
UC Irvine
ICS Technical Reports

Title
Graph models for reachability analysis of concurrent programs

Permalink
https://escholarship.org/uc/item/9qm0m9q5

Authors
Pezze, Mauro
Taylor, Richard N.
Young, Michal

Publication Date
1992-01-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9qm0m9q5
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Graph Models for Reachability Analysis -- of Concurrent Programs ..---

Mauro Pezze
c::::- '>-

Richard N. Taylor
Michal Young

Technical Report 92-27

January 7, 1992

/)!U' 1/1//f.-

1~//
(' ~<
--~· J

YID , Ci .'i ·1 ;· I,;, <}

Graph Nlodels for Reachability Analysis
of Concurrent Programs

:Nfauro Pezze 1

Richard N. Taylor

Department of Information and Computer Science
University of California,

Irvine, CA 92111

.Vlichal Young

Software Engineering Research Center
Department of Computer Sciences

Purdue University
West Lafayette, IN 49101

January 7, 1992

1This material is based upon work supported by the National Science Foundation under
Aw~rd No. CCR-8704311, with cooperation from the Defense Advanced Research Projects
Agency, by the National Science Foundation under Award No.s CCR-8451421, and TRW
(PYI program).

Abstract

Reachability analysis is an attractive technique for analysis of concurrent programs
because it is simple and relatively straightforward to automate, and can be used
in conjunction with model-checking procedures to check for application-specific as
well as general properties. Several techniques have been proposed differing mainly

. on the model used; some of these propose the use of fiowgraph based models, some
others of Petri nets.

This paper addresses the question: What essential difference does it make, if
any, what sort of finite-state model we extract from program texts for purposes of
reachability analysis? How do they differ in expressive power, decision power, or ac­
curacy? Since each is intended to model synchronization structure while abstracting
away other features, one would expect them to be roughly equivalent.

vVe confirm that there is no essential semantic difference between the most well
known models proposed in the literature by providing algorithms for translation
among these models. This implies that the choice of model rests on other factors,
including convenience and efficiency.

Since combinatorial explosion is the primary impediment to application of reach­
ability analysis, a particular concern in choosing a model is facilitating divide-and­
conquer analysis of large programs. Recently, much interest in finite-state verifi­
cation systems has centered on algebraic theories of concurrency. Yeh and Young
have exploited algebraic structure to decompose reachability analysis based on a
fiowgraph model. The semantic equivalence of graph and Petri net based models
suggests that one ought to be able to apply a similar strategy for decomposing Petri
nets. We show this is indeed possible through application of category theory.

Contents

1 Introduction

2 Background
2.1 Concurrency Graphs
2.2 Task Interaction Concurrency Graphs
2.3 Petri Nets

3 A Unifying Model for Concurrency Graphs and TICGs
3.1 Labeled Flow Graphs and Concurrency Flow Graphs
3.2 Concurrency Graphs as Concurrency Flow Graphs
3.3 TIGs as Flow Graphs

4 Concurrency Flow Graphs and Petri nets

5 Compositionality and Process Algebras

6 Compositionality and Petri Nets
6.1 The category safe net
6.2 The bounded buffer example

7 Conclusions

References

1

2
2
9

11

17
17
18
22

26

31

38
38
-.13

43

47

1 Introduction

The problem of analyzing concurrent systems has been investigated by many re­
searchers. and several solutions have been proposed. The various solutions differs in
the way concurrent systems are represented (fiowgraphs [Tay83b, LC89, BDER79],
Petri nets [GMMP89, SC88, .Y1R87, SMS86], process algebras [Mil80, BHR84],
temporal logic [CES86, Wol86] programming languages [Han73, Ger84, TK091,
Tai85]), and in the kind of analysis performed (static analysis [BDER79, Ger84,
Tay83b, LC89, TOSO], dynamic analysis [Han 73, CDK85, Tai85], symbolic execu­
tion [YT88, GMMP89, Dila, Dilb, HK88], formal proof of properties [Mil80, Apt83,
BR89, CES86, Wol86]).

Among the proposed techniques, reachability analysis - systematic enumera­
tion of reachable states in a finite-state model - is attractive because it is simple
and relatively straightforward to automate, and can be used in conjunction with
model-checking procedures (e.g., [CES86]) to check for application-specific as well
as general properties. Reachability analysis has been used successfully in limited do­
mains like simple communication protocols [Sun81, Hol87]. Combinatorial explosion
has stymied application of reachability analysis to general concurrent programs.

One thread of research related to reachability analysis involves extracting models
from program texts. Since Taylor proposed a reduced fiowgraph inodel for reachabil­
ity analysis of programs expressed in Ada and related languages [Tay83b], a variety
of alternative representations have been proposed. Long and Clarke have proposed
a "task interaction graph" representation that captures synchronization structure
more succinctly than Taylor's original model [LC89] (an important attribute since
combinatorial explosion is the primary limiting factor in applying reachability anal­
ysis). Shatz et al. have proposed extr~cting Petri nets from Ada programs in
order to use existing Petri net analysis tools [SC88] and net reduction techniques
[SMBT90].

This paper addresses the question: What essential difference does it make, if
any, what sort of finite-state model we extract from program texts for purposes
of reachability analysis? How do they differ in expressive power, decision power,
or accuracy? Since each is intended to model synchronization structure while ab­
stracting away other features, one would expect them to be roughly equivalent.
vVe confirm that there is no essential semantics difference between Taylor's original
model, Long and Clarke's TIG model, and Petri nets by providing algorithms for
translation among these three models. This implies that the choice of model rests
on other factors, including convenience and efficiency of available tools.

Since combinatorial explosion is the primary impediment to application ofreach­
ability analysis, a particular concern in choosing a model is facilitating divide­
and-conquer analysis of large programs. Recently Yeh and Young have exploited
algebraic structure based on algebraic process theory [Hen88, Mil89, Hoa85] to de­
compose reachability analysis based on a graph model close to Long and Clarke's
TIG model [YY91]. The semantic equivalence of TIGs and Petri nets suggests that
one ought to be able to apply a similar strategy for decomposing Petri net models

1

of Ada programs. We show this is indeed possible through application of categor:i
theory [MM90, Win87, Win84].

Section 2 reviews representative graph based models that have been used for
reachability analysis of programs in Ada-like languages: task fiowgraphs 1 and cou­
currency graphs, as they are introduced in [Tay83b], task interaction graphs (TIGs)
and task interaction concurrency graphs (TICGs) as introduced in [LC89] (both of
which concern flowgraph based models), and Petri nets and reachability graphs as
introduced in [Rei85].

The substantial equivalence among the flowgraph based approaches is shown in
Section 3. The overall equivalence between :fl.owgraph based and Petri net based
approaches is discussed in Section 4.

The introduction of compositionality in fiowgraph based approaches by using
algebraic theory is discussed in Section 5, where the work presented in [YY91] is
reviewed; the use of category theory for defining compositional rules for Petri nets
is shown in Section 6. Section 7 concludes.

2 Background

Reachability analysis has been broadly used for the analysis of concurrent systems
[Apt83, BDER79, CES86, LC89, McD89, Smo84, Tay83b, MR87, SMS86, SC88].
Two broad classes of models have been used for supporting reachability analysis of
programs: flowgraph based models [Apt83, BDER79, CES86, LC89, McD89, Smo84,
Tay83b]. and Petri nets [MR87, SMS86, SCSS].

The use of fiowgraph based models for analyzing Ada programs was first pro­
posed in [Tay83b], and an improved model was described in [LC89]. An algorithm
for reachability analysis of Petri nets has been first proposed in [ME69]. Reach­
ability analysis of Petri nets has been used for analyzing concurrent programs by
several authors ([MR87, SMBT90, SC88]).

2.1 Concurrency Graphs

Task fiowgraphs and task interaction graphs (TI Gs) have been defined as models
of the Ada task system. Ada has been chosen for the increasing interests of the
scientific and industrial community, but similar techniques can be defined for other
concurrent languages with rendezvous synchronization. In this paper, Ada repre­
sents only a common concrete point of reference. Both task fiowgraphs and TIGs
consider only a subset of Ada. Some of the restrictions introduced on Ada are intrin­
sic to static analysis algorithms, while some others are introduced in this paper in
order to abstract away from details which would only complicate our presentation.

If program objects can be indexed by variable expressions or referenced through
a chain of pointers, a static tool is usually incapable of determining the particular

1 In [Tay83b] task flow graphs are called simply flowgraphs; the name task fiowgraphs has been
introduced here to avoid confusion with definitions that appear later in the paper and will be used
consistently through the paper to refer to flowgraphs as defined in [Tay83b].

2

identity of an object; thus static analysis algorithms cannot deal satisfactorily with
arrays of records that include tasks as members, or tasks that are objects of access
types. Dealing with real-time operations also causes problems, since the real-time
behavior of an Ada program depends on the performance characteristics of the
target machines, usually not available to a static analysis algorithm; thus static
analysis algorithms cannot fully model real-time operators like delay statements,
timed entry calls, delay alternatives in selective waits, etc. Finally, static analysis
requires some restrictions on dynamic task creation: since static analysis consists
in building a finite representation of the state space of the analyzed program, the
number of tasks composing the program must have an upper bound.

The restrictions introduced in this paper only for simplifying the presentation
concern shared variables, task activation and termination, and subprograms. None
of these features are considered in this paper, although dealing with them does not
increase the complexity of the problem.

The reminder of this section simply recalls the definitions of task flowgraphs,
and concurrency graphs as presented in [Tay83b] and the definitions of TIGs and
TICGs as presented in [LC89], in order to make the paper self-contained.)/fast of
the definitions reported in this section are informal and/ or refer to the semantics of
Ada (see Definition 4: concurrency graph). The formal definiti_on of these concepts
is one of the contribution of this paper and is given in Section 3, where differences
and analogies among such models are discussed.

A task flowgraph represents the structure of a single Ada task abstracting away
from all the aspects which are unnecessary in determining possible sequences of
synchronization activities. Synchronization activities are statements involved in
synchronization, like accept, entry call, select. A task fiowgraph can be easily ob­
tained from the annotated ftowgraph produced by a compilation system by ignoring
all the nodes representing states not in valved in synchronization activities.

Definition 1 (synchronizatidn activity) Given an Ada program, a synchroniza­
tion activity is one of the following statements: entry call, accept, select, select-else,
task-begin, task-end.

Definition 2 (fiowgraph) a 4-tuple G = (N, A, s, T) is a flow graph if and only
if

1. N is a finite set of elements called nodes,

2. A C N X N is a binary relation on N; elements of A are called arcs

3. s E N; s is called the starting node

4. TC N; Tis called the set of terminal nodes.

Definition 3 (task fiowgraph) Given an Ada task A, a task fiowgraph is a fiow­
graph, where each node corresponds to either a synchronization activity in A, or a

3

task body T 1 is
done: boolean:

begin
done := true;
loop

select
accept(P)

or
accept (Q)

end select;
exit when done

end loop
end Tl

task body TO is
begin

Tl.Q
end TO

task body T2 is
begin

Tl.P
end T2

Figure 1: A simple Ada program.

compound statement 2 , and each arc corresponds to the flow of control among the
considered statements in task A. The starting node is the node corresponding to the
task-begin; the final nodes are the nodes corresponding to possible terminations of
task A.

Nodes of task flowgraphs will be also called state-nodes; a state-node m is called
a successor of a state-node n, m E succ(n), if there is an arc from n to m.

As an example, the task flowgraphs corresponding to the Ada tasks of Figure 1
are presented in Figure 2. Notice that the loop of task T1 is explicitly represented,
since it contains a synchronization statement (a selective wait).

An Ada program can be identified with the set of task flowgraphs corresponding
to the tasks in the program. The execution space of an Ada program can be de­
scribed by a concurrency graph, a flowgraph where nodes, also called concurrency-

2compound statements, like conditional statements and loops, are explicitly modeled in the task
fiowgraph only if their body contains statements that correspond to synchronization activities.

4

Task TO Task Tl Task T2

begin begin begin

i i i
• Tl.Q

i
Tl.P

i i
select

end

/ ~
end

accept(P)

•

end

Figure 2: Task fiowgraphs corresponding to the Ada program of Figure 1.

5

nodes, are k-tuples of state-nodes. one node for each task flow graph, ;:ind arcs
represents actions that can cause a state transition in the program.

Definition 4 (concurrency graph) Let P be a set of k task flowgraphs; a con­
currency-node is a k-tuple of state-nodes; one node for each task flow graph in P;
the concurrency-node A1 = < m1, .. ., mk > is a successor of the concurrency-node
N =< ni, .. ., nk > if and only if:

1. Vi, 1 ::; i ::; k either

(a) mi E succ(ni)

(b) mi = ni

2. there exists at least one mi, 1 < J < k, which represents application of case
la.

3. adherence to the semantics of Ada is reflected in the selection of the successors
of concurrency-nodes, 3 and

4. the changes between the concurrency-state lvl and the concurrency-state N
are the minimum number required to satisfy conditions (2) and (3), i.e., if
the concurrency-state lvl is a successor of the concurrency-state N, then there
does not exists a successor S of N such that the set of components for which S
differs form N is a proper subset of the set of components for which ivl differs
from N.

A concurrency graph is the transitive closure of the successor relation.

Condition 2 prohibits self-loops in the concurrency graph, since it requires that
two concurrency-nodes in the su.ccessor relation differ for at least one component.
Condition 3 requires that the flow of control on the task fl.owgraphs considered
in building the concurrency graph follows the Ada semantics. Condition 4 limits
the set of successors to the set of nodes reachable with at most one action, be it
concurrent or sequential: concurrency states reachable from the concurrency node
N with more than one action performed concurrently, do not belong to the set of
immediate successor of N, but they can be reached from N through intermediate
nodes. (Such models are commonly called interleaving, as versus true concurrency

and partial order models.)
As an example, the concurrency graph corresponding to the Ada program of

Figure 1 is reported in Figure 3. The correspondence between the enumeration of
the concurrency-nodes in Figure 3 and the state-node of Figure 2 is indicated in
Table 1.

3 This definition is taken from [Tay83b]; a formal definition that does not refer to the Ada
semantics is presented in Section 3.

6

Figure 3: The concurrency graph corresponding to the Ada program of Figure 1.

7

concurrency [state-node state-node state-node J
node of task To of task Ti of task T2

1 begin begin begin
2 begin select begin

3 Tl.Q begin begin

4 begin begin Tl.P
,) begin select Tl.P
6 Tl.Q select begin

7 Tl.Q begin Tl.P

8 begin select end
9 begin end end
10 end end begin
11 end select begin
12 Tl.Q select Tl.P
1.3 Tl.Q select end
14 Tl.Q end end

15 end end Tl.P
16 end select Tl.P
17 end select end

18 end end end

Table 1: Correspondence between the concurrency-nodes of the concurrency graph
of Figure 3 (first column) and the state-nodes of the task flowgraphs of Figure 2
(columns 2, 3, 4).

8

2.2 Task Interaction Concurrency Graphs

Task interaction graphs (TI Gs) and task interaction concurrency graphs (TIC Gs)

have been introduced for reducing the size of the task flowgraphs and concurren!=Y
graphs. TIGs are defined starting from a partition of the statements of a single task
in regions called task regions.

Definition 5 (task region) Given an Ada task A, a task region is a portion of
code starting from the task-begin, or from a statement that can immediately follow
the execution of an accept or an entry call, and ends with the termination of the
task execution or with accept or entry calls.

The task regions for the Ada program of Figure 1 are shown in Figure 4.
Tasks To and T2 are divided in two regions, the first one (C(Ol) and C(21)

respectively) goes from the beginning of the program to the entry call, the second
one (C(02) and C(22) respectively) goes from the end of the entry call to the end of
the program. Task T1 is divided in three regions; the first one (C(ll)) goes from the
first statement of the program to either one of the two accepts; thus, it has two exit
points; the second one (C(l2)) goes from the end of the accept of entry Q to either
the end of the program or one of the two accepts, thus it has three exit points; the
third one (C(13)) goes from the end of the accept of entry P to either the end of
the program or one of the two accepts, thus it has three exit points as well. Task
regions end and start with beginning or ending of synchronization activities (entry
call, accept, select, select-else, task-begin, task-end). Task regions can be linked
together by a relation that represents the synchronization activities of the program;
e.g., task regions COl and C02 are related by the entry call Tl.P; task regions Cll
and Cl2 are related by the accept of entry Q.

Definition 6 (task interaction graph (TIG)) Given an Ada task A, a TIG is
a flow graph, whose nodes correspond to the task regions in A, and whose arcs
represent task interactions, i.e., flow of control between task regions; arcs are labeled
with the type of represented interaction.

The nodes of TIGs will be also called TIG-nodes. The TIG-node corresponding
to the initial region of the task is called the initial TIG-node of the TIG; the TIG­
nodes corresponding to regions of the task where the execution may end, are called
final TIG-node of the TIG. The initial TIG-node cannot be a final TIG-node.

The TIGs corresponding to the Ada program of Figure 1 are shown in Fig­
ure 5. For each node there are as many exiting arcs as there are exiting points
corresponding to possible task interactions.

An Ada program can be represented by means of the set of TIGs corresponding
to the tasks of the program. The execution space of an Ada program represented
as a set of TIGs can be represented by means of a TICG, a flowgraph whose nodes
are tuples of TIG-nodes, one for each TIG in the program, and arcs corresponds to
the possible interactions between tasks in the program.

9

task TO
C(Ol) ENTER(TASK ACTIVATION)

Tl.Q
EXIT(CALL START Tl.Q)

C(02) ENTER(CALL END Tl.Q)
end TO
EXIT(TASK TERMINATION)

task Tl
C(ll) ENTER(TASK ACTIVATION)

loop
select

accept(P)
EXIT(ACCEPT START P)

or
accept (Q)

EXIT(ACCEPT START Q)
C(12) ENTER(ACCEPT END Q)

end select;
exit when done
EXIT(TASK TERMINATION)
end loop
EXIT(ACCEPT START P)

or
EXIT(ACCEPT START Q)

C(13) ENTER(ACCEPT END P)
or

accept (Q)
end select;
exit when done
EXIT(TASK TERMI~ATION)
end loop
EXIT(ACCEPT START P)

or
EXIT(ACCEPT START Q)

task T2
C(21) ENTER(TASK ACTIVATION)

Tl.P
EXIT(CALL START Tl.P)

C(22) ENTER(CALL END Tl.P)
end T2
EXIT(TASK TERMINATION)

Figure 4: Task regions for the Ada program of Figure 1.

10

Task TO Task Tl Task T2

8
accept(Q) Tl.P

Tl.Q

accept(P)

accept(Q)

accept(Q) accept(P)

Figure 5: Task interaction graphs (TI Gs) for the Ada program of Figure l.

Definition 7 (task interaction concurrency graph (TICG)) Given a set of
k T!Gs; a TIGG-node is a k-tuple of TIG-nodes, one for each TIC; arcs are defined
by the following successor relation: a node l'VJ = < m 1 , ... , mk > is a successor
of a node N = < ni, ... , nk > if and only if there exists i and j such that for all

I i= i, j, m1 = n1 and

1. < ni,mi >is an arc in TIGi

2. < nj, mj > is an arc in TIGj

3. the labels associated with arcs (< ni, mi>) and (< nj, mi>) match, i.e., the
arc (< ni, mi >) belongs to task Ta and is labeled with accept(P) and the arc
(< nj, mj >) belongs to task n and is labeled with Ta.P.

A TICGs is the transitive closure of the successor relation.

The TICG corresponding to the Ada program of Figure 5 is shown in Figure 6.

2.3 Petri Nets

Petri nets have been originally proposed as a model for representing and analyzing
concurrent systems; however they have been used also for representing and analyzing
Ada programs [MZGT85, MP89, SMBT90].

Definition 8 (Petri net) A Petri net is a 4-tuple (P, T, F, Mo) where,

1. P is a non-null set of elements, called places

11

p Q

02,13,22 02,12,22

Figure 6: The task interaction concurrency graph (TICG) corresponding to the Ada
program of Figure 1.

2. T is a non-null set of elements, called transitions

3. F ~ (P x T) U (T x P) is a flow relationship between places and transitions;
an element of F is called arc.

4. }vfo : P ---+ N is an assignment of natural numbers to places, called the initial
marking. The number associated with a place p by the marking m 0 is referred
to as the number of tokens in place p

Definition 9 (preset) The se,t of places for which there exists an arc leading to a
transition t is called the preset of transition t, and is indicated by 9t.

~ = { x E p I< x' t > E F}.

Definition 10 (postset) the set of places to which there exists a pointing arc from
transition t is called the postset of transition t, and is indicated by t•.

t• = { x E p I< t' x > E F}.

As an example, a possible representation of the Ada program of Figure 1 is
presented in Figure 7. In Figure 7, transitions represent actions, places represent
conditions and arcs give the relations between conditions and actions. Transitions
are labeled for convenience of the reader. Different algorithms for obtaining a Petri
net from Ada programs can be defined, resulting in different representations. The
one chosen in the example of Figure 7 represents an Ada program by modeling only
synchronization activities.

The dynamic behavior of a system modeled by means of a Petri net can be
represented by the firing rule, which describes the effect of actions on the marking
of the net.

12

begin '--....-----'

rendezvous ,.---...-:;;.-,
onQ

begin '---.---' .__..,..___. begin

rendezvous
onP

Figure 7: A Petri net corresponding to the Ada program of Figure 1.

13

Definition 11 (firing) Given a net N with marking m, a transition t is enabled
if and only if\:/ places p E "t, m(p) 2: 1.

The firing of a transition t enabled in a marking m produces a new marking m'
defined as follows:

1. m'(p)=m(p)-1,\:/pE "t-t•

2. m'(p) = m(p) + 1, \:/p Et• - °t

3. m'(p) = m(p), otherwise.

Definition 12 (firing sequence) Given a marking m, a firing sequence is a se­

quence of transitions O' = < t1, .. ., tn > such that transition ti is enabled in the
marking m, and transition t;+l is enabled in the marking produced by the firing
of transition ti. The marking produced by the firing of transition tn is called the
marking produced by the firing sequence O'.

Definition 13 (reachability set) A marking m' is reachable for a marking m if
the marking m' can be produced starting from the marking m by means of a firing
sequence a.

The set of all markings reachable for the initial marking m 0 is called the reach­
ability set.

The reachability set represents the execution space of the Petri net, and can
be described as a graph whose nodes represent markings and whose arcs represent
transition firings.

The reachability graph of the Petri net of Figure 7 is presented in Figure 8. The
correspondence between nodes of the reachability graph of Figure 8 and markings
in the net of Figure 7 is given in Table 2, where the marking corresponding to the
nodes of the reachability graph are described indicating which places are marked
(in this case, the number of tokens in each place is always one).

Definition 14 (safeness) A Petri net N = (P, T, F, Mo) is safe if and only if for
all reachable markings the number of tokens in each place is less than or equal to 1.

From the reachability graph of Figure 8 it is easy to verify that the Petri net
of Figure 7 is safe. It is always possible to represent an Ada program composed of
a fixed number of tasks by means of a safe net. Intuitively, if the number of tasks
in the program is bounded, it is possible to represent the tasks by disjoint sets of
places and the state of each task by a single token. In the net of Figure 7 places po,
P1, and p2 represent the set of possible states for task To; places p3, p4, p5, P6, and
p7 represent the set of possible states for task T1 ; places po, pg, and Pio represent
the set of set of possible states for task T2 . Since each place represents the state of
exactly one task, only the token corresponding to such a task can mark that place.
The resulting net is thus safe.

14

Figure 8: The reachability graph of the Petri net of Figure 7.

15

nodes of the reachability marked marked marked
graph place place place

1 Po p3 PB
2 Po p4 PB
3 Pl p3 PB
4 Po p3 pg
5 Po p4 pg
6 P1 p4 PB
7 Pl p3 pg
8 Po p4 Pio
9 Po p4 P1
10 P2 P1 PB
11 P2 p4 PB
12 P1 p4 pg
13 P1 p4 P10
14 Pl P1 P10
15 P2 P7 pg
16 P2 p4 pg
17 P2 p4 Pio
18 P2 P1 P10
19 P?. p5 PB
20 Po P6 Pio
21 P2 p5 pg

22 P1 P6 P10
23 P2 P6 Pio
24 P2 p5 P10

Table 2: Correspondence between the nodes of the reachability graph of Figure 8
(first column) and the markings of the Petri net of Figure 7 (columns 2, 3, 4 show
the corresponding marked places in the Petri net of Figure 7.)

16

3 A Unifying Model for Concurrency Graphs and TIC Gs

In this section, we show that task flow graphs and TIGs can be described by means
of the same model, providing different interpretation algorithms for Ada. In this
way, we prove that task fiowgraphs and TIGs do not differ from the model point
of view, but they only differ in the representation mechanism of Ada programs.
Moreover, we define a general composition mechanism for graphs and we show that
both concurrency graphs and TICGs can be obtained by the application of such
a mechanism on the same model, i.e., the reachability analysis methods proposed
in [Tay83b] and [LC89] are substantially equivalent. By defining a common model
for task flowgraphs and TIGs, we both provide a formal definition of fiowgraph
based models which is Ada independent, and a means for comparing and evaluating
the graph based models proposed in [Tay83b] and [LC89] and their efficacy for
reachability analysis of concurrent programs. The formal definition of graph based
models introduced in this section is also used in the next section as a basis for
comparing these models with Petri nets.

3.1 Labeled Flow Graphs and Concurrency Flow Graphs

In order to define a compositionality rule, we introduce a set of labels, similar to
the labels used in process algebras for modeling elementary actions [Mil89, BK84,
BvG87]. The correspondence will be discussed in detail in Section 5.

Definition 15 (action) Given a set I: of names and a set~ of co-names, such
that for each name a E I:, there exists a na,me Ci E E (a is called the complementary
action of O'), and the special action 17, the set L of actions is defined as L = I: U
EU {77}. .

The only action without a complement in L is the special action 17.

Definition 16 (labeled fl.owgraph) G = (N, A, L, s, T, l) is a labeled fl.ow graph
if and only if

1. (N,A,s,T) is afiow graph (see Definition 2);

2. L is a set of actions;

3. l : A___. L, is a labeling function for arcs.

The special action 'r/ will be used to label local actions (i.e. non-synchronization
actions); actions belonging to the set A U A will be used to label synchronization
actions. The presence of complementary actions in different graphs allows the iden­
tification of corresponding synchronization actions in different processes.

Definition 17 (program) A program is a finite set of labeled flowgraphs sharing
the same set of labels; thus potentially communicating.

17

Definition 18 (concurrency state) Given a program P = {(N;,A;,si,Ti) J ls;
i s; k} 1 a concurrency state is a k-tup/e < n1, ... , nk > of state-nodes, one for each
labeled flow graph in the program; a concurrency state .M = < n 1 , ... , nk > zs a
successor of a concurrency state N =< m1, ... , mk > if and only zj

either 3i, j such that

1. \;I/ =f i, j, n1 = m1

2. < ni, mi > E Aji\ < n j, m j > E A j /\ l (< ni , mi >) = I (< ni, mi >)

or 3i such that

1. '<il =f i, n1 = m1 1

The initial concurrency state is the k-tuple < s1 , .•. , Sk >.

A concurrency flow graph is the transitive closure of the successor relation. A
final concurrency state is a concurrency state in the concurrency fl.ow graph without
successors.

A concurrency state represents the global state of the concurrent program as
the set of the local states of all the sequential processes composing the concurrent
program. A concurrency state JV! is a successor of a concurrency state N if J.Vf can
be reached from N either through a synchronization action between two sequential
processes in the concurrent program (the synchronization action is represented by
the simultaneous evolution of the two processes on arcs labeled with complementary
actions), or it be reached from N through a non-synchronization action performed
by one of the component processes.

3.2 Concurrency Graphs as Concurrency Flow Graphs

An algorithm for representing Ada programs by means of labeled flowgraphs can be
given recursively on the basic operators: the labeled flowgraph corresponding to a
particular Ada program can be obtained by repeated applications of the rules, once
the statements determining possible synchronization activities has been extracted.

Algorithm 1 Let A be an Ada task;

1. the first step of the algorithm consists in extracting from task A all the synchro­
nization activities together with the flow relations among them in a manner
analogous to the one proposed in Section 2.1.

2. the second step consists of the recursive application of the following rules to
the statements composing task A, starting from the innermost statements, i.e.,

· the statement at the deepest nesting level in the Ada program, until the most
external structure has been reached:

18

Figure 9: The labeled fiowgraph corresponding to a begin statement.

(a) The statement begin can be represented by a pair of nodes and an arc
joining the two nodes labeled with a silent action T/ as in Figure 9.

(b) A call to an entry Q can be represented by a pair of nodes and an arc
joining the two nodes labeled with Q as in Figure 10. Here we assume
unique names for entries in the whole program: there does not exists
two entries in two different tasks with the same name; thus it can be
assumed that the label Q uniquely identifies the entry Q of task Ti. This
does not affect the generality of the algorithm, since names can be always
disambiguated at compilation time.

(c) the accept of an entry Q can be represented by a pair of nodes and an
arc joining the two nodes labeled with (Q) as in Figure 11.

(d) the select of two or more statements S1, .. . , Sn, being guarded or not, can
be obtained by joining the initial places of the subgraphs representing the
statements that occurs in the bo'dy of the select as in Figure 12.

(e) the sequential composition of two statements S1; S2 can be obtained by
joining the final place of the subgraph corresponding to statement S 1 with
the initial place of the subgraph corresponding to statement S2 as in Fig­

ure 13.

(f) A loop can be represented, starting from the subgraph modeling the body
of the loop, by adding a return arc for each terminal node of the subgraph
representing the body of the loop. If the loop contains exit conditions then
an arc leading to an external node should be added for each node from

where the loop can be exited, as in Figure 14.

(g) an end statement can be represented by simply marking the terminal

nodes of the preceding statements as terminal.

The labeled fiowgraphs obtained for the program of Figure 1 are shown in Fig­
ure 15, the corresponding concurrency fiowgraph is shown in Figure 16; the corre­
spondence between nodes of the concurrency fl.owgraph and nodes of the labeled
fl.owgraphs is given in Table 3.

It is easy to see the correspondence between the labeled fl.owgraphs of Figure
15 and the task fl.owgraphs of Figure 2, and between the concurrency fl.owgraph

19

Figure 10: The labeled fl.owgraph corresponding to an entry call.

Figure 11: The labeled fl.owgraph corresponding to an accept statement.

select
Sl

or

or
Sn

end select

Figure 12: The labeled flowgraph corresponding to a select statement.

20

J concurrency-node II state-node I state-node / state-node I
1 1 4 9
2 1 5 9
3 2 4 9
4 1 4 10
5 1 5 10
6 2 5 9
7 2 4 10

8 1 5 11
9 1 8 11
10 3 8 9
11 3 5 9
12 2 5 10
13 2 5 11
14 2 8 11
15 3 8 10
16 3 5 ' 10
17 3 5 11
18 3 8 11
19 3 6 9
20 1 7 11
21 3 6 10
22 2 7 11
23 3 7 11
24 3 6 11

Table 3: Correspondence between the nodes of the concurrency :flowgraph of Fig­
ure 16 (first column) and the nodes of the labeled :flowgraphs of Figure 15 (columns
2, 3, 4).

21

Sl;S2

Figure 13: The labeled fl.owgraph corresponding to the sequential composition of
two statements.

of Figure 16 and the concurrency graph of Figure 3. The main difference between
the labeled fl.owgraphs of Figure 15 and the task fl.owgraphs of Figure 2 is the
representation of the loop iteration: in Figure 2, the loop iteration is represented
with an arc connecting two extra nodes indicated in the picture by two black dots,
while in Figure 15, is represented with two different arcs, one for each possible
termination point of the body of the loop. This duplication causes the presence of
few more nodes in the concurrency fiowgraph, indicated in bold in Figure 16: the
concurrency graph of Figure 3 can be obtq..ined from the concurrency fl.owgraph of
Figure 16 by simply deleting nodes 19, 20, 21, 22, 23, 24.

The correspondence shown for the example is fully general, and derives from the
definition of task fl.owgraphs and the algorithm used for interpreting Ada programs
by means of labeled flowgraphs: in both the cases the nodes correspond to the
same set of Ada statements and the arcs connect the same nodes. Moreover, the
algorithms for building a concurrency graph starting from a set of task fl.owgraphs
and the definition of concurrency flowgraph starting from a set of labeled flowgraphs
are based on the matching of elements which are related to the same Ada constructs.
In other words, the algorithm for translating Ada programs into labeled flow graphs
can be considered as a formalization of the concepts introduced in Section 2.1.

3.3 TIGs as Flow Graphs

An algorithm for translating Ada tasks to labeled fl.ow graphs so that the obtained
fl.owgraphs will be equivalent to TIGs can be given in a very similar way.

Algorithm 2 Let A be an Ada task

1. the first step of the algorithm consists in extracting from task A the task regions
together with their entry points and their.exit points (see Definition 5).

22

loop
Sl
exit when cl

Sn
exit when cm

end loop

Figure 14: The labeled fl.owgraph for a loop statement.

23

Task TO Task Tl Task T2

Q

Figure 15: The labeled flowgraphs corresponding to the program of Figure 1.

24

Figure 16: The concurrency fl.owgraph for the program of Figure 1 obtained from
the labeled fl.owgraphs of Figure 15.

25

2. the second step consists in the recursfre application of the following rules to
the task regions comprising task A:

(a) for each task region identified at step 1, add a node to the labeled fiow­
graph.

(b) for each possible synchronization action linking two task regions (for more
details see Section 2.2) a and b, add an arc going from the node corre­
sponding to task region a to the node corresponding to task region b, i.e.,
add an arc from node a representing task region a, to node b representing
task region b, if task region a ends with the start of execution of an accept
statement for entry X (resp. a call statement of an entry X }, and task
region b starts with the end of the execution of an accept statement of
the corresponding entry X (resp. the end of a call of the corresponding
entry X).

(c) if the synchronization action linking task regions a and b corresponds to
a call of an entry E, then add label E to the arc going from the node
corresponding to task region a to the node corresponding to task region b.

(d) if the synchronization action linking task regions a and b corresponds to
an accept statement for entry E, then add label E t~ the arc going from
the node corresponding to task region a to the node corresponding to task
region b 4 .

(e) The initial node corresponds to the initial region of the task.

(f) The final nodes correspond to task regions with an exit to the end of the
program.

The labeled fiowgraphs and the concurrency fiowgraph obtained for the Ada
program of Figure 1 are the TIG01 shown in Figure 5 and the TICG shown in Figure
6 respectively.

The correspondence shown for the example is fully general, and derives from the
definition of TI Gs and the algorithm used for interpreting Ada programs by means
of labeled fiowgraphs: in both the cases the nodes corresponds to task regions and
the arcs to transfers of control between task regions and are labeled consistently.
Moreover, the algorithms for buildine; a TICG starting from a set of TIGs and the
definition of concurrency fiowgraph starting from a set of labeled flowgraphs are
based on the matching of elements which are related to the same control transfers
(see Definition 18).

4 Concurrency Flow Graphs and Petri nets·

In this section, we define an algorithm for translating a program (defined as a set
of labeled fiowgraphs (see Definition 1 7) into a Petri net, and we show that the

iWe assume unique names for all the entries in the whole program, as in Section 3.2.

26

reachability graph of the Petri net obtained from a set of labeled flowgraphs is the
concurrency flowgraph corresponding to the same set of labeled flowgraphs.

Algorithm 3 (representing a program as a Petri net) Given a concurrent pro­
gram, i.e., a set of labeled flowgraphs according with Definition 17, it is possible to
obtain a Petri net representation by applying the following rules:

- for each node of each labeled flow graph, add a place to the Petri net.

- for each arc a in the set of labeled flow graphs from node ni to node n2 such
that l(a) = ry, add a transition t to the Petri net; the preset of transition t is
the place corresponding to node ni and the postset of transition t is the place
corresponding to node n2.

- for each pair of arcs < a, b > in the set of labeled flow graphs, arc a from
node n1 to node nz, arc b from node n3 to node n4, such that l(a) = l(b),
add a transition t to the net; the preset of transition t contains the places
corresponding to nodes ni and n3, the postset of transition t contains the
places corresponding to nodes n2 and n4.

- if node n is an initial node then the corresponding place is marked with one
token (in the initial marking)

- if node n is not an initial node then the corresponding place is not marked (in
the initial marking)

The Petri net obtained from the set of labeled flowgraphs of Figure 15 is the one
already presented in Figure 7. The reach~bility graph of the Petri net of Figure 7
is the concurrency flowgraph obtained from the same set of labeled flowgraphs, as
it is easy to see from Figures 16 and 8. This observation is fully general and can be
stated as a theorem.

Theorem 1 Let P be a program, i.e., a set of labeled flowgraphs, and PN the
Petri net obtained from program P applying Algorithm 3. The reachability graph of
P N and the concurrency graph of P are isomorphic, i.e., for each node n of the
reachability graph there exists a node n' in the corresponding concurrency flowgraph,
and for each arc a in the reachability graph there exists an arc a' in the corresponding
concurrency flowgraph so that if arc a goes from node n to node m in the reachability
graph, arc a' goes from node n' to node m 1 in the concurrency flowgraph, being node
n' (m') the node of the concurrency fiowgraph corresponding to node n (m) of the
reachability graph, and vice versa.

Proof
The theorem can be proven by induction on the size of the labeled flowgraphs

comprising program P.
Basis of the induction
Given a program P composed of k labeled fiowgraphs, each one composed of a

single initial node and no arcs, the Petri net P N obtained from program P applying

27

algorithm 3 is composed of k marked places, one for each node in program P, no
transitions, and no arcs. Both the concurrency fiowgraph for P and the reachability
graph for PN are composed of a single node and no arcs, and thus are isomorphic.

Induction step
Let P be a program composed of k labeled fiowgraphs Fi, ... , Fk. Let hi and ki

be respectively the number of nodes and arcs of fiowgraph F; for 1 ~ i ~ k. Let P N
be the Petri nets obtained from program P with algorithm 3.

Let assume by inductive hypothesis that the concv.rrency fiowgraph corresponding
to program P and the reachability graph for the Petri net P N are isomorphic. In
order to demonstrate the theorem, we mv.st prove that the concurrency fiowgraph
for program P', obtained from program P by adding either a node or an arc to one
of the fiowgraphs comprising P, let say fiowgraph Fi 1 and the reachability graph of
the Petri net P N' obtained from program P' with Algorithm 3 are isomorphic. In
fact it is always possible to obtain a program composed of k fiowgraphs in a finite
number of steps starting with a program compose of k fiowgraphs each one composed
of a single initial node and adding at each step either a node of an arc to one of the
fiowgraphs comprising P.

If program P' is obtained from program P by adding a node to fiowgraph Fi, then
the concurrency graph of program P is also the concurrency fiowgraph of program P':
since the concurrency fiowgraph is defined as the transitive closure of the successor
relation, which is defined starting from arcs and their associated labels, adding only
places does not change the reachability space.

The Petri net P N' corresponding to program P' is characterized by the same set
of transitions and arcs of P N and a new set of places obtained from the set of places
of P N adding a new unmarked place p with empty preset and postset. Place p can
never be marked and consequently the reachability graph of P N' is the reachability
graph of PN.

The concurrency fiowgraph corresponding to program P' and the reachability
graph corresponding to the Petri net P N' are isomorphic by inductive hypothesis.

Adding an arc a from state-node m to state-node n to the fiowgraph F; changes
both the concurrency fiowgraph and the reachability graph of the corresponding Petri
net.

For what concern the relations between the Petri net P N' corresponding to pro­
gram P' and the Petri net P N corresponding to program P there can be two cases:

1 arc a is labeled with 77 1 i.e., the added arc does not represent a possible new
synchronization. The Petri net P N' corresponding to program P' can be ob­
tained from the Petri net P N corresponding to program P by adding a new
transition t with only the place Pm corresponding to the node m in its preset
and only the place Pn corresponding to the node n in its postset.

The concurrency flow graph CG' corresponding to program P' can be obtained
. from the concurrency fiowgraph CG corresponding to program P adding an ex­

iting arc ca from each concurrency-node cm containing the state-node m as i-th

28

component. Let cm' be the concurrency-node hit by arc ca. The concurrency­
node cm' differs form the concurrency-node cm for the i-th component which
is the state-node n instead of m. The concurrency-node cm' can either be al­
ready in CG or be a new concurrency-node. If cm' is in the concurrency gra-ph
CG, the concurrency graph CG' differs from the concurrency graph CG only
for arc ca. If the concurrency-node cm' is not in the concurrency graph CG
then cm' can be either a final node or the source of new concurrency-arcs. In
the first case the concurrency graph CG' differs from the concurrency graph
CG for arc ca and state cm', otherwise it differs for a subgraph, rooted in cm'.

To show that the concurrency fiowgraph CG' corresponding to P' and the
reachability graph RG' corresponding to P N' are isomorphic, we must show
that for each new arc ca exiting a concurrency-node cm leading to a concurrency­
node cm', in the concurrency-flowgraph CG' there is an arc ra, corresponding
to ca, exiting the node rm corresponding to the concurrency-node cm in the
reachability graph RG' . We must also show that the node rm' reached from
rm through arc ra corresponds to the concurrency-node rm'.

Since the concurrency-node cm belongs to the concurrency fiowgraph CG, in
the reachability graph RG corresponding to P N there exists a node rm that
corresponds to cm by inductive hypothesis. Si"nce the concurrency-node cm
contains as i-th component the state-node m, the corresponding node rm cor­
responds to a marking where place Pm is marked, being Pm the place corre­
sponding to node m. Thus in the reachability graph RG' exists an arc ra
corresponding to the firing of the new transition t added to the net exiting
node rm (transition t has only place Pm in its preset and thus it can fire). Arc
ra leads to a node rm' that represents a marking where all the nodes marked
in rm are still marked, except for place Pm, that is not marked any more and
place Pn corresponding to node n that becomes marked. Arc ca corresponding
to arc ra in the concurrency fiowgraph leads to a node cm' differing from node
cm only for the i-th component, which is the state-node n instead of m. If the
concurrency node cm' belongs to CG, node rm1 belongs to RG by inductive
hypothesis; in this case the theorem is proved.

If the concurrency-node cm' is a terminal node in the concurrency graph CG',
we must prove that node rm' is a terminal in the reachability graph RG'. Let
us assume by contradiction that rm' is not a terminal node, then there exists
an arc exiting rm', that corresponds to a transition t' enabled in marking m'
corresponding to state rm'. In state rm' all the places which were marked in
rm are still marked, except for the places in the preset of transition t' which
are not marked any more and the places in the postset of transition t' which
are newly marked. By construction, transition t' corresponds to an arc a' in
fiowgraph Fi. Since the components of the concurrency state cm' corresponds
to the place marked in the marking represented with state rm', a new concur­
rency state differing from state rm' for the components corresponding to the
places in the preset of transition t' can be reached from rm' through arc a'.

29

But this contradicts the hypothesis that rm' is a terminal state in CG'. Thus
state rm' is also a terminal node and the theorem is proven.

Finally, if the concurrency state cm' is not in CG and is not a terminal node
for CG', we must prove that node rm' is not in RC and is not a terminal node
in RC'. We must also prove that for each node that can be reached from cm'
in CG' there is a corresponding node in RG'. Since the concurrency graph is
finite (see Theorem 2), the proof can be iterated until either a node already in
the considered fiowgraph or a terminal node is reached.

If the concurrency node cm' is not in CG, the corresponding node rm' is
not in RG by inductive hypothesis. If the concurrency node cm' is not a
terminal node in CG' then there exists at least an arc a' exiting cm'. Arc
ca' corresponds to either one arc a1 labeled T/ or two arcs a2 and a3 with
complementary labels in the fiowgraphs comprising program P'. Let assume
that arc ca' corresponds to one arc a1 labeled with ry, the demonstration in
the other case is analogous. In P N' there exists a transition t' corresponding
to arc a1 by construction. Since arc ca' exits the concurrency state cm', one
component of cm' (e.g., component i) corresponds to the input node of arc a1 •

Since state rm1 corresponds to state cm', place Pi corresponding to the i-th
component of the concurrency-state cm' is marked in rm'. thus transition t'
is enabled in the marking corresponding to state rm'. The firing of transition
t' corresponds to an arc ra' in the reachability graph RG'. ra' corresponds
to arc cm' and leads to a state rm" that corresponds to state cm" reached
from cm' through arc a'. State rm" corresponds to cm" because they differ
from corresponding states (rm' and ,cm') for corresponding components (e.g.,
the components corresponding to the input/output state of arc ca' and the
preset/postset of arc ra').

2 arc a is labeled with l =/::. ry, and thus there can exists arcs aj from node mj to
node Tlj belonging to some others fiowgraphs of program P labeled with I. The
net P N' can be obtained from the net P N by adding a transition tj for each
pair of new matching arcs < a, aj > with places Pm and Pm;, corresponding to
nodes m and mj, in its preset and places Pn and Pni, corresponding to nodes
n and Tlj, in its postset.

The concurrency flow graph CG' corresponding to program P' can be obtained
from the concurrency fiowgraph CG corresponding to program P adding an
exiting arc ca from each concurrency-node cm containing both the state-nodes
m and mj as i-th and j-th components.

The correspondence between the concurrency fiowgraph corresponding to pro­
gram P' and the reachability graph corresponding to the Petri net P N' can be
demonstrated with a deduction analogous to the deduction used for demonstrat­
ing point 1, by only changing the considerations about the differences between
the concurrency-nodes connected with arc ca in the concurrency graph and the
markings corresponding to the nodes connected with arc ra in the reachability

30

graph. In this case the two concurrency nodes connected with arc ca differs for
two components instead of one, and the markings corresponding to the nodes
connected with arc ra differs for four places instead of only two, but there is
an analogous correspondence between nodes and concurrency-nodes.

Theorem 2 Given a program P, i.e., a finite set of labeled flowgraphs, the corre­
sponding concurrency graph is finite.
Proof

The proof follows almost immediately from the definition of program and con­
currency graph. Concurrency-states are finite tuples of state-nodes belonging to the
fiowgraphs in program P. Since the number of fiowgraphs comprising a program P
is finite and the number of state-nodes in each fiowgraph is also finite, the number
of finite tuples of state-nodes is finite.

5 Compositionality and Process Algebras

The main drawback of reachability analysis is the combinatorial state explosion,
which makes the application of reachability analysis to large complex systems vir­
tually impossible. Although theoretical results imply that the -combinatorial state
explosion cannot be avoided in the worst case ([Lad79, Tay83a, Smo84, Apt83]), it
is possible to obtain significant improvements in many practical cases. The suitabil­
ity of only one the the two approaches (viz. flowgraphs and Petri nets) to support
efficient reachability analysis for a significant set of practical cases would be critical
in the comparative evaluation of the two approaches. In this section, we review
the approach proposed in [YY91], where the complexity of reachability analysis is
controlled by considering labeled fl.owgraphs as terms of a process algebra and ap­
plying suitable algebraic properties to the composition of labeled :flowgraphs. In
the next section, we show that similar results can be obtained by considering Petri
nets a subcategory of the two sorted algebras over multisets and using suitable com­
position mechanism over Petri nets, thus showing that the two approaches can be
considered equivalent from this point of view as well.

The conventional approach to reachability analysis as presented in Section 2 of
this paper is based on the construction of the whole reachability graph in a single
step, i.e., first either the set of labeled :flowgraphs or the Petri net corresponding
to the program is built and then the whole reachability graph is obtained from the
representation of the program. Any change in the starting program requires the con­
struction of a new reachability graph from scratch, without any chance of reusing
the results obtained by analyzing the program before the last changes. Moreover,
the approaches so far reviewed do not give any means of reusing the results ob­
tained by reachability analysis of subsystems for analyzing the whole system. Thus,
the reachability analysis of a system must be carried out from scratch even if its
subsystems have been previously analyzed.

In contrast, an incremental approach allows the derivation of the reachability
graph of a system to be built step by step by incremental modifications of the reach-

31

ability graph built from an initial version of the system, without requiring the con­
struction of a new reachability graph for each step of the incremental development
of the system. A compositional approach allows the reuse of the reachability anal­
ysis of the subsystems for analyzing a system obtained by composition of different
subsystems. Incremental and compositional approaches can result in a substantial
reduction of the complexity of the reachability analysis for a wide class of modular
and incrementally built systems.

In order to introduce compositionality, a composition mechanism has to be de­
fined for both labeled flowgraphs and concurrency flowgraphs, and it has to be
associative (i.e., the order in which parts are combined together must not affect
the final result). The extension of the composition rule, as defined in Section 3 for
concurrency fl.owgraphs can be obtained by simply introducing a labeling function
for the arcs of the concurrency flowgraphs. This can be easily done by attaching
a label representing the action modeled by the arc to each arc of the concurrency
:flowgraph. Unfortunately the so-defined operator is not associative, as shown in
Figures 17, 18, and 19. Figure 17 shows a program composed of three labeled fiow­
graphs (T1 , T2, T3); the concurrency fiowgraph obtained as defined in Section 3 is
shown in Figure 18; the concurrency fiowgraphs obtained by composing the tasks
incrementally is shown in Figure 19. In Figures 18 and 19, ~he arcs of the con­
currency graph are labeled according to the actions taking place and the labeled
:flowgraphs involved: for instance, Q(T3 , T2) represents the simultaneous occurrence
of actions Q in the fiowgraph T3 and Q in T2•

In Figure 19, parentheses are used to indicate the order in which labeled fiow­
graphs are composed. (T1 composed T2) composed T3 indicates the concurrency
fiowgraph obtained by first composing the 'labeled flowgraphs T1 and T2 , and then
composing the obtained concurrency :flowgraph with the labeled fiowgraph T3 .

The concurrency flowgraph built in a single step (Figure 18) shows (correctly)
the two different possible evolutions of the program: either the simultaneous occur­
rence of actions Q in T1 and Q 'in T2 followed by actions P in T1 and P in T2 , or
actions Q in T3 and Q in T2 followed by actions P in T3 and P in T2 •

The concurrency :flowgraph obtained by composing only the labeled :flowgraphs
T1 and T2 shows correctly the synchronous sequence between the two flowgraphs,
but the successive composition with the labeled fiowgraph T3 does not show the
possible communication between tasks T2 and T3. The label matching between
the labeled :flowgraphs T1 and T2 hides actions which do not correspond to actual
synchronization; in particular the complementary actions of the labeled :flowgraph T2
cannot be composed any more with actions P and Q of the flowgraph T3. Similarly,
if only the flowgraphs T2 and T3 are composed first, the complementary actions of
the labeled flowgraph T2 cannot be composed any more with actions P and Q of
the :flowgraph T1 . In other words, the composition operation used in conventional
reachability analysis is not associative.

To overcome the lack of associativity, new composition operators need to be
defined. In [YY91], a solution based on process algebras is presented. This solu­
tion considers labeled fl.owgraphs and concurrency ft.owgraphs as models of terms

32

Tl T2 T3

Figure 17: A simple program.

P(T3,T2)

Figure 18: The concurrency fl.owgraph for the program of Figure 17 built in a single
step.

33

(Tl composed T2) composed T3

P(Tl,T2)

(T2 composed T3) composed Tl

Q(T3,T2) P(TI,2)

Figure 19: The concurrency fiowgraphs for the program of Figure 17 built in two
sequential steps.

of a process algebra, and uses the product defined in the process algebra as the
composition mechanism. In the chosen algebra, the product should be associative
with respect to an equivalence relation reflecting the intuitive notion of equivalence
among fl.owgraphs.

In [YY91], the algebra utilized is ACF- 77, whose definition can be found in
[BK84, BvG87].

Figure 20 shows the composition of the labeled flowgraphs T1 and T2 of Figure 17
using the compositional approach. Both possible synchronization actions and non­
synchronization actions are explicitly modeled in the concurrency flowgraph. From
the initial state So three actions are possible: the synchronization action Q(T1, T2)

between tasks T1 and T2 on action Q and its complement Q, but also action Q
performed by task T1 without any move of task T2 , or action Q performed by task
T2 without any move of task T1. In this way the successive composition of the
labeled fl.owgraph T3 results in the modeling of all possible synchronization actions.
The same result would be obtained by first composing the labeled fl.owgraphs T2
and T3 and then adding the fiowgraph T1 , as expected from the properties of the
algebraic composition operator. The price paid to the associativity is an additional
state explosion of the concurrency fiowgraph. Fortunately, the algebraic approach
provides several mechanisms for simplifying the intermediate flowgraphs without
affecting the final results. For instance, in the example of Figure 20 only the arcs
labeled with actions Q and P are interesting. In fact only these actions can match
actions P and Q that are performed by task T3 , the only task to be further composed
to obtain the final system. Arcs labeled with P and Q in the example of Figure 20
are not interesting any more, since we know they they will never match any further

34

Tl T2 T3

Figure 17: A simple program.

Figure 18: The concurrency fl.owgraph for the program of Figure 17 built in a single
step.

33

TljjT2

Figure 20: Composition of the labeled fiowgraphs T1 and T2 according to the rules
of AC P17 •

action that can be performed by some other part of the system not yet included in
the description of Figure 20. Thus, the arcs labeled with Q and P can be dropped
from the intermediate fl.owgraph without affecting the final result. This can be
easily done by using the restriction operator of the underlying algebra.

The operators and the axioms of the underlying algebra can be used to fur­
ther reduce the intermediate results, in order to incrementally simplify the final
results, as shown in the example of Figure 21. This figure shows how to obtain a
bounded buffer with two positions by composition of two bounded buffers with a
single position.

Figure 21 a) shows two bounded buffers P and Q with capacity one. A bounded
buffer with capacity one can perform only two actions: accept a message (action
a for buffer P, action b for buffer Q) if the buffer is empty (state s1 for buffer P,
state 8 3 for buffer Q) and transmit the received message (action b for buffer P,
action c for buffer Q) if the buffer is full (state s2 for buffer P, state 84 for buffer
Q). Different labels for the two buffers have been chosen here only for simplifying
the description of the composition mechanism. Process P can be transformed to
process Q by application of the relabeling operator of AC P - ry, and vice versa.

Figure 21 b) shows the process (PllQ) obtained by composing the bounded
buffers P and Q presented above. Process PllQ can evolve as either process P or
process Q, or the synchronization of processes P and Q when possible. In the initial
state 8s can either accept a message on the input position a (action a) as process

35

P and move to state s6 , or accept a message on the input position b (action b), as
process Q and move to state s7. Once accepted a message on the input position a
(action a) (and thus being in state s6), process PllQ can either accept a message
on the input position b (action b) as process Q, or accept a message on the input
position b as process P, or can evolve with action 7) corresponding to processes P
and Q synchronizing on the complementary actions b and b.

If we consider bas an internal channel for synchronization between processes P
and Q and a and c as external channels, i.e., channels that process PllQ uses to
communicate with its external world, then we would like to forbid process PllQ to
communicate on channel b, i.e., perform action b orb. Formally this is represented
by the application of the hiding operator, as shown in Figure 21 c), where the
process (PllQ)\b is shown. Initially (state 89) process (PllQ)\b can only accept a
message on the input channel a (action a) and move to state 8 10 • From state 8 10

it can only perform action T/ representing an internal non-observable move, namely
process P passing the newly received message to process Q on the internal channel
b. From state 8 11 , it can either accept a new message on channel a (action a), or
transmit the former message on channel c (action c). If we only consider the visible
action a and c, we can see that process (PllQ) \b acts as a bounded buffer with
two position, i.e., it accepts at most two consecutive messages -and it transmits the
received messages in the same order it receives them.

Figure 21 d) presents process (PllQ)\b simplified by removing the internal action
7).

The example described in Figure 21 shows how the state spaces of two compo­
nents (the one position bounded buffers) can be composed to obtain the state space
of a bigger process (the two positions bounded buffer). Key features of process
algebras that provide compositionality and incrementality to flowgraph models are:

1. an eqv.ivalence relation. .
The equivalence relation provides mathematical support for transformation
and simplification of processes; for instance, the processes of Figure 21 c) and
d) are equivalent in terms of an equivalence relation defined in ACP-17, and
thus the process of Figure 21 c) can be simplifyed in the process of Figure 21
d).

2. a composition operator associative with respect to the eqv.ivalence relation.
The associativity of the composition operator ensures that the order of com­
positions of subsystems does not affect the final result; for instance, the com­
position of the three tasks of Figure 17 can be done in two steps obtaining the
same result regardless the order of composition.

3. a restriction operator which allow the incremental simplification of flowgraphs.
The restriction operator can be successfully used for abstracting away from
internal actions, relevant before the composition of subsystems, but not rele­
vant any more after their composition. Abstracting away from non essential

36

p Q cP II Q>

a b c

b

a) b)

cP 11 Q)' {b}

c

c)

simplified (P II Q) \ {b}

a a

c c

d)

37

aspects while incrementally composing subsystems can be crucial for control­
ling the state explosion of the overall system. Intuitively, the number of states
and actions of the resulting systems is proportional to the number of states
and actions of the component subsystems, thus using the two bounded buffer
representation of Figure 21 b) as a component for a bigger system instead of
the simplifyed representation of Figure 21 d) would produce a much bigger
system description. Moreover, the application of the restriction operator can
be necessary to guarantee the correctness of construction of the final system.
For instance, if the subsystem of Figure 21 b) is composed with another sub­
system that is not supposed to communicate with the bounded buffer on port
b, but uses b as a name for one of its local ports, then their composition could
present some undesirable communication between the two subsystems.

Several tools have been constructed for experimenting with process algebras and
verification of finite-state systems [CPS91, CPS90, MSGS90, Fer88]. Although these
typically provide a variety of algebraic manipulations, they can be used to perform
reachability analysis as a series of composition and reduction steps. Yeh [YY91] de­
scribes a prototype tool that derives both process graphs and scope structure from
program texts in an Ad a-like language, and then uses the scope structure to guide
a sequence of composition and reduction steps and thereby avoid combinatorial ex­
plosion. The extent of the advantage of algebraic structure for reachability analysis
of practical systems requires more study, but results so far are encouraging.

6 Compositionality and Petri Nets

In the former section we showed that algebraic properties can be used to reduce
the complexity of reachability analysis based on :fl.owgraphs for an interesting class
of systems; namely, systems that present some kind of modularity and can thus be
decomposed into subsystems that can be analyzed separately. We identified three
main features needed to control the complexity of reachability analysis: an equiva­
lence relation, a composition operator and a restriction operator. In this section we
show how to introduce similar mechanisms for Petri nets and thus how it is possible
to reduce the complexity of reachability analysis for the same class of systems also
by using Petri nets. The theoretical background relies on category theory and it is
well documented in [MM90, Win87, Win84]. Subsection 6.1 informally presents the
concepts formally introduced in [Win84], stressing the concepts used in this paper.
Subsection 6.2 shows how the properties of Petri nets as a category introduced in
Subsection 6.1 can be used for mastering the complexity of reachability analysis
based on Petri nets in a similar way as properties of process algebras can be used
to master the complexity of reachability analysis based on fl.owgraphs.

6.1 The category safe net

In th.is section we refer to safe nets, since safe nets are powerful enough to represent
the class of systems that can be statically analyzed, as suggested in Subsection 2.3.

38

In order to compare Petri nets and thus define equivalent nets we need to in­
troduce net transformations. Since our main interest is in reachability analysis, we
are looking for net transformations that preserve the reachability set of the trans­
formed nets. Intuitively, a net transformation that preserve the initial marking a:nd
the preset and postset relations relates nets with the same reachability set.

In [Win84], Winskel calls such transformations net morphisms and shows that
these transformations preserve the reachability set;

Definition 19 (Net morphism) Let N and N' be safe nets; a net morphism from
N = (P, T, F, M) to N' = (P', T', F', M') is a pair < 77, /3 >, where 77: T--+ T' is a
partial function, (3 ~ P x P' is a relation such that

1. /](M) = M'

2. Vt E T,•(77t) = (3(9t) U (77t)• = ;3(t•)

Theorem 3 Net morphisms preserve reachable markings; i.e., if A1 is a reachable
marking of a net N and< 77,(3 > is a net morphism, then f3(M) is a reachable
marking of N'.
Proof
see [Win84]

Isomorphic nets, i.e. nets that can be transformed one into the other by means
of a bijective morphism, can be considered equivalent from the static analysis point
of view. Isomorphisms for the category of safe nets play the role of equivalence
relations for process algebras.

In [Win84], Winskel also shows that safe nets together with net morphisms as
defined above form a category with product, the category of safe nets. Products in
categories have several nice properties very important in our framework, the most
important one being associativity with respect to isomorphisms, i.e. ((Nix N2) xN3)

is isomorphic to (Ni x (N2 x N3)). One can think of products in the category of
nets as the basic composition mechanism among nets. Figure 22 shows two simple
nets (No and Ni) and their product (No x Ni). Intuitively, the product of two nets
contains all the transitions of the original nets with the same preset and postset
(transitions to,o and ti,o in the net of Figure 22) and a new transition for each pair
of transitions in the original nets with the union of the presets and the postsets
of the original transitions (transition to,i in the net of Figure 22). The transitions
of the original nets represents the actions of the original nets that can take place
independently, while the new transitions represent all the possible synchronizations
among the actions of the original nets. The set of places of the product of two
nets is the union of the sets of places of the two component nets. It is possible
to verify that the net-product preserves the reachability sets of the components,
i.e. a marking M is reachable in No x Ni if and only if po(M) is reachable in No
and pi(M) is reachable in Ni (po and Pl indicates the projections associated to
the net-product, i.e., the marking related to the set of places corresponding to the
selected component).

39

(NO x Nl)\{<tO,O>}

Figure 23: Effects of the application of the net-restriction operator.

The net-product constitutes a basis for composing nets, but it cannot be used
as it is: in general, subsystems can communicate only on specific actions and not
on any pair of actions as represented by the net product. Thus we need a way of
defining the set of communication actions. In [Win84] this problem is solved by
using a particular morphism, called net-restriction, that can be used to abstract
away non-interesting actions. The effect <?f the net-restriction operator is to delete
a subset of transitions from the original net, as shown in the example of Figure 23,
where the net (No x Ni)\ { < to,o >} is obtained from the net (No x Ni) of Figure
22 by restriction over transition < t0 ,0 >.

The net-composition operator can be obtained from the net-product by abstract­
ing away from all the actions resulting from composition of non-communication
actions.

To define the net-composition operator starting from the net- product and the
restriction operator, we assume a labeling mechanism, which associates with each
transition a label in a set of actions L = A U A U { 17}. The label associated to
transition twill be indicated by .\(t).

Definition 20 (net composition) Let No= (Po, To, Fa, Mo) and Ni= (Pi, Ti, Fi, lvli)
be nets; the composition NollNi is defined as
(No x Ni)\ { <ti, ti >I ti -Io/\ ti -Io/\ >-(ti) -::j:. .A(ti) }

The net composition is a net with all the transitions of the components plus a
transition for each pair of transitions in the component nets with complementary
labels, as shown in the example of Figure 24.

In Figure 24, the net NollNi contains all the transitions corresponding to in­
dependent actions plus a transition obtained by matching the pair of transitions

41

NO II Nl

Figure 24: The composition of the two simple nets of Figure 22.

42

labeled a and a, but not the transition obtained by matching transition b of net N0

with transition a of net N1 . The transition corresponding to independent actions
are labeled according to the action represented. The transitions corresponding to a
synchronization are labeled with the null action 77.

More generally the net-restriction operator can be used to abstract away from
details before further composing the subsystems, similarly to the algebraic restric­
tion operator. Like the algebraic restriction operator, the net-restriction operator
is fundamental in order to be able to master the extra complexity introduced in the
system by using the new composition operator. Any time we can deduce that some
actions of the subsystems will never match actions performed by units in the rest
of the system, those actions can be hidden using the net-restriction operator, thus
simplifying the reachability space of the subsystem without exporting the additional
complexity into the reachability graph of the whole system.

6.2 The bounded buffer example

In this subsection, we demonstrate how the net composition operator and the re­
striction operator can be used to compose different sub-networks and simplify the
intermediate result using the bounded buffer example already discussed in Section
5

The Petri nets modeling the two processes P and Q and the net obtaining by
composing the two processes are shown in Figure 25.

The reachability graph of the net PllQ, shown in Figure 26, corresponds exactly
to the concurrency :fl.owgraph built applying the algebraic composition operator to
the flowgraphs P and Q as shown in Figure 21.

The net reduced by hiding action band bis shown in Figure 27. The reachability
graph corresponds exactly to the reduced fl.owgraph of Figure 21.

It should be noticed that the reachability graph of the reduced net can be ob­
tained from the reachability graph of the whole net by deleting the arcs correspond­
ing to actions b and b, as expected from the properties of morphisms and products.

7 Conclusions

This paper compares the most used approaches to reachability analysis of concur­
rent programs: flowgraph and Petri net based approaches. It first compares the
approaches from a "classical" point of view and it concludes that there is no es­
sential semantic difference between the considered approaches. It shows that the
differences of the various approaches are not in the way the state space is built,
but in the way concurrent programs are represented. Any choice of approach must
depend on other factors, like convenience and efficiency. A key factor for the reduc­
tion of the state space is the amount of detail of the concurrent programs that are
taken into account.

This paper also compares the two approaches with respect to their suitability
for supporting incremental and compositional analysis. It shows how the results

43

p Q

PllQ

Figure 25: The Petri nets corresponding to two one position buffers and to their
composition.

44

CP 11 Q) ' {b, b}

Reachability grapf of (P II Q) \ {b, b}

a

c
c

a

Figure 26: The reachability set of the net PllQ of Figure 25.

45

(P 11 Q)\ <b, b}

Reachability gr~of (P II Q) \ {b, i;}

Figure 27: Reduction of the net of Figure 25 and corresponding reachability set.

46

obtained in [YY91J for flowgraph-based approaches can be obtained for Petri net
based approaches as well. It thus shows that the various approaches to reachability
analysis are equally amenable to techniques for reducing the complexity of the
analysis.

We believe that this paper represents an important step in selecting reachability
analysis techniques for large complex practical problems by discussing key factors
that can drive the choice of the model to be used. This paper also describes key
techniques for extending reachability analysis for tackling complexity problems for
a wide class of systems, regardless the choice of the model to support the analysis.

References

[Apt83] Krzysztof R. Apt. A static analysis of CSP programs. In Proceedings
of the Workshop on Program Logic, Pittsburgh, PA, June 1983.

[BDER79] G. Bristow, C. Drey, B. Edwards, and W. Riddle. Anomaly detection
in concurrent programs. In Proceedings of the Fourth International
Conference on Software Engineering, pages 265-273, Munich, Germany,
1979.

[BHR84] S. D. Brookes, C.A. Hoare, and A. W. Roscoe. A theory of communi­
cating sequential processes. Journal of the ACM, 31:560-599, 1984.

[BK84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous com­
munication. Information and, Control, 60:109-137, 1984.

[BR89] S. D. Brookes and A. W. Roscoe. Deadlock analysis in networks of
communicating processes. Technical report, Department of Computer
Science, Carnegie-Mellon University, 1989. (An earlier version appeared
in Logics and Models of Concurrent Systems Springer Verlag 1985).

[BvG87] J. C. M. Baeten and R. J. van Glabeek. Another look at abstraction
in process algebra. In Proceedings of the 14th InternationalColloqium
on Automata, Languages, and Programming (ICALP), pages 84-94,
Karlsruhe, Germany, July 1987.

[CDK85] M. Chandrasekharan, B. Dasarathy, and Z. Kishimoto. Requirements­
based testing of real-time systems: Modeling for testability. IEEE Com­
puter, pages 71-80, April 1985.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, April 1986.

[CPS90] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. A
semantics-based verification tool for finite-state systems. In Proto-

47

col Specification, Testing, and Verification, IX, pages 287-302. :'forth­
Holland, 1990.

[CPS91] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concur­
rency workbench: A semantics based tool for the verification of conc;r­
rent systems. In Proceedings of the Workshop on Automatic Verification
Methods for Finite State Machines, pages 24-37, February 1991. LNCS
407.

[Dila] Laura Dillon. Verification of Ada tasking programs using symbolic
execution; Part 1: partial correctness. Draft.

[Dilb] Laura Dillon. Verification of Ada tasking programs using symbolic
execution; Part 2: general safety properties. Draft.

[Fer88] Jean-Claude Fernandez. Aldebaran: Un Systeme de Verification par
Reduction de Processus Communicants. PhD thesis, Universite de
Grenoble, Grenoble, France, 1988.

[Ger84] Steven M. German. Monitoring of deadlock and blocking in Ada task­
ing. IEEE Transactions on Software Engineering, 10(6), November
1984.

[GMMP89] Carlo Ghezzi, Dino Mandrioli, Sandro Morasca, and Mauro Pezze. Sym­
bolic execution of concurrent systems using Petri nets. Computer Lan­
guages, 14(4):263-281, 1989.

[Han73] Per Brinch Hansen. Testing a multiprogramming system. Software -
Practice f3 Experience, 3:145-150, 1973.

[Hen88] Matthew Hennessy. Algebraic Theory of Processes. MIT Press Series
in the Founddations of Computing. The MIT Press, Cambridge, Mas­
sachusetts, 1988.

[HK88] Linda J. Harrison and Richard A. Kemmerer. An interleaving symbolic
execution approach for the formal verification of Ada programs zith
tasking. In Proceedings of the 3rd International IEEE Conference on
Ada Applications and Environments, Manchester, NH, 1988.

[Hoa85] Charles Anthony Richard Hoare. Communicating Sequential Processes.
Prentice-Hall, London, 1985.

[Hol87] Gerard J. Holzmann. Automated protocol validation in argos: Asser­
tion proving and scatter searching. IEEE Transactions on Software
Engineering, SE-13(6):683-696, June 1987.

[Lad79] Richard E. Ladner. The complexity of problems in systems of commu­
nicating sequential processes. In Proceedings of the Eleventh Annual

48

ACM Symposium on Theory of Computing, pages 214-223, Atlanta,
Georgia, April 1979.

[LC89] Douglas L. Long and Lori A. Clarke. Task interaction graphs for concur­
rency analysis. In Proceedings of the Eleventh International Confere~ce
on Software Engineering, Pittsburgh, May 1989.

[McD89] Charles E. McDowell. A practical algorithm for static analysis of paral­
lel programs. Journal of Parallel and Distributed Computing, 6:515-536,
1989.

[ME69] Karp R. M. and Miller R. E. Parallel program schemata. Journal of
Computer and System Science, May 1969.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, New York, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, Lon­
don, 1989.

[MM90] Jose Meseguer and Ugo Montanari. Petri Nets are monoids. Information
and Computation, 88:105-155, 1990.

[MP89] Sandro Morasca and Mauro Pezze. Validation of concurrent Ada pro­
grams using symbolic execution. In ESEC '89: 2nd European Software
Engineering Conference, pages 469-486. Springer-Verlag, September
1989. Lecture Notes in Compvter Science.

[MR87] E. Timothy Morgan and Rami R. Razouk. Interactive state-space analy­
sis of concurrent systems. IEEE Transactions on Software Engineering,
SE-13(10):1080-1091, October 1987.

[MSGS90] Jawahar Malhotra, Scott A. Smolka, Alessandro Giacalone, and Robert
Shapiro. Winston - a tool for hierarchical design and simulation of
concurrent systems. In C. Rattray, editor, Specification and Verification
of Concurrent Systems, pages 140-152. Springer-Verlag, 1990.

[MZGT85] D. Mandrioli, R. Zicari, C. Ghezzi, and F. Tisato. Modeling the Ada
task system by Petri nets. Computer Languages, 10(1):43-61, 1985.

[Rei85]

[SC88]

Wolfgang Reisig. Petri Nets. EATCS Monographs on Theoretical Com­
puter Science. Springer-Verlag, 1985.

S. M. Shatz and W. K. Cheng. A Petri net framework for automated
static analysis of Ada tasking behavior. Journal of Systems and Soft­
ware, 1988. To appear.

49

[SMBT90] Sol M. Shatz, Khanh .:Vfai, Christopher Black, and Shengru Tu. Design
and implementation of a petri net based toolkit for ada tasking analysis.
IEEE Tmnsactions on Parallel and Distributed Systems, 1(4):424-441,
October 1990.

[Smo84] Scott A. Smolka. Analysis of Communicating Finite State Processes.
PhD thesis, Department of Computer Science, Brown University, 1984.
Department of Computer Science Technical Report No. CS-84-05.

[SMS86] B. Shenker, T. Murata, and S. M. Shatz. Use of Petri net invariants
to detect static deadlocks in Ada programs. In Proceedings of the Fall
Joint Computer Conference, pages 1072-1081, November 1986.

[Sun81] Carl A. Sunshine, editor. Communication Protocol Modeling. Artech
House, Dedham, MA, 1981.

[Tai85] K. C. Tai. Reproducible testing of concurrent Ada programs. In Pro­
ceedings of SoftFair II, pages 49-56, December 1985.

[Tay83a] Richard N. Taylor. Complexity of analyzing the synchronization struc­
ture of concurrent programs. Acta Informatica, 19:57-84, 1983.

[Tay83b] Richard N. Taylor. A general-purpose algorithm for analyzing con­
current programs. Communications of the ACM, 26(5):362-376, May
1983.

[TK091] K.C. Tai, R.H. Karver, and E.E. Obaid. Debugging concurrent ada
programs by deterministic execution. IEEE Transactions on Software
Engineering, 17(1):45-63, January 1991.

[T080] Richard N. Taylor and Leon J. Osterweil. Anomaly detection in con­
current software by static data flow analysis. IEEE Transactions on
Software Engineering, SE-6(3):265-278, 1980.

[Win84] Glynn Winskel. A new definition of morphism on petri nets. In STAGS
84, Symposium of Theoretical Aspects of Computer Science, pages 140-
150, Paris, FRA, April 1984. LNCS 166.

[Win87] Glynn Winskel. Petri nets, algebras, morphisms, and compositionality.
Information and Computation, 72:197-238, 1987.

[Wol86] Pierre Wolper. Specifying interesting properties of programs in propo­
sitional temporal logics. In Proceedings of the ACM Symposium on
Principles of Programming Languages {13th), pages 184-193, St. Pe­
tersburg, Fla., January 1986.

[YT88] Michal Young and Richard N. Taylor. Combining static concurrency
analysis with symbolic execution. IEEE Transactions on Software En­
gineering, 14(10):1499-1511, October 1988.

50

[SMBT90] Sol M. Shatz, Khanh jyfai, Christopher Black, and Shengru Tu. Design
and implementation of a petri net based toolkit for ada tasking analysis.
IEEE Transactions on Parallel and Distributed Systems, 1(4):424-441,
October 1990.

[Smo84] Scott A. Smolka. Analysis of Communicating Finite State Processes.
PhD thesis, Department of Computer Science, Brown University, 1984.
Department of Computer Science Technical Report No. CS-84-05.

[SMS86] B. Shenker, T. Murata, and S. M. Shatz. Use of Petri net invariants
to detect static deadlocks in Ada programs. In Proceedings of the Fall
Joint Computer Conference, pages 1072-1081, November 1986.

[Sun81] Carl A. Sunshine, editor. Communication Protocol Modeling. Artech
House, Dedham, MA, 1981.

[Tai85] K. C. Tai. Reproducible testing of concurrent Ada programs. In Pro­
ceedings of SoftFair II, pages 49-56, December 1985.

[Tay83a] Richard N. Taylor. Complexity of analyzing the synchronization struc­
ture of concurrent programs. Acta Informatica, 19:57-84, 1983.

[Tay83b] Richard N. Taylor. A general-purpose algorithm for analyzing con­
current programs. Communications of the ACM, 26(5):362-376, May
1983.

[TK091] K.C. Tai, R.H. Karver, and KE. Obaid. Debugging concurrent ada
programs by deterministic execution. IEEE Transactions on Software
Engineering, 17(1):45-63, January 1991.

[TOSO] Richard N. Taylor and Leon J. Osterweil. Anomaly detection in con­
current software by static data flow analysis. IEEE Transactions on
Software Engineering, SE-6(3):265-278, 1980.

[Win84] Glynn Winskel. A new definition of morphism on petri nets. In STAGS
84, Symposium of Theoretical Aspects of Computer Science, pages 140-
150, Paris, FRA, April 1984. LNCS 166.

[Win87] Glynn Winskel. Petri nets, algebras, morphisms, and compositionality.
Information and Computation, 72:197-238, 1987.

[Wol86] Pierre Wolper. Specifying interesting properties of programs in propo­
sitional temporal logics. In Proceedings of the ACM Symposium on
Principles of Programming Languages {13th), pages 184-193, St. Pe­
tersburg, Fla., January 1986.

[YT88] Michal Young and Richard N. Taylor. Combining static concurrency
analysis with symbolic execution. IEEE Transactions on Software En­
gineering, 14(10):1499-1511, October 1988.

50

[YY91] Wei Jen Yeh and .Y!ichal Young. Compositional reachability analysis
using process algebra. In 4th Workshop on Testing and Verifications,
pages 49-59, Victoria, Canada, October 1991. ACM Sigsoft, AC~ress.

51

