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ABSTRACT OF THE DISSERTATION

Cross-Layer Design of Reliable and Secure Cyber-Physical Systems

by

Bowen Zheng

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2018

Dr. Qi Zhu, Chairperson

The design of secure and reliable cyber-physical systems has become increasingly challeng-

ing due to the growing complexity of their software and hardware, as well as the interactions

among different systems and with the physical environment. Next-generation automotive

systems are representative cyber-physical systems with such challenges. They are not only

capable of conducting perception, planning, and control through complex software and

hardware within the vehicle, but also able to communicate with other vehicles and roadside

infrastructures for safety and efficiency applications. The design, analysis, and validation of

vehicular applications (such as cooperative adaptive cruise control and intersection manage-

ment) involve multiple layers: the application layer, the software layer, and the hardware

layer. Furthermore, various metrics and stringent requirements, such as timing, safety, secu-

rity, and fault-tolerance, makes the design, analysis, and validation even more challenging.

To cope with these challenges, we present CONVINCE, a cross-layer modeling, ex-

ploration, and validation framework for the design of next-generation automotive systems.

CONVINCE is a holistic framework containing mathematical models, synthesis and valida-
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tion algorithms, and simulation of both inter-vehicle and intra-vehicle behaviors. Various

metrics are considered across multiple layers of the framework.

At the application and software layers, we consider cooperative adaptive cruise

control and intelligent intersection management to address the challenges from communica-

tion delays and possible security attacks. We present a delay-tolerant protocol for intelligent

intersection management and conduct modeling, simulation, and verification for analyzing

the safety, liveness, and performance of the protocol. We also develop a codesign approach

for addressing the trade-off between security and control performance with the consideration

of implementation feasibility. At the software and hardware layers, we address the software

to hardware mapping considering fault-tolerance and security. We conduct fault-tolerance

design to improve system-level error recovery rate by applying soft error detection and re-

covery mechanisms with real-time constraints. We also present the security-aware mapping

for both CAN-based and TDMA-based systems with limited resources and strict timing

constraints. We have conducted experiments with industrial applications and synthetic

examples for our cross-layer framework and demonstrated its effectiveness.
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Chapter 1

Introduction

A cyber-physical system (CPS) is an integration of embedded computing, com-

munication, and control techniques interacting with physical processes [91, 122]. Typically,

embedded computing controls the physical processes and in turn, the physical processes pro-

vide information from the sensors to embedded software through communication networks,

thus forming a feedback loop. Cyber-physical systems are prevalent in various domains

such as automotive systems, medical devices, and energy management systems. With the

advancement in these application domains, both the software and hardware become in-

creasingly complex, making the design process more and more challenging, especially when

considering various design metrics, including timing, system performance, security, reliabil-

ity, etc. Furthermore, the interconnection of individual cyber-physical systems increases the

complexity and may bring a number of attack surfaces. In this chapter, we use the automo-

tive system to summarize the design challenges from individual systems to the connected

applications and introduce the related works at each layer.
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1.1 Design Challenges

Security and reliability have become pressing issues for cyber-physical systems.

Cyber-security attacks to systems such as vehicles and industrial robots can lead to not only

privacy loss but also life-threatening consequences. The soft errors caused by transient faults

and the failures caused by permanent faults can also lead to catastrophic system failures

in extreme cases. These issues become more challenging due to the increasing complexity

of both software and hardware, the tight computation and communication constraints and

the dynamically changing physical environment.

A typical cyber-physical system is the automotive system. Next-generation auto-

motive systems will become more autonomous and connected. Significant progress has been

made for autonomous driving in recent years. Although testing autonomous vehicles can

already be seen on real roads in many countries, accidents have been reported for big com-

panies like Uber, Tesla, and Google [1, 3, 8]. The design, analysis, and validation of secure

and reliable CPS like automotive systems still encounter tremendous challenges, especially

under stringent resource and real-time constraints.

The security and reliability issues become even more challenging when considering

connected applications, such as intersection management and cooperative adaptive cruise

control. The open environments lead to less robust communication, less predictive timing

behaviors, and more attack surfaces.

In the rest of the section, we introduce the challenges for in-vehicle design and

inter-vehicle applications, respectively.
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1.1.1 In-Vehicle Design Challenges

Functionality Complexity

From the functionality perspective, complex applications like autonomous driving

post more challenges on the software design. Figure. 1.1 shows the basic functions of a typ-

ical autonomous vehicle, including perception, planning, behavioral executive, and motion

control [148, 74, 25, 74, 114, 161]. The perception module collects data from a variety of

sensors (e.g., LIDAR, radar, GPS, cameras, and ultrasound sensors) and detects obstacles,

road shape, and other critical information from the environment. The planning module

makes driving decisions based on the real-time data from the perception module. The be-

havior executive module specifies driving behavior under different environments, such as

intersection, parking lot, and high way. Based on the driving behavior, the motion con-

trol module physically adjusts actuators such as steering, acceleration, and braking. It is

estimated by Morgan Stanley that the software can account for 40% of the value of an au-

tonomous vehicle [32]. Simply from the year 2000 to 2010, the number of lines of embedded

software increased from one million to more than ten million [28, 101, 131]. The increas-

ing complexity in functionality requires the shift from traditional federated architecture to

integrated architecture as described in the following subsection.

Architecture Complexity

Traditionally, automotive manufacturers or OEMs (original equipment manufac-

turers) obtain parts from Tier-1 suppliers and assemble the vehicle. Many of the subsystems

are specified by the OEMs but built by the Tier-1 suppliers and provided as a black-box
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Figure 1.1: Typical autonomous driving functions.

(a functionality deployed on one ECU with interfaces). The designers connect multiple

ECUs through buses like CAN (controller area network) and build the electronic system.

This architecture is called federated architecture and it leads to 50 to 100 ECUs in current

automotive systems [11, 27]. The trend is to reduce the number of ECUs and increase the

computation power of the computation units [24]. As a result, multiple functions can share

one ECU and one function can be distributed over multiple ECUs [38]. This architecture is

called integrated architecture. However, the sharing and contention among multi-core and

distributed systems become another challenge. In addition, new computational components

such as Field Programmable Gate Array (FPGA) [57, 133] and Graphical Processing Unit

(GPU) [65, 90] can be adopted for computationally-intensive applications, such as video and

image processing for autonomous vehicles. This forms a heterogeneous system as shown in

Figure. 1.2, where various computation units (ECU, FPGA, and GPU) are connected to
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the bus system. The bus system is also heterogeneous as different modules require different

bus speed and reliability. For example, autonomous driving applications require the bus

to transmit a large amount of data which beyond the limits of buses like CAN, LIN, or

FlexRay. Protocols based on the Ethernet [69, 70, 128, 129], have emerged to be good can-

didates, such as Time-Sensitive Networking (formerly known as Ethernet AVB [124, 41])

and Time-Triggered Ethernet [58]. In the heterogeneous bus system, a gateway is adopted

to interconnect the buses and thus the on-board diagnostics-II (OBD-II) ports are also

connected through the gateway for engineers and technicians to monitor the intra-vehicle

traffic and diagnose problems.

High Volume and Dynamic Data

A large amount of data generated from the sensors need to be transmitted and

processed in real time in future automotive systems. The experimental autonomous vehicle

5



from Google (Waymo) is reported to generate 750MB data from sensors [2]. The internal bus

system is required to transmit these data in real time and various components also need to

process them in real time. The real-time constraints make it challenging to design an efficient

and reliable architecture for such volume of data. As cyber-physical systems interact closely

with the environment, the workload may vary significantly in different surroundings [33].

For instance, the workload in urban areas is typically higher than in rural areas as the

perception module need to detect more objects and deal with more complex situations in

urban areas. The dynamic workload from the environment uncertainty brings in uncertainty

in software design.

Various Design Requirements

A variety of objectives and metrics need to be addressed across the design, analysis

and validation stages of the automotive systems. These metrics and objectives include

timing, performance, fault tolerance, and security. As shown in [36, 37, 53, 160, 158],

these metrics often conflict with each other due to the timing and resource requirements

of the system. For example, shorter sampling periods and end-to-end latencies of control

loops usually increase the control performance [37], but may have negative impacts on

schedulability [37] and security [158] due to the decrease of timing slacks in the system.

In this thesis, we mainly focus on timing, security, and fault-tolerance and the possible

trade-off among them.

• Timing. Timing is essential in cyber-physical systems as CPS requires real-time inter-

action with the physical environment. For example, when you press the brake pedal

6



of a vehicle, the brake system needs to physically brake the vehicle within a deadline

to guarantee safety. When taking into account the sharing and contention of various

processes over the multi-core or distributed systems, the timing correctness becomes

more critical. Furthermore, many design metrics are directly related to timing. For

example, control performance is increased with shorter sampling period, but fault-

tolerance and security may then be limited without enough timing slack to adopt

these techniques.

• Security. The heterogeneous architecture provides a variety of cyber and physical in-

terfaces for attackers to utilize. The in-vehicle bus system (CAN, FlexRay, LIN, etc.),

OBD-II port, Bluetooth, multi-media system, and key-less entry system have been

discussed or shown in the literature to be vulnerable [153, 30, 23, 64]. Although tradi-

tional cybersecurity approaches [143] (like encryption and authentication) and control-

theoretic approaches [118] can be utilized to protect CPS, they introduce overhead on

computation and communication. These overheads may affect control performance,

schedulability, and other timing-related metrics. It is crucial to quantitatively model,

analyze and validate the system in a cross-layer framework.

• Fault-Tolerance. Among these objectives and metrics, fault tolerance is one of our

focuses as soft errors have become a major concern in CPS. Due to the continuous

scaling of technology, high energy cosmic particles and radiation from the application

environment [22, 152], the number of soft errors is rapidly increasing. While for CPS

like automotive systems, the safety is closely related to the number of soft errors

that can be detected and recovered. Efforts are taken across multiple levels (e.g.,

7



manufacturing, circuit, and architecture level [152]). However, these approaches are

not able to entirely eliminate errors and may not be suitable for the commercially

off-the-shelf processors within embedded systems.

System Integration

Due to the complexity of software and hardware with various design metrics and

objectives, the system integration becomes more challenging. When the software modules

are mapped to the heterogeneous platform, the designer needs to decide the way to allocate

the software modules to different computation units, the scheduling on each component, and

the packing and transmission of signals, considering various design metrics and objectives.

For example, with the contention from other software tasks on the same core, whether

it is able to finish the current task within its deadline. Another example is that with

asynchronous communication in a distributed system, whether the end-to-end latencies

from sensors to actuators are within the safe range. At the system level, whether the

system satisfies requirements on timing, control performance, security, and fault-tolerance

needs to be studied in a cross-layer framework.

1.1.2 Connected Vehicle Design Challenges

Connected environments and applications make the problems even more challeng-

ing. The purpose of connected applications is to overcome the limitations of single vehicle

and increase safety and transportation efficiency. For instance, a left-turning vehicle may

fail to detect an obstacle coming from the left due to the blind spots of its sensors, the pre-

cision limitations, or the shadings in the environment. With information exchanged among

8



vehicles, they can maintain a shorter safe distance and cooperatively cross the intersec-

tion, and thus increasing the transportation efficiency. As a result, vehicle-to-vehicle (V2V)

and vehicle-to-infrastructure (V2I) communications (generalized as V2X communications)

are proposed for connected applications. Among the protocols of V2X communications,

Dedicated Short Range Communication (DSRC) is under the development of the United

States [61, 80]. In this standard, the PHY and MAC layers are defined by IEEE 802.11p

and IEEE 1609.4, which work as the basis for both safety and non-safety applications. The

upper layers are specifically defined for safety and non-safety applications. For non-safety

applications, the typical TCP/IP protocol stack is used for transportation and network

layers. For safety applications, the transportation and network layers are replaced with

WSMP (Wave Short Message Protocol) developed to avoid excessive overhead. There is a

message sublayer which defined the message sets for the safety application layer. Among the

messages, basic safety messages (BSMs) are exchanged among vehicles and infrastructures

in a routine about the vehicle state information (such as speed, acceleration and location).

Based on the received information, the safety application can estimate the position and

movement of the surrounding vehicles and take early actions to avoid potential collisions

or cooperatively improve transportation efficiency. However, the design of connected ap-

plications for CPS still faces many challenges besides the increasing complexity as shown

below.

Dynamic and Uncertain Environment

The openness of the connected environment leads to the adoption of wireless com-

munication which is less predictive and robust.
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• Timing. The timing behaviors of connected applications are extremely critical to

guarantee safety. However, the timing behavior of V2X communication is less predic-

tive than that of in-vehicle networks (like CAN or FlexRay) due to various factors in

the physical environment. In the literature, the transmission delay of DSRC in terms

of factors like vehicle density and packet sending rate is studied in [155, 76, 100]. It is

shown in [155] that the mean delay of safety message transmission can be as high as

50 ms with vehicle density at 0.1 vehicle/m and a typical packet arriving rate of 10

pkts/s, and the max delay can be as high as 325.57 ms. Therefore, it is more difficult

to model and analyze the performance of connected applications and guarantee the

correctness of timing behaviors.

• Robustness. Due to the nature of wireless communication and the application envi-

ronment of moving vehicles, the connections among vehicles and infrastructures are

less robust. In [154, 21, 46], it is shown that significant packet delays and losses could

happen in the vehicular network under dense traffic. Furthermore, malicious jamming

or flooding attacks [20, 159] can create more severe packet delays and losses. A con-

nected application should be robust enough to tolerate faults and deal with changing

environments.

Security Challenges

The open environment of V2X applications further broadens the potential attack

surfaces. The security issues of V2V and V2I communications have been studied at multiple

levels, from the underlying DSRC communication protocol to application-level attacks and

defenses.
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DSRC provides several security measures. In the physical layer, safety messages

are designated to be transmitted through frequency channel 172. For the WSMP layer,

the format and means to secure message exchange are defined in IEEE 1609.2 protocol, in-

cluding the Elliptic Curve Digital Signature Algorithm (ECDSA) asymmetric cryptographic

algorithm for authentication and the combination of AES-CCM and Elliptic Curve Inte-

grated Encryption Scheme for encryption [80]. However, these techniques are not enough to

protect the connected applications against attackers maliciously increasing the delays and

losses of packets by jamming or flooding, as well as insider attacks.

At the application layer, various attacks are studied in the literature for connected

applications [126, 14, 45, 77, 125]. In summary, the commonly seen attacks can be catego-

rized as follows.

• Message falsification. A vehicle sends false safety critical information to mislead victim

vehicles to wrong decisions.

• Impersonation. A vehicle fakes its identity for malicious purposes or escaping liability.

• Message tempering. A vehicle intercepts and modifies packets passing through it.

• Denial of service attack. An attacker sends messages to jam the communication

channels to prevent regular services.

• Sybil attacks. A vehicle pretends to have multiple fake identities to gain large influence.

• Privacy issues. An attacker may conduct malicious acts by access victims’ location

information or electronic ID.
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Consensus Challenges

Connected transportation systems are naturally distributed systems. As the com-

munication in distributed systems is not always reliable, Michael Fischer, Nancy Lynch,

and Michael Paterson proved that fault-tolerant agreement is impossible in asynchronous

distributed systems in 1985 [50]. This leads to the trade-off between safety (the agreement is

correctly reached) and liveness (the termination will eventually happen)1. However, agree-

ment is critical for many connected applications to avoid collisions. Quorum systems are

usually used in asynchronous systems to address the trade-off. In Quorum systems, the

decision is made based on the majority votes from the participating nodes. In [29], Soma

Chaudhuri introduced the concept of set agreement, where k-set agreement means there

can be up to k different output values in the system. In this way, 1-set agreement denotes

total consensus and n-set agreement denotes no consensus at all for n nodes. The authors

from UC Berkeley introduced PBS (Probabilistically Bounded Staleness) to quantitatively

measure a probability called PBS< k, t >: the probability of the read is within the k recent

versions after t seconds [19]. The Paxos Algorithms [88, 89] proposed by Leslie Lamport

can be used to deal with fail-stop failures and message losses. This algorithm can guarantee

safety and eventual liveness in asynchronous distributed systems. However, this algorithm

is not easy to implement in practical connected applications. It is challenging to propose

simplified versions of these techniques specifically designed for connected applications to

guarantee safety, eventual liveness, and no deadlocks. This demands the verification and

validation of the protocols for connected applications. With the distributed nature, less pre-

1The safety and liveness properties are used in the distributed systems communities. In this thesis, the
safety and liveness properties are specifically defined for intelligent intersection management in Chapter 3.
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dictive communication, and various attack surfaces, the verification and validation become

extremely challenging.

In summary, the modeling, exploration, and validation of connected automotive systems

should be considered across system layers including applications, software implementations,

architecture platform, and the communication among them. In this thesis, we present

CONVINCE, a cross-layer modeling, exploration, and validation framework for connected

vehicles. CONVINCE is a holistic framework containing mathematical models, synthesis

and validation algorithms, and simulation of both inter-vehicle and intra-vehicle behaviors.

Various metrics are considered across multiple layers. We will introduce the details of the

framework in Chapter 2.

1.2 Related Work

In this section, we introduce the related works from in-vehicle software and hard-

ware design to vehicular applications. For in-vehicle software to hardware mapping, we

focus on two metrics: security and fault-tolerance. For vehicular applications, we mainly

focus on cooperative adaptive cruise control and intelligent intersection management.

1.2.1 In-Vehicle Design

System Integration

Several automated design space exploration techniques have been proposed to fa-

cilitate the integration process in the literature. In [132], the authors propose a methodology

that adopts constraint-based formalization for automotive software and hardware design,
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considering the safety requirements of the ISO26262 standard. In [111], the authors dis-

cuss the advantages of virtual prototypes to virtually integrate automotive software and

hardware through design space exploration and system verification. In [44], the authors

further combine firmware-related functionalities (like diagnostic tests) into a holistic design

space exploration framework for the design of automotive electronics. In [156], the authors

propose a model-based formal integration framework for automotive software considering

interoperability.

In-Vehicle Security

In [85], the authors successfully compromise a real vehicle and demonstrate the

vulnerability of vehicle electronic systems. They take advantage of the internal CAN buses

and use packet sniffing, targeted probing, fuzzing and reverse engineering to complete the

attacks. The security issues of in-vehicle bus systems have been observed earlier [153]. In

particular, the security issues of CAN have been studied in a number of works [153, 85,

93, 145] due to its prevalence in automotive systems. First, the broadcasting nature of

CAN makes it susceptible to eavesdropping. Second, the static priority used for scheduling

may lead to Denial-of-Service (DoS) attacks. Third, the lack of authentication field in

the frame requires more complex protocol design. For buses like FlexRay and MOST

which allocates time slots for different messages, the threats of flooding and DoS can be

reduced. However, the difficulty of timing analysis increases with security mechanisms

added [130, 153, 109]. An attacker can also utilize the vulnerabilities of Low-cost buses

(like LIN which is typically used for non-critical modules such as power windows and rain

sensors) to gain access to safety-critical systems [153]. Another way to access the internal
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bus system is to exploit the wireless communication interfaces such as Bluetooth and keyless

entry systems [23]. If the On-Board Diagnostics (OBD) port is accessed by the attacker, the

packets transmitted through the internal bus system are completely accessed [30]. Once the

attackers have gained access to in-vehicle architecture platform, they can then exploit the

vulnerabilities of aforementioned bus systems to deploy sensor spoofing attacks [64], replay

attacks, masquerade attacks, DoS attacks, etc.

There are a number of studies in the automotive domain to enhance automotive

security. The authors in [151] introduce aspect-oriented modeling to model attacks as as-

pects and evaluate the system under attack based on the model-based design methodology.

In [106], the authors introduce security analysis for automotive architectures using proba-

bilistic model checking. In [140], the authors present a security-aware network controller to

enhance the security of the gateway. In [95, 97], the authors model the impact of message

authentication techniques on real-time constraints in automotive systems. However, these

works do not consider the impact of security enhancing mechanisms on sampling periods

and control performance, and do not model their relation with system security (rather it

is assumed that authentication requirements are directly given at the message level, which

may not be practical in many design processes).

In the cyber-physical system community, various control-oriented approaches are

proposed against attacks on cyber-physical systems [118, 54, 116, 139]. In [118], the authors

design attack detection and identification monitors from a control-theoretic perspective.

In [54], an optimal control approach is proposed to address jamming in the communication

channel between the controller and the plant. In [116], a recursive networked predictive
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control method is proposed to deal with denial of service attacks. In [139], a minimax control

approach is presented to address network packet scheduling attacks. However, resource and

real-time constraints are not considered in these approaches, and there is no guarantee of

schedulability and control performance.

In-Vehicle Fault-Tolerance

Errors may manifest as application crashes, control flow violations (illegal branches)

or silent data corruptions. In [51], the authors categorize the online error detection tech-

niques into embedded error detection (EED) and explicit output comparison (EOC). EED

refers to the broad collection of error detection techniques that detect and recover part of the

errors with built-in techniques. EED-based techniques do not rely on redundant execution

but come with computation overheads (e.g., the state-of-the-art control flow checking tech-

niques take 30% of computation overhead but with about 70% recovery rate). In practice,

the performance overhead of EED may vary greatly depending on the EED implementa-

tion and application [51]. For example, control-intensive programs naturally incur a higher

performance penalty when adopting CFC compared to computation intensive programs.

Examples of EED techniques include, but are not limited to watchdog timers [105], control

flow checking (CFC) [112], and instruction signature checking. EOC refers to the techniques

relying on explicit redundancy to detect and recovery errors. For instance, executing the

same task multiple times with the same inputs and comparing their outputs. Examples of

EOC include the classic triple modular redundancy (TMR) architecture and a scaled down

version that executes the same task twice to detect the error and re-execute the task in case

of output mismatch [51].
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In the literature, there have been a number of studies on fault tolerance for real-

time systems. In [72], Izosimov et al. use process re-execution and replication to recover

from transient faults with built-in EED-type detection techniques. In [123], they further

utilize checkpointing which allows re-execution from the checkpoint instead of the entire

process. In [71], they trade off between hardware hardening and software re-execution.

Huang et al. in [66] explore spatial and temporal redundancy in a time-triggered architec-

ture. Pinello et al. in [121] explore replication to tolerant errors in controlled plant and

the execution platform. Burns et al. in [35, 92] explore priority assignment and conduct

schedulability analysis for fault-tolerant hard real-time systems, with focus on EED-type

techniques. Kim et al. in [83, 82] categorize tasks to hard recovery, soft recovery, and

best-effort recovery types based on their fault tolerance requirements, and apply various

replication strategies. There are also several studies on fault burst model where multiple

transient faults may occur during a time interval [102, 138, 59]. In [115], the authors present

a model to analyze transient errors for automotive safety-critical applications. In [84], the

authors study and discuss the faults during the startup and operation of a FlexRay network,

and propose a bus guardian. In [79], the authors introduce a fault-tolerant control strategy

which adjusts control input at runtime based on the occurrence of faults. The authors

in [12, 127] address software-based self-tests and built-in self-tests to enhance automotive

fault diagnosis.
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1.2.2 Connected Vehicle Applications

Cooperative Adaptive Cruise Control

Cooperative Adaptive Cruise Control (CACC) is the technology that utilizes V2V

wireless communication to enhance the traditional single-vehicle adaptive cruise control

(ACC) by communicating with other vehicles to cooperatively maintain a safe gap which is

relatively shorter. In 1997, National Automated Highway Systems Consortium (NAHSC)

demonstrated eight vehicles cooperatively forming a platoon to increase transportation ca-

pacity on I-15 in San Diego. Since then, many CACC architectures [147, 78, 42] and

simulation engines [49, 103, 56, 55, 134] are proposed. In recently work [15], the authors

propose the detailed protocol for CACC with Finite State Machines and simulation engines

integrated with network simulators which helps the study of timing delays and packet losses

in such systems.

Intelligent Intersection Management

In transportation systems, intersection management plays a critical role as inter-

sections are associated with a significant percentage of traffic accidents and essential for

transportation efficiency. According to the Fatality Analysis Reporting System (FARS) in

the United States, 40% of crashes and 21.5% of fatal traffic accidents are related to intersec-

tions [31, 107]. Traditional intersection management is difficult to adapt to real-time traffic

with pre-defined traffic signals or stop signs. Although “smart” traffic lights are proposed to

dynamically adjust traffic signals by estimating traffic conditions with information provided

by surrounding sensors [141, 67, 104], this strategy also faces bottlenecks as it is difficult to

adjust controlling period with different traffic patterns.
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With the rapid advancement of autonomous driving and vehicular communication

technologies, intelligent intersection management techniques have shown great promise in

improving intersection safety and transportation efficiency. In an intelligent intersection,

autonomous vehicles with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-

munication capabilities exchange information of current driving states with each other or

with roadside infrastructures to cooperatively cross the intersection. Typically, the intelli-

gent intersection systems fall into two categories: centralized and distributed as we discuss

below.

• Centralized. In centralized intersection management, the traffic lights are replaced

with an intersection manager. Vehicles send requests to the intersection manager and

the intersection manager grants access according to its scheduling policy [43, 73, 86,

162, 13, 108]. In the literature, the intersection is discretized into grids and the in-

tersection manager assigns vehicles to grids for each time step and avoids potential

conflicts. In [43, 73, 63], the scheduling is fine-grained as it allows vehicles with poten-

tially conflicting routes to enter as long as no grid is assigned to more than one vehicle

at the same time step. The authors in [43] extend the proposed protocol with both

V2I communication and virtual traffic lights for transition period where autonomous

vehicles and regular vehicles co-exist. The work in [73] studies fuel consumption and

vehicle emission compared with traditional traffic lights. The authors in [86] use con-

trol theories to prove system safety and liveness through hybrid architectures without

message delays. In [162], the problem is formulated as a linear programming problem

where traffic flows are modeled with conflict points as constraints.

19



• Distributed. Distributed intersection management requires vehicles to negotiate the

order of their crossings. The authors in [17, 18, 16] have a series of works for distributed

intersection management where every vehicle broadcasts enter, cross and exit messages

with their current grid. They prove their protocol is deadlock-free through wait-

for graph and mathematical reasoning. In [108], their system can be proven to be

deadlock-free using Petri Net models. In [13], Timed Petri Nets models are again

used to decide the sequence of vehicles entering intersection for traffic smoothness.

However, these studies assume the wireless vehicular communication to be perfect

with no explicit consideration of packet delays or losses. In practice, vehicular networks may

suffer significant delays and losses with dense traffic [154, 21, 46] and may be even worse

under malicious jamming or flooding attacks [20, 159]. Previous works lack the consideration

of communication message delays and losses, and consequently cannot ensure the proposed

protocols to be safe, deadlock-free and efficient in practical conditions.

1.3 Contributions

The main contributions of this work include:

• A cross-layer modeling, exploration, and validation framework CONVINCE consid-

ering various design objectives and metrics, among which timing, security, and fault-

tolerance are our focuses.

• A delay-tolerant protocol for intelligent intersection management. The protocol guar-

antees safety and assures that as long as the communication delays are bounded,

deadlock-free and liveness can be guaranteed.
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• Approaches for codesigning the functional and software layers that quantitatively

models the impact of security techniques on control performance and platform schedu-

lability, and explores trade-offs between security level and control performance while

guaranteeing real-time constraints for cyber-physical systems.

• Approaches for codesigning the software and hardware layers that formulates the im-

pact on system timing for different error tolerance mechanisms including both EOC

and EED based techniques, and optimizes the task-level selections of tolerance mech-

anisms, for various fault models and task execution models on representative single-

core, multi-core, and distributed platforms.

• Approaches for codesigning the software and hardware layers that formulates the im-

pact of applying security mechanisms for both CAN-based and TDMA-based systems

with limited resource and stringent timing constraints.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the cross-layer

modeling, exploration, and validation framework CONVINCE. In Chapter 3, we introduce

the design of functional and software layers. The applications include CACC and intelligent

intersection management and the co-design of control, security, and schedulability for cyber-

physical systems. In Chapter 4, we study the design of software and hardware layers with

fault-tolerance and security as objectives and various real-time requirements as constraints.

Chapter 5 concludes the thesis.
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Chapter 2

CONVINCE Framework

With the challenges described in the Section 1.1, the modeling, exploration, and

validation of connected automotive systems should be considered across system layers in-

cluding applications, software implementations, and architecture platform. The concept of

such cross-layer design is illustrated in Figure 2.1. The top layer is the application layer and

typical applications include V2X and autonomous driving applications. In the application

layer, functional verification and validation are done and constraints on timing, robustness,

and security are decomposed to individual vehicles. For example, if the application is Coop-

erative Adaptive Cruise Control (CACC), where every vehicle in the group communicates

with other vehicles to adaptively maintain a safe distance from its preceding vehicle (referred

to as gap in the rest of the thesis), the performance mainly depends on timing, the error

rate of the messages, and the security level of the system [47]. Through verification and

validation, constraints are decomposed to individual vehicles. For example, the constraints

on end-to-end latency, the constraints on error correction ability and the constraints on se-
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curity level. Inside each individual vehicle, these constraints guide the task generation and

task to platform mapping at the software implementation layer. In this vision of cross-layer

design, if the constraints obtained from the high-level application layer cannot be fulfilled,

the software implementation layer can provide feedback to the application layer to relax

some constraints. The software implementation layer and the hardware architecture layer

inside one individual vehicle also communicate with each other through the constraints on

timing, communication bandwidth, computation resource, etc. Similarly, if the constraints

cannot be fulfilled after hardware exploration, the higher levels can trade-off among design

metrics and relax some constraints.

2.1 Overview

To achieve the vision in Figure 2.1, we present CONVINCE, a cross-layer model-

ing, exploration, and validation framework for connected vehicles. The framework includes

mathematical models, synthesis and validation algorithms, and a heterogeneous simulator

for addressing inter-vehicle communications and intra-vehicle software and hardware in a

holistic environment. The overview of CONVINCE is shown in Figure 2.2, including model-

ing, mathematical analysis, exploration, verification and validation components. Modeling

is conducted across multiple layers, including the high-level V2X application modeling, the

software modeling inside one vehicle, and the hardware modeling. These models can be ab-

stracted and used by the analysis and exploration engine to optimize the design and verify

whether design constraints are met. The models can also be leveraged by the simulation

engine to validate system designs, identify potential issues and provide design insights. In
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Figure 2.1: Cross-layer design for connected vehicles.
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the rest of the section, timing property will be used as an example to demonstrate the

modeling, analysis and exploration of the CONVINCE framework.
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Figure 2.2: CONVINCE: cross-layer modeling, exploration and validation framework for
connected vehicles.

2.1.1 Application Level Verification and Validation

The application protocol can be abstracted by verification models. For example, in

our delay-tolerant intelligent intersection management, we use timed-automata to model the

protocol and use the tool UPPAAL [10] to verify properties like deadlock-free, liveness and

safety. The verification decides some timing-related parameters, such as resending period,

which serve as the timing constraints for in-vehicle design.
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2.1.2 Software Modeling

The software model can be captured by a synchronous reactive task graph. Syn-

chronous reactive models are prevalent practice for modeling control-centric cyber-physical

systems in automotive and avionics domain, and used in popular tools such as Simulink [6].

Synchronous reactive system contains a fixed set of synchronized communicating processes,

as shown in the software model in Fig 2.2.

For timing analysis, many timing-related parameters need to be abstracted from

the synchronous reactive model. For tasks, the most important parameters are the worst-

case execution time Cτi for task τi on certain ECU, and the activation period Tτi . For

messages, the most import parameters are message length lmi for message mi, the message

period Tmi , and the source and destination tasks of the message mi.

2.1.3 Hardware Modeling

The hardware model can be captured through architecture description languages,

for example, architecture modeling and description language (AADL). AADL language cap-

tures the system through components, and each component is characterized by its identity,

interfaces, properties and subcomponents. AADL also provides extensions in two ways, the

user-defined properties and the language annexes [48].

For timing analysis, some user-defined properties need to be added. For example,

the computation speed of the CPU (may be captured by frequency), the number of cores

for the CPU, and the scheduling policy on it. Similarly, the bus speed, the bus protocol

and the scheduling policy for the bus also need to be added as user-defined properties.
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2.1.4 Analysis Models

The analysis models refer to the mathematical models used to quantitatively study

various metrics of automotive system. Here we use timing models to illustrate how timing

properties are analyzed through this framework.

Computation Model (Task Model)

The software layer is captured by a set of tasks T = {τ1, τ2, . . . , τn}. The tasks

can be mapped to multiple computation units as shown in Figure 2.2. The timing property

of each task τi is captured by a worst-case execution time Cτi (for a specific platform) and

an activation period Tτi . Every task is required to finish its execution before its deadline

(e.g., sometimes set as its period). Fixed-priority preemptive scheduling is modeled in

the framework as every task is assigned a priority offline and lower priority tasks can be

preempted by higher priority tasks. The worst-case response time rτi (the longest time it

may take to complete task τi) can be formulated as the following equation [163]:

rτi = Cτi +
∑

τk∈hp(τi)

⌈
rτi
Tτk

⌉
Cτk . (2.1)

The first term of the equation denotes the worst-case execution time Cτi and the second

term represents the preemption time from higher priority tasks in set hp(τi) on the same

computation unit.

Communication Model

In V2X and autonomous driving applications, messages are exchanged at different

levels. At application level, messages are transmitted through wireless channels from one
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vehicle to others. Inside the vehicle, the messages can be transmitted on bus or exchanged

through memory among modules and tasks. In autonomous driving system, the in-vehicle

bus system can also be heterogeneous like CAN and Ethernet [69, 70, 128]. The analysis

of the communication latency is essential as automotive systems are timing-critical systems

and failures to fulfill the timing requirements may lead to catastrophic outcome.

Intra-Vehicle Communication: In our model, the message access delay for memories is mod-

eled as a small constant, and the mathematical models to capture CAN bus and Ethernet

are discussed below.

• CAN Bus: CAN bus is prevalent in current automotive systems. The protocol is

priority based and non-preemptive. The worst-case response time rmi for message mi

is as follows [163]:

rmi = Cmi +Bmax +
∑

mj∈hp(mi)

⌈
rmi − Cmi

Tmj

⌉
Cmj . (2.2)

The timing property of each message mi is captured by worst-case transmission time

Cmi and period Tmi . As CAN protocol is non-preemptive, the message may have

to wait for the longest transmission time of any lower priority messages, denoted as

Bmax. The third term denotes the waiting time due to higher priority messages in set

hp(mi).

• Ethernet : Ethernet is discussed to be the potential candidate for autonomous driving,

including Time-Sensitive Networking (Ethernet AVB) and Time-Triggered Ethernet

(TTEthernet) [144]. Time-Sensitive Networking extends traditional full-switched net-

work by adding eight priorities (three bits) for priority scheduling, and Credit-Based

28



Shaping (CBS) algorithm is used to select transmission schemes for different classes.

The Time-Sensitive Networking classifies traffic into Class-A, Class-B, and best-effort

class. Class-A has the highest priority and typically with 2 ms latency and Class-B

has the second highest priority and typically with 50 ms latency [144]. The best-

effort class assigns its traffic with the rest lower priorities. The packets with the same

priority are queued in a FIFO in the corresponding class. We adopt the Compo-

sitional Performance Analysis (CPA) as shown in [41] to quantitatively analyze the

worst-case timing behavior of Time-Sensitive Networking. Time-Triggered Ethernet

is also extended from the switched Ethernet by assigning the transmission of mes-

sages to time slots following the time division multiple access (TDMA) fashion. As

TDMA scheme assigns time slots offline, it makes the message delay deterministic

and predictable. However, synchronization protocol is needed to deal with clock jit-

ter. Besides time-triggered communication, Time-Triggered Ethernet also provides

rate-constrained messages and best effort messages that are event triggered. The

rate-constrained messages are those with less strict timing requirement and best effort

messages are for traditional Ethernet applications with less or no timing constraints.

We adopt the TDMA analysis in [97] to quantitatively analyze the timing behavior

of TDMA-based network.

Inter-Vehicle Communication (DSRC): DSRC is the standard for vehicular communica-

tion in the United States. The protocol stack of Wireless Access in Vehicular Environments

(WAVE) is developed for DSRC. The WAVE protocol stack supports two kinds of applica-

tions at the application layer: safety applications and Internet applications. For Internet
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applications, the transportation layer and network layer cover the traditional TCP/IP stack.

For safety applications, the WAVE Short Message Protocol (WSMP) replaces TCP/IP stack

for transportation layer and network layer. All applications share the same data link layer

protocol and physical layer protocol.

As safety messages are time-critical, the IEEE 802.11p protocol that covers the

data link layer and physical layer has been studied in [155]. The IEEE 802.11p protocol

allocates seven 10 MHz wide channels for multi-channel operation, among which one control

channel (CCH) is for safety communication only, and six service channels (SCH) for regu-

lar communication. To deal with the media access contention, the Enhanced Distributed

Channel Access (EDCA) is utilized to classify the messages into four priority categories

and set corresponding contention window and arbitration inter-frame spaces for the back-

off procedure CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance). In [155],

the authors establish two Markov chains for two different priority groups to analyze the

delay distribution in the broadcast mode. We adopt the probability density function of

message latency in [155] to analyze the latency for V2X communication.

Besides latency, packet loss is another major concern when designing safety-critical

systems [47]. Although CSMA/CA has been adopted in the IEEE 802.11p protocol, it can

only reduce the collisions instead of eliminating them. Furthermore, its performance can

saturate if large amount of requests are generated or jamming is performed. According to the

standard, if two broadcasting messages collide, both messages are lost and no retransmission

will be scheduled. If vehicle-to-vehicle messages collide, the messages will be retransmitted

within the limit of the retransmission times. If the maximum retransmission times have
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reached, the message will be discarded. Packet loss may also happen when a wireless

communication channel is affected by fading and shadowing. Packet loss may significantly

affect the performance of V2X safety applications as vehicles need timely information to

predict danger and take actions.

End-to-End Latency: In automotive system, deadlines can also be set on functional paths.

For example, the path latency from the action of pressing brake to the action of the corre-

sponding actuator should be bounded within a preset value to ensure safety. The worst-case

end-to-end latency for path p can be calculated as Equation (3.26). Because of the asyn-

chronous nature of the communication, task and message periods may need to be added.

The details of calculating path latency can be found in [34].

lp =
∑
τi∈p

(rτi + Tτi) +
∑
mi∈p

(rmi + Tmi) (2.3)

Security Model

The emerging of autonomous driving and vehicular communication provides the

attacker with a variety of attacking surfaces, including the On Board Diagnostics-II (OBD-

II) port [85], the various sensors and the wireless communication interfaces such as DSRC,

Bluetooth and keyless entry system [23]. The authors in [85] successfully compromised

a real vehicle by hacking into its engine control system, brake control system, and other

electronic components. The security-aware design for CAN-based and TDMA-based intra-

vehicle network has been studied in [95, 97]. Besides intra-vehicle security, inter-vehicle

communication brings in more concerns for safety applications.
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General Optimization Formulation

By applying the quantitative models, the exploration can be done by solving the

optimization problem or simply finding a feasible solution to the problem. Besides the

timing properties discussed above, we can also set constraints such as reliability level rel

must be higher than a preset value REL0 and security level s must be higher than a preset

value S0.

Optimize design objective (2.4)

s.t. rτi ≤ Tτi (timing) (2.5)

rmi ≤ Tmi (timing) (2.6)

lp ≤ Dp (timing) (2.7)

rel ≥ REL0 (reliability) (2.8)

s ≥ S0 (security) (2.9)

other constraints (2.10)

By solving such problem, we can obtain design decisions such as task to ECU allocation,

task scheduling, message allocation, message scheduling, security techniques assignment

and fault tolerance techniques assignment.

2.2 Summary

In this Chapter, we introduce CONVINCE, a cross-layer modeling, exploration and

validation framework for cyber-physical systems. In the framework, computation, commu-

nication (including both intra-vehicle and inter-vehicle communication), and system metrics
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such as timing, security, and fault-tolerance are quantitatively modeled for design space ex-

ploration, validation and verification. Such analysis sets the foundation for our work on

exploring and validating security and fault-tolerance designs of cyber-physical systems.
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Chapter 3

Cross-Layer Design of Functional

and Software Layers

In this chapter, we first use the design of cooperative adaptive cruise control

(CACC) and delay-tolerant protocol to address the timing security at the functional and

software layers through the CONVINCE framework. We demonstrate the impact of mali-

cious jamming or flooding attacks on CACC and intersection management. We then conduct

functional verification and validation for the delay-tolerant intersection management pro-

tocol against timing attacks. The results of the verification contain various timing-related

parameters and these parameters propagate to lower layers as constraints, for example,

constraints on end-to-end latency. Second, we demonstrate the cross-layer in-vehicle design

through the CONVINCE framework. The control performance, security, and schedulability

codesign combines control performance and system security level in the control application

layer with the schedulability and security constraints from the embedded platform layer.
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3.1 Cooperative Adaptive Cruise Control

In this section, we use Cooperative Adaptive Cruise Control (CACC) as a case

study to demonstrate the effectiveness of CONVINCE in analyzing the impact of security

attacks in vehicular communication and ultimately the application performance.

3.1.1 Timing Attacks

As shown in [154], significant packet delays are possible with dense traffic for

DSRC. With the density of 0.1 vehicle/m, the maximum delay for routine messages can be

325.57 ms according to [154]. An attacker can maliciously flooding the channels to increase

packet delays and losses. In this thesis, we assume the attacker floods the wireless channels

to impair the vehicular communication. The attacker can be a participant of the vehicular

network or a malicious attacker from the road side. We first study the relationship between

the strength of the flooding attack and the packet loss rate. In this study, we assume there

are 50 vehicles distributed on a road of length 300m. The transmission power of the DSRC

module is 26dBm. The EDCA related parameters are set as follows (CWmin: minimum

contention window size; CWmax: maximum contention window size; AIFSN: arbitration

inter-frame spaces): CWmin = 15, CWmax = 1023, and AIFSN = 3. The flooding message

is of length 500 bytes.

We assume some of the vehicles within the 50-vehicle group are malicious attackers.

We classify the simulations into three scenarios: 1 attacker, 10 attackers and 20 attackers.

In each scenario, every attacker applies the flooding attack with the same strength that

varies from 100 Hz (i.e., sending flooding packets at a rate of 100 Hz) to 1 KHz to 10
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Figure 3.1: Packet loss rate under different strengths of flooding attack. During the simu-
lation, 50 vehicles are uniformly distributed on a road of length 300m and normal packet
sending rate is 10 Hz.

KHz. The normal vehicles send packets at a rate of 10Hz (set as 10 Hz in the experiments

following [15, 80]).

We use NS-3 to simulate these scenarios, and the results of flooding attack regard-

ing packet loss rate are shown in Figure 3.1. From the figure we can see that for normal

traffic, the packet loss rate is around zero. When malicious flooding attack is conducted,

the packet loss rate can reach 63% in this case study. We can observe that as the num-

ber of attackers increase and/or the attacking strength increases, the packet loss rate also

increases (and could be even higher than 63%).

For the CACC applications, the V2X messages are exchanged at a certain rate

(set as 10 Hz in the experiments following [15, 80]), and packet loss may lead to outdated

information for the following vehicle. If a message is not received within the time window

(set as 0.1s in the experiments), the following vehicle has to rely on its own sensors for
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deciding the safe gap, and CACC is in fact downgraded to ACC (introduced below). We

also assume that CACC will be restarted once messages can be successfully received during

the time window. Next, we quantitatively study how packet loss ultimately affects the

CACC performance.

3.1.2 CACC Application

CACC is the technology that utilizes V2V wireless comsmunication to enhance

the traditional single-vehicle adaptive cruise control (ACC) by communicating with other

vehicles to cooperatively maintain a safe gap. Platooning, where a leading vehicle leads a

group of closely-following vehicles to move like a train, can be formed with CACC enabled

vehicles. As platooning can maintain a shorter gap between vehicles and reduce speed

variations, it may enhance traffic efficiency and reduce emission. In [15], the authors have

designed and implemented a CACC platooning management protocol. In this case study,

we will leverage this protocol to study the security issue across multiple layers.

In the protocol designed in [15], every CACC-enabled vehicle receives the acceler-

ation of its preceding vehicle through V2V messages, and obtains the location and speed of

the preceding vehicle from sensors such as radar. With these information, each vehicle can

maintain a safe gap to its preceding vehicle. As in [15], the equation to calculate the safe

gap gsafe is

gsafe = 0.1vf +
v2
f

2Dmax
f

−
v2
p

2Dmax
p

+ 1.0, (3.1)

where vf denotes the speed of the following vehicle and Dmax
f denotes the maximum decel-

eration of the following vehicle, and similarly, vp denotes the speed of the preceding vehicle
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and Dmax
p denotes the maximum deceleration of the preceding vehicle. The minimum gap

required is 1.0m.

After receiving the location of the preceding vehicle dp, the current gap between

two vehicles can be calculated as g = dp − df − lp, where df is the location of the following

vehicle, and lp is the length of the preceding vehicle. Depending on g, the following vehicle

may enter different modes and decide its acceleration.

1) Collision Avoidance Mode: If g < gsafe, the following vehicle will enter the

collision avoidance mode. In this mode, the vehicle will decelerate with its maximum

deceleration Dmax
f until the gap becomes safe again. Therefore, in this mode, the new

acceleration for the following vehicle is acontrol = Dmax
f .

2) Gap Control Mode: If g ≥ gsafe, the following vehicle will enter the gap control

mode. In this mode, the following vehicle follows the preceding vehicle to maintain a

time gap Tgap. The desired acceleration ades of the following vehicle can be calculated as

following [15]:

ades = 0.66ap + 0.99(vp − vf ) + 4.08(g − vfTgap − 2.0), (3.2)

where ap denotes the acceleration of the preceding vehicle and g is the current gap g =

dp − df − lp. The actual acceleration to control the vehicle can be calculated as below [15]:

acontrol =
ades − af

τ
∆t+ af , (3.3)

where τ is the controller delay and set as 0.4s. As in [15], acontrol is bounded by [-3, 3], and

∆t is set as the sending rate 0.1s.
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ACC Application

As stated in Chapter 1, packet loss and delay can happen in vehicular network.

Upon packet loss or delay, the following vehicle cannot obtain the latest acceleration in-

formation of the preceding vehicle (ap), and can only depend on the speed and location

information of the preceding vehicle (obtained from its own sensors) to maintain a safe gap,

i.e., entering the ACC mode. In the extreme cases, the preceding vehicle may fully brake

with the maximum deceleration Dmax
p . Therefore, we conservatively assume ap = −Dmax

p

when calculating the desired acceleration as in Equation (3.4). As ACC mode lacks accel-

eration information, the desired gap between vehicles should be larger. According to [15],

the time gap Tgap is set to 0.55s for CACC gap control model and set to 1.2s for ACC gap

control model. As a result, the safe gap of ACC becomes larger.

ades = −0.66Dmax
p + 0.99(vp − vf ) + 4.08(g − vfTgap − 2.0) (3.4)

3.1.3 Simulation-Based Analysis of CACC performance

We leverage VENTOS (VEhicular NeTwork Open Simulator) [15] for our simu-

lation, which itself is an integration of several tools with CACC platooning implemented.

VENTOS is based on the structure of Veins [9], an simulator that combines the open source

traffic simulator SUMO [7] and open source network simulator OMNeT++ [5] with WAVE

protocol stack implemented. In addition to OMNeT++, we also leverage NS-3 [4] for packet

level simulation of V2X communication networks.
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CACC Performance Deterioration under Attack

We assume there are three vehicles joining the CACC application, namely Vehi-

cle 1, Vehicle 2 and Vehicle 3. At time zero, the vehicles are aligned in a line with a gap of

1m between each two consecutive vehicles. Vehicle 1 is set as the leading vehicle. Vehicle 2

and Vehicle 3 will automatically follow Vehicle 1 and maintain safe gaps. The simulation

has two phases:

• Warming up: From 0s to 15s, Vehicle 1 constantly accelerates with an acceleration

of 2m/s2, and reaches 30m/s at time 15s. Vehicle 2 and Vehicle 3 also accelerate

according to the CACC protocol.

• Keeping speed : From 15s to 50s, Vehicle 1 stops accelerating and keeps the speed

30m/s. Vehicle 2 and Vehicle 3 can catch up with Vehicle 1 during this phase.

Then, flooding attack is scheduled at time 30s during the keeping speed phase

with different strengths. The performance deterioration due to flooding is demonstrated in

Figure 3.2 and Figure 3.3.

Figure 3.2 (a) and Figure 3.3 (a) demonstrate the normal behavior without any

flooding attack. Figure 3.2 is a spacing-time diagram, where y-axis denotes the spacing

between each two consecutive vehicles on the road. The spacing includes the gap between

vehicles and the length of one vehicle (set as 5m in our experiments), i.e., it is the distance

from the preceding vehicle’s front bumper to the following vehicle’s front bumper. Figure 3.3

demonstrates the vehicle speeds as the simulation time increases. In Figure 3.2 (a), the

spacing gradually increases to around 24m, indicating the CACC protocol is functioning

well. In Figure 3.3 (a), we can observe that during the first 15s, Vehicle 2 and Vehicle 3 are
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Figure 3.2: Spacing-time diagram of 3 vehicles in CACC under different strengths of flooding
attacks.
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Figure 3.3: Speed-time diagram of 3 vehicles in CACC under different strengths of flooding
attacks.

catching up with Vehicle 1. During 15s to 50s, Vehicle 2 and Vehicle 3 also reach the cruise

speed of Vehicle 1 and maintain the spacing around 24m and a speed at 30m/s.

Figure 3.2 (b) and Figure 3.3 (b) demonstrate the CACC performance with flood-

ing attack that causes 40% packet loss. Since flooding attack starts from time 30s, the

curves are the same as the normal behavior case from 0s to 30s. We can observe that after

flooding attack, the vehicle spacing in Figure 3.2 (b) oscillates around 30m. From Figure 3.3

(b) we can observe that after the attacking at time 30s, Vehicle 2 and Vehicle 3 can not

follow Vehicle 1 smoothly. Instead, they have to speed up or slow down constantly. This is
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because some packets are lost, and thus Vehicle 2 and Vehicle 3 have to switch between the

CACC safe gap and ACC safe gap. They can correct their acceleration when latest packets

arrive, however the driving efficiency of the individual vehicles and the entire system has

already been affected.

Figure 3.2 (c) and Figure 3.3 (c) demonstrate the CACC performance with flooding

attack that causes 90% packet loss. Similar to the 40% packet loss case, the curves are the

same as the normal behavior case for the first 30s. When flooding starts at 30s, the vehicle

spacing significantly increases to around 44m, as most of the packets are lost. Vehicle 2 and

Vehicle 3 can not follow Vehicle 1 smoothly. In this case, the vehicles are in ACC mode

most of the time and the driving efficiency has been severely reduced.

3.2 Delay-Tolerant Intelligent Intersection Management

In this Section, we present a delay-tolerant centralized intersection management

protocol, which takes into account the possible communication delays and losses (as shown

in Section 3.1.1) between vehicles and the central intersection manager. We refine CON-

VINCE to a modeling, simulation, and verification framework for analyzing the safety,

liveness and performance of the specific protocol, as shown in Fig. 3.4. We also model

and implement our protocol in the SUMO traffic simulation suite [7], with the extension

of modeling communication delays. We verify the safety and liveness properties of our

protocol by building more abstract timed automata models and leveraging the UPPAAL

environment1 [10].

1UPPAAL is an integrated tool environment for modeling, validation and verification of real-time systems
modeled as networks of timed automata.
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Figure 3.4: The refined modeling, simulation and verification framework for the proposed
delay-tolerance intersection management protocol.
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3.2.1 Basic System Model

The basic intersection management system model is illustrated in Fig. 3.5. In this

system, a central Intersection Manager communicates with every vehicle via V2I commu-

nication channels to schedule the traffic crossing the intersection. A basic version of the

protocol is as follows (a more formal and detailed description with delay consideration is

presented in Section 3.2.3).

• Vehicle: 1) sends a Request message to the intersection manager, 2) enters the inter-

section only after it receives a Confirm message from the manager, otherwise stops

before the intersection, and 3) resends a Request message when Confirm is not received

within a pre-defined timeout bound.

• Intersection Manager: 1) receives Request messages from vehicles, and 2) schedules

vehicles to enter the intersection based on a scheduling policy, e.g., first come, first

served (FCFS).

As stated before, this work explicitly considers communication delays and losses

between Intersection Manager and vehicles, as shown in Fig. 3.5. The goal of this work

is to design a delay-tolerant protocol that can improve intersection performance/efficiency

(measured by average traveling time for vehicles to cross the intersection) and satisfy the

following properties:

• Safety : vehicles with conflicting routes (i.e., routes that may cross each other within

the intersection) may never enter the intersection at the same time.2
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Figure 3.5: The intelligent intersection management system.

• Liveness: every vehicle that sends request will eventually cross the intersection, as

long as the communication delays are bounded by a timeout bound.

To guarantee the two properties and provide high performance, we assume that the

Intersection Manager is capable of detecting whether the vehicles have entered or left the

intersection, which can be provided through sensors such as cameras, traffic loop detectors,

etc. We assume all vehicles are autonomous and can detect whether there is any vehicle

between its current location and the intersection.

In the rest of the section, we first discuss the potential issues of the basic protocol,

and then introduce the design of our delay-tolerant intersection management protocol.

2It should be noted that the vehicles are assumed to have autonomous driving capabilities and may
detect or even avoid incoming collisions in many cases. Nevertheless, conflicting routes could still lead to
unsafe situations given the limitations of autonomous driving, and are likely to cause deadlocks even without
accidents.
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Figure 3.6: Issues of the basic protocol under communication delays.
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3.2.2 Problems with Communication Delay

When taking into account of communication delays in practical systems, the basic

request-confirm protocol faces many issues that may lead to system deadlocks or unsafe

situations. We use the following three example scenarios to demonstrate the issues the

basic protocol may encounter.

The first problematic situation is shown in Fig. 3.6 (a). In this example, the

intersection manager first sends Confirm1 to vehicle V1 at time 1s, however the message is

delayed by 4s. The intersection manager has then confirmed another vehicle V2 during the

delay of Confirm1 message. In this case, it might be dangerous for V1 to take corresponding

actions.

Some may argue that the intersection manager should not schedule another vehicle

until it gets a response from the previously confirmed vehicle. However, this may lead to

the second problematic situation shown in Fig. 3.6 (b). In this example, the intersection

manager sends Confirm1 to vehicle V1, but V1 does not enter the intersection because of

a long delay or possible loss of Confirm1. In this case, the intersection manager should not

wait forever for V1 to respond, however the question is how long the intersection manager

should wait before it can safely confirm another vehicle V2.

The third issue is shown in Fig. 3.6 (c) where a vehicle sends Request to the

intersection manager but gets no response from the intersection manager. The question is

when the vehicle should resend the Request message to avoid possible deadlock.
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3.2.3 Delay-tolerant Intersection Management Protocol

Timeouts

To address the issues caused by communication delays, we introduce three types

of timeouts in our protocol: 1) timeout for each message transmission, denoted as Tmout; 2)

timeout for a vehicle to wait before resending the request, denoted as T rout; and 3) timeout

for the Intersection Manager to wait for a vehicle to enter the intersection, denoted as

Twout. More specifically, Tmout represents the living period of that message, i.e., the message

becomes invalid and should not be used after the timeout. T rout represents how long a vehicle

should wait, when no Confirm is received, before resending the request. Twout represents how

long the Intersection Manager should wait for the currently scheduled vehicle to enter the

intersection, before it schedules another vehicle.

Messages

Three types of messages are defined in our protocol for communication between

the vehicle and the Intersection Manager, as shown below.

• Request. A request message is sent by a vehicle to acquire permission for entering

the intersection. It contains requestID, sender, sending time, timeout (Tmout), and

estimated arriving time (texp). In particular, the estimated arriving time is used by the

Intersection Manager to schedule the time for each vehicle to enter the intersection. As

we assume the vehicles are autonomous, the estimated arriving time can be calculated

using the location, speed and acceleration information collected from their sensors.

The accuracy of the estimation only affects efficiency in our protocol.
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• Confirm. A confirm message is sent by the Intersection Manager to give permission

to a vehicle for entering the intersection. It contains confirmID, sending time, timeout

(Tmout), and arriving time range ( [TL, TH ] ). If the vehicle enters the intersection

during the arriving time range, it is guaranteed to be safe according to our protocol.

A vehicle cannot enter the intersection if no Confirm is received. If the vehicle cannot

enter the intersection within the time range, it must not enter the intersection, either;

instead, the vehicle can send a cancel message as discussed below.

• Cancel. A cancel message is sent by a vehicle to notify the Intersection Manager that

a previous Confirm is “cancelled” by the vehicle and it will not enter the intersection.

The Cancel message is used for improving the performance and is in fact optional.

Once receiving the Cancel message, the Intersection Manager can schedule other ve-

hicles immediately and does not need to wait for the vehicle to cross the intersection.

Without receiving the Cancel message, the Intersection Manager will wait for the

timeout Twout before scheduling another vehicle (note that the Intersection Manager

knows whether the vehicle enters the intersection through sensors). The fields in a

Cancel message include cancelID, corresponding confirmID, sending time, and timeout

Tmout.

Based on the above definitions, our protocol is described by state machines in

below.
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State Machine for Vehicles

The state machine for a vehicle is shown in Fig. 3.7. In the state machine, there

are two variables for denoting time. Variable t1 denotes the local time for each state and

variable texp denotes the expected arriving time in global time. There are five states for

the vehicle: approaching not confirmed, decelerating not confirmed, approaching confirmed,

entering intersection and left intersection. The details of each state and the transitions are

described below.

d < L &! confirm

d >= L & (texp not in [TL,TH])

Send Cancel

t1:=0

confirm confirm

d==0 & (texp in [TL,TH])

t1:=0

Send Request

t1:=0

& ! confirm & isFront
t1 :=

t1 >= Ttravel

d < L & (texp not in [TL,TH])

Send Cancel

t1:=0

Approaching

Not Confirmed

Decelerating

Not Confirmed

Approaching

Confirmed

Entering

Intersection

Left

Intersection

Send Request

t1:=0

& ! confirm & isFront

Figure 3.7: Vehicle state machine.

Approaching not Confirmed : This is the starting state for every vehicle approach-

ing an intersection. In this state, once the vehicle becomes the front vehicle (i.e., there

is no other vehicle between it and the intersection), it sends a Request message and waits

for the corresponding Confirm message from the intersection manager. Inside the request
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message, the field texp includes estimated arriving time to the intersection based on current

vehicle location, speed and acceleration. The vehicle will resend the Request if no Confirm

is received within the timeout bound T rout. As the vehicle is approaching the intersection,

if no Confirm is receive, it may need to decelerate and stop before the intersection waiting

line. In our case, if the distance to the intersection d ( or to the last vehicle waiting at

the intersection) is less than a safe value L, the vehicle will enter the state Decelerating not

Confirmed. If a Confirm is received within the timeout bound and before decelerating, the

vehicle will directly enter the state of Approaching Confirmed.

Decelerating not Confirmed : In this state, the vehicle decelerates and ensures that

it can fully stop before the waiting line of the intersection. The vehicle will send a Request

if it becomes the front vehicle, and if no Confirm is received within the timeout bound

T rout, it will resend the Request. The field texp in the request message will be based on the

new location, speed and deceleration information. If Confirm is received within T rout at this

state, the vehicle will enter the Approaching Confirmed state.

Approaching Confirmed : In this state, the vehicle has received Confirm from the

Intersection Manager with a time range [TL, TH ] assigned for it to enter the intersection.

The vehicle will continuously check whether it can arrive at the intersection within the

assigned time range. If the vehicle finds it cannot enter the intersection in time, it will

send a Cancel message to notify the Intersection Manager and switch back to the one of

the states waiting for the Confirm message: If the distance to the intersection is still larger

than the safe value (d ≥ L), the vehicle will switch back to the Approaching not Confirmed

state; otherwise to the Decelerating not Confirmed state. If the vehicle can arrive at the
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intersection within time range [TL, TH ], it will enter the intersection and switch to the state

Entering Intersection. It should be noted that our protocol will still function safely (but

less efficient) if there is no Cancel message (or it is lost or delayed too long), since the

Intersection Manager can sense whether the vehicle has entered the intersection and will

schedule another vehicle after timeout Twout.

Entering Intersection: In this state, the vehicle enters the intersection with a

preset speed. Once the vehicle has left the intersection, it will enter the Left Intersection

state. As we assume the Intersection Manager can sense whether the vehicle has entered or

left the intersection, no action is needed for a vehicle in this state.

Left Intersection: In this state, the vehicle has left the intersection. No action is

needed as explained above.

State Machine for Intersection Manager

The state machine for the Intersection Manager is shown in Fig. 3.8. There are

three states: Idle, confirm sent vehicle not cross and confirm sent vehicle cross. Before

discussing the details of each state, we first introduce the routine that handles the messages

received from the vehicles, i.e., the Request and Cancel messages. All the messages received

will be put into a buffer, and the messages exceeding timeout will be deleted. The message

handling routine is activated during all states. The Idle state is the one that the Intersection

Manager schedules vehicles. In our current implementation, we adopt the First Come First

Served (FCFS) scheduling policy, and this can be easily changed to other policies. In FCFS,

the Intersection Manager will first schedule the request from the vehicle that 1) has no other
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Request Buffer: Q
Request_i id: V[id][s expected arrive time is minimum 

among vehicles with no preceding vehicles 

V [id] = Q.pop() & no conflict

Send Confirm[id] with  [TL,TH]

t:=0

V [id] = Q.pop() & conflict & t > Ttravel

Send Confirm[id] with  [T[L,T[H]

t:=0

 tglobal >        | Receive Cancel[id]

Detect V[id] Crossing

Confirm Sent

Vehicle

Not Cross

Confirm Sent

Vehicle Cross

Idle

t:=0

Figure 3.8: Intersection Manager state machine.

vehicle between it and the intersection (this is in fact guaranteed as only the front vehicle

can send request in current model), and 2) has an estimated arriving time texp that is the

smallest among all front vehicles.

Idle: In this state, the intersection manager checks whether the buffer storing

messages from vehicles is empty. If it is not empty, it will select a Request (hence a vehicle)

based on the scheduling policy. If the route of the selected vehicle conflicts with the routes

of the vehicles currently inside the intersection, the Intersection Manager will wait for

the current vehicles inside the intersection to finish crossing before it sends the Confirm

message to the selected vehicle; otherwise it sends the Confirm message immediately. The

Intersection Manager will also assign the time range for the selected vehicle to enter. In

our current implementation, the Intersection Manager will first compare current time with

the expected arriving time texp from the Request. If currentT ime >= texp, the upper
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bound for the time range TH is set to TH = currentT ime + Tmout; otherwise it is set to

TH = texp + Tmout. The lower bound is set as currentT ime. After sending the Confirm

message, the Intersection Manager will enter the state of Confirm Sent Vehicle not Cross.

Confirm Sent Vehicle not Cross: As stated before, we assume the Intersection

Manager can sense whether the selected vehicle has entered the intersection. In this state,

if a Cancel message is received, the Intersection Manager will enter the Idle state imme-

diately. If the Intersection Manager senses the vehicle has entered the intersection within

assigned time range, it will enter the Confirm Sent Vehicle Cross state; otherwise, it will

enter the Idle state and schedule another vehicle.

Confirm Sent Vehicle Cross: In this state, the Intersection Manager sensed the

current vehicle had entered the intersection and should switch to the Idle state immediately.

Issues Revisit

Given the protocol above, we revisit the three examples discussed at the beginning

of this section. For the first problem, every message has a living period Tmout, so an outdated

message will never be used. For the second issue, once a confirmation is sent to the vehicle,

the intersection is currently reserved for it3. The intersection manager will not schedule

another vehicle until Twout (Twout should be set larger than TH as TH is the last valid time for

the vehicle to enter, and this is also shown in the verification results in Section 3.2.4). It

is therefore safe to enter the intersection as long as the vehicle arrives within the scheduled

3It is possible that after a vehicle is confirmed, the intersection manager receives another request with ear-
lier estimated arrival time (such request probably got delayed by bad communication condition). To mitigate
(but not fully prevent) such scenario, the intersection manager can put constraints such as only confirming
a vehicles request if its arrival time is within a bound of current time (which was in fact implemented in our
simulator)
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period [TL, TH ]. The third problem can be solved with the resending period T rout. Intu-

itively, T rout should be larger than 2 ∗ Tmout, as this is the living period for the round trip

communication between the vehicle and the manager, and both messages will be invalid

after this time period. This is also shown in the verification results in Section 3.2.4. In the

following section, we will use formal methods to verify the the safety and liveness properties,

and study the relationship between the timeouts to avoid deadlock.

3.2.4 Timed Automata for UPPAAL Verification

In order to verify the safety and liveness properties discussed in Section 3.2.1, we

abstract timed automata models from the state machines described in Section 3.2.3, and

leverage the UPPAAL tool for verification. The key idea is to convert all the variables in the

state machines (e.g., distances) to variables directly related to time. We are able to verify

a restrictive case where the four-way intersection has a single lane from each direction. We

assume the vehicles from the same direction will autonomously use car-following models,

and thus will not collide.

Instead of modeling each single vehicle, we use one automata to model the vehicles

from the same direction, as shown in Fig. 3.9 (a). There are four automata in total cor-

responding to the four directions. Each direction has a different “id” from [0, 1, 2, 3]. The

time variable in the automata is t local v. Since only the front vehicle can send request to

the Intersection Manager in our protocol, we only need to deal with one vehicle from each

direction at the same time. Each time the automata goes back to the initial state, it can

be considered as a new vehicle coming from the same direction.
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(e)

Intersection

Manager
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Out-Channel 

In-Channel 

(c)

Figure 3.9: The timed automata modeled in UPPAAL.

Each front vehicle from a direction will first enter the initial state and then ran-

domly choose a time within range [0, t0] to enter the Approaching not Confirmed state. This

models the uncertainty of the time that vehicles coming to the intersection. Note that we

combine the state Approaching not Confirmed and the state Decelerating not Confirmed in

the vehicle state machine to one state named Approaching not Confirmed in the automata.

This is because the only difference of the two states is how soon the vehicle will arrive at

the intersection. Such difference can be abstracted through a time variable t app, which

represents the time to arrive at the intersection after receiving the Confirm message.

In the Approaching not Confirmed state, the vehicle will periodically send request

if Confirm is not received. Once Confirm is received, the state becomes Approaching Con-

firmed. In this confirmed state, if the time is less than the time to approach the intersection
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t app, the state becomes Entering Intersection; otherwise it will go back to Approaching

not Confirmed. Once the vehicle enters the intersection, the vehicle behind it becomes the

front vehicle. The automata state will go back to Initial, indicating a new vehicle arriving.

In order to model the message delays, we introduce two automata as In-Channel

and Out-Channel, as shown in Fig. 3.9 (c) and (d). For all directions, there is an In-Channel

for messages to be transmitted from the front vehicle to the Intersection Manager, and an

Out-Channel for messages to be transmitted in the other direction. We remove the Cancel

message in the verification, which is equivalent to the case where all the Cancel messages are

lost. The In-Channel automata is associated with the corresponding “id”s of corresponding

directions. The automata can sense the trigger of the synchronizer “request[id]” and move

to the GetRequest state, which represents the sending of the message from the vehicle.

The automata will then wait for the trigger of another synchronizer “request2[id]”, which

represents the receiving of the message at the Intersection Manager. Such transition is

bounded by a timeout. The Out-Channel is similarly modeled.

Finally, the automata representing the Intersection Manager is shown in Fig. 3.9

(b). We first implement a queue to store the request from the vehicles, with functions as

enqueue() and dequeue(). The queue is first-in-first-out, and the new request will overwrite

the old request from the same direction. The enqueue() routine runs on all states. Once the

queue becomes non-empty, the Intersection Manager will select a request from the buffer

with an “id” number. The following scheduling is similar to the state machine case.
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Verification Results

Using the timed automata models from Section 3.2.4, we have successfully proved

the following properties in UPPAAL:

• A[] not deadlock imply delay <= Tmout. The message delay must be smaller than

the message timeout Tmout to ensure that the system does not deadlock4. We have

observed counter examples where delays longer than Tmout caused deadlocks (similarly

for the next two properties).

• A[] not deadlock imply T rout >= 2 ∗ Tmout. The timeout for resending the request

must be at least two times larger than the timeout of the message to ensure the system

does not deadlock.

• Twout >= TH and Vehicle(i).requestSent → Vehicle(i).EnteringIntersection.

When the first two properties are guaranteed by setting the proper timeout bounds,

and the time the Intersection Manager should wait for the currently scheduled vehicle

to enter the intersection Twout is greater than the upper bound of the time range

assigned to the corresponding vehicle TH , this liveness property is proved. That is,

once the vehicle sends a request, it will eventually cross the intersection.

• A[] IntersectionV(0).InIntersection + IntersectionV(1).Intersection + In-

tersectionV(2).InIntersection + IntersectionV(3).InIntersection <= 1. When

the first three properties are guaranteed, this safety property is proved. That is, no

vehicles from different directions can enter the intersection at the same time (note

that this is a stronger condition than the safety properties discussed in Section 3.2.1).
4In UPPAAL, A[] p indicates p is true for all reachable states.
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3.2.5 Extensions to Multiple-Lane Intersections

There are some fundamental assumptions in our extensions to multiple-lane inter-

sections:

• There is an intersection manager in the intersection. It receives requests from vehicles,

schedules them, and sends confirmations to vehicles.

• All vehicles and the intersection manager are connected (if some vehicles are non-

connected, roadside sensors and lane-specific traffic lights are required).

• All vehicles should follow instructions from the intersection manager, regardless of

whether a vehicle is controlled autonomously or by a human driver.

• All vehicles have basic safety systems such as pre-collision systems or lane departure

alerts as the final safety features. However, the intersection manager should still

schedule vehicles to avoid collisions for better safety and efficiency.

Then, we define the system model for single-intersection multi-lane systems as

follows:

• An intersection has a set of ways, W = {ω1, ω2, . . . , ω|W|} and a set of feasible paths,

P = {π1, π2, . . . , π|P|}.

• Each way ωi has a set of lanes, Li = {λi1, λi2, . . . , λi|Li|}.

• Each feasible path πk is an ordered pair of lanes (λij , λi′j′).

• Each pair of feasible paths is either non-conflicted or conflicted, which is pre-defined

based on the physical design of the intersection.
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• Each system of multiple intersections is defined by a graph (I, E), where I is the

vertex set and E is the edge set.

• Each vertex in I is an intersection.

• Each edge in E is between two intersections.

• Each request of a vehicle includes its current lane, a set of destination lanes, and other

information that may include estimated arrival time, earliest arrival time, desired

arrival time, and whether the vehicle is the first vehicle in its current lane.

• The manager will process a set of requests, send a set of confirmations, and keep

unprocessed requests for the next time.

• Each confirmation is associated with a request. It includes a set of feasible paths and

a time window for the corresponding vehicle to enter the intersection.

λ11 λ12 λ13 λ14

λ42

λ41

λ34 λ33 λ32 λ31

λ21

λ22

ω1

ω2

ω3

ω4

π4 = (λ12, λ33)
π5 = (λ21, λ14)
π6 = (λ21, λ33)
π7 = (λ21, λ34)
π8 = (λ21, λ42)
π9 = (λ31, λ14)
π10 = (λ31, λ22)
π11 = (λ32, λ13)
π12 = (λ41, λ22)
π13 = (λ41, λ34)

π1 = (λ11, λ34)
π2 = (λ11, λ42)
π3 = (λ12, λ22)

Feasible Paths

Figure 3.10: An example showing the intersection model.
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An example is shown in Figure 3.10 where π3 and π13 are non-conflicted and π3

and π10 are conflicted. There are some hard constraints:

• The destination lane of each feasible path in a confirmation must be in the set of

destination lanes in the corresponding request.

• The time windows in a confirmation must be after the earliest arrival time in the

corresponding request.

• Each pair of confirmations must satisfy at least one of the following conditions: (1)

the time window of one confirmation does not overlap with the time window of the

other confirmation; (2) all of the feasible paths of one confirmation are non-conflicted

with all feasible paths of the other confirmation.

Note that the last constraint is to provide either temporal or spatial separation for

safety. As we stated before, here we use a less aggressive approach under the consideration

of communication delays and losses (unlike previous methods where vehicles with conflicting

paths may enter the intersection at the same time and only get separated with fine-grained

scheduling that is vulnerable to timing attacks). We also make this assumption based on

practical consideration of vehicle passengers’ mental acceptance.

The changes to the original single-lane protocol are shown below.

• Vehicles:

– A vehicle sends Request once it enters the communication range of the intersec-

tion manager.
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– Once a vehicle receives a Confirm message, it can proceed as long as its estimated

arriving time is within the time window in Confirm. The Confirm does not have

to correspond to the latest Request the vehicle sent.

• Intersection Manager:

– Following a controlling period, the manager periodically checks traffic conditions

and decides a set of vehicles with non-conflicting routes to send Confirms.

– The manager stores every Request in its inbox until a corresponding Confirm is

sent. A new Request from the same vehicle overwrites the old one.

– Non-front vehicles are only confirmed with the front vehicle in the same lane.

– The manager confirms multiple vehicles aligned in a queue by sending a single

time window ([TL, TH ]) to them. Note that not all vehicles in that lane have to

be confirmed, but the front vehicle has to be.

• Timeouts:

– Instead of the three timeouts in the single-lane protocol, we now only set a

resending timeout for vehicles, denoted as trout. A vehicle will resend Request if

Confirm is not received after trout. We remove the message timeout (i.e., living

period). We also remove the timeout for the intersection manager to wait for

currently-scheduled vehicle. Instead, TH in the time window denotes the longest

time the intersection manager will wait for.
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(a) SUMO simulation suite (b) Unity visualization tool

Figure 3.11: The screenshots of simulation tools in our framework.

3.2.6 Simulation-Based Analysis of Intersection Management Performance

Simulator Implementation

We implement our simulation environment based on the widely-used traffic sim-

ulator SUMO [7]. Specifically, we implement the state machines for the vehicles and the

Intersection Manager, following the state machines defined in our protocol. We control the

movement of the vehicles by leveraging the TraCI API provided by the SUMO simulation

suite. Most importantly, we added the explicit modeling of communication delays in SUMO.

During simulation, at each time step, we halt the SUMO engine and obtain the location,

speed and acceleration information of vehicles for facilitating our protocol simulation. In

this experiment we model a four-way single-lane intersection and vehicles are arriving based

on Poisson distributions. The screenshot for simulation in SUMO and our visualization tool

Unity is shown in Fig. 3.11.
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Single Intersection with Single Lane

Delay-Tolerant Protocol v.s. Traffic Lights. We first compare the performance of our pro-

tocol with traditional traffic lights. The performance is evaluated as the average traveling

time of each vehicle, i.e., the time difference of entering the intersection range and leaving

the intersection range. The range is a radius of 50 meters from the intersection center.

The arriving rate of the Poisson distribution is within a range of [0.1, 0.5] (the unit is vehi-

cles/second). We also introduce a factor K to denote the ratio of traffic arriving rates from

different directions. K = 1 represents that the north-south directions has the same traffic

arriving rate as the east-west directions. K = 2 and K = 3 represent that the north-south

direction has twice and three times of traffic arriving rate than the east-west direction,

respectively. The traditional traffic light is set with a red light phase of 36 seconds, a green

light phase of 31 seconds, and a yellow light phase of 5 seconds, which are the default values

in SUMO. The timeout values in our protocol are set as Tmout = 4, T rout = 8 and Twout ≥ TH

(all units in seconds).

The simulation results are shown in Fig. 3.12, where the x-axis denotes the total

traffic arriving rate from all directions, and y-axis denotes the ratio of the average traveling

time between our protocol and the traffic lights (i.e., setting the traffic lights performance as

baseline). Each data point is the average of 6 randomly generated traffic patterns following

Poisson distribution. We can find out that our proposed protocol provides significantly

better performance than the traditional traffic lights when the traffic is not too heavy or

when the traffic arriving rates from different directions are asymmetric. When the traffic

is heavy and symmetric from different directions, the traditional traffic lights achieve their
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(b) K = 2.
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Figure 3.12: The performance comparison between the proposed protocol and traditional
traffic lights. K: north-south directions have K times the traffic arriving rate as the east-west
directions
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best performance and can be better than our solution (although our solution can be further

improved with more finer-granularity control as planned in the future work).

Impact of Communication Delays on Performance. We further evaluate the performance

(average traveling time of each vehicle) under different communication delays, as shown

in Fig. 3.13. We can see that the performance significantly decreases (longer traveling time)

with the increase of communication delays, in particular when the traffic is heavy. This

again demonstrates the importance of modeling and analyzing the impact of delays in in-

tersection management, not only for the safety and liveness properties, but also for the

system performance. It should be noted that in normal traffic conditions, the communica-

tion delays are typically under one second (in the range of dozens of milliseconds and can

reach hundreds of milliseconds when considering end-to-end delays [155]). Under security

attacks such as jamming, the delays can be much longer. Note that if we remove the delay

consideration in the protocol, deadlocks are observed during simulation.

Single Intersection with Multiple Lanes

In this experiment, we study the communication delay and its impact on the

performance of a single intersection with multiple lanes. The system setup is shown in

Figure 3.14. The intersection has four ways ω1, ω2, ω3 and ω4, and each direction is

associated with three lanes, namely, one lane for left turn, one lane for going straight

and one lane for right turn. Therefore, the feasible paths for the system are listed as

follows: π1 = (λ11, λ46), π2 = (λ12, λ35), π3 = (λ13, λ24), π4 = (λ21, λ16), π5 = (λ22, λ45),

π6 = (λ23, λ34), π7 = (λ31, λ26), π8 = (λ32, λ15), π9 = (λ33, λ44), π10 = (λ41, λ36), π11 =
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Figure 3.13: Performance of our protocol under different communication delays.

(λ42, λ25), π12 = (λ43, λ14). The length of each lane is 100 meters. In this simulation,

vehicles are assumed to have a length of 5 meters, with maximum acceleration 0.8 m/s2

and deceleration 4.5 m/s2. The speed limit of the vehicle is 10 m/s. The routes of the

vehicles are randomly generated, with the probability ratio of left turn, going straight and

right turn set as 0.25:0.5:0.25. The arriving time of the vehicles follows Poisson distribution

with an arriving rate denoting how many vehicles will arrive per second in average. In our

experiment, the arriving rate ranges from 0.1 vehicle/s to 0.5 vehicle/s. The number of total

vehicles entering the intersection is set as 300. The level of timing attack is represented by

the delay added to the messages. The performance of the intersection is evaluated as the

average traveling time of all the vehicles aiming to cross the intersection.

The simulation results are shown in Figure 3.15. The x-axis denotes the commu-

nication delay caused by the timing attack, and the y-axis denotes the average traveling
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Figure 3.14: Setup for single-intersection simulations.

time of the vehicles as performance. We define traffic patterns in our simulation as the

flow ratio of the vehicles arriving from north-south directions and the vehicles arriving from

west-east directions. For example, traffic pattern “flow 0.5 : 0.1” denotes the average traffic

flow from north-south directions is 0.5 vehicle/s and the average traffic flow from west-east

directions is 0.1 vehicle/s. The figure shows that for each traffic pattern, the performance

significantly decreases as the communication delay increases. For each specific delay, no

matter symmetric or asymmetric traffic pattern, the trend of performance deterioration is

similar.
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Figure 3.15: Performance of a single intersection under different communication delays.

Multiple Intersection with Multiple Lanes

In this experiment, the setup is a traffic network with nine intersections as in

Figure 3.16 (b). Each intersection has the same setup as in Figure 3.14 with designated

lanes for left turn, going straight and right turn. The connection of adjacent intersections is

to connect the corresponding lanes together, i.e., connecting left lane with left lane, middle

lane with middle lane, and right lane with right lane. In this simulation, vehicles can only

arrive from the twelve entrances. At each intersection, the vehicle has a 0.25 probability to

turn left, a 0.5 probability to go straight, and a 0.25 probability to turn right. The total

number of vehicles entering the network is set as 1200. We first assume the attacker to

launch timing attack to all the intersections, and then study the influence by attacking only

one intersection.
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Figure 3.16: Simulations based on SUMO.

Figure 3.17 shows that average traveling time increases with communication delay

applied to all nine intersections. In this case, the trend is similar to the single intersection

with multiple lanes. For each traffic pattern, the average traveling time of vehicles increases

as delay increases. Note that the performances of traffic patterns “0.5 : 0.1” and “0.5 : 0.5”

are very similar and pattern “0.5 : 0.1” is even slightly better than “0.5 : 0.5” when the

delay is 2.0 second.

Figure 3.18 shows the attack to only one of the intersections with a delay of 4.0

second. Letters ‘A’ to ‘I’ represent different intersections, and their positions are shown in

Figure 3.16 (b). The y-axis denotes the average traveling time of vehicles.
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Figure 3.17: Performance of nine interconnected intersections under the same attack.
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Figure 3.18: Performance of nine intersections (denoted by “A” to “I”) if one intersection
is under timing attack.
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3.3 Security, Control, and Schedulability Codesign

In this section, we study software to hardware mapping with constraints from the

application layer as well as the resource and communication constraints from the software

and hardware layers. As described in Section 1.2 in Chapter 1, researchers have proposed

various control-oriented approaches for attacks on cyber-physical systems [118, 54, 116,

139]. However, resource and real-time constraints are not considered in these approaches,

and there is no guarantee of schedulability and control performance. To build correct,

efficient and secure cyber-physical systems, it is crucial to quantitatively model the impacts

of security techniques on other related metrics, and address them together in a codesign

environment.

We utilize the cross-layer codesign framework to combine control-theoretic

methods at the functional layer and cybersecurity techniques at the embedded platform

layer. Furthermore, we address security together with other design metrics, in particular

the control performance, under resource and real-time constraints.

3.3.1 General Codesign Formulations

Our work addresses a typical cyber-physical system, where multiple control loops

share an embedded platform, with messages transmitted from sensors (vision sensors, GPS,

ultrasound, etc.) to controllers and from controllers to actuators, as shown in Fig. 3.19 and

similarly considered in [139]. Each controller (implemented as a control task) collects the

sensed information, processes it on a shared computation unit (e.g., a single-core CPU)5, and

5We assume all the control tasks are implemented on a single computation unit in this work. Our
formulation can be extended to address multicore and multi-processor platforms with more complex models
for schedulability and security level measurement, as planned in the future work.
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Figure 3.19: A cyber-physical systems with multiple control loops sharing an embedded
platform. Attackers may eavesdrop on the communication medium and apply various at-
tacks.

sends commands to various actuators. In our model, a message from a sensor may be sent

to multiple control tasks for sharing information (which is common in many domains such

as automotive systems). If a message is encrypted for security measurement, a dedicated

decryption task is used for decrypting the message and send it to the receiving tasks (this

approach reduces overhead, compared with carrying out the decryption of the same message

within each receiving task6).

The attackers may be able to eavesdrop on the communication medium and fur-

ther reconstruct the system state. This results not only in a loss of privacy, but can further

be used as the basis for other malicious attacks. The system is resource-constrained, as

control tasks compete for computation resources and messages compete for communica-

6In this work we assume the message is encrypted with the same key for all the receiving tasks. A
more complex strategy with different keys may be used for higher level of security with significantly more
overhead.
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tion resources. Applying security techniques such as message encryption will introduce

computation and communication overhead, through the elongation of message transmission

time, the additions of decryption tasks, and consequently the elongation of control task

execution time due to resource contention. This will in turn have a significant impact on

system schedulability and control performance, as demonstrated in the following motivating

example.

Motivating Example

A motivating example is shown in Fig. 3.20. In this example, there are two control

tasks C1 and C2, two messages m1 and m2, and potentially two decryption tasks D1 and D2

if the corresponding messages are encrypted. We show only the control and decryption tasks

here for simplicity, and will model sensing and actuation tasks later in problem formulation.

All the tasks are implemented on a single-core CPU under the preemptive fixed-priority

scheduling policy (commonly used in cyber-physical systems, such as automotive systems

with OSEK standard [26]). In order to guarantee the correct execution order, the priorities

of decryption tasks are set higher than the control tasks. We further assume C1 has higher

priority than C2. The initial periods of C1 and C2 are set to 4ms and 8ms, respectively.

We consider two scenarios: (a) no message is encrypted and the system is not

protected, and (b) both messages are encrypted and the system is protected. In scenario

(a), no decryption task is needed and there is no security overhead. Tasks C1 and C2 can

be completed within their periods, i.e., before their next periodic activation. In scenario

(b), the overhead of two decryption tasks elongates the time it takes to complete task C2,
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Figure 3.20: A motivating example: (a) no message is encrypted, (b) both messages are
encrypted and the period of C2 has to be increased, which leads to higher security level but
lower control performance.

and consequently the period of C2 cannot be smaller than 16ms (otherwise C2 will not

complete within its period and the system functionality may be incorrect). As discussed

in the literature [135, 136], control performance typically decreases significantly when the

control task period increases. Therefore, this motivating example has clearly shown the

additions of security measurements may have a negative impact on system timing, and

consequently control performance and system schedulability. It is essential to quantitatively

analyze the trade off among these metrics. In the following, we will introduce our general

codesign formulation for this purpose.

General Formulation

Our codesign framework addresses three design metrics: control performance, sys-

tem security level, and platform schedulability. Control performance and system security

level are measured at the functional layer, while schedulability is analyzed at the embedded

platform layer. As shown in Fig. 3.21, to bridge these metrics, a set of interface variables
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are introduced, specifically the sampling period of every control task and the selection of

messages to be encrypted. Intuitively, when the sampling period of a control task increases,

its control performance decreases, and platform schedulability becomes easier with less fre-

quent activation of the control task. On the other hand, when the number of messages

being encrypted increases, the system security level increases, and platform schedulabil-

ity becomes harder because of the increased overhead – the sampling periods may have

to increase for schedulability concern thereby worsening the control performance. These

relations are quantitatively modeled in our codesign formulation as introduced below.

Platform Schedulability

Control

Performance

System

Security Level

Sampling period
Encryption assignment to 
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Figure 3.21: Illustration of the interface variables and their relations to design metrics.

First, we define the following notation for the cyber-physical system in Fig. 3.19:

Tasks are represented by T = TS ∪ TC ∪ TD ∪ TA, where TS = { τ1
s , τ2

s , . . . , τ ls } denotes

the set of sensing tasks, TC = { τ1
c , τ2

c , . . . , τmc } denotes the control tasks, TD = { τ1
d , τ2

d ,

. . . , τpd } denotes the decryption tasks, and TA = { τ1
a , τ2

a , . . . , τ qa } denotes the actuation

tasks. Each task τi is associated with an activation period T iτ and worst case execution

time Ciτ . The worst-case execution time for sensing tasks include the time for processing

the sensor data from crude input form. The relative deadline of each task is set equal to
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its period as in typical real-time systems. Messages are represented by M = {m1, m2, . . . ,

mp}. src(mi) denotes the source task of message mi, and the set {dst(mi)} includes all

destination tasks of message mi. Each message mi is associated with a period Tmi and an

original transmission time Cmi (without encryption). The relative deadline of each message

is set equal to its period.

A control loop consists of a control task connected with a set of sensors, a set of

actuators, and the corresponding plants. A control path p is a sequence of tasks (including

sensing, control and actuation tasks) connected through messages.

In our codesign formulation, we explore the selection of messages for encryption

and the assignment of periods to control tasks to address both control performance and

system security while guaranteeing platform schedulability. In the following formulation

from Equation (3.5) to (3.9), we set control performance as the optimization objective and

assume constraints on the system security level. Then, by varying the requirements on

the system security level, we can obtain the Pareto front between control performance and

security level.

maximize: J(
−→
Tτc) (control performance) s.t. (3.5)

S(−→om) ≥ S0 (security constraint) (3.6)

Ue(
−→om,
−→
Tτc) ≤ Ue0 (computational resource) (3.7)

Uc(
−→om) ≤ Uc0 (communication resource) (3.8)

lp(
−→om,
−→
Tτc) ≤ Dp (end to end latency) (3.9)

As stated before, the design variables are the interface variables, which include

the control task periods
−→
Tτc={ T 1

τc , T
2
τc , . . . , Tmτc }, and the selection of messages for encryp-
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tion, denoted by −→om = {om1 , om2 , . . . , omk}. The binary variable omi is 1 if message mi is

encrypted, and 0 otherwise. The variables in Equation (3.5) to (3.9) are defined as follows

and the details of these equations will be introduced in the rest of the section. J represents

the control performance, which is a function of control task period
−→
Tτc and works as the

objective of this problem. S denotes the security level of the system, which is a function

of the selection of messages for encryption −→om. S0 is the minimum security level set in

the design requirements. Ue represents the utilization of the computation unit, and Ue0 is

the required maximum utilization. Uc denotes the utilization of the shared communication

medium, and similarly, Uc0 is the required upper bound on communication utilization. lp

represents the end to end latency of path p, and Dp is the required deadline for path p. In

what follows, we introduce how each of the equations above are refined for modeling control

performance, security level, and schedulability, with respect to the design variables.

Control Performance Modeling. We consider linear continuous-time dynamics for each phys-

ical plant:

ẋ = Ax+Bu+ w

y = Cx+ v

(3.10)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x : R → Rn is the map describing the system

state, u : R → Rm is the control input, and y : R → Rp is the measured output. Finally,

w : R→ Rn and v : R→ Rp represent process and measurement noise, which we assume to

be zero-mean, Gaussian, and white.

Each continuous-time physical plant is controlled by a digital controller τ ic with a

sampling period T iτc , which is also the activation period of the corresponding control task.
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Thus, intuitively, the longer the sampling period, the worse the performance of the control

system. For controller τ ic , we assume the control performance J iτc decreases exponentially

as the sampling period T iτc increases, as in references [135, 136, 99]. 7 As in these works,

we let the performance J iτc be an exponentially decaying function of T iτc defined as

J iτc = α−βT
i
τc (3.11)

for appropriate constants α ∈ R, β ∈ R and α > 0, β > 0. For each control task, α and β

can be obtained by fitting the relation of control performance and sampling period with an

exponential decay function, as described in Section 3.3.2.

For a system consisting of multiple control tasks, the overall control performance

is calculated as the weighted average in Equation (3.12), where ωiτc is the weight for each

control task and |TC | is the number of control tasks.

J =
1

|TC |
∑
τ ic∈TC

ωiτcJ
i
τc (3.12)

Security Level Modeling. We consider attackers with knowledge of the system dynamics

(i.e. the matrices A, B, C in Equation (3.10)), and attempt to reconstruct the system

state by eavesdropping messages containing sensor measurements. It should be noticed that

reconstructing the system state results in not only a loss of privacy, but also in vulnerabilities

to feedback attacks.

To protect against such attacks, a key-based encryption technique is adopted in

our framework. As stated before, for simplicity and efficiency, we only consider the case

7In general, the relation between control performance and sampling period could be quite complex and
may require simulations for accurate capturing. In those cases, we may approximate the control performance
with a closed-form representation (if possible) and apply our codesign formulation, or we can combine our
codesign formulation and simulated annealing algorithm directly with simulations for exploring control
performance.
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where a message is encrypted with the same key for all receiving tasks. Our formulation

can be extended to address multiple-key distribution scenarios, using techniques similar to

the ones in [95].

The security level of the control task τ ic is defined as the complexity to eavesdrop

the messages with sensor measurements and observe the system state. It is modeled in

Equation (3.13). Specifically, P (niτc , µ) represents the probability for an attacker to eaves-

drop µ encrypted sensing messages for task τ ic , where niτc is the number of encrypted sensing

messages. ξ(Ωµ(ρ)) represents the complexity for the attacker to estimate the system state

from the ρ-th element of Ωµ, which is the set containing all possible combinations of the

eavesdropped messages, i.e., µ encrypted messages together with all unencrypted messages

(its cardinality is
(
niτc
µ

)
). More about ξ(Ωµ(ρ)) is discussed later. P (niτc , µ) can be fur-

ther defined as in Equation (3.14), where D(lkey) denotes the probability for an attacker to

decrypt one message with encryption key length lkey.

Siτc =

niτc∑
µ=0

(n
i
τc
µ )∑
ρ=1

P (niτc , µ)ξ(Ωµ(ρ)) (3.13)

P (niτc , µ) = D(lkey)
µ(1−D(lkey))

niτc−µ (3.14)

We use the example in Fig. 1 to illustrate the parameters shown above. Let us

consider the solution in which only messages m1 and m3 are encrypted. In this case, the

number of sensing messages of task C1 is 2, i.e., m1 and m3, and the number of encrypted

sensing messages of task C1 is 2 as both m1 and m3 are encrypted. The number of sensing

message of task C2 is 2, i.e., m2 and m4, and the number of encrypted sensing messages of

task C2 is 0, as neither m2 nor m4 is encrypted. The number of sensing messages of task C3
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is 2, and the number of encrypted sensing messages of task C3 is 1. Using C3 as an example

for Equation (3.14), the number of encrypted sensing messages n3
τc = 1. The attacker may

eavesdrop 0 or 1 encrypted sensing message (i.e., µ is 0 or 1), with the probability defined

as P (1, 0) and P (1, 1) in Equation (3.14). In addition, the attacker can always eavesdrop

the unencrypted message m4 to learn about C3. Set Ωµ contains m4 and m3 if µ = 1 (i.e.,

encrypted message m3 is eavesdropped), and only contains m4 if µ = 0. Equation (3.13)

considers all possible situations for C3 and computes its overall security level.

We simultaneously consider multiple control loops. A successful reconstruction of

the system state of any control loop may lead to the whole system being attacked, therefore

the system level security is defined as the minimum security level among all control tasks

as in Equation (3.15).

S = min
τ ic∈TC

Siτc (3.15)

The function ξ(Ωµ(ρ)) can be defined in different ways. For deterministic systems

(that is, without process and measurement noise), as shown in [117], ξ(Ωµ(ρ)) can be

defined based on the Observability Gramian [75]. This measure of observability quantifies

the relative importance of different measurement channels based on the system dynamics

only, and independently of any particular estimation scheme. For stochastic systems driven

by process and measurements noise, ξ(Ωµ(ρ)) can be defined based on the estimation error

of an optimal Kalman filter. This measure of observability, which is inherently dependent

on the Kalman estimation procedure, allows us to highlight the role of system noise with

respect to the system security level. We now present these two metrics.
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• Option 1 – Observability Gramian. Let K ⊆ {1, . . . , p} be the set of measurements

decrypted by the attacker, and let yK be the decrypted measurements. The Observ-

ability Gramian is defined as

OK :=

∞∑
τ=0

(Aᵀ)τCᵀ
KCKA

τ (3.16)

where CK is the output matrix associated with the decrypted measurements (yK =

CKx). The energy associated with the decrypted measurements K and due to the free

evolution of the system from the x is

E(x) : =
∞∑
τ=0

‖yK(τ)‖2
∞∑
τ=0

yTKyK =
∞∑
τ=0

xT (τ)CTCx(τ)

=
∞∑
τ=0

xT (AT )τCTCAτx = xTOKx ≥ λmin(OK)

(3.17)

where λmin(OK) denotes the smallest modulus of the eigenvalues of OK. The following

facts can be formally proven with standard methods [75]. First, the larger λmin(OK),

the easier the reconstruction of the system state from measurements. Thus, the eigen-

value λmin(OK) measures the information of the system state contained in the mea-

surements yK. Second, the eigenvalue λmin(OK) is a function of both the cardinality

and the decrypted messages. Third, the inequality (3.17) holds with equality for cer-

tain system states and for an infinite observation horizon. Otherwise, λmin(OK) is a

lower bound on the information retrieved by the attacker from the decrypted measure-

ments yK. Thus, for deterministic systems we select ξ(Ωµ(ρ)) as the equation shown

below.

ξ(Ωµ(ρ)) = λ−1
min(OΩµ(ρ)) (3.18)
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• Option 2 – Kalman filter. Let yK be the measurements decrypted by the attacker,

and define the Kalman filter as

x̂k+1 = Ax̂k +Kk(yk − Cx̂k) +Buk

where the Kalman gain Kk and the error covariance matrix Pk+1 , E
[
(x̂k+1 −

xk+1)(x̂k+1 − xk+1)T
]

can be calculated with the recursions

Kk = APkC
T (CPKC

T + Σv)
−1

Pk+1 = APkA
T −APkCT (CPkC

T + Σv)
−1CPkA

T + Σw

with initial conditions x̂1 = E[x1] and P1 = E[x1x
T
1 ]. The matrices Σw and Σv are

the process and measurements noise covariance matrices respectively.

If the system is detectable, the above recursion converges to the steady state limk→∞ Pk =

P , where P can be obtained as the solution to an algebraic Riccati equation [75]. For

the ease of presentation, we assume that the attacker uses a steady state Kalman fil-

ter, and we adopt trace(P ) to evaluate the complexity of the attacker’s reconstruction

of the state. Thus,

ξ(Ωµ(ρ)) = trace(P ) (3.19)

Platform Schedulability. The encryption/decryption of messages puts overhead on compu-

tation and communication, and may have significant impact on platform schedulability as

modeled below.

• Decryption Tasks. Every encrypted message mi requires a decryption task τd
i, with

worst case execution time denoted by Ciτd . We use dmi to denote the decryption time
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of message mi. For un-encrypted messages, we simply set Ciτd to 0. The computation

of Ciτd thus can be modeled as in Equation (3.20), where omi denotes whether the

message is encrypted and dmi is a function of encryption key length lkey and message

length lmi . The period of τd
i, denoted as T iτd , is equal to the message period Tmi as

shown in Equation (3.22).

Ciτd = dmiomi (3.20)

dmi ∼ (lkey, lmi) (3.21)

T iτd = Tmi (3.22)

System scheduling has to ensure the functional dependencies among tasks, which

include the dependencies between decryption tasks and corresponding control tasks.

Later in our automotive domain formulation, where fixed-priority preemptive schedul-

ing is assumed, we achieve this by setting the priorities of decryption tasks higher than

the priorities of control tasks.

• Computation Resource Utilization. The original control tasks and the added decryp-

tion tasks are all allocated to a single computation unit. The constraint for com-

putation resource utilization Ue is shown in Equation (3.23). As defined earlier, TC

represents the set of control tasks, where each control task τ ic has a worst case execu-

tion time Ciτc and a period T iτc . TD represents the set of decryption tasks, with Cjτd

and T jτd similarly defined. Ue0 (between 0 and 1) represents the utilization bound set

by design requirement.
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Ue =
∑
τ ic∈TC

Ciτc
T iτc

+
∑
τ jd∈TD

Cjτd

T jτd
≤ Ue0 (3.23)

• Communication Resource Utilization. The constraint on communication resource uti-

lization Uc is shown in Equation (3.24), where the message transmission time Cmi

depends on the message length lmi , selection for encryption omi , encryption key length

lkey, and link data rate R.

Uc =
∑
mi∈M

Cmi
Tmi

≤ Uc0 (3.24)

Cmi ∼ (lmi , lkey, R, omi) (3.25)

• End-to-end Path Latency The end-to-end latency along a control path p (from sensor

si to control task cj to actuator ak) is modeled in Equation (3.26). In the formulation,

tiτs , t
m
τd

, tjτc , t
k
τa represent the maximum latency for sensing, decryption, control execu-

tion, and actuation, respectively. tms→c represents the message transmission latency

between sensor si and control task cj , and tmc→a represents the message transmission

latency between control task cj and actuator ak.

l
p(τ is,τ

j
c ,τka )

= tiτs + tms→c + tmτd + tjτc + tmc→a + tkτa (3.26)

3.3.2 Automotive Domain Codesign

To demonstrate the effectiveness of our approach, we customize and refine the

general codesign formulation introduced in Section 3.3.1 to automotive systems.
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Customization and Refinement of the General Formulation

Control Performance Refinement. In this work, we adopt exponential decay functions as

control performance formulation in the automotive domain refinement. This is because for

many automotive systems, the relation between control performance and sampling period

can be captured by these functions with sufficient accuracy for our codesign.

As an example, we studied the model of an automotive electrohydraulic servomech-

anism controlled by a pulse-width modulated (PWM) solenoid in the Simulink library [142].

It is a feedback control loop with a high-level controller collecting data from sensors and

sending commands to actuators. The control loop may conceivably be implemented in a dis-

tributed fashion, sharing sensors, actuators and computation node with other control loops.

We can change the sampling period of the control loop, and measure its performance as the

reciprocal of the root mean square (RMS) of the difference between the actuator position

and the reference position (i.e. the error in the actuator position) of the electrohydraulic

servo over the simulation process.

Fig. 3.22 shows this control performance measurement for different sampling peri-

ods. When the period increases, the performance decreases with larger error in the actuator

position (i.e., larger RMS value). An exponential decay function can be used to approx-

imate (fit) the functional dependency of the control performance on the sampling period.

As shown in the figure, even when an exponential control cost function cannot be deter-

mined analytically, it is still possible to determine the parameters by fitting the cost values

obtained through simulation runs for different sampling period values. In this case, the

exponential fitting is very close to the simulation data, with an R-squared value of 0.972 (1
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Figure 3.22: Fitting the control performance of the Simulink electrohydraulic servo example
for different sampling periods with an exponential decay function.

is a perfect fit). We have also conducted experiments on a fuel control system example and

an engine speed control example in the Simulink library, and observed similar exponential

decay trend between control performance and sampling period (with R-squared values of

0.994 and 0.996 in the exponential fittings, respectively).

We further normalize the performance of each control task with respect to its

performance under an initial period T i0τc (which is obtained by solving the entire problem

without encryption).

J iτc = α−β(T iτc−T
i0
τc ) (3.27)

The normalization is for fair consideration when performances of multiple control

tasks are averaged to get overall system control performance, as shown in Equation (3.12)

in the general formulations.

Security Level Refinement. For automotive systems, the presence of measurement noise mo-

tivates the use of the Kalman filter based approach to quantify the system security level (In
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the experiments, we also evaluate the security level using Observability Gramian. However,

we think Kalman filter is a more suitable measurement for security level in automotive sys-

tems as it directly addresses measurement noises). For simplicity, we assume that all sensing

messages for a control task reveal equal amount of information of the system state, that is,

yield the same estimation error covariance matrix. Our approach can be extended to the

case of inhomogeneous measurement channels at the cost of a more involved notation. We

use Kal(n) to represent the Kalman filter performance with any n measurement messages,

i.e., how easy it is to reconstruct the system state from the information of n messages. The

security level defined in Equation (3.13) can be refined to Equation (3.28) in below.

Siτc(n
i
τc) =

niτc∑
µ=0

(
niτc
µ

)
P (niτc , µ)Kal(N i

τc − n
i
τc + µ) (3.28)

P (niτc , µ) = 2−µlkey(1− 2−lkey)n
i
τc
−µ (3.29)

N i
τc denotes the total number of sensing messages for task τ ic , out of which niτc

messages are encrypted. P (niτc , µ) denotes the probability that µ encrypted messages (out of

niτc) are hacked by an attacker. We assume the attacker uses brute-force attack by randomly

guessing the key with probability 2−lkey to decrypt one message in one try (Depending on

the systems, more sophisticated attacks may be applied with different success probability.

We plan to study some of those cases in future work, and our codesign formulation will still

apply). Kal(N i
τc−n

i
τc+µ) is the Kalman filter performance with the observation of µ hacked

messages and N i
τc − n

i
τc un-encrypted messages (all un-encrypted messages are assumed as

observable to the attacker). For fair comparison, the security level of each control task is
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normalized with respect to the maximum security level the control task may obtain:

S
′i
τc(n

i
τc) = Siτc(n

i
τc)/ max

niτc∈[0,N i
τc

]
{Siτc(n

i
τc)} (3.30)

The system security level is denoted by the task that has the lowest security level as show

in Equation (3.15).

Platform Schedulability Refinement. In this work, we consider a single CAN (Controller Area

Network) [146] or CAN-FD [62] bus as the communication medium. We use Bus speed to

denote the bus speed (bits/ms). Similar to [110, 68], we adopt the KASUMI encryption

algorithm with encryption speed at En speed bits/ms, decryption speed De speed bits/ms

and block size at B size.

Based on the KASUMI algorithm, the size of an encrypted message should be

elongated to n∗B size (n is an integer), thus the modified transmission time of an encrypted

message mi, denoted as cmi , should be calculated as Equation (3.31), where Cmi denotes

the original transmission time and omi denotes whether mi is encrypted.

The encryption time of message mi, denoted as emi , is computed according to

Equation (3.32). Similarly, the decryption time of message mi, denoted as dmi , is computed

according to Equation (3.33). The worst case execution time of decryption task τ id , denoted

as ciτd , is calculated as (3.34).

cmi = (1− omi)Cmi + omi

⌈
Cmi ·Bus speed

B size

⌉
B size

Bus speed
(3.31)
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emi =
Cmi ·Bus speed

En speed
(3.32)

dmi =
Cmi ·Bus speed

De speed
(3.33)

ciτd = omidmi (3.34)

The execution time of sensing task τ is, denoted as ciτs , is elongated as Equa-

tion (3.35), where every encrypted message sent by sensor τ is introduces its encryption

overhead.

ciτs = Ciτs +
∑

τ is∈src(mi)

omiemi ≤ T iτs (3.35)

We use task set TCD = TC ∪ TD to denote all the tasks allocated on the shared

computation node, including control tasks and decryption tasks. For automotive systems,

we assume fixed-priority preemptive scheduling. We assign priorities following: 1) the

priorities of decryption tasks are higher than control tasks to guarantee the correct execution

order; 2) for tasks with the same type, the ones with shorter periods are assigned with higher

priorities following the commonly-used Rate-Monotonic scheduling [98].

We conduct response time analysis to check platform schedulability, using tech-

niques similarly as in [34, 163]. Task response time denotes the longest time it may take to

complete the task, and should be less or equal to task period. For system with preemptive

fixed-priority scheduling, task response time contains the computation time requirement

from the task itself and the interference from higher priority tasks. Specifically, the task

response time riτc of control task τ ic is shown below in Equation (3.36). The set hp(τ ic)

contains all the higher priority tasks compared to task τ ic . The first term Ciτc is the worst

case execution time of task τ ic . The second term is the summation of all the time τ ic being
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preempted by higher priority tasks on the same computation unit. The constraint between

task response time and task period is shown in Equation (3.37).

riτc = Ciτc +
∑

τk∈hp(τ ic)∩TCD

d
riτc
T kτ
eCkτ (3.36)

riτc ≤ T
i
τc (3.37)

The task response time of decryption task τ id is shown below. If message mi is not

encrypted, the corresponding decryption task τ id should not exist, thus the task response

time of task τ id should be 0.

riτd = omi ·

Ciτd +
∑

τk∈hp(τ id)∩TCD

d
riτd
T kτ
eCkτ

 ≤ T iτd (3.38)

For messages transmitted through the CAN or CAN-FD bus, non-preemptive

fixed-priority scheduling is applied. The response time rmi of message mi is shown in

Equation (3.39), where cmi denotes the worst-case transmission time of message mi. Be-

cause message transmitted on CAN bus is not preemptable, a message may have to wait

for a blocking time Bmi , which is calculated as maxj∈lp(i) cmj , where lp(i) is the set of all

lower priority messages that are allocated on the same bus with mi. Similarly, message mi

itself is not subject to preemption from higher priority messages therefore the inferences

from higher priority messages can only occur within rmi − cmi time intervals.

rmi = cmi +Bmi +
∑

mk∈hp(mi)

drmi − cmi
Tmk

ecmk ≤ Tmi (3.39)

Finally, the end-to-end latency is shown in Equation (3.40), where path p is rep-

resented by the link si → cj → ak. Message msi,cj is transmitted between sensing task τ is
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and control task τ jc , and decryption task τ id for decrypting msi,cj may be added to the path.

Message mcj ,ak is transmitted between control task τ jc and actuation task τka . Because of

the asynchronous nature of the automotive embedded systems, in the worst case, when any

task/message on the path completes its execution/transmission, the receiving message/task

might have just been activated and will need to wait for the next activation to continue

processing, where the wait time can be arbitrarily close to its period. For the sensing task,

the arrival of the external event has the similar effect, i.e. it may just have missed the

activation of the sensing task. Thus, in the worst case scenario, the periods of all the tasks

and messages on the path should be added into the latency. For more detailed discussion

(and the cases where such worst case bound can be reduced), please refer to [34].

l
p(τ is→τ

j
c→τka )

= ciτs + T iτs + rmsi,cj + Tmsi,cj + riτd

+ omiT
i
τd

+ rjτc + T jτc + rmcj ,ak + Tmcj ,ak

+ ckτa + T kτa (3.40)

Optimization with Simulated Annealing

The final optimization formulation for this automotive system is shown in below,

refined from the general formulation in Section 3.3.1. where the computation of variables

such as security level Siτc , response time riτc and end-to-end latency lp can be referred to the

formulations in the previous Section 3.3.2.
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maximize: J =
1

|TC |
∑
τ ic∈TC

ωiτcα
−β(T iτc−T

i0
τc

) s.t. (3.41)

∀τ ic ∈ TC , Siτc ≥ S0 (security constraint) (3.42)

∀τ ic ∈ TC , riτc/T
i
τc ≤ 1 (computational constraint) (3.43)

∀τ is ∈ TS , ciτs/T
i
τs ≤ 1 (computational constraint) (3.44)

∀mi ∈M, rmi ≤ Tmi (communicational constraint) (3.45)

∀p ∈ P, lp ≤ Dp (end-to-end latency) (3.46)

The above formulation is complex, and direct use of a generic non-linear solver may

be intractable for industrial size problems. Instead, we implement a simulated annealing

(SA) algorithm to explore acceptable feasible solutions.

The algorithm shown in Algorithm 1 is based on the standard simulated annealing

procedure. We first set every message not to be encrypted and obtain the initial period by

solving the problem without encryption (line 1). Then we start from an initial temperature

heat0 to iteratively search the design space until the number of iterations nIter exceeds a

preset limit maxIter or the temperature falls below a preset final temperature heatfinal.

During each iteration, we randomly explore changes to the current solution curSol by

considering either 1) selecting a message and changing its encryption status curSol.omi or

2) selecting a control task and changing its period curSol.T iτc (line 5 to 8). We evaluate

the cost of such changes tmpCost, which is based on the objective value obj, the penalty

proportional to the number of schedulability violations timeV io and to the number of

security violations secuV io (line 12). If the new cost is smaller than the previous minimum
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cost minCost, the new solution tmpSol will be accepted immediately; otherwise it will be

accepted with a transition probability P = expγ(curCost−tmpCost)/heat, where γ is a parameter

and heat is the current temperature. After each iteration, heat is lowered with a cooling

factor coolFactor.

We properly tune the values of parameters α1, α2, α3, δ, γ, and coolFactor to

improve the SA performance.

3.3.3 Automotive Case Study Results

To evaluate the effectiveness of our codesign methodology and its refinement in

automotive domain, we conducted experiments for an industrial automotive system example

and a set of synthetic examples. All experiments are run on an Intel Core i7 CPU with

12GB memory. The results are discussed in below.

Industrial Example

We first conduct a case study that is derived from a subsystem of an experimental

vehicle with active safety functions, similarly as the one used in [34, 163]. The vehicle

supports distributed functions with end-to-end computations collecting data from 360◦ sen-

sors and sending commands to the actuators, consisting of the throttle, brake, and steering

subsystems and of advanced HMI (Human-Machine Interface) devices. Examples of active

safety functions include Adaptive Cruise Control (ACC), Lane Departure Warning or Lane

Keeping Systems. These functions are deployed together in a car electronics system, shar-

ing the sensing and actuation layers and possibly also intermediate processing stages, such
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Algorithm 1: Simulated Annealing()

Input: task graph, task execution time, message length, message period, priority,

key length, encryption speed, bus speed

Output: sampling period
−→
Tτc , encryption assignment −→om, best control performance

found

1 curSol ← initial solution(); heat← heat0; nIter ← 0;

2 while nIter < maxIter ∧ heat > heatfinal do

3 nTry ← 0;

4 while nTry < maxTry do

5 nTry++; i← randIdx;

6 if move = randomMove1 then

7 tmpSol.omi
←!curSol.omi

;

8 end

9 else if move = randomMove2 then

10 tmpSol.T iτc ← curSol.(T iτc + δ(riτc − T
i
τc));

11 end

12 tmpCost← α1 · obj−1 + α2 · timeV io+ α3 · secuV io;

13 if tmpCost < minCost then

14 Accept tmpSol;

15 end

16 else if randNum < eγ(curCost−tmpCost)/heat then

17 Conditionally accept tmpSol;

18 end

19 end

20 heat← heat ∗ coolFactor; nIter + +;

21 end
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as the sensor fusion and object detection functions or the actuator arbitration layers. The

result is a complex graph of functions (programmed as tasks) with a high degree of com-

munication dependency and deadlines on selected pairs of endpoints. In this case study, we

select a subsystem of those functions, including their tasks and communication signals 8.

The example consists of 14 tasks (including 6 sensing tasks, 5 control tasks, and 4 actuation

tasks), 17 messages from sensing tasks to control tasks, and 13 messages from control tasks

to actuation tasks. As we explore the encryption of sensing messages, up to 17 additional

encryption tasks may be added. The structure of the example is shown in Fig. 3.23. The

task execution times are in the range of 0.2ms to 20ms, and the initial task periods are in

the range of 10ms to 100ms. The message lengths are in the range of 1 to 64 bits, and

the message periods are in the range of 10ms to 100ms. In our study, we derived system

dynamics from two automotive examples in the Simulink library (these systems and their

derivations are used for the control loops in the industrial example and the synthetic exam-

ples). The first system dynamics is linearized from Simulink Vehicle Suspension Model, and

the equation is shown in (3.47). The second dynamics is linearized from Simulink Engine

Speed model. The equation is shown in (3.48).

There are 5 control loops in the system (corresponding to 5 control tasks). The

system control performance, calculated as in Section 3.3.2, is in the range of [0, 1] (where

1 represents the best possible performance obtained without encryption). The α value in

Equation (3.27) is set as the Euler’s number e and β is set as 1.

8Addressing the entire system available requires models for more complex functional graph and multiple
computation units (planned in the future work).
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ẋ(t) =


0 1 0 0

−50.4 −4.671 7.105 ∗ 10−15 −0.1429

0 0 0 1

7.105 ∗ 10−15 −0.25 −81.67 −7.5

x(t)

+


0 0 0 0 0 0 0 0

−21.6 −1.929 24 2.143 −28.8 −2.743 −24 −2.286

0 0 0 0 0 0 0 0

42 3.75 −46.67 −4.167 −42 −4 −35 −3.333

u(t)

+ w(t) (3.47)

ẋ(t) =


−7.146 −0.02545 0 0

592.9 0.4642 −2.323 ∗ 106 0

0.2043 0.0001861 −400.1 −5.335 ∗ 104

0 0 1 0

x(t)

+


0 0.6771

−7.143 0

0 0

0 0

u(t) + w(t) (3.48)

C_Task5

m11

S4

m25

A4

S1

m0 m2m4m5 m7m8

S2

m1 m3m9

C_Task2

m14 m24

C_Task3

m6 m12m22

C_Task1

m10m15 m16 m23

A1

S3

m17 m18 m19 m20m21

S5

m26

A3

C_Task4

m13 m28 m29

S6

m27

A2

S Sensing Task C_Task Control Task A Actuation Task m Message

Figure 3.23: The modified automotive subsystem used in the case study.
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The attacker conducts eavesdropping on 17 sensing messages. The security level

of every control loop is measured by the complexity for the Kalman filter to retrieve infor-

mation, and normalized to be within [0, 1] as shown in Section 3.3.2, where 1 represents the

best possible security level, i.e., every sensing message of the control loop is encrypted. The

system security level is the minimum of all control loops’ security level, and is within the

range of [0, 1]. System security level reaches 1 when all 17 messages are encrypted, and is

0 when none is encrypted.

In our experiments, we explore the selection of messages for encryption and the

assignment of control sampling periods, to address security level together with control

performance while guaranteeing platform schedulability.

Trade off between control performance and system security level. As we explore the selec-

tion of sensing messages for encryption, the security levels of control loops are significantly

affected. For instance, Table 3.1 shows the security level of control loop 3 (the control

loop associated with control task C Task 3 in Fig. 3.23) when different number of sensing

messages is encrypted, as directly computed from Equation (3.30). The system dynamics

with regard to control loop 3 is shown in Equation (3.47). The measurement noise is set to

0.01 ∗ eye(4, 4).

We further conduct simulations to report the actual mean and variance of the

Kalman filter performance, i.e., the attacker performance, as a function of the number of

encrypted messages and key length (varied from 4 to 64). For each configuration for control

loop 3, we run 1000 simulations to compute the mean and the variance of the Kalman

filter performance, measured as the inverse of the trace of the Kalman covariance error.
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Figure 3.24: Mean and standard deviation of the Kalman filter performance under different
number of encrypted messages and different key lengths (simulations of control loop 3).

As shown in Fig. 3.24, the means are noted with markers while the standard deviations

(square roots of the variances) are shown as the vertical bars. We can see from the figure

that as the number of encrypted messages increases or the key length increases, the attacker

performance decreases, i.e., the control loop has a higher security level.

Table 3.1: Security level of control loop 3 with different number of encrypted messages.

# encr. msgs 0 1 2 3 4

security level 0 0.2902 0.4349 0.4371 1

On the other hand, encrypting and decrypting messages introduces significant tim-

ing overhead, which may cause the increase of control sampling periods due to schedulability

constraints and thus reduce the control performance. Based on our formulation introduced
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Figure 3.25: Pareto front between normalized control performance and security level for
the industrial example. An example feasible region denotes all feasible solutions under
requirement that control performance ≥ 0.3 and security level ≥ 0.3.

in Section 3.3.2 and using the simulated annealing algorithm shown in Section 3.3.2, we

are able to explore the design space while quantitatively analyzing the trade-offs between

control performance and security level. Fig. 3.25 shows the Pareto front between the two

normalized metrics for the automotive case study. The relative noise of each sensing mes-

sage (i.e., how much the measurement deviates from the true value) is set as 10% of the

operation point – the noise impact on security will be discussed later in this section.

From Fig. 3.25, we can clearly see the trade-offs between control performance and

security level. During design, constraints on these two metrics may be set according to

system requirements. The Pareto front generated by our approach will provide a feasible

region that is important for making decision choices. For instance, an example

feasible region is shown in the figure, under the requirements that the system control per-
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formance should be no less than 0.3 and the system security level should be no less than 0.3.

Without our codesign approach, it is impossible to identify the feasible designs under such

requirements. Instead, the designers might get a solution that violates security requirement

if they only optimize for control performance (point (a) in the figure), or a solution that

violates performance requirement if they simply choose to encrypt all messages (point (b)).

This shows the importance of our codesign framework.

Impact of sensing noise on system security level and the number of encrypted messages. In

our experiments, we observe that the noise on sensor measurements has a significant impact

on system security level. Intuitively, as the attacker tries to reconstruct the system state

from hacked sensing messages and un-encrypted messages, the lower the sensing noise, the

easier it is for the attacker (thus the system is less secure). To quantitatively analyze this

relation, we conduct a series of experiments: we set the sensing noise to different levels

(measured by the relative error of the sensing measurements with respect to the control

operating point (op)), and evaluate how many messages need to be encrypted for certain

system security level requirement, while maximizing control performance.

A heat map demonstrating the relation among noise level, system security level,

and the number of encrypted messages is shown in Fig. 3.26(a). We can clearly see the

trend that when the noise level increases, we need fewer messages to be encrypted to reach

certain security level. Fig 3.26(b) and Fig 3.26(c) further extract one horizontal line and

one vertical line from the heat map, respectively. For (b), we can see that as the security

level requirement increases, we need to encrypt more messages. More interestingly, for (c),

we can see that as the noise level increases, we may encrypt fewer messages.
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Figure 3.26: Impact of sensing noise on security level and encrypted messages for the
industrial example: (a) The number of messages encrypted under different noise levels and
different security requirements. (b) The noise level is fixed at 9%*op. (c) The security level
set as 0.3.
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Figure 3.27: Pareto front between normalized control performance and security level using
Observability Gramian and Kalman filter for the industrial example.

Security evaluation using Observability Gramian. As stated in Section 3.3.1, we may also

use the Observability Gramian to measure the complexity for an attacker to estimate the

system states, and further compute the system security level. In this experiment, we conduct

experiments with Observability Gramian as the security level measurement, and evaluate its

trade off with the control performance for the industrial example. Fig. 3.27 shows such trade

off, along with the trade off using Kalman filter (which is the same as the one from Fig. 3.25).

The two security level measurements, Observability Gramian and Kalman filter, are based

on different perspectives and consequently provide different values. Despite this, the two

Pareto fronts show similar trade off trend between control performance and security level.

Furthermore, for automotive systems with measurement noise, we think Kalman filter based

approach is a more suitable measurement with its consideration of measurement noises.
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Synthetic Examples

For more comprehensive study of our codesign approach, we conduct a set of

experiments with synthetic examples that have varying number of tasks, messages, execution

times and periods.

We randomly generate task graphs that have the same structure as the system

model in Fig. 3.19. Specifically, we first vary the number of control tasks from 5 to 25,

and then randomly generate a number of sensing tasks and actuation tasks as well as their

connections with the control tasks (the numbers of sensing tasks and actuation tasks are

proportional to the number of control tasks in average). The period of each task is randomly

generated between 10ms to 100ms, and the execution time is randomly generated within the

period. When randomly generating the task periods and execution times, we keep the total

utilization of the computation unit around 60% (before adding the decryption tasks). Each

message may have multiple successive control tasks, and each message length is randomly

generated between 1 to 32 bits. We set the message transmission speed at 1000 bit/ms, and

message decryption speed at 250 bit/ms.

Similarly as for the industrial example, we evaluate the trade off between con-

trol performance and security level in codesign for various synthetic examples. Fig. 3.28

shows the Pareto fronts for synthetic examples with different number of control tasks, using

Kalman filter as the security level measurement. Every point in this figure is the aver-

age of 10 randomly generated examples. We can see that the trade off between control

performance and security level is similar to the industrial example. Furthermore, as the

number of control tasks increases, the control performance decreases faster with respect to
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Figure 3.28: Pareto front between normalized control performance and security level for
synthetic examples with different number of control tasks (using Kalman filter based security
level measurement).

increasing security level (i.e., the Pareto front curve is lower as shown in the figure). This is

because to achieve the same system security level, more messages need to be encrypted for

a larger task set. This leads to more decryption tasks added to the computation unit, and

consequently harder scheduling (even for similar level of utilization), and eventually longer

periods for control tasks and worse control performance.

We also conduct experiments using Observability Gramian as the security level

measurement for the synthetic examples. The results in Fig. 3.29 demonstrate the similar

trend as using Kalman filter.

The runtime of our algorithm depends on the problem size (in particular the

number of control tasks) and the tuning parameters in simulated annealing. In Table 3.2, we
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Figure 3.29: Pareto front between normalized control performance and security level for
synthetic examples with different number of control tasks (using Observability Gramian
based security level measurement).

record the runtime of our algorithm for the synthetic examples under different sizes of control

task set and the same tuning parameters. The time we record is the average time for running

the algorithm once, i.e., for obtaining one point in Fig. 3.28 and Fig. 3.29. As the number

of control tasks increases, we let the numbers of messages, sensing tasks and actuation

tasks increase proportionally. Note that the Observability Gramian and Kalman filter

performance for each control loop under different number of encrypted sensing messages

are calculated and stored in arrays before running the simulated annealing algorithm. The

calculation time of both metrics is small compared to simulated annealing. Therefore, we

only record the average runtime of the simulated annealing algorithm, which is almost the

same for the two metrics.
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Table 3.2: Algorithm runtime of simulated annealing under different number of control
tasks

control tasks # 5 10 15 20 25

runtime (s) 43 126 181 482 745

3.4 Summary

We use three applications as case studies to demonstrate the effectiveness of CON-

VINCE to address the codesign of application and software layers.

The case study of CACC demonstrates the effectiveness of CONVINCE in analyz-

ing the impact of security attacks in vehicular communication and ultimately the application

performance.

The case study of the intelligent intersection management shows the quantitative

analysis of communication delays in the framework. It presents a delay-tolerant intersection

management protocol, and the modeling, simulating and verifying the safety, liveness and

performance of the proposed protocol. Experiments demonstrate the effectiveness of both

the proposed protocol and the framework.

By utilizing the framework, we identify the key interface variables in cyber-physical

systems among security, performance and schedulability, in particular the sampling periods

and the selection of sensing messages for encryption. We quantitatively model the relation

between message encryption and system security level, and model the impact of message

encryption and sampling periods on control performance and platform schedulability. The

general framework is refined to automotive systems, and a simulated annealing algorithm is

developed for exploring the design space based on the refined codesign formulation. An au-

tomotive case study and synthetic examples demonstrate the effectiveness of our approach.
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Chapter 4

Cross-Layer Design of Software

and Hardware Layers

4.1 Fault-Tolerance-Aware Mapping

As described in Section 1.2 in Chapter 1, we use the same categorization of online

error detection techniques as the one in [51], namely embedded error detection (EED) and

explicit output comparison (EOC). EED refers to the broad collection of error detection

techniques that do not rely on redundant execution. EED typically has a performance

overhead which is reflected as elongated execution time. EOC can take the form of the classic

triple modular redundancy (TMR) architecture, or a scaled down version that executes the

same program/task twice, and rely on re-executions in the event of an output mismatch [51].

Applying EOC or EED techniques and corresponding task re-executions improves

the system’s capability to tolerate soft errors, but also introduces significant timing over-
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head and may be detrimental to meeting real-time constraints. It is therefore crucial to

quantitatively model the impact of various soft error tolerance mechanisms on

timing constraints to ensure system safety. In a real-time system, some critical tasks

(e.g., feedback control tasks directly related to safety) may require EOC techniques for their

higher error coverage, while other less critical tasks (e.g., multimedia tasks in a vehicle) may

choose to employ EOC or EED or neither to trade off between error coverage and timing

overhead. Quantitative analysis is needed to ensure that after applying error detection and

recovery mechanisms, the tasks and their copies and re-executions can be completed within

the original task deadlines, especially for critical tasks (deadlines may be relaxed for less

critical tasks [83, 82]). Based on such analysis, task scheduling and allocation and in some

cases the choice of architecture platform may be explored to find the feasible solutions that

meet both timing and fault tolerance requirements (e.g., some tasks may require EOC).

Furthermore, optimization may be conducted to select the proper error tolerance mecha-

nism for each of those tasks that have multiple options (and are not enforced to select one

of them), to maximize error coverage at the system level while meeting all requirements.

In comparison to previous works, our approach formulates the impact on system

timing for different error tolerance mechanisms including both EOC and EED based tech-

niques, and optimizes the task-level selections of tolerance mechanisms, for various fault

models and task execution models on representative single-core, multicore and distributed

platforms.
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4.1.1 System Model

Function, Architecture and Timing

A real-time embedded application is captured by a functional model similarly as

in [34, 163]. The functional model is represented by a task graph G = (T ,S), where

T = {τ1, τ2, . . . , τn} is a set of tasks and S = {s1, s2, . . . , sm} is a set of signals exchanged

among tasks. Each task is activated repeatedly with a period Tτi , and each signal is activated

with a period Tsi . A path p is an ordered interleaving sequence of tasks and signals that

contribute to a function (e.g., from the collection of sensor data at the first task to the

actuation at the last task), denoted as p = [τk1 , sk1 , τk2 , sk2 , . . . , skp−1 , τkp ].

During implementation, the embedded application may be mapped onto single-

core, multicore, or distributed platforms. In this work, we first address platforms with

one single-core CPU. The tasks running on the single core are scheduled with preemptions

according to static priorities, which is common in real-time systems supported by standards

such as OSEK [113]. The worst case execution time (WCET) of task τi is denoted by Cτi .

The analysis for single-core platform sets the foundation of our work by modeling the

timing impact of error tolerance mechanisms and exploring task-level mechanism selection

and priority assignment.

We then address the platforms with one multicore CPU, and consider two task

execution models. In task duplication model, each task is duplicated on two homogeneous

cores and the two copies are executed at the same pace. In task concentration model, each

task and its re-executions are allocated to the same core. The task scheduling on each core

is independent in this case (i.e., partitioned scheduling model). We explore the allocation
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of tasks to cores, together with error tolerance mechanism selection and priority assignment

for each task.

Finally, we consider the problem for the distributed platforms in which a set of

single-core CPUs are connected through a single communication bus. In particular, we

address the widely-used CAN (Controller Area Network) bus protocol, which features non-

preemptive static priority based message scheduling. We explore the allocation of tasks to

CPUs, error tolerance mechanisms for tasks, priority assignment for tasks on the same CPU

and for messages on the CAN bus.

The distributed platform case shares some similarities with the multicore case

but also has two major differences: First, while the communication within a CPU is con-

ducted through shared memory, the communication on the distributed platform is carried

out through bus messages (by mapping signals to messages) and requires explicit modeling

of message delays that are affected by message priority assignment. Second, the task du-

plication model for the multicore case is not considered for the distributed platform case

because the CPUs are assumed as asynchronous. Our formulations and algorithms may

also be extended to address the distributed platforms in which a set of multicore CPUs are

connected through one or multiple buses, with a more complex communication model.

Task timing model. During task execution, timing constraints enforce that the tasks should

be completed before their deadlines (assumed as task periods in our experiments). The

worst-case response time rτi represents the longest time it may take to complete task τi,

and can be formulated in Equation (4.1), similarly as in [60, 163]. It includes the WCET

Cτi and the time it takes to wait for the preemptions from higher priority tasks on the same
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core. hp(τi) denotes the set of higher priority tasks which can preempt the execution of

lower priority tasks.

rτi = Cτi +
∑

τj∈hp(τi)

d rτi
Tτj
eCτj (4.1)

Message timing model. For the distributed platform case only, we need to consider message

delays. As stated, we assume non-preemptive scheduling based on static priorities for

messages transmitted over a CAN bus. In this work, we assume each signal is mapped

to is own message, so in the following sections we use si to denote both the signal si and

its corresponding message. The worst-case response time rsi of message si is shown in

Equation (4.2), where Csi denotes the worst-case transmission time of message si and Bmax

denotes the maximum blocking time (approximated as the longest transmission time of any

message in the system). The summation term denotes the time waiting for higher priority

messages before transmission (not during transmission as the bus is non-preemptive).

rsi = Csi +Bmax +
∑

sj∈hp(si)

drsi − Csi
Tsj

eCsj (4.2)

End-to-end path latency model. Deadlines may be imposed on selected paths as application

requirements. The worst-case end-to-end timing latency incurred when traveling a path p is

denoted as lp, which represents the largest possible time interval for an input value change

at the first task to be propagated and cause an output value change at the last task. A

deadline Dp may be imposed as the upper bound of lp. As shown below in Equation (4.3),

the computation of lp includes the worst-case response times and the periods of all the tasks

and signals on the path. The periods need to be included because of the asynchronous

sampling nature of the communication data (more details can be found in [34]). Note that
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for communicating tasks with harmonic periods on the same CPU, the analysis may be less

pessimistic if we assume the designers can select the relative activation phases of tasks, as

explained in [39, 34]1.

lp =
∑
τi∈p

(rτi + Tτi) +
∑
si∈p

(rsi + Tsi) (4.3)

For single-core and multicore platforms, signals are exchanged through shared

memory and the worst-case response times rsi correspond to memory access latencies (mod-

eled as a small constant in this work). For distributed platforms, the signals between tasks

on the same CPU are also exchanged through shared memory and associated with memory

access latencies. The signals between tasks on different CPUs are transmitted on the bus

through messages, and their worst case response times rsi are modeled as in Equation (4.2).

Error Model and Detection

We use K to denote the number of errors that occur within the hyperperiod Thyper

of the task set, which is the least common multiple of the task periods in the task set. The

goal of our formulations is to 1) check whether certain error tolerance mechanisms can be

applied to a set of tasks without violating timing constraints in the existence of K errors

during hyperperiod, and 2) explore task scheduling and allocation as well as error tolerance

mechanisms for some tasks (for which multiple options exist) to find feasible solutions and

in some cases optimize the coverage of these K errors (the error coverage is defined later).

We consider two error detection mechanisms, EED and EOC. For task τi, we

use ατi to denote the error detection rate (probability) when EED is used, and use βτi to

1In those cases, depending on whether it is oversampling or undersampling, some periods may not need
to be included. For simplicity, we did not consider those in this work.
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denote the error detection rate when EOC is used. For EED, even when the state-of-the-

art CFC techniques can detect almost all crashes and control flow violations, these errors

are only around 70% of the total errors that could occur during execution [119, 149]. In

other words, EED cannot guarantee the detection of all possible errors. EOC can largely

eliminate this concern and achieve close to 100% detection rate in many cases, but it will

incur at least 100% performance overhead (when using temporal redundancy) or resource

overhead (when using spatial redundancy), plus the additional time to compare the outputs

as shown in [51]. In general purpose computing, EOC may be realized through redundant

multithreading [150, 52] with less performance penalty, however such techniques are hard

to adopt for most embedded architectures and hence are not considered in our model.

When exploring the usage of EED and EOC for real-time system in this work,

we assume that: 1) The necessary support for EED and EOC are available, including

source code modifications, compiler improvements and in some cases additional hardware

(e.g., lightweight checkers/comparators). 2) The inputs of each task instance are stored for

redundant execution and potential re-executions within the task period. Two executions of

the same task instance will produce the same outputs if no error occurs in either of them.

Error Coverage and its Approximation

To measure the overall error resiliency of a designed real-time system that employs

EED or EOC or no detection mechanism for each of its tasks, we define a system-level error

coverage metric as: the probability that all errors are either 1) detected and recovered within

the hyperperiod by EED or EOC while all timing constraints are met, or 2) regarded as

covered when they occur during the idle time. When the system is idle (i.e., no task is
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running on the core), it is still susceptible to cosmic ray strikes and memory errors etc., but

we assume the probability that the program outputs are affected is negligible2. In other

words, the errors occurred during idle time are assumed as “covered”.

The precise evaluation of the system error coverage metric requires detailed in-

formation of the error occurrence profile (i.e., types of errors, when the errors occur and

on which cores the errors occur) and detailed analysis of the timing schedulability, and in

general cannot be captured in closed-form formulation. Therefore, to explore the design

space in our work, we derive an approximated error coverage formulation as the optimiza-

tion objective. Initial approximation is introduced in below, and further approximation to

linear formulations is introduced later for corresponding problems.

First, within the hyperperiod, we let teoc, teed and tnone denote the accumulative

time spent (including re-executions) by tasks using EOC, EED and no error detection,

respectively. tidle denotes the idle time. Thyper = teoc + teed + tnone + tidle. Assuming K soft

errors of arbitrary types occur within the hyperperiod following uniform distribution on a

single-core platform and assuming the timing constraints can be met, the error coverage P

can be approximated as:

P ≈
K∑
i=0

i∑
j=0

(
K

i

)(
i

j

)
(
α · teed
Thyper

)j(
β · teoc
Thyper

)i−j(
tidle
Thyper

)K−i (4.4)

where α and β are the average probabilities that an error can be detected by EED and by

EOC, respectively. The formulation essentially calculates the probability that all K errors

are either detected and recovered by EED or EOC, or occurred during idle time. Note that

the errors occurred during idle time are assumed as “covered”.

2Memory is typically well protected. Our formulation can also be extended to address idle-time errors.
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Equation (4.4) needs to be further approximated and adjusted (for multicore cases)

in the following sections to linear formulations for our MILP-based exploration and opti-

mization. Then, after the solutions are identified in solving the MILP formulations, we

use our Monte Carlo based simulation engine introduced in Section 4.1.5 to more accu-

rately evaluate their system error coverage. The simulator addresses the factors that are

not considered in our approximated objective, including the timing constraints, the task

re-execution time, and the existence of multiple errors. In Section 4.1.6, our experiments

demonstrate that our work provides an effective approximation as optimization objective.

4.1.2 Single-core CPU Platform

We use Cdecτi to denote the execution time with detection for task τi, which

includes WCET Cτi and the overhead for EED or EOC error detection but not the error

recovery time. On a single-core CPU, EOC needs to run a task twice to determine whether

any error has occurred – if the outputs of the two runs are different, error(s) are assumed

to have occurred. Therefore when EOC is used for τi, Cdecτi = 2Cτi + Λτi , where Λτi is the

time for comparing the outputs of the two runs and typically much smaller than Cτi . EED

only needs to run a task once with built-in error detection techniques. Therefore when EED

is used for τi, Cdecτi = Cτi + ∆Cτi , where ∆Cτi is the timing overhead for EED detection.

Crecτi denotes the error recovery time for τi. On a single-core CPU, we assume

that a re-execution of τi is scheduled immediately after an error(s) is detected. When EED

is used for τi, Crecτi = Cτi + ∆Cτi . When EOC is used for τi, Crecτi = Cτi if there is only

one error in the system, and Crecτi = Cτi + Λτi if there are multiple errors.
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Illustrating Example
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Figure 4.1: A fault-tolerant design example for single-core CPU platform: (a) only EOC is
used, (b) only EED is used, (c) EOC/EED selection.

Fig. 4.1 shows two tasks running on a single-core CPU. The task characteristics

are shown at the top, including the original WCET C, the task period T , the execution time

with detection Cdec, and the error recovery time Crec. We assume EED error detection rate

ατi = 70% and EOC detection rate βτi = 100% (The EOC error detection rate depends
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on its implementation. If all output bits are compared, EOC has near perfect (100%)

detection rate as assumed in [51]. We use 100% for experiments but our formulations are

general). Task1 has higher priority than Task2. We assume one soft error of arbitrary type

occurs at an arbitrary time within the hyperperiod. For simplicity, we consider a solution

as infeasible if timing constraints are violated. For feasible solutions, we compare them

using the approximated error coverage in Equation (4.4) (as stated before, our final error

coverage evaluation of the solutions incorporate timing violations through simulations).

In (a), we deploy EOC for both tasks for higher error coverage, however this

solution is infeasible since it causes deadline miss when an error occurs in Task2. To satisfy

timing constraints, solution (b) weakens the error detection strength and deploys EED for

both tasks. The approximated error coverage of this solution is 73% based on Equation (4.4)

and the schedule can tolerate any single detected error. Solution (c) uses a hybrid solution:

EED for Task1 and EOC for Task2. It can still tolerate any single detected error, while

achieving a higher error coverage of 91%.

One-Error Formulation

The illustrating example above demonstrates the importance to quantitatively

model and explore the selection between EOC and EED. In below, we present an MILP

formulation to explore the EOC/EED selection and task scheduling (through priority as-

signment) on a single-core CPU platform, with respect to an approximated error coverage

objective and timing constraints. We first consider the case in which one error occurs

within the hyperperiod (i.e., K = 1), and explore designs that will guarantee to satisfy

timing constraints when the number of errors within hyperperiod is not more than 1.
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We use Boolean variables ρτi and oτi to represent the selection of error detection

mechanism for task τi. ρτi is 1 if either EOC or EED is used for τi, and 0 if neither is used.

oτi is 1 if EOC is chosen, and 0 if EED is chosen. We use pτi,τj to denote whether τj has

higher priority than τi (1 if τj has higher priority and 0 otherwise). The MILP formulation

includes the following aspects.

Execution time with detection and Error recovery time. As derived before, the execution

time with detection Cdecτi is 2Cτi + Λτi for EOC, Cτi + ∆Cτi for EED, and Cτi if nei-

ther is chosen. Incorporating the Boolean variables, we have the following equation for

Cdecτi .

Cdecτi = Cτi + [oτi(Cτi + Λτi) + (1− oτi)∆Cτi ] ρτi (4.5)

Similarly, the equation below models error recovery time.

Crecτi = (Cτi + (1− oτi)∆Cτi)ρτi (4.6)

The nonlinear binary multiplication oτiρτi in Equation (4.5) and (4.6) can be linearized by

introducing a new variable bτi with constraints ρτi + oτi − 1 ≤ bτi , bτi ≤ ρτi and bτi ≤ oτi .

Worst-case fault-tolerant task response time. A key aspect in our formulation is to extend

the worst-case response time formulation in Equation (4.1) to include the consideration of

fault-tolerant techniques. We use rτi,τj to denote the worst-case response time for task τi

if an error occurs during task τj ’s execution and leads to its re-execution. If τj has higher

priority than τi, rτi,τj will be affected by τj ’s recovery time Crecτj , as shown below.

rτi,τj = Cdecτi + Crecτjpτi,τj +
∑
τk∈T
∧τi 6=τk

d
rτi,τj
Tτk
eCdecτkpτi,τk
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Then at the system level, the worst-case fault-tolerant response time rτi is determined by

the higher priority task that has the largest Crecτj , as shown below in Equation (4.7).

rτi = Cdecτi +max
τj∈T

{
Crecτjpτi,τj

}
+
∑
τk∈T
∧τi 6=τk

d rτi
Tτk
eCdecτkpτi,τk

(4.7)

The max function can be linearized with a new variable m and a set of constraints ∀τj ,m ≥

Crecτjpτi,τj . The ceiling function drτi/Tτke can be linearized with an integer variable

xτi,τk and constraint 0 ≤ xτi,τk − rτi/Tτk < 1. Then integer-binary multiplication such

as xτi,τkpτi,τk can be linearized with a new variable yτi,τk using the “big M” formulation as

in [163]: xτi,τk −M(1− pτi,τk) ≤ yτi,τk , yτi,τk ≤ xτi,τk , and yτi,τk ≤M × pτi,τk , where M is a

very large constant.

The timing constraints enforce that the worst-case response time of each task

should be within its period, and the end-to-end latency of each selected path (whose com-

putation follows Equation (4.3)) should be within its deadline.

∀τi rτi ≤ Tτi (4.8)

∀p lp ≤ Dp (4.9)

Optimization objective. To optimize the system error coverage, we further approximate the

Equation (4.4) defined in Section 4.1.1 with a linear formulation in below by 1) setting

K = 1, and 2) assuming total task re-execution time is negligible compared to total time

for regular executions (this is typically true when K is small).
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P ≈
K∑
i=0

i∑
j=0

(
K

i

)(
i

j

)
(
α · teed
Thyper

)j(
β · teoc
Thyper

)i−j(
tidle
Thyper

)K−i

=
α · teed + β · teoc + tidle

Thyper

= 1− (1− α)teed + (1− β)teoc + tnone
Thyper

≈ 1−
∑

τi∈T (1− ετi)Cdecτi(Thyper/Tτi)
Thyper

= 1−
∑
τi∈T

(1− ετi)
Cdecτi
Tτi

(4.10)

where ετi is the error detection rate for task τi that depends on the choice of error detection

mechanisms:

ετi =



0 no detection is used

ατi EED is used

βτi EOC is used

(4.11)

Note that from line 1 to line 2 in the derivation, we set K = 1. From line 2 to line 3, we

use Thyper = teoc + teed + tnone + tidle. From line 3 to line 4, we refine the α and β at the

system level to ετi at the task level, and use the assumption that task re-execution time is

negligible.

We use Equation (4.10) as the objective function to optimize system error coverage,

by exploring task scheduling and error detection mechanism selection among all feasible

solutions that satisfy timing and fault tolerance requirements.
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K-Error Formulation (K > 1)

For single-core CPU platforms, K-error formulation (K > 1) is a simple extension

of the one-error case. We define the following formulation to explore designs that guarantee

to meet the timing constraints when the number of errors within hyperperiod is not more

than K.

Since the K errors can occur repeatedly on one task, the error recovery time

Crecτi should be modified as below in Equation (4.12) (for those tasks that do not use any

fault-tolerant technique, the recovery time is still 0).

Crecτi = (Cτi + oτiΛτi + (1− oτi)∆Cτi)ρτi (4.12)

The worst-case fault-tolerant response time for task τi happens when all the K errors are

located at the higher priority task that has the longest recovery time. So the worst-case

fault-tolerant task response time for K errors is formulated in Equation (4.13).

rτi = Cdecτi +Kmax
τj∈T

{
Crecτjpτi,τj

}
+
∑
τk∈T
∧τi 6=τk

d rτi
Tτk
eCdecτkpτi,τk

(4.13)

We still use the same optimization objective as in the one-error case for approxi-

mation in the multi-error case, based on the observation that in practice K is usually very

small during the hyperperiod and the amount of time spent on re-execution is also small

compared to regular executions. Other constraints and their linearization are similar to the

one-error case.
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4.1.3 Multicore CPU Platform

We consider two task execution models for a single homogeneous multicore CPU

platform. In task duplication model, two copies of the same task are allocated onto two

homogeneous cores and executed at the same pace, as a form of spatial redundancy. If

re-execution is needed for error recovery, both cores need to rerun the same task to ensure

their timing are exactly the same. For this model, we only address dual-core CPU and

single error within the hyperperiod in this work. In task concentration model, each task

and all its re-executions can only happen at the same core. For this model, we address any

number of cores and any number of errors within the hyperperiod.

Note that memory contention may occur when multiple cores access the shared

memory at the same time, and the worst case execution time of the interfered tasks may

be elongated (compared with single-core case) with memory access delays [157, 81]. In the

following, we still use Cτi to denote the worst case execution time of task τi and assume the

consideration of potential memory access delays is included (e.g., by using the techniques

from [157, 81]).

Task Duplication Model under One Error

In the task duplication model, two copies of the same task are allocated onto two

cores and executed at the same pace, as a form of spatial redundancy. If re-execution is

needed for error recovery, both cores need to rerun the same task to ensure their tim-

ing are exactly the same. For this model, we only address dual-core CPU and single

error within the hyperperiod in this work. Fig. 4.2 shows an example of task duplica-
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tion model on a dual-core CPU platform where the two cores always execute the copies

of the same task at the same pace. For EOC, the execution time with detection is re-

duced because of the spatial redundancy. For EED, no recovery time is needed since at

least one of the two copies will produce correct results under a single error model3.
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Comparison

Task with EOC

Re-execution

Output
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error

Figure 4.2: Task duplication model on a dual-core CPU

Execution time with detection and Error recovery time. Because of the spatial redundancy,

the execution time with detection for EOC is Cτi + Λτi . The execution time with detection

for EED is Cτi + ∆Cτi + Γτi , where Γτi is the consolidation time similarly as in [51]. The

MILP formulation with the selection Boolean variable is as follows.

Cdecτi = Cτi + (oτiΛτi + (1− oτi)(∆Cτi + Γτi))ρτi (4.14)

3We may also compare the outputs of two EED copies as in EOC to increase the error detection coverage,
but this may lead to re-execution if the correct copy cannot be identified. We plan to model this hybrid
technique in future work.
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The error recovery time for EOC is the original WCET, while the error recovery time for

EED is 0. The MILP formulation is as follows.

Crecτi = Cτioτiρτi (4.15)

The linearization and other parts of the MILP formulation including the optimization ob-

jective are similar to the single-core CPU case in Section 4.1.2. The formulation explores

designs that guarantee timing feasibility when the number of errors across two cores within

hyperperiod is not more than 1.

Task Concentration Model

In the task concentration model, each task and its re-executions can only happen

on the same core. Fig. 4.3 shows an example of task concentration model on a dual-core

CPU platform. For this model, we address any number of cores and any number of K

errors within the hyperperiod. We explore static allocation of tasks to cores together with

error detection mechanism selection and priority assignment, to optimize error coverage

while guaranteeing timing feasibility when the number of errors across all cores within

hyperperiod is within K.

Task allocation. We use Φ = {φ1, φ2, . . . , φn} to represent a set of homogeneous cores (our

formulation can be easily extended to heterogeneous cores for which we use Cτi,φj to denote

the core specific WCET). Boolean variable aτi,φk is 1 if task τi is allocated on core φk, and

0 otherwise. Boolean variable hτi,τj ,φk is 1 if task τi and τj are allocated on the same core

φk, and 0 otherwise. Constraint (4.16) ensures that each task is only allocated onto one
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Figure 4.3: Task concentration model on a dual-core CPU

core. Constraints (4.17) to (4.19) enforce the value for hτi,τj ,φk .

∑
φk∈Φ

aτi,φk = 1 (4.16)

aτi,φk + aτj ,φk − 1 ≤ hτi,τj ,φk (4.17)

hτi,τj ,φk ≤ aτi,φk (4.18)

hτi,τj ,φk ≤ aτj ,φk (4.19)

Worst-case fault-tolerant task response time. The modeling of Cdecτi and Crecτi are the

same as the single-core case. The worst-case response time for task τi is affected by the

higher priority tasks on the same core, which can be modeled with added allocation variables

as below.
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rτi =
∑
φm∈Φ

aτi,φmCdecτi+

+Kmax
τj∈T
{
∑
φm∈Φ

Crecτjpτi,τjhτi,τj ,φm}

+
∑
τk∈T
∧τi 6=τk

∑
φm∈Φ

d rτi
Tτk
eCdecτkpτi,τkhτi,τk,φm (4.20)

Optimization objective. In Section 4.1.2, Equation (4.10) is derived for single-core platforms

as optimization objective. For multicore platforms, assuming K = 1 (one error for the

entire system), similar derivation process results in the following equation where N is the

number of cores.

P ≈ 1− 1

N

∑
τi∈T

(1− ετi)
Cdecτi
Tτi

(4.21)

We use Equation (4.21) as the optimization objective. Other constraints are similar to the

single-core case.

4.1.4 Distributed Platform

The formulation of a distributed platform with single-core CPUs communicating

through a single CAN bus can leverage the formulation from the task concentration model

in Section 4.1.3. The main difference is the added consideration of message delays on the

bus.

Task allocation. We use E = {e1, e2, . . . , en} to represent the set of CPUs. Boolean variable

aτi,ek is 1 if task τi is allocated on CPU ek, and 0 otherwise. Boolean variable hτi,τj ,ek is 1

if task τi and τj are both allocated on CPU ek, and 0 otherwise. The following formulation

is similar to the case in Section 4.1.3.
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∑
ek∈E

aτi,ek = 1 (4.22)

aτi,ek + aτj ,ek − 1 ≤ hτi,τj ,ek (4.23)

hτi,τj ,ek ≤ aτi,ek (4.24)

hτi,τj ,ek ≤ aτj ,ek (4.25)

Worst-case fault-tolerant task response time. The worst-case fault-tolerant response time

for task τi is modeled as follows.

rτi =
∑
em∈E

aτi,emCdecτi

+Kmax
τj∈T
{
∑
em∈E

Crecτjpτi,τjhτi,τj ,em}

+
∑
τk∈T
∧τi 6=τk

∑
em∈E
d rτi
Tτk
eCdecτkpτi,τkhτi,τk,em

(4.26)

Worst-case signal response time. First, we use Boolean variable gsi as below to denote

whether signal si is a global signal, i.e., a signal transmitted on the bus.

gsi = 1−
∑
em∈E

hsrc(si),dst(si),em (4.27)

The worst-case response time of a signal rsi is modeled in below: If si is a global

signal, it is transmitted as a CAN bus message and its response time is modeled following

Equation (4.2) in Section 4.1.1; otherwise, it is transmitted in local memory and its response

time is approximated with a small constant latency Clocal.

rsi = gsi(Csi +Bmax+
∑
sk∈S

Cskpsi,skd
rsi−Csi
Tsk

e)

+ (1− gsi)Clocal (4.28)
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In Equation (4.28), Csi denotes the worst-case transmission time of a CAN bus

message and can be computed based on the length of its payload and the bus speed as

follows, where βsi is the number of bits in the data payload and speed is the bus speed

(CAN message has an overhead of 47 bits).

Csi =
βsi + 47

speed
(4.29)

The end-to-end latency formulation follows Equation (4.3), with the considera-

tion of messages. The objective function is similar to the task concentration model in

Section 4.1.3.

4.1.5 Simulator for Evaluating Error Coverage

In order to accurately evaluate the error coverage of system solutions (Equa-

tion (4.10) and (4.21) used in our MILP formulations are only approximations), we build

a Monte Carlo based error injection and runtime simulation engine. The simulation engine

randomly injects soft errors, simulates the task executions and re-executions based on error

occurrences and types, and checks whether timing constraints are violated or if any error

escaped detection, and records the error detection and recovery statistics. The error cover-

age of a system solution is measured by the percentage of simulation runs during which all

generated errors are either detected and recovered by EOC or EED or occurred during idle

time, and all timing constraints are met.

The pseudo code of the simulator implementation is shown in Algorithm 2. We

discretize the system and assume the tasks are activated at the integer multiplies of the
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Algorithm 2: Simulation()

initialize system();

for t←0; t < Thyper; t← t+step do

update error() based on preset distribution;

update running tasks();

update ready tasks();

check timing violations();

end

Algorithm 3: update running tasks()

if runtask 6= ∅ then

if Cleftruntask = 0 then

if error markruntask 6= 0 then

check error types; record failure if error has escaped;

end

end

else

Cleftruntask ← Cleftruntask − step;

end

end
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Algorithm 4: update ready tasks()

sort all τi activated at time t by priority;

enqueue these τi to ready queue[];

if Preadytask > Pruntask then

enqueue runtask to ready queue[] by priority;

runtask ← readytask ;

end

else if Cleftruntask = 0 and error markruntask = 0 then

if ready queue[] 6= ∅ then

runtask ← readytask ;

end

else

runtask ← ∅ (CPU is free) ;

end

end
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smallest time step. The sub-routine udpate error() injects random errors and updates the

error information for affected tasks. Sub-routine update running task() checks whether the

currently running task (if any) is completed and whether a re-execution is needed, based on

the error tolerance mechanism for the task and the error types – EOC may cover all error

types and EED can only cover some of them (the percentage of injected errors that can

be covered by EED simulates the EED detection rate). In our experiments we only need

to use two error types, which can be easily extended to simulate other cases such as those

with less than 100% EOC coverage. Cleftruntask denotes how much time is left for the

currently running task instance (either a regular execution or a re-execution). Sub-routine

update ready tasks() updates the list of tasks that are activated and checks whether there

is an preemption. Sub-routine check timing violations() checks whether timing constraints

are violated, and stops the simulation and records failure if they are.

4.1.6 Experiments

We apply our approach to an industrial case study and a set of synthetic exam-

ples. The industrial case study is derived from a subsystem of an experimental vehicle that

incorporates advanced active safety functions (similar to the system in [163]). The vehi-

cle supports distributed functions with end-to-end computations collecting data from 360◦

sensors to the actuators, consisting of the throttle, brake and steering subsystems and of

advanced HMI (Human-Machine Interface) devices. The functional model of the applica-

tion includes 41 tasks with given periods and WCETs. The tasks communicate through 81

signals, and there are 171 paths with deadlines ranging from 100ms to 300ms. The synthetic

examples are generated by the TGFF tool [40], with 30 to 50 tasks, and are assigned with
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random periods and WCETs. Based on the task graph, we sort end-to-end paths and assign

each path a reasonable deadline.

Feasibility analysis and design exploration for industrial case study

In the industrial example, we demonstrate the effectiveness of our formulations in

evaluating the feasibility and error coverage of the system under various architecture options

and timing constraints. Among the 41 tasks in the industry example, 16 critical ones are

assumed to require EOC for higher soft error coverage, and others may use either EOC or

EED.

Multicore platforms. First, we use the multicore task concentration formulation introduced

in Section 4.1.3 to analyze whether feasible solutions exist to satisfy the above fault tolerance

requirements while also meeting the timing constraints, for platform configurations with

various number of cores, and optimize the system error coverage if feasible solutions exist.

The EED overhead is set as 30% and the EED error detection rate is 70%, and the EOC error

detection rate is assumed as 100% (these numbers are also used for synthetic examples).

First, we find that a minimum of 5 cores are required to meet the fault tolerance

requirements without violating the timing constraints, by using our formulation to explore

task allocation and scheduling while enforcing EOC detection for the 16 critical tasks. We

then evaluate how much the error coverage can be improved by increasing the number

of cores (which enables applying EOC or EED to more tasks), with results based on 1000

simulation runs shown in Table 4.1. During each simulation run, we assume exactly one error

occurs within the system hyperperiod and generate the error following uniform distribution
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Core # ≤ 4 5 6 7 8 9

Coverage infeasible 0.614 0.774 0.876 0.959 0.961

Table 4.1: System error coverage under different number of cores for the industrial example

within the hyperperiod. We record the system error coverage as the percentage of simulation

runs during which all errors are covered and all timing requirements are met.

We can see that the error coverage improvement slows down when the number of

cores reaches 8. Information in Table 4.1, which can only be obtained through quantitative

modeling and exploration as in our formulations, will facilitate designers analyze system

feasibility and assess potential fault tolerance level for various solutions.

We then explore the quantitative impact of using a faster CPU on system feasibility

and error coverage. Table 4.2 shows the results of feasibility and error coverage analysis

when all cores of the CPU speed up by a factor between 1.2 and 2 (modeled by reducing

the task WCETs by the same factor). All other assumptions are the same as before.

We can see that for each CPU speed, having more cores leads to better error

coverage and it saturates at certain point. For the same number of cores, having faster

CPUs leads to better fault coverage in general and the improvement varies. These trends

are not surprising but the quantitative differences may facilitate decisions at early design

stages.

Distributed platforms. We also map the industrial example onto a distributed automotive

platform with several single-core ECUs (Electronic Control Units) connected with a CAN
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Core # ≤ 2 3 4 5 6 7 8

1.2×speed infeasible 0.550 0.769 0.899 0.964 0.984

1.4×speed infeasible 0.609 0.896 1.000 1.000 1.000

1.6×speed infeasible 0.597 0.804 0.963 1.000 1.000 1.000

1.8×speed infeasible 0.784 0.909 0.992 1.000 1.000 1.000

2.0×speed infeasible 0.816 1.000 1.000 1.000 1.000 1.000

Table 4.2: System error coverage under different CPU speeds and number of cores for the
industrial example (multicore platform)

bus, while analyzing the feasibility and error coverage4. Comparing with the above single-

CPU multicore case, the consideration of message latencies leads to different results and

design focuses. In particular, to analyze the impact of the end-to-end latency constraints on

error coverage, we vary the end-to-end latency requirements Dp to 0.7×, 1.3×, 1.6×, and

2.0× of the original requirements (100 ms to 300 ms on different paths). Table 4.3 shows

the error coverage results under different number of ECUs and different end-to-end latency

requirements. We can clearly see the quantitative impact of end-to-end latencies on the

system feasibility and error coverage. We can also see that for the original requirements,

the distributed platform needs 7 ECUs to have a feasible solution while in the multicore

case we only need 5 cores (we assume same WCETs). This is because the bus message

transmission delays make it more difficult to meet the end-to-end latency requirements.

System error coverage optimization in synthetic examples

We then apply our approach to a set of synthetic examples to further demonstrate

its effectiveness in exploring error detection mechanisms for enhancing system error cover-

4The original design we received was implemented on a similar CAN-based platform, which is the currently
prevalent automotive architecture (while mulitcore ECUs/CPUs are projected to be adopted in the future).
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e2e requirement 0.7× 1× 1.3× 1.6× 2×

5 ECU infeasible 0.569 0.647 0.663

6 ECU infeasible 0.752 0.756 0.757

7 ECU infeasible 0.763 0.827 0.867 0.878

8 ECU infeasible 0.824 0.932 0.933 0.951

Table 4.3: System error coverage under different end-to-end latency requirements and num-
ber of ECUs for the industrial example (distributed platform)

age. We compare five sets of solutions through simulations: the solutions from our MILP

formulations exploring EOC/EED selections with task allocation and scheduling (denoted

as “Optimized EOC/EED”), the solutions from our MILP formulations but assuming that

due to system constraints or capabilities only EOC or only EED is available (denoted as

“Optimized EOC only” and “Optimized EED only”, respectively), and the solutions from

two naive implementations in which either EOC or EED is used for all tasks without opti-

mization (denoted as “Naive EOC only” and “Naive EED only”, respectively).

Single-core CPU platform. Fig. 4.4 shows the comparison among the five methods under

different original core utilizations (
∑

τi
Cτi/Tτi) for a single-core platform. For each utiliza-

tion, 1000 simulation runs are conducted and the error coverage is reported. We assume

exactly one error occurs within the hyperperiod (i.e., K = 1).

Fig. 4.4 demonstrates that 1) the optimized EOC only and EED only solutions

provide better error coverage than naive EOC only and EED only solutions when the

utilization increases, and 2) the optimized EOC/EED (when both options are available for

the platform) provides further significant improvements over optimized EOC only or EED
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Figure 4.4: Comparison of various methods for synthetic examples on a single-core platform

only. This clearly shows the benefits of our formulations in quantifying the impact of EOC

and EED and exploring the selections of them at task level. Furthermore, our formulations

guarantee that the solutions always satisfy timing constraints when the number of errors is

within K, which provides much better timing predictability than naive solutions.

Multicore platform. Fig. 4.5 shows the error coverage comparison among the five methods

under different original core utilizations (x-axis is per core utilization), for the synthetic

examples with task concentration model on a dual-core platform. We assume K = 2, with

one error occurs on each core within the hyperperiod. The error coverage is based on

1000 simulations. We see similar trend as in the single-core case. Our approach provides

significantly better results overall. We also conduct experiments for a dual-core platform

with the task duplication model. The duplication of task execution on two cores leverages

the spatial redundancy in a straightforward fashion. Since in this case almost no timing
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overhead is introduced for EOC error detection (except for small output comparison time),

our MILP formulation will try to select EOC for tasks as long as the timing constraints

are satisfied. Overall, the duplication model provides similar results to the concentration

model when the utilization is under 80%, and slightly worse when it is higher than 80%.
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Figure 4.5: Comparison of various methods for synthetic examples on a dual-core platform
(task concentration model)

Impact of EED overhead and detection rate

We also study the impact of EED overhead and detection rate on the selection of

EED versus EOC. We conduct experiments on a single-core platform with a modification of

the industrial example (the task WCETs are scaled to make the core utilization at 60% since

the original WCETs will not yield feasible solution on a single-core platform). Fig. 4.6 shows

the percentage of EOC used and EED used out of the entire task set (some tasks may use
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neither mechanism because of timing constraints). The sub-figures demonstrate results with

EED overhead ranging from 0% to 100%, and EED detection rate for a task ranging from

50% to 80%. Clearly, we can see the significant impact of EED overhead and detection rate

on the selections of EOC versus EED. Intuitively, higher overhead and lower detection rate

will lead to more EOC selection, and vice versa. Such trade-off demonstrates the importance

of having quantified formulations and algorithms in selecting the appropriate error detection

mechanisms for each task during task scheduling. Also, it reveals important performance

overhead and error detection rate goals when designing the detailed EED implementations.

Finally, together with the previous figures, it can be seen that EOC still maintains its value

in fault-tolerant scheduling, despite its simplicity and high performance overhead.
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4.2 Security-Aware Mapping

As described in Chapter 1, the in-vehicle design encounters various security chal-

lenges. Figure. 4.7 shows an example of the masquerade attack on the in-vehicle bus system.

Without authentication, the compromised node can masquerade a trusted node and send

the “Lock brake” message to the brake. One countermeasure is to use authentication tech-

niques, like authentication codes (MACs), for the brake and the trusted node to check

identity. In this example, symmetric keys are used.

Brake

Malicious 

node

Lock Brake MAC

Lock Brake MAC
K1

K1

Figure 4.7: The security challenges in automotive systems

Adding security mechanisms may lead to computation overhead caused by authen-

tication and transmission overhead with added authentication fields. The timing behavior

may be significantly affected by these overheads. Therefore, the security mechanisms should

be considered at the early design stage.

In our work [94], we consider the security-aware mapping for CAN-based and

TDMA based systems. The functional model is captured by a task graph with signals

between tasks. The goal is to decide security mechanisms together with task mapping. The

security mechanism is to divide the nodes into groups and in each group, the same symmetric

authentication key is used. The purpose of key-sharing groups is to reduce the overhead of
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MACs if the destinations of the message are in one group. If we use pair-wise key sharing,

each destination will result in one more MAC appended to the message. However, grouping

more nodes in one group increase the security risks. Therefore, we quantitatively model the

risks as the objective with real-time constraints on computation and communication. The

decision variables include group allocation, MAC length, task allocation, task scheduling,

signal packing, and message scheduling as in [94, 96, 95].

Task1 Task2 Task3 Task4

ECU1 ECU2

s1 mac(1,2)

Task1

Task2

Task3

Task4

s1

s3

s2

s2 mac(1,2) s3 mac(1,3)

m1

m3m2 ECU3

m1 m3 m2 m3 m1 m3 m2

schedule

m3 Time-delayed release of keys

Figure 4.8: Security-aware mapping for TDMA-based systems

Figure. 4.8 shows the security-aware mapping for the TDMA-based system. TDMA-

based buses assign pre-defined time slots to messages, therefore, making denial-of-service

attacks more difficult. However, masquerade attacks and replays are still possible without
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authentication. Similar to the CAN-based systems, we can quantitatively trade-off between

security and computational overhead by utilizing message authentication with delayed-

release of keys [94, 97].

4.3 Summary

When addressing the safety of real-time systems, it is important to consider the

timing, the fault tolerance requirements, and the security requirements. In this chapter,

we quantitatively model the impact of fault-tolerance and security techniques on system

timing. For fault-tolerance, two different types of soft error detection mechanisms (EOC

and EED) are considered under various fault models, task execution models, and architec-

ture platforms. We present a set of MILP formulations to explore the selections of EOC

versus EED, together with task allocation and scheduling, to enhance the system soft error

resiliency while meeting timing constraints. These formulations may facilitate designers

to analyze system feasibility under various fault tolerance requirements, trade off various

design options, and optimize system error coverage. Similarly, the security level can be

quantitatively modeled and optimized for both CAN-based and TDMA-based systems.

142



Chapter 5

Conclusions and Future Directions

In this thesis, we discuss the design challenges for building a secure and reli-

able cyber-physical systems. We present a cross-layer modeling, exploration and validation

framework CONVINCE considering various design objectives and metrics, among which

security and fault-tolerance are our focuses.

At the application and software layers, we consider cooperative adaptive cruise

control and intelligent intersection management to address the challenges from commu-

nication delays and possible security attacks. We present a delay-tolerant protocol for

intelligent intersection management and conduct modeling, simulation, and verification for

analyzing the safety, liveness, and performance of the protocol. This protocol guarantees

safety and assures that as long as the communication delays are bounded, deadlock-free

and liveness can be guaranteed. We also develop a codesign approach for addressing the

trade-off between security and control performance with the consideration of implementa-

tion feasibility. This approach quantitatively models the impact of security techniques on
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control performance and platform schedulability, and explores trade-offs between security

level and control performance while guaranteeing real-time constraints for cyber-physical

systems.

At the software and hardware layers, we address the software to hardware map-

ping considering fault-tolerance and security. We conduct fault-tolerance design to improve

system-level error recovery rate by applying soft error detection and recovery mechanisms

with real-time constraints. This approach formulates the impact on system timing for dif-

ferent error tolerance mechanisms including both EOC and EED based techniques, and

optimizes the task-level selections of tolerance mechanisms, for various fault models and

task execution models on representative single-core, multi-core, and distributed platforms.

We also present the security-aware mapping that can quantitatively study the impact of

applying security mechanisms for both CAN-based and TDMA-based systems with limited

resources and strict timing constraints.

There are several future directions.

• As the safety and liveness properties are related to the consensus and latency trade-

offs in asynchronous distributed systems, we can study the impact of consensus levels

on connected vehicle applications through the cross-layer framework. In particular,

we can define appropriate consensus levels, study what levels can be reached under

communication delays and losses, and further analyze how the consensus levels may

affect objectives, such as safety and transportation efficiency.

• We can address other connected vehicle applications through our framework, for ex-

ample, roundabout management, lane merging, do not pass warning, dynamic ride-
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sharing, etc.

• We can study other types of cyber-physical attacks that threaten cyber-physical sys-

tems, for example, the attacks on the time synchronization protocol, the spoofing

attacks, the physical attacks, etc.
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[153] Marko Wolf, André Weimerskirch, and Christof Paar. Security in automotive bus
systems. In Workshop on Embedded Security in Cars, 2004.

[154] Y. Yao, L. Rao, X. Liu, and X. Zhou. Delay analysis and study of ieee 802.11p based
dsrc safety communication in a highway environment. In 2013 Proceedings IEEE
INFOCOM, pages 1591–1599, April 2013.

[155] Yuan Yao, Lei Rao, Xue Liu, and Xingshe Zhou. Delay analysis and study of IEEE
802.11 p based DSRC safety communication in a highway environment. In INFOCOM,
2013 Proceedings IEEE, pages 1591–1599. IEEE, 2013.

[156] Huafeng Yu, Prachi Joshi, Jean-Pierre Talpin, Sandeep Shukla, and Shinichi Shiraishi.
The challenge of interoperability: Model-based integration for automotive control
software. In Proceedings of the 52Nd Annual Design Automation Conference, DAC
’15, pages 58:1–58:6, 2015.

[157] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory
access control in multiprocessor for real-time systems with mixed criticality. In Real-
Time Systems (ECRTS), 2012 24th Euromicro Conference on, pages 299–308. IEEE,
2012.

158



[158] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti. Cross-layer codesign
for secure cyber-physical systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(5):699–711, May 2016.

[159] B. Zheng, C. W. Lin, H. Yu, H. Liang, and Q. Zhu. Convince: A cross-layer modeling,
exploration and validation framework for next-generation connected vehicles. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–8, Nov 2016.

[160] Bowen Zheng, Yue Gao, Qi Zhu, and Sandeep Gupta. Analysis and optimization of
soft error tolerance strategies for real-time systems. In Proceedings of the 10th In-
ternational Conference on Hardware/Software Codesign and System Synthesis, pages
55–64. IEEE Press, 2015.

[161] Bowen Zheng, Hengyi Liang, Qi Zhu, Huafeng Yu, and Chung-Wei Lin. Next genera-
tion automotive architecture modeling and exploration for autonomous driving. IEEE
Computer Society Annual Symposium on VLSI, 2016.

[162] F. Zhu and S. V. Ukkusuri. A linear programming formulation for autonomous in-
tersection control within a dynamic traffic assignment and connected vehicle environ-
ment. Transportation Research Part C: Emerging Technologies, 55:363–378, 2015.

[163] Qi Zhu, Haibo Zeng, Wei Zheng, Marco Di Natale, and Alberto Sangiovanni-
Vincentelli. Optimization of task allocation and priority assignment in hard real-time
distributed systems. ACM Transactions on Embedded Computing Systems (TECS),
11(4):85, 2012.

159




