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Predictable and unpredictable deviance detection in the
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Our brains extract structure from the environment and form predictions given past experience. Predictive circuits have been identified
in wide-spread cortical regions. However, the contribution of medial temporal structures in predictions remains under-explored. The
hippocampus underlies sequence detection and is sensitive to novel stimuli, sufficient to gain access to memory, while the amygdala
to novelty. Yet, their electrophysiological profiles in detecting predictable and unpredictable deviant auditory events remain unknown.
Here, we hypothesized that the hippocampus would be sensitive to predictability, while the amygdala to unexpected deviance. We
presented epileptic patients undergoing presurgical monitoring with standard and deviant sounds, in predictable or unpredictable
contexts. Onsets of auditory responses and unpredictable deviance effects were detected earlier in the temporal cortex compared
with the amygdala and hippocampus. Deviance effects in 1–20 Hz local field potentials were detected in the lateral temporal cortex,
irrespective of predictability. The amygdala showed stronger deviance in the unpredictable context. Low-frequency deviance responses
in the hippocampus (1–8 Hz) were observed in the predictable but not in the unpredictable context. Our results reveal a distributed
network underlying the generation of auditory predictions and suggest that the neural basis of sensory predictions and prediction
error signals needs to be extended.

Key words: amygdala; auditory predictions; deviance; hippocampus; intracranial EEG.

Introduction
The human brain has an astonishing capacity in detecting pat-
terns from the environment in a quick and automatic way (Bar
2009). Detecting patterns in sensory stimuli allows making pre-
dictions about future events before they occur, based on current
sensory input (Heilbron and Chait 2018). Every time that a pattern
is violated, an internal model of the world is updated through
prediction error signals, which quantify the difference between
expected and received outcome (Heilbron and Chait 2018). One
experimental testbed for studying sensory predictions is through
auditory deviance paradigms. These paradigms comprise of series
of commonly repeated (standard) sounds, which are occasionally
replaced by deviant tones (Garrido et al. 2009; Tivadar et al. 2021).

Because of the difficulty in assessing electrophysiological activ-
ity in subcortical regions in a noninvasive way, the search for a
sensory predictive network in the auditory modality has mainly
focused on a two-node circuit, including mainly the temporal
lobe and prefrontal areas (Garrido et al. 2009; Dürschmid et al.
2018, 2016; Rosburg et al. 2005; Canolty et al. 2006; Phillips et al.
2016). The most prevalent view is that sensory areas compute a
low-level predictive signal, comparing current sensory input to
the immediate past and detect violations of auditory sequences
(Dürschmid et al. 2016). This two-node temporal-to-prefrontal

circuit underlying sensory predictions has been well character-
ized by noninvasive (Garrido et al. 2008; Chennu et al. 2013) and
invasive electrophysiology (Rosburg et al. 2005; Dürschmid et al.
2016; Phillips et al. 2016; Edwards et al. 2005), establishing a
cortical hierarchy of auditory predictions.

Beyond this cortical two-node network, additional brain regions
have sensitivity to sensory predictions and deviance, including the
insula (Blenkmann et al. 2019), nucleus accumbens (Dürschmid
et al. 2016), and also the hippocampus and amygdala (Halgren
et al. 1980; Knight 1996). Although recent studies have specifically
targeted some of these regions, such as the nucleus accumbens
(Dürschmid et al. 2016), or the insula (Blenkmann et al. 2019), in
relation to deviance detection, the role of the hippocampus and
amygdala in forming auditory predictions is by comparison under-
explored.

Both the hippocampus and amygdala are sensitive to auditory
stimuli (Cusinato et al. 2023) and infrequent auditory events
(Halgren et al. 1980; Knight 1996), but their specific role in the
formation of auditory predictions remains unclear, as well as
their integration with other cortical areas (Johnson et al. 2020).
Previous studies based on functional Magnetic Resonance Imag-
ing (fMRI) or magnetoencephalography (MEG) have shown that
the hippocampus is sensitive to violations of expected events
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(Kumaran and Maguire 2006; Chen et al. 2013; Garrido et al.
2015), mainly through low-frequency oscillations (Garrido et al.
2015; Recasens et al. 2018). Intriguingly, the hippocampus is also
sensitive to unexpected visual events (Axmacher et al. 2010),
memory functions (Johnson and Knight 2015), visual regularities
(Schapiro et al. 2012; Ekman et al. 2023), and linguistic stimuli
(Jafarpour et al. 2017) possibly arbitrating between predictions and
encoding of memories (Sherman and Turk-Browne 2020).

The amygdala is also sensitive to unexpected novel events
(Blackford et al. 2010; Balderston et al. 2013) and to violations of
expected auditory input (James et al. 2012). Interestingly, invasive
electrophysiology recordings in macaques showed that single
unit activity in the amygdala is sensitive to deviant auditory
stimuli, with comparable latencies to those of prefrontal neurons
(Camalier et al. 2019). These studies suggest that, contrary to
the hippocampus, which is primarily sensitive to regular events
and sequences, the amygdala may be more fine-tuned in the
detection of unexpected deviance. Indeed, the hippocampus has
been long targeted as a key region underlying sequence learn-
ing (Eichenbaum 2013), and formation of predictions (Lisman
and Redish 2009), which imply increased sensitivity to expected
events. In addition, the hippocampus is also sensitive to highly
novel stimuli that may be salient for memory storage (Knight
1996; Jafarpour et al. 2017). In contrast, the amygdala is mostly
known as a structure underlying detection of novelty (Blackford
et al. 2010), which by extension implies sensitivity to unexpected
acoustic events. Despite ample evidence for the involvement of
the hippocampus and amygdala in detecting violations of envi-
ronmental regularities, the specific function of each region in
detecting deviant inputs and prediction remains underexplored.

Here, we aimed at shedding light on the role of the hippocam-
pus and amygdala in detecting violations of auditory rules, and
contrasting that to the well-established role of the temporal
cortex (Dürschmid et al. 2016; Rosburg et al. 2005; Edwards et al.
2005). We hypothesized that in addition to a cortical mechanism
for detection of auditory events and deviant auditory events,
there also exists medial temporal lobe contributions from the
hippocampus and amygdala. To dissociate effects of deviance
and predictability, we used a paradigm comprising of standard
and deviant sounds, presented in a temporally predictable or
unpredictable way (Dürschmid et al. 2016). We recorded intracra-
nial electroencephalography (iEEG) in patients with epilepsy to
directly assess neural activity of the hippocampus and amygdala.
We provide evidence for a distributed temporal lobe network
underlying the generation of auditory predictions and highlight
the role of the hippocampus and amygdala in detecting auditory
rules and their violations.

Materials and methods
Patients
We recorded intracranial EEG data in eight patients with pharma-
coresistant epilepsy (mean age: 29 years, 3 women), undergoing
presurgical monitoring. All patients had implanted depth elec-
trodes, targeting the hippocampus and amygdala, among other
regions (Table 1 for an overview of electrodes across patients).
Patients were selected on the basis of having electrode coverage
in the mesio-temporal lobe from at least one seizure-free hemi-
sphere. Recordings took place at the University of California Irvine
Medical Center, United States, the University of Zurich (implan-
tation), and the Swiss Epilepsy Center in Zurich (recordings),
Switzerland. Patients gave written informed consent to partici-
pate in this study, approved by institutional ethics review boards

of the University Hospital of Zurich (PB 2016–02055), UC Berkeley,
and UC Irvine. All experiments were performed in accordance
with the 6th Declaration of Helsinki.

Paradigm
Patients were presented with series of standard (80%) and deviant
(20%) sounds during wakefulness. Sounds were pure tones, lasting
100 ms. The standard sounds’ pitch was drawn from a gaussian
distribution with μ = 500 Hz, σ2 = 125 Hz. The pitch for deviant
sounds was at the tail of the distribution with a frequency of
2,000 Hz. Deviant sounds were presented in a temporally pre-
dictable (after 4 standards) or unpredictable (after 3–8 standards)
context (Fig. 1). Distribution of standard sounds between consec-
utive deviants differed between predictable and unpredictable
sequences following a previously published study (Dürschmid
et al. 2016), as opposed to other protocols that control for the
shape of this distribution (Lecaignard et al. 2015). The sound-to-
sound interval (stimulus onset asynchrony) was 600 ms. Sounds
were presented in two blocks of 500 trials, one for the predictable
and one for the unpredictable context, lasting ∼5′ each. Two addi-
tional blocks were recorded, in which the pitch of the standard
sounds was drawn from a distribution with high variance, but
were not analyzed, as they were out of the scope of the present
study. The order of blocks was randomized for each patient.
Patients were instructed to watch a silent video and ignore the
sounds.

Electrode localization
Electrodes were localized using merged postoperative computed
tomography (CT) and preoperative structural T1-weighted MRI
scans. The CT scan was registered to the preoperative MRIs,
using a standard electrode localization procedure, implemented
in Fieldtrip (Stolk et al. 2018). The electrode locations were visu-
alized for each patient in native space, and their location was
identified by a neurologist. To visualize the electrode locations
across the group of patients, the aligned electrodes were warped
onto a template brain in MNI space. We considered the most con-
sistent localizations of contacts across all patients and retained
for further analysis temporal lobe electrodes which were localized
in three different subregions (hippocampus/amygdala/temporal
cortex/ TC, spanning along the superior temporal sulcus-areas,
Table 1). We retained electrodes belonging to one of these regions
that were not part of a seizure onset zone or other artifacts.
The total number of retained electrodes per patient is shown in
Table 1, and their spatial coverage in Fig. 5.

Acquisition and preprocessing of
electrophysiological data
Intracranial EEG was recorded over arrays of depth electrodes, typ-
ically consisting of eight stainless contacts each (AD-Tech, elec-
trode diameter: 3 mm, intercontact spacing: 10 mm). All data were
visually inspected by a neurologist (RTK) to (i) exclude electrodes
that were within the seizure onset zone and (ii) exclude periods
of epileptic activity in the remaining electrodes. Continuous data
were notch filtered, down-sampled to 500 Hz, and re-referenced
to a bipolar montage, according to their nearest neighbor on the
same depth, to remove any source of noise from the common
reference signal, following recommendations in the analysis of
iEEG data (Lachaux et al. 2012; Mercier et al. 2022). Signals at all
electrodes were band-pass filtered between 0.1 and 20 Hz prior to
the extraction of local field event related potentials.

Peri-stimulus epochs were then extracted, spanning from −
100 ms before the sounds’ onset to 500-ms poststimulus onset.
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Table 1. Description of patients and electrode locations. For each patient, we display the total number of electrodes that were located
in each of our regions of interest (column total) and the number of electrodes that were responsive to auditory stimuli (column
responsive). Only electrodes that were located in seizure free regions are included.

Patient Age Sex Amygdalar electrodes Hippocampal electrodes Superior temporal electrodes

Total Responsive Total Responsive Total Responsive

1 24 F 5 0 5 3 4 2
2 28 M 6 2 3 2 5 4
3 20 F 3 2 0 0 4 2
4 28 M 4 1 7 3 13 8
5 57 M 3 1 4 2 4 3
6 29 M 3 0 5 1 0 0
7 26 M 4 3 11 3 14 14
8 21 F 5 3 3 1 7 6
Total - - 33 12 38 15 51 39

Fig. 1. Task design. Patients were presented with series of standard (80%, gray) and deviant (20%, white) sounds. The standard sounds’ pitch was drawn
from a gaussian distribution with μ = 500 Hz, σ 2 = 125 Hz. Deviant sounds laid at the tail of the distribution with a frequency of 2,000 Hz. Deviant sounds
were presented in a temporally predictable (after 4 standards) or unpredictable (after 3–8 standards) context.

All epochs were then visually inspected to exclude any remain-
ing artifacts. Data processing was performed using MNE python
(Gramfort et al. 2013).

Responsive electrodes
We focused all analyses on electrodes that responded to the
auditory stimulation. To not bias our search for deviance and
predictability effects, we pulled all cleaned epochs together and
sought electrodes that responded to all sounds irrespective of the
sounds’ identity.

For each electrode, we contrasted the time-point by-time
poststimulus local field potentials with baseline prestimulus
activity (−100 to 0 ms), using t-tests. For this, we pooled together
all available baselines for a given electrode, across trials, and
randomly sampled the equivalent of 100 ms from this pool.
This was repeated with 500 iterations, to obtain a distribution
of available baselines, which were then used to baseline correct
each trial. This approach is advantageous for selecting responsive
electrodes and is commonly used in the field of iEEG research
(Blenkmann et al. 2019; Kam et al. 2019), as it is less likely
to be affected by isolated baseline fluctuations, as statistical
tests for responsiveness are performed at the single-trial
level.

The resulting t-values were corrected for multiple comparisons
based on the false discovery rate (P < 0.05). Onsets of responsive-
ness were defined at the single electrode level, by considering
the first time point that showed a significant response. Peaks of
responsiveness were considered by considering the location of the
maximum absolute value among all significant t-values. Onset
and peak latencies were contrasted at the group level, pulling
all electrodes together across regions using linear mixed effect
models, with a random intercept of patient to account for across
patient differences.

Deviance effects
Deviance effects were parametrized by F-values, which were
computed for each electrode, and context based on a one-way
ANOVA, with a factor of deviance, as in a previous studies using
similar paradigms (Kam et al. 2021; Dürschmid et al. 2016). Onsets
of deviance effects for each context were defined as the first time-
point where significance was reached, assessed by comparing
the true values to the distribution of effects obtained via 1,000
random permutations in the labels of standard and deviant
epochs (Dürschmid et al. 2016). These were then contrasted with
a linear mixed effects model with a factor of region, a factor of
context (predictable unpredictable), and their interaction, as well
as a random factor of patient. Group-level effects of predictability
were identified by further contrasting the time-courses of
F-values quantifying deviance effects for the predicable and
unpredictable contexts, as in previous studies using a similar
paradigm (Dürschmid et al. 2016). This approach is equivalent to a
2 by 2 ANOVA and was preferred over a “classical” implementation
of a 2-factorial test, because of the bipolar reference in the data.
All electrodes were rereferenced to their neighbors, a positive
peak in one pair could deflect as a negative peak in the next,
resulting in a close to zero on average. By parametrizing LFPs with
F-values, the sign of LFP measures becomes irrelevant, and only
information about the magnitude of effects is retained, making it
possible to perform group-level analyses.

Time–frequency analysis
For each responsive channel, we decomposed the time course of
LFPs in time–frequency representations, using Morlet wavelets
with multitaper windows (function tfr_array_multitaper from
MNE), applied with 0.5-Hz steps, from 1 to 20 Hz. The time–
frequency decomposition was performed for each single trial.
The resulting single-trial power was normalized by the log-ratio
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Fig. 2. Onsets and peaks for responsive amygdalar, hippocampal, and cortical electrodes in LF-ERPs (1–20 Hz). Responsiveness was assessed by merging
responses to all sound categories. Responsive electrodes in the cortex showed a significantly earlier onset compared with hippocampal and amygdalar
ones (F(1,45) = 4.06, P < 0.05 for cortex vs. hippocampus and F(1,43) = 8.08, P < 0.05 for cortex vs. amygdala).

of the prestimulus baseline. Single-trial power was then averaged
within experimental conditions.

Statistical contrasts
Statistical tests grouping data from multiple patients, for example
testing for response onsets, were based on linear mixed effects
models, with a random intercept for accounting for different
patients, as it is common practice in the field (Cusinato et al. 2023;
Johnson et al. 2018). Bonferroni correction was used for correct-
ing for multiple comparisons. For statistical tests performed in
time–frequency analyses of iEEG signals, correction for multiple
comparisons was achieved via cluster-based permutation tests
(P < 0.05, 1,000 permutations).

Results
Patients were presented with series of standard and deviant
sounds (80% and 20% of the time, respectively). Deviant sounds
were presented in a temporally predictable (i.e. always after four
standard sounds) or unpredictable (after 3–8 standard sounds)
context (Fig. 1). Patients were instructed to focus their attention
to a silent movie and ignore the presented sounds.

Responsive electrodes
We first assessed electrodes that were responsive to all sounds,
irrespective of context and deviance manipulations, by testing for
significant changes in 1–20 Hz local field event-related potentials
(LF-ERPs) with respect to a 100-ms baseline period. Patients had
consistent electrode implantations in the lateral and medial tem-
poral lobe, covering the lateral temporal cortex and the hippocam-
pus and amygdala (Table 1 for electrode coverage per patient
and region). All three regions contained responsive electrodes to
sounds across patients (Table 1). Electrodes in the temporal cortex
showed a significantly earlier response onset than electrodes in
the amygdala (Fig. 2A, F(1,43) = 8.08, P < 0.05, linear mixed effects
models accounting for different patients here and in the follow-
ing), and an earlier response than electrodes in the hippocampus
(F(1,45) = 4.06, P < 0.05). The mean response onset across patients
and electrodes was at 79 ms for the temporal cortex, 134 ms
for the hippocampus, and 154 ms for the amygdala (Fig. 2A).
There was no significant difference between the onsets of the
hippocampus and amygdala (F(1,18) = 0.12, P = 0.74). Response
peaks showed a similar tendency as onsets, with peak responses
occurring at 221 ms on average for temporal electrodes, and at
226 ms for hippocampal and 287 ms for amygdalar ones (Fig. 2B).

Deviance effects
Focusing on responsive electrodes, we then contrasted local field
event-related potentials (LF-ERPs) in response to standard vs.
deviant sounds. As expected from previous studies (Dürschmid
et al. 2016), these showed a strong deviance response in temporal
areas (Fig. 3 for exemplar LF-ERPs) and deviance responses for
both the predictable and unpredictable contexts (Fig. 3C and D
for exemplar responses). The deviance effects in amygdala and
hippocampus are shown in Fig. 4. To quantify these responses at
the group level, we parametrized LF-ERPs in response to standard
vs. deviant sounds for each context, by F-values. These quantify
the strength of differential responses to standard vs. deviant
sounds (Fig. 5A for F-values, and Supplemental Fig. 3 for the
corresponding omega squared values which are not biased by
sample size). Please note that group level results in Fig. 5 are
visualized via F-values similar to previous studies (Dürschmid
et al. 2016), and not as LF-ERPs. Because a bipolar reference was
used in the analysis, neighbor electrodes can have responses of
opposing sign, and therefore, averaging all LF-ERPs is not mean-
ingful. F-values overcome this issue, as they quantify the strength
of deviance effects across trials, irrespective of the sign of LF-ERPs
responses.

At the group level, the temporal cortex showed the strongest
F-values for both predictable and unpredictable contexts (Fig. 5A,
purple plots). However, there was no significant difference in the
F-values between the two contexts.

The hippocampus showed deviance responses in the LF-ERP
range for both contexts (Fig. 4A for exemplar LF-ERPs in the
hippocampus). At the group level, we observed a significantly
stronger deviance response for the predictable context compared
with the unpredictable one (Fig. 5A, for group results quantified
via F-values, black marks on x-axis denote significant differ-
ences between predictable and unpredictable contexts). For the
predictable context in particular, deviance F-values were strong
early in time and even before the sounds’ onset, which can be
explained by the fact that the sequence, and the occurrence of
a deviant sound can be fully predicted (Schapiro et al. 2012;
Jafarpour et al. 2017). In the amygdala by contrast, the strongest
deviance effects were observed for the unpredictable context,
and at late latencies, ∼300-ms poststimulus onset (Fig. 5A for
group F-values, Fig. 4B for exemplar LF-ERPs). This analysis was
repeated when excluding the first standard sound after a deviant
(Supplemental Fig. 1) and when quantifying deviance effects sep-
arately for each standard sound in the sequence (Supplemental
Fig. 2).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad532#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad532#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad532#supplementary-data
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Fig. 3. Exemplar LF-ERPs in the temporal cortex. (A) Mean and single trial LF-ERPs for an exemplar electrode in the temporal cortex. (B) Location of
this electrode with MNI coordinates: −56.79, −16.11, −4.90. (C and D) Responses to standard (full) vs. deviant (dotted lines) sounds for the predictable
(C) and unpredictable (D) contexts. Horizontal lines highlight periods of significant difference between standard and deviant responses.

Fig. 4. LF-ERPs in the hippocampus (A) and amygdala (B). Top rows represent 1–20 Hz LF-ERPs in response to predictable and bottom rows to unpredictable
standard and deviant stimuli. Full lines show responses to standard and dotted to deviant sounds. Horizontal lines highlight periods of significant
difference. Although the hippocampus showed a deviance response both for predictable and unpredictable contexts, the amygdala showed a deviance
response for the unpredictable context only. Horizontal lines highlight periods of significant deviance effects, assessed through permutation statistics.
(C) Location of this contact, MNI coordinates: [37.51, −12.92, −19.24] for the hippocampus and [−21.99, −1.19, −24.26] for the amygdala.
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Fig. 5. Group level predictable and unpredictable deviance detection. (A) Time-course of F-values contrasting responses to standard vs. deviant sounds
for predictable (dark lines) and unpredictable (light lines) contexts across contacts and patients. Panel (A) shows F-values, computed by contrasting
LF-ERPs in response to standard vs. deviant sounds at the single-trial level, similar to previous studies (Dürschmid et al. 2016). The amygdala (top row)
showed stronger F-values for the unpredictable context compared with predictable one, while the hippocampus for the predictable context. In contrast,
F-values in the cortex did not differ between the two contexts. Horizontal black lines highlight periods of significant difference in F-values for predictable
vs. unpredictable contexts. Please note that this figure does not quantify the timing of significant deviancy events; these are instead displayed in Fig. 6.
(B and C) Overview of all electrodes for hippocampus, amygdala (B) and cortex (C), projected on MNI templates.

Latencies of deviancy effects
After evaluating whether LF-ERP responses to standard vs.
deviant sounds within each region of interest are modulated
by predictability, we characterized their latency of deviance
responses for each of the two contexts separately, at the
level of single electrodes (Fig. 6). These latencies refer to the
onset of deviance responses, i.e. differences between standard
and deviant sounds in the two contexts, and not to the
latency of an auditory–sensory–response (which is shown
in Fig. 2). We found a significant main effect of region (F(1,
100) = 7.95, P < 0.01) and a region by predictability interaction
(F(1, 100) = 5.20, P = 0.02) in the onsets of deviance effects. The
main effect of predictability was not significant (F(1, 100) = 2.17,
P = 0.14).

In the unpredictable context, the temporal cortex showed the
earliest deviance effects, with a mean onset across patients and
contacts of 100 ms (Fig. 6, light colors). Deviance effects in the hip-
pocampus had mean onset at 210 ms (Fig. 6, light colors), signifi-
cantly later than the temporal cortex (F(1,39) = 12.83, Pcorr < 0.01).
In the amygdala, unpredictable deviance had a mean onset at
195 ms, which was not significantly later than the temporal
cortex when correcting for multiple comparisons (F(1,36) = 7.61,
Pcorr = 0.055).

For the predictable context, the temporal cortex had shorter
latencies (105-ms poststimulus onset) than the hippocampus
(121 ms) and amygdala (132 ms), but these were not significantly
different (Fig. 6, dark plots).

Deviancy onset effects in the hippocampus were shorter for the
predictable (121 ms) compared with the unpredictable (210 ms)
contexts, but this difference was not statistically significant when
correcting for multiple comparisons (F(1,18) = 4.17, Pcorr = 0.17,
Fig. 6).

Frequency contents of deviance responses
We next evaluated the frequency content of local field potential
responses to the auditory stimuli, by computing time–frequency
analyses for the three regions of interest at the group level (Fig. 7).
Time–frequency decompositions were computed for each single
trial and averaged across trials, per electrode. These revealed a
significant effect of deviance only in the hippocampus (Fig. 7).
Low-frequency power, in the range of 1–8 Hz, was significantly
stronger in response to deviant compared with standard sounds
in the hippocampus, for the predictable context only, for a sus-
tained period starting around 100-ms poststimulus onset (Fig. 7,
gray outline highlighting a significant cluster, with a cluster-
level Pcorr < 0.05). Higher low-frequency power for deviant sounds
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Fig. 6. Onsets of deviance effects in LF-ERPs for individual contacts split
by context. For the unpredictable context, the onsets of deviance effects
occurred at earlier latencies for temporal compared with hippocampal
electrodes (F(1,39) = 12.83, Pcorr < 0.01). No difference was observed for the
predictable context.

compared with standards was observed for all patients for the
predictable, but not unpredictable context (Supplemental Fig. 4).
In the cortex and amygdala, there was a tendency for higher
power in response to deviant sounds, but this was not significant
after correcting for multiple comparisons.

Low-frequency activity in the hippocampus
supports auditory predictions
Thus far, we considered all standard sounds as one condition,
irrespective of their temporal order of appearance. Next, we evalu-
ated the link between low-frequency activity in the hippocampus
and auditory predictions. We focused on the frequency range that
showed a deviance effect for the predictable context in the hip-
pocampus (Fig. 7) and we used it as mask to compute the average
hippocampal power as a sequence unfolds. For this analysis, we
split standard sounds into subgroups, according to their order of
presentation (Fig. 8, S1–S4).

We observed a significant effect of sequence in the difference
of low-frequency hippocampal power between predictable and
unpredictable contexts (F(1,14) = 7.87, Pcorr < 0.05, Fig. 8B). This
was driven by a difference in low-frequency activity between
the deviant and four standard tones (Fig. 8C, F(1,14) = 8.29,
Pcorr < 0.05). Post-hoc analysis revealed a significant difference
between low-frequency power in response to the deviant sound
and the second or fourth standard sound in the sequence (P < 0.01,
Fig. 8C, S2 vs. D and S4 vs. D). There was a trend for lower power
between the third standard sound and the deviant but this was
not significant (P = 0.07, Fig. 8C, S3 vs. D). Control analysis for
the unpredictable context showed no effect of sequence (Fig. 8D,
F(1,14) = 1.27, P = 0.26).

Last, we also assessed changes in hippocampal power over
time as the sequence unfolds. We computed power in at 1–8 Hz
(Fig. 8A). The analysis of the hippocampal power over time
revealed a significant main effect of context between 0.114- and
0.170-s poststimulus onset, but neither main effect of sequence
order nor interaction. Moreover, 1–8 Hz power in the hippocampus
was modulated by the order of sound presentation between 232
and 290 ms, and between 318 and 414 ms postsound onset (Fig. 8A,
horizontal lines, F(1,14) = 7.7.00, P < 0.01 at 260 ms). As a control
analysis, there was no power modulation by auditory sequence
neither in the amygdala (F < 3.01, P > 0.09), nor the temporal
cortex (F < 5.2, P > 0.06; Supplemental Fig. 5).

Discussion
Intracranial EEG recordings in humans provided direct evidence of
medial temporal lobe contributions in the formation of auditory
predictions. We found that the hippocampus and amygdala are
sensitive to deviant sounds with distinct roles. Deviance effects
in LF-ERPs in the hippocampus were stronger for the predictable
compared with the unpredictable context, with an opposite pat-
tern in the amygdala showing enhanced responses for unpre-
dictable deviance. In contrast, deviance effects in the temporal
cortex were not modulated by predictability, in accordance to
previous reports using a similar paradigm in a different group
of patients (Dürschmid et al. 2016). Taken together, our findings
suggest the existence of a distributed network in the medial
temporal lobe underlying sensory predictions: while the temporal
cortex computes “low” level predictions, comparing each sensory
input to the immediate past, the hippocampus maintains a longer
memory trace of auditory patterns, spanning over sequences of
sounds, and is particularly active when a violation of the sequence
can be predicted.

Mesio-temporal network underlying auditory
predictions
Our findings expand the network of deviance detection beyond
a two-node cortical network, which has been excessively studied
using mainly noninvasive imaging (Garrido et al. 2009; Chennu
et al. 2013). Invasive EEG recordings have been used to confirm
this two-node network (Dürschmid et al. 2016; Phillips et al.
2016), and have also demonstrated additional regions sensitive
to deviance, including the insula (Blenkmann et al. 2019), the
nucleus accumbens (Dürschmid et al. 2016), the hippocampus,
and the amygdala (Halgren et al. 1980; Camalier et al. 2019).
Here, we focused on the hippocampus and amygdala and showed
that the latencies of processing deviant sounds in the amygdala
follow that of the hippocampus and temporal cortex, suggesting a
temporal lobe hierarchy in detecting auditory deviance. The fact
that the amygdala responds to deviance at later latencies than
the temporal cortex is in accordance with a recent monkey study
using single unit activity (Camalier et al. 2019). Moreover, the hier-
archy in auditory response latency observed in this study irrespec-
tive of deviance effects fits the latencies of auditory responses
reported in a recent study using a different auditory paradigm
and patients, where the temporal cortex showed earlier responses
compared with both the hippocampus and amygdala (Cusinato
et al. 2023).

Our results showed that on average, electrodes in the tem-
poral cortex had the strongest deviance effect, but not a group-
level predictability effect. This finding is in accord with a recent
study using a similar design as ours (Dürschmid et al. 2016),
which showed strong deviance but no predictability effects in

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad532#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad532#supplementary-data
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Fig. 7. Deviant–standard power across patients and regions. Each plot illustrates the difference in average power in response to deviant–standard sounds,
for the predictable (A) and unpredictable (B) contexts. A significant increase in low-frequency power was observed for the predictable context only for
the hippocampus (cluster-level Pcorr < 0.05).

electrodes of the temporal cortex, studied via electrocorticogra-
phy in a different patient cohort. Other studies have reported
predictability effects in the temporal cortex (Chenu et al. 2013;
Auksztulewicz et al. 2018; Lecaignard et al. 2022), but using dif-
ferent experimental protocols, where predictions were induced
either via preceding visual context (Auksztulewicz et al. 2018),
via the so-called local–global deviance paradigm (Chenu et al.
2013), or quantified as trial-to-trial variations (Lecaignard et al.
2022). The lack of predictability effect in our results may be due
to the fact that we assessed deviance and predictability effects
at the group level, across patients and electrodes, to keep con-
sistency with previous work using a similar design (Dürschmid
et al. 2016). Although sensitive, this approach is also prone to only
reveal effects that are highly consistent and in the same direction
across electrodes. Future studies can assess more fine-grained
correlates of deviance effects in the auditory cortex, by identifying
single electrode effects, as auditory predictions may manifest in
spatially fine-grained cortical patterns.

Importantly, our findings suggest that the amygdala is mainly
sensitive to unexpected deviance, as indicated by a higher number
of contacts showing deviance effects for an unpredictable com-
pared with predictable context and a stronger overall deviance
effect (Fig. 5). Although this was the case when considering the
time-course of LF-ERPs, we did not find evidence for differential
power in isolated frequency bands in the amygdala when per-
forming a time–frequency analysis, which suggests that deviance
effects in the amygdala are not frequency-specific. These findings
reinforce the role of the amygdala as a novelty detector (Blackford
et al. 2010), or as being sensitive to events of high saliency (Fedele
et al. 2020), which could be particularly relevant for cases of
unpredictable deviance, as an unexpected change in the environ-
mental statistics might signal danger (Balderston et al. 2013).

The sensitivity of the hippocampus to violations of sequences
has been mainly examined in the context of active “oddball”
paradigms, in the auditory (Ioannides et al. 1995) or somatosen-
sory (Hamada et al. 2004) modalities, where participants are asked
to actively detect rare target stimuli in a stream of regularly
repeated events. Our finding that the hippocampus is mainly
sensitive to predictable deviant sounds fits with findings of pre-
vious studies which have shown hippocampal sensitivity to vio-
lations of predicted events. In the visual modality, the hippocam-
pus has been found to be responsive to violations of an estab-
lished sequence of events, rather than completely novel events
(Kumaran and Maguire 2006; Chen et al. 2013). Garrido et al.
(2015) used a visual sequence of four objects, presented in a fixed,
mismatch, and unpredictable order in an MEG study. Using source
reconstruction techniques, these authors reported a higher theta
power in the mismatch compared with the fixed or unpredictable
conditions. Similar findings have also been reported in the audi-
tory modality (Recasens et al. 2018), with additional evidence that
hippocampal-to-cortical connectivity underlies the encoding of
predictable sequences. The hippocampus, auditory cortex, and
inferior frontal gyrus have been shown to differentiate predictable
vs. random auditory sequences in an MEG study (Barascud et al.
2016). Additionally, fMRI studies have shown that the hippocam-
pus is sensitive to visual regularities and predictions (Schapiro
et al. 2012) and to the temporal distance of regularities (Ekman
et al. 2023). These results are in accord with our findings, as
we show a significant increase in low-frequency hippocampal
power in response to predictable but not unpredictable violations
of expected auditory events, and sensitivity of the hippocam-
pus to predictable auditory sequences which unfold over time.
The temporal extent of this unfolding, or how the hippocam-
pus would track auditory sequences over longer timescales and
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Fig. 8. Low-frequency difference in power in the hippocampus for predictable vs. unpredictable context as the auditory sequence unfolds. (A) Full
lines illustrate mean 1–8 Hz difference in power in response to standard sounds, by order of presentation (S1–S4), subtracting power in response to
predictable from unpredictable sounds. Dashed lines show 1–8 Hz power for deviant predictable minus unpredictable sounds. Horizontal lines highlight
periods where the ordering was significant (P < 0.05). (B) Mean power in the hippocampus, computed within the ROI identified in the analysis of Fig. 7,
as the auditory sequence unfolds, for the predictable minus unpredictable context. The mean power was computed for each contact via the mask
of significant deviance effects in hippocampus (Fig. 7) and showed a significant effect of sequence (F(1,14) = 7.87, Pcorr < 0.05). (C and D) Mean power
masked by deviance effects for the predictable (C) and unpredictable contexts (D) separately. Only the predictable context showed a significant effect
of sequence (F(1,14) = 8.29, Pcorr < 0.05). S1-4p: Standard first, predictable; S1-4u: Standard 1–4, unpredictable. Devp: Deviant predictable, Devu: Deviant
unpredictable.

longer sequences remain open questions. Although we cannot
fully exclude that some of our effects of power changes in the
hippocampus as the auditory sequence unfolds may be due to
the acoustic characteristics of the deviant sounds, these were
similar for the predictable and unpredictable context. However,
the different effects we observed for the two contexts in the
hippocampus suggest that any effects due to the sounds’ physical
characteristics are negligible.

Overall, our findings suggest that low-frequency hippocampal
activity contributes to the detection of auditory sequences and
formation of auditory predictions. Low-frequency activity in the
hippocampus has been previously shown to mediate working
memory (Johnson et al. 2018; Boran et al. 2019), information flow
from and to auditory cortex (Dimakopoulos et al. 2022), and pre-
dictions of future events (Sherman and Turk-Browne 2020). Our
results expand the functions of low-frequency hippocampal activ-
ity toward a role in maintaining an active model of environmental
regularities. We found that the difference in hippocampal low-
frequency power between standard and deviant sounds increases
the closer a sequence gets to a deviant sound, but only when
the occurrence of a deviant sound can be predicted (Fig. 8). One
interpretation for these findings is that the hippocampus plays
an active role in updating an environmental model, keeping track
of an ongoing sequence as it rapidly evolves across a sequence

of auditory events. Similar findings have been reported for the
prefrontal cortex, which has also been shown to be sensitive to
ongoing auditory sequences (Dürschmid et al. 2018). Whether
this tracking of auditory patterns is an inherent property of the
hippocampus, or driven by external input, such as the prefrontal
cortex, remains to be investigated.

Limitations and future directions
One main limitation of our study is the sparse electrode cover-
age: because our primary goal was to investigate hippocampal
and amygdala contributions in deviance detection and auditory
predictions, we focused on patients that had good coverage in
the medial temporal lobe, with at least one hemisphere being
seizure-free. As a consequence, in our patient cohort, there were
no patients with frontal depth electrodes or grids, which would
have allowed investigation of hippocampal–amygdalo–prefrontal
interactions. Future studies can profit from recent advances of
high-precision MEG to reconstruct medial temporal lobe activity
(Tzovara et al. 2019) and study how the medial temporal lobe
network interacts with prefrontal regions. Another limitation of
our study is that because of the tight timing in our experimental
setup, we were not able to assess metrics of functional connec-
tivity among our three target regions, which typically rely on
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oscillatory coupling, that evolves over longer temporal intervals
(Dimakopoulos et al. 2022; Li, Cao, Yu, Xiao, et al. 2023; Li, Cao, Yu,
Wang, et al. 2023). Our findings on the timing of onsets and peaks
auditory responses and deviance effects provide a first indication
on the information flow in the amygdalo-hippocampal-temporal
network that can be confirmed using longer sound intervals.
Future work can also evaluate the extent to which our results are
driven by differences in the acoustic characteristics between stan-
dard and deviant sounds. Although we cannot fully exclude that
some of our effects that we found, for example, relating to power
changes in the hippocampus as the auditory sequence unfolds
may be due to the acoustic characteristics of the deviant sounds,
these were similar for the predictable and unpredictable context.
The different effects observed for these two contexts at least
in the hippocampus and amygdala lead us to believe that any
effects due to the sounds’ physical characteristics are negligible.
Last, the present design cannot answer the question of whether
the hippocampus and amygdala are performing computations
related to deviance detection and predictions or whether they rely
on computations from other brain regions. Future studies with
causal interventions could shed light into that question.

Conclusions
We provide evidence for the existence of an extended temporal
lobe network underlying auditory predictions. Our findings com-
plement existing studies that have focused on the cortex and
suggest that the search for sensory predictions and prediction
error signals needs extension to medial temporal regions. Impor-
tantly, our findings suggest the existence of a distributed network
underlying the generation of auditory predictions, comprising
cortical sensory areas, which compute a “low”-level prediction, the
amygdala, which is sensitive to unexpected violations of streams
of sensory information, and the hippocampus, which computes
auditory predictions through low-frequency activity.
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