−B2
t ]≤ 2exp(−t p/8)+ exp(−t p/16)≤ 3exp(−t p/16).

To provide a piece of intuition explaining the fast convergence of this random walk, notice

that once Ci becomes sufficiently small, it gets more and more difficult to increase the value of Ci

again. This could be best explained with an example. Suppose all Ai’s take value in {−0.5,0.5}.

We start at B0 = 0 and take a step, say A1 = 0.5, and therefore B1 = 0.5. Now observe that the length

of the next step would be only (1−|B1|)|A2| = 0.25. So even if A2 = −0.5, we get B2 = 0.25,

which means we still need to take one more step to become less than 0. In other words, once we

get close to the boundary {−1,1}, the random walk converges faster as it gets more difficult to

move away from the boundary.

Corollary 7.2.6. Let X1, . . . ,Xt ∈ [−1,1]n be independent symmetric p-noticeable random vari-

ables. Define Y = gn
t (X1, . . . ,Xt). Then Y is (1−q)-noticeable for q = 3exp(−t p/16).

Proof. Apply Claim 7.2.5 to each coordinate of Y .

Lemma 7.2.1follows by combining Claim 7.2.4 and Corollary 7.2.6.
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7.2.2 Proof of Lemma 7.2.2

We prove Lemma 7.2.2 in this section. Let x ∈ [−1,1]n be a possible outcome of X . Let

W := W (x) ∈ {−1,1}n be a random variable, where W1, . . . ,Wn are independent and E[Wi] = xi.

Then EW [ f (W )] = f (x). As f takes values in [−1,1], we can upper bound | f (x)− f (sign(x))| by

| f (x)− f (sign(x))|= |E
W
[ f (W )]− f (sign(x))| ≤ 2Pr[W 6= sign(x)].

The last term can be bounded by the union bound,

2Pr[W 6= sign(x)]≤ 2
n

∑
i=1

Pr[Wi 6= sign(xi)] =
n

∑
i=1

1−|xi|.

Setting x = X and averaging over X gives

|E
X
[ f (X)]−E

X
[ f (sign(X))]| ≤ E

X
| f (X)− f (sign(X))| ≤

n

∑
i=1

E[1−|Xi|].

As X is (1−q)-noticeable it satisfies E[X2
i ]≥ 1−q for all i. As 1− z≤ 1− z2 for all z ∈ [0,1] we

have

E[1−|Xi|]≤ E[1−X2
i ]≤ q.

This concludes the proof as

| f (0)−E
X
[ f (sign(X))]| ≤ | f (0)−E

X
[ f (X)]|+ |E

X
[ f (X)]−E

X
[ f (sign(X))]| ≤ ε +qn,

where the first inequality follows as X is a fractional PRG with error ε , and the second by the

discussion above.
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7.3 PRGs for functions with bounded Fourier tails

Several natural families of Boolean functions have bounded Fourier tails, such as: AC0

circuits [LMN93, Man95]; functions with bounded sensitivity [GSW16, LTZ18]; and functions

computed by branching programs of various forms [RSV13, CHRT18]. Our goal is to construct a

universal PRG which fools any such function. We consider two variants: L1 bounds and L2 bounds.

Definition 7.3.1 (L1 bounds). For a,b≥ 1, we denote by L n
1 (a,b) the family of n-variate Boolean

functions f : {−1,1}n→{−1,1} which satisfy

∑
S⊆[n]
|S|=k

| f̂ (S)| ≤ a ·bk ∀k = 1, . . . ,n.

Definition 7.3.2 (L2 bounds). For a,b≥ 1, we denote by L n
2 (a,b) the family of n-variate Boolean

functions f : {−1,1}n→{−1,1} which satisfy

∑
S⊆[n]
|S|≥k

f̂ (S)2 ≤ a ·2−k/b ∀k = 1, . . . ,n.

Tal [Tal17] showed that L2 bounds imply L1 bounds: if f ∈L2(a,b) then f ∈L1(a,b′) for

b′ = O(b). The reverse direction is false, as can be witnessed by the PARITY function. So, the

class of functions with L1 bounded Fourier tails is richer, and we focus on it.

In the following lemma, we construct a fractional PRG for this class, which we will then

amplify to a PRG. We note that this lemma holds also for bounded functions, not just Boolean

functions. The construction is based on a scaling of almost d-wise independent random variables,

whose definition we now recall.

Definition 7.3.3 (Almost d-wise independence). A random variable Z ∈ {−1,1}n is ε-almost

d-wise independent if, for any restriction of Z to d coordinates, the marginal distribution has

statistical distance at most ε from the uniform distribution on {−1,1}d .
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Naor and Naor [NN93] gave an explicit construction of an ε-almost d-wise random variable

Z ∈ {−1,1}n with seed length O(log logn+d+ log(1/ε)). We note that this seed length is optimal,

up to the hidden constants.

Lemma 7.3.4. Fix n,a,b ≥ 1 and ε > 0. There exists a fractional PRG X ∈ [−1,1]n that fools

L n
1 (a,b) with error ε , such that

(i) X is p-noticeable for p = 1
4b2 .

(ii) The seed length of X is O(log logn+ log(a/ε)).

Proof. Fix f ∈L n
1 (a,b). Set d = dlog2a/εe,δ = ε/2a,β = 1/2b. Let Z ∈ {−1,1}n be a δ -almost

d-wise independent random variable, and set X = βZ which takes values in {−β ,β}n. We claim

that X satisfies the requirements of the lemma. Claim (i) clearly holds, and claim (ii) holds by the

Naor-Naor construction. We thus focus on proving that X fools F with error ε .

Fix f ∈F and consider its Fourier expansion:

f (x) = ∑
S⊆[n]

f̂ (S)xS.

We need to show that E[ f (X)] is close to f (0). Averaging over X gives

|E[ f (X)]− f (0)| ≤ ∑
|S|>0
| f̂ (S)| · |E[XS]|= ∑

|S|>0
| f̂ (S)| ·β |S||E[ZS]|.

We next bound |E[ZS]|. If |S| ≤ d then by the definition of Z we have |E[ZS]| ≤ δ . If |S|> d we

bound trivially |E[ZS]| ≤ 1. Let Wk = ∑S:|S|=k | f̂ (S)|, where by assumption Wk ≤ a ·bk. Thus

|E[ f (X)]− f (0)| ≤ δ

d

∑
k=1

Wkβ
k + ∑

k>d
Wkβ

k ≤ δa
d

∑
k=1

(βb)k +a ∑
k>d

(βb)k ≤ δa+2−da

where we used the choice of β = 1/2b. The claim follows as we set δ = ε/2a and 2−d ≤ ε/2a.

Applying Theorem 7.1.6 using the fractional PRG constructed in Lemma 7.3.4 gives the

following PRG construction. Note that we still need to require that F is closed under restrictions.
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Theorem 7.3.5. Let F be a family of n-variate Boolean functions closed under restrictions. Assume

that F ⊂L n
1 (a,b) or that F ⊂L n

2 (a,b). Then, for any ε ≤ 1
poly(b logn) there exists an explicit

PRG X ∈ {−1,1}n which fools F with error ε > 0, whose seed length is O(log(n/ε)(log logn+

log(a/ε))b2).

7.3.1 Open problems

We discuss a couple of open problems in the following.

Early termination

Our analysis requires a random walk with t = O(log(n/ε)/p) steps, each coming from a

p-noticeable fractional PRG. We believe that for some natural families of functions shorter random

walks might also suffice.

Open problem 7.3.6. Find conditions on classes of Boolean functions so that short random walks

can be used to construct PRGs. In particular, are there nontrivial classes where the number of

steps is independent of n?

Less independence

Our analysis of Theorem 7.1.6 currently requires to assume t independent copies of a

fractional PRG X . It might be possible that these copies can be chosen in a less independent form,

where the analysis still holds.

Open problem 7.3.7. Can the fractional PRGs X1, . . . ,Xt in Theorem 7.1.6 be chosen not indepen-

dently, such that the conclusion still holds? Concrete examples to consider are k-wise independence

for k� t, or using an expander random walk.
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Gadgets

We can view the random walk as a “gadget construction". Given independent p-noticeable

fractional PRGs X1, . . . ,Xt ∈ [−1,1]n, view them as the rows of a t×n matrix, and then apply a

gadget g : [−1,1]t →{−1,1} to each column to obtain the outcome in {−1,1}n. We show that the

random walk gives such a gadget which converges for t = O(log(n/ε)/p). Many constructions of

PRGs can be viewed in this framework, where typically Xi ∈ {−1,1}n. Ours is the first construction

which allows Xi to take non-Boolean values. It is interesting whether other gadgets can be used

instead of the random walk gadget, and whether there are general properties of gadgets that would

suffice.
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