
UCLA
UCLA Electronic Theses and Dissertations

Title
Statistical Inference Applications in Bioinformatics and Epidemiology

Permalink
https://escholarship.org/uc/item/9qj9r0mw

Author
Srinivasavaradhan, Sundara Rajan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9qj9r0mw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Statistical Inference Applications in Bioinformatics and Epidemiology

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Sundara Rajan Srinivasavaradhan

2021

© Copyright by

Sundara Rajan Srinivasavaradhan

2021

ABSTRACT OF THE DISSERTATION

Statistical Inference Applications in Bioinformatics and Epidemiology

by

Sundara Rajan Srinivasavaradhan

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2021

Professor Christina Panagio Fragouli, Chair

Over the past few decades, engineering and statistical principles have played a significant

role in the advancement of biology and medicine. In this dissertation, we study two prob-

lems which have applications in bioinformatics and epidemiology, respectively. We look at

these problems through the lens of statistical inference, and propose exact and approximate

algorithms.

The first line of work is on sequence reconstruction over deletion channels, which lies

at the intersection of theoretical computer science, information theory and bioinformatics.

Deletion channels have become increasingly relevant in bioinformatics to model impairments

in DNA sequencing and DNA data storage. Prior works in theoretical computer science

have proposed sequence alignment heuristics for deletion impairments. We take an alternate

approach to this problem and propose algorithms that are rooted in statistical principles,

such as maximum-likelihood decoding and maximum-aposteriori decoding. Our algorithms

outperform the state-of-the-art algorithms in this space. Along the way, we also develop

mathematical tools that are of general interest beyond the study of deletion channels.

The second line of work is on group testing which is related to information theory, medical

ii

testing and epidemiology. Group testing is a technique that pools together diagnostic samples

from multiple individuals to identify infected individuals in a population. Such a technique

potentially allows us to use fewer tests than what is required to test everyone individually.

Here again, we improve upon the state-of-the-art group testing algorithms by developing

a new statistical inference approach to this problem. Moreover, while traditional group

testing assumes independent infections, we observe that contagious diseases like COVID-19

are governed by community spread. We show that taking into account the side-information

provided by the community structure may lead to significant savings – upto 60% fewer

tests compared to traditional test designs in our experiments. We develop new bounds and

new approaches to encoding and decoding algorithms that take into account the community

structure and integrate group testing into epidemiological modeling.

iii

The dissertation of Sundara Rajan Srinivasavaradhan is approved.

Sriram Sankararaman

Lieven Vandenberghe

Suhas N. Diggavi

Christina Panagio Fragouli, Committee Chair

University of California, Los Angeles

2021

iv

To my parents, brother and late grandmother. . .

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background and Motivation . 2

1.1.1 Trace reconstruction . 2

1.1.2 Group testing . 4

1.2 Contributions . 6

1.3 Outline of Dissertation . 8

1.3.1 Part I: Deletion Channels and Trace Reconstruction 8

1.3.2 Part II: Group Testing and Epidemiology 9

I Deletion Channels and Trace Reconstruction 10

2 Sequencewise and symbolwise inference over multiple deletion channels 11

2.1 Notation and Tools . 17

2.2 Sequencewise ML for the deletion channel 25

2.2.1 A continuous optimization formulation for the single trace ML 25

2.2.2 ML via gradient ascent . 29

2.2.3 A heuristic for multiple traces . 29

2.3 Symbolwise MAP for the single-trace deletion channel 32

2.4 Symbolwise MAP for the t-trace deletion channel 36

2.5 Numerical results . 43

2.6 Conclusions and Open Questions . 48

2.7 Appendix . 51

vi

2.7.1 Proof of Theorem 2.3 . 51

2.7.2 Proof of Lemma 2.1 . 53

2.7.3 Proof of Lemma 2.2 . 54

2.7.4 Proof of Lemma 2.3 . 57

2.7.5 Computation of F(p, v) . 58

2.7.6 Computation of ∇pF(p, v) . 59

2.7.7 An algebraic definition of the infiltration product. 60

2.7.8 Symbolwise posterior probabilities for the remnant channel 62

2.7.9 A heuristic for ML optimization with a single trace. 64

2.7.10 Symbolwise MAP as the minimizer of Hamming error rate 66

3 ML inference as continuous optimization: deletion channels and beyond 69

3.1 Notation and Tools . 71

3.2 ML and SPs via expected likelihood function 73

3.2.1 ML via expected likelihood . 73

3.2.2 SPs via expected likelihood . 75

3.3 Coordinate refinement: A global ML heuristic based on expected likelihood . 76

3.3.1 Algorithmic aspects of expected likelihood 76

3.3.2 Coordinate refinement . 78

3.4 Example application: numerical results for the deletion channel 81

3.5 Conclusions and Open Questions . 84

3.6 Appendix . 84

3.6.1 Proof of Lemma 3.1 . 84

3.6.2 Complexity of computing the expected likelihood function 85

vii

3.6.3 Proof of Theorem 3.3 . 87

II Group Testing and Epidemiology 89

4 Static and independent infection model . 90

4.1 Related work . 92

4.2 Preliminaries . 93

4.2.1 Problem formulation . 93

4.2.2 A combinatorial optimization result 96

4.3 Main results . 97

4.3.1 A lower bound for E(G) . 97

4.3.2 A continuous optimization formulation 99

4.3.3 Expression for f(Q) . 100

4.4 Algorithms . 101

4.4.1 Baseline test designs . 102

4.4.2 Test designs based on gradient descent 103

4.5 Numerical results . 105

4.6 Conclusions and Open Questions . 108

4.7 Appendix and proofs . 109

4.7.1 Theorem 4.1 proof: filling in the gaps 109

4.7.2 Computing the objective function f(Q) 110

4.7.3 Expression for each partial derviative in ∇Qf(Q) 111

4.7.4 Computing ∇Qf(Q) . 112

4.7.5 Additional numerical results . 113

viii

5 Static community infection model . 118

5.1 Background . 119

5.2 Model and Notation . 121

5.2.1 Community model . 121

5.2.2 Infection models . 122

5.3 Lower bound on the number of tests . 124

5.4 Algorithms . 125

5.4.1 Adaptive algorithm . 125

5.4.2 Non-adaptive algorithms . 127

5.5 Loopy belief propagation decoder . 131

5.6 Numerical evaluation . 132

5.7 Conclusions and Open Questions . 135

5.8 Appendix . 135

5.8.1 Proof of Theorem 5.1 . 135

5.8.2 Proof of Lemma 5.1 . 136

5.8.3 LBP: message passing rules . 137

6 Dynamic infection model . 142

6.1 Related Work . 146

6.2 Preliminaries and problem formulation . 147

6.2.1 Preliminary: review of results from static group testing 148

6.2.2 Discrete-time SIR stochastic block model 149

6.2.3 The dynamic testing problem formulation 151

6.3 Main results . 153

ix

6.3.1 Results on static group testing with non i.i.d priors 154

6.3.2 Performance of existing non-adaptive algorithms in the static non-

identical priors . 160

6.3.3 Dynamic testing - bridging the gap 161

6.4 Numerical results . 164

6.5 Conclusions and open questions . 167

6.6 Appendix . 168

6.6.1 Comparison of discrete and continuous-time SIR models 168

6.6.2 Proof of Lemma 6.2 . 169

6.6.3 Proof of Lemma 6.3 . 170

6.6.4 Auxiliary results for Theorem 6.3 . 174

6.6.5 A heuristics for dynamic group testing 174

7 Conclusions and Open Questions . 177

References . 180

x

LIST OF FIGURES

1.1 Trace reconstruction: given deleted versions (traces) of an input sequence reconstruct

the unknown input sequence. 3

2.1 The t-trace deletion channel model: the sequence X is passed through t independent

deletion channels to yield t traces. We aim to estimate X from the Y is. 12

2.2 The single-trace deletion channel model. 12

2.3 A channel equivalence result: the t-trace deletion channel model in (a) is probabilisti-

cally equivalent to the the cascade of a deletion channel with the remnant channel (C2)

in (b). 20

2.4 Edit graph for sequences f = ‘001’ and g = ‘101’. Make a grid so the vertical edges

are aligned with a symbol in f and horizontal edges with g as shown. A diagonal

edge (i−1, j−1) → (i, j) exists if fi = gj . The thick red edges form a path from the

origin to the destination; this path corresponds to h =‘0101’ – sequentially append the

corresponding symbol to which each edge is aligned. It can also be verified that h is

a supersequence of both f and g, and could be obtained as a covering of f and g; the

path itself gives one such covering. This covering also corresponds to an error event

(or a deletion pattern) in the remnant channel which would result in outputs f and g

with input h = ‘0101’ – the deletion pattern is shown in the figure. 22

2.5 The forward-potential pforv (λ) at each vertex. 41

2.6 The reverse-potential prevv (λ) at each vertex. 42

2.7 Comparison of Hamming error rates for a blocklength n = 100 illustrated with 2,3,5

and 10 observed traces. Note that we do not run SMAP exact. for 5 and 10 traces

since its complexity grows exponentially with the number of traces. All the subplots

are plotted on the same scale to aid comparability across subplots. Few of the subplots

which contain algorithms with similar error rates also contain a zoomed-in inset view. 49

xi

2.8 Comparison of edit error rates for a blocklength n = 100 illustrated with 2,3,5 and 10

observed traces. Note that we do not run SMAP exact. for 5 and 10 traces since its

complexity grows exponentially with the number of traces. All the subplots are plotted

on the same scale to aid comparability across subplots. Few of the subplots which

contain algorithms with similar error rates also contain a zoomed-in inset view. . . . 50

2.9 The deletion error events occurring in the two channel models. Here ‘−’ corresponds

to a symbol being deleted and ‘+’ corresponds to a transmission. The deletion pattern

Di corresponds to the input symbol Xi. 51

2.10 The error events of the cascade model, expressed in terms of the error events of its

components. 52

2.11 Figure illustrating proof of Lemma 2.3. 58

2.12 The remnant channel . 62

2.13 Numerics for reconstruction from a single trace for a blocklength n = 20. This plot

compares the performance of coordinate switch heuristic (abbreviated “Coodsw. in-

terior init.” and “Coodsw. lattice init.”) with other trace reconstruction algorithms

from Section 2.5. “ML” refers to the true ML sequence obtained via an exhaustive

search on all 20 length binary sequences. The interior point initialization initializes

p = (0.5, 0.5, ..., 0.5) while the lattice point initialization appends the trace y with zeros

to obtain an n-length vector p = (y, 0, ..., 0). 66

3.1 A generic model of a probabilistic system channel where each Xi ∈ A = {1, ..., A}. The

goal is to estimate X given Y and we assume the knowledge of Pr(Y |X, C). 69

3.2 Figure illustrating the idea behind Theorem 3.3. 80

xii

3.3 Hamming error rates and likelihood gains for coordinate refinement (with both vertex

and interior point initializations), symbolwise MAP, and projected gradient ascent.

We compare for various blocklengths and deletion probabilities. We use box plots to

visualize the sample distribution of the likelihood gains. The ends of the boxes indicate

the upper and lower quartiles, the dot in each box is the median of the samples, the

whiskers indicate the extrema and the diamonds are deemed as outlier samples. We

note here that we enforce a lower cap for the likelihood gain at 0.1 to aid log domain

visualization. 82

4.1 Scatter plot of E(G) (on y-axis) vs. ELB(G) (on x-axis) normalized by the blocklength

N . E(G) is estimated via Monte-Carlo simulations while ELB(G) is computed exactly.

For a fixed prior distribution, we pick a variety of G matrices and plot the two metrics –

the left figure plots for every G ∈ {0, 1}2×4 while the right figure plots for 1000 choices

of G sampled from {0, 1}300×500. 99

4.2 Mean FP rates with the DND decoder for each algorithm, as a function of T . . . 106

4.3 Mean FN rates with the DD decoder for each algorithm, as a function of T . . . 107

4.4 Summary of the distribution of error rates plotted in Figure 4.2a 114

4.5 Summary of the distribution of error rates plotted in Figure 4.2b 115

4.6 Summary of the distribution of error rates plotted in Figure 4.3a 116

4.7 Summary of the distribution of error rates plotted in Figure 4.3b 117

5.1 Example illustrating outer sets. 122

5.2 (a). Error rate for Bernoulli design vs G1G2 design for the example. (b). An example

of factor graph. 130

5.3 Average number of tests comparison of various adaptive algorithms and combinatorial

bound. 132

xiii

5.4 FN rate comparison of various non-adaptive test designs with corresponding decoding

algorithms. 133

5.5 FP rate comparison of various non-adaptive test designs with corresponding decoding

algorithms. 133

5.6 The update rules for the factor and variable node messages. 141

6.1 Discrete-time SIR stochastic block model simulated on a population of 1000 individu-

als. Notice that without any testing or intervention a large fraction of the population

gets infected. With complete testing (individually testing everyone everyday) and in-

tervention (isolating individuals who are identified as infected) we can flatten the curve

to a large extent. We assume that test results are only available the next day; if the

test results were instantaneous we can identify all infections on the first day and isolate

them and there would be no subsequent new infections. 145

6.2 The dynamic testing problem with daily interventions. How many tests are needed to

achieve complete testing performance everyday, given that test results become available

after a day’s delay. 146

6.3 From dynamic to static testing: on day t we perfectly learn the states of all non-isolated

individuals at the time of testing on the previous day t− 1. Given this information, we

know that each susceptible individual in community j is later infected with probability

p
(t−1)
j independent of every other individual. How many tests are needed to attain a

vanishing probability of error on this non-identical static group testing problem? . . . 152

6.4 Experimental results. We plot the average number of tests required by each strategy

to identify the infection statuses of all non-isolated individuals each day for 2 different

sets of parameters. 165

6.5 Continuous vs discrete-time model. Continuous model in dashed and discrete model in

solid curves. Recovery probability r = 0.1 in all cases. 168

xiv

6.6 Experimental results for the heuristic procedure described in Appendix 6.6.5. We plot

the average number of infected individuals and the number of tests used as a function

of time (in days). For comparison, we also plot the performance when no one is tested

(no testing) and when everyone is tested (Complete). 172

xv

LIST OF TABLES

3.1 Table of common notation. 72

xvi

ACKNOWLEDGMENTS

As my graduate studies nears its end, it dawns upon me that this journey would not have

been possible without the constant support, encouragement and help of a number of people.

I am thankful to God in the first place for having given me the strength, a healthy life and

a great family.

I would like to express a sincere thank you to my advisor, Prof. Christina Fragouli.

Christina has been a continuous source of support and guidance throughout my Ph.D. She

is a phenomenal advisor and an incredible person, who always has the best interests of her

students at heart. Over the past five years, she helped me grow not only as a researcher,

but also as an individual.

I would also like to extend my gratitude to my co-advisor, Prof. Suhas Diggavi. Suhas has

been a source of inspiration as an extraordinary academician and an incredible co-advisor.

Like Christina, Suhas was also a source of support and guidance throughout my Ph.D. The

breadth and depth of his technical knowledge always amazes me.

Almost all of my research works have been team effort and I would like to thank all

those with whom I collaborated. In particular, I would like to thank Linqi – who also

graduated from ARNI – for guiding me during my earlier stages of Ph.D. I would then like

to thank Michelle, who worked with me as an undergraduate researcher and who has not

only been a fantastic collaborator but also a dear friend. I would also like to thank Pavlos,

who is a terrific researcher and a great collaborator; Pavlos is filled with positivity and is a

very helpful person. I would also like to thank my numerous collaborators and mentors at

Microsoft Research and at Edwards Lifesciences.

I was fortunate to have been surrounded by a number of incredible individuals at UCLA,

many of whom I call my dear friends. In particular my ARNI labmates and friends Gaurav

and Yahya have been my go-to individuals for support, help and advice during the major

portion of my Ph.D. life and I give my heartfelt thanks to both of them. Special mention

xvii

also to my friends from LICOS, Deepesh and Dhaivat, and a department friend, Parthe. I

would also like to thank a number of other labmates and Ph.D. friends at UCLA – Karmoose,

Martina, Navjot, Osama and Mine – for all the technical and non-technical conversations

during my stay.

The past few years would not have been as enjoyable without my wonderful friends who

have been a constant source of strength and support. My gratitude extends to all these

friends, and there are too many for me to individually name. Surely, these friendships will

last for a long time to come. My heartfelt thanks goes out to a very special person, SK who

is the best friend one could ever hope for. Big shout-out also to my roommates at LA – you

people made me call our house a home.

Finally, and most importantly, none of this would have been possible without the love

and support of my family and the many sacrifices they made. I will forever be grateful for

having them in my life.

xviii

VITA

2016 B. Tech + M. Tech. (Electrical Engineering), Indian Institute of Technol-

ogy Madras, India

2016 Joined Ph.D. program at the ECE Department, UCLA

2016 – 2018 Guru-Krupa fellowship, Department fellowship and Dean’s scholarship,

UCLA

2018 Advancement to Ph.D candidacy

2019 Research intern, Edwards Lifesciences, Irvine, CA

2020 Research intern, Microsoft Research, Redmond, WA

SELECTED PUBLICATIONS

Nikolopoulos, P., Srinivasavaradhan, S. R., Fragouli, C., and Diggavi, S., (2021, Novem-

ber) Group testing for community-based infections. IEEE BITS the Information Theory

Magazine.

Nikolopoulos, P., Srinivasavaradhan, S. R., Fragouli, C., and Diggavi, S., (2021, Novem-

ber). Community-aware group testing. (Under submission).

Srinivasavaradhan, S.R., Nikolopoulos, P., Fragouli, C. and Diggavi, S., (2021, October).

Improving Nonadaptive Group Testing via Gradient Descent. (Under submission).

xix

Srinivasavaradhan, S.R., Nikolopoulos, P., Fragouli, C. and Diggavi, S., (2021, July).

Dynamic group testing to control and monitor disease progression in a population. arXiv

preprint arXiv:2106.10765. (Under submission).

Srinivasavaradhan, S. R., Nikolopoulos, P., Fragouli, C., and Diggavi, S. (2021, July).

An entropy reduction approach to continual testing. In 2021 IEEE International Symposium

on Information Theory (ISIT) (pp. 611-616). IEEE.

Nikolopoulos, P., Srinivasavaradhan, S. R., Guo, T., Fragouli, C., and Diggavi, S. (2021,

March). Group testing for connected communities. In International Conference on Artificial

Intelligence and Statistics (pp. 2341-2349). PMLR.

Nikolopoulos, P., Srinivasavaradhan, S. R., Guo, T., Fragouli, C., and Diggavi, S. (2021,

June). Group testing for overlapping communities. In ICC 2021-IEEE International Con-

ference on Communications (pp. 1-7). IEEE.

Srinivasavaradhan, S.R., Du, M., Diggavi, S.N. and Fragouli, C., 2020. Algorithms for

reconstruction over single and multiple deletion channels. IEEE Transactions on Information

Theory, 67(6), pp.3389-3410.

Srinivasavaradhan, S.R., Du, M., Diggavi, S. and Fragouli, C., 2019, July. Symbolwise

MAP for multiple deletion channels. In 2019 IEEE International Symposium on Information

Theory (ISIT) (pp. 181-185). IEEE.

Srinivasavaradhan, S.R., Du, M., Diggavi, S. and Fragouli, C., 2018, June. On maxi-

mum likelihood reconstruction over multiple deletion channels. In 2018 IEEE International

Symposium on Information Theory (ISIT) (pp. 436-440). IEEE.

xx

CHAPTER 1

Introduction

In the past few decades, statistical methods have increasingly gained popularity and proven

their use in the understanding of biological systems. Rapid advancements on the front of

computational capacity and techniques have enabled the transformation of many areas such

as bioinformatics and epidemiology. In fact, the relationship between statistics and biology

can be traced further back to the 19th century, when patterns in data were used to identify the

source of a cholera outbreak [Sno55]; this study is considered to be the beginning of modern

epidemiology. Indeed, the father of modern statistics, Ronald Fisher, himself extensively

employed statistics to advance the field of genetics.

Biological models and ideas have also had a tremendous impact in computer science

and engineering – genetic algorithms and neural networks are two such ideas inspired by

biological systems. Very recently, the idea of storing digital information in DNA sequences

has received considerable attention owing to recent developments in biotechnology [CNS19,

OAC18]. Progress in the field of DNA data storage is imperative, given the massive amount

of data that is produced every single day; it is hypothesized that a coffee mug full of DNA

could theoretically store all of the world’s data [Tra21].

Motivated by the importance and implications of such inter-disciplinary research, in

this dissertation, we study two mathematical problems closely related to bioinformatics and

epidemiology, namely Trace Reconstruction and Group Testing. Trace reconstruction lies

at the intersection of theoretical computer science, information theory and bioinformatics

and is a problem of interest to all three areas. Group testing, on the other hand, is at the

1

intersection of information theory, compressed sensing and epidemiology. In the following

section, we motivate these problems and discuss an overview of the literature. Following this

discussion, we then outline the key contributions of this dissertation.

1.1 Background and Motivation

1.1.1 Trace reconstruction

Trace reconstruction studies the problem of reconstructing an unknown sequence by combin-

ing information from multiple deleted versions (also called traces) of itself (see Figure 1.1).

The problem was first introduced in the theoretical computer science community [BKK04]

but is very closely related to the construct of deletion channels, which is a topic of interest

in information theory (see [Mit09]). In fact, trace reconstruction is amongst one of the many

questions that concern deletion channels. Trace reconstruction and deletion channels have

become increasingly relevant in bioinformatics through their connection to DNA sequencing

and DNA data storage.

In de-novo DNA sequencing, an unknown DNA could be sequenced multiple times, yield-

ing several “reads” of it, but each of these reads suffer from errors (see for example [MDK17]).

The nature of these errors also vary widely, depending on the exact DNA sequencing tech-

nology used. Exactly modeling these error profiles is tedious, impractical, and also does

not provide a future-proof approach to the problem, as DNA sequencing technologies are

evolving at a rapid pace. To this end, a zeroth-order approximation to model such errors

is used, in the form of insertions, deletions and substitutions. Amongst these, deletions are

especially challenging to deal with.

DNA sequencing is an important component of DNA data storage, where it is used to

retrieve the stored data. DNA data storage is an exciting area as it promises extremely

high storage densities and long-term stability [CGK12]. Trace reconstruction ideas have

already been used for data retrieval in the first fully automated prototype of a DNA storage

2

APPLE

APE

PPE

APL

Figure 1.1: Trace reconstruction: given deleted versions (traces) of an input sequence reconstruct

the unknown input sequence.

system [OAC18,GYA18,YR20].

The deletion channel by itself, is known to be notoriously difficult to analyse. The

capacity of a single deletion channel is still unknown ([DMP,DG06,DG01]); as are optimal

coding schemes. Statistical estimation over deletion channels (which is the goal in trace

reconstruction) is a difficult problem to analyze due its highly combinatorial nature. To

the best of our knowledge, as yet there are no efficient estimation algorithms over deletion

channels with statistical guarantees.

A number of works in theoretical computer science have studied the problem of trace

reconstruction [HMP08,PZ17,DOS,HPP18,NP17,HL18,Cha19]. The main question these

works address is how many deleted reads are needed for perfect reconstruction of an input

sequence? They show that the required number of traces (or reads) through independent

deletion channels grows with the input length, either exponentially in the worst case or

sub-polynomially in the average case.

In practice, as is the case in DNA data storage, one may only be able to observe a few

of these reads and as a result, perfect reconstruction may turn out to be infeasible. A very

extreme example is if one observes only one trace – it is impossible to reconstruct the original

sequence even if a single symbol was deleted. Therefore, a more pragmatic approach to trace

reconstruction is to study the following question – given a fixed number of traces, what is

the best estimate of the input sequence? This question has a more statistical inference flavor

and Part I of this dissertation is devoted to answering this question.

3

1.1.2 Group testing

Our recent experience with COVID-19 has revealed the key role of epidemiological models

and testing in the fight against pandemics (e.g. [TRL20,BBL20]). For any new disease or

variant of the existing ones, we will always need the ability to expeditiously deploy strategies

that allow efficient testing of populations and empower targeted interventions (ideally at an

individual level).

Group testing is a technique that can identify the infected individuals in a population

with fewer tests than the ones needed to test everyone individually. Instead of testing each

person individually, group testing applies pooled tests on the top of groups of diagnostic

samples from multiple individuals. When pooling together these samples, particular care

is taken, so that the testing material is not diluted during the mixing process and the

sensitivity/specificity of the tests used is not altered significantly. The key insight is that if

infections are sparse, then many group-test outcomes are likely to be negative, and therefore

all individuals included in them can be deemed healthy. However, if a group test is positive,

then one cannot directly tell which individual(s) included in the test are infected; additional

testing or careful decoding of other test results is therefore necessary. Accordingly, group

testing offers significant benefits for sparse regimes of infection. On the other hand, if

infections follow a linear or mildly sublinear regime, then individual testing has been found

to be optimal [Ald19,BPS20].

Group testing has a rich history dating back to R. Dorfman in 1943, who first introduced

the concept during World War II, when the U.S. military sought to identify soldiers infected

with syphilis, but tests were expensive [Dor43]. Then on, a number of variations and setups

have been examined [AJS19,DH93,MA16].

Simply stated, the typical group-testing setup assumes a population of N individuals out

of which a few are infected, and the goal is to design testing strategies and corresponding de-

coding algorithms to identify the infections from the test results. Most works revolve around

4

proposing a particular hand-crafted test design (e.g. random Bernoulli design) coupled with

a decoding strategy (e.g. Definite Defectives, Definite Non-Defectives), and guarantees are

provided on the number of tests required to achieve a vanishing probability of error. Ad-

ditionally, order-optimality results have been proved for the asymptotic regime, where the

population size tends to infinity. For example, in a population of N →∞ members, if very

few people (say k < N1−Ω(1)) are infected, one can identify them with as low as O(k log N
k
)

pool tests performed in multiple adaptive stages or O(k logN) pool tests performed in a

single, non-adaptive stage [AJS19,BPS20] 1.

Interestingly, group testing is being re-invented nowadays in the context of the pan-

demic [GG20, Bro20, Ell20, Ver20, Gho20, KLL20], and several countries (including India,

Germany, US, and China) have already deployed preliminary group-testing strategies [Mal20,

FDA20]. Also, companies and schools use pool tests to regularly monitor parts of their pop-

ulation, and then do individual tests once a pool test comes positive (which is similar to

Dorfman’s approach).

The assumptions traditionally made in group testing have a few drawbacks, in particular,

they assume a static, independent model of infection. However, viral diseases among humans

have an important characteristic: infections are governed by community spread, and are

therefore correlated. As a use case, consider an apartment building consisting of families that

have practiced social distancing; clearly, there is a strong correlation on whether members

of the same family are infected or not. Moreover, infections are also continually evolving

and proliferating through the population, even as tests are being administered. As a result,

group testing should also be studied as a “dynamic” problem, where one needs to design

testing strategies for each day. The static and dynamic cases are closely interrelated. For

instance, the static case can be viewed as identifying the “initial state” in the case of dynamic

evolution.

1O and Ω notations denote, respectively, the asymptotic upper and lower bounds, as N tends to infinity.

5

Given the above discussion, in this dissertation, we investigate the following three ques-

tions related to group testing: 1. For the static and independent infection model, how can

we design optimal testing strategies under constraints on the number of tests? 2. Does the

knowledge of a community structure help in the design of testing strategies and if so, by

how much? 3. How best can we use group testing to test a population over a time horizon,

when the number of tests are limited, test results are delayed, and when the infections are

continually proliferating? Part II of this dissertation is devoted to studying these questions.

We next outline our contributions in trace reconstruction and group testing.

1.2 Contributions

As motivated earlier in this chapter, we look at the trace reconstruction problem through the

lens of statistical inference. In particular, we ask the following two questions – given a fixed

number of traces, what is the most likely realization of the input sequence (sequencewise

maximum-likelihood decoding) and what is the most likely value taken by each symbol of

the input sequence (symbolwise maximum-aposteriori decoding)? The first question is an

important component to further our understanding of deletion channel and its capacity

(see [Mit09]), while the second question is directly relevant in the context of DNA data

storage (see [RMR17, OAC18]). With this in mind, the high-level contributions of this

dissertation towards trace reconstruction are as follows:

Contribution 1: We introduce mathematical tools and constructs to systematically

visualize sequence alignments and analyze single and multiple deletion channels. Along the

way, we make connections to dynamic programming on graphs, non-commutative algebra

and optimization theory. These tools are of general interest beyond the specific problem

considered in this work.

Contribution 2: We establish an equivalence between finding the optimal sequencewise

maximum-likelihood decoder and a continuous optimization problem. In fact, we establish

6

this equivalence for a more general family of channels, which admit the deletion channel as

a special case. We then leverage on this equivalence to derive gradient-based heuristics for

trace reconstruction.

Contribution 3: We derive an exact algorithm for symbolwise maximum-aposteriori de-

coding over deletion channels. To the best of our knowledge, this is the first reconstruction

algorithm over deletion channels which is optimal, in the sense that it provably minimizes

the expected Hamming distance between the true sequence and its estimate.

From the discussion in the previous section, we recall that traditional group testing

assumes a static and independent model of infection, while in reality, infections are correlated

due to a community structure, and are continually evolving during the testing period. Our

contributions on the front of group testing are outlined as follows:

Contribution 4: We improve upon the state-of-the-art test designs in group testing for

the static, independent infection model. We study this problem under a resource-constrained

setting where the number of available tests are limited. To do this, we again look at the

problem through the lens of statistical inference, where we formulate the search for test

designs as an optimization problem that aims to minimize the Hamming error rate, similar

to our approach in Contribution 2. Consequently, we propose gradient-based heuristics to

search for good test designs.

Contribution 5: We show that taking into account the side-information provided by

the community structure may lead to significant savings – upto 60% fewer tests compared to

traditional test designs in the static infection model. We argue that leveraging the community

structure can also enlarge the regime where group testing offers significant benefits over

individual testing. To do this, we adapt existing test designs to account for the community

structure and also modify existing decoders to incorporate the information provided by the

community structure.

7

Contribution 6: We integrate testing into epidemiological modeling, and study how to

dynamically test a population given that test results are delayed by a day, and the disease

continually spreads in the population. We show that the dynamic testing problem reduces

to the static case given enough testing resources each day. As a result, existing static group

testing algorithms can be reused. We derive a new lower bound for static group testing which

proves the order-optimality of some known group test designs under certain assumptions;

this in turn proves the order-optimality of these test designs for the dynamic case as well.

1.3 Outline of Dissertation

This dissertation is organized in two parts. In Part I, we study deletion channels focused

on the problem of trace reconstruction, while Part II investigates various facets of group

testing, including its connection to epidemiology. We further detail Parts I and II below.

1.3.1 Part I: Deletion Channels and Trace Reconstruction

Part I is further subdivided into two chapters (Chapters 2, 3). In Chapter 2, we first intro-

duce mathematical tools that aid in visualization and analysis of deletion channels. We then

use these tools to derive an exact algorithm that calculates symbolwise posterior marginals.

Further, we also formulate the maximum likelihood decoder as a discrete optimization prob-

lem and show its equivalence to a continuous optimization problem – we propose a gradient

descent heuristic to solve this problem. Finally, we illustrate numerics to demonstrate the

improvements our methods provide over existing trace reconstruction algorithms.

Chapter 3 generalizes the equivalence idea introduced in Chapter 2 to fit more general

channel models. Further, we use this perspective to propose other gradient-based heuristics

for trace reconstruction which improve upon the methods in Chapter 2 in certain situations.

8

1.3.2 Part II: Group Testing and Epidemiology

Part II is further subdivided into three chapters (Chapters 4, 5 and 6). In Chapter 4

we study group testing for a static infection model with non-uniform priors. Unlike prior

works, we take a practical approach to this problem: we fix the decoder and the number of

tests, and we ask what is the best test design one could use? We examine this problem for

the definite non-defectives (DND) decoder and formulate it as a (non-convex) optimization

problem, where the objective function is the expected number of errors for a particular design.

We propose an approximate solution via gradient descent, which we further optimize with

informed initialization.

In Chapter 5, we study group testing in the presence of correlations, where the corre-

lation is induced by a community structure. Our goal in this chapter is to indicate what are

potential benefits, and describe what are some first ways group testing can leverage commu-

nity knowledge, both in terms of designing tests as well as incorporating this knowledge on

the side of the decoder. In Chapter 6, we consider the dynamics of disease spread and study

how static group testing can be used in such a setting. We first prove our new lower bound

for the static case and then show the order-optimality of existing group testing algorithms.

We then make precise the conditions under which the dynamic testing problem reduces to

the static case, enabling the use of static group testing algorithms.

Parts of this dissertation are presented in [SDDa,SDDb,SDD20,SDF20,NRG21,NSG21,

SNF21b,SNF21a,NSF21].

9

Part I

Deletion Channels and Trace

Reconstruction

10

CHAPTER 2

Sequencewise and symbolwise inference over multiple

deletion channels

Summary: In this chapter, we study the trace reconstruction problem over multiple deletion

channels through the lens of statistical inference. We first introduce mathematical tools that

aid in visualization and analysis of deletion channels. We then use these tools to derive an

exact algorithm that calculates symbolwise posterior marginals. Further, we also formulate

the maximum likelihood decoder as a discrete optimization problem and show its equivalence

to a continuous optimization problem – we propose a gradient descent heuristic to solve

this problem. Finally, we illustrate numerics to demonstrate the improvements our methods

provide over existing trace reconstruction algorithms.

Sequence reconstruction over deletion channels, both with and without a codebook, has

received considerable attention in the information theory as well as in the theoretical com-

puter science literature. From an information theory perspective, reconstruction over the

deletion channel, or more specifically a maximum-likelihood (ML) argument for the deletion

channel, would give further insight on the capacity of the deletion channel, a long-standing

open problem (see [Mit09]). To quote [Mit09] – “at the very least, progress in this direction

would likely surpass previous results on the capacity of the deletion channels”. Yet, there

are no results on reconstruction over a deletion channel with statistical guarantees. In this

chapter, we take steps in this direction.

In this space, the problem of trace reconstruction, as introduced in [BKK04], has also

received renewed interest in the past few years (see [HMP08,PZ17], [DOS], [HPP18], [NP17],

11

[HL18], [Cha19]). The problem of trace reconstruction can be stated simply as follows: con-

sider a sequence X which is simultaneously passed through t independent deletion channels

to yield t output subsequences (also called traces) of X (see Fig. 2.1). How many such traces

are needed to reconstruct X perfectly? A variety of upper and lower bounds for this prob-

lem have been proposed, both for worst case and average case reconstruction. Our problem

formulation is complementary to this, as we discuss next.

𝛿

𝛿

𝛿

𝑌1

𝑌2

𝑌𝑡

𝑋

= 𝑋1𝑋2…𝑋𝑛𝑋

Figure 2.1: The t-trace deletion channel model: the sequence X is passed through t independent

deletion channels to yield t traces. We aim to estimate X from the Y is.

Problem formulation. Given an input sequence of length n (known apriori), the inde-

pendently and identically distributed (i.i.d.) deletion channel deletes each input symbol

indepedently with probability δ, producing at its output a subsequence of the input se-

quence. Consider a sequence X passed through t (t is fixed) such deletion channels as shown

in Fig. 2.1. We call this the t-trace deletion channel model. We ask four main questions:

𝛿 𝑌𝑋

𝑋 = 𝑋1𝑋2…𝑋𝑛 𝑌 = 𝑌1𝑌2…𝑌𝑚

Figure 2.2: The single-trace deletion channel model.

1. Sequencewise maximum-likelihood with one trace: For t = 1 (also called single-

trace deletion channel, see Fig. 2.2), what is the maximum-likelihood estimate ofX having

12

observed Y = y, i.e., a solution to argmax
x∈{0,1}n

Pr(Y = y|X = x).

2. Sequencewise maximum-likelihood with multiple traces: For a fixed t, with t > 1,

what is the maximum-likelihood estimate ofX having observed Y 1 = y1, Y 2 = y2, ..., Y t =

yt, i.e.,

argmax
x∈{0,1}n

Pr(Y 1 = y1, Y 2 = y2, ..., Y t = yt|X = x).

3. Symbolwise MAP with one trace: For t = 1 and Xi ∼ ind. Ber(pi) in Fig. 2.2, what

are the posterior distributions of Xi given the trace Y = y, i.e., compute Pr(Xi = α|Y =

y).

4. Symbolwise MAP with multiple traces: For a fixed t, with t > 1 and Xi ∼

i.i.d. Ber(0.5) in Fig. 2.1, what are the posterior distributions of Xi given all traces

Y 1 = y1, Y 2 = y2, ..., Y t = yt, i.e., compute Pr(Xi = α|Y 1 = y1, Y 2 = y2, ..., Y t = yt).

We make a few notes.

• For a channel with memory such as the deletion channel, the symbolwise MAP/ML es-

timate and sequencewise MAP/ML estimate are not equivalent. For example, consider

t = 1, n = 6 in Fig. 2.2 and say we observe the trace Y = 1010. The symbolwise MAP

estimate with uniform priors for this case can be computed to be X̂smap = 100110 whereas

the sequencewise ML estimate is X̂ml = 101010.

• An answer to 3) above doesn’t lead to a natural solution for 4) which is also due to deletion

channels possessing memory. In particular, for a memoryless channel, we have Y j
i −Xi−Y k

i

and hence Pr(Xi = α|Y j, Y k) ∝ Pr(Y j
i , Y

k
i |Xi = α) = Pr(Y j

i |Xi = α) Pr(Y k
i |Xi = α) ∝

Pr(Xi = α|Y j) Pr(Xi = α|Y k); so one could first obtain the posterior probabilities from

each independent observation and combine them after. However, this is not the case for

13

deletion channels since the markov chain Y j
i −Xi − Y k

i no longer holds. As a result, one

first needs to “align” all the observations in order to compute the likelihoods.

• Solving 2) and 4) naturally leads to two different algorithms for average-case trace re-

construction – one that selects the most likely sequence X and the other that selects the

most likely value for each symbol Xi. However, the problem formulations in 3) and 4) ask

a question complementary to that of trace reconstruction: given a fixed (possibly a few)

number of traces, what is our “best” guess of X? The two problems 2) and 4) have differ-

ent quantification of the word “best”. Unlike trace reconstruction, we are not concerned

with perfect reconstruction (since perfect reconstruction may not be possible with just a

few traces). We also note that error rate guarantees for our algorithms (not a part of this

dissertation) would naturally lead to upper bounds for trace reconstruction.

• The challenges associated with solving 1) and 2) and solving 3) and 4) are very different.

On the one hand, solving 1) and 2) amounts to discovering alternate, equivalent or ap-

proximate formulations for the seemingly difficult discrete optimization problems. On the

other hand, the challenge with 3) and 4) involves the design of efficient algorithms that

are capable of exactly computing/approximating the symbolwise posterior probabilities,

for which “closed form” expressions can be derived.

Contributions. Our main contributions are as follows.

• We introduce mathematical tools and constructs to visualize and analyze single-trace and

t-trace deletion error events (see Section 2.1).

• For the single-trace deletion channel, we establish an equivalence between finding the

optimal ML decoder and a continuous optimization problem we introduce (see Section 2.2).

This equivalence allows for the use of existing techniques for continuous optimization to

be employed for a seemingly difficult discrete optimization problem. This continuous

14

optimization problem also turns out to be a signomial optimization. Furthermore we also

provide a polynomial time trace reconstruction heuristic with multiple traces that exploits

this formulation.

• In Section 2.3, we prove the following:

Theorem 2.1. For the single-trace deletion channel model with priors Xi ∼ ind. Ber(pi)

and observed trace Y = y, the symbolwise posterior probabilities Pr(Xi = 1|Y = y) ∀ i can

be computed in O(n2) time complexity.

• In Section 2.4, we prove the following:

Theorem 2.2. For the t-trace deletion channel model with priors Xi ∼ i.i.d. Ber(0.5)

and observed traces Y 1 = y1, ..., Y t = yt, the symbolwise posterior probabilities Pr(Xi =

1|Y 1 = y1, ..., Y t = yt) ∀ i can be computed in O(2tnt+2) time complexity.

Tools and techniques. In terms of theoretical tools, the series of books by Lothaire

([Lot97,Lot02,Lot05]) extensively use algebraic tools for problems in the combinatorics of

sequences (or words), and this chapter borrows some notation and leverages on a few of their

results.

Biological motivation. Trace reconstruction in itself was motivated, in part, by problems

in DNA sequence reconstruction. One such problem was to infer the DNA sequence of a com-

mon ancestor from the samples of its descendants. Our problem definition, that considers a

fixed value of t, would fit naturally in a scenario with a fixed number of descendants where

perfect reconstruction may not be possible. Our motivation for considering this problem also

comes from a recent DNA sequencing technology called nanopore sequencing. The t-trace

deletion channel model is a simplistic model to approximately capture the process of a DNA

15

sequence passed through a nanopore sequencer1.

More related work. This chapter falls under the general umbrella of sequence reconstruc-

tion over deletion channels (also see Levenshtein’s work [Lev01]), where we offer, to the

best of our knowledge, the first non-trivial results on maximum likelihood and maximum

aposteriori estimates for the single and multiple deletion channel. As mentioned earlier, the

complementary problem of trace reconstruction falls closest to this work.

The deletion channel by itself is known to be notoriously difficult to analyse. As stated

earlier, the capacity of a single deletion channel is still unknown ([DMP,DG06,DG01]); as

are optimal coding schemes. Prior works have looked at the design of codes for deletion

channels ([Rat05, RM00, TTV17]); these works consider use of a codebook (we do not).

Statistical estimation over deletion channels is a difficult problem to analyze due its highly

combinatorial nature. To the best of our knowledge, as yet there are no efficient estimation

algorithms over deletion channels with statistical guarantees.

Very recently, a variant of the trace reconstruction problem called coded trace recon-

struction has been proposed, motivated by portable DNA-based data storage systems using

DNA nanopores (see [AVD19,CGM19,BLS19,SGP21]) and we believe that the ideas in this

chapter may prove useful in such a setting.

There are other works on sequence assembly (see for example, [LD09], [SKC16]), where

multiple short reads (from different segments of a sequence) are used to reconstruct the

bigger sequence. The work in this chapter differs from sequence assembly since we are in-

terested in inferring the entire length sequence and not just small segments of it (which are

then “stitched” together in sequence assembly).

Chapter organization. Section 2.1 introduces our notation and visualization tools for the

1As seen in [MDK17] there are more complicated effects of the nanopore reader not captured in this
simple representation.

16

single and t-trace channel error events; Section 2.2 provides a result concerning questions

1) and 2) wherein we prove the equivalence of ML decoding in question 1) to solving a

continuous optimization problem; Section 2.3 answers question 3) for the single-trace chan-

nel; Section 2.4) answers question 4) for the t-deletion channel; Section 2.5 gives numerical

evaluations; and Section 2.6 concludes the chapter and discusses open questions.

2.1 Notation and Tools

Basic notation: We borrow some notation from [Lot97] which deals with non-commutative

algebra; we restate them here for convenience. Calligraphic letters refer to sets, capitalized

letters correspond to random variables and bold letters are used for functions. Let A be the

set of all symbols. Throughout this chapter, we will focus on the case where A = {0, 1},

though our methods extend to arbitrarily large sets of finite size. Define An to be the set of

all n-length sequences and A∗ to be the set of all finite length sequences with symbols in A.

For a sequence f , |f | denotes the length of f .

For integers i, j, we define [i : j] ≜ {i, i + 1, ..., j} if j ≥ i and [i : j] ≜ ∅ otherwise. We

also define [i] ≜ [1 : i].

For a vector or sequence x = (x1, x2, ..., xi−1, xi, xi+1, ..., xn), define

x(i→s) ≜ (x1, x2, ..., xi−1, s, xi+1, ..., xn),

where the ith coordinate of x is replaced by symbol s.

Binomial coefficient (section 6.3 in [Lot97]): Given sequences f and g in A∗, the

number of subsequence patterns of f that are equal to g is called the binomial coefficient of

g in f and is denoted by
(
f
g

)
. For example,

(′apple′
′ape′

)
= 2 since ′ape′ can be obtained from

two (overlapping) subsequences of ′apple′. This quantity has also been referred to as the

embedding number by another line of work [ERW08]. For two sequences of lengths n and m,

17

the binomial coefficient can be computed using a dynamic programming approach in O(nm)

(see [ERW08] or Proposition 6.3.2 in [Lot97]). When the alphabet A is of cardinality 1,
(
f
g

)
=(|f |

|g|

)
, the classical binomial coefficient with their respective lengths as the parameters. This

definition hence could be thought of as a generalization of the classical binomial coefficients.

We will denote by e the sequence of length 0, and define
(
f
e

)
≜ 1 ∀ f ∈ A∗. We also define

the classical binomial coefficient
(
a
b

)
≜ 0, whenever b > a or b < 0 for ease of use.

The binomial coefficient forms the backbone for the probabilistic analysis of deletion

channels since the input-output relation for a deletion channel (with deletion probability δ,

input X and output Y) can be expressed as

Pr(Y = y|X = x) =

(
x

y

)
δ|x|−|y|(1− δ)|y|. (2.1)

The proof is straightforward – the number of distinct error events that give rise to y from x is

exactly the number of subsequences of x which are equal to y. Each of these error events has

a probability δ|x|−|y|(1− δ)|y|, wherein the exponent of δ corresponds to the deleted symbols

and the exponent of 1− δ to the undeleted symbols.

Maximum Likelihood (ML) estimate: Given the definition of the binomial coefficient,

the maximum-likelihood (ML) estimate over a deletion channel with observed output Y = y

can be cast in the following form:

argmax
x∈{0,1}n

(
x

y

)
. (2.2)

In the case of multiple deletion channels with observed traces Y 1 = y1, ..., Y t = yt, the ML

formulation is similar:

argmax
x∈{0,1}n

t∏
j=1

(
x

yj

)
. (2.3)

As yet, there is no known efficient way to come up with a solution for either of the above

two formulations (see [Mit09]).

18

Relaxed binomial coefficient. We now introduce the function F(·) which can be thought

of as a real-valued extension of the binomial coefficient. This function is used in sections 2.2

and 2.3.

An intuitive definition is as follows: Consider a random vector Z ∈ {0, 1}n such that Zi ∼

ind. Ber(pi), and let p be the vector of probabilities of length n. Then F(p, v) = EZ∼p

(
Z
v

)
,

i.e., F(p, v) is the expected number of times v appears as a subsequence of Z. If p ∈ {0, 1}n,

then Z = p with probability 1 and F(p, v) =
(
p
v

)
. More precisely, F(·) is defined as:

Definition 2.1.

F : [0, 1]n × {0, 1}m → R,

F(p, v) ≜



∑
S|S⊆[n],
|S|=m

m∏
i=1

pviSi
(1− pSi

)1−vi 1 ≤ m ≤ n

1 0 = m ≤ n

0 else.

Though at first sight F(p, v) sums over an exponential number of subsets, a dynamic

programming approach can be used to compute it in O(nm) time complexity (see Ap-

pendix 2.7.5). Note that this is the same complexity as computing the binomial coefficient.

Decomposition of the t-trace deletion channel: The following definitions and ideas

are relevant to the results pertaining to multiple traces. We first state a result that aids in

thinking about error events in multiple deletion channels.

The events occurring in the t-deletion channel model can be categorized into two groups:

1. an input symbol is deleted in all the t-traces,

2. an input symbol is reflected in at least one of the traces.

19

The error events of the first kind are in some sense “not correctable” or even “detectable”

in any situation since it is impossible to tell with absolute certainty what and where the

deleted symbol could have been (although the probabilities need not be uniform). The

events of the second kind, however, can be detected and corrected in some situations. This

thought process gives rise to a natural decomposition of the t-deletion channel model into a

cascade of two channels: the first one being a deletion channel which captures error events

of the first kind and the second one is what we call the remnant channel which captures

events of the second kind (see Fig. 2.3). More precisely, we define the remnant channel as

follows:

Definition 2.2. Remnant channel: an input symbol to the remnant channel is reflected in

any k > 0 uniformly random traces and deleted in the rest with a probability
(
t
k

) δt−k(1−δ)k

1−δt
.

Thus, the probability of an input symbol reflected in a fixed set of k > 0 traces is equal to

δt−k(1−δ)k

1−δt
.

Note that probability of the union of all possible events here is
∑t

k=1

(
t
k

) δt−k(1−δ)k

1−δt
= 1,

validating our definition.

𝛿

𝛿

𝛿

𝑌1

𝑌2

𝑌𝑡

𝑋 𝛿𝑡𝑋 𝑝 = 𝛿

෨𝑌1

෨𝑌2

෨𝑌𝑡

𝑍

𝓒1

𝓒2

(𝑎) (𝑏)

Figure 2.3: A channel equivalence result: the t-trace deletion channel model in (a) is probabilisti-

cally equivalent to the the cascade of a deletion channel with the remnant channel (C2) in (b).

20

Theorem 2.3. The t-deletion channel model and the cascade of the deletion channel with

remnant channel shown in Fig. 2.3 are probabilistically equivalent, i.e.,

Pr(Y 1 = y1, Y 2 = y2, ..., Y t = yt|X = x) = Pr(Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt|X = x).

A rigorous proof of this theorem for arbitrary length sequences can be found in Ap-

pendix 2.7.1. A similar, though not equivalent, decomposition has been exploited in [HM14]

albeit for the purpose of characterizing the capacity of multiple deletion channels – there the

authors consider deletion patterns which are “undetectable”; for example, a deletion in the

deletion channel C1 in the cascade model is undetectable since none of the traces will reflect

that input symbol. However, our channel decomposition result does not appear in [HM14].

Edit graph ([Gus97]): Similar graph constructs have been defined in related problems on

common supersequences and subsequences (see [NO01] for example). This graph is closely

related to the error events in the remnant channel. We start with a simple case and generalize

subsequently. Define a directed graph called edit graph given two sequences f and g, where

every path connecting the “origin” to the “destination” on the edit graph yields a superse-

quence h of f, g, where h is “covered” by f, g – i.e., each symbol of h comes from either f or

g or both. In other words, given that f and g are the outputs of the remnant channel (with

two outputs), each path from the origin of the edit graph to the destination corresponds to

a possible input h to the remnant channel and to an error event which resulted in outputs

f, g with input h.

For f and g in A∗, we form a directed graph G(f, g) with (|f |+ 1)(|g|+ 1) vertices each

labelled with a distinct pair (i, j), 0 ≤ i ≤ |f |, 0 ≤ j ≤ |g|. A directed edge (i1, j1)→ (i2, j2)

exists iff at least one of the following holds:

1. i2 − i1 = 1 and j1 = j2, or

2. j2 − j1 = 1 and i1 = i2, or

21

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

(0,2)

(3,2)

(1,2)

(2,2)

(0,3)

(1,3)

(2,3)

(3,3)

0

0

1

1 10

0

1 0

1

0 1 0 1

0 0 1
1 0 1

ℎ

𝑓

𝑔

Figure 2.4: Edit graph for sequences f = ‘001’ and g = ‘101’. Make a grid so the vertical

edges are aligned with a symbol in f and horizontal edges with g as shown. A diagonal edge

(i−1, j−1) → (i, j) exists if fi = gj . The thick red edges form a path from the origin to the

destination; this path corresponds to h =‘0101’ – sequentially append the corresponding symbol to

which each edge is aligned. It can also be verified that h is a supersequence of both f and g, and

could be obtained as a covering of f and g; the path itself gives one such covering. This covering

also corresponds to an error event (or a deletion pattern) in the remnant channel which would

result in outputs f and g with input h = ‘0101’ – the deletion pattern is shown in the figure.

3. i2 − i1 = 1, j2 − j1 = 1 and fi2 = gj2 ,

where fi is the i
th symbol of the sequence f . The origin is the vertex (0, 0) and the destination

(|f |, |g|).

Let p = ((i1, j1), (i2, j2), ..., (im, jm)) be a path in G(f, g). We define s(p) to be the

sequence corresponding to the path. Intuitively, s(p) is formed by appending symbols in

the following way: append the corresponding f symbol for a vertical edge, g symbol for

horizontal edge, and f or g symbol for diagonal edge (see example Fig. 2.4). Any path from

(0, 0) to (|f |, |g|) corresponds to a supersequence of f and g and which is covered by f and

22

g. More formally, define s(p) ≜ x1x2...xm−1 where

xk =



fik+1
if jk = jk+1,

gjk+1
if ik = ik+1,

fik+1
else.

The construct of edit graph can be extended to more than 2 sequences with the same

idea. For sequences f1, f2, ..., ft, construct a t-dimensional grid with a number of vertices

(|f1| + 1)(|f2| + 1)...(|ft| + 1) labeled from (0, 0, ..., 0) to (|f1|, |f2|, ..., |ft|). A vertex u =

(i1, i2, ..., it) is connected to v = (j1, j2, ..., jt) (we say u → v) iff both of the following

conditions are met:

• jl = il or jl = il + 1 ∀ l ∈ [t], i.e., (i1, ..., it) and (j1, ..., jt) are vertices of a particular

unit cube. Only these type of vertices can share an edge in the grid graph.

• Let T ⊆ [t] be the collection of indices where jl = il+1. Then fljl is equal ∀ l ∈ T . For

example in 4 dimensional grid, consider the two vertices (10, 5, 8, 2) and (10, 6, 9, 2).

In this case T = {2, 3} since the second and third coordinates differ by 1. Therefore

(10, 5, 8, 2)→ (10, 6, 9, 2) iff f25 = f39. Note that if only one coordinate differs by 1 in

the two vertices, a directed edge always exists (in other words all non-diagonal edges

exist).

Define the vertex (0, ..., 0) to be the origin of this graph and the vertex (|f1|, ..., |ft|) to be the

destination. If |fj| = O(n) ∀ j, this graph has a number of vertices O(nt) and a maximum

number of edges O((2n)t) since each vertex has at most 2t − 1 outgoing edges.

Infiltration product (introduced in section 6.3 of [Lot97]): The infiltration product has

been extensively used in [Lot97], as a tool in non-commutative algebra. Here, we give

an edit-graph interpretation of this tool. A formal algebraic definition of the infiltration

23

product is in Appendix 2.7.7. Using the edit graph we can construct the set of possible

supersequences S(f, g) of f , g that are covered by the symbols in f and g. Indeed, multiple

paths could yield the same supersequence and we can count the number of distinct ways

N(h; f, g) one can construct the same supersequence h from f , g. We can informally define

the infiltration product f ↑ g of f and g, as a polynomial with monomials the supersequences

h in S(f, g) and coefficients ⟨f ↑ g, h⟩ equal toN(h; f, g). For the example in Fig. 2.4, there is

exactly one path corresponding to ‘101001’ and hence ⟨001 ↑ 101, 101001⟩ = 1 and similarly

⟨001 ↑ 101, 01001⟩ = 2. One could find these coefficients for all relevant sequences and form

the polynomial as described. We now give additional examples (see 6.3.14 in [Lot97]). Let

A = {a, b}, then

• ab ↑ ab = ab+ 2aab+ 2abb+ 4aabb+ 2abab,

• ab ↑ ba = aba+ bab+ abab+ 2abba+ 2baab+ baba.

The infiltration operation is commutative and associative, and infiltration of two sequences

f ↑ g is a polynomial with variables of length (or degree) at most |f |+ |g|; see [Lot97]. The

definition of infiltration extends to two polynomials via distributivity (precisely defined in

Appendix 2.7.7), and consequently to multiple sequences as well. For multiple sequences,

infiltration has the same edit graph interpretation: ⟨f1 ↑ f2 ↑ ... ↑ ft, w⟩ is the number of

distinct ways of constructing w as a supersequence of f1, f2, ..., ft so that the construction

covers w, i.e., construct the t-dimensional edit graph of f1, f2, ..., ft and count the number

of paths corresponding to w.

24

Table of notation

A A set

X A random variable or a random vector

x A scalar or a vector variable

|x| Length of the sequence x

[i : j] {i, i+ 1, ..., j}

x(i→s) (x1, x2, ..., xi−1, s, xi+1, ..., xn)(
f
g

)
Binomial coefficient: number of subsequence patters of f

equal to g

F(p, v) Relaxed binomial coefficient: EZ∼p

(
Z
v

)
⟨f ↑ g, h⟩ Infiltration product: number of ways of obtaining sequence

h as a “covered” supersequence of f and g

2.2 Sequencewise ML for the deletion channel

2.2.1 A continuous optimization formulation for the single trace ML

We here consider the single-trace ML decoding in (2.2), assuming that the output sequence

Y = y is non-empty. To the best of our knowledge, the only known method to solve (2.2)

involves solving a combinatorial optimization, essentially iterating over all possible choices of

x and computing the objective value for each of the choices. The reason is that there seems

to be no discernible pattern exhibited by the true ML sequence; as we see in the table below,

the true ML sequence at times extends a few runs, and at times even introduces new runs!

Here, we list a few examples of the trace and the corresponding 10-length ML sequences.

25

y The set of all xml sequences

10111 1100111111

1010 1101010100

000100 0000001000, 0000010000, 0000011000

111101 1111111001, 1111111011

In this section, we show that one could equivalently solve the continuous formulation of

(2.2) to obtain a solution for (2.2). Before presenting the main result, we first state a useful

lemma which factors a given coordinate pi out of the relaxed binomial coefficient F(p, y) we

introduced in Definition 2.1.

Lemma 2.1. For p = (p1, p2, .., pi, ..., pn) and Y = y = y1...ym with n ≥ m > 0, we have

F(p, y) = F(p[n]\{i}, y) + pi
∑

k|yk=1

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m])

+(1− pi)
∑

k|yk=0

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m]).

Recall that F(p, y) sums over all m-length subsets S and associates pS with y. Intuitively,

this recursive relationship considers separately the cases where

• i /∈ S,

• i ∈ S and is associated with a particular yk where yk = 1,

• i ∈ S and is associated with a particular yk where yk = 0.

The detailed proof can be found in Appendix 2.7.2. It is clear from Lemma 2.1 that F(p, y)

is affine when projected onto each coordinate pi. Thus, the extrema of F(p, y) must occur

at the boundary of the support set of pi; i.e., at either pi = 0 or pi = 1. Combining this

with the fact that F(·) is a relaxed version of the binomial coefficient, we observe that the

26

maximization problem in (2.2) is equivalent to its real-valued extension. The following result

makes this precise.

Theorem 2.4. The ML decoding problem for the single-trace deletion channel

max
x∈{0,1}n

(
x

y

)
(2.4)

is equivalent to the problem

max
p∈[0,1]n

F(p, y). (2.5)

Furthermore, given any non-integral p∗ ∈ [0, 1]n that maximizes F(p, y), we can construct

a corresponding integral solution x∗ ∈ {0, 1}n that maximizes F(x, y) and consequently also

maximizes
(
x
y

)
.

Proof. As noted earlier, we have
(
x
y

)
= F(x, y). Therefore, we are interested in proving the

following:

max
x∈{0,1}n

F(x, y) ≡ max
p∈[0,1]n

F(p, y), (2.6)

where ≡ refers to that the two problems are equivalent (have the same optimal objective

value). We prove this by applying the following claim.

Claim: Given any feasible p = (p1, p2, ..., pi, ..., pn), at least one of the following holds true:

• F(p(i→0), y) ≥ F(p, y). Recall from notation that p(i→0) = (p1, p2, ..., pi−1, 0, pi+1..., pn)

is the vector where the ith coordinate is replaced by 0.

• F(p(i→1), y) ≥ F(p, y).

Thus if p∗ is an optimal solution to (2.5) with pi ∈ (0, 1), then at least one of p(i→0) or

p(i→1) is also an optimal solution. Sequentially applying this argument for each coordinate

of p shows that there exists a point in {0, 1}n which is an optimal solution to (2.5) and

consequently to (2.4).

27

It remains to prove our claim. We use Lemma 2.1 to factor out pi terms in F(p, Y):

F(p, y) = F(p[n]\{i}, y) + pi
∑

k|yk=1

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m])

+(1− pi)
∑

k|yk=0

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m]).

Now we express F(p(i→0), y) and F(p(i→1), y) as

F(p(i→0), y) = F(p[n]\{i}, y) +
∑

k|yk=0

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m]),

F(p(i→1), y) = F(p[n]\{i}, y) +
∑

k|yk=1

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m]).

Because 0 ≤ pi ≤ 1 it directly follows that

min
{
F(p(i→0), y),F(p(i→1), y)

}
≤ F(p, y) ≤ max

{
F(p(i→0), y),F(p(i→1), y)

}
,

thus proving our claim.

The real-valued optimization problem in (2.5) falls under the umbrella of signomial op-

timization which is, in general, NP-hard (see for example, [Xu14], [CS16]). A standard

technique for signomial optimization uses convexification strategies to approximate the opti-

mal value. In particular, as stated in [CS16], the main observation underlying their methods

is that certifying the nonnegativity of a signomial with at most one negative coefficient can

be accomplished efficiently. However, there are two problems with this approach in relation

to our work – 1. when expressed as a signomial optimization problem, all the coefficients

are negative in the ML optimization objective function, and 2. the objective function has

an exponential number of signomial terms as can be seen from Definition 2.1. As a result,

such strategies turn out to not be useful for the ML optimization problem. For instance,

the techniques in [CS16] resulted in the bound F(p, Y) ≤
(|p|
|Y |

)
for most instances of p and

Y , where | · | denotes the length of the vector/sequence. This is a trivial bound that uses

28

no information about p and Y other than their lengths. Moreover, with a slight change of

variables, (2.5) could also be expressed as a maximization of a convex function in a convex

set. With that being said, it is still unclear if (2.5) is solvable in polynomial time or not.

2.2.2 ML via gradient ascent

Given the continuous variable formulation of the ML problem in (2.5), a natural heuristic to

find an estimate of the ML sequence is to employ projected gradient ascent to solve (2.5). The

algorithm, in short, can be described as follows (the exact algorithm is detailed as Alg. 2.1):

Step I: Start from a randomly chosen interior point (in our case, we start from

p = (0.5, 0.5, ..., 0.5), the point corresponding to the uniform distribution).

Step II: Take a small step in the direction of the gradient ∇p F(p, y).

Step III: If the gradient step results in p moving out of [0, 1]n, project it back onto [0, 1]n.

Repeat Steps II and III until convergence.

Step IV: From the final p, determine the closest binary sequence to be the reconstructed

sequence.

Moreover in Appendix 2.7.6, we show using Lemma 2.1 that ∇p F(p, y) can be computed

in O(n2) as a “by-product” of computing F(p, y).

2.2.3 A heuristic for multiple traces

The continuous variable ML formulation in (2.5) optimizes over the distributions p, instead

of sequences x. In particular, we proved the following:

max
x∈{0,1}n

(
x

y

)
≡ max

p∈[0,1]n
F(p, y) ≡ max

p∈[0,1]n
EZ∼p

(
Z

y

)
.

At this point, one could ask how this formulation extends to multiple traces Y 1 = y1, Y 2 =

y2, ..., Y t = yt. The following theorem gives such a continuous optimization formulation with

multiple traces.

29

Algorithm 2.1 Single trace projected gradient ascent for ML

1: Input: Blocklength n, Trace Y = y, Initial point p = (p1, p2, ..., pn), step-size ϵ, Max

iterations M , Convergence criteria C

2: Outputs: Estimated sequence X̂

3: Iteration count j = 0

4: while C is FALSE and j < M do

5: p← p+ ϵ∇pF(p,y)

F(p,y)

6: Replace pi ← 1 for all i : pi > 1

7: Replace pi ← 0 for all i : pi < 0

8: j ← j + 1

9: For each i, set X̂i = 1{pi > 0.5}.

10: return X̂ = X̂1X̂2...X̂n

Theorem 2.5. The ML decoding with multiple traces

max
x∈{0,1}n

(
x

y1

)(
x

y2

)
...

(
x

yt

)
(2.7)

is equivalent to

max
p∈[0,1]n

EZ∼p

[(
Z

y1

)(
Z

y2

)
...

(
Z

yt

)]
. (2.8)

Furthermore, given any non-integral p∗ ∈ [0, 1]n that maximizes EZ∼p

[(
Z
y1

)(
Z
y2

)
...
(
Z
yt

)]
, we can

construct a corresponding integral solution x∗ ∈ {0, 1}n that also maximizes
(
x
y1

)(
x
y2

)
...
(
x
yt

)
.

Proof. This theorem can be proved in the same way as Theorem 2.4, by showing that

EZ∼p

[(
Z
y1

)(
Z
y2

)
...
(
Z
yt

)]
is an affine function of each pi; here we only prove this fact and the

rest of the arguments follow exactly as in the proof of Theorem 2.4.

To show this we use Lemma 2.2 stated below; this Lemma is also closely related to the

channel equivalence of Theorem 2.3 (see Appendix 2.7.3).

Lemma 2.2. For h, f1, f2, ..., fm ∈ A∗,

30

(
h

f1

)(
h

f2

)
...

(
h

fm

)
=
∑
w∈A∗

⟨f1 ↑ f2 ↑ ... ↑ fm, w⟩
(
h

w

)
.

Using Lemma 2.2, we now have

EZ∼p

[(
Z

y1

)(
Z

y2

)
...

(
Z

yt

)]
= EZ∼p

∑
w∈A∗

⟨y1 ↑ y2 ↑ ... ↑ yt, w⟩
(
Z

w

)
=
∑
w∈A∗

⟨y1 ↑ y2 ↑ ... ↑ yt, w⟩EZ∼p

(
Z

w

)
=
∑
w∈A∗

⟨y1 ↑ y2 ↑ ... ↑ yt, w⟩F(p, w).

Note that F(p, w) is affine in each pi. Thus EZ∼p

[(
Z
y1

)(
Z
y2

)
...
(
Z
yt

)]
is a linear combination of

affine functions of each pi, and hence is also affine in each pi.

The formulation of (2.8), by itself, is not very useful as it is unclear on how to efficiently

compute EZ∼p

[(
Z
y1

)(
Z
y2

)
. . .
(
Z
yt

)]
. Indeed, if

(
Z
yi

)
and

(
Z
yj

)
are independent, the expectation of

products would decompose into a product of expectations, i.e.,
∏

j EZ∼p

(
Z
yj

)
=
∏

j F(p, y
j),

and each of the terms in the product can be computed in O(n2) as detailed in Appendix 2.7.5

– this is however not the case as
(
Z
yi

)
and

(
Z
yj

)
are not independent.

Having said that, we can now solve the maximization problem argmaxp∈[0,1]n
∏t

j=1 F(p, y
j)

and hope that the resultant solution is also a good solution for argmaxp∈[0,1]n EZ∼p

[(
Z
y1

)
...
(
Z
yt

)]
;

Algorithm 2.2 makes this idea precise. Moreover, instead of maximizing
∏t

j=1 F(p, y
j), we

can further simplify the gradient computations by taking the log of the objective function,

i.e., we solve argmaxp∈[0,1]n
∑t

j=1 logF(p, y
j). This heuristic turns out to perform well in a

variety of situations, as illustrated in Section 2.5. As for the complexity, note that Alg. 2.2

involves the computation of t gradients (each of which takes O(n2)) at each gradient iteration.

For a fixed number of max iterations M , the complexity of the algorithm is O(n2t).

31

Algorithm 2.2 Trace reconstruction heuristic via projected gradient ascent

1: Input: Blocklength n, Traces Y 1 = y1, Y 2 = y2, ..., Y t = yt, Initial point p =

(p1, p2, ..., pn), step-size ϵ, Max iterations M , Convergence criteria C

2: Outputs: Estimated sequence X̂

3: Iteration count j = 0

4: while C is FALSE and j < M do

5: p← p+ ϵ
∑t

j=1
∇pF(p,yj)

F(p,yj)

6: Replace pi ← 1 for all i : pi > 1

7: Replace pi ← 0 for all i : pi < 0

8: j ← j + 1

9: For each i, set X̂i = 1{pi > 0.5}.

10: return X̂ = X̂1X̂2...X̂n

2.3 Symbolwise MAP for the single-trace deletion channel

We here develop an algorithm to compute the symbolwise posterior probabilities for the

single-trace deletion channel when the input symbols are independently generated with arbi-

trary priors. Consider the single deletion channel model in Fig. 2.2, where X = X1...Xn, each

input symbol is generated Xi ∼ ind. Ber (pi), and we observe the trace Y = y = y1y2...ym

with m ≤ n. Define the vector of priors as p ≜ (p1, p2, ..., pn). We first give an O(n2) algo-

rithm to calculate the posterior probabilities Pr(Xi = 1|Y = y), which in turn provides the

symbolwise MAP estimate for the considered model. We then show how this algorithm can

be used for trace reconstruction. We take three steps to present the algorithm.

An expression for Pr(Xi = 1|Y = y). Let Pr(Xi = 1) = pi. As a first step, we have

Pr(Xi = 1|Y = y) =
Pr(Xi = 1, Y = y)

Pr(Y = y)
=

∑
x|xi=1

Pr(X = x) Pr(Y = y|X = x)∑
x Pr(X = x) Pr(Y = y|X = x)

32

(a)
=

∑
x|xi=1

Pr(X = x)
(
x
y

)
∑

x Pr(X = x)
(
x
y

) , (2.9)

where (a) is because for a deletion channel Pr(Y = y|X = x) =
(
x
y

)
δ|x|−|y|(1 − δ)|y|. To

proceed, we need to evaluate the summation in the numerator and the denominator. The-

orem 2.6 expresses (2.9) in terms of relaxed binomial coefficient terms F(·). Recall that

F(p, y) ≜ EX∼p

(
X
y

)
, which is the denominator term in (2.9).

Theorem 2.6. Let X = X1...Xn where Xi ∼ ind. Ber (pi), and let Y = y be the observed

trace when X is passed through a deletion channel. Then,

Pr(Xi = 1|Y = y) =
pi

F(p, y)

F(p[n]\{i}, y) +
∑

k|yk=1

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m])

 .

(2.10)

Proof. The proof of this theorem employs the same trick used in the proof of Lemma 2.1.

From (2.9), we have

Pr(Xi = 1|Y = y) =

∑
x|xi=1

Pr(X = x)
(
x
y

)
F(p, y)

.

Now,

∑
x|xi=1

Pr(X = x)

(
x

y

)
=
∑

x|xi=1

Pr(X = x)
∑
S⊆[n]
|S|=m

1{xS = y}

=
∑
S⊆[n]
|S|=m

∑
x|xi=1
xS=y

Pr(X = x). (2.11)

We first separate the outer summation into two cases: (a) S|i /∈ S and (b) S|i ∈ S. We can

express the first case as

∑
S⊆[n]

|S|=m,i/∈S

∑
x|xi=1
xS=y

Pr(X = x) =
∑

S⊆[n]\{i}
|S|=m

∑
x|xi=1
xS=y

Pr(X = x)

33

=
∑

S⊆[n]\{i}
|S|=m

∑
x|xi=1
xS=y

(
Pr(Xi = 1)Pr(XS = y) Pr(X[n]\S∪{i} = x[n]\S∪{i})

)

=
∑

S⊆[n]\{i}
|S|=m

pi Pr(XS = y)

 ∑
x|xi=1
xS=y

Pr(X[n]\S∪{i} = x[n]\S∪{i})


=

∑
S⊆[n]\{i}
|S|=m

pi Pr(XS = y)

 ∑
(xj |j∈[n]\S∪{i})

Pr(X[n]\S∪{i} = x[n]\S∪{i})


= pi

∑
S⊆[n]\{i}
|S|=m

Pr(XS = y) = piF(p[n]\{i}, y). (2.12)

For the second term, we express the set S as a union S = S ′∪{i}∪S ′′ such that S ′ ⊆ [i−1]

and S ′′ ⊆ [i+ 1 : n] to get:

∑
S⊆[n]
|S|=m,
i∈S

∑
x|xi=1
xS=y

Pr(X = x) =
m∑
k=1

∑
S⊆[n],
|S|=m,
Sk=i

∑
x|xi=1
xS=y

Pr(X = x)

=
m∑
k=1

∑
S′⊆[i−1]
|S′|=k−1

∑
S′′⊆[i+1:n]
|S′′|=m−k

∑
x|xi=1
xS=y

1{yk=1} Pr(X = x)

=
∑

k:yk=1

∑
S′⊆[i−1]
|S′|=k−1

∑
S′′⊆[i+1:n]
|S′′|=m−k

∑
x|xi=1

xS′=y[1:k−1]
xS′′=y[k+1:m]

Pr(Xi = 1)Pr(XS′ = y[1:k−1]) Pr(XS′′ = y[k+1:m])

Pr(X[n]\S′∪S′′∪{i} = x[n]\S′∪S′′∪{i})



= pi
∑

k:yk=1


(∑

S′⊆[i−1]
|S′|=k−1

Pr(XS′ = y[1:k−1])

)(∑
S′′⊆[i+1:n]
|S′′|=m−k

Pr(XS′′ = y[k+1:m])

)

34

Algorithm 2.3 Symbolwise posterior probabilities with one trace

1: Input: Trace Y = y, priors p

2: Outputs: Posteriors Pr(Xi = 1|Y = y) ∀ i

3: Compute F(p[1:k], y[1:j]) ∀ k, j and F(p[k:n], y[j:m]) ∀ k, j via Alg. 2.11

4: for i = 1 : n do

5: Use (2.10) to compute Pr(Xi = 1|Y = y)

(∑
x|xi=1

xS′=y[1:k−1]
xS′′=y[k+1:m]

Pr(X[n]\S′∪S′′∪{i} = x[n]\S′∪S′′∪{i})

)

= pi
∑

k|yk=1


(∑

S′⊆[i−1]
|S′|=k−1

Pr(XS′ = y[1:k−1])

)(∑
S′′⊆[i+1:n]
|S′′|=m−k

Pr(XS′′ = y[k+1:m])

)
= pi

∑
k|yk=1

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m]). (2.13)

Plugging in (2.12) and (2.13) in (2.9) proves the theorem.

Alg. 2.3 summarizes the computation of Pr(Xi = 1|Y = y).

A trace reconstruction heuristic with t traces. The posterior probability computation

in Alg. 2.3 naturally gives rise to a trace reconstruction heuristic that updates the symbolwise

statistics sequentially on the traces, where we use Alg. 2.3 with one trace at a time to

continually update Pr(Xi = 1|Y = y). The overall heuristic is described in Alg. 2.4. Note

that the algorithm first needs to compute F(p[1:k], y[1:j]) ∀ k, j and F(p[k:n], y[j:m]) ∀ k, j

which requires O(n2) operations, as described in Appendix 2.7.5. Given this, the algorithm

iterates over the n indices and computes the posteriors in O(n) for each of the index. Thus,

the complexity of the algorithm is O(n2); note that m = O(n) since y is a deleted version of

the input.

35

Algorithm 2.4 Trace reconstruction via iterative single-trace posterior probabilities

1: Input: Traces Y 1 = y1, ..., Y t = yt, input length n

2: Outputs: Estimate of the input X̂

3: Initialize priors pold = pnew ← (0.5, 0.5, ..., 0.5)

4: for l = 1 : t do

5: Use Alg. 2.3 with pold and yl to update pnew

6: pold ← pnew

7: for i = 1 : n do

8: if pnewi ≥ 0.5 then X̂i ← 1

9: else X̂i ← 0

10: return X̂1X̂2...X̂n

2.4 Symbolwise MAP for the t-trace deletion channel

In this section, we put to use the ideas and constructs introduced in section 2.1 to ex-

actly compute the symbolwise posterior probabilities given t-traces, which in turn gives a

symbolwise MAP estimate with uniform input priors (motivated by average case trace recon-

struction). With this formulation the symbolwise MAP with uniform priors can be seen as

a minimizer of the symbol error rate in the context of average case trace reconstruction. In

Appendix 2.7.8, we also provide a method to compute the symbolwise posterior probabilities

for the remnant channel – we encourage the reader to use this appendix as a warm-up. For

the t-trace deletion channel, similar expressions arise due to the channel equivalence result

of Theorem 2.3.

Let A = {0, 1}, and assume that X ∼ Uniform An. Our goal is to compute the sym-

bolwise posterior probabilities Pr(Xi = 1|Y 1 = y1, ..., Y t = yt), where Y j is the jth trace.

Our proposed algorithm is provided in Alg. 2.7 and estimates the symbolwise MAP (with

uniform priors). We can directly leverage Alg. 2.7 to reconstruct the input as follows: for

36

each index i, compute Pr(Xi = 1|Y 1 = y1, ..., Y t = yt) and decide

X̂i =


1, if Pr(Xi = 1|Y 1 = y1, ..., Y t = yt) ≥ 0.5

0, otherwise.

Through the rest of this section, we show how to compute Pr(Xi = 1|Y 1 = y1, ..., Y t = yt)

in two steps:

• We first give an expression for Pr(Xi = 1|Y 1 = y1, ..., Y t = yt) which sums over

potentially an exponential number of terms.

• We then show that this summation can be computed in polynomial time (polynomial

in the blocklength n).

Step 1: An expression for Pr(Xi = 1|Y 1 = y1, ..., Y t = yt).

Theorem 2.7. Assume X ∼ Uniform An or equivalently Xi ∼ Ber(0.5). The posterior

probability of the ith bit given the t traces can be expressed as

Pr(Xi = 1|Y 1 = y1, ..., Y t = yt)

=

 n∑
k=0

2n−k−1

(
n− 1

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩

+
n∑

k=0

k∑
j=1

2n−k

(
i− 1

j − 1

)(
n− i
k − j

) ∑
w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩


/

 n∑
k=0

2n−k

(
n

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩

. (2.14)

Note that the summation index, w||w|=k is over all sequences w of length k; this is

an alternate expression for w|w∈Ak. We follow this convention throughout the rest of the

paper.

37

Proof.

Pr(Xi = 1|Y 1 = y1, ..., Y t = yt) =
∑

x||x|=n,
xi=1

Pr(X = x|Y 1 = y1, ..., Y t = yt)

(a)
=

1

2n Pr(Y 1 = y1, ..., Y t = yt)

∑
x||x|=n,
xi=1

Pr(Y 1 = y1, ..., Y t = yt|X = x)

(b)
=

1

2n Pr(Y 1 = y1, ..., Y t = yt)

∑
x||x|=n,
xi=1

t∏
j=1

Pr(Y j = yj|X = x),

where (a) uses Bayes’ principle and (b) is because each deletion channel acts indepen-

dently. Recall that for a deletion channel with deletion probability δ, Pr(Y = y|X = x) =(
x
y

)
δ|x|−|y|(1− δ)|y|. Also, using the fact that Pr(Y 1 = y1, ..., Y t = yt) =

∑
x||x|=n

Pr(x) Pr(Y 1 =

y1, ..., Y t = yt|X = x) we have,

Pr(Xi = 1|Y 1 = y1, ..., Y t = yt) =

∑
x||x|=n,
xi=1

(
x
y1

)
...
(
x
yt

)
∑

x||x|=n

(
x
y1

)
...
(
x
yt

) . (2.15)

We first simplify the numerator
∑

x||x|=n,
xi=1

(
x
y1

)
...
(
x
yt

)
; the denominator can be simplified using

the same approach. Now,

∑
x||x|=n,
xi=1

(
x

y1

)
...

(
x

yt

)
(a)
=

∑
x||x|=n,
xi=1

∑
w∈{0,1}∗

(
x

w

)
⟨y1 ↑ ... ↑ yt, w⟩

=
∑
w∈A∗

⟨y1 ↑ ... ↑ yt, w⟩
∑

x||x|=n,
xi=1

(
x

w

)

(b)
=
∑
w∈A∗

2n−|w|⟨y1 ↑ ... ↑ yt, w⟩

1

2

(
n− 1

|w|

)
+
∑

j|wj=1

(
i− 1

j − 1

)(
n− i
|w| − j

)
where (a) is due to Lemma 2.2 and (b) due to Lemma 2.3 (both introduced in [SDDa]); see

Appendix 2.7.3 and Appendix 2.7.4 for the statement and proof.

38

Therefore we have,∑
x||x|=n,
xi=1

(
x

y1

)
...

(
x

yt

)
(a)
=

∞∑
k=0

2n−k−1

(
n− 1

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩

+
∞∑
k=0

k∑
j=1

2n−k

(
i− 1

j − 1

)(
n− i
k − j

) ∑
w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩

(b)
=

n∑
k=0

2n−k−1

(
n− 1

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩

+
n∑

k=0

k∑
j=1

2n−k

(
i− 1

j − 1

)(
n− i
k − j

) ∑
w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩, (2.16)

where in (a) we first fix |w| and then sum over all w of the given length and (b) holds because

the combinatorial terms are 0 when k > n. A similar analysis gives∑
x||x|=n

(
x

y1

)
...

(
x

yt

)
=

n∑
k=0

2n−k

(
n

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩. (2.17)

Plugging (2.16) and (2.17) in (2.15), we get the expression in Theorem 2.7,

Pr(Xi = 1|Y 1 = y1, ...,Y t = yt)

=

 n∑
k=0

2n−k−1

(
n− 1

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩

+
n∑

k=0

k∑
j=1

2n−k

(
i− 1

j − 1

)(
n− i
k − j

) ∑
w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩


/

 n∑
k=0

2n−k

(
n

k

) ∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩

.

Step 2: Dynamic program to compute
∑

w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩ and
∑

w||w|=k,
wj=1

⟨y1 ↑ ... ↑

yt, w⟩. Note that the number of sequences w such that |w| = k is O(2k) so a naive evaluation

39

is exponential in the blocklength n. We can, however, exploit the edit graph to come up

with a dynamic program resulting in an algorithm which is polynomial in n.

Recall that in the edit graph, ⟨y1 ↑ ... ↑ yt, w⟩ is equal to the number of distinct paths

from the origin (0, ..., 0) to the destination (|y1|, ..., |yt|) and which correspond to w. Hence,

(a)
∑

w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩ is the number of distinct paths of length k from origin to destina-

tion and,

(b)
∑

w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩ is the number of such paths of length k such that the jth edge of

the path corresponds to a ‘1’.

With this interpretation, the dynamic program for (a) follows naturally – the number of

k-length paths from the origin to any vertex is the sum of the number of (k−1)-length paths

from the origin to all incoming neighbors of the vertex. To make this formal, associate a

polynomial (in λ) for each vertex, such that the coefficient of λk is equal to the number of

paths of length k from the origin to v: we call it the “forward-potential” polynomial pforv (λ)

for vertex v, the coefficient of λk as earlier is denoted by ⟨pforv (λ), λk⟩. The dynamic program

to compute pforv (λ) for all v can be expressed as:

pforv (λ) =
∑
u|u→v

λpforu (λ). (2.18)

With this definition, we have∑
w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩ = ⟨pfordestination(λ), λ
k⟩.

In the example in Fig. 2.4, one could do the following: order the vertices (0, 0) to (3, 3)

lexicographically and then compute pforv (λ) in the same order. Because of the directed grid

nature of the edit graph, every vertex has incoming neighbors which are lexicographically

ahead of itself. Also we initialize pfor(0,0)(λ) = 1. For the example in Fig. 2.4, the forward-

potentials are shown in Fig. 2.5. The complexity of this dynamic program is O(2tnt+1) as it

goes over O(nt) vertices and for each vertex it sums O(2t) polynomials, each of degree O(n).

40

0

0

1

1 10𝟏 𝝀 𝝀𝟐 𝝀𝟑

𝝀

𝝀𝟐

𝝀𝟑

𝟐𝝀𝟐

𝝀𝟐

+𝟑𝝀𝟑

𝝀𝟑 + 𝟒𝝀𝟒

𝟑𝝀𝟑 𝟑𝝀𝟑

+ 𝟔𝝀𝟒
𝟒𝝀𝟒 + 𝟏𝟎𝝀𝟓

𝝀𝟑 + 𝟒𝝀𝟒 𝟒𝝀𝟒 + 𝟏𝟎𝝀𝟓
𝟑𝝀𝟒 + 𝟏𝟒𝝀𝟓 + 𝟐𝟎𝝀𝟔

Figure 2.5: The forward-potential pforv (λ) at each vertex.

We compute (b) as follows: pick an edge (u→v) which corresponds to ‘1’, count the

number of (j−1)-length paths from origin to u and multiply it with the number of (k−j)-

length paths from v to the destination – this is exactly the number of paths of length k

such that its jth edge is (u→v). Summing this term for all such edges which correspond to

1 gives us the term in (b). Note that we have already computed the number of k-length

paths (∀k) from origin to every vertex in pforv (λ) . We can similarly compute the number of

k-length paths (∀k) from every vertex to the destination as prevv (λ) – the “reverse potential”

polynomial. The dynamic program for prevv (λ) is:

prevv (λ) =
∑
u|v→u

λprevu (λ), (2.19)

with prevdestination(λ) = 1. The reverse potentials for the example in Fig. 2.4 is shown in Fig. 2.6.

Like in the case of forward potential, we first order the vertices reverse lexicographically

and then invoke the dynamic program above sequentially to compute the reverse potential

polynomial at each vertex.

With this, the term in (b) can be expressed as:

∑
w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩ =
∑
(u,v)|

s(u→v)=1

⟨pforu (λ), λj−1⟩⟨prevv (λ), λk−j⟩.

41

Algorithm 2.5 Computing the forward-potentials pforu (λ)

1: Input: Edit graph G(y1, ..., yt)

2: Outputs: pforv (λ) ∀ v

3: Order the vertices from (0, 0, ..., 0) to (|y1|, |y2|, ..., |yt|) lexicogaphically; let the ordered

list be V

4: Initialise pfor(0,...,0)(λ)← 1

5: for v ∈ V do

6: assign pforv (λ)←
∑

u|u→v λp
for
u (λ)

Algorithm 2.6 Computing the reverse-potentials prevu (λ)

1: Input: Edit graph G(y1, ..., yt)

2: Outputs: prevv (λ) ∀ v

3: Order the vertices from (|y1|, |y2|, ..., |yt|) to (0, 0, ..., 0) reverse lexicogaphically; let the

ordered list be V

4: Initialise prev(|y1|,|y2|,...,|yt|)(λ)← 1

5: for v ∈ V do

6: assign prevv (λ)←
∑

u|v→u λp
rev
u (λ)

0

0

1

1 10

𝟏𝝀𝝀𝟐

𝝀𝟑

𝝀

𝝀𝟐

𝝀𝟑

𝝀𝟐

+𝟑𝝀𝟑

3𝝀𝟒 + 𝟏𝟒𝝀𝟓 + 𝟐𝟎𝝀𝟔
𝟐𝝀𝟑 + 𝟖𝝀𝟒

+ 𝟏𝟎𝝀𝟓
𝝀𝟑

+𝟒𝝀𝟒

𝝀𝟐 + 𝟒𝝀𝟑

+ 𝟔𝝀𝟒
𝝀𝟑 + 𝟔𝝀𝟒 + 𝟏𝟎𝝀𝟓

𝟐𝝀𝟑 + 𝟒𝝀𝟒
𝝀𝟐

+𝟑𝝀𝟑

𝝀
+ 𝝀𝟐

Figure 2.6: The reverse-potential prevv (λ) at each vertex.

Alg. 2.7 now summarizes the computation of the posterior probabilities. This algorithm

iterates over all the edges (we have O((2n)t) of these), and also k, j (O(n) each). The time

42

Algorithm 2.7 Symbolwise MAP with t traces

1: Input: Traces Y 1 = y1, ..., Y t = yt, input length n

2: Output: X̂ = X̂1X̂2...X̂n

3: Construct edit graph G(y1, ..., yt)

4: Use Alg. 2.5 and Alg. 2.6 on G(y1, ..., yt) to calculate pforv (λ) and prevv (λ) ∀ v

5: for k ∈ [0 : n] do

6: assign
∑

w||w|=k

⟨y1 ↑ ... ↑ yt, w⟩ ← ⟨pfordestination(λ), λ
k⟩.

7: for each j ∈ [1 : n] do

8: Initialize temp← 0

9: for each edge u→ v ∈ G do

10: if s(u→v) = ‘1’ then

11: temp + = ⟨pforu (λ), λj−1⟩⟨prevv (λ), λk−j⟩

12: assign
∑

w||w|=k,
wj=1

⟨y1 ↑ ... ↑ yt, w⟩ ← temp

13: for i ∈ [1 : n] do

14: Use (2.14) to compute Pr(Xi = 1|Y 1 = y1, ..., Y t = yt)

15: X̂i ← 1 if Pr(Xi = 1|Y 1 = y1, ..., Y t = yt) > 0.5 and X̂i ← 0 otherwise

16: return X̂1X̂2...X̂n

complexity of Alg. 2.7 hence is O(2tnt+2).

2.5 Numerical results

In this section we show numerics supporting our theoretical results. In all of our experiments,

we generate the input sequence uniformly at random (motivated by average case trace re-

construction), and obtain the t traces by passing the input through a deletion channel (with

a deletion probability δ) t times. We then reconstruct the input from the obtained traces

and measure how close the reconstructed sequence is, to the actual input sequence.

43

We use two metrics to measure the performance of the reconstruction algorithms: 1.

Hamming error rate, which is defined as the average Hamming distance between the actual

input and the estimated sequence divided by the length of the input sequence and 2. Edit

error rate, which is defined as the average edit distance between the actual input and the

estimated sequence divided by the length of the input sequence. The reason for using Ham-

ming error rate is that our goal is to reconstruct a known-length sequence, which has been

the problem formulation throughout this work. Moreover, the Hamming error rate is also of

special interest to us since the symbolwise MAP is an optimal estimator for minimizing the

Hamming error rate (see Appendix 2.7.10 for a proof). We also use edit error rate as it is a

typical metric used in the context of insertion/deletion channels.

List of trace reconstruction algorithms compared in this work.

Abbreviation Description Complexity

Ind. post. comb. Independent posterior combination (Alg. 2.8) O(n2t)

BMA Bitwise majority alignment of [BKK04] (Alg. 2.9) O(nt)

Trace stats. Algorithm based on trace symbolwise statistics

from [HMP08] (Alg. 2.10)

O(n3.37 + nt)

Grad asc. Projected gradient ascent (Alg. 2.2) O(n2t)

SMAP seq. Sequential symbolwise MAP heuristic (Alg. 2.4) O(n2t)

SMAP exact Exact symbolwise MAP (Alg. 2.7) O(nt+22t)

Baseline algorithms:

1. Independent posterior combination: As pointed in the background section, comput-

ing the posterior probabilities for each deletion channel and combining them as if they

came from independent observations does not provide a natural solution for computing

the posterior probabilities for the t-trace deletion channel. One could, however, check

how such a naive combination of posteriors compares with our reconstruction algorithms

44

for t-traces. This is detailed as Alg. 2.8. The complexity of this algorithm is O(n2t) since

computing the posteriors takes O(n2) and we compute posteriors for t traces.

2. Bitwise Majority Alignment (introduced in [BKK04]): BMA reconstructs the

input sequence by first “aligning” the traces using a pointer for each trace, and then

taking the majority of the pointed symbols. BMA is detailed as Alg. 2.9. From an

efficiency standpoint, BMA is the most efficient of all the algorithms since it is linear in

the blocklength as well as the number of traces (O(nt)).

3. Trace statistics algorithm: An algorithm based on trace symbol statistics (also called

mean-based algorithms and summary statistics algorithms) has been extensively studied

for worst-case trace reconstruction (see [HMP08], [DOS], [NP17]). In essence, the algo-

rithm first estimates the “trace symbol statistics” – Pr(Yi = 1) ∀ i – from the obtained

traces and uses only these estimates to reconstruct X. However, it uses a new set of

traces for every position i, thus requiring at least n traces (see (3.6) and the paragraph

below (3.8) in [HMP08]). Here we modify the algorithm to adapt them for an arbitrary

number of traces; in particular, we reuse the traces while estimating Pr(Yi = 1) ∀ i. The

algorithm is detailed in Alg. 2.10.

The complexity analysis for this gets tricky since it depends on the algorithm used to solve

the set of 2n linear programs. The state-of-the-art algorithm for solving a linear program

in n variables takes approximately O(n2.37) (see [CLS19]); thus the complexity of Trace

statistics algorithm is O(n3.37 + nt), where the nt term corresponds to the complexity of

computing p̂j. However, in our implementation we use the solver from the SciPy Python

library which uses primal-dual interior point methods for solving linear programs. The

complexity of such methods is typically O(n3) making our implementation O(n4 + nt).

Also note that these are iterative methods and have many hidden constants (such as the

number of iterations for convergence).

We note that the state-of-the-art average-case trace reconstruction algorithms in the liter-

45

Algorithm 2.8 Trace reconstruction via independent posterior combination

1: Input: Traces Y 1 = y1, ..., Y t = yt, input length n

2: Outputs: Estimate of the input X̂

3: Initialize priors pold ← (0.5, 0.5, ..., 0.5)

4: for l = 1 : t do

5: Use Alg. 2.3 with pold and yl to compute posteriors pl,new

6: for i = 1 : n do

7: if
∏t

l=1 p
l,new
i ≥

∏t
l=1(1− p

l,new
i) then X̂i ← 1

8: else X̂i ← 0

Algorithm 2.9 Bitwise Majority Alignment

1: Input: Traces Y 1 = y1, ..., Y t = yt, input length n

2: Output: estimate of input X̂ = X̂1X̂2...X̂n.

3: Initialize cj = 1 for j ∈ [t].

4: Initialize X̂i = 1 for i ∈ [n].

5: for i ∈ [1 : n] do

6: Let b be the majority over all t of yjcj

7: X̂i ← b

8: Increment cj for each j such that yjcj = b

ature are applicable in the asymptotic regime where the blocklength n and the number of

traces t approach ∞; it is not clear how to adapt such algorithms for a finite blocklength

and a small number of traces. It is for this reason that we chose to compare against BMA

and Trace statistics algorithm, which can be easily adapted for the finite blocklength regime

and for a small number of traces. It should also be noted that the performance of the above

two algorithms may not be reliable with a small number of traces (as they are not designed

for this regime), yet we include them owing to the lack of better baselines.

46

Algorithm 2.10 Trace statistics heuristic

1: Input: Traces Y 1 = y1, ..., Y t = yt, input length n

2: Output: estimate of input X̂ = X̂1X̂2...X̂n.

3: Append each trace yj with zeros until each of them is of length n.

4: Assign p̂j ←
|{yl:ylj=1}|

t
.

5: for i ∈ [1 : n] do

6: Solve the 2 linear programs (3.6) in [HMP08] by fixing xi = 0 and xi = 1: let the

optimum value in the two cases be m0 and m1 respectively.

7: If m0 < m1, assign X̂i = xi ← 0. Else fix X̂i = xi ← 1.

Algorithms introduced in this paper:

1. Projected gradient ascent: Alg. 2.2 used as described, with max iterations M = 100

and convergence criteria C set as follows: the percentage difference in
∑

j F(p, y
j) over

two consecutive iterations is less than 0.1%.

2. Symbolwise MAP sequentially used one trace at a time: Alg. 2.4 used as de-

scribed.

3. Exact symbolwise MAP: Alg. 2.7 used as described.

Observations: In Fig. 2.7 and Fig. 2.8, we compare the Hamming and edit error rates

for the different algorithms described above.

• The 3 algorithms introduced in this work outperform the 3 baselines in most cases. The

Hamming error rate of Grad asc. with 2 and 3 traces is a notable exception as it does

worse than Ind. post. comb. However, it improves rapidly as we increase the number of

traces as seen in Fig. 2.7.

• Both Ind. post. comb. as well as our SMAP seq. struggle with the problem of diminishing

returns for Hamming error rate as they do not improve much with the number of traces.

47

This could indicate that considering traces one at a time could fail to accumulate extrinsic

information (for instance, it completely neglects the possible alignments given multiple

traces); one needs to simultaneously consider multiple traces in order to accomplish this.

SMAP seq. however, improves with the number of traces with respect to edit error rate.

• The Grad asc. is the “champion” amongst the algorithms we compare here, when it comes

to the edit error rate as illustrated by Fig. 2.8. The Grad asc. was constructed with the

aim of maximizing the likelihood of the observed traces, and this in turn seems to have

some correlation with minimizing the edit distance – it is not clear why this is the case.

• As seen in Fig. 2.7 (a) and (b), SMAP exact has the minimum Hamming error rate. This

supports the fact that symbolwise MAP is the minimizer of the Hamming error rate.

However, note that this does not necessarily minimize the edit error rate, as seen from

Fig. 2.8 (a) and (b).

2.6 Conclusions and Open Questions

In this chapter we gave, to the best of our knowledge, the first results and techniques to

compute posterior distributions over single and multiple deletion channels. We also pro-

vided a new perspective on the maximum-likelihood for the deletion channel by showing an

equivalence between a discrete optimization problem and a continuous formulation of it. In

this process, we introduced a variety of tools (the relaxed binomial coefficient, edit graph and

infiltration product) and demonstrated their use for analyzing deletion channels. We also

presented numerical evaluations of our algorithms and showed performance improvements

over existing trace reconstruction algorithms. An interesting open question is to come up

with error rate guarantees for the trace reconstruction algorithms introduced in this chap-

ter. Extending these methods to insertion-deletion-substitutions channels is another open

question.

48

(a) (b)

(c) (d)

Figure 2.7: Comparison of Hamming error rates for a blocklength n = 100 illustrated with 2,3,5

and 10 observed traces. Note that we do not run SMAP exact. for 5 and 10 traces since its

complexity grows exponentially with the number of traces. All the subplots are plotted on the

same scale to aid comparability across subplots. Few of the subplots which contain algorithms with

similar error rates also contain a zoomed-in inset view.

49

(a) (b)

(c) (d)

Figure 2.8: Comparison of edit error rates for a blocklength n = 100 illustrated with 2,3,5 and 10

observed traces. Note that we do not run SMAP exact. for 5 and 10 traces since its complexity

grows exponentially with the number of traces. All the subplots are plotted on the same scale to

aid comparability across subplots. Few of the subplots which contain algorithms with similar error

rates also contain a zoomed-in inset view.

50

2.7 Appendix

2.7.1 Proof of Theorem 2.3

The intuition behind the theorem is that the cascade model splits the error events in the

t-trace deletion channel into 2 parts:

- When an input symbol is deleted in all the traces, which is captured by the deletion channel

with parameter δt.

- When an input symbol is not deleted in at least one of the traces, captured by the remnant

channel.

𝛿

𝛿

𝛿

𝑋 𝛿𝑡𝑋 𝑝 = 𝛿

𝓒1

𝓒2
(𝑎) (𝑏)

− + + … −

𝐷1 𝐷2 𝐷3 𝐷𝑛

+ − + … +

+ + − … +

− + + … −

+ − + … +

+ + − … +

෪𝐷1 ෪𝐷2 ෪𝐷3 ෪𝐷𝑛

Figure 2.9: The deletion error events occurring in the two channel models. Here ‘−’ corresponds to

a symbol being deleted and ‘+’ corresponds to a transmission. The deletion pattern Di corresponds

to the input symbol Xi.

In order to prove the theorem, we need to prove that the deletion patterns arising in the

t-trace channel model and in the cascade model have the same distribution, i.e.,

Pr(D1 = d1, D2 = d2, ..., Dn = dn) = Pr(D̃1 = d1, D̃2 = d2, ..., D̃n = dn),

where di ∈ {−,+}t, where a − corresponds to a deletion and a + corresponds to a trans-

mission. Also from the definition of our channel models, the deletions act independently on

each input symbol i.e., Di is independent ofDj for i ̸= j. So it is sufficient to prove that the

distributions of each Di and D̃i are the same.

51

𝛿𝑡𝑋𝑖 𝑝 = 𝛿

𝓒1

𝓒2

ෲ𝐷𝑖
ෲ𝐷𝑖
0

෪𝐷𝑖

Figure 2.10: The error events of the cascade model, expressed in terms of the error events of its

components.

Consider D̃i – this is influenced by D̆0
i which is the deletion in channel C1 and by D̆i

which are the deletion in the remnant channel C2. To prove the equivalence, we consider 2

cases:

• di = (−,−,−, ...,−), the error event where a symbol is deleted in all the observations.

It can be seen that Pr(Di = di) for this case is δt. On the other hand, to compute

Pr(D̃i = di), we note that this event is possible if and only if D̆0
i = −, since by

definition, the remnant channel cannot delete the input symbol in all the t observations.

Therefore, Pr(D̃i = di) = Pr(D̆0
i = −) = δt.

• di ̸= (−,−,−, ...,−), i.e., the input symbol is not deleted in at least one trace. Also

let us define k to be the count of − in di. In this case, Pr(Di = di) = δCount(-) in di(1−

δ)Count(+) in di = δk(1− δ)t−k. For the cascade model, this event requires that D̆0
i = +

and D̆i = di. Thus,

Pr(D̃i = di) = Pr(D̆0
i = +) · Pr(D̆i = di) = (1− δt)δ

k(1− δ)t−k

1− δt
= δk(1− δ)t−k.

In both cases, the distributions of Di and D̃i are the same, proving the equivalence.

52

2.7.2 Proof of Lemma 2.1

Lemma 2.1. For p = (p1, p2, .., pi, ..., pn) and Y = y = y1...ym with n ≥ m > 0, we have

F(p, y) = F(p[n]\{i}, y) + pi
∑

k|yk=1

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m])

+(1− pi)
∑

k|yk=0

F(p[1:i−1], y[1:k−1])F(p[i+1:n], y[k+1,m]).

Proof. The proof of this lemma uses a similar approach as the proof of Thm. 2.6. First, in

the expression for F(·), we separate out the subsets that contain index i:

F(p, y) =
∑

S|S⊆[n],
|S|=m

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj

=
∑

S|S⊆[n],
|S|=m,
i/∈S

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj +
∑

S|S⊆[n],
|S|=m,
i∈S

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj

= F(p[n]\{i}, y) +
∑

S|S⊆[n],
|S|=m,
i∈S

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj . (2.20)

Now the second term can be further split as,∑
S|S⊆[n],
|S|=m,
i∈S

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj =
m∑
k=1

∑
S|S⊆[n],
|S|=m,
Sk=i

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj .

One could express the set S as the union S = S ′ ∪ {i} ∪ S ′′ such that S ′ ⊆ [i − 1] and

S ′′ ⊆ [i+ 1 : n] to get

m∑
k=1

∑
S|S⊆[n],
|S|=m,
Sk=i

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj

=
m∑
k=1

∑
S′|

S′⊆[i−1]
|S′|=k−1

∑
S′′|

S′′⊆[i+1:n]
|S′′|=m−k

(
k−1∏
j=1

p
yj
S′
j
(1− pS′

j
)1−yj

)(
pyki (1− pi)1−yk

)(m−k∏
j=1

p
yj+k

S′′
j

(1− pS′′
j
)1−yj+k

)

53

=
m∑
k=1

pyki (1− pi)1−yk


∑
S′|

S′⊆[i−1]
|S′|=k−1

k−1∏
j=1

p
yj
S′
j
(1− pS′

j
)1−yj




∑
S′′|

S′′⊆[i+1:n]
|S′′|=m−k

m−k∏
j=1

p
yj+k

S′′
j

(1− pS′′
j
)1−yj+k


=

m∑
k=1

pyki (1− pi)1−ykF(p[i−1], y[k−1])F(p[i+1:n], y[k+1:m]).

The
∑m

k=1 summation in the above expression could further be split into the two cases

depending on whether yk = 0 or yk = 1, which simplifies the term pyki (1 − pi)1−yk to either

1− pi or pi respectively. Thus,∑
S|S⊆[n],
|S|=m,
i∈S

m∏
j=1

p
yj
Sj
(1− pSj

)1−yj

= (1− pi)
∑

k|yk=0

F(p[i−1], y[k−1])F(p[i+1:n], y[k+1:m]) + pi
∑

k|yk=1

F(p[i−1], y[k−1])F(p[i+1:n], y[k+1:m]).

(2.21)

Plugging (2.21) in (2.20) concludes the proof of the Lemma.

2.7.3 Proof of Lemma 2.2

The following Lemma forms the backbone of the analyses for multiple traces. This lemma

is also closely related to the channel equivalence in Theorem 2.3.

Lemma 2.2. For h, f1, f2, ..., fm ∈ A∗,

(
h

f1

)(
h

f2

)
...

(
h

fm

)
=
∑
w∈A∗

⟨f1 ↑ f2 ↑ ... ↑ fm, w⟩
(
h

w

)
.

Proof. The channel equivalence can essentially be tied to this lemma as follows: consider

the two channel models in Fig. 2.3. The probability of observations given the input in both

cases is proportional to the number of ways of obtaining the observations given the input.

54

• For the t-trace deletion channel model in Fig. 2.3 (a), the number of ways to obtain

the traces given the input is equal to
(
X
Y 1

)(
X
Y 2

)
...
(
X
Y t

)
.

• For the cascade model in Fig. 2.3 (b), the number of ways to obtain the traces given

the input is equal to
∑

z

(
X
z

)
⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, z⟩, which we show below.

The above two are expression must be equal since the two channel models are equivalent.

We now first compute the probability of a given set of output sequences given an input

sequence for the remnant channel, namely Pr(Ỹ 1, Ỹ 2, ..., Ỹ t|Z). First, note that there can

be multiple deletion patterns corresponding to outputs Ỹ 1, Ỹ 2, ..., Ỹ t resulting from a given

input Z. The number of such patterns is equal to ⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, Z⟩, which essentially

follows from the definition of the infiltration product. Consider one such valid deletion

pattern, i.e., a deletion pattern D that is a mapping of the symbols in Z onto the symbols

in Ỹ 1, Ỹ 2, ..., Ỹ t: D = {(1, S1), (2, S2), ..., (|Z|, S|Z|)}. Here (i, Si) represents the fact that Zi

is not deleted in the output set Ỹ Si and is deleted in the rest. From the definition of the

remnant channel, we have |Si| > 0 . Also
∑|Z|

i=1 |Si| =
∑t

j=1 |Ỹ j| since every symbol of each

output is associated with exactly one input symbol and hence corresponds to one particular

Si. Thus,

Pr(Ỹ 1, Ỹ 2, ..., Ỹ t|Z) = ⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, Z⟩Pr(Ỹ 1, Ỹ 2, ..., Ỹ t|Z,D)

= ⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, Z⟩
|Z|∏
i=1

(1− δ)|Si|δt−|Si|

1− δt

= ⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, Z⟩(1− δ)
∑

|Si|δ|Z|t−
∑

|Si|

(1− δt)|Z|

= ⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, Z⟩(1− δ)
∑

|Ỹ j |δ|Z|t−
∑

|Ỹ j |

(1− δt)|Z| .

We can then compute the probability of the output given the input for the cascade channel

as

Pr(Ỹ 1, Ỹ 2, ..., Ỹ t|X)

55

=
∑
z

Pr(Ỹ 1, Ỹ 2, ..., Ỹ t, Z = z|X)

=
∑
z

Pr(Z = z|X) Pr(Ỹ 1, Ỹ 2, ..., Ỹ t|Z = z)

=
∑
z

(Xz
)
δt(|X|−|z|)(1− δt)|z|⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, z⟩(1− δ)

∑
|Ỹ j |δ|z|t−

∑
|Ỹ j |

(1− δt)|z|


=

[∑
z

(
X

z

)
⟨Ỹ 1 ↑ Ỹ 2 ↑ ... ↑ Ỹ t, z⟩

]
δt|X|−

∑
|Ỹ j |(1− δ)

∑
|Ỹ j |. (2.22)

For the t-trace deletion channel model, we have:

Pr(Y 1, Y 2, ..., Y t|X) =
t∏

j=1

(
X

Y j

)
δ|X|−|Y j |(1− δ)|Yj |

=

(
X

Y 1

)(
X

Y 2

)
...

(
X

Y t

)
δt|X|−

∑
|Y j |(1− δ)

∑
|Y j |. (2.23)

Equating (2.22) and (2.23) with X = h and traces as Y j = Ỹ j = fj proves the Lemma.

Alternatively, we use also induction to prove the statement as we do below. The statement

is trivially true when m = 1 since,
∑

w

(
h
w

)
⟨f1, w⟩ =

(
h
f1

)
as ⟨f, w⟩ = 1f=w. We refer the

reader to equation 6.3.25 in [Lot97] for the proof of the lemma for the case m = 2. Assume

that the statement is true for m = k ∈ Z, k ≥ 2. We next prove the validity when m = k+1.

Consider(
h

f1

)(
h

f2

)
...

(
h

fk

)(
h

fk+1

)
=
∑
w

(
h

w

)
⟨f1 ↑ f2 ↑ ... ↑ fk, w⟩

(
h

fk+1

)
=
∑
w

[(
h

w

)(
h

fk+1

)]
⟨f1 ↑ f2 ↑ ... ↑ fk, w⟩

=
∑
w

[∑
v

⟨w ↑ fk+1, v⟩
(
h

v

)]
⟨f1 ↑ f2 ↑ ... ↑ fk, w⟩

=
∑
v

(
h

v

)[∑
w

⟨w ↑ fk+1, v⟩⟨f1 ↑ f2 ↑ ... ↑ fk, w⟩

]
. (2.24)

To evaluate the term in the square bracket, we use (2.34). For the case where τ ∈ A∗, σ ∈

56

Z⟨A⟩ in (2.34), we have

σ ↑ τ =
∑
f∈A∗

⟨σ, f⟩(f ↑ τ),

and thus

⟨σ ↑ τ, u⟩ =
∑
f∈A∗

⟨σ, f⟩⟨f ↑ τ, u⟩. (2.25)

We use (2.25) to replace the term in the square bracket in (2.24), i.e.,(
h

f1

)(
h

f2

)
...

(
h

fk

)(
h

fk+1

)
=
∑
v

(
h

v

)
⟨(f1 ↑ f2 ↑ ... ↑ fk) ↑ fk+1, v⟩, (2.26)

and the lemma follows from the associativity property of the infiltration product.

2.7.4 Proof of Lemma 2.3

Lemma 2.3.

∑
f ||f |=n
fi=a

(
f

g

)
= 2n−|g|

1

2

(
n− 1

|g|

)
+
∑

j|gj=a

(
i− 1

j − 1

)(
n− i
|g| − j

),

where j ∈

[
max{1, |g|+ i− n} : min{i, |g|}

]
.

Proof. First, observe that (
f

g

)
=
∑
S⊆[n]:
|S|=|g|

1fS=g,

where the summation is over all ordered subsets of [n] = {1, 2, ..., n} of size |g| and fS

corresponds to the subsequence of f indexed by S. Thus,

∑
f∈An|
fi=a

(
f

g

)
=
∑
f∈An|
fi=a

∑
S⊆[n]|
|S|=|g|

1fS=g =
∑
S⊆[n]|
|S|=|g|

∑
f∈An|
fi=a

1fS=g

57

=
∑
S⊆[n]|
|S|=|g|
i/∈S

∑
f∈An|
fi=a

1fS=g +
∑
S⊆[n]|
|S|=|g|
i∈S

∑
f∈An|
fi=a

1fS=g

=
∑
S⊆[n]|
|S|=|g|
i/∈S

∑
f∈An|
fi=a

1fS=g +
m∑
j=1

∑
S⊆[n]|
|S|=|g|
Sj=i

∑
f∈An|
fi=a

1fS=g. (2.27)

The two terms in (2.27) can be visualized as the number of ways to fill up the blank spaces

𝒇

𝒈

𝒇

𝒈

𝒊 𝒊

𝒋

𝒂

𝒂

𝒂

(𝒂) (𝒃)

Figure 2.11: Figure illustrating proof of Lemma 2.3.

(spaces without arrows pointing to it in f) in Fig. 2.11(a) and (b) respectively. Solving this

counting problem, we get

∑
f∈An|
fi=a

(
f

g

)
= 2n−|g|

1

2

(
n− 1

|g|

)
+
∑

j|gj=a

(
i− 1

j − 1

)(
n− i
|g| − j

) .

2.7.5 Computation of F(p, v)

We here describe how to compute F(p, v) in O(mn) time and space complexity, where p =

(p1, ..., pn) and v = v1...vm, via a dynamic programming approach. Note that m ≤ n

otherwise F(p, v) = 0. We first define

Gfor(k, j) ≜ F(p[1:k], v[1:j]). (2.28)

Using Lemma 2.1 with i = n, we get

F(p, v) = F(p[n−1], v) + pvmn (1− pn)(1−vm)F(p[n−1], v[m−1]).

58

This translates to the following dynamic program for Gfor:

Gfor(k, j) = Gfor(k − 1, j) + p
vj
k (1− pk)1−vjGfor(k − 1, j − 1), (2.29)

with the boundary conditions Gfor(k, 0) = 1 ∀ k ≥ 0 and Gfor(k, j) = 0 ∀ k < j. The

algorithm is now summarized as Alg. 2.11.

Algorithm 2.11 Computing F(p, v)

1: Inputs: p ∈ [0, 1]n, v ∈ {0, 1}m

2: Outputs: F(p[1:k], v[1:j]) for all k ∈ [n] and j ∈ [m]

3: Initialize Gfor(k, 0) = 1 ∀ k and Gfor(k, j) = 0 ∀ k < j

4: for k = 1 : n and j = 1 : m do

5: Use (2.29) to update Gfor(k, j)

6: return Gfor(k, j) ∀ k, j

We note that a similar dynamic programming approach yields F(p[k+1:n], v[j+1:m]) for all

k ∈ [n] and j ∈ [m] in O(mn) time and space complexity by defining

Grev(k, j) ≜ F(p[k+1:n], v[j+1:m]).

The following dynamic program can be used for Grev:

Grev(k, j) = Grev(k + 1, j) + p
vj+1

k+1 (1− pk+1)
1−vj+1Grev(k + 1, j + 1), (2.30)

with the boundary conditionsGrev(k,m) = 1 ∀ k ≥ 0 andGrev(k, j) = 0 ∀ k, j : n−k < m−j.

2.7.6 Computation of ∇pF(p, v)

First, from Lemma 2.1, we have

F(p, v) = F(p[n]\{i}, v)+(1− pi)
∑

k|vk=0

F(p[i−1], v[k−1])F(p[i+1:n], v[k+1:m])

59

+ pi
∑

k|vk=1

F(p[i−1], v[k−1])F(p[i+1:n], v[k+1:m]).

Differentiating with respect to pi, we get

∂F(p, v)

∂pi
=
∑

k|vk=1

F(p[i−1], v[k−1])F(p[i+1:n], v[k+1:m])−
∑

k|vk=0

F(p[i−1], v[k−1])F(p[i+1:n], v[k+1:m])

=
∑

k|vk=1

Gfor(i−1, k−1)Grev(i, k)−
∑

k|vk=0

Gfor(i−1, k−1)Grev(i, k). (2.31)

Thus, computing the Gfor and Grev terms is sufficient to compute the gradient. As discussed

above, this computation requires O(nm) operations. Given Gfor and Grev, the computation

of each partial derivative ∂F(p,v)
∂pi

requires O(m) operations, and we need to compute n such

partial derivatives. Thus, the complexity of computing ∇pF(p, v) can be done in O(nm)

time and space complexity.

Algorithm 2.12 Computing ∇pF(p, v)

1: Inputs: p ∈ [0, 1]n, v ∈ {0, 1}m

2: Outputs: ∇pF(p, v)

3: Initialize Gfor(k, 0) = 1 ∀ k and Gfor(k, j) = 0 ∀ k < j

4: Initialize Grev(k,m) = 1 ∀ k and Grev(k, j) = 0 ∀ k, j : n− k < m− j

5: for k = 1 : n and j = 1 : m do

6: Use (2.29) and (2.30) to compute Gfor(k, j) and Grev(k, j)

7: for i = 1 : n do

8: Use (2.31) to compute ∂F(p,v)
∂pi

9: return ∇pF(p, v)

2.7.7 An algebraic definition of the infiltration product.

For completeness, we reproduce the formal definition of the infiltration product from Section

6.3 of [Lot97] (also see there for the equivalence of the two definitions). A formal series

60

with indeterminates (or variables) in a set A and coefficients in a commutative ring R, is a

mapping of A∗ onto R. Recall that a commutative ring is a set which forms an abelian group

under an addition operation, is a monoid under a multiplication operation which commutes,

and the multiplication operation distributes over addition. Here we consider Z, the set of

integers as the commutative ring R. A formal series is called a polynomial if only a finite

number of sequences are mapped to non-zero values, the rest of the sequences map to zero.

Consider two polynomials σ, τ : A∗ → Z. The value taken by a sequence w ∈ A∗ on σ (or

the coefficient of w in σ) is denoted by ⟨σ,w⟩ ∈ R. We also define binary addition (⊕) and

multiplication operations (×) on the set of polynomials as follows:

⟨σ ⊕ τ, w⟩ ≜ ⟨σ,w⟩+ ⟨τ, w⟩ ∀w ∈ A∗, (2.32)

⟨σ × τ, w⟩ ≜
∑

f,g∈A∗:
f.g=w

⟨σ, f⟩⟨τ, g⟩ ∀w ∈ A∗. (2.33)

We will use the usual symbols + and . in place of ⊕ and × in this work for convenience. The

meaning of the operation would be clear depending on the operands. With these operations

the set of polynomials form a non-commutative ring, and is denoted by Z⟨A⟩, also called

the free Z-algebra on A in ring theory. Note that the addition and multiplication operations

defined in (2.32) and (2.33) are similar to the operations defined on commutative polynomials,

except that the multiplication operation under the summation in (2.33) (f.g = w) is actually

concatenation and is non-commutative. The multiplication inside the summation in (2.33) is

multiplication in the real field and hence commutative. The multiplication defined in (2.33)

distributes over addition defined in (2.32). Thus, a polynomial in Z⟨A⟩ can be represented

as a sum of monomials in A∗ each with an associated coefficient in Z, i.e., σ =
∑

w∈A∗
⟨σ,w⟩w.

Define the degree of a polynomial to be equal to the length of a longest sequence with a non-

zero coefficient in the polynomial and the number of terms of a polynomial as the number

of sequences with non-zero coefficients in the polynomial. Note that a degree d polynomial

could have a number of terms upto 2d+1 − 1.

61

With this, the infiltration product (in general, for two polynomials) is defined as follows:

∀f ∈ A∗, f ↑ e = e ↑ f = f.

∀f, g ∈ A∗, ∀a, b ∈ A,

fa ↑ gb = (f ↑ gb)a+ (fa ↑ g)b+ 1a=b(f ↑ g)a.

∀σ, τ ∈ Z⟨A⟩, σ ↑ τ =
∑

f,g∈A∗

⟨σ, f⟩⟨τ, g⟩(f ↑ g). (2.34)

2.7.8 Symbolwise posterior probabilities for the remnant channel

Consider the remnant channel shown below, and let Z = Z1Z2...Zn. Also let Zi ∼ Ber(0.5).

We aim to compute Pr(Zi = 1|Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt). From the definition of the

𝑝 = 𝛿

෨𝑌1

෨𝑌2

෨𝑌𝑡

𝑍

Figure 2.12: The remnant channel

infiltration product, the input-output relation for this channel can be derived to be:

Pr(Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt|Z) = ⟨y1 ↑ y2 ↑ ... ↑ yt, Z⟩(1− δ)
∑

|yj |δnt−
∑

|yj |

(1− δt)n
.

Now, one could write the symbolwise posterior probabilities for Z as:

Pr(Zi = 1|Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt) =
∑

z||z|=n,
zi=1

Pr(z|Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt)

=
1

2n Pr(Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt)

∑
z||z|=n,
zi=1

Pr(Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt|z)

=
(1− δ)

∑
|yj |δnt−

∑
|yj |

(1− δt)n2n Pr(Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt)

∑
z||z|=n,
zi=1

⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩. (2.35)

62

A similar expression can be obtained for the case when Zi = 0 as

Pr(Zi = 0|Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt)

=
(1− δ)

∑
|yj |δnt−

∑
|yj |

(1− δt)n2n Pr(Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt)

∑
z||z|=n,
zi=0

⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩. (2.36)

We could further simplify (2.35) and (2.36) using the fact that the expressions in (2.35) and

(2.36) must sum to 1, leading us to

Pr(Zi = 1|Ỹ 1 = y1, Ỹ 2 = y2, ..., Ỹ t = yt) =

∑
z||z|=n,
zi=1

⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩

∑
z||z|=n

⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩
. (2.37)

We precisely describe the algorithm which computes the terms in (2.37) in section 2.4, by

exploiting the edit graph interpretation of the infiltration product, but give a high level idea

below. The complexity of such an algorithm is O((2n)t) which is equal to the number of edges

in the edit graph. Note that for a fixed number of traces, this algorithm is polynomial in the

blocklength as opposed to a naive approach of iterating through all the n-length sequences.

Recall that ⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩ is the number of paths from origin to destination of the

edit graph G(y1, y2, ..., yt) which correspond to z. Therefore,
∑

z||z|=n⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩ is

equal to the number of n-length paths in G(y1, y2, ..., yt) from the origin to the destination.

Note that the edit graph has no cycles, so this quantity can be efficiently computed via the

following dynamic program – the number of n length paths from the origin to a vertex v is

equal to the sum of the number of n− 1 length paths from the origin to the in-neighbors of

v. Such a procedure iterates over the vertex set of G(y1, y2, ..., yt) exactly once.

The numerator term
∑

z||z|=n
zi=1

⟨y1 ↑ y2 ↑ ... ↑ yt, z⟩ can be interpreted in a similar way: it

is equal to the number of n-length paths in G(y1, y2, ..., yt) from the origin to the destination

such that the ith edge of the path corresponds to a ‘1’. The algorithm for this, therefore,

follows a similar principle but has an extra step. For each vertex v, we compute

• the number of paths from the origin to v of length 0, 1, ..., n,

63

• the number of paths from v to the destination of length 0, 1, ..., n.

Next we iterate over all edges in G(y1, y2, ..., yt) corresponding to a ‘1’ and accumulate the

number of n length paths which have this particular edge as its ith edge. Thus, this algorithm

iterates over the vertex set twice and the edge set of G(y1, y2, ..., yt) once.

2.7.9 A heuristic for ML optimization with a single trace.

The proof of Theorem 2.4 inspires a heuristic for sequence reconstruction (see Alg. 2.13):

• Start from a given point p = (p1, ..., pn) ∈ [0, 1]n.

• One round of iteration is defined as follows: fix a traversal order for the indices

{1, 2, ..., n}. Traverse through the indices i in order and make pi either 0 or 1 de-

pending on whether F(p(i→0), y) or F(p(i→1), y) is larger. This ensures that F(p, y)

never decreases.

• At the end of the round, check if the resultant p was already obtained at the end of

a previous round: if so, end the algorithm (to prevent it from going into an endless

cycle). Otherwise, start a new round from the resultant p.

The resultant p at the end of a round is a lattice point since we make each pi to be 0 or

1. Therefore, the algorithm will end after a finite number of steps; in the worst case it will

iterate through all 2n sequences, although in practice we observe that it ends in 4-5 rounds

(tested up to a blocklength of 100). We also note that the complexity of each round is

O(n3) since it iterates through n coordinates and for each coordinate computes F(·), which

is O(n2).

A natural question is whether it makes a difference if Alg. 2.13 starts from an interior point

(p = (p1, ..., pn) ∈ [0, 1]n where ∃ pi ∈ (0, 1)) as compared to starting from a lattice point

(for instance, we could start from p = (y, 0, ..., 0) ∈ {0, 1}n) which is the n-length sequence

64

Algorithm 2.13 Coordinate switch ML heuristic

1: Input: Blocklength n, Trace Y = y, Initial point p = (p1, p2, ..., pn)

2: Outputs: Estimated sequence X̂

3: Initialize visited set V = ∅

4: while True do

5: Compute Fi = |F(p(i→1), y)− F(p(i→0), y)| ∀ i and let F = (F1,F2, ...,Fn).

6: Define the ordered list S = argsort(F) where argsort(F) returns the index set [n]

sorted by descending order of F , i.e., FS1 ≥ FS2 ≥ ... ≥ FSn .

7: for i ∈ S (ordered traversal) do

8: if F(p(i→1), y)− F(p(i→0), y) ≥ 0 then

9: update p← p(i→1)

10: else

11: update p← p(i→0)

12: if p ∈ V then break

13: V = V ∪ {p}

14: return X̂ = p

obtained via appending y with zeros. It turns out that starting from an interior point

results in better accuracy on both Hamming and edit error rate metrics, thus supporting the

usefulness of our ML relaxation result.

In Fig. 2.13, we compare the performance of Coordinate switch heuristic with the other

trace reconstruction heuristics in Section 2.5. We see that the coordinate switch with interior

point initialization performs very similar to the true ML sequence (obtained via exhaustive

search), in terms of both the Hamming error rate as well as the edit error rate. This

intuitively supports the idea that this is a good heuristic for the ML optimization problem.

However, at this point the heuristic is applicable for reconstruction using just a single trace

and it is unclear on how to extend it to multiple traces.

65

Figure 2.13: Numerics for reconstruction from a single trace for a blocklength n = 20. This plot

compares the performance of coordinate switch heuristic (abbreviated “Coodsw. interior init.”

and “Coodsw. lattice init.”) with other trace reconstruction algorithms from Section 2.5. “ML”

refers to the true ML sequence obtained via an exhaustive search on all 20 length binary sequences.

The interior point initialization initializes p = (0.5, 0.5, ..., 0.5) while the lattice point initialization

appends the trace y with zeros to obtain an n-length vector p = (y, 0, ..., 0).

2.7.10 Symbolwise MAP as the minimizer of Hamming error rate

Symbolwise MAP is an optimal estimator for minimizing the Hamming error rate for any

channel, regardless of whether it is memoryless or not. This fact can be seen from the

following argument: Consider a fixed observation y (note that y here can also be a collection

of multiple observations, our arguments which follow remain unchanged) and that we aim

to estimate a binary input sequence X; let the estimate of the input be X̂(y). Note that the

estimate is a function of observation y alone. Now the Hamming error rate of any estimator

given y is the expectation (over all inputs) of number of symbol mismatches divided by the

66

blocklength, i.e.,

1

n
E

[
n∑

i=1

1{Xi ̸= X̂i(y)}

∣∣∣∣∣Y = y

]
=

1

n

n∑
i=1

E

[
1{Xi ̸= X̂i(y)}

∣∣∣∣∣Y = y

]

=
1

n

n∑
i=1

Pr

(
Xi ̸= X̂i(y)

∣∣∣∣∣Y = y

)

=
1

n

n∑
i=1

Pr(Xi = 0|Y = y) Pr(X̂i(y) = 1|Xi = 0, Y = y)

+ Pr(Xi = 1|Y = y) Pr(X̂i(y) = 0|Xi = 1, Y = y)

.
But, X̂i is a function of only y and hence is conditionally independent of Xi given y, which

implies the following:

1

n
E

[
n∑

i=1

1{Xi ̸= X̂i(y)}

∣∣∣∣∣Y = y

]
=

1

n

n∑
i=1

Pr(Xi = 0|Y = y) Pr(X̂i(y) = 1|Y = y)

+ Pr(Xi = 1|Y = y) Pr(X̂i(y) = 0|Y = y)

.
To simplify notation, let the posterior probabilities be qi(y) ≜ Pr(Xi = 1|Y = y) and let

αi(y) ≜ Pr(X̂i(y) = 1|Y = y). Note that qi(y) is a property of the channel and is fixed given

y, while αi(y) depends on the design of our estimator. With this, the above expression can

be re-written as

1

n
E

[
n∑

i=1

1{Xi ̸= X̂i(y)}

∣∣∣∣∣Y = y

]
=

1

n

n∑
i=1

(1− qi(y))αi(y) + qi(y)(1− αi(y))

.
The optimal assignment of αi(y) to minimize this expression is αi(y) = 1 if qi(y) ≥ 0.5 and

αi(y) = 0 otherwise, which coincides with the symbolwise MAP estimate. This proves the

67

optimality of symbolwise MAP for minimizing the Hamming error rate given any observation

y, for any channel.

68

CHAPTER 3

ML inference as continuous optimization: deletion

channels and beyond

Summary: In this chapter, we generalize the continuous-optimization equivalence idea

proved in the previous chapter to fit more general channel models. Further, we use this

perspective to propose other gradient-based heuristics for trace reconstruction which improve

upon algorithms in Chapter 2 in certain situations.

The problem of estimating an unknown discrete input sequence from its noisy observation

arises in many disciplines, including communications, information and coding theory. Fig. 3.1

represents a typical decoding problem – an input message sequenceX must be estimated from

the observation or output sequence Y . The input-output relation depends on a multitude of

factors such as the exact choice and properties of the encoder, the model and parameters of

the noisy channel, and initializations. We capture all these factors together by what we call

the system channel C. In this work, we are agnostic on what exactly happens inside C, and

instead, only assume the knowledge of the input-output relation Pr(Y |X, C).

Noisy

channel
𝑌𝑋

𝑋 = 𝑋1𝑋2…𝑋𝑁 𝑌 = 𝑌1𝑌2…𝑌𝑀

Encoder

𝓒

Figure 3.1: A generic model of a probabilistic system channel where each Xi ∈ A = {1, ..., A}.

The goal is to estimate X given Y and we assume the knowledge of Pr(Y |X, C).

Central to the above discussion lie two algorithmic problems on optimal decoding – com-

69

putation of the maximum-likelihood (ML) and the symbolwise maximum-aposteriori (MAP)

estimates. The ML problem, in words, is the integer program that maximizes the likelihood

Pr(Y |X, C) over all N -length input sequences X, and the symbolwise MAP problem involves

computing the symbolwise posterior probabilities (SPs) Pr(Xi=a|Y, C) for a pre-defined prior

distribution on X. Many of these problems are proven to be intractable, for example through

reduction to NP-complete integer optimization problems (see [BMT06], [GV05] for instance).

In this chapter, we provide continuous variable formulations for the ML and MAP de-

coding problems for an arbitrary system channel C. In particular, we posit the ML problem

as maximization over all product distributions for X. Rather surprisingly, this formulation

closely relates to an expression for computing the MAP SPs. Our formulation is particularly

useful for system channels where a function termed expected likelihood function (that we will

define later) can be computed efficiently. Although in full generality this function would be

hard to compute, it could still lead to new efficient optimal or heuristic algorithms over new

classes of system channels. We believe that at the very least, our observations give a new

theoretical perspective on ML and MAP decoding.

Contributions. The main result of this chapter is the formulation of the ML estimate of an

arbitrary system channel as a continuous optimization problem; in particular, we optimize

the expected likelihood function over the space of product distributions for X, instead of

optimizing the actual likelihood. This opens the door to the use of first-order heuristics like

gradient ascent. Moreover, we propose an alternate heuristic called coordinate refinement

for the ML estimate. For the SPs, we give an expression in terms of the expected likelihood

and its gradient. As an application, we illustrate performance benefits of our formulations

via numerics for the deletion channel.

Related work. Over the past few decades, there has been significant progress towards

understanding the complexity of computing optimal ML and MAP estimates (see [BMT06],

[Var97], [GV05], [HB98]) as well as towards coming up with efficient algorithms/heuristics

70

(such as Viterbi [For73], forward-backward [BCJ74], message-passing [Gal62], sphere decod-

ing [FP85], [HV02]). These algorithms are tailored to specific classes of system channels; in

contrast, our approach applies for all system channels (is agnostic to the encoder and system

model).

Decoding a discrete sequence via continuous optimization methods has also been explored

in [FRH83] which formulates the ML decoding problem for a linear code over a discrete

memoryless channel as a continuous optimization problem, and proposes a gradient ascent

heuristic to solve it. In contrast, our work applies to an arbitrary system channel, and we

further we propose a decoding heuristic which empirically performs better than gradient

ascent.

Reconstruction over deletion channels without the use of a codebook is closely related to

the problem of trace reconstruction (see for example [BKK04], [HMP08], [DOS], [HPP18]).

The symbolwise MAP estimate for this case has been solved (see [SDDb]). However little is

known about ML estimate in this case (see [Mit09], [SDDa]).

3.1 Notation and Tools

Basic notation: Calligraphic letters refer to sets, capitalized letters correspond to either

random variables or integer constants (usage will be clear with context), bold letters are

used for matrices and greek letters are used to denote functions.

ML estimate. For a system channel C as in Fig. 3.1 where Xi ∈ A = {1, 2, ..., A}, the ML

estimate of X given observation Y is the integer program:

x∗ml ≜ argmax
x∈AN

Pr(Y |X = x, C). (3.1)

Note that there could be multiple optimal solutions to (3.1) and in such cases, it suffices to

obtain just one such solution.

71

Notation Definition

[i : j] {i, i+ 1, ..., j} if j ≥ i and [i : j] ≜ ∅ otherwise

[i] [1 : i]

x[i:j] xixi+1...xj

P ∈ [0, 1]N×A
matrix that parametrizes the distribution of anN -length

random vector

Pi for matrix P ith row of the matrix

Pij for matrix P (i, j)th entry of the matrix

X ∼ (P)
X = X[1:N] and Xi is independently distributed and

Pr(Xi=a) = Pia

P⊙Q for matrices P and Q Hadamard product (element wise product)

cat(x) for sequence x

cat(x) is an N × A matrix where cat(x)ia=1 if xi=a

and cat(x)ia=0 otherwise, i.e., cat(x) is the categorical

representation of x.

Matrix P is a lattice point ∃ x such that cat(x) = P

cat−1(P) cat−1(P) = x if cat(x) = P.

P(j→b)

P
(j→b)
ia =


Pia i ̸= j

1{a=b} i = j.

P(j→b) modifies only the jth row of P to be a unit vector

where Pjb = 1.

Table 3.1: Table of common notation.

SPs and symbolwise MAP. For the system channel C in Fig. 3.1 where Xi ∈ A =

{1, 2, ..., A}, let the prior input distribution be X ∼ (P). The SPs can be collected in the

matrix Ppost:

Ppost
ia = Pr(Xi = a|Y, C).

72

Note that Ppost varies with both P as well as Y . The SPs give a convenient way of estimating

X by picking the most likely symbol at each position (the symbolwise MAP estimate).

Definition 3.1. Expected likelihood function. For the system channel model in Fig. 3.1,

given an observation Y and a distribution matrix P, we define the expected likelihood

function as the expectation of the likelihood of observing Y w.r.t the distribution X ∼ (P),

i.e.,

λ(P, Y ; C) ≜ E
X∼(P)

Pr(Y |X, C). (3.2)

Some properties of the expected likelihood function are:

• 0≤λ(P, Y ; C)≤1, since it is an expectation of the likelihood.

• For a lattice point P, λ(P, Y ; C)=Pr(Y |X=cat−1(P), C).

3.2 ML and SPs via expected likelihood function

In this section, we discuss obtaining ML and SPs via the expected likelihood function.

3.2.1 ML via expected likelihood

Theorem 3.1. Consider a system channel C as in Fig. 3.1. Assume that Xi ∈ A =

{1, 2, ..., A}. The ML estimate in (3.1) is equivalent to solving the following continuous

optimization:

argmax
P∈RN×A

λ(P, Y ; C)

s.t. P · 1 = 1

0 ≤ P.

(3.3)

P · 1 represents the matrix product of P with the all ones vector 1, and “ ≤ ” represents

component-wise inequality.

73

Proof. The idea behind the proof is that instead of optimizing over all possible choices for

X, we optimize over all possible product distributions for X. Recall that λ(P, Y ; C) ≜

EX∼(P) Pr(Y |X, C). We prove the theorem by proving the following three claims:

1. For every feasible P,

λ(P, Y ; C) ≤ max
x∈AN

Pr(Y |X = x, C).

2. Given a solution x∗ml of (3.1), there exists P∗ such that

λ(P∗, Y ; C) = max
x∈AN

Pr(Y |X = x, C)

= max
P∈RN×A

λ(P, Y ; C).

3. Consider a P∗ which maximizes λ(P, Y ; C). Sample an X from X ∼ (P∗), then X is

a solution of (3.1).

Claims 1. and 2. together prove that the maximum objective values of (3.1) and (3.3)

are equal, claim 2. also gives a way of obtaining a solution of (3.3) from a solution of (3.1),

and claim 3. gives a way of obtaining a solution of (3.1) from (3.3).

Claim 1. is easily seen by observing that λ(P, Y ; C) is the expectation of Pr(Y |X, C)

w.r.t to a distribution on X defined over the set AN . Clearly λ(P, Y ; C) must not exceed

the maximum value taken by Pr(Y |X, C) over AN .

Claim 2. can be seen by taking P∗ = cat(x∗ml) i.e.,

λ(cat(x∗ml), Y ; C) = Pr(Y |X = x∗ml, C).

To prove claim 3., we first note that λ(P∗, Y ; C) = Pr(Y |X=x∗ml) from claims 1) and 2).

But λ(P∗, Y ; C) is also the expectation of Pr(Y |X, C) over X ∼ (P∗). Since Pr(Y |X=x, C) ≤

Pr(Y |X=x∗ml, C) ∀x, we have that for every x such that Pr(Y |X=x, C) > 0 w.r.t toX ∼ (P∗),

Pr(Y |X=x, C)=Pr(Y |X=x∗ml, C).

74

We remark that the formulation in (3.3) falls under the umbrella of signomial optimization

problems (see [Xu14], [CS16] and references therein) which are, in general, hard to solve.

Typical heuristic approaches to such problems involve convexification strategies that instead

solve a series of related convex programs. However, such strategies would in general fail for

(3.3) since, there could be exponentially many terms in (3.3) and with a change of variables,

(3.3) can be written as minimization of a concave function over a convex set.

3.2.2 SPs via expected likelihood

Recall that the SPs for the model in Fig. 3.1 can be collected in the matrix Ppost where

Ppost
ia = Pr(Xi = a|Y, C). We first state some results that will be used to prove Theorem 3.2

and for the heuristic in Section 3.3.

Lemma 3.1. Consider Fig. 3.1 and let the prior input distribution be X ∼ (P). Then,∑
x:xi=a

Pr(x) Pr(Y |X = x, C) = Piaλ(P
(i→a), Y ; C).

The proof follows from the definition of expected likelihood and can be found in the

appendix. The following two corollaries are easily seen from the definition of λ(·) and

Lemma 3.1.

Corollary 1. λ(P, Y ; C) =
A∑

a=1

Piaλ(P
(i→a), Y ; C). (3.4)

Corollary 2.
∂

∂Pia

λ(P, Y ; C) = λ(P(i→a), Y ; C). (3.5)

(3.4) indicates an important property about the geometry of the expected likelihood function

– it is linear in each Pi (however it is not linear in P) and (3.5) relates λ(·) and its gradient.

Theorem 3.2. In Fig. 3.1, let the prior distribution be X ∼ (P). Then the SPs Ppost can

be written as:

Ppost
ia = Pia

λ(P(i→a), Y ; C)
λ(P, Y ; C)

= Pia

∂
∂Pia

λ(P, Y ; C)
λ(P, Y ; C)

. (3.6)

75

Alternatively a matrix formulation for the SPs is,

Ppost =
P⊙∇Pλ(P, Y ; C)

λ(P, Y ; C)
. (3.7)

Proof. First we note that the SPs can be written as,

Ppost
ia =

Pr(Xi = a, Y |C)
Pr(Y |C)

=
1

λ(P, Y ; C)
∑

x:xi=a

Pr(x) Pr(Y |X = x, C). (3.8)

Using Lemma 3.1 and (3.5) with (3.8) concludes the proof.

3.3 Coordinate refinement: A global ML heuristic based on ex-

pected likelihood

In this section, we propose a heuristic for ML based on our theoretical observations in

Section 3.2. But first, we discuss some classes of system channels where our expected-

likelihood formulation of ML and SPs can be useful.

3.3.1 Algorithmic aspects of expected likelihood

Clearly, Theorem 3.1 and Theorem 3.2 are directly applicable for system channels where the

expected likelihood can be computed efficiently. For such cases, we observe the following:

• First we observe that (3.5) implies that computing the gradient of λ(·) amounts to

NA computations of λ(·). However, in many cases it might be possible to compute the

gradients directly and faster (we do this for deletion channels). Moreover, Theorem 3.2

signifies that in such cases, the MAP SPs can be computed in polynomial time.

• Existence of a polynomial time algorithm to compute λ(·) does not necessarily imply

that the ML problem in (3.3) is solvable in polynomial time. However, what it indicates

is that heuristics for continuous optimization can be employed for (3.3).

76

• A natural first-order heuristic for (3.3) is projected gradient ascent, which is a variant

of gradient ascent for maximization with constraints. In our case the constraint is that

P must be a valid distribution matrix, i.e., P lies in the polytope

D ≜
{
Q : Q ∈ [0, 1]N×A and Q · 1 = 1

}
.

In projected gradient ascent, at each update step, the updated point is projected back

onto D by finding a point in D closest to P, i.e, the update step is

P← argmin
Q∈D

∣∣∣∣∣
∣∣∣∣∣Q− (P+ ϵ.∇Pλ(P, Y ; C))

∣∣∣∣∣
∣∣∣∣∣
2

. (3.9)

We now comment on the complexity of computing the expected likelihood for a few examples

of system channel C in Fig. 3.1. We refer the reader to Appendix 3.6.2 of this chapter for a

more detailed discussion.

Discrete memoryless channel (DMC): When C is a DMC, λ(P, Y ; C) breaks down into

a product of N terms and can be computed in O(NA). We clarify here that this case does

not subsume the situation of having an encoder before a DMC. Note that the ML formula-

tion in Theorem 3.1 also breaks down into N smaller problems each of which can be solved

efficiently. This can also be proved to be equivalent to the symbolwise MAP estimate.

Probabilistic finite state machine (FSM): Say C is an FSM with states in S which out-

puts exactly K symbols corresponding to each input symbol. Then the expected likelihood

can be computed using a dynamic programming approach in O(A|S|2N). We note that this

complexity is of the same order as the complexity of computing the ML via Viterbi algorithm

or the symbolwise MAP via Forward-Backward algorithm. The class of probabilistic FSM

system channels encompasses a variety of situations. For example, a convolutional encoder

followed by a DMC can be represented by such a model.

Deletion channel: Assume that C deletes each input symbol with a constant probability

of deletion δ (the encoder is an identity encoder). We prove that a dynamic program can

be used to compute λ(·) in O(NM) (see Appendix 3.6.2).

77

Sticky channel: A sticky channel with parameter p repeats each input symbolK ∈ {1, 2, ...}

times with a probability (1 − p)K−1p. Recent works have looked at the capacity of sticky

channels [CR19]. We can prove that a dynamic program can compute λ(·) in O(NM2) time

complexity (see Appendix 3.6.2).

3.3.2 Coordinate refinement

In situations where the expected likelihood function and its gradient are efficiently com-

putable, we give a heuristic for the ML formulation in Theorem 3.1. This algorithm exploits

the linearity of λ(P, Y ; C) when projected on to the coordinates Pi (3.4). The basic under-

lying idea is as follows (the exact algorithm is detailed in Alg. 3.1):

• Say we start with a distribution matrix P ∈ [0, 1]N×A.

• We iterate over the indices [1:N] (the rows of P) in a specified order (here we do so

greedily). In the iteration corresponding to index i, we update row Pi such that the value

of λ(·) never decreases.

• This update is done by comparing λ(P(i→a), Y ; C) ∀ a and picking the a which maximizes

λ(P(i→a), Y ; C), i.e.,

P← P(i→argmaxa λ(P(i→a),Y ;C)). (3.10)

Note that ∀ i, ∃ a such that λ(P(i→a), Y ; C) ≥ λ(P, Y ; C) due to (3.4), thus ensuring that

the update step never decreases λ(·). Further, (3.5) signifies that ∇Pλ(P, Y ; C) computes

λ(P(i→a), Y ; C) ∀ i, a.

Iterating over the indices [1:N] once amounts to one refinement iteration. At the end of a

refinement iteration, the final P is a lattice point (since every row has been updated to a

unit vector). A new refinement iteration can now be started using current distribution P to

further improve λ(·). Note that once we reach a lattice point, every update step results in

a distribution which is also lattice point. Since the number of lattice points are finite, there

78

will arise a situation where the update stagnates (does not strictly increase λ(·)). In that

case, we have arrived at a fixed point of this algorithm and we stop.

Before moving further we first define a fixed point of an update algorithm. An update

algorithm takes as input a distribution P and updates it iteratively. The projected gradient

ascent and coordinate refinement are both update algorithms.

Definition 3.2. Pfixed is a fixed point of an update algorithm if the update step applied on

Pfixed does not change Pfixed.

Pfixed is a fixed point of the projected gradient ascent if the right-hand side of (3.9) is

equal to Pfixed itself and it is a fixed point of coordinate refinement if the right-hand side of

(3.10) is Pfixed itself. More precisely,

• P is a fixed point for project gradient descent iff

P = argmin
Q∈D

∣∣∣∣∣
∣∣∣∣∣Q− (P+ ϵ ∇Pλ(P, Y ; C))

∣∣∣∣∣
∣∣∣∣∣
2

∀ ϵ > 0, (3.11)

where D =
{
Q : Q ∈ [0, 1]N×A and Q · 1 = 1

}
.

• P is a fixed point for coordinate refinement iff

cat−1(P)i = argmax
a∈A

λ(P(i→a), Y ; C) ∀ i. (3.12)

We do note that there could be multiple solutions to argmaxa∈A λ(P(i→a), Y ; C), but

we choose to stop coordinate refinement at Pfixed instead. Although coordinate refinement

reaches a fixed point after a finite number of refinement iterations, this number could po-

tentially be exponential in N . However in practice, for the deletion channel, the coordinate

refinement reached a fixed point mostly within 3 refinement iterations even for N=100.

Further, we give an interesting result about such fixed points.

Theorem 3.3. If the distribution P is a fixed point for coordinate refinement (given Y),

then P is also a fixed point for projected gradient ascent.

79

Algorithm 3.1 Greedy coordinate refinement

1: Inputs: Distribution Pinit, Observation Y , Algorithms to query λ(P, Y ; C) and

∇Pλ(P, Y ; C), Max refinement iterations RFmax

2: Outputs: Estimate X̂

3: Initialize P = Pinit

4: for iter in [1 : RFmax] do

5: Initialize visited indices I = ∅

6: while |I| < N do

7: Compute gradient matrix G = ∇Pλ(P, Y ; C)

8: if P is a lattice point and satisfies (3.12) then

9: return cat−1(P) and exit

10: (i∗, a∗) = argmax
i∈[N]\I, a∈A

Gia

11: Update P← P(i∗→a∗)

12: Update I ← I ∪ {i∗}

13: return cat−1(P)

The proof of the theorem can be found in Appendix 3.6.3. The idea behind the proof

is that the gradient at a fixed point P extends outwardly from P such that any point lying

outside D in the direction of the gradient is closer to P than every other point in D (see

Fig. 3.2). Thus the result of the projection onto D is again P.

Note on initializations for coordinate refinement: A natural question is if it makes a

difference initializing P as an interior point (Pia∈(0, 1)) or a lattice point. For an interior

Fixed point
𝐏

𝐏 + 𝜖∇𝐏𝜆(𝐏, 𝑌; 𝒞)
𝓓

Figure 3.2: Figure illustrating the idea behind Theorem 3.3.

80

point, the first refinement iteration updates P to a lattice point and subsequent refinement

iterations deal with P in the set of lattice points thereon, in which case we are optimizing

Pr(Y |X, C) directly. One could have initialized P to be a lattice point to begin with and

optimize Pr(Y |X, C), circumventing the use of expected likelihood: numerical evaluation

in the next section indicates that such an initialization can significantly deteriorate the

performance of coordinate refinement.

3.4 Example application: numerical results for the deletion chan-

nel

As an application, we focus on the deletion channel and show numerical results for the various

algorithms which exploit our ML and SPs formulation. We restrict ourselves to the binary

alphabet A = {0, 1} for simplicity. As mentioned in Section 3.3, the expected likelihood for

the deletion channel can be computed in O(NM). A similar dynamic programming approach

can be employed to compute its gradient in O(NM) as well, as we did in chapter 2. Our

comparisons are based on two metrics:

• The likelihood gain γ(x, X̂) = Pr(Y |X=X̂,C)
Pr(Y |X=x,C) where x is the actual input and X̂ is the

estimate. The true ML sequence gives the optimal (largest) likelihood gain.

• The hamming error rate ψ(x, X̂) which is defined to be number of bit errors between

the actual input x and estimate X̂ divided by its blocklength. The symbolwise MAP

is an optimal estimator for the hamming error rate. Note that, in general, optimizing

for hamming error rate is not equivalent to optimizing for the likelihood gain and

vice-versa.

We compare the performance of the following algorithms:

• Symbolwise MAP : we first compute the SPs via Theorem 3.2 and then pick the most

81

L
ik

e
lih

o
o

d
 g

a
in

T
ru

e
 M

L

S
y
m

b
o

lw
is

e

M
A

P

P
ro

j.
g

ra
d

.

a
s
c
e
n

t

C
o

o
d

.
R

e
f.

(i
n

te
ri

o
r

in
it
.)

C
o

o
d

.
R

e
f.

(l
a
tt

ic
e

 i
n

it
)

Symbolwise

MAP

Proj. grad.

ascent

Cood. Ref.

(interior init.)

Cood. Ref.

(lattice init)

S
y
m

b
o

lw
is

e

M
A

P

P
ro

j.
g

ra
d

.

a
s
c
e
n

t

C
o

o
d

.
R

e
f.

(i
n

te
ri

o
r

in
it
.)

C
o

o
d

.
R

e
f.

(l
a
tt

ic
e

 i
n

it
)

S
y
m

b
o

lw
is

e

M
A

P

P
ro

j.
 g

ra
d

.

a
s
c
e
n

t

C
o

o
d

.
R

e
f.

(i
n

te
ri

o
r

in
it
.)

C
o

o
d

.
R

e
f.

(l
a
tt

ic
e

 i
n

it
)

(a) Hamming error rates for blocklength 𝑁 = 100.

(c) Likelihood gains for

𝑁 = 100, 𝛿 = 0.2.

(b) Likelihood gains for

𝑁 = 10, 𝛿 = 0.2.

(d) Likelihood gains for

𝑁 = 100, 𝛿 = 0.8.

L
ik

e
lih

o
o

d
 g

a
in

L
ik

e
lih

o
o

d
 g

a
in

Figure 3.3: Hamming error rates and likelihood gains for coordinate refinement (with both vertex

and interior point initializations), symbolwise MAP, and projected gradient ascent. We compare

for various blocklengths and deletion probabilities. We use box plots to visualize the sample dis-

tribution of the likelihood gains. The ends of the boxes indicate the upper and lower quartiles, the

dot in each box is the median of the samples, the whiskers indicate the extrema and the diamonds

are deemed as outlier samples. We note here that we enforce a lower cap for the likelihood gain at

0.1 to aid log domain visualization.

82

likely symbol for each position.

• Projected gradient ascent: as defined by (3.9). At distribution P, we use an adaptive

step size ϵ = 0.1
λ(P,Y ;C) and allow a maximum of 200 update steps.

• Coordinate refinement with interior point initialization: We use Alg. 3.1 with Pinit

whose entries are all 0.5, i.e., they correspond to the uniform distribution.

• Coordinate refinement with lattice point initialization: We use Alg. 3.1 and initialize

Pinit as a random lattice point.

Observations in Fig. 6.4.

• Symbolwise MAP has the least hamming error rate as it is an optimal estimator for this

error metric. However, it has poor likelihood gains. The reasoning is very specific to the

nature of deletion channels – changing just a few bits could vastly affect the likelihoods

of the corresponding sequences. For instance, considerN=5 and an observation Y=001.

It is easily seen that input sequence X=00001 corresponds to a high likelihood while

X=00000 corresponds to 0 likelihood although it differs by only one bit.

• Coordinate refinement with lattice point initialization is seen to perform much worse

than coordinate refinement with interior point initialization in all cases, which supports

the usefulness of the equivalence provided by Theorem 3.1.

• Coordinate refinement with interior point initialization has consistently good likeli-

hood gain performance across deletion probabilities unlike the other algorithms. One

intuitive explanation is that it can be envisioned as a two step process: 1) in the first

refinement iteration, the algorithm performs a coarse search (via the gradient values)

and finds a “good” initial lattice point distribution for subsequent refinement iterations

2) subsequent refinement iterations finely “refine” the symbols to further improve the

83

quality of the solution. The projected gradient ascent is lacking of step 2) while coor-

dinate refinement with lattice point initialization lacks step 1).

3.5 Conclusions and Open Questions

In this chapter, we formulated the ML estimate of an arbitrary system channel as a continu-

ous optimization problem; in particular, we optimize the expected likelihood function over the

space of product distributions for X, instead of optimizing the actual likelihood. This opens

the door to the use of first-order heuristics like gradient ascent. We connected the SPs to the

expected likelihood function and its gradient. As an application, we illustrated performance

benefits of our formulations via numerics for the deletion channel. An open question is to

understand for what classes of system channels these techniques offer benefits over existing

methods, and how large these benefits are. Another open question is to understand how the

ML solution relates to error rates, such as Hamming error rate, for the particular system

channels considered in this chapter. Finally, it would also be interesting to come up with

error-rate guarantees for the heuristics introduced in this chapter.

3.6 Appendix

3.6.1 Proof of Lemma 3.1

Proof. First, note that if X ∼ (P), then Pr(x) =
∏N

j=1 Pjxj
. Consider the right hand side

of the equation,

Piaλ(P
(i→a), Y ; C) = PiaEX∼P(i→a) Pr(Y |X, C)

= Pia

∑
x

1xi=a

N∏
j=1
j ̸=i

Pjxj
Pr(Y |X = x, C)

84

=
∑

x:xi=a

N∏
j=1

Pjxj
Pr(Y |X = x, C)

=
∑

x:xi=a

Pr(x) Pr(Y |X = x, C).

3.6.2 Complexity of computing the expected likelihood function

Discrete memoryless channel (DMC): When C is a DMC, N=M and

Pr(Y1...YN |X1...XN , C) =
N∏
i=1

Pr(Yi|Xi, C).

This implies that λ(P, Y ; C) =
∏

i λ(Pi, Yi; C). Now λ(Pi, Yi; C) =
∑

x∈A Pix Pr(Yi|Xi=x)

which can be computed in O(A) time complexity. And thus, the complexity of computing

λ(P, Y ; C) is O(NA). Note that the ML formulation in Theorem 3.1 breaks down into N

optimization problems each of which can be solved efficiently. It can also be proved easily

that this is equivalent to the symbolwise MAP estimate.

Probabilistic finite state machine (FSM): Assume C is a FSM with states in S.

Further, assume that each input symbol xi to C results in exactly K output symbols

yi1, ..., yiK . Thus M=NK in Fig. 3.1. The FSM is defined by the emission probabilities

Pr(yi1, ..., yiK , s|xi, scurrent) for outputs yi1, ..., yiK . Note that the start and end states of the

encoder sinit and send are included in channel information C. For such a model, we have the

following dynamic program to compute λ(·):

λ(P, Y ; C, scur, send) =
∑
s∈S

(
E

X1∼P1

Pr(Y1...YK , s|X1, s
cur)

λ(P[2:N], Y[K+1:NK]; C, s, send)

)
.

Computing the expectation term is O(A). The dynamic program involves computation over

the indices [1:N] as well as the states S and the computation of each term takes O(A|S|)

85

operations. Thus the total worst case time complexity is O(A|S|2N). We note that this com-

plexity is same as the complexity of Viterbi and Forward-Backward algorithms for HMMs

(which can be thought of as a FSM). The class of probabilistic FSM channels encompasses

a variety of situations. For example, a convolutional encoder followed by a DMC can be

represented by such a probabilistic FSM – each independent message symbol xi is mapped

to K coded symbols zi1, ..., ziK by the convolutional encoder and each of these coded symbols

results in K output symbols yi1, ..., yiK when passed through a DMC. The states of the FSM

are precisely the states of the convolutional encoder.

Deletion channel: C is a deletion channel which deletes each input symbol with a constant

probability of deletion δ. We give a dynamic program for the expected likelihood which

directly arises from the channel definition. Consider Pr(Y1Y2...YM |X1...XN). ClearlyM ≤ N

for a deletion channel. We have two possibilities for the input symbol X1 – it is either deleted

from Y or it is reflected as Y1. Therefore,

Pr(Y[1:M]|X[1:N]) = Pr(X1 deleted) Pr(Y[1:M]|X[2:N]) + Pr(X1 gives Y1) Pr(Y[2:M]|X[2:N])

= δ Pr(Y[1:M]|X[2:N]) + 1X1=Y1(1− δ) Pr(Y[2:M]|X[2:N]).

Taking expectation on both sides w.r.t to X ∼ (P) gives the dynamic program:

λ(P, Y ; δ) = δλ(P[2:N], Y ; δ) +P1Y1(1− δ)λ(P[2:N], Y[2:M]; δ). (3.13)

Note that the above dynamic program provides a way to compute λ(P, Y ; δ) in O(NM) time

complexity and is equivalent to the one derived in chapter 2.

Sticky channel: A sticky channel with parameter p repeats each input symbolK ∈ {1, 2, ...}

times with a probability (1 − p)K−1p. Recent works have looked at the capacity of sticky

channels [CR19]. Clearly M ≥ N for a sticky channel. We now have multiple possibilities

for the leading input symbol X1 – it is repeated K times, where K ∈ {1, 2, ...M}. This leads

86

to a similar dynamic program for the sticky channel (we omit the steps here for brevity):

λ(P, Y ; p) =
M∑
i=1

(
p(1− p)i−1

1{Y1=Y2=...=Yi}P1Y1λ(P[2:N];Y[i+1:M]; p)

)
.

λ(P, Y ; p) via the above dynamic program can be computed in O(NM2) time complexity.

3.6.3 Proof of Theorem 3.3

Proof. Let A = {1, 2, ..., A}. To prove:

P = argmin
Q∈D

∣∣∣∣∣
∣∣∣∣∣Q− (P+ ϵ.∇Pλ(P, Y ; C))

∣∣∣∣∣
∣∣∣∣∣
2

∀ ϵ > 0, (3.14)

given that

cat−1(P)i = argmax
a∈A

λ(P(i→a), Y ; C) ∀ i

= argmax
a∈A

∂λ(P, Y ; C)
∂Pia

∀ i, (3.15)

where D = {Q ≥ 0,Q · 1 = 1}.

Notice that the constraints in D are independent constraints for each row of Q and∣∣∣∣∣
∣∣∣∣∣Q− (P + ϵ.∇Pλ(P, Y ; C))

∣∣∣∣∣
∣∣∣∣∣
2

=
∑

i

∣∣∣∣∣
∣∣∣∣∣Qi − (Pi + ϵ.∇Pi

λ(P, Y ; C))

∣∣∣∣∣
∣∣∣∣∣
2

. Hence it is sufficient

to prove (3.14) for each row, i.e, to prove that

Pi = argmin
Qi∈Di

∣∣∣∣∣
∣∣∣∣∣Qi − (Pi + ϵ.∇Pi

λ(P, Y ; C))

∣∣∣∣∣
∣∣∣∣∣
2

∀ ϵ > 0, (3.16)

given (3.15) and where Di = {Qi ≥ 0,Q · 1 = 1}.

Since P is a lattice point (fixed points of coordinate refinement can only be lattice points)

we will assume for simplicity that Pi = [1, 0, ...0]; our arguments are easy to generalize. Also

let ϵ.∇Pi
λ(P, Y ; C)) = [ϵ1, ϵ2, ..., ϵA]. From (3.15), clearly ϵ1 ≥ ϵa ≥ 0 ∀a. Thus, (3.16)

87

reduces to proving the following:

Pi = argmin
Qi

(Qi1 − (1 + ϵ1))
2 +

A∑
a=2

(Qia − ϵa)2

s.t. Qia ≥ 0 ∀a∑
a

Qia = 1.

(3.17)

In order to prove the above, we do the following: consider the case when Qi1 < 1. Therefore,

∃ b : Qib > 0 since
∑

a Qia = 1. We argue that moving the mass of Qib into Qi1 will only

decrease the objective value of (3.17). More precisely, we prove that

(Qi1 − (1 + ϵ1))
2+(Qib − ϵb)2

> (Qi1 +Qib − (1 + ϵ1))
2 + (ϵb)

2.

The above inequality is, in fact, simple to see as it reduces to verifying if Qib(1+ ϵ1) > Qibϵb.

This is true since by our hypotheses Qib > 0 and ϵ1 ≥ ϵb ≥ 0.

This argument could be applied sequentially for every b ̸= 1 : Qib > 0 thereby moving all

the mass into Qi1. Thus the distribution defined by Qi1 = 1 and Qib = 0 ∀ b ̸= 1 is optimal

and this is equal to Pi, proving (3.17) and consequently the theorem.

88

Part II

Group Testing and Epidemiology

89

CHAPTER 4

Static and independent infection model

Summary: In this chapter, we study group testing for the static infection model with non-

uniform priors. We take a practical approach to this problem: we fix the decoder and the

number of tests, and we ask what is the best test design one could use? We examine this

problem for the definite non-defectives (DND) decoder and formulate it as a (non-convex)

optimization problem, where the objective function is the expected number of errors for a

particular design. We propose an approximate solution via gradient descent, which we further

optimize with informed initialization. We show numerical results that demonstrate that our

approach achieves much lower (upto 50% lower in our simulations) error rates in comparison

with the existing state-of-the-art test designs.

Group testing is a strategy that can reduce the number of tests needed to identify infected

people in a population, by pooling together diagnostic samples from multiple individuals.

The idea has recently attracted significant attention in the context of the pandemic ([GG20,

Bro20, Ell20, Ver20,Gho20,KLL20]), and several countries (including India, Germany, US,

and China) have already deployed preliminary group-testing strategies ([Mal20,FDA20]).

Group testing has a rich history in academia, dating back to R. Dorfman in 1943, and a

number of variations and setups have been examined so far ([Dor43,AJS19,DH93,MA16]).

Simply stated, group testing assumes a population of N individuals out of which some are

infected, and the goal is to design testing strategies and corresponding decoding algorithms

to identify the infections from the test results. Most works revolve around proposing a

particular hand-crafted test design (e.g. random Bernoulli design) coupled with a decoding

90

strategy (e.g. Definite Defectives, Definite Non-Defectives), and guarantees are provided on

the number of tests required to achieve vanishing probability of error. Additionally, order-

optimality results have been proved for the asymptotic regime, where the population size

tends to infinity. For example, in a population of N →∞ members, if very few people (say

k < N1−Ω(1)) are infected, one can identify them with O(k logN) group tests, using random

Bernoulli test designs ([BPS20]).

To the best of our knowledge, the following complementary question remains unexplored:

Given a fixed decoding strategy and a number of tests T (perhaps smaller than what is needed

to achieve zero error), what is the best test design one may use? In this chapter, we examine

this in the context of nonadaptive group testing, where all pooled tests are administered in

a single stage – hence the delay of the test outcomes is the least possible – and under the

assumption of a Definite Non-Defectives (DND) decoder, which eliminates false negatives by

construction. Interestingly, a discussion with the General Secretary of Public Health in an

EU state has revealed that this question is perhaps the most relevant in practice, as both

private and public lab facilities have limited testing capacity per day, and what actually

matters is how to use the available tests most efficiently.

In this chapter, we show that the above problem admits a non-convex optimization for-

mulation that can be approximately solved via gradient descent (GD). More specifically,

the problem requires finding a test-design matrix G (determining how the diagnostic sam-

ples are pooled together into tests) that minimizes the expected number of the erroneous

identifications (i.e. false positives). This, however, presents two challenges: (a) the analyt-

ical computation of the expected number of false positives turns out to be computationally

difficult; (b) because G ∈ {0, 1}T×N , this yields a challenging combinatorial optimization

problem. To tackle these challenges, we act as follows: First, we provide a lower bound that

we use as a proxy in the optimization problem; our lower bound can be computed in O(N2)

runtime. We then reformulate the resulting combinatorial optimization problem based on

an equivalence result; we show that the objective function in this continuous formulation

91

as well as its gradient can be computed in O(N2), using dynamic programming techniques,

enabling the use of GD. To further improve the performance of our method, we propose two

approaches to GD: (i) an informed initialization with information from classic test designs,

such as the Constant Column Weight (CCW) design and the Coupon Collector Algorithm

(CCA); (ii) a stochastic re-initialization of the state of the solution every few gradient iter-

ations (e.g. 100 iterations), in a way that allows GD to move across various neighborhoods,

while also ensuring that the objective value does not increase by much with re-initialization.

Numerical evaluations show that the GD based approaches significantly outperform clas-

sical test designs, achieving upto 58% (in the best case) fewer errors with the DND decoder

on simulated infection models. Rather surprisingly, GD based designs also significantly

outperform classical test designs when the decoder is switched to definite defectives (DD),

indicating transferability to other decoders.

4.1 Related work

We here give a brief overview of group testing; the exact problem we consider in this chapter

will be detailed in Section 4.2.1. Three infection models are usually studied in the group

testing literature: (i) in the combinatorial priors model, a fixed number of individuals k

(selected uniformly at random), are infected; (ii) in i.i.d probabilistic priors model, each

individual is i.i.d infected with some probability p; (iii) in the non-identical probabilistic

priors model, each item i is infected independently of all others with prior probability pi, so

that the expected number of infected members is k̄ =
∑N

i=1 pi. Infection models (i) and (ii)

have received attention from researchers for the most part (see for example, [AS12,ABJ14,

CJS14,SC16,JAS19,Ald19,BPS20,CGH20b,AFF20,PS20,CGH20a]). Infection model (iii) is

the most general, yet also the least studied one ([LCH14]); we refer the reader to [AJS19] for

an excellent summary of existing work on the above infection models. This chapter assumes

infection model (iii) with non-identical probabilistic priors and accepts (ii) as a special case.

92

4.2 Preliminaries

In this section, we first precisely formulate the problem of interest, and then state a simple

lemma on combinatorial optimization that is used in our main result.

4.2.1 Problem formulation

We consider the noiseless nonadaptive group testing problem with non-identical priors. There

are N individuals in the population and individual i is infected independently with probabil-

ity pi. We assume that the value of pi is known apriori1. We assign a binary random variable

Ui to be the infection status of individual i: Ui = 1{Individual i is infected}. As a result,

Ui ∼ Ber(pi). We will denote by U = (U1, U2, ..., UN) the vector of infection statuses. The

aim of group testing is to devise tests (measurements) and decoding algorithms to estimate

U.

Testing matrix: A testing matrix G ∈ {0, 1}T×N is a T × N binary matrix. Row t

in the testing matrix represents the individuals participating in test t, i.e., if Gti = 1, the

individual i participates in test t. The test results corresponding to a particular realization

of U = (U1, U2, ..., UN) and G is defined as the vector Y = (Y1, Y2, ..., YT) where

Yt = 1−
N∏
i=1

(1−GtiUi). (4.1)

In words, the test t gives a positive result if any of the individuals participating in the test

are infected, otherwise it gives a negative result2. In (4.1) it can be verified that Yt = 1

if and only if there exists i such that both Gti = 1 (individual i participates in the test)

and Ui = 1 (individual i is infected). In order to infer U from Y , a decoding algorithm

1This is a standard assumption in group testing. Otherwise, epidemiological models for disease spread
can be used to estimate these probabilities ([KMS17,SNF21a,SNF21b]).

2Most works in group testing express the right-hand side of (4.1) as a Boolean expression. However,
we use this particular form (similar expression was given in [AFF20]) as it easily admits continuous-valued
extension of the composing variables.

93

r : {0, 1}T → {0, 1}N constructs an estimate Û of the infection statuses from the test

results. In this work, we fix the decoding algorithm, which we describe next.

DND decoder: The definite non-defective (DND) decoder is a well-known decoding

algorithm that forms an estimate of U by identifying those individuals who have participated

in at least one negative test as healthy and labeling every other individual as infected – i.e.,

it operates under the principle “every item is defective unless proved otherwise”. More

precisely, it outputs an estimate Û where

Ûi =
T∏
t=1

Y Gti
ti . (4.2)

Such an estimate has zero false negatives by construction. To see this, let Ui = 1. From

(4.1), Yt = 1 for all t where Gti = 1. Using this in (4.2), we see that whenever Ui = 1, then

Ûi = 1. The number of errors (false positives) that the DND decoder makes for a particular

realization U is given by

N∑
i=1

1{Ûi ̸= Ui} =
N∑
i=1

1{Ui = 0}1{Ûi = 1|Ui = 0},

and as a result the expected number of errors E(G) under the DND decoder for a given G is

E(G) ≜ E

[
N∑
i=1

1{Ûi ̸= Ui}

]

=
N∑
i=1

Pr(Ui = 0)Pr(Ûi = 1|Ui = 0)

=
N∑
i=1

(1− pi)E
[
Ûi|Ui = 0

]
, (4.3)

where the expectation is taken over the randomness in each Ûi. Further, when Ui is fixed to

be 0, Ûi is a function of G and U \ {i}, where U \ {i} ≜ (U1, ..., Ui−1, Ui+1, ..., UN) denotes

the vector U without its ith entry. Thus, fixing Ui = 0, and using (4.1) and (4.2) we have,

94

Ûi =
T∏
t=1

1−
N∏

j=1:
j ̸=i

(1−GtjUj)


Gti

(a)
=

T∏
t=1

1−Gti

N∏
j=1:
j ̸=i

(1−GtjUj)

 ,

where (a) follows because of the following fact: (1−x)y = 1−xy if y ∈ {0, 1}. Now, denoting

γt,i ≜

(
1−Gti

∏N
j=1:
j ̸=i

(1−GtjUj)

)
in the above expression, we rewrite (4.3) as:

E(G) =
N∑
i=1

(1− pi)EU\{i}

T∏
t=1

γt,i. (4.4)

Goal: In this chapter, we aim to minimize E(G) across G matrices of size T ×N , i.e.,

solve

Gopt = argmin
G∈{0,1}T×N

E(G). (4.5)

Discussion: We first observe that γt,i is not independent of γt′,i for t ̸= t′ as both of them

could share common Uj terms. As a result, the expectation of the product term in (4.4) is

not trivially the product of expectations, which makes the computation of E(G) intractable,

in general (indeed one could estimate E(G) using Monte-Carlo methods, belief propagation

etc.). In Section 4.3 we provide a lower bound for E(G) which can be computed efficiently,

and which we use as a proxy for E(G).

Second, in principle, (4.5) could be formulated for any decoder, not just the DND decoder.

However, the particular nature of E(G) for the DND decoder takes a nice form, for which

we can propose an approximate solution using the lower bounding technique (Section 4.3).

With other decoders, such as the definite defective decoder or belief propagation based ones,

we do not have an approach to calculate a non-trivial lower bound; this remains a challenging

open problem.

95

4.2.2 A combinatorial optimization result

We now take a detour to prove a simple result that allows one to formulate a combinatorial

optimization problems that aim to optimize over the vertices of an n-dimensional hypercube

as an equivalent continuous optimization problem. Note that this extends the idea introduced

in Chapter 3 (see Theorem 3.1) to admit general combinatorial optimization problems.

Lemma 4.1. In order to solve

argmin
x∈{0,1}n

g(x), (4.6)

it is sufficient to solve

argmin
q∈[0,1]n

f(q), (4.7)

where f(q) ≜ EX∼qg(X)

is a continuous extension of g(x). The expectation in the above expression is taken w.r.t the

distribution where each Xi ∼ Ber(qi), and the Xis are independent of each other.

Proof. We first note that for any q ∈ [0, 1]n we have,

EX∼qg(X) ≥ min
x∈{0,1}n

g(x),

since the expectation of a random variable is at least as large as its minimum value over its

support. Since the above holds for any q, as a result we have

min
q∈[0,1]n

EX∼qg(X) ≥ min
x∈{0,1}n

g(x). (4.8)

Let x∗ be a minimizer of g(x) in (4.6). The choice of q∗ = x∗ (i.e. X = x∗ with probability

1) gives

f(q∗) = EX∼q∗g(X) = g(x∗) = min
x∈{0,1}n

g(x). (4.9)

From (4.8) and (4.9) we conclude that

min
q∈[0,1]n

EX∼qg(X) = min
x∈{0,1}n

g(x).

96

In order to obtain a solution to (4.6), we obtain a solution q∗ of (4.7) and any X ∼ q∗

(sample Xi ∼ Ber(qi)) is a solution to (4.6).

Remark: There is a long history of using relaxation techniques to approximate solutions

of combinatorial optimization problems (see [Tre11] for an overview). Most of these focus

on linear programming relaxation techniques. In Lemma 4.1, there is no assumption on g(·)

whatsoever and the resulting formulation may not be a linear program. Moreover, it may

not be easy to compute f(·) in all cases and it may also not be easy to compute the gradient

∇f(·) as well. In cases where exactly computing or approximating the gradient is easy (as

is indeed the case in this work), one can use first-order optimization techniques such as GD.

4.3 Main results

In this section, we delineate our approach to find an approximate solution to (4.5). Following

the discussion at the end of Section 4.2.1, our approach is three-fold: First, we lower bound

E(G) by another function ELB(G), whose computation turns out to be tractable; we then use

ELB(G) as a proxy for E(G). Next, we use Lemma 4.1 to show that it is sufficient to consider

a continuous formulation of the resulting combinatorial optimization problem. Finally, we

show that the objective function in the continuous formulation and its gradient can also be

computed efficiently, thus enabling gradient descent.

4.3.1 A lower bound for E(G)

As a first step, the following theorem states and proves a lower bound for E(G).

Theorem 4.1. Consider a random vector U = (U1, U2, ..., UN) where Ui ∼ Ber(pi). For

a given testing matrix G, and under the DND decoder, the expected number of errors (see

(4.4)) satisfies

E(G) ≥ ELB(G),

97

where

ELB(G) ≜
N∑
i=1

(1− pi)
T∏
t=1

1−Gti

N∏
j=1:
j ̸=i

(1−Gtjpj)

 .

Proof. First we recall the expression for E(G) in (4.4):

E(G) =
N∑
i=1

(1− pi)EU\{i}

T∏
t=1

γt,i.

Using the FKG inequality (see [FKG71,Kem77, PC] or proof of Lemma 4 in [Ald19]) one

could show that

EU\{i}

T∏
t=1

γt,i ≥
T∏
t=1

EU\{i}γt,i.

A rigorous proof of the above statement can be found in Appendix 4.7.1. The idea is to show

that γt,i is an increasing function on U (assuming a partial ordering); using this observation,

the result follows as an application of the FKG inequality. Thus, we have

E(G) =
N∑
i=1

(1− pi)EU\{i}

T∏
t=1

γt,i

≥
N∑
i=1

(1− pi)
T∏
t=1

EU\{i}γt,i

=
N∑
i=1

(1− pi)
T∏
t=1

1−Gti

N∏
j=1:
j ̸=i

(1−Gtjpj)


= ELB(G)

As it turns out, E(G) and the lower bound ELB(G) are highly correlated, as is seen from

the example scatter plots in Figure 4.1. In our simulations, we observed that ELB(G) offers

a very good approximation to E(G) – this property indicates that minimizing ELB(G) is a

good alternative to minimize E(G).

98

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Figure 4.1: Scatter plot of E(G) (on y-axis) vs. ELB(G) (on x-axis) normalized by the blocklength

N . E(G) is estimated via Monte-Carlo simulations while ELB(G) is computed exactly. For a fixed

prior distribution, we pick a variety of G matrices and plot the two metrics – the left figure plots for

every G ∈ {0, 1}2×4 while the right figure plots for 1000 choices of G sampled from {0, 1}300×500.

4.3.2 A continuous optimization formulation

Given the above discussion, we now propose using ELB(G) as a proxy for E(G) – more

precisely we propose to solve the following optimization problem:

argmin
G∈{0,1}T×N

ELB(G). (4.10)

We next use Lemma 4.1 to argue that a continuous formulation of (4.10) is equivalent

to (4.10). Before stating the main result, we give a definition: we say that the matrix

G ∼ Q (read as “G is distributed according to the distribution matrix Q”) if each Gti ∼

Ber(Qti) ∀ t, i and the Gti variables are independent of each other.

Corollary 4.1. Suppose Ui ∼ Ber(pi) ∀ i. In order to solve the optimization problem

argmin
G∈{0,1}T×N

ELB(G), (4.11)

it is sufficient to solve

argmin
Q∈[0,1]T×N

EG∼QELB(G). (4.12)

This is a direct corollary of Lemma 4.1, where the objective function is ELB(G) and we

associate a parameter Qti corresponding to each Gti.

99

Thus, we now have the following approximate formulation for which the objective function

(and its gradient) can be computed in O(N2) time complexity (see Section 4.3.3). The hope

is that solving (4.13) gives sufficiently good choices of G ∼ Q∗; our experimental results in

Section 4.5 indicate that this is indeed the case.

Approximate formulation: Solve for

Q∗ = argmin
Q∈[0,1]T×N

f(Q), (4.13)

where f(Q) ≜ EG∼QELB(G).

Given the above result, we propose a gradient descent (GD) approach to pick a testing

matrix G. In essence, we are searching over the continuous space of distribution matrices Q.

If the gradient of f(Q) can be efficiently computed, one could use GD to converge to a local

minima Q∗ and pick a G ∼ Q∗.

4.3.3 Expression for f(Q)

We now give a closed-form expression for f(Q) and briefly discuss the computational com-

plexity of computing f(Q) and its gradient; the details are deferred to Section 4.7.2, Sec-

tion 4.7.3 and Section 4.7.4. First, we have

f(Q) ≜ EG∼QELB(G)

= EG∼Q

N∑
i=1

(1− pi)
T∏
t=1

1−Gti

N∏
j=1:
j ̸=i

(1−Gtjpj)


(a)
=

N∑
i=1

(1− pi)
T∏
t=1

EG∼Q

1−Gti

N∏
j=1:
j ̸=i

(1−Gtjpj)



100

=
N∑
i=1

(1− pi)
T∏
t=1

1−Qti

N∏
j=1:
j ̸=i

(1−Qtjpj)

 , (4.14)

where in (a) the expectation is pushed inside the product terms as ELB(G) is linear when

viewed as a function of a single Gti. In Appendix 4.7.2 we discuss an O(N2) algorithm that

simplifies the computation of f(Q) above. Given (4.14), one could derive an expression for

the gradient ∇f(Q) by calculating each partial derivative ∂f(Q)
∂Qlm

. The details of the derivation

can be found in Appendix 4.7.3. Moreover, in Appendix 4.7.4, we discuss the computation

of ∇f(Q) in O(N2) runtime. The idea is to observe that many of the terms have similar

forms and can be easily obtained from an intermediate common set of terms.

Notably, as it was perhaps already evident from Lemma 4.1 and , the assumption that the

Gtis are independent in Corollary 4.1 played a role one could have optimized over any random

variable G with full support on {0, 1}n, not necessarily the product distribution implied in

Q. However, it is because of the product distribution that f(Q) admits a polynomial-time

computation for our purpose.

4.4 Algorithms

Given the approximate formulation in (4.13), we now propose a GD approach to find good

choices of G. We further improve our method by using informed initialization with infor-

mation provided by traditional group test designs. To this end, the GD approach can be

viewed as a way to refine and improve existing designs via local search. Moreover, we also

propose a variation of GD that numerically seems to converge to good choices of G in many

situations even without informed initialization.

101

4.4.1 Baseline test designs

We first briefly describe two existing algorithms from the literature of group testing that we

use as baselines for comparison.

• Constant column weight (CCW) design (see [AJS16, JAS19]). This design was

introduced in the context of group testing for identical priors3, but we adapt it to be ap-

plicable for non-identical priors as well, in addition to identical priors. Here we construct

a randomized G assuming that all individuals have the same prior probability of infection

pmean (this assumption is trivially true if the priors are identical), where pmean is defined

as the mean prior probability of infection 1
N

∑N
i=1 pi. The testing matrix G is constructed

column-by-column by placing each individual in a fixed number (0.69T
Npmean

) of tests, uniformly

at random. For the case of identical priors p, CCW attains a vanishing probability of error

with a DND decoder, given that the number of tests satisfies T = Ω(Np logN); no such

guarantees exist for non-identical priors. Nonetheless, we use it in this case as well as a

baseline.

• Coupon Collector Algorithm (CCA) from [LCH14]. The CCA algorithm was in-

troduced in [LCH14] for the case of non-identical, independent priors. In short, the CCA

algorithm constructs a random non-adaptive test design G by sampling each row indepen-

dently from a distribution (we refer the reader to [LCH14] for the exact description of this

distribution). The idea is to place objects which are less likely to be infected in more number

of tests and vice-versa. The CCA design achieves a vanishing probability of error with a

DND decoder given that the number of tests used satisfies T = ω (4e logN
∑

i=1 pi).

3Most of these were proposed in the context of combinatorial priors. However, Theorem 1.7 and Theorem
1.8 from [AJS19] imply that any algorithm that attains a vanishing probability of error on the combinatorial
priors, also attains a vanishing probability of error on the corresponding i.i.d probabilistic priors.

102

Algorithm 4.1 Projected gradient descent(GD)

Require: Priors (p1, p2, ..., pN), initial point Q
(0) ∈ [0, 1]T×N , step-size ϵ, max. gradient

steps lmax.

Ensure: Output a good choice of G

l = 1

while l ≤ lmax do

Compute f(Ql−1) ▷ See Appendix 4.7.2

Compute ∇f(Ql−1) ▷ See Appendix 4.7.4

if Stopping criteria satisfied then

break

Q(l) ← Q(l−1) − ϵ∇f(Ql−1)

Set negative entries of Q(l) to 0

Set entries of Q(l) greater than 1 to 1

Sample G ∼ Q(l−1)

return G

4.4.2 Test designs based on gradient descent

We are now ready to describe the gradient descent (GD) approaches to search for G. The

high-level idea for our algorithms is as follows:

• We consider the approximate formulation in (4.13). Pick an initial point Q(0).

• At each gradient iteration l, update Q(l) ← Q(l−1)− ϵ∇Qf(Q), where ϵ is the step size.

Project Q(l) onto [0, 1]T×N by resetting negative entries to 0 and entries greater than 1 to 1.

• Stop based on some stopping criteria (e.g. limit number of gradient steps or check for

convergence to local minima).

• Let Q∗ be the resulting output. Sample a matrix G∗ where G∗ ∼ Q∗ and return it.

The above algorithm is outlined as Algorithm 4.1. As it turns out, the choice of initializa-

103

Algorithm 4.2 (GD + Sampling) Sampled projected gradient descent to

Require: Priors (p1, p2, ..., pN), number of tests T , step-size ϵ, max. gradient steps lmax,

frequency of sampling ν ∈ N.

Ensure: Output a good choice of G

l = 1

Initialize Q(0) ← 0T×N

while l ≤ lmax do

Compute f(Ql−1) ▷ See Appendix 4.7.2

Compute ∇f(Ql−1) ▷ See Appendix 4.7.4

if Stopping criteria satisfied then

break

Q(l) ← Q(l−1) − ϵ∇f(Ql−1)

Set negative entries of Q(l) to 0

Set entries of Q(l) greater than 1 to 1

if mod (l, ν) == 0 then

Sample G ∼ Q(l) ▷ Sampling step

Reassign Q(l) ← G

Sample G ∼ Q(l−1)

return G

tion plays a significant role in finding good choices of G. For instance, the performance with

all the entries of Q(0) set to 1/2 was significantly worse as compared to setting all the entries

to 0. This is not surprising as GD is a local search algorithm and for a function whose be-

havior varies substantially in different neighborhoods, initializing at a “good” neighborhood

is extremely beneficial for GD. With this intuition, we propose the following initializations.

• GD + CCW init. We first sample a testing matrix according to the CCW testing

matrix and set Q(0) as this matrix. The GD proceeds with this initialization.

104

• GD + CCA init. We first sample a testing matrix according to the CCA testing

matrix and set Q(0) as this matrix. The GD proceeds with this initialization.

Notably, any other state-of-the-art test design could have been used as initialization. In

principle, the above approach can be perceived as a way to refine existing test designs via

local search. Alternatively, we also propose a modification to the GD approach called GD

+ sampling that helps avoid getting stuck in a local minima by encouraging GD to explore

various neighborhoods. The idea is use stochastic re-initialization of the solution state every

few gradient iterations, while ensuring that the value of objective function is approximately

preserved. First note that the objective value f(Q) is the mean of f(G) with G ∼ Q.

Therefore, it is reasonable to expect that typical realizations of G will be such that f(G) is

close to f(Q). Given this idea, we propose the following: start from the all 0 initialization.

However, every few gradient iterations, we replace the current solution state Q(l) by Gs where

Gs is sampled from the distributed matrix Q(l), i.e., Gs ∼ Q(l). This encourages GD to move

to a potentially different neighborhoods while (approximately) preserving the monotonocity

property of GD.

4.5 Numerical results

In this section, we show simulation results that demonstrate the improvement our GD based

approaches provide in the design of test matrices.

Test designs compared: We compare the testing matrices G obtained via each of the

following methods: CCW, CCA, GD + CCW init., GD + CCA init., GD + sampling. For

completeness, we consider also the trivial all 0-initialization for GD (which we call GD + 0

init), where the initial point Q(0) is set to all zeros.

Set-up: (a) First fix the prior probabilities of infection (p1, p2, ..., pN). We consider two

cases: (i) the identical prior model with pi = 0.05 ∀ i and (ii) non-identical but independent

priors where each pi is sampled from an exponential distribution with mean 0.05; if pi > 1,

105

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

Number of tests used (T)

F
P
ra
te

CCW
CCA
GD + 0init
GD + CCWinit
GD + CCAinit
GD + sampling

(a) Identical priors p = 0.05, N = 1000.

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

Number of tests used (T)

F
P
ra
te

CCW
CCA
GD + 0init
GD + CCWinit
GD + CCAinit
GD + sampling

(b) Priors sampled from an exponential

distribution with mean 0.05, N = 1000.

We average over 10 instances of such pri-

ors.

Figure 4.2: Mean FP rates with the DND decoder for each algorithm, as a function of T .

we set it to 1.

(b) For the given set of priors (p1, p2, ..., pN), and for each test design stated above, we

estimate E(G) via Monte-Carlo simulations. Note that there exists randomness in choosing

G in all the above test designs. Therefore, when computing the error rates, the average is

also taken over all such G matrices.

(c) For the case where each pi is sampled from an exponential distribution, we repeat

steps (a) and (b) 10 times and perform one more layer of averaging.

Metrics: We use the false positive (FP) rate (defined as the fraction of uninfected

individuals incorrectly determined to be infected) as the metric to measure the performance

of each test design w.r.t the DND decoder. Recall that the DND decoder results in 0 false

negatives (FN) by construction.

Transferability to other decoders: As the GD based designs aim to find an optimal

test matrix w.r.t the DND decoder, a natural follow-up question is how such a design performs

106

100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

Number of tests used (T)

F
N
ra
te

CCW
CCA
GD + 0init
GD + CCWinit
GD + CCAinit
GD + sampling

(a) Identical priors p = 0.05, N = 1000.

100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

Number of tests used (T)

F
N
ra
te

CCW
CCA
GD + 0init
GD + CCWinit
GD + CCAinit
GD + sampling

(b) Priors sampled from an exponential

distribution with mean 0.05, N = 1000.

We average over 10 instances of such pri-

ors.

Figure 4.3: Mean FN rates with the DD decoder for each algorithm, as a function of T .

when the decoder alone is switched. We aim to answer this question by measuring the

performance of each of the test designs w.r.t a decoder called the Definite Defective (DD)

decoder. One could also consider other decoders, such as ones based on belief propagation.

However these decoders result in both FP and FN, and consequently the comparison between

different methods is not trivial; it requires weighing FP against FN, which can be application

specific. We refer the reader to Section 2.4 in [AJS19] for a precise description of DD decoder.

It is worth mentioning that the DD decoder operates under the principle of “every item is

not defective until proved otherwise”. Consequently, DD has 0 FP by construction. In this

case, we use as performance measure the false negative (FN) rate.

Observations: In Figure 4.2, we plot the FP rate for each test design w.r.t DND decoder,

as a function of T . When the priors are identical, Figure 4.2a shows that the GD based

methods with informed initialization (GD + CCW/CCA init.) and GD + sampling perform

marginally better than CCW. Note that CCW is a state-of-the-art algorithm for group

testing with identical priors. With non-identical priors, the GD based methods significantly

outperform CCW and CCA, as can be seen from Figure 4.2b. Notably, the improvement of

107

our enhanced GD with informed initialization or sampling seems inversely proportional to

T , which is of practical importance.

Next, we plot the FN rate of each test design w.r.t the DD decoder, as a function of T in

Figure 4.3. The performance trend here is similar to what was observed with the DND de-

coder, which further cements the usefulness of our GD based approach and its transferability

to other decoders. Additional details on the error rates are provided in Appendix 4.7.5.

4.6 Conclusions and Open Questions

In this chapter, we formulated the search for good group-test designs, under the assumption

of a DND decoder, as a non-convex optimization problem, and we proposed a solution via

enhanced gradient descent. Our solution is approximate in the sense that it minimizes

a lower bound on the expected number of identification errors (as opposed to the exact

expectation). But, our numerical evaluation, over various infection scenaria, demonstrated

that our approach can significantly outperform state-of-the-art designs (upto 58% in the

best case). Moreover, our designs performed well with the DD decoder, which allows us to

claim that test designs are transferable to other decoders. An open question is to extend the

technique introduced in this chapter to other decoders, such as DD and belief propagation.

It would also be interesting to extend these techniques to encompass more general infection

models, in particular, to include correlated infection models. Performance guarantees for the

heuristics introduced in this chapter is another open question.

108

4.7 Appendix and proofs

4.7.1 Theorem 4.1 proof: filling in the gaps

In the proof of Theorem 4.1 we claimed the following:

EU\{i}

T∏
t=1

γt,i ≥
T∏
t=1

EU\{i}γt,i.

where γt,i ≜

(
1−Gti

∏N
j=1:
j ̸=i

(1−GtjUj)

)
. We prove this using the Fortuin–Kasteleyn–Ginibre

(FKG) inequality (see [FKG71,Kem77,PC] or proof of Lemma 4 in [Ald19]), restated here

for convenience.

Lemma 4.2 (FKG inequality). Consider a finite distributive lattice Γ with partial ordering

≺ and meet (∧) and join operators (∨). Consider a probability measure µ on Γ that is

log-supermodular, i.e.,

µ(a)µ(b) ≤ µ(a ∧ b)µ(a ∨ b) ∀ a, b ∈ Γ.

Then, any two functions f and g which are non-decreasing on Γ are positively correlated,

i.e.,

Eµ(fg) ≥ Eµ(f)Eµ(g).

Remark: Consider Γ = {0, 1}N with partial ordering ≺, where a ≺ b if every coordinate

of b is at least as large as a. When the meet and join operators coincide with logical AND

and logical OR respectively, this is a distributive lattice. It can be verified that any product

measure µ on Γ is log-supermodular. As a result, any two functions f and g which are non-

decreasing on Γ are positively correlated, i.e., Eµ(fg) ≥ Eµ(f)Eµ(g). Consequently, given

anyM non-negative, non-decreasing functions f1, f2, ..., fM one could inductively apply FKG

inequality to obtain

Eµ(
M∏
i=1

fi) ≥
M∏
i=1

Eµfi. (4.15)

109

Given (4.15) what remains to be shown is that each γt,i(U) is non-negative and non-

decreasing as a function ofU ∈ {0, 1}N . To see that it is non-negative is straight-forward – we

have GtjUj ≥ 0 and hence (1−GtjUj) ≤ 1. Therefore, the product
∏N

j=1:
j ̸=i

(1−GtjUj) ≤ 1 and

the non-negativity follows. To see that γt,i(U) is non-decreasing, we first consider U ≺ U′,

i.e., Uj ≤ U ′
j ∀ j. Then we have (1 − GtjUj) ≥ (1 − GtjU

′
j) ∀ t, j and

∏N
j=1:
j ̸=i

(1 − GtjUj) ≥∏N
j=1:
j ̸=i

(1 − GtjU
′
j) ∀ t. Thus, γt,i(U) ≤ γt,i(U

′) and γt,i is non-decreasing. Applying (4.15),

we have

EU\{i}

T∏
t=1

γt,i ≥
T∏
t=1

EU\{i}γt,i.

4.7.2 Computing the objective function f(Q)

Here we give a O(N2) algorithm to compute the objective function f(Q) in (4.13). We

assume T ≤ N so T = O(N) throughout. We first restate the expression for f(Q) in (4.14):

f(Q) =
N∑
i=1

(1− pi)
T∏
t=1

(1−Qti

N∏
j=1,j ̸=i

(1−Qtjpj)).

Note that this can be rewritten as:

f(Q) =
N∑
i=1

(1− pi)F [i],

where the intermediate terms are defined as

F [i] ≜
T∏
t=1

(1−QtiG[t, i])

and

G[t, i] ≜
N∏

j=1,j ̸=i

(1−Qtjpj)).

Thus, we first compute and store G[t, i] ∀ t, i, which is then used to compute F [i] ∀ i in

O(N2) time (assuming T = O(N)). Subsequently, f(Q) can be computed from F [i] in

O(N). Computing G[t, i] takes O(N2) as one can first compute H[t] ≜
∏N

j=1(1−Qtjpj)) ∀ t

in O(N2) time and obtain G[t, i] = H[t]/(1−Qtipi) in O(N
2). The overall time complexity

of computing f(Q) is O(N2).

110

4.7.3 Expression for each partial derviative in ∇Qf(Q)

Here, we give an expression for the gradient ∇f(Q) by calculating each partial derivative

∂f(Q)
∂Qlm

.

∂f(Q)

∂Qlm

=
∂

∂Qlm

N∑
i=1

(1− pi)
T∏
t=1

1−Qti

N∏
j=1:
j ̸=i

(1−Qtjpj)



=
∂

∂Qlm

N∑
i=1:i ̸=m

(1− pi)
T∏
t=1

1−Qti

N∏
j=1:
j ̸=i

(1−Qtjpj)



+ (1− pm)
∂

∂Qlm

T∏
t=1

1−Qtm

N∏
j=1:
j ̸=m

(1−Qtjpj)


(a)
=

N∑
i=1:i ̸=m

(1− pi)
∂

∂Qlm

1−Qli

N∏
j=1:
j ̸=i

(1−Qljpj)

 T∏
t=1:t̸=l

1−Qti

N∏
j=1:
j ̸=i

(1−Qtjpj)



+ (1− pm)
∂

∂Qlm

1−Qlm

N∏
j=1:
j ̸=m

(1−Qljpj)

 T∏
t=1:t̸=l

1−Qtm

N∏
j=1:
j ̸=m

(1−Qtjpj)


(b)
=

N∑
i=1:i ̸=m

(1− pi)

Qlipm

N∏
j=1:

j ̸=i,j ̸=m

(1−Qljpj)

 T∏
t=1:t̸=l

1−Qti

N∏
j=1:
j ̸=i

(1−Qtjpj)



+ (1− pm)

− N∏
j=1:
j ̸=m

(1−Qljpj)

 T∏
t=1:t̸=l

1−Qtm

N∏
j=1:
j ̸=m

(1−Qtjpj)

 , (4.16)

where in (a) we separate out the term corresponding to t = l from the product term
∏T

t=1

and apply the derivative in (b).

111

4.7.4 Computing ∇Qf(Q)

The computation of gradient follows a similar approach as the computation of the objective

function f(Q). We assume T ≤ N so T = O(N) throughout. We first restate the expression

for the gradient in (4.16):

∇Qlm
f(Q) =

N∑
i=1:i ̸=m

(1− pi)

Qlipm

N∏
j=1:

j ̸=i,j ̸=m

(1−Qljpj)

 T∏
t=1:t̸=l

1−Qti

N∏
j=1:
j ̸=i

(1−Qtjpj)



+ (1− pm)

− N∏
j=1:
j ̸=m

(1−Qljpj)

 T∏
t=1:t̸=l

1−Qtm

N∏
j=1:
j ̸=m

(1−Qtjpj)



As we did in the case of objective function computation, we first simplify and rewrite

this in terms of intermediate terms:

∇Qlm
f(Q) =

N∑
i=1:i ̸=m

(1− pi)
(
Qli

pm
1−Qlmpm

G[l, i]

) T∏
t=1:t̸=l

(1−QtiG[t, i])

+ (1− pm) (−G[l,m])
T∏

t=1:t̸=l

(1−QtmG[t,m])

=
pm

1−Qlmpm

N∑
i=1:i ̸=m

(1− pi) (QliG[l, i])F [l, i]

+ (1− pm) (−G[l,m])F [l,m]

=
pm

1−Qlmpm

(
N∑
i=1

(1− pi)QliG[l, i]F [l, i]− (1− pm)QlmG[l,m]F [l,m]

)
+ (1− pm) (−G[l,m])F [l,m]

=
pm

1−Qlmpm

N∑
i=1

(1− pi)QliG[l, i]F [l, i]

− (1− pm)G[l,m]F [l,m]

(
1

1−Qlmpm

)
,

112

where the intermediate terms are

F [l, i] ≜
T∏

t=1:t̸=l

(1−QtiG[t, i])

and

G[t, i] =
N∏

j=1,j ̸=i

(1−Qtjpj).

As we showed earlier, computing G[t, i] ∀ t, i can be done in O(N2) runtime complexity,

and F [l, i] can be obtained as H[i]
1−QliG[l,i]

where H[i] ≜
∏T

t=1(1−QtiG[t, i]). Clearly, H[i] ∀ i

can be obtained once in O(N2) and reused to compute F [l, i] ∀ l, i in O(N2). Having

computed F and G terms, one could again use a similar trick to precompute J [l] ≜
∑

i=1(1−

pi)QliG[l, i]F [l, i] ∀ l in O(N2). With this, one could now compute each gradient term ∇Qlm

in O(1) thus giving an overall time complexity O(N2).

4.7.5 Additional numerical results

In Figure 4.4-Figure 4.7, we show box plots that provides additional details on the distribu-

tion of the error rates illustrated in Section 4.5. The box edges indicate the upper and lower

quartiles, the small white box plots the mean, the diamonds are deemed as outlier points

and the whiskers indicate the min and the max excluding the outlier points.

113

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.4

0.45

0.5

F
P
ra
te

(a) T = 100.
C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.14

0.16

0.18

0.2

0.22

0.24

F
P
ra
te

(b) T = 200.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

2

3

4

5

6

·10−2

F
P
ra
te

(c) T = 400.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.5

1

1.5

·10−2

F
P
ra
te

(d) T = 600.

Figure 4.4: Summary of the distribution of error rates plotted in Figure 4.2a

114

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.25

0.3

0.35

0.4

0.45

F
P
ra
te

(a) T = 100.
C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.1

0.15

0.2

F
P
ra
te

(b) T = 200.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

1

2

3

4

5

·10−2

F
P
ra
te

(c) T = 400.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.5

1

·10−2

F
P
ra
te

(d) T = 600.

Figure 4.5: Summary of the distribution of error rates plotted in Figure 4.2b

115

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

1

1

1

1

1

F
N

ra
te

(a) T = 100.
C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.96

0.97

0.98

F
N

ra
te

(b) T = 200.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.15

0.2

0.25

0.3

0.35

0.4

F
N

ra
te

(c) T = 400.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

2

4

6

·10−2

F
N

ra
te

(d) T = 600.

Figure 4.6: Summary of the distribution of error rates plotted in Figure 4.3a

116

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.99

0.99

0.99

0.99

1

1

1

F
N

ra
te

(a) T = 100.
C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.8

0.85

0.9

0.95

F
N

ra
te

(b) T = 200.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0.1

0.2

0.3

F
N

ra
te

(c) T = 400.

C
C
W

C
C
A

G
D

+
0
in
it
.

G
D

+
C
C
W

in
it
.

G
D

+
C
C
A

in
it
.

G
D

+
sa
m
p
li
n
g

0

2

4

6
·10−2

F
N

ra
te

(d) T = 600.

Figure 4.7: Summary of the distribution of error rates plotted in Figure 4.3b

117

CHAPTER 5

Static community infection model

Summary: In this chapter, we study group testing in the presence of correlations, where

the correlation is induced by a community structure. We propose algorithms, both in terms

of designing tests as well as designing decoders, that leverage a known community structure

to make group testing more efficient.

In the previous chapter, we improved static group testing algorithms under an indepen-

dent model of infection. In this chapter, we build group testing algorithms around an idea

“whose time has come”: we propose to leverage a known community structure to make group

testing more efficient. Although traditionally the work in group testing assumes “indepen-

dent” infections, we note that today it is totally feasible to keep track of community structure

- several apps are already doing so [Tra20a,Tra20b]. Moreover, our approach is well aligned

with the need for independent grassroots testing (schools testing their students, companies

their workers) where the community structure is explicit (shared classrooms, shared common

spaces).

We find that taking into account the community structure can reduce the number of tests

we need significantly below the well known combinatorial bound [AJS19], the best we can

hope for when not taking this structure into account. Moreover, it enlarges the regime where

group testing can offer benefits over individual testing. Indeed, a limitation of group testing

is that it does not offer benefits when k grows linearly with n [HHW81, Ung60]. Taking

into account the community structure allows to identify and remove from the population

large groups of infected members, thus reducing their proportion and converting a linear to

118

a sparse regime identification. However, we also find that, although our algorithms do not

need assume knowledge of the infection probabilities, they do need to correctly know the

community structure, and in particular, the community overlaps: not taking into account the

overlaps (assuming communities are disconnected) can deteriorate the performance. Note

that the results in this work admit non-overlapping communities as a special case. Our main

contributions in this chapter include:

•We derive a lower bound on the number of tests, that generalizes the counting bound [AJS19]

to overlapping communities.

• We propose a new adaptive algorithm that requires fewer tests than traditional adaptive

algorithms to recover the infection status of all individuals without error.

•We propose two nonadaptive algorithms that leverage the community structure to improve

reliability over traditional nonadaptive testing. One leverages the structure at the encoder

side with a novel test design, while the other one accounts for it at the decoder side with a

new decoding algorithm that is based on loopy belief propagation and is generic enough to

work on any structure.

The chapter is organized as follows: we give known results in Section 5.1, our model

in Section 5.2, the lower bound in Section 5.3, and non-adaptive algorithms in Sections 5.4

and 5.5. Our numerical evaluation is in Section 5.6.

5.1 Background

As detailed in the previous chapter, traditional group testing assumes a population of n

members out of which some are infected. Two infection models are considered: (i) in the

combinatorial model, there is a fixed number of infected members k , selected uniformly

at random among all sets of size k ; (ii) in the probabilistic model, each item is infected

independently of all others with probability p, so that the expected number of infected

members is k̄ = np.

119

A group test τ takes as input samples from nτ individuals, pools them together and

outputs a single value: positive if any one of the samples is infected, and negative if none is

infected. More precisely, let Ui = 1 when individual i is infected and 0 otherwise. yτ takes

a binary value calculated as yτ =
∨

i∈δτ Ui,

where
∨

stands for the OR operator (disjunction) and δτ is the group of people partici-

pating in the test.

The performance of a group testing algorithm is measured by the number of group tests

T = T (n) needed to identify the infected members (for the probabilistic model, the expected

number of tests needed). Several setups have been explored in the literature, that include:

• Adaptive vs. non-adaptive testing: In adaptive testing, we use the outcome of previous

tests to decide what tests to perform next. An example of adaptive testing is binary splitting,

which implements a form of binary search and is known to be optimal when the number of

infected members is unknown. Non-adaptive testing constructs, in advance, a test matrix

G ∈ {0, 1}T×n where each row corresponds to one test, each column to one member, and

the non-zero elements in each row determine the set δτ . Although adaptive testing uses less

tests than non-adaptive, non-adaptive testing is more practical as all tests can be executed

in parallel.

• Scaling regimes of operation: assume k = Θ(nα), we say we operate in the linear regime if

α = 1; in the sparse regime if 0 ≤ α < 1; in the very sparse regime if k is constant.

The following are well established performance results (see [AJS19, Joh17, DH93] and

references therein):

• Since T tests allow to distinguish among 2T combinations of test outputs, we need T ≥

log2
(
n
k

)
to identify k randomly infected people out of n. This is known as the counting

bound [AJS19,Joh17,DH93] and implies that we cannot use less than T = O(k log n
k
) tests.

• Noiseless adaptive testing allows to achieve the counting bound for k = Θ(nα) and 0 ≤

α < 1; for non-adaptive testing, this is also true of 0 ≤ α < 0.409, if we allow a vanishing

120

(with n) error [AJS19,CGH20a,CGH20b].

• In the linear regime (α = 1), group testing offers little benefits over individual testing.

In particular, if the infection rate k/n is more than 0.38, group testing does not use fewer

tests than one-to-one (individual) testing unless high identification-error rates are accept-

able [HHW81,Ung60,RC00].

5.2 Model and Notation

5.2.1 Community model

This chapter extends the above results by assuming an overlapping community structure:

members may belong to one or more communities—hence they are infected according to

new combinatorial and probabilistic models that are slightly different from the traditional

ones and depend on how the communities overlap (Section 5.2.2). Given these new infection

models, new lower bounds can be derived (Section 5.3) for both the combinatorial and

probabilistic case. Our analysis shows that these bounds can be significantly lower than the

above-mentioned counting bounds.

More formally, we assume that all members of the entire population V = {1, 2, · · · , n}

are organized in a known structure, which can be perceived in the form of a hypergraph

G(V ,E): each vertex v ∈ V corresponds to an individual, that we simply call a member,

and each edge e ∈ E indicates which members belong to the same community. Since G is a

hypergraph, an edge may connect any number of vertices; hence, a member may belong to

one or more communities. The number of communities that a member belongs to is called the

degree of the member. Sometimes, we need to reason about the number of communities in

the structure and the community size (i.e. the number of members in a community). Instead

of the classic cardinality notation, we use the following for brevity: |E | = F , |Ve | = Mj , and

Mj = M in the symmetric case where all communities have the same size.

121

Outer

sets

Figure 5.1: Example illustrating outer sets.

The hypergraph G may be decomposed into connected components, where each com-

ponent C (VC ,EC) is a sub-hypergraph. For component C let DC contain the nonempty

subsets of the standard partition of the hyperedges in EC ;

in the example of Fig. 5.1, EC consists of 3 hyperedges, and DC contains 7 disjoint sets.

For each set d ∈ DC , let Vd denote the set of members it contains. Because of the

partition, all members of Vd belong to the same community (or set of communities), which we

denote with E (Vd)—hence, they all have the same degree. As described in the next section,

these members get infected according to some common infection principle. We distinguish 2

kinds of sets in DC : (a) the “outer” sets: DC ,out ≜ {d ∈ DC : ∄b ∈ DC s.t. E (Vb) ⊂ E (Vd)},

and (b) the “inner” sets: DC ,in ≜ DC \ DC ,out . Fig. 5.1 illustrates the 3 outer (yellow) and

4 inner (green and blue) sets. Note that the members of inner sets have always a higher

degree than those of the outer sets.

5.2.2 Infection models

Let K(set) return the subset of infected elements of any set of members, communities or

components. We consider the following infection models, that parallel the ones in the tradi-

tional setup of Section 5.1.

• Combinatorial Model (I). kf of the communities have at least one infected member (we

will call these infected communities). The rest of the communities have no infected members.

Any combination of infected communities has the same chance of occurring. In each infected

122

community, there are k j
m = |K(Ve)| infected members, out of which kI

m = |K (∩e∈IVe) | (with

∩e∈IVe ̸= ∅) are shared with a subset of communities I. The infected communities (resp.

infected community members) are chosen uniformly at random out of all communities (resp.

members of the same community).

• Probabilistic Model (II). A community e becomes infected i.i.d. with probability

q . If a member v of an infected community e belongs only to that community (i.e. has

degree 1), then it becomes infected w.p. p = pj , independently from the other members (and

other communities).

Also, if v belongs to a subset of infected communities K(I) ⊆ K(E), it is considered to be

infected by either of these communities. So, given all the infection rates of these communities

{pj : e ∈ K(I)}, we say that i becomes infected w.p.:

p = 1 −
∏

j∈K(I)(1 − pj). Note that since each member gets infected by either of the

infected communities it belongs to, the product of the RHS term above becomes smaller as

|K(I)| increases. Last, if v does not belong to an infected community, then p = 0.

We make two remarks: First, although the communities are infected independently, their

structure causes a dependent infection model; in fact, the way communities overlap de-

termines the infection probability of their shared members. Second, our model captures

situations where infection is determined by participation in a community rather than the

status of community members. Albeit simplistic, we think that this model can be useful in

real pandemics. Since the exact community structure of the entire population of a country

or a continent can never be known to the test designer, we expect that graph G only partially

describes the reality: there might be members that do not belong to V , yet interact with

them in unknown ways, or there might be communities that are simply not captured due to

unknown member interactions. In such a case, assuming that communities become infected

independently seems a simple yet reasonable model to use. However, once a few communities

in G get infected, we expect that the infection probability of a member will increase with

the number of infected communities it belongs to, which is captured by our model in the

123

computation of p.

Non-overlapping communities A special case of our community framework is when

the communities have no overlap; this scenario is investigated in in our work [NRG21],

where algorithms that take into account the non-overlapping structure are explored. In

our experiments, however, these algorithms do not always perform well when communities

overlap (e.g. see Fig. 5.3); in fact, there are cases where they perform worse than traditional

group testing.

5.3 Lower bound on the number of tests

We compute the minimum number of tests needed to identify all infected members under

the zero-error criterion in both community models (I) and (II).

Theorem 5.1 (Community bound for combinatorial model (I)). Any algorithm that identi-

fies all k infected members without error requires a number of tests T satisfying:

T ≥ log2

(
F

kf

)
+
∑
C∈G

∑
d∈DC

log2

(
|Vd |
|K(Vd)|

)
, (5.1)

where |Vd | is the set of members of each disjoint set in DC and |K(Vd)| are the infected

members of that set.

Observation: Consider a usual epidemic scenario, where the population is composed of a

large number of communities with members that have close contacts (e.g. relatives, work

colleagues, students who attend the same classes, etc.). In such a case, one should expect

that most members of infected communities are infected (i.e. k j
m ≈ Mj), even though the

number of infected communities kf and the overall number of infected members k may still

follow a sparse regime (i.e., kf = Θ(Fαf) and k = Θ(nα) for αf , α ∈ [0, 1)).

Theorem 5.1 shows the significant benefit of taking the community structure into account

in the test design: the community bound increases almost linearly with kf , as opposed to k ,

124

which is what happens with the traditional counting bound (that does not account for any

community structure). This is due to the second term of Equation (5.1) tending to 0 and

log2
(
F
kf

)
∼ kf log2

F
kf
∼ (1− αf)kf log2 F .

A similar bound exists for the probabilistic model (II). Consider a component C ∈ G. Let

V be the indicator random vector for the infection stat of all communities in C , and XC =

{0, 1}|C | be the set of all possible such indicator vectors. Note that since each community

becomes infected w.p. q , Pr(V = xC) = qλ(1− q)|C |−λ, where λ is the weight of xC . Also,

the value of xC determines the infection probabilities p of each member i ∈ VC .

5.4 Algorithms

In this section, we provide group-testing algorithms for the noiseless case that leverage the

community structure. We start from adaptive algorithms and then proceed to non-adaptive.

5.4.1 Adaptive algorithm

Algorithm 5.1 describes our adaptive algorithm. It is built on top of traditional adaptive

testing,which we will generally denote as AdaptiveTest(). AdaptiveTest() is an abstraction

of any existing (or future) adaptive algorithm that assumes independent infections. We

distinguish 2 different inputs for AdaptiveTest(): (a) a set of members; or (b) a set of mixed

samples. A mixed sample is created by pooling together samples from multiple members.

For example, mixed sample z (rd) is an pooled sample of some representative members rd

from disjoint set d . Because we only care whether a mixed sample is positive or not, we can

treat it in the same way as an individual sample—hence use group testing to identify the

state of mixed samples as we do for individuals.

Part 1: For each component of the graph G, we first identify the outer sets DC ,out . Then,

from each outer set d , we select a representative subset of members rd , whose samples

are pooled together into a mixed sample z (rd). There can be many selection methods

125

for SelectRepresentatives(); however, we typically use uniform (random) sampling without

replacement. Finally, we determine the state of all mixed samples (line 4).

Part 2: We treat Ûz (rd) as a rough estimate of the infection regime inside each set d : if

Ûz (rd) is positive, we consider d to be heavily infected and we individually test its members

Algorithm 5.1 Adaptive Community Testing (G (V ,E))

Ûi is the estimated infection state of member i (“+” or “-”).

Ûz is the estimated infection state of a mixed sample z .

1: for d ∈ DC ,out , ∀C ∈ G do

2: rd ← SelectRepresentatives (Vd)

3:

{
Ûz (rd)

}
← AdaptiveTest ({z (rd})

4: Set A := ∅

5: for C ∈ G do

6: for d ∈ DC ,out do

7: if Ûz (rd) = “positive” then

8: Individually test Vd : Ûi ← Ui , ∀i ∈ Vd .

9: p̂d ← 1/|Vd | ·
∑

v∈Vd
1{Ûi= ’positive’}

10: else

11: A← A ∪ {i : i ∈ Vd}

12: for b ∈ DC ,in (in increasing order of degree) do

13: if ∃d ∈ DC s.t. E (Vd) ⊂ E (Vb) & p̂d > θ then

14: Individually test Vb : Ûi ← Ui , ∀i ∈ Vb .

15: p̂b ← 1/|Vb | ·
∑

v∈Vb
1{Ûi= ’positive’}

16: else

17: A← A ∪ {i : i ∈ Vb}

18:

{
Ûi : i ∈ A

}
= AdaptiveTest (A)

19: return
[
Û1, . . . , Ûn

]

126

(line 9); otherwise, we consider it lightly infected and we include its members in set A (line

12). For our rough estimate of the infection regime to be a good one, we choose the number

of representatives based on some prior information about infection rate of each outer set;

for example if pj < 0.38 then only one representative is enough, otherwise pooling together

the entire set is one’s best option. Note that the exact knowledge of pj and a rough prior

may be easily acquired. For example, in realistic scenarios, where the infection rates are not

expected to be very low inside the communities, pooling together the entire outer set is a

good heuristic.

Due to individually testing the heavily-infected outer sets, we obtain more accurate esti-

mates of their infection rates, p̂d , by computing the average proportion of infected members

(line 10). We use these estimates to decide how to test the inner sets of the component: if

an outer set d exists whose members belong to a subset of communities in E (Vb) and its

estimated infection rate p̂d is above a threshold θ, then members of Vb are tested individually

(line 17) and a new estimate p̂b for the infection rate of that set is computed (line 18). Else,

members of Vb are included in set A. Our rationale follows the infection model described in

Section 5.2.2, which implies that the infection probability of the members of an inner set b

will always be at least equal to the infection probability of the members (of an outer set d)

whose community(ies) are a subset of E (Vd). Hence, if an outer set is heavily infected then

a corresponding inner set will be heavily infected, too. In our experiments, we numerically

examine the impact of θ.

Finally, we test all members of set A that are not tested individually (because infection

probability is presumably low) using traditional group testing (line 23).

5.4.2 Non-adaptive algorithms

For simplicity, we describe our non-adaptive algorithm using the symmetric case.

127

Test Matrix

We divide the (T1 +T2)× n matrix G into two sub-matrices G1 and G2 of sizes T1 × n and

T2 × n.

▷ The sub-matrix G1 identifies the non-infected outer sets using one mixed sample for each

outer set (Section 5.2.1). If the number of tests available is large, we set T1 to be the number

of outer sets, i.e., we use one test for each outer set; otherwise, in sparse kf regimes, T1 can

be closer to O(kf log F
kf
).

▷ Assume that T2 =
n
c
, for some constant c. The sub-matrix G2 of size T2 × n has one “1”

in each column (each of the n member participates in one test) and c “1”s in each row (each

test pools together c members); equivalently, G2 is a concatenation of c identity matrices

IT2 , i.e., G2 = [IT2 IT2 · · · IT2]. For c = 1, this reduces to individual testing. The design of

G2 amounts to deciding which members are placed in the same test. We propose that no

two members from the same outer set are placed in the same test and that members from

the same inner set are placed in the same test (c members in each test).

Decoding

We use the test outcomes of G1 to identify the non-infected outer sets and proceed to

remove the corresponding columns from G2. We next use the remaining columns of G2

and combinatorial orthogonal matching pursuit (COMP) to identify the infected members,

namely: (i) A member is identified as non-infected if it is included in at least one negative

test in G2. (ii) All other members, that are only included in positive tests in G2, are identified

as infected.

Intuition

Suppose infected communities have a large percentage (say > 40%) of infected members.

The idea is that pooling together multiple highly correlated items in the same test (such as

128

people in the same outer/inner set) enables COMP to mark all these items as non-defective

in case of a negative result.

Example

We here illustrate for a special case our proposed design for matrix G2 and the resulting error

rate our algorithm achieves. Assume that we have F communities, where 2Fo communities

pairwise overlap (each community overlaps with exactly one other community) and the

remaining F − 2Fo communities do not overlap with any other community. Assume each

community has M members, and overlapping communities share Mo members. We construct

the sub-matrix G2 of size T2×n as in the following example that uses F = 6, Fo = 2, M = 3,

Mo = 1:

This matrix starts with b1 =
F−2Fo

c
block-rows that each contains c identity matrices IM ,

one corresponding to each non-overlapping community. We then have b2 = Fo

c
block-rows

each containing c identity matrices I2M−Mo , one for each pair of overlapping communities.

Each I2M−Mo matrix contains three matrices IM−Mo , IMo , and IM−Mo corresponding to the

members that belong only in one of the communities, or in both. Note that F = (b1 + 2b2)c

and T2 = b1M + b2(2M −Mo).

Error Rate

Note that our decoding strategy leads to zero FN errors. The following lemma provides

an analysis of the error (FP) rate for the design of G2 in the example which is defined as:

R(error) ≜ 1/n · |{i : Ûi ̸= Ui}|. We provide the expected error rate for only the probabilistic

model (II) for the purpose of comparison with traditional Bernoulli design in Fig. 5.2(a).

129

𝑋1

𝑋2

𝑈1

𝑈2

𝑈3

𝑈4

𝑌1

𝑌2

Pr 𝑋1

Pr 𝑋2

Pr 𝑈1|𝑋1

Pr 𝑈2|𝑋1

Pr 𝑈3|𝑋2

Pr 𝑈4|𝑋2

Pr 𝑌1|𝑈1𝑈3

Pr 𝑌2|𝑈1𝑈2

(a) (b)

Figure 5.2: (a). Error rate for Bernoulli design vs G1G2 design for the example. (b). An example

of factor graph.

Lemma 5.1. For G2 as in the example, the error rate is calculated for the probability model

(II) as:

RII(error) =
1

n

[(
1− (1− pq)c−1

)
·N1 +

(
1− (1− pq)2(c−1)

)
·N2

]
, (5.2)

where N1 and N2 are the expected number of non-overlapped and overlapped members in

infected communities that are non-infected, respectively, and can be obtained as

N1 = (F − 2Fo)q(1− p)M + 2Foq(1− p)(M −Mo)

N2 = Fo

(
1− (1− q)2

)
(1− p)Mo.

The error rate of traditional group testing using Bernoulli design (with parameter 1
k
) and

COMP decoding has an error rate of Rtradition(error) = 1/n · (n − k)
(
1− 1/k(1− 1/k)k

)T
.

Fig. 5.2(a) depicts R(error) for parameters F = 150, Fo = 60, M = 10, Mo = 2, q = 0.2,

and p = 0.2.

130

5.5 Loopy belief propagation decoder

Apart from COMP, we also use loopy belief propogation (LBP [KFL01]) to infer the infec-

tion status of the individual (and communities). LBP forms an estimate of the posterior

probability that an individual (or a community) is infected, given the test results. This

estimate is exact when the underlying factor graph describing the joint distribution is a tree,

however this is rarely the case. Nevertheless, it is an algorithm of practical importance and

has achieved success on a variety of applications. Also, LBP offers soft information (poste-

rior distributions), which is more useful than hard decisions in the context of disease-spread

management.

We use LBP for our probabilistic model, because it is fast and can be easily configured to

take into account the community structure. Many inference algorithms exist that estimate

the posterior marginals, some of which have also been employed for group testing. For

example, GAMP [ZRB20] and Monte-Carlo sampling [CTV20] yield more accurate decoders.

The focus of this work is to examine whether benefits from accounting for the community

structure (both at the test design and the decoder) exist; hence we think that considering a

simple (possibly sub-optimal) decoder based on LBP is a good first step.

We next describe the factor graph and the belief propagation update rules for our prob-

abilistic model (II). Let the infection status of each community j be Vj ∼ Ber(q).

Moreover, let Sv denote the set of communities that Ui belongs to. Then:

Pr(V1,...,VF ,U1, ...,Un , Y1, ..., YT) =
F∏

j=1

Pr(Vj)
n∏

i=1

Pr(Ui |VSv)
T∏

τ=1

Pr(Yτ |Uδτ), (5.3)

where δτ is the group of people included in test τ . Equation (5.3) can be represented by a

factor graph, where the variable nodes correspond to the variables Vj ,Ui , Yτ and the factor

nodes correspond to Pr(Vj),Pr(Ui |VSv),Pr(Yτ |Uδτ);

Given the result of each test is yτ , i.e., Yτ = yτ , LBP estimates the marginals Pr(Vj =

v|Y1 = y1, ..., YT = yT) and Pr(Ui = u|Y1 = y1, ..., YT = yT), by iteratively exchanging

131

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

a
v
e
ra

g
e
 #

o
f
te

s
ts

non-overlap adaptive [14]

binary splitting

alg.1

community bound

counting bound

Figure 5.3: Average number of tests comparison of various adaptive algorithms and combinatorial

bound.

messages across the variable and factor nodes. The messages are viewed as beliefs about

that variable or distributions (a local estimate of Pr(variable|observations)). Since all random

variables are binary, each message is a 2-dimensional vector.

We use the factor graph framework from [KFL01] to compute the messages: Variable

nodes Yτ continually transmit the message [0, 1] if yτ = 1 and [1, 0] if yτ = 0 on its incident

edge, at every iteration. Each other variable node (Vj and Ui) uses the following rule: for

incident edge ϵ, the node computes the elementwise product of the messages from every other

incident edge and transmits this along ϵ. For the factor node messages, we derive closed-form

expressions for the sum-product update rules (akin to equation (6) in [KFL01]). The exact

messages are described in the Appendix.

5.6 Numerical evaluation

In this section, we evaluate the benefit of accounting for the community structure, in terms of

error rate and number of tests required, using 100 random structures, each having n = 3000

132

300 600 900 1200 1500 1800 2100
Number of tests

0.0

0.2

0.4

0.6

0.8

1.0
Fa

lse
 n

eg
at

iv
e

ra
te

C-LBP with CCW test
NC-LBP with CCW test
COMP with G1G2 test
COMP with CCW test

Figure 5.4: FN rate comparison of various

non-adaptive test designs with corresponding

decoding algorithms.

300 600 900 1200 1500 1800 2100
Number of tests

0.00

0.08

0.16

0.24

0.32

0.40

Fa
lse

 p
os

iti
ve

 ra
te

C-LBP with CCW test
NC-LBP with CCW test
COMP with G1G2 test
COMP with CCW test

Figure 5.5: FP rate comparison of various non-

adaptive test designs with corresponding decod-

ing algorithms.

members participating in about 200 overlapping communities.

Experimental setup. We generate each structure using the following rules: the size of

each community is selected uniformly at random from the range [15, 25], and each member is

randomly allocated in at most 4 communities (according to a geometric distribution). Then,

the members become infected according to the probabilistic model (II): each community e

gets infected w.p. q = 0.05; and if infected, then its infection rate pj is randomly chosen

from the interval [0.3, 0.9]. We remark that our experimental setup yields a linear infection

regime; the fraction of infected members about 5% overall. We preferred such a setup in

order to stress the performance of our algorithms, as we know that group testing generally

shows less benefits in linear regimes.

For the adaptive algorithms, we compare: the binary splitting algorithm (BSA) [AJS19],

which is the best traditional alternative when the number of infected members is unknown;

the algorithm proposed in [NRG21] that considers communities but no overlap; and Alg. 5.1

with BSA in the place of AdaptiveTest().

For the non-adaptive test matrix designs, we compare: G1G2, our proposed test design

in Section 5.4.2; and CCW, constant-column-weight algorithms, where each item is included

133

in a fixed number w of tests selected uniformly at random. w is assumed to be of the

form w = αT
k
, where k is an estimate of the number of defectives in the population. We

exhaustively search to find the best value of α ∈ [0, 1].

We also compare LBP and COMP decoding: C-LBP is our proposed algorithm in section

5.5, that takes into account the community structure. NC-LBP, does not take into account

the community structure, i.e., assumes that each individual is i.i.d infected with the same

probability piid. COMP, described in [AJS19], has a zero FN probability by design.

Results.

(i) Adaptive test designs. For each community structure, we measured the number of tests

needed by each adaptive algorithm to achieve zero-error identification. Since Alg. 5.1 depends

on θ, the threshold used at line 16, we wanted to evaluate its performance of various values

of θ. Figure 5.3 depicts the average performance of our algorithm (for each θ, we average

over 100 randomly generated structures). Alg. 5.1 was proved resilient to the choice of θ

and needed on average > 60% fewer tests than the other algorithms. Its performance was

also better than the counting bound, which is our best hope with traditional group testing.

Our findings were similar in sparse infection regimes as well, and there were cases where our

algorithm performed close to the community bound [NGF20].

(ii) Non adaptive test designs. In our experiments, we measured the FN/FP rates achieved

by the non-adaptive test designs and the corresponding decoders. Fig. 5.4 and Fig. 5.5 depict

FN and FP rates as a function of T ∈ [300, 2100], respectively. The key takeaways are as

follows:

• C-LBP with CCW attains zero FP and FN at 1200 tests while COMP and NC-LBP with

CCW (which are agnostic to the community structure) attain zero FP and FN only at 1800

and 2100 tests respectively. This illustrates potential benefits of making the decoder aware

of the community structure.

• If we desire a zero FN rate (or if we would like to use a simple decoder) and we are

constrained to use less than 1000 tests, the G1G2 test design with COMP gives the lowest

134

FP rates. This illustrates the benefit of designing tests matrices that take into account the

community structure.

5.7 Conclusions and Open Questions

In this chapter, we studied group testing in the presence of correlations, where the correlation

is induced by a community structure. We showed that exploiting the knowledge provided by

the community structure allows us to use upto 60% fewer tests compared to traditional test

designs. We also showed how to incorporate this information into a loopy belief propagation

decoder to see performance benefits. An open question is to understand which community

structures, beyond the examples considered in this chapter, offer benefits and how large

these benefits can be. Another open question is to design algorithms for more general testing

models (see [GPR20], for example) and/or under limited information about the community

structure (for example, due to technological limitations, privacy issues and fast-changing

structures).

5.8 Appendix

5.8.1 Proof of Theorem 5.1

Proof. Ineq. (5.1) is because of the following counting argument: There are only 2T combina-

tions of test results. But, because of the community model I, there are
(
F
kf

)
·
∏

C∈G
∏

d∈DC

(|Vd |
|K(Vd)|

)
possible sets of infected members that each must give a different set of results. Thus,

2T ≥
(
F

kf

)
·
∏
C∈G

∏
d∈DC

(
|Vd |
|K(Vd)|

)
,

which reveals the result. The RHS of the latter inequality is because there are
(
F
kf

)
possible

combinations of infected communities, each of which has the same chance of occurring and

is associated with a structure of infected components. For each infected component, we

135

consider the standard partition DC (as in Figure 5.1). In each disjoint set d of the partition,

there are
(|Vd |
|K(Vd)|

)
possible combinations of infected members, each of which having the same

chance of occurring–hence the double product of the RHS. Since the binomial coefficient is

equal to 1, if the number of infected members in a disjoint set d is 0, instead of focusing

only on the infected components and infected disjoint sets, we can let the products at the

RHS be over all disjoint sets of all components in the graph.

5.8.2 Proof of Lemma 5.1

For a non-overlapped non-infected member i that belongs to only one community, the prob-

ability that i is misidentified as infected is 1− (1− pq)c−1. For an overlapped non-infected

member i that belongs to more than one communities, the probability that i is misidentified

as infected is 1− (1−pq)2(c−1). Note that we assume the decoding of G1 has no errors, i.e., it

identifies all non-infected outer sets correctly. Then for the pairwise overlap structure in the

example, the infection status of all non-overlapped communities and non-overlapped parts

are identified correctly. The COMP decoding of G2 has no FNs. The expected total number

of FPs N0 can be obtained as N0 ≤ (1− (1− pq)c−1) ·N1 +
(
1− (1− pq)2(c−1)

)
·N2, where

the inequality is because the RHS have not used the testing resluts of G1, N1 and N2 are

the expected number of non-overlapped and overlapped members in infected communities,

respectively. We can calculate N1 as follows,

N1 = (F − 2Fo)q(1− p)M + 2Foq(1− p)(M −Mo), (5.4)

where (F −2Fo)q is the expected number of infected non-overlapped communities, (1−p)M

is the expected number of non-infected members in each infected non-overlapped community,

2Foq is the expected number of infected overlapped communities, and (1−p)(M −Mo) is the

expected number of non-infected members in each infected overlapped community. Similarly,

N2 can be calculated as

N2 = Fo

(
1− (1− q)2

)
(1− p)Mo, (5.5)

136

where Fo (1− (1− q)2) is the expected number of overlaps, and (1 − p)Mo is the expected

number of non-infected members in each overlapped part.

5.8.3 LBP: message passing rules

We here describe our loopy belief propagation algorithm (LBP) and update rules for our

probabilistic model (II). We use the factor graph framework of [KFL01] and derive closed-

form expressions for the sum-product update rules (see equations (5) and (6) in [KFL01]).

The LBP algorithm on a factor graph iteratively exchanges messages across the variable

and factor nodes. The messages to and from a variable node Vj or Ui are beliefs about the

variable or distributions (a local estimate of Pr(Vj |observations) or Pr(Ui |observations)).

Since all the random variables are binary, in our case each message would be a 2-dimensional

vector [a, b] where a, b ≥ 0. Suppose the result of each test is yt, i.e., Yt = yt and we wish

to compute the marginals Pr(Xe = x|Y1 = y1, Y2 = y2, ..., YT = yT) and Pr(Uv = u|Y1 =

y1, Y2 = y2, ..., YT = yT) for x, u ∈ {0, 1}. The LBP algorithm proceeds as follows:

1. Initialization: The variable nodes Vj and Ui transmit the message [0.5, 0.5] on each of

their incident edges. Each variable node Yτ transmits the message [1 − yτ , yτ], where

yτ is the observed test result, on its incident edge.

2. Factor node messages: Each factor node receives the messages from the neighboring

variable nodes and computes a new set of messages to send on each incident edge. The

rules on how to compute these messages are described next.

3. Iteration and completion. The algorithm alternates between steps 2 and 3 above a fixed

number of times (in practice 10 or 20 times works well) and computes an estimate of

the posterior marginals as follows – for each variable node Vj and Ui , we take the

coordinatewise product of the incoming factor messages and normalize to obtain an

estimate of Pr(Vj = x|y1...yT) and Pr(Ui = u|y1...yT) for x, u ∈ {0, 1}.

137

Next we describe the simplified variable and factor node message update rules. We use

equations (5) and (6) of [KFL01] to compute the messages.

Leaf node messages: At every iteration, the variable node yτ continually transmits the

message [0, 1] if yτ = 1 and [1, 0] if yτ = 0 on its incident edge. The factor node Pr(Vj)

continually transmits [1− q , q] on its incident edge; see Fig. 5.6 (a) and (b).

Variable node messages: The other variable nodes Vj and Ui use the following rule to

transmit messages along the incident edges: for incident each edge e, a variable node takes

the elementwise product of the messages from every other incident edge e′ and transmits

this along e; see Fig. 5.6 (c).

Factor node messages: For the factor node messages, we calculate closed form expressions

for the sum-product update rule (equation (6) in [KFL01]). The simplified expressions are

summarized in Fig. 5.6 (d) and (e). Next we briefly describe these calculations.

Firstly, we note that each message represents a probability distribution. One could,

without loss of generality, normalize each message before transmission. Therefore, we assume

that each message µ = [a, b] is such that a + b = 1. Now, the the leaf nodes labeled Pr(Vj)

perennially transmit the prior distribution corresponding to Vj.

Next, consider the factor node Pr(Ui|XSi
) as shown in Fig. 5.6 (e). The message sent to

Ui is calculated as

ν0 =
∑

{xe∈{0,1}:e∈Si}

Pr(Ui = 0|XSi
= xSi

)
∏
e∈Si

s(e)xe

=
∑

{xe∈{0,1}:e∈Si}

∏
e∈Si

(s(e)xe
(1− pe)xe)

=
∏
e∈Si

(s
(e)
0 + s

(e)
1 (1− pe)).

Similarly, ν1 can be computed to be ν1 = 1− ν0. Now, the message sent to each Xe is

µxe =
∑
u∈0,1,

{xe′∈{0,1}:e′∈Si\{e}}

Pr(Ui = u|XSi
= xSi

)wu

∏
e′∈Si\{e}

s(e
′)

xe′

138

=
∑

{xe′∈{0,1}:e′∈Si\{e}}

(∏
e′∈Si\{e}

s(e
′)

xe′

)(
w0

∏
e′∈Si

(1− pe′)xe′ + w1(1−
∏
e′∈Si

(1− pe′)xe′)

)

= w0(1− pe)xe
∏
e′ ̸=e

(s
(e′)
0 + s

(e′)
1 (1− pe′))

+ w1

[
1− (1− pe)xe

∏
e′ ̸=e

(s
(e′)
0 + s

(e′)
1 (1− p′e)

]
.

Finally for the factor nodes Pr(Yτ |Uδτ) as shown in Fig. 5.6 (d), note that the messages to

Yτ play no role since they are never used to recompute the variable messages. The messages

to Ui nodes are expressed as

µu =
∑

y∈{0,1},
{ui′∈{0,1}:i′∈δτ\{i}}

(
Pr(Yτ = y|Uδτ = uδτ)(1− yτ)1−yyyτ

∏
i′∈δτ\{i}}

s(i
′)

ui′

)

= (1− yτ)
∑

{ui′∈{0,1}:
i′∈δτ\{i}}

(
Pr(Yτ = 0|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i
′)

ui′

)

+ yτ
∑

{ui′∈{0,1}:
i′∈δτ\{i}}

(
Pr(Yτ = 1|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i
′)

ui′

)
.

From our Z-channel model, recall that Pr(Yτ = 0|Uδτ = uδτ) = 1 if ui = 0 ∀ i ∈ δτ and

Pr(Yτ = 0|Uδτ = uδτ) = z otherwise. Thus we split the summation terms into 2 cases –

one where ui′ = 0 for all i′ and the other its complement. Also combining this with the

assumption that the messages are normalized, i.e., s
(i)
0 + s

(i)
1 = 1, we get∑

{ui′∈{0,1}:
i′∈δτ\{i}}

(
Pr(Yτ = 0|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i
′)

ui′

)

= 1u=1z + 1u=0

{
1− (1− z)(1−

∏
i′∈δτ
i′ ̸=i

s
(i′)
0)

}
,

and ∑
{ui′∈{0,1}:
i′∈δτ\{i}}

(
Pr(Yτ = 1|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i
′)

ui′

)

139

= 1u=1(1− z) + 1u=0

(
(1− z)(1−

∏
i′∈δτ
i′ ̸=i

s
(i′)
0)

)
.

Substituting u = 0, and u = 1 we obtain the messages

µ0 = (1− yτ)

{
1− (1− z)(1−

∏
i′∈δτ
i′ ̸=i

s
(i′)
0)

}
+ yτ (1− z)(1−

∏
i′∈δτ
i′ ̸=i

s
(i′)
0),

and

µ1 = (1− yτ)z + yτ (1− z).

For our probabilistic model, the complexity of computing the factor node messages increases

only linearly with the factor node degree.

140

𝑋𝑗 𝑌𝜏 Pr 𝑌𝜏|𝑈𝛿𝜏

[1 − 𝑞, 𝑞] [1 − 𝑦𝜏, 𝑦𝜏]

Pr 𝑌𝜏|𝑈𝛿𝜏
𝑌𝜏

𝑈𝑖

𝑈𝛿𝜏

[1 − 𝑦𝜏, 𝑦𝜏] [1 − 𝑦𝜏, 𝑦𝜏]

(𝑑) Messages from Pr 𝑌𝜏|𝑈𝛿𝜏 factor nodes

𝑋𝑗(𝑜𝑟 𝑈𝑖)

(𝑐) Messages from 𝑋𝑗 and 𝑈𝑖 variable nodes

(𝑎) Messages from Pr 𝑋𝑗 factor nodes (𝑏) Messages from 𝑌𝜏 variable nodes

𝑋𝑒

Pr 𝑈𝑖|𝑋𝑆𝑖𝑈𝑖

(𝑒) Messages from Pr 𝑈𝑖|𝑋𝑗 factor nodes

Pr(𝑋𝑗)

𝑤𝑜
𝑓′

, 𝑤1

𝑓′
-- incoming message from

factor node 𝑓′

[𝑠𝑜
(𝑖)
, 𝑠1

(𝑖)
] – incoming message from node 𝑈𝑖

[𝜇0, 𝜇1] – outgoing message to node 𝑈𝑖

-- outgoing message to factor
node 𝑓′

where

[𝜈0 , 𝜈1][𝑤0, 𝑤1]

𝑋𝑆𝑖

[𝑠𝑜
(𝑒)

, 𝑠1
(𝑒)

]

[𝑤0, 𝑤1]

-- incoming message from node 𝑋𝑒

-- incoming message from node 𝑈𝑖

[𝜇0, 𝜇1]

[𝜈0 , 𝜈1]

-- outgoing message to node 𝑋𝑒

-- outgoing message to node 𝑈𝑖

Figure 5.6: The update rules for the factor and variable node messages.

141

CHAPTER 6

Dynamic infection model

Summary: In this chapter, we consider the dynamics of disease spread and study how static

group testing can be used in such a setting. We first prove our new lower bound for the static

case and then show the order-optimality of existing group testing algorithms. We then make

precise the conditions under which the dynamic testing problem reduces to the static case,

enabling the use of static group testing algorithms.

So far we dealt with static infection models ignoring the fact that infections continually

proliferate in a community. For the dynamic case, recent works have identified the signif-

icance of proactive testing and individual-level intervention for the control of the disease

spread (e.g. [TKL21,TRL20,BBL20]), but to the best of our knowledge none of them ad-

dresses the challenges above efficiently. Most solutions rely on the idea of “testing everyone

individually”, which is inefficient for two reasons: on one hand, using cheap rapid testing

usually results in many people (false positives) ending up in isolation without reason and at

non-negligible societal cost; on the other hand, using accurate tests like PCR can be forbid-

dingly expensive. As a result, these works need to either neglect the cost of the former or

alleviate the cost of the latter by scheduling tests on a (bi)weekly or monthly basis.

Therefore, a critical question is still open: can we use accurate/expensive tests more

efficiently? In other words, can we identify all new infections that happen each day (com-

plete testing performance), using significantly fewer accurate/expensive tests than complete

testing? Complete accurate testing (e.g. PCR) on a daily basis and isolation of infected

individuals can significantly reduce the number of infected people, as the example in Fig. 6.1

142

illustrates. Note that even with complete testing new infections still occur due to the delay

between testing and receiving the test results (Fig. 6.1 assumes the usual delay of one day).

Still, this is the best performance we can hope for, both in terms of containing infection and

alleviating the societal impact of “false” quarantines; we thus ask how many tests do we

really need to replicate it.

Traditional group testing strategies offer a powerful toolset for minimizing the number of

tests, but they do not account for the time dynamics of a disease spread and do not take into

account community structure. When the number of available tests is limited, two strategies

are usually applied: sample testing, which tests only a sample of selected individuals, and/or

group testing, which pools together diagnostic samples to reduce the number of tests needed

to identify infected individuals in a population (e.g., see [AJS19] and references therein).

Both examine a static scenario: the state of individuals is fixed (infected or not), and the

goal is to identify all infected ones.

To the best of our knowledge, our work in [SNF21b] was the first paper that targeted

community-aware, group-test design for the dynamic case. In that work we used the well-

established continuous-time SIR stochastic network model in [KMS17], where individuals

are regarded as the vertices of a graph G and an edge denotes a contact between neighboring

vertices, and explored group testing strategies that were able to track the epidemic state

evolution at an individual level, using a small number of tests. However, due to the com-

plexity of the continuous time model, we were not able to provide theoretical guarantees for

the minimum number of tests, and although we did consider testing delays.

In this chapter, we allow interventions, we use discrete-time SIR models for disease spread

and we derive theoretical guarantees. Discrete time models fit more naturally with testing

and intervention (which happen at discrete time-intervals), and are more amenable to anal-

ysis enabling methods to derive guarantees on the number of tests needed to achieve close-

to-complete-testing accuracy. In this chapter, we use a model called the “discrete-time SIR

stochastic block model,” which can be considered as a discrete version of the continuous-

143

time SIR stochastic network model over a specific type of weighted graph. The graph used

captures knowledge of an underlying community structure, as discussed in Section 6.2. In

Appendix 6.6.1, we compare the continuous-time model from [KMS17] with the discrete-time

model introduced in our work and justify the use of our discrete-time model. We also note

that our results are applicable to a larger set of SIR models, as discussed in Section 6.3.3.

Our main conclusion is that we can leverage the knowledge of the community and the

dynamic model to inform group testing algorithms that are order-optimal and use a much

smaller number of tests than complete testing to achieve the same performance. We arrive

at this conclusion building on the following contributions.

We first argue that for discrete-time SIR models, given test results that identify the in-

fection state the previous day, the problem of identifying the new infections each day reduces

to static-case group testing with independent (but not identical) priors. So, existing non-

adaptive algorithms such as CCA and/or random testing [LCH14] can be reused. Figure 6.2

illustrates the sequence of events taking place on each day t.

We then derive a new lower bound (Theorem 6.2) for the number of tests needed in the

case of independent (but not identical) priors. The main benefit of the new bound is not on

“improving” upon the well-known entropy lower bound (stated as Lemma 6.1), but having

a form that allows to prove order-optimality of group testing algorithms. In particular, we

can prove that under mild assumptions existing nonadaptive algorithms are order-optimal

in the static case (Corollary 6.2). This, in our opinion, is an interesting result on its own,

since non-identical priors static group testing remains a relatively unexplored field compared

to i.i.d. probabilistic group testing.

Finally, we derive conditions on the discrete-time SIR stochastic block model parameters

under which order-optimal group test designs for the static case are also optimal for the

dynamic case (Theorem 6.3). Simulation results show that indeed under these conditions

we can achieve the performance of complete individual testing using a much smaller (close

to the entropy lower bound) number of tests; for example, over a period of 50 days, group

144

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1,000

Day

#
of

in
fe
ct
ed

in
d
iv
id
u
al
s

No testing
Complete testing

Figure 6.1: Discrete-time SIR stochastic block model simulated on a population of 1000 individuals.

Notice that without any testing or intervention a large fraction of the population gets infected. With

complete testing (individually testing everyone everyday) and intervention (isolating individuals

who are identified as infected) we can flatten the curve to a large extent. We assume that test

results are only available the next day; if the test results were instantaneous we can identify all

infections on the first day and isolate them and there would be no subsequent new infections.

testing needs an average of around 100 tests per day for a population of 1000 individuals.

Our simulations use existing non-adaptive test designs - we do not derive new code designs

as the existing ones are sufficient. However, we do use marginal probabilities derived daily

from the SIR model to inform the group design: that is, the group tests we use vary from

day to day, and their design leverages the knowledge of the underlying system dynamics that

depend on the community structure, as well as the previous day test results.

145

Day 𝑡

New infections

occur

Perform non-adaptive

tests to identify

individuals who are

currently infected

Identify all

individuals who

were infected in

the community

at the beginning

of day 𝑡 − 1.

Isolate all

individuals who

were infected in

the community

at the beginning

of day 𝑡 − 1.
Our problem:

How many tests

are needed?

Figure 6.2: The dynamic testing problem with daily interventions. How many tests are needed

to achieve complete testing performance everyday, given that test results become available after a

day’s delay.

6.1 Related Work

This chapter shares similar goals with our prior work in [SNF21b], where we considered the

well established continuous-time SIR stochastic network model (see [KMS17]) and focused

on how many tests to use and whom to test in order to track the infected individuals in the

population. That work also explored how well one can learn the infected individuals given

delayed test results, but gave no theoretical guarantees on the methods and did not consider

intervention. Our discrete-time model for disease spread in this chapter, however, is more

amenable to analysis and illustrates better the usefulness of group testing, being at the same

time useful for practical reasons (more about this in Section 6.2). We further note that

our results are applicable to a more general set of SIR models as discussed in Section 6.3.3,

remark 2.

Our model is closely related to the independent cascade model (see for example [KKT03]

and references therein), studied in the context of influence maximization in social networks,

where we can interpret influence/rumor propagation as infections in our context. A cru-

cial difference of our model from this is that our model allows multiple opportunities of

infections over time whereas the independent cascade model only allows one opportunity to

146

“infect”. Therefore, as is noted, in our model the infectious individuals remain infectious

until recovered or isolated.

The work in [GCW20] considers a discrete stochastic model for the progression of COVID-

19 based on contact networks and leverages the model dynamics to inform a group test

decoder; however their scope is different, as they test infrequently and thus infections are

highly correlated, do not consider interventions, do not look for optimal group test designs,

and do not provide theoretical guarantees on the number of tests needed.

Since we use the main principles of the SIR model our work is closely related to epidemic

modeling. Works in epidemiology discuss the implications of testing and intervention for

COVID-19 employing stochastic network models (see [BBL20,TRL20] and references therein)

but do not consider test designs that exploit the knowledge of the underlying dynamical

system. Works in control theory (see [MSO20] and references therein) consider deterministic

SIR compartment models (at the population level) and focus on intervention schemes. Here

we are interested in both testing and intervention and use an individual-level SIR model.

Further related to static group testing is the work on graph-constrained group testing

(see for example [CKM12], [KZ12]), which solves the problem of how to design group tests

when there are constraints on which samples can be pooled together, provided in the form

of a graph. In our case, no such constraints exist and individuals can be pooled together

into tests freely.

6.2 Preliminaries and problem formulation

In this section we formalize our setup. Since our work for the dynamic case builds upon

existing ones from static group testing, we first review some major results in that area that

we also reuse in this chapter (Section 6.2.1). We then provide our model (Section 6.2.3) and

problem formulation (Section 6.2.3).

147

6.2.1 Preliminary: review of results from static group testing

Traditional group testing typically assumes a population of N individuals out of which some

are infected. Three infection models are typically considered: (i) in the combinatorial priors

model , a fixed number of infected individuals k , are selected uniformly at random among

all sets of size k ; (ii) in i.i.d probabilistic priors model, each individual is i.i.d infected with

probability p; (iii) in the non-identical probabilistic priors model, each item i is infected

independently of all others with prior probability pi, so that the expected number of infected

members is k̄ =
∑N

i=1 pi [LCH14]. In this paper we mostly use results that apply to the last

case.

A group test τ takes as input samples from nτ individuals, pools them together and

outputs a single value: positive if any one of the samples is infected, and negative if none is

infected. More precisely, let Ui = 1 when individual i is infected and 0 otherwise. Then the

group testing output yτ takes a binary value calculated as yτ =
∨

i∈Dτ
Ui

1, where
∨

stands

for the OR operator (disjunction) and Dτ is the group of people participating in the test.

• For the probabilistic model (ii), any non-adaptive algorithm with a success probability

bounded away from zero as N →∞ must have T = Ω
(
min{k̄ logN,N}

)
[BPS20, Theorem

1], [CGH20b]. This means that either any non-adaptive group testing with a number of

tests O(k̄ logN) is order optimal, or individual testing is order optimal2. In particular,

random test designs, such as i.i.d. Bernoulli [ABJ14,AS12, SC16] and near-constant tests-

per-item [CGH20a, JAS19] have been proved to be order-optimal in a sparse regime where

k̄ = Θ(Nα) and α ∈ (0, 1). In fact, in the same regime, [CGH20b] has provided the precise

constants for optimal non-adaptive group testing. Conversely, classic individual testing has

been proved to be optimal in the linear (k̄ = Θ(N)) [Ald19] and the mildy sublinear regime

1We assume that the tests are noiseless here, for simplicity. The group testing literature also extensively
studies the case when the testing output is noisy.

2The achievability and converse results provided here are usually proved for combinatorial model (i) (a
summary can be found in [PS20]), but they are directly applicable to model (ii) by considering p = k/N (see
Theorem 1.7 and Theorem 1.8 in [AJS19] or [BPS20]).

148

(k̄ = ω(N
logN

)) [BPS20].

• For the probabilistic model (iii), a lower bound for the number of tests needed is given

by the entropy, stated below:

Lemma 6.1 (Entropy lower bound). Consider the non-identical probabilistic priors model of

static group testing, where each individual i ∈ [N] is infected independently with probability

pi. The number of tests T needed by a non-adaptive algorithm to identify the infection status

of all individuals with a vanishing probability of error satisfies

T ≥
N∑
i=1

h2 (pi) ,

where h2 (·) is the binary entropy function.

See Appendix A in [LCH14] for a proof. On the algorithmic side, two known algo-

rithms are: the adaptive laminar algorithms that need at most 2
∑N

i=1 h2 (pi) + 2k̄ tests

on average, and the “Coupon collector” nonadaptive algorithm (CCA) that needs at most

T ≤ 4e(1 + δ)k̄ lnN test to achieve an error probability no larger than 2N−δ whenever

pi ≤ 1/2 [LCH14,CJS14].

6.2.2 Discrete-time SIR stochastic block model

We now describe our infection model via the discrete-time SIR stochastic block model with

parameters (N,C, q1, q2, pinit). Consider a population of size N that is partitioned into mul-

tiple communities of size C . For simplicity we assume that N/C is an integer. On any day

t ∈ N, each individual can be in one of three states: Susceptible (S), Infected (I) or Re-

covered (R). Let X
(t)
i ∈ {S, I,R} denote the state of individual i on day t, and define the

state of the system as X(t) ≜ (X
(t)
1 ,X

(t)
2 , ...,X

(t)
N). A small number of individuals are initially

infected, and all new infections occur during “transmissible contacts” between infected and

susceptible individuals. Recoveries occur independent of infections.

149

More precisely, on day t = 0, every individual is i.i.d infected with probability pinit. The

following steps repeat everyday starting at t = 1:

• An infected individual in some community infects a susceptible one from the same

community w.p. q1, independently of the other infected individuals of the community.

• An infected individual in some community infects a susceptible one from another com-

munity w.p. q2, independently from all other infected individuals.

• An infected individual recovers independently from all other individuals w.p. r .

The discrete-time SIR stochastic block model can be envisioned as a discrete version of the

well-established continuous-time SIR stochastic network model [KMS17] on the correspond-

ing weighted graph. It inherits the main properties from the latter; for example, infections

are transmitted only from an infected to a susceptible individual and both infections and re-

coveries are stochastic. The main difference is that in the continuous-time one, the infections

and the recoveries happen according to continuous-time Markovian process with transmis-

sibility rate β and recovery rate γ, which means that the time until a new state transition

(S → I or I → R) is exponentially distributed (with mean β or γ respectively). Indeed this

makes the event that an individual got infected and subsequently recovered within a single

day possible in the continuous-time model, whereas this is impossible in our discrete-time

model.

Learning the intra-community and inter-community structure to model infection trans-

missions is, we believe, also practically feasible. Close contact “community” data is often

readily available; for example students in each classroom in a school could form a community,

and so could workers in the same office space. We also note that community-level network

models alleviate some of the privacy concerns associated with using contact tracing data

which tracks the exact pairs of individuals who come in contact with each other on a daily

basis.

150

A useful remark about our model is that the state of an individual X
(t)
i ∈ {S, I,R} is

different from the infection state U
(t)
i ∈ {0, 1}, where 1 (resp. 0) corresponds to the “in-

fected” (resp. “not infected”). Indeed U
(t)
i = 1 iff X

(t)
i = I. This difference is important

in our context, because our tests do not distinguish between susceptible and recovered indi-

viduals. In the remainder of the paper, X
(t)
i will be called the “SIR state” of individual i,

while U
(t)
i will be i’s “infection status.” As a result, whether a individual is infected or not

changes with the day, and thus we now consider a random variable U
(t)
i associated with each

individual that describes whether it is infected on day t (t ∈ N).

6.2.3 The dynamic testing problem formulation

As can be seen from Fig. 6.1, testing everyone, everyday, and isolating infected individuals

helps drastically reduce the number of infections that happen on a given day. We assume

that the results of a test administered on a particular day are available only the next day

(as usually is the case with classic PCR testing for SARS-COV-2). We also isolate only

the individuals who test positive, and we do so as soon as the test results are available.

Moreover, we bring back the isolated individual into the population only when they are

completely recovered. Note that in the SIR model, recovered individuals cannot get infected

and play no role in transmitting the infection. Therefore, without loss of generality, we could

assume that isolated individuals remain isolated for the rest of the testing period.

Given these assumptions, the question we ask is if complete testing is necessary to identify

all new infections everyday, or if we can achieve the same performance as complete testing

with significantly fewer number of tests. In particular, how many non-adaptive group tests

are necessary and sufficient to identify all new infections (with a vanishing error probability)

on each day? Our problem formulation is depicted in Fig. 6.2.

To aid a precise mathematical formulation for the problem, we first introduce some notation.

• I(t)j : number of new infections in community j that occurred on day t. Note that in

151

Day 𝑡

For every non-isolated

individual 𝑖, compute 𝑝𝑖
(𝑡−1)

,

the prior probability of new

infections after the isolation.

New infections

occur

Identify all

individuals who

were infected in

the community

at the beginning

of day 𝑡 − 1.

Isolate all

individuals who

were infected in

the community

at the beginning

of day 𝑡 − 1.

Perform non-adaptive

tests to identify

individuals who are

currently infected

Our problem:

How many tests

are needed?

Figure 6.3: From dynamic to static testing: on day t we perfectly learn the states of all non-isolated

individuals at the time of testing on the previous day t− 1. Given this information, we know that

each susceptible individual in community j is later infected with probability p
(t−1)
j independent of

every other individual. How many tests are needed to attain a vanishing probability of error on

this non-identical static group testing problem?

the set-up of Fig. 6.2, this number is also equal to the number of infected individuals

remaining in community j after intervention has been decided for day t+ 1. The new

infections which happened on day t will only be identified by the tests administered

on day t+ 1, whose results are available only on day t+ 2.

• p(t)j : the probability of an individual in community j who was susceptible at the end of

day t− 1 getting infected on day t. Note that this is same for every such individual in

community j, by symmetry of the model. Moreover, we can calculate this probability

as

p
(t)
j = 1− Pr(individual is not infected on day t)

= 1− (1− q1)I
(t−1)
j (1− q2)

∑
j′ ̸=j I

(t−1)

j′ .

Reduction to static group testing with non-identical probabilistic priors. Note

that given I
(t−1)
j ∀j, an individual belonging to community j is infected independently of

152

every other individual with probability p
(t)
j on day t. Thus, conditioned on the infection

status of all individuals on day t− 1, the infections which happen on day t are independent

(but not identically distributed). Now in our dynamic testing problem set-up, on day t we

perfectly learn the infection statuses of all non-isolated individuals at the time of testing

on the previous day t − 1. Given this information, we can exactly calculate the p
(t−1)
j ∀j

(see Fig. 6.3), i.e. the probability that each susceptible individual in community j was later

infected because of the non-isolated infected individuals.

So, given accurate test results, the dynamic testing problem is transformed daily to

the problem of static group testing with non identical probabilistic priors (model (iii) in

Section 6.2.1). Therefore, the precise question we are after is the following: given that

each individual in community j is infected with probability p
(t)
j independently of every other

individual, how many tests are necessary and sufficient to learn the infection status with a

vanishing probability of error? We answer this question in the next section.

6.3 Main results

In this section, we prove our main theoretical results. For brevity, we will use the terms

“i.i.d. priors” and “non-identical priors” to refer to i.i.d probabilistic priors model (ii) and

non identical probabilistic priors model (iii) from Section 6.2.1, respectively. The contents

of this section are ordered as follows:

• First, we provide a new lower bound on the number of tests required for the prob-

lem of static group testing with non i.i.d probabilistic priors (Theorem 6.2). To prove

Theorem 6.2, we use two intermediate results: (a) we show that any test design that

“works” for a given prior probabilities of infection (p1, p2, ..., pN) also works for the re-

duced prior probabilities (p′1, p
′
2, ..., p

′
N) where p

′
i ≤ pi ≤ 0.5 ∀i. In words, we essentially

prove that group testing is easier when the infections are sparser (Theorem 6.1); and

(b) we show the following interesting property of the optimal decoder (Lemma 6.3) –

153

if the optimal decoder correctly infers all the infection statuses when a set D is the set

of infected individuals, then it will also correctly infer all the infection statuses when

D′ ⊂ D is the set of infected individuals.

• Second, we use simple asymptotic arguments to show that some existing group testing

strategies (such as CCA [LCH14] for non-identical priors and random testing for i.i.d

priors) are order-optimal for non-identical priors (Corollary 6.2), when pmax = O(pmin),

where pmax is the maximum entry in (p1, p2, ..., pN) and pmin is the minimum entry. The

order O(·) is order with respect to the size of the population N .

• Finally, in Theorem 6.3, we bridge the gap between our dynamic testing problem for-

mulation and the above static testing problem by showing that if q1 = O(q2), pinit ≤ 0.5

and if q1 ≤ 1−1/
√
2

C
and q2 ≤ 1−1/

√
2

N
, then the above two conditions on the prior vector

are satisfied everyday in the discrete-time SIR stochastic block model parameterized by

(N,C, pinit, q1, q2). As a result the existing group testing strategies discussed above are

order-optimal even for the dynamic testing problem formulation considered, provided

that we use a sufficient number of tests each day to identify all new infections for that

day.

6.3.1 Results on static group testing with non i.i.d priors

We first consider the problem of static group testing, in which a person is infected inde-

pendently with a known prior probability pi. Denote by p = (p1, p2, ..., pN) the prior vector

which collects the prior probabilities of infection of all individuals. We first define some

notation specific to this subsection:

• G: test matrix

• D: set of defectives or infections

• U = (U1, U2, ..., UN): infection status configuration, i.e., individual i is infected if and

154

only if Ui = 1.

• U(D) ≜ (U1, ..., UN) where Ui = 1 iff i ∈ D. Basically represents the vector notation for

the set of infections given by D. Note that there is a one-one correspondence between

D and U(D). We will use these two notations interchangeably based on convenience.

• G(U) represents the test results corresponding to the given test design and infection

status configuration.

• For a fixed number of tests T , define a decoding function R : {0, 1}[T] → {0, 1}[N]

which estimates the infection statuses from the test results.

• A defective set D “explains” test results y iff G(U(D)) = y.

• Pr(U;p) denotes the probability of the infection status configuration under priors p,

i.e.

Pr(U;p) =
N∏
i=1

pUi
i (1− pi)1−Ui .

• Probability of error for a test matrix, decoder pair under given priors

Perr(G,R;p) ≜ E
U∼p

1{R(G(U)) ̸= U}

=
∑

u∈{0,1}N
Pr(U = u;p)1{R(G(u)) ̸= u}.

Definition 6.1 (MAP decoder). For fixed priors p and testing matrix G with number of

tests T , we define the corresponding MAP decoder as Rmap(· ;G,p) : {0, 1}T → {0, 1}N ,

where

Rmap(y;G,p) = argmax
U:G(U)=y

Pr(U;p).

In case of ties, the MAP decoder will select the solution which comes the earliest lexico-

graphically.

155

In words, the MAP decoder chooses the most likely configuration which explains the test

results. We next show that the MAP decoder is the optimal decoder for a fixed G and p,

i.e., the MAP decoder minimizes the probability of error amongst all decoders for any G, p.

Remark. Though the MAP decoder is optimal, it is unclear if the optimization problem

corresponding to the MAP decoder can be solved efficiently. However, many heuristics such

as belief propagation (see for example [NRG21]) and random sampling methods exist which

approximate well the MAP decoder. That said, in this chapter, we use the MAP decoder

only as a tool for theoretical analysis of the error probability.

Lemma 6.2 (Optimality of MAP decoder). For given test matrix G and priors p, the

corresponding MAP decoder minimizes the probability of error for the test matrix under the

given priors, i.e.,

Perr(G,Rmap(· ;G,p);p) ≤ Perr(G,R;p) ∀R.

We give the proof of Lemma 6.2 to Appendix 6.6.2.

Given the optimality of the MAP decoder, we will denote by

P∗
err(G,p) ≜ Perr(G,Rmap(· ;G,p);p),

the optimal probability of error corresponding to a given test design and priors.

We next prove a property of the MAP decoder, and this property will be used in the

proof of our main result that follows. The following Lemma says that it is easier for the

MAP decoder to identify a sparser defective set.

Lemma 6.3. Consider a test matrix G and priors p. Suppose the corresponding MAP

decoder is erroneous when identifying the defective set D. Then the MAP decoder is also

erroneous for the set of defectives is D ∪ {j} with pj ≤ 0.5, i.e.,

1 {Rmap (G(U(D ∪ {j}));G,p) ̸= U(D ∪ {j})}

≥ 1 {Rmap(G(U(D));G,p) ̸= U(D)} .

156

For the proof of Lemma 6.3, we refer the reader to Appendix 6.6.3.

We next prove the main new result for the static case. In words, the following theorem

says that the group testing problem is only easier when the infections are sparser. As a

result, this allows us to lower/upper bound the group testing problem with non-identical

priors by a group testing problem with identical priors.

Theorem 6.1. Consider a testing matrix G used with two different sets of priors p and p′.

Further let p′i = pi for every i ∈ [N], i ̸= j and p′j ≤ pj ≤ 0.5. The two prior vectors are

same everywhere except at index j where p′ is smaller. Then

P∗
err(G,p

′) ≤ P∗
err(G,p).

Proof. We prove this by showing that when the MAP decoder corresponding to (G,p) pair

is used as a decoder with (G,p′), the probability of error is always lower, i.e.,

Perr(G,Rmap(· ;G,p);p′)

≤ Perr(G,Rmap(· ;G,p);p) = P∗
err(G,p).

As a result the optimal decoder for (G,p′) pair has a probability of error not exceeding this

quantity.

Now, we can express the probability of error for the MAP decoder of (G,p) pair. For

simplicity of notation in the following derivations, E(D) ≜ 1 {Rmap(G(U(D));G,p) ̸= U(D)}

denotes the indicator of the event that the MAP decoder is erroneous when the defective set

is D (and under further assumptions that the priors are p and test matrix is G).

Perr(G,Rmap(· ;G,p);p)

=
∑
D∈[N]

Pr(U(D))E(D)

=
∑
D∈[N]

∏
i∈D

pi
∏

l∈[N]\D

(1− pl)E(D)

157

(a)
=
∑
D∈[N]
|j∈D

∏
i∈D

pi
∏

l∈[N]\D

(1− pl)E(D)

+
∑
D∈[N]
|j /∈D

∏
i∈D

pi
∏

l∈[N]\D

(1− pl)E(D)

(b)
= pj

∑
D∈[N]\{j}

∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)E(D ∪ {j})

+ (1− pj)
∑

D∈[N]\{j}

∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)E(D), (6.1)

where in (a) we split the summation into two cases – one where j ∈ D and the other where

j /∈ D; in (b) we take j out of the summation.

Similarly, one could express the probability of error for the same decoder with the pair

(G,p′) as

Perr(G,Rmap(· ;G,p);p′)

= p′j
∑

D∈[N]\{j}

∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)E(D ∪ {j})

+ (1− p′j)
∑

D∈[N]\{j}

∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)E(D). (6.2)

The first error term Perr(G,Rmap(· ;G,p);p) is of the form pja + (1 − pj)b, and the

second error term Perr(G,Rmap(· ;G,p);p′) is of the form p′ja+(1−p′j)b. From Lemma 6.3,

we have E(D ∪ {j}) ≥ E(D) and hence a ≥ b. Since a ≥ b and p′j ≤ pj, one can verify that

pja+ (1− pj)b ≥ p′ja+ (1− p′j)b, and thus

Perr(G,Rmap(· ;G,p);p) ≥ Perr(G,Rmap(· ;G,p);p′),

concluding the proof.

Now one could repeatedly apply Theorem 6.1 on the prior vector p to conclude that

any test matrix G should only do better on the reduced uniform prior vector pmin =

(pmin, pmin, ..., pmin) where pmin ≜ mini∈[N] pi. On the other hand, the test matrix G should

158

only do worse on the prior vector pmax = (pmax, pmax, ..., pmax) where pmax ≜ maxi∈[N] pi.

This is stated below without a formal proof.

Corollary 6.1. Consider a test matrix G and a prior vector p such that pi ≤ 0.5 for

all i ∈ [T]. Let pmin = (pmin, pmin, ..., pmin) where pmin ≜ mini∈[N] pi and let pmax =

(pmax, pmax, ..., pmax) where pmax ≜ maxi∈[N] pi. Then

P∗
err(G,pmax) ≥ P∗

err(G,p) ≥ P∗
err(G,pmin).

As a consequence of the above corollary, the number of tests required to attain a fixed

(small) probability of error ϵ with prior vector pmin is not more than the number of tests

required to attain probability of error ϵ with prior vector p. This observation allows us to

use the lower bound on the number of tests when the priors are identical. This is made

precise in the following theorem.

Theorem 6.2. Consider the non-adaptive group testing problem with N items where the

probability of item i being infected is pi ≤ 0.5. Let pmin ≜ min
i∈[N]

pi. In order to achieve a

probability of error → 0 as N →∞, the number of tests must be

T (p) = Ω(min{N,Npmin logN}).

Proof. From Corollary 6.1, suppose a test matrix G achieves a probability of error ϵ on prior

vector p, the same test matrix achieves a probability of error not more than ϵ on the prior

vector pmin, where pmin = (pmin, pmin, ..., pmin) and pmin ≜ mini∈[N] pi. Any strategy that

achieves a probability of error → 0 as N →∞ with the prior vector pmin requires a number

of tests equal to Ω(min{N,Npmin logN}). Thus, we need at least as many tests with the

prior vector p.

As discussed in Section 6.2.1, the entropy bound in Lemma 6.1 is an alternate lower bound

on the number of tests needed for this problem. We note that the entropy bound might be

greater or smaller than the term Npmin logN in Theorem 6.2. In particular, if pi ≤ 1/2 ∀i it

159

is easy to see that
∑N

i=1 h2 (pi) ≥ Nh2 (pmin) ≥ Npmin log 1/pmin. However the term 1/pmin may

be smaller or larger than N ; thus our bound, that applies independently of the value of pmin

(as long as pi ≤ 0.5) cannot be directly derived from the entropy bound, and could be either

greater or lesser than the entropy bound. Having said that, the main advantage of the lower

bound in Theorem 6.2 is its particular form, which allows the proof of order-optimality of

several static group testing algorithms, as we will see in the next subsection.

Now, if the prior vector p is “bounded”, in the sense that the maximum entry and

minimum entry in p differ by a constant factor (constant with respect to N), then the lower

bound can be re-written in terms of the maximum entry in p or the mean of p. Basically

we here just use the fact that constant factors do not affect the order. We next make this

corollary precise.

Definition 6.2 (Bounded priors). Let η ∈ [1,∞) be a fixed constant (constant with respect

to N). A prior vector p of length N is called η−bounded if

maxi pi
mini pi

≤ η.

Corollary 6.2 (Lower bound for bounded priors). Consider the non-adaptive group testing

problem with N items where the probability of item i being infected is pi ≤ 0.5. Let pmax ≜

max
i∈[N]

pi and pmean ≜ 1
N

∑N
i=1 pi. Suppose p = (p1, ..., pN) is η-bounded for some constant η.

Any strategy that achieves a probability of error → 0 as N →∞ requires

T (p) = Ω(min{N,Npmean logN})

= Ω(min{N,Npmax logN}).

6.3.2 Performance of existing non-adaptive algorithms in the static non-identical

priors

Suppose p is η-bounded and each pi ≤ 0.5. The following non-adaptive algorithms can be

proved to be order-optimal with respect to the lower bound in Corollary 6.2:

160

• The Coupon Collector Algorithm (CCA) from [LCH14] for prior vector p, as discussed

in Section 6.2.1, achieves a probability of error less than 2N−δ with a number of tests

less than 4e(1 + δ)Npmean logN (see Theorem 3 in [LCH14]). As a result, w.r.t to the

lower bound in Corollary 6.2, either CCA is order-optimal (if N ≥ Npmean logN) or

individual testing is order optimal (if N ≤ Npmean logN).

• As discussed in Section 6.2.1 for the group testing problem with identical priors (say ev-

ery item is infected with the same probability p′), a variety of randomized and explicit

algorithms have been proposed3 which achieve a vanishing probability of error with a

number of tests O(Np′ logN). From Corollary 6.1, any test matrix that achieves a van-

ishing probability of error with pmax should also attain a vanishing probability of error

with p, and as a result O(Npmax logN) tests are sufficient for the prior vector p. Con-

sequently w.r.t our lower bound in Corollary 6.2, any of these designs is order optimal

(if N ≥ Npmax logN) or individual testing is order optimal (if N ≤ Npmax logN).

6.3.3 Dynamic testing - bridging the gap

Given the discussion above, we next show conditions under which the prior probabilities

of infections each day (these change everyday) are η-bounded and are each not more than

0.5. If these two conditions are satisfied everyday for our discrete-time SIR stochastic block

model set-up in Fig. 6.3, then CCA and the other algorithms discussed in Section 6.3.2 are

order-optimal for our dynamic testing problem formulation. (see 6.3). We first define some

notation, building upon the notation in Section 6.2.3.

• p(t)max ≜ maxj p
(t)
j , the maximum probability of new infection on day t.

• p(t)min ≜ minj p
(t)
j , the minimum probability of new infection on day t.

3Most of these were considered in the context of combinatorial priors. However, Theorem 1.7 and Theorem
1.8 from [AJS19] imply that any algorithm that attains a vanishing probability of error on the combinatorial
priors, also attains a vanishing probability of error on the corresponding i.i.d probabilistic priors.

161

Theorem 6.3. Consider the testing-intervention problem in Fig. 6.3 where the infections

follow the discrete-time SIR stochastic block model (N,C, q1, q2, pinit).

(i) Suppose pinit ≤ 0.5, q1 ≤ 1−1/
√
2

C
and q2 ≤ 1−1/

√
2

N
, then p

(t)
j ≤ 0.5.

(ii) Suppose q1
q2
≤ η, then p

(t)
max

p
(t)
min

≤ η and as a result the prior vector for each day is η-bounded.

Proof. We prove (i) first. We first have p
(0)
j = pinit ≤ 0.5. For t ≥ 1, we have

p
(t)
j = 1− (1− q1)I

(t−1)
j (1− q2)

∑
j′ ̸=j I

(t−1)

j′

(a)

≤ 1− (1− q1)C (1− q2)N

(b)

≤ 1− (1− C q1)(1−Nq2)
(c)

≤ 0.5,

where in (a) we used the fact that the total number of infections inside a community and

overall cannot be greater than C and N , respectively; (b) follows because of the algebraic

inequality (1 + x)y ≥ 1 + xy if x ≥ −1 and y /∈ (0, 1); in (c) we used our assumptions about

q1 and q2.

We next prove (ii). Since q1 ≥ q2 in our model, we have

p
(t)
j = 1− (1− q1)I

(t−1)
j (1− q2)

∑
j′ ̸=j I

(t−1)

j′

= 1−
(
1− q1
1− q2

)I
(t−1)
j

(1− q2)
∑

j′ I
(t−1)

j′

≤ 1−
(
1− q1
1− q2

)maxj I
(t−1)
j

(1− q2)
∑

j′ I
(t−1)

j′ , (6.3)

where maxj I
(t)
j is simply the maximum number of infections over all communities. Likewise,

p
(t)
j = 1− (1− q1)I

(t−1)
j (1− q2)

∑
j′ ̸=j I

(t−1)

j′

(a)

≥ 1− (1− q2)
∑

j′ I
(t−1)

j′ , (6.4)

where in (a) we used q2 ≤ q1. Combining (6.3) and (6.4) we have

p
(t)
max

p
(t)
min

=
1−

(
1−q1
1−q2

)maxj I
(t−1)
j

(1− q2)
∑

j′ I
(t−1)

j′

1− (1− q2)
∑

j′ I
(t−1)

j′

162

(a)

≤
1−

(
1−q1
1−q2

)maxj I
(t−1)
j

(1− q2)maxj I
(t−1)
j

1− (1− q2)maxj I
(t−1)
j

=
1− (1− q1)maxj I

(t−1)
j

1− (1− q2)maxj I
(t−1)
j

(b)

≤ q1
q2
≤ η.

where (a) follows from the following facts: the function f1(x) = 1−κx
1−x

is increasing for

κ ∈ (0, 1), the function f2(x) = (1−q2)x is decreasing for q2 ∈ (0, 1), and the sum
∑

j′ I
(t−1)
j′ is

lower bounded by maxj I
(t−1)
j ; and (b) follows from the fact that the function f3(x) =

1−(1−q1)x

1−(1−q2)x

is decreasing in x ≥ 1 for q1 ≥ q2, and therefore the maximum of the ratio is obtained for

maxj I
(t−1)
j = 1. All proofs of the above statements are provided in Appendix 6.6.4.

Finally, we make three remarks related to the results introduced in this section.

Remark 1. Both assumptions (i) and (ii) on the parameters in Theorem 6.3 will hold true

when the number of communities is a constant, i.e., the size of each community is C = Θ(N)

(as is the case when the population is well-mixed, or if we just consider a single community);

assumption (i) does not require C = Θ(N). In our simulations, we observed empirically that

assumption (ii) also holds when C << N ; we do not have a formal proof of Theorem 6.3 for

this case however.

Remark 2. Our results hold not just for the specific model introduced in Section 6.2 (where

in particular we assume symmetric intra and inter community transmissions) but for any

underlying community structure where the two conditions (bounded prior vectors and the

value of each prior not exceeding 1⁄2) are satisfied. For example, one could have a model where

an infected individual can transmit the infection only to a subset of his fellow community

members with probability q1 (he/she cannot transmit to the rest of the individuals in his/her

community) and only to a subset of individuals outside his/her community with probability

q2. For this example model, the conditions in Theorem 6.3 are sufficient to prove the two

requirements on the prior vector.

Remark 3. Intervention is a crucial aspect for our results to hold true. Without intervention

in our dynamic model, many of the prior probabilities would be greater than 1/2 and our

163

requirements on the prior vector would not be satisfied.

Remark: At this point, we want to acknowledge the fact that Imax cannot be known in

advance, as it is itself a function of the model (N,C, q1, q2, pinit). However, a trivial bound

for it is Imax ≤ N , which in turn returns a rather conservative condition for statement (i) of

Theorem 6.3: q2 ≤ q1 ≤ 1
2N

.

6.4 Numerical results

In this section, we show illustrative numerical results on the necessary and sufficient number

of tests required for the discrete-time SIR stochastic block model. We next describe the

experimental set-up.

• We simulate multiple instances (or trajectories) of the pipeline in Fig. 6.2 where the

infections follow the discrete-time SIR stochastic block model (N,C, pinit, q1, q2), and

for different testing strategies. We simulate 200 trajectories and in Fig. 6.4, plot the

daily average of the quantities across these trajectories.

• For each of these testing strategies, we empirically find the number of tests required

on each day to identify all the infections on the previous day. To do this, on each day

for a given trajectory, we start with 1000 tests and decrease this number (at a certain

granularity) until the testing strategy makes a mistake. The smallest number of tests

for which the strategy worked is plotted.

• On the other hand, we also plot the entropy lower bound in Lemma 6.1; it is easy to

estimate this for our model via Monte-Carlo approximations. This bound holds for any

set of values for p
(t−1)
i , regardless of whether the conditions required for Theorem 6.3

hold or not. The reason we use the entropy bound instead of our lower bound in

Theorem 6.2 is that the entropy bound was numerically observed to be larger. Indeed,

the lower bound in Theorem 6.2 contains some accompanying hidden constants which

164

are small when used for our particular choice of N .

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1,000

N
u
m
b
er

of
te
st
s
n
ee
d
ed

Complete
Rnd. Grp. mean
CCA
Rnd. Grp. max.
Lower bound

(a) (N,C, pinit, q1, q2) = (1000, 20, 0.02, 0.03, 0.0004).

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1,000

N
u
m
b
er

of
te
st
s
n
ee
d
ed

Complete
Rnd. Grp. mean
CCA
Rnd. Grp. max.
Lower bound

(b) (N,C, pinit, q1, q2 = (1000, 50, 0.02, 0.012, 0.0004).

Figure 6.4: Experimental results. We plot the average number of tests required by each strategy

to identify the infection statuses of all non-isolated individuals each day for 2 different sets of

parameters.

165

We compare the following testing strategies in our numerical simulations.

• Complete testing. We test every non-isolated individual remaining in the population

each day.

• Coupon Collector Algorithm (CCA) from [LCH14]. We showed the order-

optimality of this algorithm for the dynamic testing problem at the beginning of Sec-

tion 6.3.3. In short, on each day, the CCA algorithm constructs a random non-adaptive

test design which depends on p
(t)
j . The idea is to place objects which are less likely to

be infected in more number of tests and vice-versa. We refer the reader to [LCH14] for

the exact description of the algorithm.

• Random group testing for max probability (Rnd. Grp. max.) Here we

construct a randomized design assuming that each individual has a prior probability

of infection p
(t)
max. From Corollary 6.1, such a design must also work for the actual

priors p
(t)
j . We construct a constant column-weight design (see e.g. [JAS19]) where

each individual is placed in L = ⌊T/(Np
(t)
max log 2)⌋ tests. Such a test design achieves a

vanishing probability of error with O(Np
(t)
max logN) tests (see for example [JAS19] for

a proof), and hence is order-optimal under the conditions in Theorem 6.3.

• Random group testing for mean probability (Rnd. Grp. mean) Here we

construct a randomized design assuming that each individual has a prior probability of

infection p
(t)
mean, where p

(t)
mean is defined as the mean prior probability of infection across

all individuals. Unlike Rnd. Grp. max., there is no guarantee on how many tests are

needed by such a design to identify the infection statuses of all individuals. However,

the numerical results in Fig. 6.4 show that such a design requires fewer tests than CCA

or Rnd. Grp. max. designs.

The numerical results in Fig. 6.4 are illustrated for two different parameter values of

the discrete-time SIR stochastic block model. In both cases, we see that Rnd. Grp. mean

166

requires the least number of tests to identify the infection statuses of all non-isolated indi-

viduals. Moreover, the number of tests required by all three testing strategies considered is

much less than the number required by complete testing. In fact the numerics in Fig. 6.4

indicate that if we use a number of tests equal to 1/5 of number of tests required for complete

individual testing, all these algorithms would achieve the same performance as complete

individual testing, at least for the particular examples that we considered.

A natural follow-up question to ask is if there is a systematic way to choose the number

of tests that need to be administered, given the upper bounds discussed in Section 6.3.2. In

Appendix 6.6.5, we discuss one such heuristic and show that it achieves close-to-complete-

testing performance.

6.5 Conclusions and open questions

In this chapter, we proposed the problem of dynamic group testing which asks the question of

how to continually test given that infections spread during the testing period. Our numerical

results answer the question we started with – in the dynamic testing problem formulation,

given a day of testing delay, is it possible to achieve close to complete testing performance

with significantly fewer number of tests? The answer is yes, and in this chapter we not only

showed numerical evidence supporting this fact, but also gave theoretical bounds on the

optimal number of tests needed in order to achieve this.

Many open questions remain. In particular, it would be interesting to study the same

problem when tests are noisy, or when we can use other models of group tests, or simply

when one cannot perfectly learn the states of all individuals on a testing day. In addition,

it would also be of interest to study/use other test designs. Finally, it remains open to see

how these results translate to the continuous-time SIR stochastic network model.

167

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1,000

Day

#
of

in
fe
ct
ed

in
d
iv
id
u
al
s

q1 = 0.02, q2 = 0.001
q1 = 0.02, q2 = 0.001
q1 = 0.008, q2 = 0.0004
q1 = 0.008, q2 = 0.0004
q1 = 0.008, q2 = 0.0001
q1 = 0.008, q2 = 0.0001

Figure 6.5: Continuous vs discrete-time model. Continuous model in dashed and discrete model

in solid curves. Recovery probability r = 0.1 in all cases.

6.6 Appendix

6.6.1 Comparison of discrete and continuous-time SIR models

The well-studied continuous-time SIR stochastic network model from [KMS17] has been the

main motivation for our discrete-time SIR stochastic block model. In fact, the discrete-time

SIR stochastic block model described in Section 6.2.2 can be considered as a discretized

version of the continuous-time SIR stochastic network model over the weighted graph, where

2 individuals belonging to the same community are connected by an edge with weight q1

and 2 individuals belonging to different communities are connected by an edge with weight

q2, and recoveries occur at the rate r/day – i.e., an infected individual transmits the disease

to a susceptible individual in the same community at the rate q1/day and to a suscepti-

ble individual in a different community at the rate q2/day. In Fig. 6.5, we compare the

continuous-time model above and the discrete-time model for a few example values of q1, q2

and r for illustration.

168

We make a few observations:

• The progression of the disease in the discrete-time and continuous-time models, though

not identical, follow a similar pattern, justifying the use of the discrete-time model.

• In both the models, 1/q1 is the expected time for an infected individual to transmit the

disease to a susceptible individual in the same community, 1/q2 is the expected time for an

infected individual to transmit the disease to a susceptible individual in a different community

and 1/r is the expected time for an infected individual to recover.

• In the continuous-time model, an individual can get infected and recovered in the same

day, whereas this is not possible in our discrete-time model (infected individuals can recover

starting from the day after they are infected).

6.6.2 Proof of Lemma 6.2

The optimality of the MAP decoder is a standard result in statistics and signal processing.

We however give the proof in the context of our problem, for completeness.

Lemma 6.2 (Optimality of MAP decoder). For given test matrix G and priors p, the

corresponding MAP decoder minimizes the probability of error for the test matrix under the

given priors, i.e.,

Perr(G,Rmap(· ;G,p);p) ≤ Perr(G,R;p) ∀R.

Proof. As stated at the beginning of Section 6.3, the Probability of error for a test matrix,

decoder pair under given the priors is

Perr(G,R;p) ≜ E
U∼p

1{R(G(U)) ̸= U}

= E
Y

E
U|Y

1{R(G(U)) ̸= U},

where Y is the set of test results. For the MAP decoder, the term inside EY is

E
U|Y

1{Rmap(Y;G,p)) ̸= U}

169

= E
U|Y

1{ argmax
U:G(U)=Y

Pr(U;p) ̸= U}

=
∑
D∈[N]

Pr (U(D)|Y;p) · 1{ argmax
U(D):G(U(D))=Y

Pr(U(D);p) ̸= U(D)}

= 1− Pr

(
argmax
U:G(U)=Y

Pr(U|Y;p)

)

= 1− max
U:G(U)=Y

Pr(U;p)

Pr(Y)
. (6.5)

Similarly, for any decoder R, we have

E
U|Y

1{R(Y) ̸= U}

=
∑
D∈[N]

Pr (U(D)|Y;p) · 1{R(Y) ̸= U}

= 1− Pr (R(Y)|Y;p) ≥ 1− max
U:G(U)=Y

Pr(U;p)

Pr(Y)
. (6.6)

Comparing (6.5) and (6.6) concludes the proof.

6.6.3 Proof of Lemma 6.3

Lemma 6.3. Consider a test matrix G and priors p. Suppose the corresponding MAP

decoder is erroneous when identifying the defective set D. Then the MAP decoder is also

erroneous for the set of defectives is D ∪ {j} with pj ≤ 0.5, i.e.,

1 {Rmap (G(U(D ∪ {j}));G,p) ̸= U(D ∪ {j})}

≥ 1 {Rmap(G(U(D));G,p) ̸= U(D)} .

Proof. We first state the trivial case where 1 {Rmap(G(U(D));G,p) ̸= U(D)} = 0. Under

that assumption, the inequality of Lemma 6.3 always holds.

We then consider the case where 1 {Rmap(G(U(D));G,p) ̸= U(D)} = 1, i.e., the MAP

decoder makes an error when the defective set is D. In that case, one of the two situations

is possible:

170

(1) there exists some set D′ ̸= D, such that G(U(D′)) = G(U(D)) and Pr(U(D′);p) >

Pr(U(D);p) or

(2) there exists some set D′ ̸= D, such that G(U(D′)) = G(U(D)) and Pr(U(D′);p) =

Pr(U(D);p) and D′ is lexicographically earlier than D.

Hence MAP identifies incorrectly D′ as the defective set given that D was the true defec-

tive set. We prove assuming that the first situation occurred; the proof follows identical

arguments for the second situation.

Now, we consider two different cases for individual j that is added to D ∪ {j}:

(i) If j /∈ D′, then from our assumption in (1), notice that the defective set D′∪{j} explains

the test results ofD∪{j} –D′ gives the same test results asD and the extra individual j added

to both the sets will still give the same results. We next claim that Pr(U(D′ ∪ {j});p) >

Pr(U(D ∪ {j});p), and consequently the MAP decoder will fail to correctly identify the

defective set D′ ∪ {j}. Now to prove our claim, we start with our assumption (1), i.e.,

Pr(U(D′);p) > Pr(U(D);p)

=⇒
∏
i∈D′

pi
∏

l∈[N]\D′

(1− pl) >
∏
i∈D

pi
∏

l∈[N]\D

(1− pl)

(a)
=⇒ (1− pj)

∏
i∈D′

pi
∏

l∈[N]\D′∪{j}

(1− pl)

> (1− pj)
∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)

(b)
=⇒ pj

∏
i∈D′

pi
∏

l∈[N]\D′∪{j}

(1− pl)

> pj
∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)

(c)
=⇒

∏
i∈D′∪{j}

pi
∏

l∈[N]\D′∪{j}

(1− pl)

>
∏

i∈D∪{j}

pi
∏

l∈[N]\D∪{j}

(1− pl)

171

0 10 20 30 40 50

0

200

400

600

Day

Average number of infected individuals

No testing
Complete
Rnd. Grp. mean
CCA
Rnd. Grp. max.

0 10 20 30 40 50

0

200

400

600

800

1,000

Day

Average number of tests used

No testing
Complete
Rnd. Grp. mean
CCA
Rnd. Grp. max.
Lower bound

(a) (N,C, pinit, q1, q2) = (1000, 50, 0.02, 0.012, 0.0004).

0 10 20 30 40 50
0

1,000

2,000

3,000

Day

Average number of infected individuals

No testing
Complete
Rnd. Grp. mean
CCA
Rnd. Grp. max.

0 10 20 30 40 50
0

1,000

2,000

3,000

4,000

5,000

Day

Average number of tests used

No testing
Complete
Rnd. Grp. mean
CCA
Rnd. Grp. max.
Lower bound

(b) (N,C, pinit, q1, q2) = (5000, 50, 0.02, 0.012, 8× 10−5).

Figure 6.6: Experimental results for the heuristic procedure described in Appendix 6.6.5. We plot

the average number of infected individuals and the number of tests used as a function of time (in

days). For comparison, we also plot the performance when no one is tested (no testing) and when

everyone is tested (Complete).

172

=⇒ Pr(U(D′ ∪ {j});p) > Pr(U(D ∪ {j});p),

where in (a) we take out the term corresponding to j, also we use the fact that j /∈ D and

j /∈ D′; (b) follows from multiplying both sides with pj/1− pj; in (c) we push the pj term into

the first product term.

(ii) If j ∈ D′, we again first note that the defective set D′ ∪ {j} = D′ explains the test

results of D∪{j}. We next claim that Pr(U(D′);p) > Pr(U(D∪{j});p), and consequently

the MAP decoder will fail to correctly identify the defective set D′ ∪ {j}. Now to prove our

claim, we start with our assumption (1), i.e.,

Pr(U(D′);p) > Pr(U(D);p)

=⇒
∏
i∈D′

pi
∏

l∈[N]\D′

(1− pl) >
∏
i∈D

pi
∏

l∈[N]\D

(1− pl)

(a)
=⇒ pj

∏
i∈D′\{j}

pi
∏

l∈[N]\D′

(1− pl)

> (1− pj)
∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)

(b)
=⇒ pj

∏
i∈D′\{j}

pi
∏

l∈[N]\D′

(1− pl)

> pj
∏
i∈D

pi
∏

l∈[N]\D∪{j}

(1− pl)

(c)
=⇒

∏
i∈D′

pi
∏

l∈[N]\D′

(1− pl)

>
∏

i∈D∪{j}

pi
∏

l∈[N]\D∪{j}

(1− pl)

=⇒ Pr(U(D′);p) > Pr(U(D ∪ {j});p),

where in (a) we take out the term corresponding to j, also note that j /∈ D but j ∈ D′; (b)

follows from the fact that 1− pj ≥ pj when pj ≤ 0.5, so we can replace the (1− pj) term on

the right-hand side by pj without affecting the inequality; in (c) we push the pj term into

the first product term.

173

6.6.4 Auxiliary results for Theorem 6.3

In this section we prove some auxiliary statements about functions f1(x), f2(x) and f3(x)

that are used at the end of the proof of Theorem 6.3:

• f1(x) = 1−κx
1−x

is increasing for κ ∈ (0, 1), because f ′
1(x) = − κ−1

(x−1)2
> 0.

• f2(x) = (1− q2)x is decreasing for q2 ∈ (0, 1), because f ′
2(x) = ln (1− q2) (1− q2)x < 0.

• f3(x) =
1−cx1
1−cx2

is decreasing for q1 ≥ q2, because of the following: Let c1 = 1 − q1 and

c2 = 1− q2, so that c2 ≥ c1. Then,

f ′
3(x) =

1

(1− cx2)
2 ((1− c1)

xcx2 ln c2 − (1− cx2) cx1 ln c1)

=
1

x (1− cx2)
2 ((1− c1)

xcx2 ln c
x
2 − (1− cx2) cx1 ln cx1)

=
(1− c1)x(1− c2)x

x (1− cx2)
2

(
cx2 ln c

x
2

(1− c2)x
− cx1 ln c

x
1

(1− c1)x

)
(a)

≤ 0,

where (a) follows from the fact that c2 ≤ c1 and the function g(c) = c ln c
1−c

is non-increasing

for c ∈ (0, 1). The latter can be seen by taking the derivative g′(c) = ln c−c+1
(1−c)2

, which is always

non-positive for c ∈ (0, 1), as ln c ≤ c− 1.

6.6.5 A heuristics for dynamic group testing

Given the results and discussion in Section 6.4, a natural question to ask is if one could

use a number of tests based on the upper bounds discussed in Section 6.3.2. In particular,

we focus on the upper bound for CCA which implies that CCA achieves a probability of

error less than 2N−δ with a number of tests at most 4e(1 + δ)Npmean logN (see Theorem

3 in [LCH14]). Note that the probability of error is small, but not zero, for finite values of

N . Here, we use a number of tests equal to 12eNpmean logN each day (corresponding to an

error probability less than 2N−2) and plot the number of errors made by each of the three

test designs considered in Section 6.4. The experimental set-up is as follows:

(i) We maintain an estimate of the probability p
(t)
j that a susceptible individual belonging

to community j becomes infected on day t (see Section 6.2.2 for the precise definition), for

174

each community j, and for each day t.

(ii) At the beginning of day t, we obtain the results of the tests administered on day t− 1.

From these results, we form an estimate Û
(t−1)
i of the infection statuses U

(t−1)
i of individual

i at the beginning of day t−1, for each i. In order to learn the statuses, we use the Definite

Defective (DD) decoder (see Section 2.4 in [AJS19]) which is guaranteed to have no false

positives. Indeed, one could use more sophisticated decoders, such as ones based on loopy

belief propagation. However, these decoders potentially give rise to both false positives and

false negatives, resulting in an unfair comparison across different algorithms4.

(iii) We isolate all individuals i where Û
(t−1)
i = 1.

(iv) We update p
(t−1)
j using our estimates Û

(t−1)
i .

(v) Using our estimates of p
(t−1)
j , we estimate the value of p

(t)
mean and choose a number of tests

T = min{12eN (t)p(t)mean logN
(t), N (t)},

where N (t) is the current number of non-isolated individuals in the community. We next

construct a testing matrix with T tests and administer these tests. For complete testing, we

use T = N (t).

(vi) Steps (ii)− (v) repeat each day.

Given the above set-up, Figure 6.6 compares the performance of the test designs described

in Section 6.4. We make a few observations:

• We see that the algorithms do not always attain the performance of complete testing.

This is due to the fact that for finite N , the probability of error is non-zero. However, as

seen from Figure 6.6, the performance of CCA improves as N increases. On the other hand,

Rnd. Grp. max. has the opposite trend; this is not surprising since the number of tests was

chosen based on the upper bound for CCA and as a result there is no guarantee that the

same number of tests is sufficient for Rnd. Grp. max.

• In comparison to the plots in fig. 6.4, the number of tests used here is much higher during

4Indeed, this begs the very complicated comparison between the impact of false positives and false nega-
tives, which we avoid for the sake of simplicity.

175

the initial few days, which indicates the looseness of the upper bound; it remains open to

show tighter upper bounds for these algorithms.

• Suppose we make an error when identifying the infection status on a particular day t, the

estimates of p
(t−1)
j are not exact, which in turn leads to potentially insufficient choices for

the number of tests needed for subsequent days and inaccurate test designs. This drives an

error accumulation and as a result the later days are more prone to error, as also seen in

Figure 6.6.

176

CHAPTER 7

Conclusions and Open Questions

In this dissertation, we studied trace reconstruction and group testing through the lens of

statistical inference. Moreover, we also showed how to leverage community structure side-

information and epidemiological models to make group testing more efficient. As a part of

this work, we introduced a number of theoretical tools that may be of general interest beyond

the particular problems studied in this dissertation.

Deletion Channels and Trace Reconstruction

In Chapter 2, we provided, to the best of our knowledge, the first results and techniques

to compute posterior distributions over multiple deletion channels. We also provided a new

perspective on the maximum-likelihood for the deletion channel by showing an equivalence

between a discrete optimization problem and a continuous formulation of it. In this process,

we introduced a variety of tools (the relaxed binomial coefficient, edit graph and infiltration

product) and demonstrated their use for analyzing deletion channels. We also presented

numerical evaluations of our algorithms and showed performance improvements over existing

trace reconstruction algorithms. One question that remains open is on coming up with error

rate guarantees for the trace reconstruction algorithms introduced in this chapter. Extending

these methods to insertion-deletion-substitutions channels is another open question.

Building on the continuous optimization equivalence idea from Chapter 2, in Chapter 3,

we formulated the ML estimate over any system channel (which admits deletion channels as

a special case) as a continuous optimization problem; in particular, we optimize the expected

likelihood function over the space of product distributions for X, instead of optimizing the

177

actual likelihood. This opens the door to the use of first-order heuristics like gradient ascent.

We connected the SPs to the expected likelihood function and its gradient. As an application,

we illustrated performance benefits of our formulations via numerics for the deletion channel.

An open question is to understand for what classes of system channels these techniques offer

benefits over existing methods, and how large these benefits are. Another open question is to

understand how the ML solution relates to error rates, such as Hamming error rate, for the

particular system channels considered in this chapter. Finally, it would also be interesting

to come up with error-rate guarantees for the heuristics introduced in this chapter.

Group testing and Epidemiology

In Chapter 4, we used a similar approach as in Chapter 3, and formulated the search

for optimal group-test designs, under the assumption of a DND decoder, as a non-convex

optimization problem, and proposed a solution via enhanced gradient descent. Our solution

is approximate in the sense that it minimizes a lower bound on the expected number of

identification errors (as opposed to the exact expectation). But, our numerical evaluation,

over various infection scenaria demonstrated that our approach can significantly outperform

state-of-the-art designs (upto 58% in the best case). Moreover, our designs performed well

with the DD decoder, which allows us to claim that test designs are transferable to other

decoders. An open question is to extend the technique introduced in this chapter to other

decoders, such as DD and belief propagation. It would also be interesting to extend these

techniques to encompass more general infection models, in particular, to include correlated

infection models. Performance guarantees for the heuristics introduced in this chapter is

another open question.

While Chapter 4 considered independent infections, in Chapter 5, we studied group test-

ing in the presence of correlations, where the correlation is induced by a community structure.

We showed that exploiting the knowledge provided by the community structure allows us

to use upto 60% fewer tests compared to traditional test designs. We also showed how to

incorporate this information into a loopy belief propagation decoder to see performance ben-

178

efits. An open question is to understand which community structures, beyond the examples

considered in this chapter, offer benefits and how large these benefits can be. Another open

question is to design algorithms for more general testing models (see [GPR20], for exam-

ple) and/or under limited information about the community structure (for example, due to

technological limitations, privacy issues and fast-changing structures).

Finally, in Chapter 6, we proposed the problem of dynamic group testing which asks the

question of how to continually test given that infections spread during the testing period.

Our numerical results answer the question we started with – in the dynamic testing problem

formulation, given a day of testing delay, is it possible to achieve close to complete testing

performance with significantly fewer number of tests? The answer is yes, and in this chapter

we not only showed numerical evidence supporting this fact, but also gave theoretical bounds

on the optimal number of tests needed in order to achieve this. Many open questions remain

in this space. In particular, it would be interesting to study the same problem when tests are

noisy, or when we can use other models of group tests, or simply when one cannot perfectly

learn the states of all individuals on a testing day. In addition, it would also be of interest

to study/use other test designs. It is also an open question to see how these results translate

to the continuous-time SIR stochastic network model.

179

REFERENCES

[ABJ14] Matthew Aldridge, Leonardo Baldassini, and Oliver Johnson. “Group Testing Al-
gorithms: Bounds and Simulations.” IEEE Transactions on Information Theory,
60(6):3671–3687, 2014.

[AFF20] Inés Armendáriz, Pablo A Ferrari, Daniel Fraiman, José M Mart́ınez, and
Silvina Ponce Dawson. “Group testing with nested pools.” arXiv preprint
arXiv:2005.13650, 2020.

[AJS16] Matthew Aldridge, Oliver Johnson, and Jonathan Scarlett. “Improved group
testing rates with constant column weight designs.” In 2016 IEEE International
Symposium on Information Theory (ISIT), pp. 1381–1385. Ieee, 2016.

[AJS19] Matthew Aldridge, Oliver Johnson, and Jonathan Scarlett. “Group testing: an
information theory perspective.” CoRR, abs/1902.06002, 2019.

[Ald19] M. Aldridge. “Individual Testing Is Optimal for Nonadaptive Group Testing in
the Linear Regime.” IEEE Trans. Inf. Theory, 65(4), 2019.

[AS12] George K. Atia and Venkatesh Saligrama. “Boolean Compressed Sensing and
Noisy Group Testing.” IEEE Transactions on Information Theory, 58(3):1880–
1901, 2012.

[AVD19] Mahed Abroshan, Ramji Venkataramanan, Lara Dolecek, and Albert Guillén
i Fàbregas. “Coding for Deletion Channels with Multiple Traces.”, 2019.

[BBL20] Ted Bergstrom, Carl T Bergstrom, and Haoran Li. “Frequency and accuracy of
proactive testing for COVID-19.” medRxiv, 2020.

[BCJ74] Lalit Bahl, John Cocke, Frederick Jelinek, and Josef Raviv. “Optimal decoding
of linear codes for minimizing symbol error rate (corresp.).” IEEE Transactions
on information theory, 20(2):284–287, 1974.

[BKK04] Tuǧkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. “Re-
constructing Strings from Random Traces.” In SODA ’04, pp. 910–918, 2004.

[BLS19] Joshua Brakensiek, Ray Li, and Bruce Spang. “Coded trace reconstruction in a
constant number of traces.”, 2019.

[BMT06] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the Inherent In-
tractability of Certain Coding Problems (Corresp.).” IEEE Trans. Inf. Theor.,
24(3):384–386, September 2006.

[BPS20] Wei Heng Bay, Eric Price, and Jonathan Scarlett. “Optimal Non-Adaptive Prob-
abilistic Group Testing Requires Θ(min{k log n, n}) Tests.”, 2020.

180

[Bro20] Maria Broadfoot. “Coronavirus Test Shortages Trigger a New Strategy:
Group Screening.” See https://www.scientificamerican.com/article/

coronavirus-test-shortages-trigger-a-new-strategy-group-screening2/,
May 2020.

[CGH20a] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick. “Information-
theoretic and algorithmic thresholds for group testing.” IEEE Trans. Inf. Theory,
2020.

[CGH20b] Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth, and Philipp Loick.
“Optimal Group Testing.” volume 125 of Proceedings of Machine Learning Re-
search, pp. 1374–1388, Jul. 2020.

[CGK12] George M Church, Yuan Gao, and Sriram Kosuri. “Next-generation digital in-
formation storage in DNA.” Science, 337(6102):1628–1628, 2012.

[CGM19] Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and João Ribeiro. “Coded
trace reconstruction.”, 2019.

[Cha19] Zachary Chase. “New Lower Bounds for Trace Reconstruction.”, 2019.

[CJS14] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri. “Non-adaptive group
testing: Explicit bounds and novel algorithms.” IEEE Trans. Inf. Theory,
60(5):3019–3035, 2014.

[CKM12] Mahdi Cheraghchi, Amin Karbasi, Soheil Mohajer, and Venkatesh Saligrama.
“Graph-constrained group testing.” IEEE Transactions on Information Theory,
58(1):248–262, 2012.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. “Solving linear programs in
the current matrix multiplication time.” In Proceedings of the 51st annual ACM
SIGACT symposium on theory of computing, pp. 938–942, 2019.

[CNS19] Luis Ceze, Jeff Nivala, and Karin Strauss. “Molecular digital data storage using
DNA.” Nature Reviews Genetics, 20(8):456–466, 2019.

[CR19] Mahdi Cheraghchi and João Ribeiro. “Sharp analytical capacity upper bounds
for sticky and related channels.” IEEE Transactions on Information Theory,
2019.

[CS16] Venkat. Chandrasekaran and Parikshit. Shah. “Relative Entropy Relaxations
for Signomial Optimization.” SIAM Journal on Optimization, 26(2):1147–1173,
2016.

[CTV20] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. “Noisy Adaptive
Group Testing using Bayesian Sequential Experimental Design.” arXiv preprint
arXiv:2004.12508, 2020.

181

[DG01] Suhas N Diggavi and Matthias Grossglauser. “On transmission over deletion
channels.” In Proceedings of the Annual Allerton Conference on Communication
Control and Computing, 2001.

[DG06] Suhas Diggavi and Matthias Grossglauser. “On information transmission over a
finite buffer channel.” IEEE Transactions on Information Theory, 2006.

[DH93] D-Z Du and F.K. Hwang. Combinatorial Group Testing and Its Applications.
Series on Applied Mathematics, 1993.

[DMP] Suhas Diggavi, Michael Mitzenmacher, and H Pfister. “Capacity upper bounds
for deletion channels.” In 2007 ISIT.

[Dor43] Robert Dorfman. “The Detection of Defective Members of Large Population.”
The Annals of Mathematical Statistics, 14:436–440, 1943.

[DOS] Anindya De, Ryan O’Donnell, and Rocco A. Servedio. “Optimal Mean-based
Algorithms for Trace Reconstruction.” In STOC 2017.

[Ell20] Jordan Ellenberg. “Five People. One Test. This Is How You Get There.” NY-
times, May 2020.

[ERW08] Cees Elzinga, Sven Rahmann, and Hui Wang. “Algorithms for subsequence com-
binatorics.” Theoretical Computer Science, 409(3):394–404, 2008.

[FDA20] FDA. “Pooled Sample Testing and Screening Testing for COVID-19.”, 2020.

[FKG71] Cees M Fortuin, Pieter W Kasteleyn, and Jean Ginibre. “Correlation inequali-
ties on some partially ordered sets.” Communications in Mathematical Physics,
22(2):89–103, 1971.

[For73] G David Forney. “The viterbi algorithm.” Proceedings of the IEEE, 61(3):268–
278, 1973.

[FP85] Ulrich Fincke and Michael Pohst. “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis.” Mathematics of
computation, 44(170):463–471, 1985.

[FRH83] K Farrell, L Rudolph, C Hartmann, and L Nielsen. “Decoding by local opti-
mization (corresp.).” IEEE transactions on information theory, 29(5):740–743,
1983.

[Gal62] Robert Gallager. “Low-density parity-check codes.” IRE Transactions on infor-
mation theory, 8(1):21–28, 1962.

182

[GCW20] Ritesh Goenka, Shu-Jie Cao, Chau-Wai Wong, Ajit Rajwade, and Dror Baron.
“Contact Tracing Enhances the Efficiency of COVID-19 Group Testing.” arXiv
preprint arXiv:2011.14186, 2020.

[GG20] Christian Gollier and Olivier Gossner. “Group testing against Covid-19.” See
https://www.tse-fr.eu/publications/group-testing-against-covid-19,
April 2020.

[Gho20] Sabyasachi Ghosh et al. “Tapestry: A Single-Round Smart Pooling Technique
for COVID-19 Testing.” medRxiv, 2020.

[GPR20] Ryan Gabrys, Srilakshmi Pattabiraman, Vishal Rana, João Ribeiro, Mahdi Cher-
aghchi, Venkatesan Guruswami, and Olgica Milenkovic. “AC-DC: Amplification
curve diagnostics for Covid-19 group testing.” arXiv preprint arXiv:2011.05223,
2020.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, New York, NY, USA,
1997.

[GV05] Venkatesan Guruswami and Alexander Vardy. “Maximum-Likelihood Decoding
of Reed–Solomon Codes is NP-Hard.” Information Theory, IEEE Transactions
on, 51:2249– 2256, 08 2005.

[GYA18] Parikshit S Gopalan, Sergey Yekhanin, Siena Dumas Ang, Nebojsa Jojic, Miklos
Racz, Karen Strauss, and Luis Ceze. “Trace reconstruction from noisy polynu-
cleotide sequencer reads.”, July 26 2018. US Patent App. 15/536,115.

[HB98] Arash Hassibi and Stephen Boyd. “Integer parameter estimation in linear models
with applications to GPS.” IEEE Transactions on signal processing, 46(11):2938–
2952, 1998.

[HHW81] M. C. Hu, F. K. Hwang, and J. K. Wang. “A boundary problem for group
testing.” SIAM Jour. on Algebraic Discrete Methods, 1981.

[HL18] Nina Holden and Russell Lyons. “Lower bounds for trace reconstruction.”, 2018.

[HM14] Bernhard Haeupler and Michael Mitzenmacher. “Repeated deletion channels.”
In 2014 IEEE Information Theory Workshop (ITW 2014), pp. 152–156. IEEE,
2014.

[HMP08] Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder.
“Trace Reconstruction with Constant Deletion Probability and Related Results.”
In ACM-SIAM SODA ’08, pp. 389–398, 2008.

183

[HPP18] Nina Holden, Robin Pemantle, and Yuval Peres. “Subpolynomial trace recon-
struction for random strings and arbitrary deletion probability.” In Proceedings
of the 31st Conference On Learning Theory, 2018.

[HV02] Babak Hassibi and Haris Vikalo. “On the expected complexity of integer least-
squares problems.” In 2002 IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 2, pp. II–1497. IEEE, 2002.

[JAS19] O. Johnson, M. Aldridge, and J. Scarlett. “Performance of Group Testing
Algorithms With Near-Constant Tests Per Item.” IEEE Trans. Inf. Theory,
65(2):707–723, 2019.

[Joh17] O. T. Johnson. “Strong converses for group testing from finite block- length
results.” IEEE Trans. Inf. Theory, 63(9), 2017.

[Kem77] JHB Kemperman. “On the FKG-inequality for measures on a partially ordered
space.” In Indagationes Mathematicae (Proceedings), volume 80, pp. 313–331.
North-Holland, 1977.

[KFL01] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. “Factor graphs and the
sum-product algorithm.” IEEE Transactions on information theory, 47(2):498–
519, 2001.

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. “Maximizing the spread of in-
fluence through a social network.” In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 137–146,
2003.

[KLL20] Lauren M Kucirka, Stephen A Lauer, Oliver Laeyendecker, Denali Boon, and
Justin Lessler. “Variation in false-negative rate of reverse transcriptase poly-
merase chain reaction–based SARS-CoV-2 tests by time since exposure.” Annals
of Internal Medicine, 173:262–267, Aug. 2020.

[KMS17] Istvan Kiss, Joel Miller, and Péter Simon. Mathematics of Epidemics on Net-
works, volume 46. 01 2017.

[KZ12] Amin Karbasi and Morteza Zadimoghaddam. “Sequential group testing with
graph constraints.” In 2012 IEEE information theory workshop, pp. 292–296.
Ieee, 2012.

[LCH14] T. Li, C. L. Chan, W. Huang, T. Kaced, and S. Jaggi. “Group testing with prior
statistics.” In 2014 IEEE International Symposium on Information Theory, pp.
2346–2350, 2014.

[LD09] Heng Li and Richard Durbin. “Fast and accurate short read alignment with
Burrows–Wheeler transform.” Bioinformatics, 25(14):1754–1760, 05 2009.

184

[Lev01] Vladimir I Levenshtein. “Efficient reconstruction of sequences.” IEEE Transac-
tions on Information Theory, 47(1):2–22, 2001.

[Lot97] M. Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cam-
bridge University Press, 1997.

[Lot02] M. Lothaire. Algebraic combinatorics on words, volume 90. Cambridge University
Press, 2002.

[Lot05] M. Lothaire. Applied combinatorics on words, volume 105. Cambridge University
Press, 2005.

[MA16] Yaakov Malinovsky and Paul S. Albert. “Revisiting nested group testing proce-
dures: new results, comparisons, and robustness.” American Statistician, August
2016. See also https://arxiv.org/abs/1608.06330.

[Mal20] Smriti Mallapaty. “The mathematical strategy that could transform coronavirus
testing.”, 2020.

[MDK17] Wei Mao, Suhas N. Diggavi, and Sreeram Kannan. “Models and information-
theoretic bounds for nanopore sequencing.” 2017 ISIT, 2017.

[Mit09] Michael Mitzenmacher. “A survey of results for deletion channels and related
synchronization channels.” Probability Surveys, 6:1–33, 2009.

[MSO20] Tamás G Molnár, Andrew W Singletary, Gábor Orosz, and Aaron D Ames.
“Safety-Critical Control of Compartmental Epidemiological Models with Mea-
surement Delays.” IEEE Control Systems Letters, 5(5):1537–1542, 2020.

[NGF20] Pavlos Nikolopoulos, Tao Guo, Christina Fragouli, and Suhas Diggavi. “Commu-
nity aware group testing.” 2020. https://arxiv.org/abs/2007.08111.

[NO01] G. Nicosia and G. Oriolo. “Solving the Shortest Common Supersequence Prob-
lem.” In Operations Research Proceedings, pp. 77–83, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[NP17] Fedor Nazarov and Yuval Peres. “Trace Reconstruction with exp(O(N1/3)) Sam-
ples.” In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pp. 1042–1046, New York, NY, USA, 2017. ACM.

[NRG21] Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina
Fragouli, and Suhas Diggavi. “Group testing for connected communities.” In
Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, volume 130, pp. 2341–2349. PMLR, 2021.

185

[NSF21] Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Christina Fragouli, and
Suhas Diggavi. “Group testing for community-based infections.” IEEE BITS the
Information Theory Magazine, pp. 1–1, 2021.

[NSG21] Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina
Fragouli, and Suhas Diggavi. “Group testing for overlapping communities.” In
ICC 2021 - IEEE International Conference on Communications, pp. 1–7, 2021.

[OAC18] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey
Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit
Gopalan, Bichlien Nguyen, et al. “Random access in large-scale DNA data stor-
age.” Nature biotechnology, 36(3):242–248, 2018.

[PC] P.C. Fishburn. Encyclopedia of Mathematics. European Mathematical Society.
URL: http://encyclopediaofmath.org/index.php?title=FKG_inequality&

oldid=14368.

[PS20] Eric Price and Jonathan Scarlett. “A Fast Binary Splitting Approach to Non-
Adaptive Group Testing.” arXiv preprint arXiv:2006.10268, 2020.

[PZ17] Yuval Peres and Alex Zhai. “Average-case reconstruction for the deletion channel:
subpolynomially many traces suffice.” CoRR, abs/1708.00854, 2017.

[Rat05] Edward A Ratzer. “Marker codes for channels with insertions and deletions.” In
Annales des télécommunications. Springer, 2005.

[RC00] L. Riccio and C. J. Colbourn. “Sharper bounds in adaptive group testing.”
Taiwanese Journal of Mathematics, p. 669–673, 2000.

[RM00] Edward A Ratzer and David JC MacKay. “Codes for channels with insertions,
deletions and substitutions.” In In 2nd International Symposium on Turbo Codes
and Related Topics, 2000.

[RMR17] Cyrus Rashtchian, Konstantin Makarychev, Miklós Z Rácz, Siena Ang, Djordje
Jevdjic, Sergey Yekhanin, Luis Ceze, and Karin Strauss. “Clustering Billions of
Reads for DNA Data Storage.” In NIPS, volume 2017, pp. 3360–3371, 2017.

[SC16] Jonathan Scarlett and Volkan Cevher. “Phase Transitions in Group Testing.” In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pp. 40–53.
SIAM, 2016.

[SDDa] S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli. “On Maximum
Likelihood Reconstruction over Multiple Deletion Channels.” In 2018 IEEE In-
ternational Symposium on Information Theory (ISIT).

186

[SDDb] S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli. “Symbolwise MAP
for Multiple Deletion Channels.” In 2019 IEEE International Symposium on
Information Theory (ISIT).

[SDD20] Sundara Rajan Srinivasavaradhan, Michelle Du, Suhas N Diggavi, and Christina
Fragouli. “Algorithms for reconstruction over single and multiple deletion chan-
nels.” IEEE Transactions on Information Theory, 67(6):3389–3410, 2020.

[SDF20] Sundara Rajan Srinivasavaradhan, Suhas Diggavi, and Christina Fragouli.
“Equivalence of ML decoding to a continuous optimization problem.” In 2020
IEEE International Symposium on Information Theory (ISIT), pp. 343–348.
IEEE, 2020.

[SGP21] Sundara Rajan Srinivasavaradhan, Sivakanth Gopi, Henry D Pfister, and Sergey
Yekhanin. “Trellis BMA: Coded Trace Reconstruction on IDS Channels for DNA
Storage.” In 2021 IEEE International Symposium on Information Theory (ISIT),
pp. 2453–2458. IEEE, 2021.

[SKC16] Ilan Shomorony, Samuel H. Kim, Thomas A. Courtade, and David N. C. Tse.
“Information-optimal genome assembly via sparse read-overlap graphs.” Bioin-
formatics, 32(17):i494–i502, 2016.

[SNF21a] Sundara Rajan Srinivasavaradhan, Pavlos Nikolopoulos, Christina Fragouli, and
Suhas Diggavi. “Dynamic group testing to control and monitor disease progres-
sion in a population.” arXiv preprint arXiv:2106.10765, 2021.

[SNF21b] Sundara Rajan Srinivasavaradhan, Pavlos Nikolopoulos, Christina Fragouli, and
Suhas Diggavi. “An entropy reduction approach to continual testing.” In 2021
IEEE International Symposium on Information Theory (ISIT), pp. 611–616.
IEEE, 2021.

[Sno55] John Snow. On the mode of communication of cholera. John Churchill, 1855.

[TKL21] Jussi Taipale, Ioannis Kontoyiannis, and Sten Linnarsson. “Population-scale test-
ing can suppress the spread of infectious disease.”, 2021.

[Tra20a] “Decentralized Privacy-Preserving Proximity Tracing.” arXiv preprint
arXiv:2005.12273, 2020.

[Tra20b] “Google COVID-19 Community Mobility Reports: Anonymization Process De-
scription (version 1.0).” arXiv preprint arXiv:2004.04145v2, 2020.

[Tra21] Anne Trafton. “Could all your digital photos be stored as DNA?”, June 2021.

[Tre11] Luca Trevisan. “Combinatorial optimization: exact and approximate algo-
rithms.” Stanford University, 2011.

187

[TRL20] Jussi Taipale, Paul Romer, and Sten Linnarsson. “Population-scale testing can
suppress the spread of COVID-19.” MedRxiv, 2020.

[TTV17] Eldho K Thomas, Vincent YF Tan, Alexander Vardy, and Mehul Motani. “Polar
coding for the binary erasure channel with deletions.” IEEE Communications
Letters, 21(4):710–713, 2017.

[Ung60] P. Ungar. “Cutoff points in group testing.” Comm. Pure Appl. Math, 13:49–54,
1960.

[Var97] Alexander Vardy. “Algorithmic Complexity in Coding Theory and the Minimum
Distance Problem.” In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, p. 92–109, New York, NY, USA, 1997.
Association for Computing Machinery.

[Ver20] Claudio Verdun et al. “Group testing for SARS-CoV-2 allows up to 10-fold
efficiency increase across realistic scenarios and testing strategies.” medRxiv,
2020.

[Xu14] Gongxian Xu. “Global optimization of signomial geometric programming prob-
lems.” European Journal of Operational Research, 233(3):500 – 510, 2014.

[YR20] Sergey Mikhailovich Yekhanin and Miklos Zoltan Racz. “Trace reconstruction
from reads with indeterminant errors.”, February 20 2020. US Patent App.
16/105,349.

[ZRB20] Junan Zhu, Kristina Rivera, and Dror Baron. “Noisy Pooled PCR for Virus
Testing.” arXiv preprint arXiv:2004.02689, 2020.

188

