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1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2Uppsala University, Uppsala, Sweden

(Dated: June 21, 2016)

Ever brighter light sources, fast parallel detectors, and advances in phase retrieval methods, have
made ptychography a practical and popular imaging technique. Compared to previous techniques,
ptychography provides superior robustness and resolution at the expense of more advanced and time
consuming data analysis. By taking advantage of massively parallel architectures, high-throughput
processing can expedite this analysis and provide microscopists with immediate feedback. These
advances allow real-time imaging at wavelength limited resolution, coupled with a large field of view.
Here, we introduce a set of algorithmic and computational methodologies used at the Advanced
Light Source, and DOE light sources packaged as a CUDA based software environment named
SHARP (http://camera.lbl.gov/sharp), aimed at providing state-of-the-art high-throughput
ptychography reconstructions for the coming era of diffraction limited light sources.

I. INTRODUCTION

Reconstructing the 3D map of the scattering poten-
tial of a sample from measurements of its far-field scat-
tering patterns is an important problem. It arises in a
variety of fields, including optics [1, 2], astronomy [3],
X-ray crystallography [4], tomography [5], holography
[6, 7] and electron microscopy [8]. As such it has been
a subject of study for applied mathematicians for over
a century. The fundamental problem consists of find-
ing the correct phases that go along with the measured
intensities, such that together they can be Fourier trans-
formed into the real-space image of the sample. To help
recover the correct phases from intensity measurements
a range of experimental techniques have been proposed
along the years, such as interferometry/holography [6],
random phase masks [7, 9, 10], gratings [11]. A variety of
numerical techniques have also been recently developed,
for example by approximating the problem as a matrix
completion problem [12], or by other convex relaxations
[13] tractable by semidefinite programming.

Since its first demonstration [14], progress has been
made in solving the phase problem for a single diffrac-
tion pattern recorded from a non-periodic object, includ-
ing the dynamic update of the support [15] and a variety
of projection algortihms [16–18]. Such methods, referred
to as coherent diffractive imaging (CDI), attempt to re-
cover the complete complex-valued scattering potential
or electron density, and the complex exit wavefront scat-
tered from the object, providing phase contrast as well as
a way to overcome depth-of-focus limitations of regular
optical systems.

Ptychography, a relatively recent technique, provides
the unprecedented capability of imaging macroscopic
specimens in 3D and attain wavelength limited resolu-
tion along with chemical specificity [19]. Ptychography
was proposed in 1969 [20, 21], and later experimentally
demonstrated [22, 23], with the aim of improving the
resolution in x-ray and electron microscopy. Since then

it has been used in a large array of applications, and
shown to be a remarkably robust technique for the char-
acterization of nano materials. A few software imple-
mentations of the reconstruction algorithm exist such as
ptypy (http://ptycho.github.io/ptypy/) and PtychoLib
[24], and a repository for sharing experimental data has
been established [25].

Ptychography can be used to obtain large high-
resolution images. It combines the large field of view
of a scanning transmission microscope with the resolu-
tion of scattering measurements. In a scanning trans-
mission microscope, operated in transmission mode, a
focused beam is rastered across a sample, and the total
transmitted intensity is recorded for each beam position.
The pixel positions of the image obtained correspond to
the beam positions used during the scan, and the value
of the pixel to the intensity transmitted at that posi-
tion. This limits the resolution of the image to the size
of the impinging beam, which is typically limited by the
quality of focusing optics and work distance constraints.
In ptychography, instead of only using the total trans-
mitted intensity, one typically records the distribution of
that intensity in the far-field, i.e. the scattering pattern
produced by the interaction of the illumination with the
sample. The diffracted signal contains information about
features much smaller than the size of the x-ray beam,
making it possible to achieve higher resolutions than with
the scanning techniques. The downside of having to use
the intensities is that one now has to retrieve the corre-
sponding phases to be able to reconstruct an image of the
sample, which is made even more challenging by the pres-
ence of noise, experimental uncertainties, and perturba-
tions of the experimental geometry. While it is a difficult
problem, it is usually tractable by making use of the re-
dundancy inherent in obtaining diffraction patterns from
overlapping regions of the sample. This redundancy also
permits the technique to overcome the lack of several ex-
perimental parameters and measurement uncertainties.
For example, there are methods to recover unknown illu-
minations [26–29]. As a testament to their success these
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methods are even used as a way of characterizing high
quality x-ray optics [30–32], the wavefront of x-ray lasers
[33] and EUV lithography tools [34].

Ptychographical phasing is a non-linear optimization
problem [35] still containing many open questions [36].
Several strategies, such as Alternating Directions [37],
projections, gradient [35], conjugate gradient, Newton
[38–40], spectral methods[36, 41] and Monte-carlo [42],
have been proposed to handle situations when both sam-
ple and positions [35, 41–43], are unknown parameters in
high dimensions, and to handle experimental situations
such as accounting for noise variance [39, 44], partial co-
herence [3, 45–47][41, 46, 48], background[38, 41, 49, 50]
or vibrations.

Here, we describe an algorithm approach and software
environment SHARP (Scalable Hetereogeneous Adap-
tive Real-time Ptychography) that enables high through-
put streaming analysis using computationally efficient
phase retrieval algorithms. The high performance com-
putational back-end written in C/CUDA and imple-
mented for NVIDIA GPU architecures is hidden from the
microscopist, but can be accessed and adapted to partic-
ular needs by using a python interface or by modifying
the source code.

Using SHARP we have built an intuitive graphical
user interface that provides visual feedback, of both the
recorded diffraction data as well as the reconstructed im-
ages, throughout the data aquisition and reconstruction
processes at the Advanced Light Source (ALS).

We use a mathematical formulation of ptychography
which was first introduced in [36–38, 40, 41].

II. SHARP SOFTWARE ENVIRONMENT

A. Forward model

In a ptychography experiment (see Fig. 1), one per-
forms a series of diffraction measurement as a sample is
rastered across an x-ray, electron or visible light beam.
The illumination is formed by an x-ray optic such as a
zone-plate. The measurement is performed by briefly ex-
posing an area detector such as a CCD which records the
scattered photons.

In a discrete setting, a two-dimensional small beam
with distribution w(r) of dimension mx×my illuminates
a subregion positioned at x(i) (referred to as frame) of
an unknown object of interest ψ(r) of dimension nx×ny.
Here 0 < m < n, i = 1, . . . ,K and K is the total num-
ber of frames (also referred to as “views” in the litera-
ture). For simplicity we consider square matrices. Gen-
eralization to non-square matrices is straightforward but
requires more indices and complicates notation.

The pixel coordinates on a detector placed at a
distance zD from the sample are described as p =
(px, py, zD). Under far-field and paraxial approximations
the pixel coordinates are related to reciprocal space co-

px

py
p

x

y

a(1)(q)
a(K)(q)

FIG. 1. Experimental geometry in ptychography: an un-
known sample with transmission ψ(r) is rastered through an
illuminating beam ω(r), and a sequence of diffraction mea-
surements I(i) = |a(i)(q)|2 are recorded on an area detector
with pixel coordinates p at a distance zD from the sample.

ordinates

q =kout − kin

=
1

λ

(
(px,py,zD)√
p2x+p2y+z2D

− (0, 0, 1)

)
' 1

λzD
(px, py, 0)

where kin = (0, 0, k) and kout = k p
|p| are the incident

and scattered wave vectors that satisfy |kin| = |kout| =
k = 1/λ, and λ is the wavelength. With a distance pm
from the center to the edge of the detector, the diffrac-
tion limited resolution (half-period) of the microscope is
given by the lengthscale r = λzD

2pm
. As a consequence, the

coordinates in reciprocal and real space are defined as

q =
(
µ
mr ,

ν
mr

)
, µ, ν ∈ {0, . . . ,m− 1}

and

r = (rµ, rν) , µ, ν ∈ {0, . . . ,m− 1},
x(i) = (rµ′, rν′) , µ′, ν′ ∈ {0, . . . , n−m}.

While x(i) is typically rastered on a coarser grid, r+x(i)

spans a finer grid of dimension n× n.
In other words, we assume that a sequence of K diffrac-

tion intensity patterns I(i)(q) are collected as the posi-
tion of the object is rastered on the position x(i). The

simple transform a(i) =
√
I(i)(q) is a variance stabiliz-

ing transform for Poisson noise [51, 52]. The relationship
among the amplitude a(i)(q), the illumination function
w(r) and an unknown object ψ(r) to be estimated can
be expressed as follows:

a(i)(q) =
∣∣Fw(r)ψ(r + x(i))

∣∣ (1)

and F is the two-dimensional discrete Fourier transform,

(Ff)(q) = 1√
m2

∑
r

e2πiq·rf(r). (2)
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where the sum over r is given on all the indices m ×m
of r. We define an operator T(i), that extracts a frame
out of an image ψ, and build the illumination operator
Q(i), which scales the extracted frame point-wise by the
illumination function w:

Q(i)[ψ](r) = w(r)ψ(r + x(i)),

= w(r)T(i)[ψ](r),

= z(i)(r).

With the operator Q, eq. (1) can be represented com-
pactly as:

a = |FQψ∨|, or

{
a = |Fz|,
z = Qψ∨,

(3)

where the superscript ψ∨ denotes the linearized version of
the image (the superscript will be omitted for simplicity),
and more explicitely as:

a∈RKm2 a(1)

...
a(K)

 =

∣∣∣∣∣∣∣∣∣∣∣∣

F∈CKm2×Km2 F . . . 0
...

. . .
...

0 . . . F


z∈CKm2 z(1)

...
z(K)


∣∣∣∣∣∣∣∣∣∣∣∣
, (4)

z∈CKm2 z(1)

...
z(K)

 =

Q∈CKm2×n2
, diag(w)T(1)

...
diag(w)T(K)


ψ∈Cn2 ψ1

...
ψn2

 . (5)

where z are K frames extracted from the object ψ and
multiplied by the illumination function w, and F is the
associated 2D DFT matrix when we write everything in
the stacked form [41]. When both the sample and the il-
lumination are unknown, we can express the relationship
(Eq. 5) between the image ψ, the illumination w, and
the frames z in two forms:

z = Qψ = diag(Sw)Tψ = diag(Tψ)Sw (6)

where S ∈ RKm2×m2

denotes the operator that replicates
the illumination w into a stack of K frames, since Qψ =
diag(Sw)Tψ is the entry-wise product of Tψ and Sw.
Eq. (6) can be used to find ψ or w from z and the other
variable.

The Fourier transform relationship used in equations
(1), (3) and (4) is valid under far-field and paraxial
approximation, which is the focus of the current re-
lease of SHARP. For experimental geometries such as
Near Field[53], Fresnel [54], Fourier ptychography [55],
through-focus [56] partially coherent multiplexed geome-
tries [48, 57, 58], under-sampling conditions [59] and to
account for noise variance [41] , one can substitute the
simple Fourier transform with the appropriate propaga-
tor and variance stabilization [38].

B. Phase retrieval

Projection operators form the basis of every iterative
projection and projected gradient algorithms are imple-
mented in SHARP and accessible through a library. The
projection Pa ensures that the frames z match the exper-
iment, that is, they satisfy Eq. (4), and is referred to as
data projector:

Paz = F∗
Fz

|Fz|a (7)

while the projection PQ onto the range of Q (see Fig. 2):

PQ = Q(Q∗Q)−1Q∗ (8)

ensures that overlapping frames z are consistent with
each other and satisfy Eq. (5).

The projector Pa is relatively robust to Poisson noise
[51], but weighting factors to account for noisy pixels can
be easily added [40].

Using relationship (6), we can update the image ψ from
w and frames z:

ψ ←Q∗z
Q∗Q (9)

or the illumination w from an image ψ and frames z
[26, 27] multiplying (Eq. 6) on the left by diagTψ̄ and
solving for w:

w ←S∗diag(Tψ̄)z
S∗T|ψ|2 , (10)

S where ψ̄ denotes the complex conjugate of ψ. See [29]
for alternative updates, and [28] for convergence theory
behind a similar blockwise optimization strategy. Sev-
eral possible pathologies need to be accounted for when
updating both ψ and w:

• Combined drift of the illumination and the image
in real space. Drift is eliminated by keeping the
illumination in the center of the frame by comput-
ing the center of mass and correcting for drifts after
every update of the illumination.

• Fourier space drifts and grid pathologies are su-
pressed by enforcing either the absolute value aw =
|Fw0| or support mw of the Fourier transform of
the unknown illumination w0.

• A possible global phase factor between the solution
and the reconstruction is taken into account in the
error calculation.

A typical reconstruction with SHARP uses the follow-
ing sequence:

1. Input data I(q), translations x. Optional inputs: ini-

tial image ψ(0), illumination w(0), illumination Fourier
mask mw and illumination Fourier amplitudes aw.
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2. If w(0) is not provided, initialize illumination by setting
w(0) to the inverse Fourier transform of the square root
of the average frame.

3. If ψ(0) is not provided, initialize the image by filling
ψ(0) with random numbers uniformly drawn from [0, 1).

4. Build up Q, Q∗, and (Q∗Q)−1, and frames z(0) =

Qψ(0);

5. Update the frames z according to [60] using projector
operators defined in (Eqs. (7,8)) below:

z(l) := [2βPQPa + (1− 2β)Pa + β(PQ − I)]z(l−1),

where β ∈ (0.5, 1] is a scalar factor set by the user (set
to 0.75 by default, which works in most cases).

6. Update image ψ(`) using using Eq. 9.

7. If desired, compute a new illumination w using Eq. 10.
If mw is given apply the illumination Fourier mask con-
straint:

w(`) := F−1{(Fw)mw},

else if wI is given apply the illumination Fourier inten-
sities constraint:

w(`) := F−1

{
Fw
|Fw|

aw

}
,

else simply keep the unconstrained illumination w(`) :=
w.

Now compute center of mass of w(`) and shift it to fix
the translation of the object.

8. If desired do background retrieval, that is, estimate
static background and remove it in the iteration as de-
scribed in [41] (p.7, Eq. 30).

9. Iterate from 5 until one of the metrics from Eqs.
11,12,14 drops below a user defined level or untill a
maximum iteration for time-critical applications, and
return ψ(`) and w.

The metrics ε∆, εa, εQ, ε∆ used to monitor progress
amd stagnation are the normalized mean square root er-
ror (nmse) from the corresponding projections of z:

εa (z) = ‖[Pa−I]z‖
‖a‖ , (11)

εQ (z) =
‖[PQ−I]z‖
‖a‖ , (12)

ε∆

(
z(l), z(l−1)

)
=
‖z(l)−z(l−1)‖

‖a‖ (13)

where I is the identity operator, and z(0) = 0,
For benchmarking purposes, when using a simulation

from a known solution ψ0, the following metric can also
be used:

ε0 (z) = 1
‖Q∗z0‖min

ϕ

∥∥Q∗(eiϕz − z0)
∥∥, (14)

where ϕ is an arbitrary global phase factor, and z0 =
Qψ0. Notice the additional scaling factor Q∗ used in ε0.

The initial values for the input data and translations
can either be loaded from file or set by a python interface.
The starting “zero-th” initial image is loaded from file,
set to a random image, or taken as a constant image.

C. Computational Methodology

SHARP was developed to achieve the highest perfor-
mance, taking advantage of the algorithm described ear-
lier and using a distributed computational backend. The
ptychographic reconstruction algorithm requires one to
compute the product of several linear operators (Q, Q∗,
F, F∗, S, S∗) on a set of frames z, an image ψ and an
illumination w several times. We use a distributed GPU
architecture across multiple nodes for this task (Fig. 2).

To implement fast operators, a set of GPU kernels and
MPI communication are necessary. The split (Qψ) and
overlap (Q∗z) kernels are among the most bandwidth de-
manding kernels and play an important role in the pro-
cess.

The strategy used to implement those kernels impacts
directly the overall performance of the reconstruction al-
gorithm. To divide the problem among multiple nodes,
SHARP initially determines the size of the final image
based on the list of translations, frames size, and resolu-
tion. It subsequently assigns a list of translations to every
node and loads the corresponding frames onto GPUs.

The split (Qψ) and FFT (F) operations are easily par-
allelized because of the framewise intrinsic independence.
Summing the frames onto an image (Q∗z) requires a re-
duction for every image pixel across neighboring MPI
nodes. Within each GPU the image is divided into blocks
and we first determine which frames contribute to each
block. The contributing frames are summed and then the
resulting image is summed across all MPI nodes. We use
shared memory or constant memory, depending on GPU
compute capability, to store frame translations, and we
use kernel fusion to reduce access to global memory. The
last step of summing across all MPI nodes does not nec-
essarily have to be done at every iteration, at the cost of
slower convergence [61], but that is the default.

Timing to compute the overlap at each iteration de-
pends on the size of the image and number of frames on
top of each pixel, i.e. the density but not the size of the
frames.

In addition to the high performance ptychographic al-
gorithm, the SHARP software environment provides a
flexible and modular framework which can be changed
and adapted to different needs. Furthermore, the user
has control of several options for the reconstruction algo-
rithm, which can be used to guarantee a balance between
performance and quality of the results. These include the
choice of illumination Fourier mask, illumination Fourier
intensities and the β parameter, as well as how often
to do different operations such as illumination retrieval,
background retrieval, and synchronization of the differ-
ent GPUs. For more details we refer the reader to the
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FIG. 2. Schematic of the ptychographic reconstruction algo-
rithm implemented in SHARP. The iterative reconstruction
scheme is shown on the right. To achieve the highest possible
throughput and scalability one has to parallelize across mul-
tiple GPUs as shown on the left for the case of 4 GPUs. As
most ptychographic scans use a constant density of scan point
across the object, we expect to be able to achieve a very even
division, resulting in good load balancing. SHARP enforces
an overlap constraint between the images produced by each of
the GPUs, and also enforces that the illumination recovered
on each GPU agree with each other. This is done by default
at every iteration.

documentation (http://www.camera.lbl.gov/sharp).

III. APPLICATIONS AND PERFORMANCE

SHARP enables high-throughput streaming analy-
sis using computationally efficient phase retrieval algo-
rithms. In this section we describe a typical dataset and
sample that can be collected in less than 1 minute at
the ALS, and the computational backend to provide fast
feedback to the microscopist.

To characterize our performance, we use both simu-
lations and experimental data. We use simulations to
compare the convergence of the reconstruction algorithm
to the “true solution” and characterize the effect of dif-
ferent light sources, contrast, scale, noise, detectors or
samples for which no data exists yet.

Experimental data from ALS used to characterize bat-
tery materials, green cement, magnetic materials, at dif-
ferent wavelengths and orientation has been successfully
reconstructed [62–66] using the software described in this
article.

We also describe a streaming example in which a front-
end that operates very close to the actual experiment
sends the data to the reconstruction backend that runs
remotely on a GPU/CPU cluster. Further details about
the streaming front-end and processing back-end pipeline
will be published in an upcoming paper by our group.
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FIG. 3. Convergence rate (top) per iteration and timing
(bottom) to process 10,000 frames of dimension 128×128 ex-
tracted from an image of size 1000×1000 as a function of the
number of nodes. All residuals decrease rapidly; numerical
precision limits the (weighted) comparison with the known
solution ε′(z). Reconstruction is achieved (ε0 < 5e− 4) in
under 2 seconds using a cluster with 4 compute nodes with 4
GTX Titan GPU per node (16 total, 43000 cores), 96 GBytes
GPU memory, 1 TByte RAM, and 24 TBytes storage, infini-
band. Timing contributions for corresponding computational
kernels are (Q∗Q)−1Q∗ 30 %, F,F∗ 20 %, Q 20 %, S=ast 5 %,
elementwise operations 20 %, and residual calculation 5 %.
No illumination retrieval was done, as the exact illumination
was given. The simulation was done using periodic boundary
conditions to avoid edge effects.

A. Simulations and performance

As a demonstration, we start from a sample that was
composed of colloidal gold nanoparticles of 50 nm and
10 nm deposited on a transparent silicon nitride mem-
brane. An experimental image was obtained by scanning
electron microscopy, which provides high resolution and
contrast but can only view the surface of the sample.

We simulate a complex transmission function by scal-
ing the image amplitude from 0 to 50 nm thickness, and
using the complex index of refraction of gold at 750 eV
energy from [henke.lbl.gov]. The illumination is gener-
ated by a zone-plate with a diameter of 220 microns and
60 nm outer zone width, discretized into (128×128) pix-
els in the far field.

B. Experimental example

Figure 4 shows ptychographic reconstructions of a
dataset generated from a sample consisting of gold balls
with diameters of 50 and 10 nm. The data were generated
using 750 eV x-rays at beamline 5.3.2.1 of the Advanced
Light Source, with high stability position control of the

http://www.camera.lbl.gov/sharp
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FIG. 4. Reconstruction of a test sample consisting of gold
balls with diameters of 50 and 10 nm. Detector pixel size
30 microns, 1920 × 960 pixels 80 mm downstream from the
sample, cropped and downsampled to 128, scan of (50× 50)
points, illumination is generated by a zone-plate with a diam-
eter of 220 microns and 60 nm outer zone width. A) Phase
image generated by SHARP using the algorithm described in
section II B applying the illumination Fourier mask constraint
and turning on background retrieval. The red arrow points
to a collection of 50 nm balls while the blue arrow points to a
collection of 10 nm balls. The pixel size is 10 nm. B) Same as
(A) except without enforcing the illumination Fourier mask.
C) Same as (A) but without using the background retrieval
algorithm.

soft x-ray scanning transmission microscope. Exposure
time was 1 second and the dataset consists of a square
scan grid with 40 nm spacing ( see [62] for details of the
experimental setup). The reconstructions consisted of
300 iterations of the RAAR algorithm with a illumina-
tion retrieval and background retrieval step every other
iteration. The initial illumination is generated by (1)
computing the average of the measurements, (2) seting
everything below a threshold to 0, and everything above
a threshold to a constant average value (3) applying an
inverse FFT. The image is initialized with complex inde-
pendent identically distributed (i.i.d.) pixels, or a con-
stant average value.

C. Interface and Streaming

Common processing pipelines used for ptychographic
experiments usually have a series of I/O operations and
many different components involved. We have devel-
oped a streaming pipeline, to be deployed at the COS-
MIC beamline at the ALS, which allows users to monitor
and quickly act upon changes along the experimental and
computational pipeline.

The streaming pipeline is composed of a front-end and
a back-end (Fig. 5). The front-end consists of a Graphical
User Interface (see Fig. 5), a worker that grabs frames
from the detector, and an interface that monitors network
activity, experimental parameters (position, wavelength,
exposure, etc...), and provides a live view of the ongoing
reconstruction.

On the back-end side, the streaming infrastructure is
composed of a communication handler and a collection of
workers addressing different tasks such as dark calibra-
tion, detector correction, data reduction, ptychographic
reconstruction and writing output to file.

Frontend

Experiment 
control

Graphical User Interface 
(GUI)

BackendData stream
Trigger

Framegrabber

CCD

Scan x/y

Processing / Reconstruction (SHARP)
CXI file

FIG. 5. Overview of the components involved in the software
structure of the streaming pipeline. In order to maximize the
performance of this streaming framework, the frontend oper-
ates very close to the actual experiment, while the backend
runs remotely on a powerful GPU/CPU cluster. As soon as
diffraction data is recorded by the CCD camera, a live view of
the ptychographic reconstruction is transmitted to the Graph-
ical User Interface, and the user is able to control and monitor
(top panel) the current status of the data streams and anal-
ysis, (bottom right panel) .

This software architecture allows users an intuitive,
flexible and responsive monitoring and control of their
experiments. Such a tight integration between data aqui-
sition and analysis is required to give users the feedback
they expect from a STXM instrument.

IV. CONCLUSIONS

In this paper we described SHARP, a high-
performance software environment for ptychography re-
constructions, and its application as part of quick feed-
back system used by the ptychographic mircoscopes in-
stalled at the Advanced Light Source.

Our software provides a modular interface to the high
performance computational back-end and can be adapted
to different needs. Its fast throughput provides near real
time feedback to microscopists and this also makes it
suitable as a corner stone for demanding higher dimen-
sional analysis such as spectro-ptychography or tomo-
ptychography.

With the coming new generation light sources and
faster detectors, the ability to quickly analyse vast
amounts of data to obtain large high-dimensional images
will be an enabling tool for science.
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S. Stephan, S. Schöder, M. Burghammer, and C. G.
Schroer, Opt. Express 19, 16324 (2011).

[32] M. Guizar-Sicairos, S. Narayanan, A. Stein, M. Metzler,
A. R. Sandy, J. R. Fienup, and K. Evans-Lutterodt,
Applied Physics Letters 98, 111108 (2011).

[33] A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Sei-
both, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold,
U. Zastrau, et al., Scientific reports 3, 01633 (2013).

[34] A. Wojdyla, R. Miyakawa, and P. Naulleau, in
SPIE Advanced Lithography (International Society for
Optics and Photonics, 2014) pp. 904839–904839.

[35] M. Guizar-Sicairos and J. R. Fienup, Opt. Express 16,
7264 (2008).

[36] S. Marchesini, Y.-C. Tu, and H.-t. Wu, Ap-
plied and Computational Harmonic Analysis ,
10.1016/j.acha.2015.06.005 (2015).

[37] Z. Wen, C. Yang, X. Liu, and S. Marchesini, Inverse
Problems 28, 115010 (2012).

[38] C. Yang, J. Qian, A. Schirotzek,
F. Maia, and S. Marchesini,
Iterative Algorithms for Ptychographic Phase Retrieval,
Tech. Rep. 4598E, arXiv:1105.5628 (Lawrence Berkeley
National Laboratory, 2011).

[39] P. Thibault and M. Guizar-Sicairos, New Journal of
Physics 14, 063004 (2012).

[40] J. Qian, C. Yang, A. Schirotzek, F. Maia, and S. March-
esini, Inverse Problems and Applications, Contemp.
Math 615, 261 (2014).

[41] S. Marchesini, A. Schirotzek, C. Yang, H.-t. Wu, and
F. Maia, Inverse Problems 29, 115009 (2013).

[42] A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and
J. Rodenburg, Ultramicroscopy 120, 64 (2012).

[43] M. Beckers, T. Senkbeil, T. Gorniak, K. Giewekemeyer,
T. Salditt, and A. Rosenhahn, Ultramicroscopy 126, 44
(2013).

[44] P. Godard, M. Allain, V. Chamard, and J. Rodenburg,
Opt. Express 20, 25914 (2012).

[45] B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark,
A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty,
Nature Physics 4, 394 (2008).

[46] N. C. Jesse and G. P. Andrew, Applied Physics Letters
99, 154103 (2011).

[47] L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J.
Vine, R. A. Dilanian, S. Flewett, K. A. Nugent, A. G.
Peele, E. Balaur, and I. McNulty, Phys. Rev. Lett. 103,
243902 (2009).

[48] L. Tian, X. Li, K. Ramchandran, and L. Waller, Biomed-
ical Optics Express 5, 2376 (2014).

[49] S. T. Thurman and J. R. Fienup, JOSA A 26, 1008
(2009).

[50] M. Guizar-Sicairos and J. R. Fienup, Opt. Express 17,
2670 (2009).

[51] F. J. Anscombe, Biometrika 35, 246 (1948).

http://dx.doi.org/10.1364/AO.32.001747
http://dx.doi.org/10.1103/PhysRevB.68.140101
http://dx.doi.org/10.1103/PhysRevB.68.140101
http://dx.doi.org/10.1063/1.2403783
http://arxiv.org/abs/physics/0603201
http://dx.doi.org/DOI: 10.1016/S1076-5670(07)00003-1
http://dx.doi.org/DOI: 10.1016/S1076-5670(07)00003-1
http://dx.doi.org/10.1107/S0567739469001045
http://dx.doi.org/10.1107/S0567739469001045
http://dx.doi.org/ 10.1364/OE.22.032082
http://dx.doi.org/ 10.1126/science.1158573
http://dx.doi.org/ 10.1016/j.ultramic.2008.12.011
http://arxiv.org/abs/1408.1922
http://arxiv.org/abs/1408.1922
http://dx.doi.org/ 10.1016/j.ultramic.2010.01.004
http://dx.doi.org/ 10.1016/j.ultramic.2010.01.004
http://dx.doi.org/10.1364/OE.19.016324
http://dx.doi.org/ 10.1063/1.3558914
http://dx.doi.org/ 10.1016/j.ultramic.2012.06.001
http://dx.doi.org/10.1364/OE.20.025914
http://dx.doi.org/ 10.1038/nphys896
http://dx.doi.org/10.1063/1.3650265
http://dx.doi.org/10.1063/1.3650265
http://dx.doi.org/ 10.1103/PhysRevLett.103.243902
http://dx.doi.org/ 10.1103/PhysRevLett.103.243902
http://dx.doi.org/10.1364/OE.17.002670
http://dx.doi.org/10.1364/OE.17.002670


8
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