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ABSTRACT OF THE DISSERTATION
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Professor Anastassia N. Alexandrova, Chair

Molecular dynamics (MD) is a powerful tool to study atomic scale changes in proteins

underpinning biological and catalytic pathways. It is routinely used to identify small molecule

binding  sites  and  study  protein  folding.  MD  simulations  struggle  to  achieve  quantitatively

accurate energies and traditionally sample a fixed chemical state – they do not allow covalent

bonds  to  form  or  break.  However,  chemical  change  underlies  many  important  biochemical
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processes, including shifts in metal ligation that occur during metalloenzyme activity or when

metal ions bind to metalloproteins, or the protonation and deprotonation of amino acids that

dictate pH-dependent activity and stability. Understanding these processes at the atomic scale

demands computational tools that operate in conjunction with MD to calculate more accurate

energies.

Hybrid quantum mechanical/molecular mechanics approaches (QM/MM) can capture the

dynamics of chemical change as they provide accurate energies for small regions of interest, such

as  the active site.  We have developed one such hybrid method,  QM/DMD, which combines

density functional theory (DFT) calculations with discrete molecular dynamics simulations for

rapid metalloprotein conformational sampling that can even capture shifts in metal ligation. With

QM/DMD we identified the orientational preferences of a cofactor in phenylalanine hydroxylase

that distinguishes the disease state of phenylketonuria. To study some forms of chemical change

further  theory  even beyond QM/DMD is  necessary.  We created a  competitive metal  affinity

(CMA)  method,  a  semi-empirical  thermodynamic  cycle,  to  calculate  relative  metal  binding

affinities to metalloproteins. With our CMA method and QM/DMD we assessed the ability of

human  serum  transferrin  to  transport  non-native  metals  and  therefore  its  role  in  metal

cytotoxicity. We also identified the different mechanisms by which Li+ and Be2+ inhibit glycogen

synthase kinase 3β, which could inform future drug design targeting that protein.

In  contrast  to  the  detailed  QM  treatment  of  a  small  region  needed  to  study  metal

behavior, pH-dependent behavior requires rapid sampling of chemical changes across the whole

protein  in  the  form  of  protonation  and  deprotonation  reactions.  We  therefore  developed  a

constant-pH  molecular  dynamics  method,  called  titr-DMD,  that  stochastically  updates

protonation  states  based  on  the  efficient  DMD  method  and  the  semi-empirical  electrostatic
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method  Propka.  We  successfully  benchmarked  titr-DMD  on  experimentally  verified  pH-

dependent conformational changes in a staphylococcal nuclease mutant. Our work demonstrates

the utility of properly modified molecular dynamics, and QM/DMD in particular, to study many

forms of chemical change in proteins with good accuracy and speed.
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Figure 1.1 Diagrams demonstrating the active space of (A) QM/MM and (B) small
cluster  methods.  QM/MM models  the  entire  protein,  with  QM for  the
active site (the dark and light gray regions) and MM for the rest of the
protein (the white region). In some forms of QM/MM, such as QM/DMD,
there is an overlapping region treated with both QM and MM (in light
gray) and MM modeling is only excluded from a small central region (in
the case of this diagram, the metal and its first coordination sphere in dark
gray). Small cluster methods, by contrast, only model the QM region. 7

Figure 1.2 Thermodynamic  cycles  for  the  relative  free  energy  of  metal  binding
method. The left cycle is intractable as the structure of free metal ions in
solution  is  not  defined  (dashed  red  boxes).  The  right  cycle  uses
experimentally available data for chelator (CLTR) binding to avoid this
problem  (dashed  blue  boxes).  The  sum  of  this  cycle  and  the  easily
calculated transition from CLTR to the protein (solid blue boxes) gives the
free energy of exchanging metals in the protein by canceling all the CLTR
terms. 9

Figure 1.3 The  structure  of  ARD  (PDB  ID:  1ZRR)  and  its  active  site,  and  the
mechanisms of the metal-dependent reactions the protein can perform. The
Ni(II)  and  Fe(II)  bound  forms  of  ARD  preferentially  bind  different
substrates and therefore perform different reactions. 11

Figure 1.4 The  structure  of  HDAC8  (PDB  ID:  2V5W)  and  its  active  site  with
example substrate, and the most plausible mechanism of the deacetylation
reaction it performs. 14

Figure 1.5 Volcano plot showing scaling relation of HDAC8 between binding  ΔΔG
and  reaction  rate.  We  calculated  the  reaction  rates  as  the  normalized,
Boltzmann weighted ratios between each reaction barrier and the Co(II)
reference. Notice how even Ni(II) is consistent with this trend. 16

Figure 2.1 (A) Examples of open and closed hTF N-domain conformers with iron (in
red) loaded in the metal binding site between two lobes. The closed form
comes from a diferric bound crystal structure (PDB ID: 3V83) at blood
serum pH, and the open form comes from a computationally generated
structure  from  this  study.  (B)  The  hTF  binding  site  in  four  different
protonation states considered in our calculations based on structures from
the reference 30. According to that study, the Phys and Acid forms yield
closed  conformers  while  the  Double  and  Prtr  forms,  with  Tyr188
protonated,  become open.  The difference  between the  Double  and Prtr
structures is the inclusion of an additional explicit water molecule in the
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binding site of the Double form. In both parts of this figure, the dilysine
bridge is in bright green while Tyr188 is in dark orange. 24

Figure 2.2 Plots of the backbone RMSD by timestep for every QM/DMD simulation
in  this  study.  The  plots  group  all  replicates  by  metal:  Ti(IV),  Co(III),
Fe(III), Ga(III), Cr(III), Fe(II), Zn(II) for each protein protonation form:
Acid, Phys, Double, Prtr. Most replicates oscillate around the value of 2 Å,
indicating convergence. The open forms of the protein (Double and Prtr)
report  more variations  from this value befitting their  greater  flexibility,
especially with Fe(II), but still show convergence in each case. 26

Figure 2.3 Thermodynamic cycle for the relative affinity of metal binding to hTF.
The parenthesized label next to each box around an equilibrium process
corresponds to the free energy of that transition. The desirable processes
(1) and (2) are intractable as the structure of free metal ions in solution is
not defined (dotted boxes). The new method in this study provides the free
energy associated with the chemical reaction at the bottom. It is calculated
as the sum of the difference between processes (3) and (4) which utilize
available, experimental data for EDTA-metal binding (dashed boxes). This
is  summed  with  the  difference  between  processes  (A)  and  (B)  which
capture  metal  exchange  (solid  boxes).  The  result  is  a  ∆∆G  that
reconstructs the difference between processes (1) and (2): the difference
between the binding affinities of the metals. 28

Figure 2.4 The interlobal  distance was measured between the alpha carbon of  the
black loops opposite each other on the hTF cleft. 30

Figure 2.5 Plots of the interlobal distance for each form of the protein and each metal.
The distance is recorded as a scatter plot with all replicates overlaid. These
plots  show  that,  regardless  of  metal,  the  Acid  and  Phys  forms  of  the
protein maintain a closed conformation for all metals with an interlobal
distance of about 5 Å, while the Double and Prtr forms typically stay open
with distances consistently higher. 31

Figure 2.6 Free energies of binding relative to Fe(III) for each metal and form of hTF.
Notice the marked difference in metal binding preferences across the four
forms. These were all calculated for the fully optimized, lowest energy
QM regions from the QM/DMD simulations. 34

Figure 2.7 Example metal geometry in the hTF binding site; the twelve angles used to
calculate  the  metal  angle  variance  are  defined  between  each  pair  of
adjacent ligand bonds (solid lines). 36

Figure 2.8 Metal angle variances calculated for each metal and form of the protein.
Notice how only the divalent metals and occasionally Ti(IV) and Fe(III)
deviate  significantly  from  the  low  values  and  therefore  octahedral
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geometries.  As with the calculated relative binding free energies,  these
were calculated for just the fully optimized, lowest energy QM regions
from the QM/DMD simulations.

Figure 2.9 Overlay of two exemplary metal binding sites (both of the Prtr form, with
gray  from  a  briefly  equilibrated  structure  and  green  from  a  structure
toward  the  end  of  a  simulation)  from  the  QM/DMD  simulations
demonstrating the possible range of motion. The structures show how the
Asp292-water distance and interactions between the carbonate anion and
Arg124, Ser125, Tyr188 are flexible. 38

Figure 2.10 Histogram plots of  critical  interactions  near  the binding site,  sorted by
metal  and  form  of  protein.  The  histograms  are  constructed  of  the
interaction distances calculated for all iterations across all replicates for
each state. Included here are plots of the (A) Arg124-carbonate distance
and it replacements in the (B) Tyr188-carbonate distance and (C) Ser125-
carbonate distance. The gating effect of Arg124 is clearly visible as the
interaction  begins  consistent  with  a  characteristic  hydrogen  bonding
distance of about 2.5 Å in the closed Acid and Phys forms, but generally
disappears  to  a  greater  distance  in  the  Double  and Prtr  forms  as  hTF
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hydrogen-bonding distances  in  the  open Double  and Prtr  forms  of  the
protein.  (D)  The  stabilizing  interaction  between  Asp292 and the  metal
water ligand is only present in the Prtr form. 39

Figure 3.1 (A) Ribbon diagram of GSK-3β structure with insert  showing the ATP
binding site under the Gly-Loop (in blue) and the peptide/protein substrate
binding  channel,  defined  by  the  Gly-Loop,  C-Loop  (in  purple)  and
Activation-Loop (in pink). The substrate serine or threonine residue binds
at the P+0 site while a pre-phosphorylated residue binds at the P+4 site,
held tightly by a series of charged residues (Arg96, Arg180, Lys205). (B)
The dominant phosphorylation mechanism for GSK-3β based on studies
of related kinases. The reaction proceeds by either an SN1 or SN2 path,
with a nearby Asp181 residue acting as the base. (C) The catalytic cycle of
GSK-3β. Li+ and Be2+ binding could inhibit activity by directly increasing
the  phosphorylation  reaction  barrier  (circled  red)  or  by  disrupting  the
binding of the substrate (tau in this study, circled solid green) or either the
unbinding of the substrate or ADP complex (circled dashed green). 43

Figure 3.2 Variance  of  the  peptide  binding  channel  conformation  in  QM/DMD
ensembles  (green)  from  reference,  peptide-bound  crystal  structure
(4NU1). The green structure is an example from the 2Mg2+ simulations.
The average variance for each metal-bound state is graphed on the left
with the blue bar spanning one standard deviation above and below the
average and the thin blue line showing the minimum and maximum loop
distances. The variance was calculated by the equation at the top using the
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inscribed distances between loops in the picture on the right. The distances
used  were  the  minimum  distance  between  any  two  alpha  carbon  on
opposite  loops.  I  is  the number of  QM/DMD iterations,  Ri is  the loop
distance in the QM/DMD simulation, and R4NU1 is the loop distance in the
crystal structure. Note that all the metal bound states report roughly the
same variances. 51

Figure 3.3 Variance of the P+4 peptide phosphate binding site geometry in QM/DMD
ensembles (green) from reference, peptide-bound crystal structure (4NUI).
The green structure is an example from a 2Mg2+ simulation. The variance
was calculated using the equation at the top based on distances between
the alpha carbon of three positively charged residues that define the P+4
site.  I  is  the number of iterations,  Rn,i is  the distance in the QM/DMD
simulation, and Rn,4NU1 is the distance in the crystal structure. 52

Figure 3.4 QM  optimized  geometries  of  the  active  site  from  the  QM/DMD
simulations for (A) ADP, (B) ATP with Li+, and (C) ATP with Be2+. Mg2+ is
shown in cyan, Li+ in pink, and Be2+ in yellow-green. Also reported for
each structure are the preferred metal geometries with the average angular
variance from ideal angles. The structures from the ATP-bound state also
feature the free energy preference for metal substitution at the first binding
site over the second. Note that the smaller Li+ and especially Be2+ report
much smaller angular variances. 54

Figure 3.5 Potential energy surfaces for serine phosphorylation in the native form of
GSK and the Li+ and Be2+ bound forms. These plots vary the two reaction
coordinates: serine hydroxyl hydrogen to aspartate carboxyl oxygen and
serine  hydroxyl  oxygen to ATP terminal  phosphorus.  Free  energies  are
shown as a heat map going from blue (low) to red (high). Stationary points
along the reaction path are recorded in red for the native and Li+ states.
Note how 2Mg2+ reports two barriers, Li+ reports one higher one, and Be2+

shows no product state and can’t perform this reaction. 58
Figure 3.6 Plots of the (A) Asp181 oxygen to final ATP phosphorous distance (r) and

(B) final ATP phosphate angle relative to the metal centers (θ) across the
full  ensemble of structures from the QM/DMD simulations. The values
from the phosphorylation reactants are plotted on each line as an ‘x’. Blue
is the native Mg2+ form, magenta the Li+ form, and green the Be2+ form.
The distance  r is based on whichever carboxylate oxygen in Asp181 is
closest to the final ATP phosphorous in each given structure. The angle θ
is inscribed by the vector of the last bridging ATP P-O bond and the vector
between the last bridging O and midpoint between the two metals. Note
that the plots for the Mg2+ are generally more distinct from the Li+ and
Be2+ forms.  Both  are  drawn  on  the  structures  on  the  right.  Structural
deviations of the phosphorylation reactant geometry in the (C) Li+ and (D)
Be2+ bound states are also shown. In both, the native Mg2+ geometry is
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overlaid in tan while the metal substituted geometry is  colored pink or
green respectively. Note how for both Li+ and Be2+ the final phosphate
group is angled down and away from the tau serine substrate. 59

Figure 4.1 Schematic of the Titr-feature algorithm. The algorithm runs between short
DMD  (or  any  molecular  mechanics)  simulations  to  assign  discrete
protonation states. 69

Figure 4.2 Ribbon  diagrams  of  protein  test  systems  for  Titr-DMD benchmarking:
HEWL (A), HTRX (B), HMCK (C), and SNase mutant V66K (D). The
residues  whose  pKa's  are  considered  and  compared  to  experiment  are
highlighted in yellow. In the case of the SNase mutant, this is the buried
LYS66  residue.  The  alpha  helical  loop  to  which  it  belongs  and  that
unravels is shown in red. 79

Figure 4.3 Convergence  of  Titr-DMD  simulations  tracked  by  (A)  the  backbone
RMSD and (B) corrected DMD potential energy. Note that by both metrics
the  results  come  to  oscillate  around  fixed  values  by  the  end  of  the
simulations, indicating convergence for the overall protein structures. The
average RMSDs across all trajectories are 1.77 ± 0.29 Å for HEWL, 1.20
± 0.18 Å for HTRX, 2.51 ± 0.48 Å for HMCK, and 3.67 ± 1.57 Å for
SNase.  The average energies  across  all  trajectories  are  140.18 ± 57.79
kcal/mol for HEWL, 174.93 ± 77.49 kcal/mol for HTRX, 393.52 ± 104.51
kcal/mol for HMCK, and 95.93 ± 29.94 kcal/mol for SNase. 82

Figure 4.4 Computational resource scaling benchmark of Titr-DMD, plotted by (A)
the number of processors and (B) the number of residues. Note the linear
scaling with number of residues  and that  good performance is  reached
with four processors. (C) The percent increase of time for Titr-DMD over
unmodified  DMD.  Note  that  the  increase  is  relatively  small  and  only
becomes  significant  with  many  processors  as  the  time  DMD  takes
shortens. 84

Figure 4.5 (A)  Criterion  for  an  unraveled  65-69  loop  structure  in  our  SNase
simulations.  This  compares  the  RMSD  of  the  loop  (RMSDL)  to  the
RMSD  of  the  full  protein  (RMSDT)  and  compares  the  distances  of
important hydrogen bonding contacts (R1, R2) to standard values (RHB)
to  determine  structures  where  the  conformation  of  the  loop  varies
significantly from the original structure. We give the values of the other
variables in the main text. (B) Example of a SNase conformation with an
unraveled 65-69 loop by our criterion (light blue) overlaid on a structure
where it is not unraveled (tan). LYS66 is colored yellow here. 90

Figure 5.1 The phenylketonuria inducing mutants (red) of phenylalanine hydroxylase
(PAH) are surprisingly far from its active site (yellow). (B) The oxygen
activating and cleaving activity of PAH is not well understood structurally.
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In the Siegbahn mechanism, the metal has an additional water ligand and
oxygen binds to the metal before the cofactor. According to the Solomon
mechanism  a  change  in  orientation  of  the  cofactor  could  explain  the
preferential H2O2 forming activity of the mutant. 95

Figure 5.2 Plots of the full protein, all-atom RMSD by timestep for every QM/DMD
simulation in this study. The plots include all replicates of the wild type
(dark red), R158Q mutant (medium blue), and E280K mutant (light violet,
only in Seigbahn simulations). Notice how all replicates oscillate around
the value of 2 Å, indicating convergence. 98

Figure 5.3 Equilibrated  active  site  geometries  for  different  forms  of  PAH,  with
reported all-atom RMSDs in the top right. (A) The wild type and mutants
from the  Siegbahn simulations  show no significant  differences  in  their
geometries, matching their similar RMSD values. (B) On the other hand,
the geometries from the Solomon mechanism without O2 demonstrate the
distinct  angular  preferences  of  BH4.  This  pterin-like  cofactor  is  angled
further away from the metal center in the mutant relative to the wild type. 100

Figure 5.4 Histogram  of  the  metal  to  cofactor  angle  in  the  Solomon  mechanism
system with  O2 absent for the wild type (white) and the R158Q mutant
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the  protein  in  excess  for  that  threshold.  Notice  that  the  wild  type  and
mutant  overwhelmingly  select  different  angles,  consistent  with  the  two
pathways reported experimentally. 101

Figure 5.5 (A) Picture which illustrates the structural connection between the site of
mutation and the active site in PAH with WT overlay on a faint R158Q
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Figure 5.6 Coupled-dynamics  pathways  (deep  green  bars)  between  the  site  of
mutation  (bright  green  and  red)  and  Tyr377  (yellow)  identified  by
coupled-dynamics  in  the  exemplary  structures  from QM/DMD  for  the
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Solomon system WT (A) and R158Q mutant (B). Residues are colored in
a  heat  map  going  from  red  to  blue  indicating  motion  more  to  less
correlated with the site of mutation. Notice how the pathways in the WT
closely match the pathway identified with QM/DMD depicted in Figure 4,
while those in the mutant do not. 104

Figure 5.7 Overlay of structures indicative of the range of motion of the cofactor
hydrogen  bonding  partners.  Notice  how  much  Tyr377  (in  red)  swings
about the cofactor (in yellow) relative to the residues 147-151 (in blue). 105
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Chapter 1

The Case for Enzymatic Competitive Metal Affinity Methods
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1.1 Introduction: The Need for Accurate Metal Binding Affinity Calculations in Catalytic

and Biomedical Contexts

We often want to know which metal will bind to a protein most readily, which metal or

metals actually bind  in vivo, and which one will be the best at enzymatic catalysis. It is not

guaranteed that a single metal could satisfy all of the above for a given natural metalloenzyme.

For artificial metalloenzymes (ArMs), we also want to know if the protein can bind the desired

metal, and if the metal would then function as a catalyst with the desired activity and selectivity.

Hence, being able to compute the metal binding affinities to proteins is desirable in the studies of

enzymatic catalysis and enzyme design. Unfortunately, this goal is non-trivial.  Efforts toward

solving this problem are the focus of this chapter.

The questions of which metal is used in a natural enzyme, and which metal we want to

employ in  an  artificial  enzyme are  not  easily  answerable  because  different  forces  drive  the

evolution of enzymes in nature than the priorities of man-made catalysts. Instead of maximizing

enzyme activity,  biology caps it  to  maintain the complex equilibria  of homeostasis.  Biology

prioritizes the bio-availability of the starting materials and fold stability, but also ensures that

enzymes can be readily destroyed when needed. These constraints also apply to the way in which

metals are selected for natural metalloenzymes.1,2 Furthermore, the catalytically relevant metals

for  many  metalloproteins  are  not  truly  known.  Many  enzymes  are  assumed  to  be  Zn(II)-

dependent  based  on  X-ray  crystal  structures,  but  this  can  be  an  artifact  of  experimental

conditions.3 Follow up studies on systems such as histone deacetylase4,5 carbonic anhydrase,3 S-

ribosylhomocysteinase,6 and peptide deformylase7 show that sometimes other metals can bind

and report significant activity. In some cases, the metal reported by crystallography is not even a

particularly significant  contributor  to the protein’s  function.  Without  considering the binding
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affinity of different metals, in vitro and computational studies of metalloproteins could be based

on a false or incomplete picture of metal preferences.

A major goal in the design of artificial metalloenzymes is maximal catalytic performance,

with less emphasis on stability in their simpler in vitro environment of operation. Previous efforts

already found that while proteins provide powerful platforms for new catalysts, the reactions

they can perform, and sometimes their catalytic rates, have hard limitations.8,9 Recently, directed

evolution has become an indispensable tool  to develop new ArMs or refine existing ones.10–

14 However, directed evolution is constrained by the roles for which a given protein scaffold has

evolved.8,9,15 While there is promiscuity of function in many proteins, some reactions are simply

out of reach of conventional methodologies. Metals that are not natively bioavailable can expand

the space of accessible reactions. For example, recent efforts show that noble metals can expand

the repertoire of porphyrin-dependent enzymes.16 However, non-physiological metals must bind

sufficiently strongly to their protein scaffolds, whose amino acids did not originally evolve to

ligate non-physiological metals. Thus, determination of metal affinity is required. Additionally,

as we will show shortly, the affinity of the metal to the protein (e.g. the stability gain upon metal

binding) and the catalytic activity may follow a non-trivial and non-linear mutual dependence,

via the Brønsted-Evans-Polanyi (BEP) relation.

Lastly, metal-protein affinity is of broader interest than biocatalysis. It is relevant to metal

transport  about  the  body,  particularly  the  activity  of  metal  chaperones,  which,  unlike  many

proteins, bind metals in a highly selective manner and in specific environments.17–20 Chaperones

help  maintain  the distinct  metal  concentrations  in  different  organ systems,  tissues,  and even

different subcellular organelles within cells.21 Tracking the metal affinity of these proteins in

different  contexts  is  important  for metal  toxicology.  A large number of  transition and heavy
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metals are now bioavailable with their use in modern industries, including industrial catalysis.

Some metals, such as Cd(II), Hg(II), As(III), and Pb(II) are highly toxic and lead to non-specific

syndromes.22,23 The extent of cytotoxicity of other metals, such as Al(III), Ti(IV), and Ga(III), is

unclear  but  demands  investigation  as  they  are  introduced  into  the  body  both  from  the

environment,  and  for  medical  purposes.24–28 Metal  binding  may  even  play  a  role  in

neurodegenerative diseases, hypothetically facilitating the protein-protein aggregation and fibril

formation.29 Ultimately it is of high interest to know the metal-protein affinity, and have ways to

calculate it.

1.2 Existing Methods and Their Limitations

Dedicated computational tools to investigate protein-metal binding, which we will refer

to as competitive metal affinity (CMA) methods, are hard to come by. The ideal CMA would

incorporate  an  accurate  energy  evaluation  and  significant  dynamical  sampling  to  capture

configurational entropy in order to fully describe the thermodynamics of metal binding. Clearly,

the expense of the accurate energy calculations severely limits the amount of sampling that can

be afforded. While there are many methods to study metalloprotein behavior in general, not all

are suited to form the basis of a CMA method.

Classical force field based methods can be parameterized to model some metalloenzyme

structures, but are insufficient to obtain thermodynamic values. Force field parameters for metals

are based on a point charge supplemented with various harmonic terms, and operate on the basis

of a fixed metal coordination (e.g. octahedral, tetrahedral) that cannot change significantly as a

function  of  protein  dynamics.  These  potentials  can  contain  bonding  and  non-bonding

interactions, but are generally fitted to capture structure (within limits) rather than energy.30–33 In
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this respect they can be fairly successful for systems containing closed shell metals with ideal

geometries  (Zn(II),  Mg(II),  Mn(II)),  remaining  stable  over  long  molecular  dynamics  (MD)

simulations.34,35 However, even the most successful applications of these methods do not obtain

reliable energies for catalytic studies.

Electronic structure calculations are necessary to obtain accurate metal binding energies.

One possible approach is to use a small cluster model of the active site and treat it quantum

mechanically. However, this approach ignores the entropy of the protein scaffold and the impact

of the protein dynamics on the energy and entropy of the active site. The only portion of the

entropy in the free energy of the active site that this approach captures is the vibrational entropy -

typically calculated within the harmonic approximation and subject to the constraints imposed by

the  rest  of  the  protein  structure.  While  cluster  models  are  useful  for  catalytic  mechanism

mapping,36,37 and as such can play a role in artificial metalloenzyme design,38–40 these applications

rely on the cancellation of errors when protein entropy is ignored equivalently throughout the

reaction profile. On the other hand, many metal exchange phenomena are inaccessible to the

approach, as enzymes frequently undergo some amount of restructuring when a new metal binds.

A more  promising  avenue  to  obtain  metal  binding  free  energies  based  on  electronic

structure  calculations  are  mixed  QM/MM  simulations.  This  class  of  methods  combines  a

quantum  mechanical  description  of  the  metal  center  and  its  surrounding  environment  and

molecular mechanical modeling of the rest of the protein (Figure 1.1). Statistical mechanical

sampling of the protein becomes possible within QM/MM, and there has been intensive research

into and development of these methods over the last two decades.41–43 Sufficient sampling is still

a problem, however, for most established QM/MM methods. Our group developed the QM/DMD

method,44 which  combines  DFT  with  discrete  molecular  dynamics  (DMD)45 for  enhanced
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sampling. Several features make QM/DMD significantly more affordable than other methods,

permitting lengthy trajectories while treating the metal quantum mechanically. DMD is based on

simplified square-well potentials, ballistic equations of motion, and slight coarse graining, which

permit speedy sampling. The majority of the metalloprotein is sampled with DMD. Only the

metal(s) and the atoms within the metal ligands that are immediately attached to the metal are

never touched by DMD. Periodically, this tiny metal coordination region is expanded to a large

cluster model, and that larger region undergoes a relaxation on a DFT potential energy surface.

Then the DMD domain expands again, to include the majority of the (now optimized) active site.

An overlapping region modeled with both theories allows passing the geometric and energetic

information  between  QM  and  DMD.  We  have  used  QM/DMD  to  successfully  study  many

aspects  of  metalloprotein  behavior,  including  the  effect  of  mutagenesis  on  structure  and

function,44,46,47 metal-dependent catalytic activity,5,48–50 redox functionality,44,51 and recently, metal

affinity.5,52 Because of the sampling efficiency and capability of dynamically changing metal

coordination sphere, QM/DMD is suitable for building a CMA technology.
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Figure  1.1. Diagrams demonstrating the active space of (A) QM/MM and (B) small  cluster
methods. QM/MM models the entire protein, with QM for the active site (the dark and light gray
regions) and MM for the rest of the protein (the white region). In some forms of QM/MM, such
as QM/DMD, there is an overlapping region treated with both QM and MM (in light gray) and
MM modeling is only excluded from a small central region (in the case of this diagram, the metal
and its first coordination sphere in dark gray). Small cluster methods, by contrast, only model the
QM region.

The exact form of the necessary free energy terms is another major complication in CMA

evaluation. One would think that metal affinities could be calculated as the difference between

the free energies of the bound metalloprotein, and the apo-protein and the solvated metal ion.

However, the accuracy of the free energies of metal binding obtained in this way will depend on

the precision of evaluating the entropy change upon binding, which requires complete sampling

of  the  conformational  space  of  the  protein,  both  with  and  without  the  metal.  Such  full

equilibration is practically impossible.53 Secondly, evaluations of the free energy of the solvated

metal ion requires expensive and laborious quantum mechanical treatment, explicit solvent, and

sufficient sampling of solvent configurations (on the order of 106).  Furthermore,  as solvated

metals are charged ionic species their free energies cannot be directly obtained by experiment
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either.54–56 In  what  follows  we  describe  our  CMA method  that  avoids  both  complications

described in  this  paragraph.  We will  discuss  several  diverse  applications  of  the  method,  its

current  limitations,  and  propose  further  directions  to  improve  upon  it.  To  the  best  of  our

knowledge, this technique is unprecedented.

1.3 Thermodynamic CMA Method

Our method calculates the relative metal binding free energy, ΔΔG, with respect to one

metal  chosen as a  reference.  For most applications,  relative free energies are sufficient.  The

approach combines QM/DMD sampling with a semi-empirical thermodynamic cycle that avoids

ill-defined terms. First, we employ QM/DMD simulations run to convergence (on the order of an

approximate 10-100 ns) of the protein with each considered metal. Second, we determine the

lowest energy QM region for each metal and calculate its Gibbs free energy using the harmonic

approximation. Finally, we use these free energies in a thermodynamic cycle shown in Figure

1.2. The cycle consists of the metal ions going into the protein from a complex with a chelating

agent (typically EDTA, which we exclusively used in all systems described in this article) rather

than directly  from solution.  Hence,  instead of using a dubious,  calculated value for the free

energy of a metal in solution, this cycle uses computationally tractable metal-chelator complexes.

The free energies of metal complexation from solution to the chelator are readily available from

experiment. The final step of the cycle cancels the chelator terms through the computed free

energies of metal exchange in the protein (from QM/DMD) and in the chelator complex (from

ab initio or DFT calculations and harmonic vibrational entropies). Closing the thermodynamic

cycle yields the ΔΔG of one metal, Ma, binding to the protein relative to the other metal, Mb. This
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means that when comparing the results  of this  method to experiment,  only the trend can be

reproduced, not the absolute free energies of metal binding.

Figure 1.2. Thermodynamic cycles for the relative free energy of metal binding method. The left
cycle is  intractable as the structure of free metal ions in solution is  not defined (dashed red
boxes). The right cycle uses experimentally available data for chelator (CLTR) binding to avoid
this problem (dashed blue boxes). The sum of this cycle and the easily calculated transition from
CLTR to the protein (solid blue boxes) gives the free energy of exchanging metals in the protein
by canceling all the CLTR terms.

1.4 Method Benchmarks: Acireductone Dioxygenase and Histone Deacetylase 8

We have successfully  applied the described CMA method to a  series of  problems of

catalytic and biological relevance. To illustrate the method's performance and accuracy, we now

describe several diverse examples, each with principally different biological functionality and

chemistry. We consider a mononuclear oxidase, a mononuclear metal-dependent hydrolase, and a

metal transporter protein.

Acireductone dioxygenase (ARD) can tightly bind different metals and performs different

reactions depending on which metal binds. The protein is involved in the methionine salvage
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pathway and acts on the substrate 1,2-dihydroxy-3-keto-5-(methylthio)pentene, oxidizing it to

two  possible  sets  of  products.57,58 ARD  bound  with  Ni(II)  catalyzes  the  formation  of

methylthiopropinate,  while  ARD  bound  with  Fe(II)  catalyzes  the  formation  of  2-keto-4-

methylthiobutyric  acid,  a  precursor  of  methionine  (Figure  1.3).59 The  bound metal  does  not

change the structure of the protein, or the way in which the substrate binds to it, as we showed

with QM/DMD. This means that the properties of the metal itself dictate catalytic selectivity. As

such, ARD is the subject of many mechanistic studies.49,60,61 We showed that the mechanistic

bifurcation relies on the differences in charge transfer from the metal ligands, through the metal,

and to the dioxygen bound to the substrate. Experimental binding studies show that ARD has an

appreciable  affinity  for  both  Ni(II)  and  Fe(II).62,63 The  measured  activity  and  metal  binding

affinities together demonstrate that both ARD reactive pathways are meaningful.  The ARD’s

preference for the metal should then be context-dependent. Hence, the relative affinity of ARD to

Fe(II) versus Ni(II) in the absence of other environmental factors is of interest.
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Figure 1.3. The structure of ARD (PDB ID: 1ZRR) and its active site, and the mechanisms of the
metal-dependent reactions the protein can perform. The Ni(II) and Fe(II) bound forms of ARD
preferentially bind different substrates and therefore perform different reactions.

The application of our CMA method to the catalytic metals in ARD, including Co(II), is

illustrated in Table 1.1. To calculate the binding affinities of Fe(II), Ni(II), and Co(II) to ARD,

we started with QM/DMD trajectories from our previous studies.49 We selected the three lowest

energy structures of the QM regions for each metal variant of ARD. We tested all feasible spin

states  of  the  metals  with  further  geometry  optimizations  on  these  systems,  looking  for  the

multiplicity that minimizes the electronic energy. Our calculations showed that the multiplicity of

Fe(II) was a singlet or quintet (depending on the structure), Ni(II) was a triplet, and Co(II) was a

doublet. For each multiplicity we then performed frequency calculations and selected the lowest

free energy among them. The calculations were done with Turbomole (version 6.6).64 The pure

meta-GGA TPSS DFT functional65 with the D3 dispersion correction66 was used. The metal was
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treated with the triple-zeta basis set def2-TZVPP while all other atoms were treated with the

double-zeta def2-SVP basis set.67 The conductor-like Screen Model (COSMO) with a constant

dielectric  of 20 was used to approximate the screening and solvation effects  in  the partially

buried active site of the protein.68 These settings are consistent with the initial QM/DMD runs.

The results correctly capture that the affinity of the protein for Ni(II) is stronger than for Fe(II)

and that ARD's affinity for Co(II) is roughly the same as for Fe(II). The error from the exact

values is on the order of 3 kcal/mol (Table 1.1). Note that this is at the limit of DFT accuracy.

Given the many approximations needed along the way and despite the cancellation of errors in

the  relative  calculations,  the  qualitative  agreement  with  experiment  we  obtained  is  still

satisfying.

Table 1.1. Table of the experimental (Dai and Chai) and calculated binding affinities to ARD.
The  energies  are  relative  to  Fe(II),  which  correspondingly  has  a  value  of  0  kcal/mol.  The
experimental values here are based on Boltzmann weighted ratios of molar metal content.

Fe(II) Ni(II) Co(II)
Dai (kcal/mol) 0.0 -1.23 -0.65
Chai (kcal/mol) 0.0 -0.28 N/A
calc. (kcal/mol) 0.0 -3.76 0.38

Our next system is a histone deacetylase (HDAC), which is part of a class of enzymes

that  remove  acetyl  groups  from  histone  lysines  and  potentially  some  nonhistone

proteins.69,70 Alongside histone acetyltransferases, which add acetyl groups, HDACs regulate how

tightly histones bind to DNA and therefore gene regulation.71–73 Overexpression of HDACs is

associated with many pathologies, particularly cancer, while inhibition leads to the activation of

genes related to growth arrest  and tumor cells.73,74 Consequently,  many anti-cancer drugs are

HDAC inhibitors.75,76 Many of these bind to the transition metal center of their HDAC targets,
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including  FDA  approved  suberanilohydroxamic  acid  (Vorinostat)77 and  FK228

(Romidepsin).78 To  reliably  develop  tighter  binding  drugs  with  computational  methods,

knowledge of which metal or metals bind to HDAC is necessary.

The  catalytically  relevant  metals  for  histone  deacetylases  are  not  well  understood.

Historically,  researchers  assumed  that  HDACs  are  Zn(II)  enzymes  on  the  basis  of  X-ray

structures and kinetic studies.79,80 While Zn(II) is clearly a catalytically active metal in HDACs,

as discussed earlier in this article, the promiscuity of metalloproteins means that crystallographic

data does not preclude the relevance of other metals. Indeed, kinetic studies report significant

activity with Co(II), Fe(II), and Ni(II) in HDAC8 and Co(II) even shows higher activity than

Zn(II).4 This variety in metals  that HDAC8 can use has important implications in traditional

mechanistic studies.

Binding affinities from our method proved necessary to properly identify the catalytically

relevant  metals  besides  Zn(II)  in  HDAC8 and  calculate  their  activities.  Our  group  recently

investigated the mechanism of HDAC8 and how it varies with physiologically abundant metals

(Zn(II), Fe(II), Co(II), Mn(II), Ni(II), and Mg(II)) (Figure 1.4).5 Pairing a traditional transition

state  search  with  QM/DMD  simulations,  we  mapped  the  mechanism  and  calculated  the

activation  barrier  of  the  reaction  for  each  metal.  However,  these  results  do  not  capture  the

experimental catalytic order and suggest that experimentally inactive Mn(II), Ni(II), and Mg(II)

are reactive. We theorized that the binding affinities of these metals to HDAC8 contributes to

their in vitro catalytic activity. We calculated the ΔΔG for each metal and combined this with our

computed barriers (ΔG‡) to get a series of Krel:

K rel=exp(−ΔG‡

RT
)exp (

ΔΔGbinding

RT
) (1.1)
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which in contrast to the barriers, match the experimental catalytic order and identify Mn(II) and

Mg(II) as inactive (Table 1.2). The Krel of Ni(II) is the one outlier, which suggests that it is highly

reactive, driven by predicted tight binding. Ultimately, our study of HDAC8 demonstrates the

utility  of  our  metal  binding  ΔΔG method  when  the  catalytic  metal  or  metals  of  a  natural

metalloenzyme are not known.

Figure  1.4. The  structure  of  HDAC8  (PDB  ID:  2V5W)  and  its  active  site  with  example
substrate, and the most plausible mechanism of the deacetylation reaction it performs.
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Table 1.2. Experimental  kcat and calculated Krel values for HDAC8. While the exact values are
not comparable, the qualitative order of the two catalytic measures match. Notice that Ni(II) is an
exception,  with the highest  Krel despite its experimental inactivity. Also note that Mg(II) and
Mn(II) have  Krel that are many orders of magnitude lower than Co(II) meaning that they are
consistent with their inactive experimental result.

Co(II) Zn(II) Fe(II) Ni(II) Mn(II) Mg(II)
exp. kcat 1.2 0.90 0.48 N/A N/A N/A
calc. Krel 7.64 × 10-11 1.27 × 10-11 1.75 × 10-13 1.89 × 10-8 1.37 × 10-17 1.46 × 10-23

As an aside, we further hypothesize that in some cases the metal binding affinity could be

a descriptor of enzymatic catalytic activity. Specifically, by the BEP principle, the binding of the

rate-determining intermediate to the active site should be neither too strong not too weak for the

maximal catalytic activity to emerge. On the other hand, the stability of the active site itself and

the metal ion in it should impact the stability of the intermediate of interest. That is because both

the binding energy of the metal to its ligands, and the binding energy of the metal to the reaction

intermediate depend on the energy and spatial extent of the orbitals of the metal. Therefore, there

should be some relationship between the affinity of the protein to the metal and the catalytic

activity of the metalloenzyme. We tested this conjecture using the computational data that we

generated  for  the different  metal  variants  of  HDAC8, focusing  just  on the rate-determining,

second step of the reaction (as shown in Figure  1.5). We excluded the Mg(II) form from the

dataset, since it is known from the experiment to not bind appreciably to HDAC8. We correlate

the  ΔΔG of the metal ion binding to the protein to the Boltzmann weighted reaction barriers

e−E a/RT  (normalized  to  remove  the  pre-exponential  factor  which  we  may  assume  to  be

approximately the same for all considered metals). The result is shown in Figure 1.5. We observe

a classic volcano plot that all metals obey, even Ni(II), with Zn(II) at the peak. While we cannot

assume that all metalloenzymes obey this sort of scaling relation, this demonstrates the utility of

CMAs for yet another catalytic application.
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Figure 1.5. Volcano plot showing scaling relation of HDAC8 between binding ΔΔG and reaction
rate. We calculated the reaction rates as the normalized, Boltzmann weighted ratios between each
reaction barrier and the Co(II) reference. Notice how even Ni(II) is consistent with this trend.

Human serum transferrin (hTF) is an example of how CMAs could be used in a different

context. This protein is not catalytic, but is interesting because it can uptake and also release

metals through pH dependent protein conformations with potentially profound implications in

metal  toxicology.  hTF is  implicated in  the promiscuous transport  of many metals  across the

blood-brain barrier and the concentration of metals in tumor cells, including potentially cytotoxic

metals like Ti(IV), Al(III), and Ga(III). We used our CMA method to get the first insight into the

toxic metal transport abilities of hTF in vivo conformational states. Full consideration of hTF and

the application of our CMA method to this system is covered in the following chapter.
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1.5 Limitations and Outlook

Further research into CMA methods is important, especially as our method is not without

limitations.  Its  reliance  on  chelating  agents  introduces  other  problems  besides  limiting

calculations to referential  ΔΔG. The best way to calculate the thermodynamic terms involving

the  chelating  agent  is  unclear.  Experimental  stability  constants  for  EDTA and  many  related

chelating  agents  are  fortunately  available  for  most  metals  in  their  common  oxidation

states.81,82 Unfortunately,  the corresponding structures of these metal  complexes are not fully

known,  and  they  are  necessary  to  accurately  calculate  the  free  energy  associated  with  the

transition from the chelator complex to the protein. In the studies we discuss above, we assume

full chelation of each metal with no other ligands in the complexes. This makes most metals

conform to an octahedral geometry. This is likely fine for large transition metals,  but breaks

down for small and low charge metals such as Li(I) and Mg(II). Indeed, crystallographic studies

of Mg-EDTA binding show that a water molecule is also a ligand in the complex.83 One way to

mitigate these problems would be a benchmark study of a wide range of chelators on a system

that has been experimentally well characterized for many metals. Calculating the set of ΔΔG for

each chelator without varying any other parameters would reveal which chelator can be used

most accurately for each metal.

Our method is also limited to proteins which undergo only minor conformational changes

upon the binding of different metals. The first concern here is that the QM regions must share the

same  atoms  besides  the  metal  center  to  satisfy  the  thermodynamic  cycle.  Metals  that  bind

entirely different sites on a protein are consequentially inaccessible to our current method. A

second  concern  largely  involves  computational  scaling,  as  significant  rearrangement  (like
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refolding)  upon metal  binding requires  even more  expensive structural  sampling in  order  to

accurately assess the entropy component of ΔΔG. While this is a general problem with protein

and metalloprotein simulations,  enhanced sampling for the specific purpose of metal binding

affinities would be impactful. Solutions to both of these concerns would render many systems

more accessible, particularly metal chaperones as these proteins can adopt different folds for

different metals.19

Further advancements in CMA methods would greatly propel understanding of natural

metalloenzymes and the design of new ArMs. Such techniques could determine the catalytically

relevant  metals  in  natural  metalloenzymes,  which  cannot  be  taken  for  granted  from crystal

structures. CMA calculations would be indispensable in the effort  to better  understand metal

transport  pathways  throughout  the  body,  especially  with  regards  to  metal  toxicology.  In  the

design of ArMs, replacing the bound metal in an existing metalloprotein scaffold can introduce

new  functions,  often  inaccessible  to  current  design  methodologies  like  directed  evolution.

Placing a metal into a specifically designed artificial scaffold is also an attractive opportunity for

ArMs catalysis. For all such design tasks, it is critical to assess the metal affinity and its ability to

outperform other metals that might be present in the synthesis conditions. New tools such as

CMAs will expand the catalytic space of metalloenzymes.
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Chapter 2

An Application of Competitive Metal Affinity Methods: Toxic and

Physiological Metal Uptake and Release by Human Serum

Transferrin
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2.1 Introduction: Ubiquitous Human Serum Transferrin and its Promiscuous Metal 

Binding

Human serum transferrin (hTF) is of medical interest for its unique role in toxic metal

pathology. The protein natively carries atomic iron into the cell from blood by receptor-mediated

endocytosis. However, it is believed to also competitively transport other transition metals based

on in vitro binding studies, including Ti(IV), Co(III), Ga(III), Cr(III), and Al(III).84–86 While some

of  these  metals,  namely  Co(III),  may  be  necessary  for  homeostasis  in  the  appropriate

concentrations,  others  (including Ti(IV)  and  Al(III))  are  believed to  exhibit  some degree  of

cytotoxicity even at  low concentrations.24,28 Ti(IV) in particular can bind to DNA as well  as

inhibit various intracellular enzymes.87,88 The ability of hTF to transport toxic metals is therefore

of great concern with the increasing bioavailability of these metals due to modern industry and

their medical applications.27,28,89,90 This is acutely problematic as the protein could bring these

metals to sensitive parts of the body by its ability to pass the blood-brain barrier  as well as

concentrate them in cancer cells due to the over expression of the transferrin receptor across a

range of tumors.91,92 Though troubling, these abilities have been providing unique opportunities

to develop new anticancer drugs and drug delivery techniques to the brain based on hTF or its

receptor.93,94 More recently,  this  has included human serum albumin nanoparticles coupled to

transferrin  to  facilitate  targeted  cancer  drug  delivery.95 Ultimately,  a  thorough  structural

understanding of hTF and how it binds and transports a variety of transition metals can improve

knowledge of their toxicology as well guide the development of drugs and new tools for drug

delivery.

The basic biological activity and structure of hTF are well characterized. It is a member

of the transferrin family of glycoproteins, which regulate free iron concentration in physiological
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fluids such as blood by hTF, milk and tears by lactoferrin, and egg whites by ovotransferrin. hTF

is a 80 kDa protein comprised of two domains, termed the N- and C-domains, each containing a

pair of highly similar subdomain lobes connected by a hinge. Each domain can bind an iron ion

with a synergistic anion (typically carbonate) near the hinge between its two lobes (Figure 2.1). 96

When hTF binds two iron atoms, it is recognized by transferrin receptor 1 and the entire protein

is brought into the cell by endocytosis.97 The change from the blood serum pH (7.4) to the lower

pH of the endosomes (5.6) then triggers the release of iron from hTF.98

The  mechanism  of  hTF  binding  and  releasing  iron  and  other  metals  is  not  fully

understood  despite  extensive  study,  and  further  clarification  poses  particular  challenges  for

experimental approaches. A large body of work, including native PAGE gels, small angle X-ray

scattering, X-ray absorption fine structure spectroscopy (XAFS) and crystal structures, suggest

the protein undergoes a hinging conformational change between the lobes in each domain from a

closed  state  upon  metal  binding  at  physiological  pH  to  an  open  one  at  endosomal  pH

immediately before metal release.99,100 This is believed to facilitate iron capture and release by

protecting and then exposing the metal binding site to solvent. There are a few possible chemical

triggers  for  this  action  which  may  operate  in  conjunction  or  separately,  including  metal

reduction101 and protonation of specific residues. In the N-domain, the better studied of the two,

the conformational change was long thought to be driven primarily by a dilysine bridge: a pair of

interacting lysines (Lys206 and Lys296), one from each lobe, where the lower pH protonates and

breaks  this  interaction.102 However,  while  mutagenesis  studies  did indicate  that  the bridge is

important for proper hTF activity,103 there is no experimental confirmation of the exact role it

plays.  The  necessary,  direct,  structural  inspection  of  the  open,  endosomal  forms  of  hTF  is

hampered by their embedding in the cellular machinery of endocytosis. Some crystal structures
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have been obtained with hTF in a receptor-bound state or at low pH,104,105 but it is difficult to

capture the effect of both conditions on structure and dynamics.106 Only two crystal structures

(PDB ID: 5DYH, 5H52) demonstrate a truly open conformation of the holoprotein beyond a few

degrees of interlobal twisting.107,108 However, both use the larger citrate as a synergistic anion and

were obtained in blood serum uptake, rather than endosomal release, conditions. These issues

have made further study into the release activity of hTF difficult  to pursue with experiment

alone. The release mechanism is unknown at a structural level and even its basic kinetics (akin to

references 84 and 85) across all metals is simply unstudied.

Past  computational  studies  have  filled  in  and  revised  the  structural  and  mechanistic

details of the hTF metal transport mechanism, but these are not yet complete. Crystal structures

of two mutants to the dilysine bridge first suggested that breaking this interaction alone fails to

trigger  the  conformational  change.109 Later  molecular  dynamics  studies  by  the  Lopez

group,110 based on a hypothesis from Rinaldo and Field,111 showed that protonation of a tyrosine

that  coordinates  the  metal  (Tyr188)  prompts  the  conformational  change  regardless  of  the

protonation state of the dilysine bridge. The simulations found this behavior  present for both

native  Fe(III)  and  Al(III).  These  results,  however,  were  based  mainly  on  force  field  based

molecular  dynamics,  which has  severe limitations  for  the appropriate  treatment  of  transition

metals. Moreover, previous QM/MM MD simulations at the semi-empirical level coupled with

DFT/MM minimizations112 for  Fe(III)  and Al(III)  suggested  the  importance  of  introducing a

quantum  method  to  fully  characterize  the  interaction  mode  of  these  two  cations  with  the

surrounding ligands.

This study aims to investigate the atomistic root for the hinging phenomenon in the N-

domain of hTF with extensive QM/DMD simulations and consider how this mode of binding and
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release might vary for a range of transition metals. QM/DMD is a rapid sampling method for

metalloenzymes (described thoroughly in the Theoretical Methods section of this chapter) that

can  treat  the  chemistry  of  the  bound  metal  and  its  coordination  quantum  mechanically.  In

addition, we describe a new method to evaluate the relative binding affinities of the metals to

hTF in all its forms at both uptake and release. Besides Fe(III), we performed simulations with

metals  necessary  for  the  human  body,  Fe(II),  Co(III),  Cr(III),  and  Zn(II),  and  increasingly

bioavailable  non-native  metals  that  may  have  acute  cytotoxicity,  Ti(IV)  and  Ga(III).  We

conducted the simulations on four different protonation states derived from reference 110: the

physiological  form  found  in  blood  serum  (Phys),  the  protein  with  just  the  dilysine  bridge

protonated (Acid), and the protein with Tyr188 protonated and either one or two additional water

molecules in the QM active space (PrTr and Double respectively) (Figure 2.1). The Phys and

Acid forms are hypothesized to be closed, while the Double and Prtr forms are open and likely

implicated  in  metal  release  into  the  endosome.  The  results  show  a  remarkable  structural

similarity  across  all  considered  metals  with  some subtle  differences  in  transient  interactions

about the binding site that may explain their relative affinities to hTF, ability to undergo uptake

and release, and implications for metal toxicity.
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Figure  2.1. (A) Examples of open and closed hTF N-domain conformers with iron (in red)
loaded in the metal binding site between two lobes. The closed form comes from a diferric
bound crystal structure (PDB ID: 3V83) at blood serum pH, and the open form comes from a
computationally generated structure from this study. (B) The hTF binding site in four different
protonation  states  considered  in  our  calculations  based  on structures  from the  reference  30.
According to that study, the Phys and Acid forms yield closed conformers while the Double and
Prtr forms, with Tyr188 protonated, become open. The difference between the Double and Prtr
structures is the inclusion of an additional explicit water molecule in the binding site of the
Double form. In both parts of this figure, the dilysine bridge is in bright green while Tyr188 is in
dark orange.

2.2 Theoretical Methods

A total of 5 replicate QM/DMD trajectories were run for each metal for each form of the

protein for a total of 140 simulations. Each trajectory corresponds roughly to 20 ns of simulation.

Full rationalization and details about the preparation of each system can be found in Appendix A.

These simulations were performed with the established QM/DMD method.44 This is a

technique  for  sampling  metalloprotein  conformations  using  quantum  mechanical  (QM)

electronic structure calculations necessary to model the metal and its coordination (referred to as
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the 'QM region') and discrete molecular dynamics (DMD)45 to describe the rest of the protein.

Both  methods  treat  an  overlapping  QM/DMD  region,  consisting  of  species  participating  in

important, non-covalent interactions near the metal, to enable inter-region communication and

mitigate discontinuity errors. QM/DMD has a strong record of successfully explaining a variety

of  metalloenzyme behaviors.  A full  description  of  QM/DMD’s  capabilities  can  be  found  in

Chapter 1.2.

All  QM calculations  in  this  study  were  performed  at  the  DFT level  of  theory  with

Turbomole  (version  6.6).64 The  pure  meta-GGA TPSS  functional65 was  used  with  the  D3

dispersion correction.66 The metal was treated with the triple-zeta basis set def2-TZVPP and all

other atoms with the double-zeta def2-SVP basis set.67 While the small basis set may result in

some degree of basis set superposition error, the large size of the QM regions have precluded the

use of larger basis sets. Furthermore, the level of theory employed has proven effective in the

past  studies,  cited  above,  including  for  quantitative  free  energy  comparisons.  Finally,  the

Conductor-like  Screen  Model  (COSMO)  with  a  constant  dielectric  of  4  was  applied  to

approximate the screening and solvation effects in the relatively buried metal binding sites of the

systems.68 Water molecules  which coordinate to  the metal  were modeled explicitly.  The QM

calculations were performed to convergence within 1.0 × 10-7 Hartree or at least 100 SCF cycles.

This  approach  enhances  sampling  and  plotting  the  energy  trajectories  shows  most  QM

calculations are close to convergence by this point. All DMD phases in the iterative QM/DMD

simulations in this study were performed for 10,000 steps per iteration (0.5 ns). DMD runs with

an implicit solvent through appropriate potentials in its forcefield.

Convergence  of  the  QM/DMD  simulations  was  achieved  according  to  a  series  of

benchmarks. These consist of the protein backbone RMSD (calculated with respect to the alpha
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carbon and amide carbon, nitrogen, and oxygen of each amino acid), the DMD energy, and QM

energy. The RMSD values were calculated with the initial protein equilibrated for one QM/DMD

iteration as the reference structure. The backbone RMSD trajectories of each system are included

in this text as an example (Figure 2.2), while charts of the other two metrics can be found in

Appendix A.

Figure 2.2. Plots of the backbone RMSD by timestep for every QM/DMD simulation in this
study. The plots group all replicates by metal: Ti(IV), Co(III), Fe(III), Ga(III), Cr(III), Fe(II),
Zn(II)  for  each protein  protonation  form:  Acid,  Phys,  Double,  Prtr.  Most  replicates  oscillate
around the value of 2 Å, indicating convergence. The open forms of the protein (Double and
Prtr)  report  more variations from this  value befitting their  greater  flexibility,  especially  with
Fe(II), but still show convergence in each case.

The spin state for each metal was estimated and then verified so that the best was used to

generate the data for this study. Geometry optimizations with DFT at the same level of theory as

described for QM/DMD were performed on each feasible spin multiplicity for each metal in the

acid form of hTF. The spin state of the optimized structure with the lowest electronic energy for

each metal was then used for the appropriate QM/DMD simulations. After the simulations were

completed, all reasonable spin multiplicities were tested for the lowest energy structure from
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each trajectory of the acid forms of the most suspect metals: Fe(II), Fe(III), Cr(III), and Co(III).

Fe(II), Fe(III), and Cr(III) were found to be high-spin, and Co(III) was found to be low-spin. The

QM/DMD simulations for these metals were rerun with the corrected spin-states as necessary.

All  computational  binding  affinities  in  this  study were  calculated  by  a  new,  relative

approach.5 A direct approach would involve computing free energies of the metal ion in solution,

the apo-protein, and the metal-containing protein. However, the free energy of a metal cation in

water is highly dependent on the local structure of water and therefore ill-defined. Furthermore, a

metalloenzyme in its apo-form can be prone to unfolding or refolding and so assessing its free

energy becomes prohibitively expensive. Instead, the new method uses EDTA-metal complexes

as an intermediate step in a thermodynamic cycle (Figure 2.3). This cycle captures the energy of

the unbound metal in the experimentally derived metal-EDTA binding energy and leaves the

tractable terms of EDTA-protein transition to calculation. However, to fully cancel the EDTA

terms, the approach can only calculate  relative affinities between different  metals  within the

same form of hTF.
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Figure  2.3. Thermodynamic  cycle  for  the  relative  affinity  of  metal  binding  to  hTF.  The
parenthesized  label  next  to  each box around an  equilibrium process  corresponds to  the  free
energy of that transition. The desirable processes (1) and (2) are intractable as the structure of
free metal ions in solution is not defined (dotted boxes). The new method in this study provides
the free energy associated with the chemical reaction at the bottom. It is calculated as the sum of
the  difference  between  processes  (3)  and  (4)  which  utilize  available,  experimental  data  for
EDTA-metal binding (dashed boxes). This is summed with the difference between processes (A)
and (B) which capture metal exchange (solid boxes). The result is a ∆∆G that reconstructs the
difference between processes (1) and (2): the difference between the binding affinities of the
metals.

The calculation of the relative binding affinities required just some data on EDTA besides

information from the QM/DMD simulations. Experimental values for the free energy of binding

of each metal to EDTA were obtained from tabulated data of beta110 stability constants.82 The

free energy calculation for each of the EDTA-metal complexes started with a DFT geometry

optimization with the same software and at nearly the same level of theory used in QM/DMD.

The only differences are that COSMO was given a dielectric of 84 corresponding to the water

solvent  and  each  optimization  was  run  out  to  total  convergence.  The  free  energy  was  then
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calculated from the optimized geometry with a harmonic frequency calculation with the same

settings.

Further optimization of the QM region was done to generate the structures for free energy

and metal  angle  variance  calculations.  This  was done on the  lowest  lying  unoptimized QM

regions for each metal in each form of the protein.  First,  the three lowest electronic energy

structures  were  optimized.  The  average  deviation  in  the  drop  in  electronic  energy  they

experienced was taken. All unoptimized QM/DMD structures within two standard deviations of

the lowest unoptimized structure were then selected for full optimization. Each set of structures

were optimized to full convergence and free energies were calculated for them by a harmonic

frequency calculation at the same level of theory and with the same software as above. Of these

the structure with the lowest free energy was then selected as the representative minimum for its

structure of the protein and metal.

2.3 Results and Discussion

Interlobal distances calculated from the QM/DMD simulations confirm the role of Tyr188

as the switch controlling the functional hTF conformational transition. The interlobal distance

was calculated as the smallest distance between two sets of residue alpha carbons that define the

two sides of the central binding pocket (Figure 2.4). One set consists of residues 12-14, 43-46,

290, and 291 while the other is comprised of residues 179-182. When the interlobal distance was

determined for each iteration of all simulations, it shows that the Acid and Phys forms of the

protein  maintain  a  distance  of  about  5  Å,  while  the  Double  and Prtr  forms  vary  over  their

trajectories but rarely shrink below 10 Å (Figure 2.5). The 5 Å distance corresponds to a closed

conformation  and  any  distance  above  that  corresponds  to  an  open  conformation.  This
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demonstrates that the forms of the protein with Tyr188 deprotonated stay closed, regardless of

the protonation state of the dilysine bridge (as this is protonated in the closed Acid form); the

forms with Tyr188 protonated by contrast generally stay open but occasionally approach a closed

state in Ti(IV) and Fe(II) Double. The simulations therefore corroborate the results of reference

110 on the role of Tyr188 over the dilysine bridge and shows that the open forms of the protein

are more flexible.

Figure 2.4. The interlobal distance was measured
between  the  alpha  carbon  of  the  black  loops
opposite each other on the hTF cleft.
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Figure 2.5. Plots of the interlobal distance for each form of the protein and each metal. The
distance is recorded as a scatter plot with all replicates overlaid. These plots show that, regardless
of metal, the Acid and Phys forms of the protein maintain a closed conformation for all metals
with an interlobal distance of about 5 Å, while the Double and Prtr forms typically stay open
with distances consistently higher.

The  calculated  relative  free  energies  of  metal-hTF  binding  qualitatively  match

experimental results. To calculate these free energy differences, we utilized the relative binding

affinity approach described in the Theoretical Methods section. The most significant drawback to

this approach is that the free energy of binding must be calculated relative to another metal. This

is still a valuable and vetted technique: when applied to the lowest energy structures from the

QM/DMD simulations with physiological Fe(III) as reference the results can be qualitatively

compared to in vitro binding affinities. In fact, the experimental order determined and estimated

in references 84 and 85 closely matches the order of the relative free binding energies calculated

for  the  Phys  form,  the  dominant  structure  in  the  experimental  conditions  (Table  2.1).  The

observed differences are for metals with similar enough experimental and estimated affinities

and theoretical free energies to agree within an acceptable margin of error (due to aberrations in

the  experimental  setup  and  computational  techniques).  Only  Ti(IV),  Co(III),  Cr(III)  deviate
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significantly,  and  the  experimental  values  for  Co(III)  and  Cr(III)  are  suspect  as  they  were

extrapolated from binding constants to small  molecules rather  than directly  measured.84 This

concurrence supports our methods for the calculation of the relative free energies of binding and

what they say about hTF activity.

Table  2.1. The  experimental84,85 and  calculated  relative  binding  affinities  to  the  N-terminal
domain of hTF each sorted by metal in descending order. The experimental affinities reported as
ranges (Co(III) and Cr(III)) were estimated. The energies are relative to their respective unscaled
values of Fe(III), which correspondingly have values of 0 kcal/mol.

Exp.
(kcal/mol)

Ti(IV): -5.8 Co(III): -2.0 to +1.9 Fe(III): 0 Ga(III): 2.6 Cr(III): 4.1 to 8.2 Fe(II): 20.1 Zn(II): 21.4

Calc.
(kcal/mol)

Ti(IV): -37.5 Co(III): -14.8 Fe(III): 0 Ga(III): -3.2 Cr(III): 0.0 Fe(II): 26.5 Zn(II): 19.7

The  order  of  the  relative  free  energies  of  binding  provides  unique  insight  into  the

potential of various metals to compete with physiological Fe(III) for hTF - insight which could

distinguish cytotoxic  from healthy behavior.  As the chemistry of  the  binding site  is  slightly

different between the forms of the protein, relative free energies can't be calculated across the

open to closed  forms.  However,  comparisons  can  be  made relative  to  Fe(III)  for  each  state

(Figure 2.6). As established above, the calculated binding free energies in the Phys form of the

protein describe how well each metal is uptaken by hTF from solution akin to blood serum.

Given the mechanistic role of the open conformers of hTF, orders for these forms of the protein

correspondingly suggest how well each metal is released in conditions similar to the endosome.

Our calculations therefore divide the metals into three categories based on how well they bind in

the closed and open forms of hTF: (1) those that don't compete with Fe(III), (2) those that do,

and (3) those that could outcompete Fe(III) for hTF. The first category comprises divalent metals

Fe(II)  and  Zn(II).  These  metals  bind  worse  than  Fe(III)  in  both  conformational  states  and
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therefore do not compete for hTF as they are uptaken poorly and released readily. The second

category is composed of Co(III), Cr(III). These metals, in contrast, can be transported by hTF as

they bind better than Fe(III) in the Phys form but worse in the open forms of the protein. The

final category may include Ti(IV) and Ga(III), which could interfere in natural hTF behavior.

They bind better than Fe(III) in the Phys form, but according to the Double form of the protein

are released about as easily as the physiological metal. Whether Ti(IV) and Ga(III) are in the

second  or  third  category  is  dependent  on  whether  the  Double  of  Prtr  form  is  more

mechanistically relevant as these disagree on the release potential of these metals. Note that these

two metals are the non-essential and potentially cytotoxic ones in our study, so sequestering hTF

could be related to their toxicity and merits future investigation. This is particularly important for

Ti(IV) with its immense predicted affinity for the protein. As our study suggests that Co(III),

Cr(III), and especially Ti(IV) and Ga(III) all compete with Fe(III) in hTF activity, it is important

to understand the structural underpinning for this.
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Figure 2.6. Free energies of binding relative to Fe(III)  for each
metal  and  form of  hTF.  Notice  the  marked  difference  in  metal
binding  preferences  across  the  four  forms.  These  were  all
calculated for the fully optimized, lowest energy QM regions from
the QM/DMD simulations.

The structural analysis of the QM/DMD simulations focuses on the binding site region,

which varies the most with the generally subtle effect of different metals. Considered here are the

metal angle variance and distance of critical hydrogen bonding interactions. Consistent with the

observations from the interlobal distances, these analyses demonstrate that the closed Acid and

Phys forms of hTF are rigid and do not significantly change over the course of the QM/DMD

simulations, while the open Double and Prtr forms are flexible. However, the analyses do not

identify a single interaction or property that distinguish individual metal binding preferences.

Instead,  the order  of metal binding affinities arises from an ensemble of critical  interactions

implicated in hTF metal transport behavior.
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The metal angle variance simply matches chemical intuition and does not correlate with

the binding free energies. This is a measurement of how much the geometry of the metal deviates

from the ideal octahedral. It arises from the equation: σoct
2 = 1

11
∑
i=1

12

(θi−90° )2  which sums the

difference of each of the 12 characteristic angles of an octahedral geometry from the ideal 90°

(Figure 2.7). The metal angle variance was calculated for the optimized, lowest energy structure

of each metal and protein form (Figure 2.8). The divalent metals Fe(II) and Zn(II) are the only

ones  to  consistently  deviate  from octahedral,  which  makes  sense  as  they  generally  prefer  a

tetrahedral  geometry.  Indeed,  both  of  these  metals  typically  reject  a  ligand  to  adopt  a

coordination closer to this geometry over the course of their QM/DMD simulations, in agreement

with previous calculations by Sakajiri et al.113 Otherwise, just Ti(IV) and Fe(III) vary a small

amount  from  the  baseline  in  open  forms  of  the  protein.  Ultimately,  the  results  further

demonstrate the greater flexibility of the open forms of the protein, but do not identify a direct

structural correlation to the free energy of binding besides the intuitive poor binding performance

of the divalent metals.
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Figure 2.7. Example metal geometry in the hTF binding
site;  the twelve angles  used to calculate  the metal  angle
variance are defined between each pair of adjacent ligand
bonds (solid lines).

Figure 2.8. Metal angle variances calculated for each metal and form of
the protein. Notice how only the divalent metals and occasionally Ti(IV)
and  Fe(III)  deviate  significantly  from  the  low  values  and  therefore
octahedral  geometries.  As  with  the  calculated  relative  binding  free
energies, these were calculated for just the fully optimized, lowest energy
QM regions from the QM/DMD simulations.
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There are a number of critical, hydrogen-bonding interactions around the binding site that

vary significantly between metals and forms of the protein, but no single interaction directly

correlates with the binding free energies across all systems (Figure 2.9). This makes sense if we

consider that the roles of the secondary hydrogen-bonding interactions around the binding site

are  to  keep  the  binding  site  residues  in  the  optimum  arrangement,  while  the  electrostatic

interactions of the residues coordinating to the metal most directly affect relative binding energy.

Note that relatively good qualitative results were obtained in a previous study for the binding

affinity in the Phys state by considering only first-shell residues provided that these are fixed at

their corresponding binding site positions.113 Regardless, the characterization of the hydrogen-

bonding interactions  around the  binding site  is  important  to  at  least  understand the  relevant

interactions in the stabilization of the structure of the metal-binding site. Therefore, we have

made a thorough analysis of the important, most varying interactions.  For each of them, the

smallest  distance  between potential  atomic  partners  was recorded for  each timestep  of  each

relevant  simulation.  The  data  were  summed over  intervals  of  1  Å and plotted  as  smoothed

histograms by protein form with all metals color-coded and overlaid (Figure 2.10). The first set

of  distances  considered  here  are  between  the  synergistic  carbonate  anion  and  its  hydrogen

bonding partners on Arg124, Ser125, Tyr188. These graphs show that as the protein transitions

from  its  closed  to  the  open  forms,  Arg124  generally  moves  away  from  the  characteristic

hydrogen-bonding distance of 2.5 Å, while Ser125 and Tyr188 generally move towards it. These

residues therefore take over the role of stabilizing the carbonate from Arg124. This is consistent

with  observations  made  in  reference  110,  which  saw  Arg124  as  an  indicator  of  protein

conformational change. Another highly varying distance is between hydrogen bonding partners
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on Asp292 and the water ligand found in the open conformers. The histograms show that this

interaction is only present in the Prtr form, and is only preferred to a significant degree in the

Co(III), Ti(IV), Fe(III), and Zn(II) forms of the protein. This interaction in particular has effects

which  extend out  of  the binding site,  as  Asp292 adopting it  tugs  on the loop comprised  of

residues 289-294 and changes its shape. Ultimately, these interactions vary significantly between

metals,  but  none  individually  correlate  with  the  calculated  free  energies.  Instead,  it  is  the

composite of these interactions and the electrostatic interactions with first-shell residues which

explains hTF behavior.

Figure 2.9. Overlay of two exemplary metal binding sites (both of the
Prtr  form, with gray from a briefly equilibrated structure and green
from a structure toward the end of a simulation) from the QM/DMD
simulations demonstrating the possible range of motion. The structures
show  how  the  Asp292-water  distance  and  interactions  between  the
carbonate anion and Arg124, Ser125, Tyr188 are flexible.
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Figure  2.10. Histogram plots  of  critical  interactions  near  the  binding  site,
sorted by metal and form of protein. The histograms are constructed of the
interaction distances calculated for all iterations across all replicates for each
state.  Included  here  are  plots  of  the  (A)  Arg124-carbonate  distance  and  it
replacements in the (B) Tyr188-carbonate distance and (C) Ser125-carbonate
distance. The gating effect of Arg124 is clearly visible as the interaction begins
consistent with a characteristic hydrogen bonding distance of about 2.5 Å in
the closed Acid and Phys forms, but generally disappears to a greater distance
in the Double and Prtr forms as hTF opens; both Ser125 and Tyr188 see the
opposite  trend,  greatly  preferring  hydrogen-bonding  distances  in  the  open
Double and Prtr forms of the protein. (D) The stabilizing interaction between
Asp292 and the metal water ligand is only present in the Prtr form.

2.4 Conclusion

The atomistic insight QM/DMD simulations provide into the hTF uptake and release

process shows that cytotoxic metals can successfully compete with Fe(III) in transport and may

get trapped in the protein, but are hard to target as the only observed differences are small and

nuanced.  The  simulations  confirm  that  the  conformational  hinging  which  drives  hTF  metal
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transport is fundamental to each of the considered metals beyond just Fe(III). Furthermore, for

all these metals the transition is dependent on the protonation of Tyr188, rather than that of the

Lys206-Lys296 dilysine bridge. Orders of metal free energies of binding relative to physiological

Fe(III) were calculated, suggesting how well different metals can be transported by hTF. The

binding energies for the closed Phys form are consistent with experiment, while those for the

open forms of the protein provide a unique, initial indication of hTF release preferences. Most

importantly,  the  data  from  the  Double  form  suggest  that  the  root  of  Ti(IV)  and  Ga(III)

cytotoxicity could arise from the difficulty by which they are released from hTF, which should

be considered in future studies of their toxicity. Structural details of the simulations show that no

single interaction explains the stability of the structure of the metal binding site, which instead

arises from an aggregate of interactions largely about the metal binding site. Given the central

role of the synergistic anion, future research should focus on this moiety for the purposes of drug

development and protein redesign. Also of interest is Asp292 and the loop it rests on, which

could be used to target the Prtr state specifically through the unique interaction it makes with the

metals ligands in that form. The simulations demonstrate throughout that the open Double and

Prtr states of hTF are flexible in both binding site interactions and protein conformation, while

the closed Phys and Acid states are uniformly rigid. Ultimately, this study uncovered a nuanced

network of interactions that could be modified to target hTF metal transport activity and address

cytotoxic behavior and should be considered in any future development of drugs which use or

target the human serum transferrin receptor.
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Chapter 3

An Application of Competitive Metal Affinity Methods: Contrasting

Effects of Inhibitors Li+ and Be2+ on the Catalytic Cycle of Glycogen

Synthase Kinase-3β
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3.1  Introduction:  The  Potential  and  Challenges  of  Li+ as  a  Drug  for  Neurological

Conditions

Glycogen synthase kinase-3β (GSK-3β) is  an important  therapeutic  target  for  a  wide

range of neurological conditions. GSK-3β dysfunction is known or proposed to be implicated in

bipolar disorder (BPD), Parkinson’s disease, epilepsy, and Alzheimer’s disease (AD) (according

to  the  prominent  tau  hyperphosphorylation  hypothesis).114–116 Consequentially,  GSK-3β  is  an

attractive target for inhibitors to treat these conditions,117–120 and some have even entered clinical

trials.121 However, no recent efforts have yet passed, encountering problems with toxicity and

efficacy.122 GSK-3β  is  difficult  to  target  selectively  as  it  is  highly  homologous  with  related

kinases,  particularly  mitogen-activated  protein  kinases  (MAPKs),  cyclin-dependent  kinases

(CDKs), and protein kinase C (PKC). This family of proteins all bind an ATP molecule alongside

two  Mg2+ ions  at  a  site  adjacent  to  a  peptide/protein  substrate  binding  channel  (Figure

3.1A).123 As the most conserved region between these proteins is the ATP binding site, a well-

studied potential  solution to  this  are  allosteric inhibitors.124,125 Although ATP non-competitive

compounds can improve selectivity,  their  more subtle modes of binding and inhibition make

them difficult to develop into effective drugs. Study of a past, and rare, successful therapeutic

agent would be especially helpful in the design of new ones.
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Figure 3.1. (A) Ribbon diagram of GSK-3β structure with insert showing the ATP binding site
under the Gly-Loop (in blue) and the peptide/protein substrate binding channel, defined by the
Gly-Loop, C-Loop (in purple) and Activation-Loop (in pink). The substrate serine or threonine
residue binds at  the P+0 site while  a pre-phosphorylated residue binds at  the P+4 site,  held
tightly  by  a  series  of  charged  residues  (Arg96,  Arg180,  Lys205).  (B)  The  dominant
phosphorylation  mechanism  for  GSK-3β  based  on  studies  of  related  kinases.  The  reaction
proceeds by either an SN1 or SN2 path, with a nearby Asp181 residue acting as the base. (C) The
catalytic cycle of GSK-3β. Li+ and Be2+ binding could inhibit activity by directly increasing the
phosphorylation reaction barrier (circled red) or by disrupting the binding of the substrate (tau in
this study, circled solid green) or either the unbinding of the substrate or ADP complex (circled
dashed green).

Lithium is one of the most effective treatments for BD, and  evidence for its beneficial

effects on other neurological conditions have recently been gathering. The metal has been used

for its mood stabilizing effect for BD since its serendipitous discovery in 1949.126 In-vivo and

even  clinical  studies  report  some  beneficial  effects  on  AD  pathology,  but  with  conflicting
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results.127,128 Li+ therapeutic action is believed to be driven primarily through altering pro- and

anti-apoptotic gene expression and GSK-3β inhibition.129 Kinetic studies comparing Li+ to Be2+,

another potent inhibitor, demonstrate that Li+ binds non-competitively with ATP, just replacing

one of the two native Mg2+ ions.130,131 Remarkably, Li+ has a limited effect on the activity of

closely related CDK5, PKC, and MAPK.114 Lithium does, however, have major drawbacks as a

drug: a narrow therapeutic index, with therapeutic levels between 0.6 and 1.5 mEg/Lit,132 and

several side effects133 – though it is specific, regarding altering activity of GSK-3β among other

kinases, it clearly has other targets. An atomic-scale picture of GSK-3β activity and Li+ inhibition

would explain some of this  behavior and aid the development of new, selective therapeutics

without these drawbacks.

There have been many structural studies on related kinases and the biological effect of

Li+, but how the metal inhibits GSK-3β is not fully known. Experimental and computational

research  on  the  related  protein  kinase  A (PKA)  has  established  a  likely  SN1  or  SN2-like

mechanism of  phosphoryl  transfer  facilitated  by a  nearby aspartate  residue  acting  as  a  base

(Figure 3.1B).134,135 Quantum mechanical (QM) calculations on small mimic complexes of the

GSK-3β metal binding site suggest that Li+ can replace Mg2+ in only the ATP-bound forms of the

protein,136 but  truncated  model  systems  like  these  do  not  take  the  full  effect  of  the  protein

environment into account. Later dynamics simulations on GSK-3β indicate that Li+ preferentially

binds to one Mg2+ site but not the other.137,138 However, these studies did not confirm their results

by calculating thermodynamic quantities such as binding energies or reaction barriers, nor did

they consider the role Li+ could play in other steps of the catalytic cycle.

This computational study investigated the atomic-scale effect of Li+ and Be2+ on each

relevant step of the GSK-3β catalytic cycle. Metal inhibition could arise from a direct increase to
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the phosphorylation reaction barrier or disruption of the timely binding or detachment of other

groups that could slow turnover: ATP, ADP, or the peptide substrate (Figure 3.1C). We employed

the established QM/DMD method to study the structure of the ATP and ADP bound states of

GSK-3β.  This  method  combines  QM  calculations  for  appropriate  treatment  of  the  metal

environment with discrete molecular dynamics simulations for rapid and extensive sampling of

protein conformations. We also performed additional QM calculations to obtain binding affinities

and  phosphorylation  reaction  barriers  based  on  the  lowest  energy  structures  identified  by

QM/DMD. We consider the effect of docking a tau protein fragment, a species implicated in AD,

as an example substrate. We also identify structural differences between the native and Li+ states

that could serve as targets for future inhibitor development.

3.2 Theoretical Methods

This  study  began  with  dynamics  simulations  using  the  QM/DMD  method.44 This

technique  samples  metalloprotein  configurations  using  quantum mechanical  (QM)  electronic

structure calculations (normally density functional theory) necessary to describe the metal and its

coordination  environment (referred to  as  the ‘QM region’)  and discrete  molecular  dynamics

(DMD)45,139 to model the rest of the protein. Both methods treat an overlapping QM/DMD region

which consists of species constituting the active site but not directly binding to the metal. This

region  enables  inter-region  geometric communication  and  mitigates  discontinuity  errors.

QM/DMD has a strong record of successfully explaining a range of metalloenzyme behaviors.

These include metal-dependent catalytic activity,5,49 protein-metal binding affinity,5,52 the effect of

mutagenesis on structure,46,47 and flexible docking of substrates.140

45



All of the QM calculations in this study were performed at the density functional theory

(DFT) level using Turbomole (version 6.6).64 The pure meta-GGA TPSS functional65 was used

with the D3 dispersion correction.66 The metal was modeled with the triple-zeta basis set def2-

TZVPP while all other atoms were treated with the double-zeta def2-SVP basis set.67 A small

basis set may result in some degree of basis set superposition error, but the large size of the QM

regions  (111-116 atoms) precluded any larger  basis  set.  Regardless,  this  level  of  theory  has

proven  effective  in  previous  studies,  including  for  quantitative  free  energy

comparisons.5,52 Lastly, the Conductor-like Screen Model (COSMO)68 with a constant dielectric

of 20 was applied to approximate the partial screening and solvation effects in the partly buried

active site. Any water molecules that directly coordinate to the metals were modeled explicitly.

All QM calculations were performed to convergence withtin 1.0 x 10-7 Hartree or at least 100

SCF cycles  to  afford more sampling during  QM/DMD simulations.  All  DMD phases  in  the

QM/DMD simulations in this study were performed for 10,000 steps per iteration (roughly 0.5

ns). DMD operates with an implicit solvent through the appropriate potentials in its forcefield.

QM/DMD simulations were performed on all the catalytic forms of GSK-3β for each

metal binding state with one exception. Attempts to dock a short peptide proxy for tau protein

were unsuccessful due to the poor potentials for the pre-phosphorylated residue in DMD. Thus,

the simulations only capture the ATP and ADP bound states of the protein without tau, which

proves to be sufficient for the purposes of this study.

QM/DMD simulations were performed on the 8 total metal bound states of GSK-3β-ATP

and GSK-3β-ADP. For the ADP form these include the Mg2+, Li+, and Be2+ states. In the case of

the ATP form, as there are two metal binding sites, these include the 2Mg2+, Li+Mg2+, Mg2+Li+,

Be2+Mg2+,  and Mg2+Be2+ states.  The first  denoted metal represents the site closer to the ATP
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adenosine group while the second one represents the further site. Simulations were performed in

5 replicate QM/DMD trajectories for the native Mg2+ and Li+ containing states of the ATP form

and 3 replicate trajectories for the other systems,  i.e. a  total of 30 simulations. Each trajectory

was continued for 40 iterations, which roughly corresponds to 20 ns. Full rationalization of the

construction of each system can be found in Appendix B.

The  convergence  of  the  QM/DMD  simulations  was  achieved  according  to  several

benchmarks:  the  protein  backbone  RMSD,  the  DMD  energy,  and  QM  region  energy.  All

QM/DMD simulations were converged by 40 iterations /  ~ 20 ns by these metrics.  The full

convergence charts with respect to the three standards are shown in Appendix B.

Further optimization of the QM region was done to generate the structures for free energy

and metal angular variance calculations. The ten QM regions for each system with the lowest

unoptimized electronic energy were fully converged (when not already achieved) using the same

level of theory as the QM calculations from QM/DMD. The free energy was then calculated for

each with a harmonic frequency calculation. The structure with the lowest free energy was then

selected as the representative minimum of each system.

Potential energy surface (PES) scans were performed to calculate the phosphorylation

reaction barriers for the 2Mg2+, Li+Mg2+, and Be2+Mg2+ states of the protein. The two reaction

coordinates were the distance between the O and H of the tau serine (from 0.8Å to 2.2Å), and the

distance between O of the tau serine and the terminal P on ATP (from 1.4Å to 2.6Å), with a step

of 0.1Å. The active spaces were truncated from the lowest energy QM optimized structures with

a fragment of tau manually docked into these structured and truncated at the Cβ (capped with a

hydrogen and with its  position frozen in all  calculations).  Without full  dynamics for the tau

substrate, these constraints could introduce errors into the calculated energies and barriers, but
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full dynamics could not be obtained as explained above. Full details of the system construction

are found in Appendix B. Once the PES were plotted, the stationary points were fully optimized

with the same level of DFT theory as the QM calculations from QM/DMD with accompanying

harmonic frequency calculations to obtain free energies for the reactant and product states as

well as any intermediates and transition states.  

All metal binding affinities in this study were calculated through the recently developed

competitive  metal  affinity  (CMA)  method,141 which  shows  that  it  can  obtain  quantitatively

accurate relative metal binding affinities compared to experiment.52,141 This method determines

the  relative  binding  affinity  to  a  protein  compared  to  a  reference  metal  using  an  indirect

thermodynamic cycle dependent on experimental metal binding free energies to a chelator. The

absolute binding  affinities are computationally inaccessible (both resource intensive and error

prone) because  of  the  indeterminate  structure  of  solvated  metal  ions.  EDTA was  used  as  a

chelator complex for CMA calculations. The first benefit of this complex is that experimental

binding affinities are available for nearly all metals, including Mg2+, Li+, and Be2+.142 Normally

the second benefit of EDTA is that its metal-bound structure is known and well behaved: fully

coordinating the metal in an octahedral geometry. However, this assumption may not hold for

small, low charge metals like the alkali and alkali earth metals of this study. These metals can not

satisfy the -4 charge of EDTA alone and so the complex is likely to coordinate additional water

molecules – one of the complications that the CMA method seeks to avoid. Indeed, a crystal

structure for a Ca2+ complex with EDTA shows only partial coordination of the metal with EDTA

and a number of closely interacting waters.143 Nonetheless, CMA binding ΔΔG were calculated

using  EDTA  as  the  sole  ligand  in  implicit  solvent  water, as  no  alternative  complex  with

experimental binding affinities to the examined metals could be found. Free energies for the
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octahedrally coordinated EDTA complexes were calculated in the same manner as the QM/DMD

optimizations  but  with  a  dielectric  constant  of  84  for  COSMO  to  represent  the  aqueous

environment. To mitigate the shortcomings  and verify the results using EDTA, an alternative

approach using ATP and ADP as chelators was also pursued.

This study also relied on the free energy of exchange of Li+ and Be2+ from the solvated

forms of ATP and ADP to the holo-protein. While they do not offer the same full coordination of

EDTA, ATP and ADP are both chelators and recent research has gone into their structure and the

position of the water molecules that complete their coordination shells.144 The solution phase

structures used in this study are based on the bimetallic complexes determined recently by Dudev

et al. That study did not ascertain structures for Be2+, so the input structures for Be2+ are the same

as Li+.  The Li+ input structures were used as both metals prefer tetrahedral geometries while

Mg2+ adopts  an  octahedral  geometry.  The  solvated  complexes  were  then  fully  optimized  to

account for structural differences and  obtain their free energies in the same manner as EDTA,

including the use of the COSMO dielectric of 84.

3.3 Results and Discussion

Analysis of the conformational ensembles we generated through QM/DMD for the GSK-

3β-ATP form shows no evidence that the metal could alter the nature of peptide/protein substrate

binding.  To assess  this,  we calculated  the  variance  of  two important  features  of  the  protein

binding channel from a crystal structure of GSK-3β bound to an axin-derived peptide (PDB ID:

4NU1).123 While the axin peptide in 4NU1 is  different from tau,  the binding site should be the

same due to the anchoring role the P+4 site plays for pre-phosphorylated substrates. We therefore

selected the crystal structure as our reference to see if Li+ or Be2+ impede the adoption of  a
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structure predisposed to binding. The two geometric features of our analysis are the shape of the

binding channel itself as defined by its loops and the structure of the critical P+4 site. If the

channel defining loops or the positively charged residues of the P+4 site in the Li+ and Be2+ states

are significantly more distant, this incurs an energetic penalty to pull them together. Furthermore,

the  greater  distance would  also make additional  binding modes more  likely.  Together,  these

changes to the potential energy surface of this event would reduce tau binding affinity.

The variance in the conformation of the peptide channel shows no significant differences

between the different metal bound states.  We calculated this as the variance from the 4NU1

structure in the distance between the closest alpha carbon for each pair  of loops. Our graph

depicts the average of this value across all iterations for all replicates of QM/DMD for each

metal bound form of GSK-3β (Figure  3.2). For all the metals, the average variance is small at

about 2Å for the Gly-C distance and large, over 5Å, for the distances involving the Act loop.

This  simply  represents  the  binding  channel  closing  around  the  peptide  upon  binding.  The

variances for the Gly-C loop distance are 0.91 ± 0.57Å for 2Mg2+, 0.79 ± 0.55Å for Li+Mg2+,

1.03 ± 0.51Å for Mg2+Li+, 1.26 ± 0.87Å for Be2+Mg2+, and 0.66 ± 1.00Å for the Mg2+Be2+ form of

the protein. The variances for the Gly-Act loop distance are 4.53 ± 1.79Å for 2Mg2+, 4.47 ±

1.32Å for Li+Mg2+, 5.09 ± 1.12Å for Mg2+Li+, 4.59 ± 1.03Å for Be2+Mg2+, and 5.98 ± 1.12Å for

the Mg2+Be2+ form of the protein. Finally, the variances for the C-Act loop distance are 7.90 ±

1.39Å for  2Mg2+,  8.06  ±  1.41Å for  Li+Mg2+,  9.33  ±  1.32Å for  Mg2+Li+,  8.75  ±  1.94Å for

Be2+Mg2+, and 8.64 ± 1.36Å for the Mg2+Be2+ form of the protein. However, the difference in the

variance between the different metals is small, subsumed by their standard deviations. The shape

of the binding channel does not look especially predisposed to protein binding with any metal

over the others.
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Figure  3.2. Variance  of  the  peptide  binding channel  conformation  in  QM/DMD ensembles
(green)  from  reference,  peptide-bound  crystal  structure  (4NU1).  The  green  structure  is  an
example  from  the  2Mg2+ simulations.  The  average  variance  for  each  metal-bound  state  is
graphed on the left with the blue bar spanning one standard deviation above and below the
average  and  the  thin  blue  line  showing  the  minimum  and  maximum  loop  distances.  The
variance was calculated by the equation at the top using the inscribed distances between loops
in the picture on the right. The distances used were the minimum distance between any two
alpha carbon on opposite loops. I is the number of QM/DMD iterations, R i is the loop distance
in the QM/DMD simulation, and R4NU1 is the loop distance in the crystal structure. Note that all
the metal bound states report roughly the same variances.

The structure of the P+4 site is similarly invariant between the different metal bound

states. As with the channel loops, we calculated the variance from the 4NU1 structure between

alpha  carbons,  this  time  of  Arg96,  Arg180,  and Lys205.  In  this  case  we averaged  all  three

distances together for all  iterations of all  replicates of QM/DMD for each metal bound  state

(Figure 3.3). The variances are all around a small 0.5Å: 0.52 ± 0.25Å for 2Mg2+, 0.52 ± 0.25Å

for Li+Mg2+, 0.52  ± 0.25Å for Mg2+Li+, 0.52  ± 0.25Å for Be2+Mg2+, and 0.57  ± 0.24Å for the

Mg2+Be2+ form of the protein. As before the differences are minor between the metal states and

well below the standard deviation of each ensemble.
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Figure  3.3. Variance  of  the  P+4  peptide  phosphate  binding  site  geometry  in  QM/DMD
ensembles (green) from reference, peptide-bound crystal structure (4NUI). The green structure
is an example from a 2Mg2+ simulation. The variance was calculated using the equation at the
top based on distances between the alpha carbon of three positively charged residues that define
the P+4 site. I is the number of iterations, Rn,i is the distance in the QM/DMD simulation, and
Rn,4NU1 is the distance in the crystal structure.

The  lowest  energy  active site  structures  from QM/DMD show significant  differences

when Li+ and Be2+ bind. The QM calculations suggest that the inhibitory metals preferentially

bind to the first binding site closer to the adenosine group. The structures with the  inhibitory

metals occupying  the  second,  further  site  are  less  stable  by 10.9  kcal/mol  for  Li+ and  8.1

kcal/mol for Be2+. For our future analyses we therefore consider metal substitutions only to the

first, apparently dominant site.
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Full investigation of the dominant active site structures immediately reveals significant

geometric variations between the different metal bound states, dictated by the size and charge of

the metal cations. The largest cation is Mg2+, followed by Li+, and Be2+.  This is demonstrated by

the average ligand-metal distances which are 2.05 ± 0.06Å for Mg2+, 1.94 ± 0.04Å for Li+, and

1.64 ± 0.02Å for Be2+ in the ADP bound states, and 2.09 ± 0.1Å for Mg2+, 1.95 ± 0.06Å for Li+,

and 1.63 ± 0.04Å for Be2+ in the dominant ATP-bound state. Furthermore, both Li+ and Be2+

prefer fewer ligands than Mg2+; they feature tetrahedral coordination with both ATP and ADP,

whereas Mg2+ is octahedral in both forms (Figure 3.4). Obviously, the doubly-charged cations

attract nucleophilic ligands more strongly, resulting in more favorable electrostatics. On the other

hand, smaller cations could favor fewer ligands, benefiting less from metal-ligand electrotactic

attraction, but reducing the crowding of the coordination sphere and ligand-ligand repulsion. The

total ligand-metal attraction, ligand-ligand repulsion, ligand and metal coordination strain, and

binding site accommodation constitute a complex interplay that we aim to uncover. The resultant

interactions in the binding pocket should also contribute to the site thermodynamics.

The joint effects of the metal charge, size, and ligand interactions are reflected in the

differences in the strain that these complexes exhibit, judged by the metal angular variance. In

the  ADP bound  state  of  GSK-3β,  the  phosphate  tail  of  ADP can  better  accommodate  the

coordination of the smaller Li+ and especially Be2+ with less strain than the native Mg2+.  In

addition, less crowded tetrahedral coordination should have weaker ligand-ligand repulsions and

also tighter binding to the metal. In the ADP bound state of GSK-3β the metal angular variances

are 14.3o for Mg2+, a smaller 10.5o for Li+, and only 3.7o for Be2+ (Figure 3.4). Smaller strain is

expected to be associated with tighter binding, again featuring Be2+ as a strong binder, though the

most valid comparison in this case is between Li+ and Be2+, since both are tetrahedral. A similar
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Figure 3.4. QM optimized geometries of the active site from the QM/DMD simulations for
(A) ADP, (B) ATP with Li+, and (C) ATP with Be2+. Mg2+ is shown in cyan, Li+ in pink, and
Be2+ in yellow-green. Also reported for each structure are the preferred metal geometries with
the average angular variance from ideal angles. The structures from the ATP-bound state also
feature the  free energy preference for  metal  substitution  at  the  first  binding site  over  the
second. Note that the smaller Li+ and especially Be2+ report much smaller angular variances.
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trend emerges for the preferred ATP bound states. A notable difference in this case, however, is

that Li+ reports a comparable angular variance of 6.6o to the 6.0o and 6.8o of the native Mg2+

structure, while that of Be2+ continues to be significantly smaller at 3.6o. Relative to Mg2+, Li+

coordination appears less strained with ATP than with ADP, which (while being just one of the

relevant parameters) can be expected to yield a greater barrier to the catalytic reaction step for

Li+ compared to  Mg2+.  Be2+,  being the tightest  binder  of  both ATP and ADP, should feature

specific reactivity as well. Mg2+, while having greater variance, benefits electrostatically from

having more ligands in the octahedral sphere, and the exact energetic balance is thus far unclear.

The  compounding  effects  of  the  geometric  trends  on  the  thermodynamics  of  binding  and

reactivity are evaluated next.

Binding affinities that we calculated suggest that Li+ and Be2+ can replace native Mg2+ in

GSK at various points during its catalytic cycle. When Mg2+ is used as the reference metal in our

CMA method, the ΔΔG of replacement with Li+ or Be2+ are uniformly negative for the ATP and

ADP bound forms of GSK-3β.  These values are -16.7 kcal/mol for Li+ and -38.1 kcal/mol for

Be2+ in the ADP bound form of the protein and -17.6 kcal/mol for Li+Mg2+, -6.7 kcal/mol for

Mg2+Li+, -23.0 kcal/mol for Be2+Mg2+, and -14.9 kcal/mol for Mg2+Be2+ in the ATP bound form of

the protein. The ΔΔG correspond to the following reactions

GSK ADP, Mg+M➝GSK ADP ,M+Mg2+ (3.1)

GSK ATP ,2Mg+M➝GSK ATP , M ,Mg+Mg2+ (3.2)

Where M can be either Li+ or Be2+ and GSKADP,Mg and GSKADP,M are the ADP bound form of

GSK-3β  with Mg2+ and the substituted non-native metal in the active site,  respectively.  This

notation carries for equation 3.2 and all that follow. The uniformly negative competitive metal

affinities indicate that Li+ and Be2+ readily replace Mg2+ and bind to GSK more tightly at all
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considered  points  during  the  catalytic  cycle.  While  ambiguities  with  the  EDTA complexes

discussed above might contribute to error, these would cancel out when comparing the ADP and

ATP states, corresponding to reaction 3:

GSK ADP, Mg+GSK ATP ,M ,Mg➝ GSK ADP,M+GSK ATP ,2Mg (3.3)

We see that the ΔΔG between the dominant ATP state and the ADP state is far larger and negative

for Be2+ (-15.1 kcal/mol) compared to Li+ (0.9 kcal/mol). As a check, we also calculated the

ADP-ATP ΔΔG based on the binding  ΔG from the solvated forms of ATP and ADP.  Each  ΔG

calculated this way corresponds to the reactions

GSK ADP, Mg+ADPM➝GSK ADP ,M+ADPMg (3.4)

GSK ATP ,2Mg+ATPM , Mg➝GSK ATP ,M , Mg+ATP2Mg (3.5)

Therefore,  subtracting  the  binding  ΔG  for  GSK-3β-ATP from GSK-3β-ADP  yields  energies

consistent with the following reaction

GSK ADP, Mg+ADPM +GSK ATP ,M ,Mg+ATP2 Mg➝

GSK ADP ,M+ADPMg+GSK ATP ,2Mg+ATPM ,Mg

(3.6)

The  results  for  equation  3.6  are  qualitatively  consistent  with  the  earlier  EDTA-based  CMA

approach (equation 3.3), with +11.9 kcal/mol for Li+ and -12.3 kcal/mol for Be2+. Together, our

results suggest that Li+ has a preference for binding the ATP form of GSK-3β, while Be2+ prefers

binding to the ADP form. This is consistent with experiment, showing that Li+ can not easily bind

alongside ADP while Be2+ does. The particularly small size and angular variance of Be2+, as well

as its  greater charge relative to Li+,  and better  placement of Be2+-bound ADP in the binding

pocket all likely contributes to this.

Analysis of the GSK-3β phosphorylation mechanism shows that Li+ inhibition is driven

by  its  direct  reduction  of  the  rate  of  the  phosphorylation  step  itself,  as  inferred  from  the

geometric differences between Li+ and Mg2+.  The mechanism involves the deprotonation and
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phosphorylation of a serine residue either in concert or sequentially. To assess this we calculated

potential energy surfaces.

The PES for the tau phosphorylation are shown in Figure 3.5, and they exhibit significant

differences for the three metals. The deep blue wells in the lower right correspond to the reactant

states. In the upper left, a well for the product state can be found for Mg2+ and Li+. However, the

Mg2+ and  Li+ mechanisms  are  slightly  different.  The  Mg2+-based  PES  reveals  a  small  well

corresponding to an intermediate, whereas for Li+ the reaction consists of a single step and has

no intermediate. Therefore, the reaction proceeds as SN1 for Mg2+ and SN2 for Li+. Furthermore,

full  optimizations  of  the  stationary  points  on  the  PES and frequency calculations  yield  free

energies that suggest a reduced rate of phosphorylation in the Li+ bound protein compared to

Mg2+. In the native protein the reaction is slightly exothermic, by 0.1 kcal/mol with our level of

theory. The highest of its two reaction barriers is a reasonable 17.9 kcal/mol. By contrast in the

Li+ case, the reaction is majorly endothermic by 19.6 kcal/mol, and the barrier is 26.0 kcal/mol.

This is in line with the qualitative predictions based on the geometries and binding energies of

ATP-Li+ and ADP-Li+ relative to Mg2+ forms, presented earlier, and is additionally related to

geometric  effects  in  the  binding  pocket  discussed  in  the  following  paragraphs.  Hence,  the

reaction with Li+ is both thermodynamically and kinetically unfavorable, enabling Li+ to take an

inhibitory role on GSK-3β.

The PES for Be2+ shows no well for the product state within the investigated mechanism.

This result seems surprising, given that the ADP-Be2+ state, the product of this reaction, is very

stable and preferred over the ATP-Be2+ state (see  the previous  paragraphs).  However,  this  is

clarified in the next few paragraphs, where we discuss how structural misalignment of the ATP-

Be2+ system impedes efficient phosphorylation.
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Figure 3.5. Potential energy surfaces for serine phosphorylation in the native form of GSK and
the Li+ and Be2+ bound forms. These plots vary the two reaction coordinates: serine hydroxyl
hydrogen to aspartate carboxyl oxygen and serine hydroxyl oxygen to ATP terminal phosphorus.
Free energies are shown as a heat map going from blue (low) to red (high). Stationary points
along the reaction path are recorded in red for the native and Li+ states. Note how 2Mg2+ reports
two barriers, Li+ reports one higher one, and Be2+ shows no product state and can’t perform this
reaction.

The interactions between the metals and the binding pocket of GSK-3β could reveal the

structural root of the differences between phosphorylation mechanisms and inform future drug

development.  The  structural  features  that  show  the  greatest  difference  between  the  three

considered metal-bound states of GSK-ATP are (i) the distance between the final ATP phosphate

group and the oxygen on Asp181 that acts as the base in the reaction and (ii) the angle of the

final  phosphate  group  relative  to  metal  centers  (Figure  3.6A-B).  We  tracked  each  of  these

quantities  both  across  the  full  ensemble  of  structures  generated  with QM/DMD and for  the

phosphorylation reactant structures based on the lowest energy structures from QM/DMD. The

Asp181 to final phosphate distance can affect activity. The distance is much smaller for the Mg2+

form both on average and for the phosphorylation reactant states than in the Li+ form. The Be2+

form shows a relatively low distance as well, so its product-less PES likely arises from other

quantities. The correlation between activity and the Asp181 distance, at least for Mg2+ and Li+,

makes sense as Asp181 is the only negatively charged group near the active site that could accept

58



a proton: its greater distance from the substrate Ser and ATP phosphate incurs a greater reaction

barrier as the proton or phosphate group must move more over the course of the reaction. In light

of  our  results,  we  hypothesize  that  a  potential  inhibitor  which  can  provide  Asp181  with  a

competing non-covalent interaction would have a similar effect to Li+.

Figure 3.6. Bar charts of the average and standard deviation of the (A) Asp181 oxygen to final
ATP phosphorous distance (r) and (B) final ATP phosphate angle relative to the metal centers (θ)
across  the  full  ensemble of  structures  from the  QM/DMD simulations.  The values  from the
phosphorylation reactants  are plotted for each state  as an ‘x’.  Blue is  the native Mg2+ form,
magenta the Li+ form, and green the Be2+ form. The distance r is based on whichever carboxylate
oxygen in Asp181 is closest to the final ATP phosphorous in each given structure. The angle θ is
inscribed by the  vector  of  the  last  bridging ATP P-O bond and the  vector  between the  last
bridging O and midpoint between the two metals. Note that the values for the phosphorylation
reactant Mg2+ are distinct from those of the Li+ and Be2+ states. Both quantities are marked on the
structures on the right. Structural deviations of the phosphorylation reactant geometry in the (C)
Li+ and (D) Be2+ bound states are also shown. In both, the native Mg2+ geometry is overlaid in tan
while the metal substituted geometry is colored pink or green respectively. Note how for both Li+

and Be2+ the final phosphate group is angled down and away from the tau serine substrate.
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The angle of the final phosphate group correlates fully with activity across the metal

bound  forms  of  GSK-3β and  likewise  yields  opportunities  for  new inhibitors.  Both  for  the

phosphorylation reactant structures and the full QM/DMD ensemble, the Mg2+ form reports the

largest  angles,  followed  by  Li+,  and  finally  Be2+.  The  implications  of  the  angle  on  the

phosphorylation reaction barrier is clear from inspection of the reactant structures. While the

final ATP phosphate faces the tau serine substrate with Mg2+, it is shifted slightly down and away

from it in the inhibitory structures (Figure 3.6C-D). This is particularly true of the Be2+ active

site.  This  incurs  an energetic  penalty  as  the phosphate or  tau  must  move and geometrically

reorganize to perform the reaction. In the case of Be2+ this penalty appears too large for the

reaction to occur at all according to the phosphorylation PES. This is most likely due to the

smaller size of Li+ and especially Be2+, as they pull the phosphate group toward them with their

tighter coordination sphere. Though metal properties appear to drive the final phosphate angle,

we suspect any structural changes which shrink that angle would reduce GSK-3β activity, given

the resulting poor alignment of the reactant moieties. This might be achieved by crowding of the

Gly-C loop, located directly above the ATP binding site.

Finally, based on these structural differences, we put forward a hypothesis regarding the

mechanism of Be2+ inhibition of GSK-3β. In part, it is not principally different from that of Li+:

because Be2+ features an even tighter binding of ATP than Li+, the misalignment with the tau

serine is also greater, further making the reaction unfavorable. However, Be2+ can bind ADP, the

product of phosphorylation, even tighter than ATP. While the PES for the reaction suggests that

ADP cannot  be reached in the Be2+ form of  the protein,  Be2+-ADP could be recruited from

solution. Hence, due to very strong binding, both ATP and ADP are predicted to stay bound and
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inhibit the protein with Be2+, reducing the turnover number of GSK-3β . The opportunity for

ADP-based inhibition is accessible only to Be2+, and not to Li+, which constitutes the largest

difference in their inhibitory mechanisms. One possible way to check this proposed mechanism

would be to bind a small trivalent cation instead of Be2+, to enforce an even tighter binding. No

smaller cations than Be2+ exist, to the best of our knowledge, but higher valency might still lead

to a similar effect.

3.4 Conclusion

GSK-3β is an important, but challenging, target for treating neurological and psychiatric

disorders. Atomic-scale information about the effect of rare, successful inhibitors is helpful to

design new inhibitory drugs. In this study, we identified how Li+ affects GSK-3β structure to

inhibit its activity and how this contrasts with another metal ion inhibitor, Be2+. Li+ binds most

strongly  to  the  ATP  bound  form  of  GSK-3β and  directly  increases  the  barrier  for  the

phosphorylation reaction through poor orientation of the transferring final phosphate group. This

differs from Be2+, which binds ATP tighter than Li+ does and can also tightly bind ADP. The

bound ATP is so strongly attracted to the compact and highly-charged Be2+ that it becomes too

contorted  and  out  of  alignment  with  the  rest  of  the  binding  site  to  undergo  subsequent

phosphorylation. If the protein recruits Be2+ alongside ADP, then this binding is even stronger.

We therefore conclude that Be2+ stays bound to the protein either with unreacted ATP or ADP. In

the case of both metals, their inhibitory effect arises from their small ionic radii relative to the

native  Mg2+,  exacerbated  in  Be2+ by  its  comparably  high  charge.  While  these  are  metallic

properties,  a  similar  effect  might  be  achieved  by  new  therapeutics  that  provide  competing
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interactions to an Asp181 residue that acts as the base during phosphorylation or crowding the

final ATP phosphate group.
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Chapter 4

Titr-DMD – A Rapid, Coarse-Grained Quasi-All-Atom Constant-pH

Molecular Dynamics Framework
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4.1  Introduction:  Challenges  in  Modeling  the  Dynamics  of  Protein  Protonations  and

Deprotonations

Solution pH is a chemical property with an immense effect on protein behaviors that are

difficult to study at the atomic scale. Peak protein fold stability and catalytic activity are both

dependent  on  an  often  narrow  range  of  pH.  Understanding  the  sequential  and  structural

underpinning  of  these  preferences  contributes  to  the  design  and  application  of  enzymes,

particularly  extremophile  enzymes  –  which  would  allow  for  their  use  in  harsher  reaction

conditions in industrial catalysis,145–148 and answers a wide range of questions of medical interest

as precise  pH regulation is critical for cellular homeostatis.149–151 However, this understanding

demands atomistic information of fundamentally dynamic phenomena. pH-dependent dynamics

is  challenging to  study experimentally,  requiring a  combination of  techniques  such as NMR

monitored pH-titration, circular dichroism (CD) spectroscopy, and X-ray crystallography none of

which  alone  provide  the  complete  picture.  Experimental  complexity  leaves  computational

investigation152 as a critical tool to fill in the gaps.

Successful  computational  methods  that  assess  pH-dependent  protein  behavior  must

accurately couple amino acid protonation state change with conformational dynamics. Typically,

continuum electrostatic methods describe the protonation states of amino acids, assessing the

free energy of protonation and deprotonation events or  pKa. Various solutions to the Poisson-

Boltzmann equation can provide  this,153 especially  the generalized Born model.154,155 Simpler

electrostatic methods are used as well. Tools such as UHBD,156 H++,157 and Propka158,159 predict

the  pKa of  amino  acid  residues.  Other  tools,160,161 including  FPTS162 rely  on  Monte  Carlo

simulations to sample protonation states as well as solvent and/or ion configurations in some

cases. All of these methods are useful to study many pH-dependent protein properties, including
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charge regulation during complexation and prediction of some titration curves.163 However, these

methods operate with largely static structures for the protein with little or no backbone motion,

and so can not fully capture pH dependent dynamic behavior on their own. Molecular dynamics

(MD)  can  provide  the  missing  conformational  sampling.  Such  combinations  are  known  as

constant  pH molecular dynamics (CpHMD); these methods generally use electrostatic methods

to model the protonation state changes of amino acids over the course of a molecular dynamics

simulation.

The appropriate sampling of pH-coupled dynamics is difficult to achieve for all CpHMD

methods and challenging to verify. The choice of solvation model is central to sampling and

broadly breaks CpHMD methods into two categories: those using explicit solvation and those

using implicit solvation. Explicit solvent based methods can provide greater accuracy through

atomistic  solvent  treatment,164,165 but  sufficient  sampling  is  difficult  to  achieve,  as  both

conformational and protonation states need to be sampled. Furthermore, protonation sampling is

affected by poor overlap between solvent configurations such that protonation state changes are

often immediately rejected. To counter this, many groups have applied  λ-dynamics, based off

pioneering work by Brooks et al.166 (in turn based on earlier work with other thermodynamic

properties  in  mind),167,168 which treats  the protonation state  of  individual  amino acid sites  as

continuous degrees of freedom rather than discrete ones sampled distinctly.169–171 Other efforts

focus on enhancing/accelerating conformational sampling through GPU processing172 or replica

exchange.173–175 Implicit  solvent-based methods  offer  increased  sampling without  acceleration

techniques  by treating  the  surrounding solution  as  a  simple dielectric  medium.176–179 Implicit

solvent therefore avoids the issue of solvent configuration sampling altogether.
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Another  approach  to  improve  sampling  is  the  use  of  coarse-grained  (CG) molecular

dynamics methods. CG can be implemented with either explicit or implicit solvent. Most often,

CG models reduce the number of particles needed in a simulation by condensing atoms into

supra-atomic  beads.  CpHMD  methods  based  on  these  kinds  of  CG  force  fields,  including

Martini,180 HiRE-RNA,181 and OPEP6,182 have been recently developed.  Use of  supra-atomic

beads is, of course, more approximate that all-atom methods so this class of CpHMD methods is

most attractive for particularly large systems, such as multiprotein complexes, or long timescales,

such  as  those  of  protein  refolding.  Another  form of  CG is  to  simplify  the  MD force  field

potentials, reducing the number of calculations needed each timestep. This sort of CG is done in

methods such as discrete molecular dynamics (DMD)45,139,183 with square-well potentials used in

place of continuous ones. Such CG potentials allow for quasi-all-atom simulations (with only

some non-polar hydrogen excluded from full atomistic treatment), unlike other CG models. To

our knowledge, no CpHMD methods based on the CG potential paradigm of DMD yet exist.

Ultimately, regardless of protonation scheme, solvation, and use of CG, verification of

the generated ensemble of conformational and protonation states is  of great important in all

CpHMD methods. This is not trivial due to paucity of complementary experimental results. More

plentiful  indirect  evidence,  such  as  reconstruction  of  titration  curves  or  estimation  of

experimental pKa values, is not sufficient on its own for verification. Available results used in the

past  include  limited  helicity  and  secondary  structural  information  from  CD  and  NMR

spectroscopy,182,184–186 and occasionally X-ray crystal structures that demonstrate  pH-dependent

differences.187 Such verification is of critical importance when first introducing a method.

We  present  here  Titr-DMD  as  an  undemanding  method  for  the  investigation  of  pH

dependent protein behavior. Our method dynamically updates the protonation states of a DMD
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simulation45,139,183 using  pKa predicted  for  instantaneous  structures  along  its  trajectory  as

probabilities. In the current implementation Titr-DMD uses  pKa values generated through the

semi-empirical electrostatics method Propka, but is not restricted to that specific tool. It follows a

generally  similar  approach to  the  early  CpHMD promulgated  by Baptista  et  al.164 However,

DMD’s CG square-well potentials and implicit solvation provide rapid conformational sampling

at atomic resolution on limited resources, while periodic protonation state reassessment based on

Propka confers extensive protonation state sampling. Our program is highly modular for easy

modification as better approaches for instantaneous pKa prediction develop. We benchmark Titr-

DMD on both its ability to calculate ensemble pKa compared to experiment and on its ability to

recapitulate the  pH-dependent  conformational  change found experimentally in  staphylococcal

nuclease  (SNase),  a  rare,  well-described  system.188,189 Titr-DMD  proves  to  be  an  effective,

affordable method to study pH-dependent protein dynamic behavior at atomic scale.

4.2 The Titr-DMD Algorithm

In  contrast  to  traditional  molecular  dynamics,  the  interaction  potentials of  discrete

molecular dynamics (DMD) are square-well step functions. Neighboring interactions (such as

bonds, bond angles, and dihedrals) are modeled by infinitely high square well potentials. The

square-well  step  functions  result  in  0 forces  between atoms during  a  simulation.  An atom’s

velocity  remains  constant  until  a  potential  step  is  encountered,  when  the  velocity  changes

instantaneously according to the conservation of energy, momentum and angular momentum.

Thus, the simulation can be viewed as a series of collision events. At an adequately small step

size,  the  discrete  step-function  approaches  the  continuous  potential  function  and  DMD

simulations become equivalent to traditional molecular dynamics. The sampling efficiency of
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DMD compared to tradition MD arises mainly  from rapid processing of collision events: only

collided atoms are need to update at each collision. DMD uses a united-atom representation to

model proteins, in which all heavy atoms and polar hydrogen atoms of each amino acid are

included.45 Covalent bonds and bond angles are modeled by single-well potentials, and dihedral

interactions  are  modeled  by  multi-step  potential  functions  of  pair-wise  distance.  These

parameters are obtained by sampling the corresponding distance distribution in a nonredundant

database of high-resolution protein structures. The non- bonded interactions include the van der

Waals  (VDW),  solvation,  and  hydrogen bond interactions.  DMD uses  the  Lazaridis-Karplus

solvation model and uses a standard 12-6 Lennard-Jones potential to model the Van der Waals

interactions. The hydrogen bond interaction is modeled by the reaction algorithm.190

The Titr-DMD method combines rapid DMD45 conformational sampling with a custom

algorithm  to  resolve  protonation  based  on  Propka3.1158 pKa predictions. Simulations  are

performed iteratively, alternating between a short DMD simulation and a titration (Titr)-feature

that discretely assigns protonation states. The algorithm for the Titr-feature itself comprises five

steps:  (1)  titratable  residues  are  identified,  (2)  contact  networks  are  constructed  from  the

identified residues, (3) the solvent accessibility of each network is determined, (4) the probability

of  protonation  state  change is  determined for  each network or  residue,  (5)  protonation  state

changes are determined by a Monte Carlo step (Figure 4.1).
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Figure 4.1. Schematic of the Titr-feature algorithm. The algorithm runs between short
DMD (or any molecular mechanics) simulations to assign discrete protonation states.

The intervals between protonation state reassessment are run just long enough so that

protonation and deprotonation are equilibrated over the DMD simulation timescale. As isolated

proton transfer events, including many individual reaction steps in proteins,191 generally occur on

the  femtosecond to  picosecond timescale,192 200 DMD steps  (which  is  ~10 ps)  suffices  – a

comfortable separation of 1-3 orders of magnitude. The size of the timestep allows for both the

consistent and meaningful application of theory, discussed more thoroughly throughout the rest

of the description of the Titr-DMD method algorithm, and extensive sampling of a system’s

potential  protonation  states.  A higher  reassessment  frequency  is  therefore  unnecessary  and

computationally expensive; while additional time spent on the Titr-feature itself is minimal, a

higher frequency requires more, shorter DMD simulations and thus more time overhead during

the program initialization.
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Selection of titratable residues is based on their solution  pKa values. The amino acids

aspartate, glutamate, histidine, cysteine, tyrosine, lysine, and arginine are the only ones to have

side-chain solution  pKa values in the physiological range of  pH 1-13 and so are the only ones

considered. While significant shifts in pKa often occur when an amino acid is part of a protein,

all other residues have side-chain  pKa that fall far enough out of  the physiological range to be

largely  irrelevant  in  the  vast  majority  of  systems.  For  the  same  reason,  only  the  first

protonation/deprotonation event is considered for the included amino acids; states such as doubly

deprotonated lysine or doubly protonated glutamine are inaccessible. The C-terminal carboxylate

and N-terminal amine could be titrated as well, but are not currently implemented due to missing

DMD potentials for their less preferred states.

Contact networks are  constructed on the basis  of the proximity of titratable residues.

First, interacting pairs of residues are identified based on their (de)protonatable heteroatoms that

are within a  certain cutoff  distance,  rp,  of  each other. The protonation contact  distance  rp is

selected as 3.5 Å to be consistent with the DMD definition of a long hydrogen bond. Each thus

defined network represents a series of residues close enough that in the timeframe of the DMD

phase of the Titr-DMD simulation the proton exchange is equilibrated between them  and lies

firmly under thermodynamic control.

Solvent  accessibility  of  each  residue  contact  network  is  determined  in  a  manner

consistent with Propka, which defines a specific residue as buried or exposed based on its contact

number, w(N). w(N) is determined by the number of heavy atoms, N, within 15 Å of the residue’s

charge center according to
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w (N)={ 0
N−Nmin

Nmax−Nmin

1

if N≤Nmin

if Nmin<N<N max

if N≥Nmax

(4.1)

The residue is thus 0% buried if N ≤ 280 (Nmin) and 100% buried if N ≥ 560 (Nmax).158 In the Titr-

feature, a network is  considered solvent accessible if any residue in it is below a certain cutoff.

As proton exchange is equilibrated within a network, so long as one residue is solvent accessible

the rest of the network can freely exchange protons with solvent. The best value of the solvent

access cutoff is a parameter in the model and is often system dependent. We find that the most

appropriate value for the solvent access cutoff could range from 45% to 75% and matters most in

systems with important, frequently buried residues. Alternative approaches to the solvent access

cutoff are also possible. We discuss this fully in the future development of Titr-DMD section and

within our test system simulations.

The probability of a protonation state change is assessed for each titratable residue based

on  instantaneous  pKa and  the  residue  network  information.  In  the  current implementation,

Propka3.1 is used for  pKa prediction,  based on the latest  structure from  the preceding  DMD

trajectory.  The  protonation  state  change  probability  is  then  assessed  for  each  residue.  It  is

calculated differently depending on whether the residue is in a solvent accessible or inaccessible

network. For a solvent accessible network the probability is based on the pH of the solution with

which  the  residue  can  freely  exchange protons  (solvent  is  treated  implicitly  in  DMD).  This

probability is based off the Henderson-Hasselbash equation

pH=pK a+log(
[D ]
[P]

) (4.2)

where [D]  is  the concentration of  the deprotonated state  and [P]  is  the concentration of the

protonated state. Therefore, the probability of adopting the protonated state, PP, can be defined as
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PP=
[P]

[P ]+[D ]
= 10pKa−pH

1+10 pK a−pH (4.3)

In the solvent inaccessible case, only the titratable protons already present in the network can be

exchanged.  Buried residues not part of a network are therefore unable to change protonation

state,  unless,  over the course of a simulation,  they become solvent accessible or merge with

another network. The probabilities of protonation state  changes for  the residues in  a contact

network are thus coupled; protonation state changes must be determined for the whole network at

once,  rather  than  residue  by  residue.  Solvent  inaccessible  networks  therefore require  full

enumeration  of  all  proton configurations  across  the  network.  The  preference  of  a  proton to

localize  on  any  individual  residue  is  determined  by  its  pKa,  but  with  comparison  to  the

competing residues in the network rather than the solution pH. To calculate the probability of a

configuration, let  R be the set of all residues in a network and  n be the number of titratable

protons in that network. Let T|n(R) be the set of all possible proton configurations S, Q, ... such

that  T|n(R) = {S ∈ T(R) : |S| =  n}. Then for every  S ∈ T|n(R) the probability of adopting that

proton configuration is

PC (R ,S)=
∏
s∈S

10pKa (s)

∑
Q∈T∣n(R )

∏
q∈Q

10pKa ,T(q)
(4.4)

The weighting term for each proton configuration is the product of 10 raised to the pKa of each

residue that holds a proton in that state (s ∈ S, q ∈ Q, ...). Equation 4.4 is used to calculate the

probability of each possible configuration.

Finally, protonation state changes are decided discretely by a single Monte-Carlo  step

based on the probabilities generated for each network. As with the probabilities,  the decision

differs slightly between solvent exposed and buried networks. For solvent accessible networks, a
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decimal between 0 and 1 is randomly generated for each residue and compared to its decimal

probability.  If  it  is  above  that  probability  the  residue  is  unprotonated,  and  if  below  it  is

protonated. The solvent accessible approach holds regardless of what the previous protonation

state was. For solvent inaccessible networks, the decimal probabilities of all potential protonation

configurations are put in a sequential order. A probability range for each configuration, S, is then

defined as from  PL up to  PL +  PC(R,S), where  PL is the sum of all configuration probabilities

already considered and PC(R,S) is that of the current configuration. A decimal between 0 and 1 is

then randomly generated, and the configuration is decided based on which range  the random

number falls  within.  Probabilities  are  generated and protonation states  are  decided just  once

during the Titr-feature step before moving on to another DMD simulation step. Any changes

from the previous structure are then made, with hydrogen removed when necessary and DMD

placing any new hydrogen on the appropriate heteroatoms. The structure is then ready for the

next DMD simulation.

A correction is  needed to maintain consistency across DMD energies  in  a Titr-DMD

trajectory. As the Titr-feature may add and remove hydrogen by exchange with implicit solvent,

the  chemical  composition  of  the  system can change.  As protonation  state  changes  are  done

through an external program, the energy associated with them are not directly taken into account

in the DMD Hamiltonian which only sees the loss and gain of hydrogen. Consequentially, the

correction does not affect how protonation state changes are made, but is simply for analysis of

the energy trajectory. One approach for an energy correction would be to use a value for the

solvation energy of a proton, but that can not be obtained directly from experiment and can only

be  determined  by  extrapolation.56 Values  that  can  be  obtained  for  the  solvation  energy (-

264.3193 and -265.9 kcal/mol56,194) are large compared to the DMD energy changes associated
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with  structural  fluctuations  (ca.  100 kcal/mol).  Unmodified  use  of  the proton solvation  free

energy would result in unphysical behavior – Titr-DMD would always deprotonate any residue.

Appropriate scaling of the solvation energy is one solution. For  the current implementation of

Titr-DMD an energy correction for each iteration is obtained instead based on the Propka pKa of

all residues with protonation states that deviate from the original structure. For each protonation

state, take the following acid dissociation reaction

PRTN⇌ PRTN -+H+ (4.5)

where PRTN is the original protein and PRTN- is the new state. The free energy of reaction 5 can

be written as

ΔGdeprot=G(PRTN -)+G(H+)−G(PRTN ) (4.6)

Additionally, the Ka of the reaction is defined as

K a=e−ΔGdeprot /RT (4.7)

Hence

G(PRTN -)+G(H+)=G(PRTN )−RTln(10−pK a) (4.8)

where  G(PRTN)  is  the uncorrected DMD energy and the left-hand side of  the reaction is  a

corrected  energy  for  a  comparable  system  with  the  same  chemical  composition.  For  the

protonation reaction, casting PRTN as PRTN+ and PRTN- as PRTN in the original reaction gives

the equation

G(PRTN+)−G(H+)=G(PRTN )+RTln(10−pK a)  (4.9)

The energy associated with each protonation state change from the PRTN structure can therefore

be  written  as  ±RTln(10-pKa),  positive  for  protonation  and  negative  for  deprotonation.  The

corrections are  on  the  scale  of  2-20  kcal/mol,  consistent  with  DMD  energy  fluctuations.
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Correction terms are calculated for each iteration and summed with its DMD energy for the

corrected energy.

4.3 Current Limitations of Titr-DMD

The scope of Titr-DMD leaves it with a few limitations, which are worth describing here.

Its reliance on Propka and DMD implicit solvent means that it does not take interactions with

ions  in  solution  into  account.  Other  methods rely  on  Debye-Huckel  theory  to  do  this.162 As

covered in  the  Results  and Discussion section,  benchmarking suggests  that  Propka does  not

always  provide  accurate  pKa’s  for  certain,  specific  residues,  namely  cysteine  and  aspartate

residues with very acidic  pKa’s (around 1.0). However, Propka does quite well with glutamate

and asparate  residues  with  pKas’ near  to  or  higher  than  the  solution  value (above 4.5).  The

protonation of cysteine in disulfide bridges – and thus breaking of disulfide bridges – is not

allowed in the current implementation. Titr-DMD does not assess protonation state changes to

the C-terminal carboxylate or N-terminal amine. Titr-DMD has so far not been used to study

catalytic protonation and deprotonation events, so it is unclear how well it can describe highly

coupled, hydrogen bonding residues often involved in these processes.195 However, Titr-DMD

may obtain reasonably accurate pKa’s for catalytically coupled residues as both DMD and Propka

contain hydrogen bonding terms. Investigations of  such behavior are beyond the scope of this

initial publication and left for future studies.

4.4 Future Development of Titr-DMD

The modularity of Titr-DMD allows for easy adaptation and refinement. Changes to the

method do not require reparameterization of the forcefield. Future developments of Propka or

75



any other tool to calculate the instantaneous  pKa of a protein conformer can be exchanged to

generate the probabilities of protonation state change and improve the quantitative accuracy of

the feature.  The Titr-feature could even be paired with another molecular mechanics method

besides  DMD,  so  long  as  it  is  in  implicit  solvent  for  consistency  with  the  probabilities  of

protonation state change. Alternatives to the somewhat system dependent solvent access cutoff

are also of interest. One is to use the Propka buried percentage as a scalar probability of solvent

accessibility rather than assign a sharp cutoff, while another is based on the solvent-accessible

surface  (SAS)  determined  by reduced  surface.  The  SAS method  defines  the  contour  of  the

protein that can be accessed by solvent by rolling a sphere with the van der Waals radius of the

solvent  (the  ‘probe’)  across  the  protein,  avoiding  the  van  der  Waals  radii  of  the  other

atoms.196 The solvent accessibility of any residue can be determined by measuring the distance of

its titratable group to the nearest vertex of the water SAS. If the vertex is within the van der

Waals radius of the titratable group, it is solvent accessible. We are currently investigating a SAS

approach for future developments.

4.5 Benchmark Systems and Settings

Most of the systems considered for  pKa prediction have been studied extensively both

experimentally  and with other computational  methods (Figure 4.2).  Hen egg-white lysozyme

(HEWL) was used as it is a prototypical system for CpHMD benchmarking. The input structure

of the protein was taken from the Protein Data Bank (PDB ID 1LZN).197 All solvent molecules

were removed for the simulation – water, nitrogen trioxide, and the sodium ion. As HEWL only

reports  experimental  pKa for  GLU, ASP,  LYS, TYR, and a  single HIS residue,  both human

thioredoxin (HTRX) and human muscle creatine kinase (HMCK) were simulated as well. HTRX
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brought in  another HIS residue to the dataset alongside many more GLU and ASP. Two CYS

residues in HTRX were not considered, as they are involved in a disulfide bridge. HMCK only

added one CYS residue to the dataset, but was included as it is one of the largest proteins with an

experimentally identified amino acid pKa at 381 residues (compared to 105 residues for HTRX

and 129 for HEWL). A Staphylococcal nuclease mutant, V66K (SNase V66K), was included as

it contains a buried LYS66 residue that is deprotonated at neutral pH. The initial structure used

for HTRX was PDB ID 1ERT,198 with all water molecules removed and the rotamers labeled ‘A’

used when more than one was recorded. As it is unclear whether the 320-331 loop of HMCK is

unstructured or an alpha helix, two structures were used. The unstructured case was based on the

A chain of PDB ID 1U6R,199 mutated back to the WT sequence with the substrate ADP, inhibitor

(diaminomethyl-methyl-amino)-acetic  acid,  all  water,  nitrogen  trioxide,  and  magnesium ions

removed. The alpha loop structure was the same except the 320-331 loop was replaced with the

321-332 loop of the A-chain from PDB ID 3B6R.200 The structure used for SNase V66K was

PDB  ID  2SNM201 with  thymidine-3’,5’-diphosphate,  water  molecules,  and  the  calcium  ion

removed.  All  experimental  reference  pKa were  drawn from the  PKAD database.202 The  pKa

values used ultimately come from Bartik et al.203 and Webb et al.204 for HEWL, from Forman-

Kay et al.205 and Qin et al.206 for HTRX, Wang et al.207 for HMCK,  and Fitch et al. for SNase

V66K.208 The pKa predictions from our simulations measure error and deviations to the average

of these datasets for each residue with more than one reported value. Titr-DMD pKa predictions

were also compared to existing methods. For HTRX, values were obtained from Harris et al., 172

an explicit solvent replica exchange CpHMD method. Comparisons for HEWL were made based

on a  truncated  set  of  residues  that  was  also  assessed  by the  explicit  solvent  Vila-Viçosa  et

al.174 and Goh et al.169 replica exchange CpHMD methods, the implicit solvent implementation of
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the Wallace et  al.173 replica exchange CpHMD method,  a  CG CpHMD method using supra-

atomic  beads  called  OPEP6,182 and  the  Monte-Carlo  method  FPTS.178 The  dataset  includes

mostly asparatate and glutamate residues as well as one histidine residue. Comparisons for the

buried  LYS66  of  SNase  V66K  were  made  with  the  Wallace  et  al.  implicit  solvent-based

CpHMD173 and FPTS.178 There was no other result to compare to for HMCK, but assessment of

cysteine residues is unusual. Finally, for all the benchmark systems results were also compared to

the NULL model. The NULL model does not involve any simulation but is used to calculate

error with solution pKa values assigned to each amino acid. In our case, we assign amino acids

the reference solution pKa values used by Propka. Beating the NULL model is important for any

pKa prediction tool as failure to do so means that the tool does not even qualitatively capture the

pKa shifting effect of the protein environment on residues.
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Figure  4.2. Ribbon  diagrams  of  protein  test  systems  for  Titr-DMD
benchmarking: HEWL (A), HTRX (B), HMCK (C), and SNase mutant V66K
(D). The residues whose  pKa's are considered and compared to experiment are
highlighted in yellow. In the case of the SNase mutant, this is the buried LYS66
residue. The alpha helical loop to which it belongs and that unravels is shown in
red.

The  system  used  to  assess  pH-conformational  coupling  was  SNase  V66K,  a  well

characterized  system  (Figure  4.2D).  Experimental  information  about  protein  conformational

dynamics,  including in  the context  of  pH change,  is  difficult  to  obtain.  As discussed in  the

introduction, the study of SNase mutants is a rare example with available experimental data on
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dynamics. A combination of NMR, CD, and titration suggests that the protonation of LYS66 is

concurrent with and may be coupled to the unraveling of the first loop of the alpha helix on

which it is located.188,209–211 The V66K mutant was selected as it demonstrates an extreme  pKa

shift of 10.5 down to 6.4 – which alongside the conformational coupling is a real challenge for

any CpHMD method.

Benchmarking simulations differ slightly between those done to estimate pKa values and

those that assess pH-conformational coupling. The pH-conformational coupling simulations were

longer and hotter to achieve the necessary sampling. DMD simulations without the Titr-feature

were  also  run  for  the  pH-conformation  coupling  system  as  a  control  –  to  make  sure

conformational  changes  are  pH dependent.  The  pKa estimating  simulations  were  run  for

2,000,000 DMD timesteps (roughly 100 ns, defined empirically) at 50 K (note that temperature

in  DMD  is  defined  specifically,  and  does  not  directly  correspond  to  the  physical

temperature).45 A high heat exchange of 10.0 was used for thermal stability because Titr-DMD

consists of many short DMD simulations – a more typical, low value has a destabilizing effect.

As discussed with the description of the method, a standard protonation contact distance of 3.5 Å

was used, as well as the standard protonation state reassessment frequency of 200 steps. The

solvent  access  cutoff  was  75%,  which  is discussed  in  more  detail  in  Appendix  C.  The  pH-

conformation coupling simulations were run for a longer 4,000,000 DMD timesteps (roughly 200

ns) with solvent access cutoff values of 65% and 45% ultimately selected and a temperature of

150K for increased mobility. The other settings were the same as for the  pKa prediction. The

DMD  control  simulations  without  the  Titr-feature  were  performed for  the  same  time  and

temperature as the pH-conformational coupling simulations.
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A total  of  45 Titr-DMD and 4 DMD simulations  were  performed for  benchmarking.

Simulations were done for HEWL at  pH 3, 5, 7, and 9, for HTRX at  pH 3, 5, and 7, and for

HMCK both with the unstructured and alpha helical 320-331 loop at pH 9. The pH values were

selected to straddle the  pKa of residues with experimentally reported values. Simulations were

run for SNase at pH 4.6, 5.7, and 7. These values are much below, slightly below, and above the

experimental  pKa of the LYS66 residue and its coupled dynamic behavior. All are above the

denaturing point of the protein. Three replicates were performed for each system and pH. The

four DMD simulations were run for SNase to provide a point of comparison. Two were run with

LYS66 permanently deprotonated and two with it permanently protonated.

Convergence of the Titr-DMD simulations was attained according to a series of metrics.

This  is comprised  chiefly of the backbone RMSD and the corrected Titr-DMD energy (Figure

4.3). The RMSD was calculated with the initial structure as the reference and with respect to the

alpha carbon and amide nitrogen, carbon, and oxygen of each amino acid. All trajectories come

to  oscillate  around  fixed  values,  indicating  convergence  of  the  overall  protein  structures.

Convergence for HMCK and SNase V66K, systems with just one amino acid of interest, was

tracked  by  additional  metrics  covered  in  Appendix  C:  the  average  pKa and  the  average

protonation state of the titratable residue of interest.
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Figure 4.3. Convergence of Titr-DMD simulations tracked by (A) the backbone RMSD and (B)
corrected DMD potential energy. Note that by both metrics the results come to oscillate around
fixed  values  by  the  end  of  the  simulations,  indicating  convergence  for  the  overall  protein
structures. The average RMSDs across all trajectories are 1.77 ± 0.29 Å for HEWL, 1.20 ± 0.18
Å for HTRX, 2.51 ± 0.48 Å for HMCK, and 3.67 ± 1.57 Å for SNase. The average energies
across  all  trajectories  are  140.18 ± 57.79 kcal/mol for  HEWL, 174.93 ± 77.49 kcal/mol for
HTRX, 393.52 ± 104.51 kcal/mol for HMCK, and 95.93 ± 29.94 kcal/mol for SNase.

4.6 Benchmark Simulation Results

Titr-DMD offers rapid sampling on limited resources.  The combination of DMD and

Propka in an implicit solvent makes it a fast and affordable method. We assessed the scaling of
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Titr-DMD through 1000 step (5 protonation assessments, about 50 ps) simulations of HEWL,

HTRX, and HMCK executed with 1, 2, 4, 8, and 16 processors both with and without the Titr-

feature. All simulations were run on the same node sequentially during a single submission to

reduce the impact of the variability of other demands on the supercomputing cluster. Simulations

were performed on AMD Opteron 2380 (2.5 GHz) cores on Hoffman2 at UCLA IDRE. This

process was replicated five times, with the average of these results taken (Figure 4.4). Titr-DMD

scales roughly linearly with the number of residues, and scales favorably out to four processors,

with additional resources giving diminished returns. The Titr-feature does modestly increase the

computational  expense of  DMD simulations,  with the increase in  relative runtime over base

DMD growing some with the number of processors used. The increase largely derives from the

need to initialize many short DMD simulations. However, Titr-DMD still runs quite well on

limited resources; the CPU time for the four processor tests scales up to 500-1300 CPU hours (or

3-5.5 CPU hours per residue) to reach a 1 ms simulation.
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Figure 4.4. Computational resource scaling benchmark of Titr-DMD, plotted by (A) the number
of processors and (B) the number of residues. Note the linear scaling with number of residues
and that good performance is reached with four processors. (C) The percent increase of time for
Titr-DMD over unmodified DMD. Note that the increase is relatively small and only becomes
significant with many processors as the time DMD takes shortens.

With  a  couple  exceptions,  our  Titr-DMD  method  successfully  recapitulated the

experimental  pKa of the test system residues  with reasonable error. We calculated the average

RMSE between the predicted and experimental values both by type of amino acid and by protein

test system (Tables 4.1 – 4.4). The pKa can be calculated two ways from Titr-DMD, therefore we

calculated two average RMSE for each case. Propka-averaged pKa is simply the average of the

Propka predicted values from each timestep. The DMD-averaged pKa for a residue is the natural

logarithm  of  the  fraction  of  timesteps  in  which  the  residue  is  protonated.  That fraction  is

analogous to the Ka: the relative concentration of the protonated form of the residue. For solvent

exposed residues (those that can freely change protonation state just based on their instantaneous
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pKa) the two pKa predictions should converge to the same values with appropriate sampling. The

results  show that  indeed the pKa are  in  good agreement  between  the  two methods for  each

system, with the notable exception of SNase V66K LYS66 – a deeply buried residue. The overall

maximum absolute error, mean average error, and root mean square error across the full dataset

(excluding an outlier HMCK CYS283, discussed later) were 3.25, 0.77, and 1.03 for the DMD-

averaged  pKa’s and 2.43, 0.81, and 1.05 for the Propka-averaged  pKa’s respectively, which is

decent agreement with experiment for a CpHMD method.

Table 4.1. Experimental and calculated  pKa values of HTRX. *Proximity of these residues
meant that the exact experimental value in the Qin et al.  study was unclear.  **A series of
possible pKa were found for this residue in the Forman-Kay et al. study, the value of 9.0 was
selected due to its consistency with the Qin et al. result. Experimental data from ref 176 (Qin)
and ref 175 (Forman-Kay). Other calculated data from aref 141.
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Table 4.2. Experimental and calculated pKa values of HEWL. *Maximum absolute error, mean
average error, and root mean square error were also calculated for a truncated set of ASP, GLU,
and HIS residues so that Titr-DMD could be compared to referenced methods that only report
those. Experimental data from ref 173 (Bartik) and ref 174 (Webb). Other calculated data from
aref 142, bref 138, cref 143, dref 151, and eref 147.

Table  4.3. Experimental  and  calculated  pKa for
CYS283 in HMCK. Experimental data from ref 177.
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Table  4.4. Experimental  and  calculate  pKa for  LYS66  in  SNase  V66K.
Experimental data from ref 65. Other calculated data from aref 142 and bref 147.

Titr-DMD predictions of pKa values are competitive with other CpHMD methods. Across

nearly all of the benchmark systems, Titr-DMD outperforms the NULL model. The RMSEs by

protein are lower at  0.82-0.83 versus 1.58 for HTRX and 1.19 versus 1.31 for HEWL. The

absolute error for SNase V66K LYS66 is 0-1.5 versus 4.1 for the NULL model. HMCK is the

one exception, as Propka predicts the pKa of the single CYS283 residue poorly: 5.7 in absolute

error from the experimental value versus 3.4. There was no DMD-averaged value for the residue

as the Propka predicted pKa’s were too high and so the residue was rarely deprotonated in our

simulations  (all  conducted  at  pH well  below  11).  Titr-DMD  matches  or  outperforms  more

expensive CpHMD methods with HTRX and SNase V66K. For HTRX, Titr-DMD reports  a

smaller RMSE of 0.82-0.83 versus 0.95 for the Harris method, while the absolute error in the

SNase  V66K  LYS66  pKa is  0-1.5  compared  to  the  1.1  of  the  Wallace  method.  Titr-DMD

performs  worse  than  more  expensive  CpHMD  methods  with  HEWL,  but  is  comparable  to

another  CG method.  Its  RMSE for a  truncated dataset  (comprised mostly of  ASP and GLU

residues) is 1.45-1.46, above the 0.82-0.89 of the more expensive Wallace, Goh, and Vila-Viçosa

methods, but close to the 1.32 of the CG OPEP6.

The performance of Titr-DMD arises from its ability to accurately predict many large pKa

shifts. Our method generally does well with ASP and GLU residues that report pKa’s shifted to
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more basic values, but struggles to provide accurate pKa’s for those shifted to very acidic values

(around 2.0 or below). Titr-DMD outperforms the more expensive method with HTRX largely

through its more accurate prediction of the pKa of ASP26, shifted according to experiment to the

very basic 9.5. Conversely, the poorer performance of Titr-DMD with HEWL is due to the large

number of ASP residues shifted to highly acidic values in that system. Titr-DMD struggles to

predict the large pKa shift of the cysteine residue in HMCK, the one case where it fails to beat the

NULL model. However, as this was the one CYS residue considered in the test set, Titr-DMD

may do better with other examples. Titr-DMD does quite well predicting the shifts of LYS and

TYR residues, including the buried and highly shifted LYS66 of the SNase system. The Propka-

averaged and DMD-averaged values give qualitative agreement with experiment, but the latter is

quantitatively more accurate. Conformational sampling frequents solvent inaccessible states for

this residue, with the result of LYS66 spending more time deprotonated than the Propka  pKa

would suggest and correcting it toward the experimental value. Furthermore, for LYS66, both our

CpHMD  method  and  the  Wallace  et  al.  method  outperform  FPTS,  which  doesn’t  perform

extensive backbone dynamics and does worse than the NULL model. This demonstrates how

important pH dependent conformational dynamics are for particular residues and proteins.

Titr-DMD holds promise for the study of the effect of solution pH on protein structure.

Simulations  of  SNase  V66K  are  qualitatively  consistent  with  rare,  experimentally  studied

dynamics. With the Titr-feature, we observe partial unraveling of the first turn of the alpha helix

on which K66 is localized on (residues 65-69), which is not apparent in DMD without titration

(Table 4.5). Unraveling is only observed in 0.002-0.015% of structures in base DMD, while Titr-

DMD simulations show it occurs in 3-8% of structures. We define an unraveled state as one

where the ALA69-LYS66 and ASN68-MET65 hydrogen bonds are broken or breaking and the
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backbone RMSD of the loop is large relative to that of the full protein, indicative of significant,

localized structural change (Figure 4.5). The criterion is

SRMSDRMSDT /RMSDL

((R1−RHB)+(R2−RHB))/SHB

≤2 (4.10)

where RMSDT is for the total protein and RMSDL is for the loop (residues 65-69), R1 and R2 are

the backbone amide H to carbonyl  O distances  in  Å of ALA69-LYS66 and ASN68-MET65

respectively, SRMSD is 2, RHB is 2.5 Å (for a long hydrogen bond length), and SHB is 2 Å. We only

consider  structures  where  the  ALA69-LYS66  and  ASN68-MET65  backbone  hydrogen  bond

distances are both at least 3 Å. While unraveling according to our criterion occurs in 3-8% of all

states at the appropriate  pH, it is not typically sustained for longer than about 1 ns at any one

time. We surmise that our simulations do not have enough sampling to capture sustained loop

unraveling, but do show the rare events that could lead to it.

Table  4.5. Frequency  of  SNase  mutant  V66K  alpha
helical  loop  65-69  unraveling  over  the  course  of  Titr-
DMD (upper)  and DMD (lower)  simulations.  Note that
the  frequency  is  much  higher  in  the  Titr-DMD
simulations. The highest frequency that occurs a bit below
the experimental pKa of LYS66 (6.4) is when the solvent
access cutoff is 45%.
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Figure 4.5. (A) Criterion for an unraveled 65-69 loop structure in
our  SNase  simulations.  This  compares  the  RMSD  of  the  loop
(RMSDL)  to  the  RMSD  of  the  full  protein  (RMSDT)  and
compares  the distances of  important  hydrogen bonding contacts
(R1, R2) to standard values (RHB) to determine structures where
the conformation of the loop varies significantly from the original
structure.  We give the values of the other variables in the main
text. (B) Example of a SNase conformation with an unraveled 65-
69 loop by our criterion (light blue) overlaid on a structure where
it is not unraveled (tan). LYS66 is colored yellow here.

Protonation and deprotonation of LYS66 is coupled with loop unraveling according to

Titr-DMD. At pH 5.7, the percentage of unraveled states is significantly higher around LYS66

protonation state changes than the total simulation average (Table 4.6). Moreover, few events at

pH 5.7 occur without contemporaneous unraveling. The coupling we observe in our simulations

is thus consistent with the experimental hypothesis.188
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Table 4.6. Frequency of unraveling of the SNase mutant 65-69
loop  around  LYS66  protonation  and  deprotonation  events.
‘Near  event’ refers  to  the  percentage  of  structures  within  25
timesteps (before and after) of an event that are unraveled. This
value is roughly on par with the total simulation average except
at pH 5.7, particularly during the simulation with a 45% solvent
access  cutoff.  ‘By event’ refers  to  the percent  of  events  that
have  at  least  one  unraveled  structure  within  25  timesteps.
Again,  note  that  the  pH 5.7  simulations  show high coupling
where protonation state changes nearly always occur alongside
some contemporaneous unraveling.

Titr-DMD dynamics can predict the  pH at which loop unraveling occurs. The Propka-

averaged pKa value of LYS66 is uniformly higher than the experimental 6.4, at an average of 7-8,

but still shows a qualitatively correct large drop from the solution value of 10.5. However,  as

discussed before, the DMD-averaged pKa is generally lower and close to the experimental value,

representing  the  frequent  solvent  inaccessibility  of  the  residue.  The  values  in  Table  4  are

averages across the 45% cutoff and 65% cutoff simulations; their individual DMD-averaged pKa

are both close to the experimental result at  5.79 and 7.04 respectively. At these two cutoffs,

unraveling is generally most common in the pH 5.7 simulations and nearly all protonation state

changes occur alongside some unraveling. Titr-DMD can qualitatively model coupling between

pH and protein structure, and when well calibrated can do so with more quantitative accuracy.
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4.7 Conclusions

In this paper we demonstrate Titr-DMD as an effective new method to study pH-coupled

protein dynamics. The challenges that face any CpHMD method are appropriate conformational

and protonation state sampling, accuracy of protonation state changes, and whether the generated

conformational ensemble is physically meaningful. Titr-DMD offers great sampling on just a few

processors through atomic collision event calculations, implicit  solvation,  and semi-empirical

pKa prediction  with  Propka.  Our method obtains  reasonably  accurate  pKa predictions  for  its

computational expense. Titr-DMD was successfully benchmarked on the partial unraveling of

SNase mutant V66K: one of the few experimentally studied pH coupled conformational changes.

Titr-DMD generates a conformational ensemble consistent with experiment, and this ensemble

even  reflects  the  experimental  pH value  of  the  conformational  change.  Our  method  is  also

modular to further improve sampling and accurate assignment of protonation states. Titr-DMD

stands as a promising method to address questions of  pH dynamics in industrial catalysis and

medicine.
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Chapter 5

Uncovered Dynamic Coupling Resolves the Ambiguous Mechanism

of Phenylalanine Hydroxylase Oxygen Binding
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5.1 Introduction: The Role of Phenylalanine Hydroxylase (PAH) in Phenylketonuria and

Hypothesized Mechanisms

While phenylalanine hydroxylase (PAH) is critically implicated in a range of problems of

medical and biological interest, its activity is not fully understood. It is an important metabolic

protein  responsible  for  phenylalanine  catabolism212–214 and  over  280 different  mutants  of  the

protein have been genetically linked to the well-studied condition phenylketonuria (PKU),215 a

candidate for gene therapy.216 Two mutants of particular interest are R158Q, which is a common

mutant  as it  comprises  40% of  PKU haplotype 4 alleles in  Europe,217 and E280K, which is

unusual among PKU mutants as it found on multiple haplotypes.218 The protein is highly similar

to both tryptophan hydroxylase and tyrosine hydroxylase, which perform the same function on

their respective amino acids.212 PAH is found as a highly conserved homodimer or homotetramer

of 51.7 kDa subunits,219,220 with an iron center in each monomeric unit that binds and cleaves

diatomic oxygen.221,222 Activated oxygen then participates in one of two competing pathways: the

oxidation of phenylalanine to tyrosine, which dominates in wild type PAH, or the formation of

hydrogen peroxide, which dominates in the PKU-inducing mutants.223 Despite all the interest in

PAH, two critical features in this mechanism of O2 binding and activation are poorly understood.

First, both PKU-inducing mutations, Arg158Gln and Glu280Lys, occur far from the active site.

X-ray crystallography shows that in the wild type these two residues form a salt bridge around 20

Å away from the iron center (Figure 5.1). Why the disruption of this distant interaction affects

PAH activity has not been firmly established. The second is the role of a (6R)-L-erythro-5,6,7,8-

tetrahydrobiopterin (BH4) cofactor. The binding of  BH4 to the active site is necessary for PAH

function,  where  it  presumably  assists  the  iron  center  in  binding  and  cleaving  O2.  Despite

extensive study, including on tryptophan hydroxylase and tyrosine hydroxylase which suggest
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they operate by the same general pathway,224–226 no research to date fully resolves either of these

specific questions.

Figure 5.1. The phenylketonuria inducing mutants (red) of phenylalanine hydroxylase (PAH)
are surprisingly far from its  active site (yellow).  (B) The oxygen activating and cleaving
activity of PAH is not well understood structurally. In the Siegbahn mechanism, the metal has
an additional water ligand and oxygen binds to the metal before the cofactor. According to
the Solomon mechanism a change in orientation of the cofactor could explain the preferential
H2O2 forming activity of the mutant.

Our study starts with structures implicated in a prominent mechanism put forward by the

laboratory of Prof. Solomon based on spectroscopic data,223 which posits solid initial hypotheses

on our two mechanistic questions but lacks sufficient atomistic evidence to support them. This

mechanism hypothesizes that O2 binds first to BH4 and then to the metal in the natural, tyrosine

forming pathway. It then conjectures that the cofactor is positioned improperly in the active site
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of the mutants, so that O2 instead binds just to BH4 and forms H2O2 in the pathological pathway.

The Solomon study also  notes  the proximity  of  Arg158 to two loops around the  active site

identified in a previous study: one comprising residues 131-155 and another comprising residues

247-251 which forms some hydrogen-bonding contacts with the cofactor.220,223 However, neither

of these contacts fully explain the coupling between the mutant residues and the cofactor for a

number of reasons. First, they hinge just on the simple proximity of Arg158 rather than specific

interactions.  Second,  they  are based  on a  single crystal  structure of  the  PAH wild type  and

contain no information about the mutant state. Finally, as they are based on a single structure

they  consequentially  ignore  any  dynamic  aspects  of  long-range  coupling.  These  gaps  in

knowledge necessitate an all-atom investigation of PAH O2 binding activity.

We also consider structures from a potentially problematic mechanism suggested by the

laboratory of Prof. Seigbahn based on DFT studies of small models of the PAH active site.227 For

the  O2 binding step of  interest  to  us  the  model  this  mechanism utilized lacks  the  necessary

presence of the phenylalanine substrate and has an inappropriate additional water ligand bound

to the iron center rendering it inconsistent with previous kinetic and spectroscopic findings.223 It

thus corresponds more closely to an inactive form of PAH. Our consideration of this mechanism

therefore acts as a negative control to see if any dynamic behavior we identify is truly unique to

the O2 binding step or a general property of the protein.

In this study, we performed extensive mixed quantum-classical dynamics simulations on

the whole protein and its two pathogenic mutants at full atomistic resolution with QM/DMD, a

rapid sampling method for metalloproteins (described fully in the methods section). The active

sites  are  specified  by  both  the  Solomon  and  Seigbahn  mechanisms  with  appropriate

modifications.  Simulations capture the wild type (WT),  R158Q, and E280K variants  for the
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Seigbahn structures and the WT and R158Q variant for the Solomon structures, with the E280K

variant excluded as its different metal coordination precludes direct comparison of energy with

the wild type. Our simulations of the Seigbahn construction show it to be highly rigid, in contrast

to the flexibility of the Solomon system; the difference demonstrates that the dynamic behaviors

of  the  Solomon  system  are  inherent  to  the  O2 binding  step.  These  behaviors  consist  of  a

significant difference in cofactor orientational preference between the native and mutant forms of

the protein and a robust coupling between the cofactor and mutant residues distinct from the

static  hydrogen-bonding  networks  suggested  by  Solomon.  The  obtained  structural  data

corroborate and expand both Solomon hypotheses with necessary atomistic detail.

5.2 Theoretical Methods

A total of 7 replicates for each of the Siegbahn systems and 10 replicates for each of the

Solomon systems were run. Simulations were run for 40 to 80 ns. Details about the preparation

of each system and the results of the undiscussed systems can be found in Appendix D.

The established QM/DMD method was used for these simulations.44 This is a technique

for sampling metalloprotein conformations which uses discrete molecular dynamics (DMD)45 to

describe the protein and quantum mechanical (QM) electronic structure calculations necessary to

model the metal and its environs. Both methods treat an overlapping region, consisting of species

participating in  important,  non-covalent  interactions near  the metal,  to  mitigate  discontinuity

errors.  QM/DMD has a  strong record of successfully explaining a variety of metalloenzyme

behaviors. A full description of QM/DMD’s capabilities can be found in Chapter 1.2.

All  QM calculations  in  this  study  were  performed  at  the  DFT level  of  theory  with

Turbomole  (version  6.6).64 The  pure  meta-GGA TPSS  functional65 with  the  D3  dispersion
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correction66 was used. The metal was treated with the triple-zeta basis set def2-TZVPP and all

other atoms with the double-zeta def2-SVP basis set.67 While the small basis set may result in

some degree of basis set superposition error, the large size of our QM regions have precluded the

use of larger basis sets. Furthermore, the level of theory employed without correction has proven

effective in our cited past studies including for quantitative free energy comparisons. Finally, the

Conductor-like  Screen  Model  (COSMO)  with  a  constant  dielectric  of  4  was  applied  to

approximate  the  screening  and  solvation  effects  in  the  relatively  buried  active  sites  of  the

systems.68 All DMD simulations in this study were performed for 10,000 steps per iteration (0.5

ns).

Convergence of the QM/DMD simulations was achieved according to a series of metrics.

These consist of the full protein all-atom RMSD (calculated with respect to all atoms in our

models), active site all-atom RMSD (calculated for just the atoms in our QM region) and the

DMD  energy  and  QM  energy.  The  RMSD  values  were  calculated  with  the  initial  protein

equilibrated for  one  QM/DMD iteration as  the  reference structure.  The full  protein all-atom

RMSD trajectories of each system are included in this text as an example (Figure 5.2), while

plots of the other three standards can be found in Appendix D.

Figure 5.2 Plots of the full protein, all-atom RMSD by timestep for every QM/DMD simulation
in this study. The plots include all replicates of the wild type (dark red), R158Q mutant (medium
blue), and E280K mutant (light violet, only in Seigbahn simulations). Notice how all replicates
oscillate around the value of 2 Å, indicating convergence.
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5.3 Results and Discussion

The QM/DMD simulations show the Seigbahn system to be conformationally stiff, with

little difference between the wild type and mutant structures. The full protein RMSDs of the PAH

variants indicate well converged trajectories: 1.89 ± 0.19 Å for the WT versus 1.93 ± 0.26 Å for

R158Q and 1.89 ± 0.19 Å for E280K. There are no significant differences between the structures

of the active site, with RMSDs of 0.70 ± 0.23 Å for the WT versus 0.70 ± 0.24 Å for R158Q and

0.69  ± 0.27  Å for E280K (Figure 5.3). The average distances between the Fe center and the

central (average) point of BH4 are all nearly the same: 4.64 ± 0.10 Å for the WT versus 4.72 ±

0.17 Å for R158Q and 4.66 ± 0.09 Å for E280K. Even the orientation of the cofactor relative to

the metal does not change with the mutations. The angle between the metal and BH4 is 48.4 ±

2.1° for the WT versus 46.9 ± 5.5° for R158Q and 47.8 ± 1.6° for E280K. Furthermore, given the

low standard deviations of these values, there are no significant populations of other angles that

might characterize the position of  BH4 during the competing,  H2O2 forming pathway. As the

Seigbahn structures correspond to an inactive form of PAH, the lack of dynamic behavior in our

simulations of them suggests that the behavior found for the Solomon systems is not inherent to

PAH overall, but specific to its active form.
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Figure  5.3. Equilibrated active site geometries for different forms of PAH, with reported all-
atom RMSDs in the top right. (A) The wild type and mutants from the Siegbahn simulations
show no significant differences in their geometries, matching their similar RMSD values. (B) On
the other hand, the geometries from the Solomon mechanism without O2 demonstrate the distinct
angular  preferences  of  BH4.  This  pterin-like cofactor  is  angled  further  away from the metal
center in the mutant relative to the wild type.

The results  for  the  Solomon system with  O2 absent  are  consistent  with the Solomon

postulation of the role of the BH4 cofactor. As before, the full RMSD indicates well-converged

stable structures at 2.04 ± 0.20 Å for the WT versus 2.02 ± 0.14 Å for R158Q. The active site all-

atom RMSD reports some difference between the WT at 1.13 ± 0.42 Å and the R158Q mutant at

1.19  ± 0.25  Å. The most important difference between the wild type and mutant here, clearly

visible in Figure 5.3, is the metal to cofactor angles at 55.0  ± 24.3 degrees and 86.8  ± 17.3

degrees respectively. A histogram shows that the wild type has a much larger preference for the

lower angle while the mutant greatly prefers the higher angle facing away from the metal (Figure

5.4). Furthermore, both angles are energetically accessible, as the average QM energy across

both forms of the protein for the three most populated histogram bins of the lower angle peak is

just 1.26 kcal/mol less than those of higher angle peak. Given the difference in activity between

the wild type and mutant, these data suggests that the peaks about the lower and higher angles

100



correspond to the natural and H2O2 forming pathways respectively. This supports the Solomon

hypothesis that the orientation of the cofactor dictates PAH activity as the active site in the wild

type is structurally predisposed to both BH4 and the metal binding O2, but the active site in the

mutant is not (further supported by simulations with  O2 present in Appendix D). Furthermore,

just  like  both  variants  can  still  perform their  unpreferred  pathway they  each report  a  small

fraction of the unpreferred angle.

Figure 5.4. Histogram of the metal to cofactor angle in the Solomon mechanism system with O2

absent for the wild type (white) and the R158Q mutant (dark gray).  The height of each bar
represents the percentage of iterations across all  replicates with an angle in that five degree
threshold. The color visible above a bar with the blended medium gray represents the form of the
protein in excess for that threshold. Notice that the wild type and mutant overwhelmingly select
different angles, consistent with the two pathways reported experimentally.

The  QM/DMD  simulations  of  the  Solomon  structures  also  explain  how  the  distant

mutation affects such a change in active site structure and dynamics. They identify a previously
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unknown chain of tightly dynamically coupled residues connecting the mutant residues and the

cofactor that controls its orientation. The position of BH4 in the wild type is partially coupled to

the position of the Tyr377 residue which frequently forms a hydrogen bond to it. The distances

between the Tyr377 phenolic oxygen or hydrogen and potential hydrogen bonding partners on

BH4 were calculated and the minimum distance selected for each iteration of all replicates for

both the wild type and mutant.  A histogram of this data shows that in the wild type Tyr377

typically forms a hydrogen bond to the cofactor, with a maximum of population of this length

around the characteristic distance of 2.5 Å. In contrast, the mutant generally does not form this

H-bond, with a maximum of population ca. 6 Å (Figure 5.5). Furthermore, the position of Tyr377

is tethered to the residue 158 through a series of flexible loops. This suggests that the breaking of

the residue 158 to 280 salt bridge by mutation communicates directly with the position of Tyr377

and affects its interaction with BH4. This is not a large conformational change, and so does not

significantly increase the all-atom RMSD. The results indicate that in the wild type the Tyr377

residue holds the cofactor in  place to control proper activity,  while  the mutation breaks this

interaction giving BH4 greater orientational flexibility with respect to the metal center. This then

results in the prominence of the H2O2 forming pathway.
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Figure 5.5. (A) Picture which illustrates the structural connection between the site of mutation
and the active site in PAH with WT overlay on a faint R158Q structure. The mutation of one of
the red residues breaks a salt bridge which in turn makes the orange loop (residues 276-281)
more flexible. The orange loop then pushes the yellow loop (residues 376-381) out of its wild
type position, affecting the cofactor and active site through Tyr377 (green). (B) Histogram of the
BH4 to Tyr377 minimum distance for the wild type (white) and the R158Q mutant (dark gray).
The height of each bar represents the percentage of iterations across all replicates with an angle
in that 0.5 Å threshold. The color visible above a bar with the blended medium gray represents
the form of the protein in excess for that threshold. This chart shows that the frequency of a
hydrogen-bonding interaction between these two species, which occurs around 2 to 4 angstroms,
is much higher in the wild type.

Additional  confirmation  for  the  discovered  dynamic  coupling  was  found  through  a

dedicated coupled-dynamics method developed by the Dokholyan group. The method calculates

correlated motions between residues and constructs pathways with Dijkstra's algorithm. It was

used to great effect to study allosteric behavior in pathogenic cystic fibrosis regulator ion channel

mutants.228,229 A simplified protocol was applied to the lowest energy structure of each of the

studied  systems  (results  for  the  Siegbahn  structures  can  be  found  in  Appendix  D).  In  the

Solomon wild type, the method finds a strong coupled-dynamics pathway which connects the

site of mutation to Tyr377 through the same series of loops identified in QM/DMD simulations
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(Figure 5.6). This coupled-dynamics pathway is diverted in the R158Q mutant, consistent with

its looser control of the position of Tyr377.

Figure 5.6. Coupled-dynamics pathways (deep green bars) between the site of mutation (bright
green and red) and Tyr377 (yellow) identified by coupled-dynamics in the exemplary structures
from QM/DMD for the Solomon system WT (A) and R158Q mutant (B). Residues are colored in
a heat map going from red to blue indicating motion more to less correlated with the site of
mutation.  Notice  how  the  pathways  in  the  WT closely  match  the  pathway  identified  with
QM/DMD depicted in Figure 4, while those in the mutant do not.

The identified coupling between the cofactor, Tyr377, is a unique, directing interaction

necessary to understand the BH4 orientational preferences. The cofactor forms other hydrogen-

bonding  contacts,  namely  with  the  loop  of  residues  147-151.  These  are  the  most  obvious

interactions, as they are present in the original crystal structure (PDB: 1KW0) while the hydroxyl

oxygen of the cofactor and Tyr377 are 6.39 Å apart. However, the contacts on the 147-151 loop

can't explain the cofactor angle as they change little between the wild type and mutant. On this

loop, the Ser151 side chain alcohol and the Gly130 and Leu132 backbone carbonyls all form
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hydrogen  bonds  with  the  cofactor  (Figure  5.7).  As  with  Tyr377,  we  measured  the  distance

between the atoms in these groups that  can hydrogen bond and their  nearest  partner  on the

cofactor for all iterations of our simulations. Unlike Tyr377, the average distance of each of these

contacts varies little between the wild type and mutant, at just 3.12 ± 1.48 Å (WT) vs 2.79 ± 1.10

Å (R158Q) for Ser151, 3.24  ± 1.09  Å (WT) vs 3.65  ± 1.26  Å (R158Q) for Leu132, and 3.26

±1.09 Å (WT) vs 2.79 ± 1.10 Å (R158Q) for Gly130, compared to a significant 3.87 ± 1.48 Å

(WT)  vs  5.23  ± 1.23  Å (R158Q)  for  Tyr377.  These  differences  suggest  that  the  angular

preferences of the cofactor correlate with its interaction with Tyr377, but not with the nearly

constant hydrogen-bonds between BH4 and the 147-151 loop. Ultimately, it is the subtle, shifting

interaction that proves most important in understanding PAH activity at an atomic level.

Figure  5.7. Overlay of structures indicative of the range of
motion  of  the  cofactor  hydrogen  bonding  partners.  Notice
how  much  Tyr377  (in  red)  swings  about  the  cofactor  (in
yellow) relative to the residues 147-151 (in blue).
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5.4 Conclusion

In summary, QM/DMD simulations assessed whether the Solomon mechanism for the

catabolism of phenylalanine by PAH could explain the sharp drop in healthy activity in the case

of two disease-inducing mutants. The Solomon structure simulations capture the predicted role of

both the cofactor and site of mutation on PAH activity through a dynamic, long-range pathway of

communication.  The  results  are  reinforced  by  negative-control  simulations  of  structures

implicated in the Seigbahn mechanism and coupled-dynamics analysis. Together, they show that

the orientation of BH4 directs PAH to follow one of two pathways and is modified in the mutants

by way of an interaction with Tyr377. Our discovery that a dynamic interaction correlates with

PAH activity, especially in contrast to other hydrogen-bonding contacts with the cofactor that do

not,  demonstrates the importance of considering proteins as flexible objects comprised of an

ensemble  of  important  structures.  Given  the  critical  role  of  PAH  and  related  amino  acid

hydroxylases  in  bodily amino acid regulation  and their  implications  in  disease  we hope our

findings and perspective will assist future biological and medical research.
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Appendix A: Supporting Information for Chapter 2

System Construction

All QM/DMD simulations were based on structures used in Mujika et al.,110 themselves

derived from a crystal structure elucidated by MacGillivray et al. (PDB ID: 1A8E).100 The QM

regions were then selected to include the most important interactions around the metal center.

Chemical differences between the four protonation states of hTF required different QM regions,

though they were kept as consistent as possible. For the Phys form this consisted of the carbonate

ligand and metal,  the  side  chains  of  Asp63,  Glu83,  Tyr85,  Tyr95,  Thr120,  Tyr188,  Lys206,

His249, Lys296, and Asp292 truncated to the functional end and the last side chain carbon bound

to it, the side chain of Arg124 truncated to just the guanidino group, the entirety (including the

backbone) of Ser125, and just the backbone atoms of Ala64. In this form, Tyr95, Tyr188, and

His249  are  all  deprotonated  to  coordinate  the  metal  and  the  terminal  amine  of  Lys206  is

deprotonated for the dilysine bridge. Whether Lys206 or Lys296 is initially deprotonated does

not  matter given the quantum mechanical treatment  of the dilysine bridge,  which allows for

interchange. Indeed, during our simulations the DFT optimizations often remove the additional

proton on Lys296 to other residues. The Acid form used the same QM region except for an

additional  water  included  near  the  metal,  an  additional  proton  on the  carbonate  ligand,  and

Lys206 was fully protonated to break the dilysine bridge. The Double and Prtr form QM regions

were both the same as the Phys form, but with one or two additional water ligands included

respectively and an additional proton on both the carbonate ligand and Tyr188. Our use of an

implicit solvent in the both the QM and DMD regions necessitates the modeling of both Prtr and

Double,  as the additional water molecule forms interactions that the implicit  solvent can not

replicate like strong hydrogen bonds and sometimes even coordination to the metal.
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Our quantum mechanical treatment of the active site also renders the protonation state of

His249 a moot point. Previous studies, including that of Rinaldo and Field,111 postulated that the

His249 ligand to the metal is doubly deprotonated based on geometric comparisons to crystal

structures. We do observe some evidence for this in the His249 N to metal distance difference

between an applicable crystal  structure (PDB ID: 1A8E)100 and our comparable Fe(III)  Phys

simulations.  This  distance  could  provide  information  on  the  protonation  state;  if  His249  is

doubly deprotonated this distance should shrink because of the greater negative charge pulling on

the positively charged metal.  The average distance from our  simulations  with His249 singly

protonated  is  2.110  Å versus  a  smaller  2.036  Å in  the  crystal  structure,  which  may indeed

indicate a doubly deprotonated state for His249. However, we find this outcome unlikely as the

exact reason for the smaller crystal structure distance can not be determined (it could even be due

to crystallization conditions). Furthermore, His249 often forms a hydrogen bond with Glu81 in

our QM/DMD simulations, but despite this chance is never deprotonated.

Simulation Convergence

Besides the protein backbone RMSD (included in the main text), both the DMD energy

(Figure A.1) and QM region electronic energy (Figure A.2) were used to monitor convergence.

These two energies were calculated for every iteration relative to the lowest energy structure for

the given metal and protein form. The plots for both are recorded here and show convergence

across all states.
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Figure  A.1. Plots  of  the  DMD  energy  by  timestep  for  every  QM/DMD
simulation in this study. The plots group all replicates by metal for each protein
form.  Most  replicates  come to  oscillate  around values  of  about  50  kcal/mol,
demonstrating convergence.
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Figure A.2. Plots of the QM region electronic energy by timestep for every
QM/DMD simulation in this study. The plots group all replicates by metal
for  each  protein  form.  Despite  occasional  spikes,  most  replicates  show
convergence as they oscillate about the same 10-25 kcal/mol.
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Experimental EDTA-Metal Stability Constants

For the convenience of the reader, the experimental EDTA-metal stability constants used

to calculate the binding affinities of this study are recorded here (Table A.1).81,82 These values are

the beta110 constants, corresponding to cation binding to EDTA-4.

Table A.1. Experimental EDTA-metal stability constants.

Ti(IV) Co(III) Fe(III) Ga(III) Cr(III) Fe(II) Zn(II)

K 17.5 40.6 25.1 20.2 23.4 14.3 16.7
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Appendix B: Supporting Information for Chapter 3

Simulation System Construction

The input structures for all QM/DMD simulations were based on one crystal structure of

GSK-3β (PDB ID:  4NU1).  The structure was truncated to  residues  35-383 of  chain  A.  The

sequence was extended on the C-terminal end by three residues (IQA). These residues and any

missing side chains were added using UCSF Chimera.230 The glycerol, nitrate, and aluminum

fluoride molecules were removed from the structure. All water molecules besides the two acting

as ligands to the second magnesium ion were removed. For simulations in the ATP bound form

of the protein, the ADP molecule was extended to ATP. For simulations in the ADP bound form,

the second magnesium ion was removed (the one further from the adenosine group) along with

its coordinating water.

The QM region  comprised  the  full  ADP/ATP molecule,  metal(s)  with  retained water

molecules, the guanidino group of Arg141, and the side chains of Lys85 from the epsilon carbon,

Glu97 from the beta carbon, Asp181 from the beta carbon, Lys183 from the epsilon carbon,

Asn186 from the beta carbon, Asp200 from the beta carbon, and Ser203 from the beta carbon.

For the reaction coordinate scans of the phosphorylation reaction a truncated QM region was

used, with only Asp181, Lys183, Asn186, and Asp200 included for amino acid residues. The ATP

molecule was chopped to only include the phosphate groups and the portion of the 5-membered

ring that links them to the hydroxyl group on that ring. Lys183 was extended to include the full

side chain based on the corresponding DMD structures. A serine substrate was added including

the side chain alcohol and beta carbon. This was based on manual docking with a short peptide

fragment  based  on  tau  protein  (residues  387-410)  with  a  sequence  of

112



DHGAEIVYKSPVVSGDTSPRHLSN.231–233 The bolded Ser396 is the one at the P+0 site while

the underlined Ser400 occupies the P+4 site.

Simulation Convergence

Convergence of  QM/DMD was tracked based on metrics of backbone RMSD, DMD

energy, and QM region energy (Figures B.1 – B.3). The simulations in this study all converged

by about 20 ns, as the three quantities oscillate around fixed values for each trajectory by this

point. Note that the definition of DMD and therefore QM/DMD timescale is approximate.

Figure B.1. Convergence plots of backbone RMSD over time for the QM/DMD simulations.
This was calculated relative to the first, equilibrated timestep for each trajectory based on the
alpha carbon and amide carbon, nitrogen, and oxygen of each amino acid.  Note how each
simulation oscillates around a fixed value of about 2Å.
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Figure  B.2. Convergence plots of DMD energy over time for the QM/DMD simulations. The
reported energies are relative to the lowest energy structure for each metal-bound form, which is
given  a  value  of  0  kcal/mol  in  each  plot.  While  DMD  trajectories  are  relatively  unstable
compared to other forms of molecular dynamics, they show oscillation around fixed values of
about 100 kcal/mol.

Figure  B.3. Convergence  plots  of  QM  electronic  energy  over  time  for  the  QM/DMD
simulations. The reported energies are relative to the lowest energy structure for each metal-
bound form, which is given a value of 0 kcal/mol in each plot. All trajectories show oscillation
around fixed values of about 20 kcal/mol.
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Appendix C: Supporting Information for Chapter 4

Selection of Solvent Cutoff

The exact value of the solvent access cutoff is system dependent and requires special

attention/calibration. A cutoff of 75% was originally selected for all of the simulations conducted

in this study. A Propka calculation on the initial structure for each system yielded buried values

above ~75% for only the entirely buried residues and those nestled in internal folds, while the

external surface residues were all well below this percentage. Over the course of the Titr-DMD

simulations, only 2 of the 40 residues with experimentally available  pKa in the benchmark set

stayed consistently buried (ASP26 in HTRX and CYS282 in HMCK), so these simulations were

ultimately not too sensitive to the choice of solvent buried cutoff. This choice was, however, very

critical for simulations of pH-conformational coupling, as they involved a study of whether the

protonation state of a deeply buried residue (LYS66 in a staphylococcal nuclease mutant V66K)

is coupled to the dynamics of the protein. In this case, we ran full simulations at a series of

different  solvent  access  cutoff  (25%,  35%,  45%,  55%,  and  65%)  and  determined  the  most

physical cutoff based on a comparison to the reduced surface SAS. LYS66 was then defined as

solvent accessible if its amine group is within its van der Waals radius of three vertices (one face)

of the SES. The comparison to the solvent access cutoff was done for a 20 ns test Titr-DMD

simulation of SNase V66K with a solvent access cutoff of 75%. The solvent accessibility was

then calculated for each iteration with a SAS generated by Chimera (v 1.13.1).230 The iterations

were binned based on their Propka predicted percent buried, and the percent of states deemed to

be solvent accessible was calculated for each bin (Figure C.1). The results show that for SNase

V66K there is a threshold around 65-75% buried where LYS66 is generally buried above that

point  and  not  buried  below that  point.  Structures  do  not,  however,  become entirely  solvent
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accessible until below 55%. It is important to note that such a low Propka buried % is rare for

LYS66 in our short test simulation. We therefore selected for analysis the SNase simulations with

solvent access cutoffs of 65% and 45%, one around the inflection point (in Figure C.1) and one

where LYS66 is only solvent accessible when it is assured based on our SES test. The results of

the other cutoffs are reported in later sections (Figure C.3, Tables C.1 – C.3).

Figure  C.1. Comparison of the Propka buried percentage to solvent accessibility
according the reduced surface SES. The dark blue line is the fraction of states that
are solvent inaccessible according to the SES, where 1 is totally inaccessible and 0
is entirely accessible (left axis). The light blue histogram is the number of states in
that bin (right axis). States are binned in units of 5 buried percentage points. Note
that most states below 65-70% buried are solvent inaccessible according to the SES
and that those below 55-60% buried are entirely inaccessible according to the SES.

Additional Convergence Criterion for HMCK and SNase V66K

Besides backbone RMSD and energy, convergence was also assessed in the HMCK and

SNase V66K simulations by the pKa and frequency of (de)protonation of select residues (Figure

C.2). For HMCK, this residue was CYS283. A plot of the average Propka-predicted  pKa over
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time for each replicate shows convergence on fixed values. Convergence was not checked based

on the frequency of deprotonation of this residue, as the Propka  pKa of this residue ended up

consistently too high for deprotonation to occur at the  pH of the performed simulations. For

SNase V66K, the tracked residue was LYS66. As with the RMSD and energy in the main text,

these  results  represent  the  simulations  at  cutoffs  of  65% and 45%. The plot  of  the  average

Propka-predicted pKa over time for each replicate simulation shows convergence in a tight band

of fixed values largely below 8. The plot of the frequency of LYS66 protonation shows distinct

behavior  between  the  65% and  45% cutoff  simulations.  The  upper  band of  trajectories  that

converge on full protonation are the 65% cutoff simulations, while the others are the 45% cutoff

simulations. As the Propka  pKa is higher than the  pH of all the simulations, the more solvent

accessible  65%  cutoff  simulations  converge  on  full  protonation.  However,  the  45%  cutoff

simulations  show some amount  of  protonation  and  deprotonation  as  well  as  divergence  not

resolved  by  the  end  of  the  simulation  in  some  cases.  Ultimately,  this  suggests  that  these

simulations have captured an initial state of unraveling and the full, sustained unraveling occurs

on a (likely significantly) longer timescale. The results can still be used to study the coupling

between protonation of LYS66 and structures that lead to unraveling, which is discussed in the

Results and Discussion section of the main text.
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Figure C.2. Average Propka-predicted pKa of (A) CYS283 in HMCK and (B) LYS66 in SNase
V66K. The value at each timepoint is the average up to that point. The frequency of protonation
of LYS66 (C) is also plotted. The protonation state is 0 for deprotonation to 1 for protonation.
The protonation frequency at each timestep is the average of the protonation state up to that
point. All HMCK simulations are plotted while only the 65% and 45% buried cutoff simulations
are plotted for SNase V66K.

Titr-DMD Simulations of SNase V66K at Other Cutoffs

Titr-DMD simulations of the staphylococcal nuclease mutant V66K were also performed

with solvent access cutoff values of 55%, 35%, and 25%. All of the other settings for these

simulations were the same as for the 45% and 65% cutoff simulations, as reported in the main

text.  These  simulations  achieved converged structures just  like  our  others  according  to  the

metrics of backbone RMSD and corrected DMD potential energy (Figure C.3A-B). The results

of the other convergence criterion, average pKa and protonation frequency, are likewise similar to

those of the 45% and 65% cutoff simulations (Figure C.3C-D).
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Figure C.3. Convergence of Titr-DMD simulations of SNase V66K with solvent access cutoffs
of 25%, 35%, and 55%. Convergence is tracked by (A) the backbone RMSD, (B) the corrected
DMD potential energy, (C) the average Propka-predicted pKa of LYS66, and (D) the protonation
frequency of LYS66. For the protonation frequency, 0 represents deprotonation and 1 represents
protonation. In both (C) and (D) the plotted point for each timestep is the average value up to
that point. Nearly all simulations come to oscillate around fixed values by ~200 ns for metrics A-
C. The unconverged trajectories in metric D are for the 55% solvent cutoff, showing intermediate
behavior between the 65% and 45% simulations as the initial protonation takes a while. The
average RMSD is 3.54 ± 1.26 Å, while the average energy is 73.05 ± 28.88 kcal/mol across all
trajectories.
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These  simulations  reinforce  the  45%  solvent  access  cutoff  simulation  as  the  most

physically meaningful for SNase V66K pH-conformational dynamic coupling. As with the 45%

and 65% cutoff simulations, the total percentage of iterations reporting an unraveled 65-69 loop

across these simulations is much larger than the DMD simulations without titration and does not

show any particular  pH dependent trend (Table C.1).  The iterations  around protonation state

changes show a consistently higher frequency of unraveling at pH 5.7 with most events at pH 5.7

coupled  to  some  contemporaneous  unraveling,  consistent  with  the  45%  and  65%  cutoff

simulations (Table C.2). The only exception are the 25% cutoff simulations, which report 0%

unraveling by event at  pH 5.7 as few protonation and deprotonation events occur at all.  The

calculated pKa for LYS66 in these simulations are likewise consistent with the trend of the 45%

and 65% cutoff simulations (Table C.3). The Propka pKa are all off by the same amount, while

the DMD  pKa drop down to near the experimental value of 6.4. Note that for the 55% cutoff

simulation the DMD pKa is intermediate between those of the 65% and 45% simulations, which

then steadies out in the 35% and 25% cutoff simulations. This suggests that a solvent access

cutoff  of  45% is  the  first  to  capture  the  experimental  pKa of  LYS66,  making  it  the  most

physically meaningful solvent access cutoff for the SNase pH-dependent dynamic behavior.
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Table  C.1. Frequency of SNase V66K alpha helical loop 65-69 unraveling over the course of
Titr-DMD simulations with solvent access cutoffs of 25%, 35%, and 55%. These all report a
much higher percentage of unraveled states than the 0.002% - 0.015% for DMD simulations
without titration (found in Table 3 in the main text).

Simulation pH 4.6 pH 5.7 pH 7

25% cutoff 5.99% 4.15% 5.19%

35% cutoff 6.78% 6.53% 8.58%

55% cutoff 7.88% 6.43% 7.01%

Table C.2. Frequency of unraveling of the SNase V66K 65-69 loop around LYS66 protonation
and deprotonation events for simulations with solvent access cutoffs of 25%, 35%, and 55%. As
in Table 4 in the main text, ‘Near event’ refers to the percentage of iterations within 25 timesteps
(before and after) of an event that are unraveled. This is only consistently elevated above the
total  simulation  average  in  the  pH 5.7  simulation.  ‘By  event’  refers  to  the  percent  of
(de)protonation events that have at least one unraveled structure within 25 timesteps. This is also
only consistently high for the pH 5.7 simulations. The 25% cutoff simulation is the one outlier to
this trend, reporting 0% for both forms of coupling, but that is likely due to the infrequency of
(de)protonation events in those simulations.

Near Event pH 4.6 pH 5.7 pH 7

25% cutoff 10.98% 0.00% 7.25%

35% cutoff 5.34% 15.49% 6.13%

55% cutoff 31.33% 10.67% 24.09%

By Event

25% cutoff 67% 0% 56%

35% cutoff 71% 93% 63%

55% cutoff 67% 67% 100%
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Table C.3. Titr-DMD predicted pKa for LYS66 in the SNase mutant for simulations with 25%,
35%, and 55% solvent access cutoffs. Note that the Propka pKa is consistently high across the
cutoffs, while the DMD pKa drops down to a value close to the experimental pKa of 6.4 between
the cutoffs of 55% and 35%.

Simulation DMD Propka

25% cutoff 5.78 7.78

35% cutoff 5.80 7.86

55% cutoff 6.32 7.89
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Appendix D: Supporting Information for Chapter 5

Intervening Research

Little research into the mechanism of PAH oxygen binding has been published over the

intervening years between the introduction of the Solomon and Seigbahn mechanisms and this

paper. To our knowledge at the point of this publication all but 2 of the 112 articles that cite the

Seigbahn or Solomon mechanisms are reviews, concern study into different attributes of PAH, or

are mechanistic studies of other biological systems. The two exceptions only cite Seigbahn and

their  findings  do  not  explain  the  malfunction  of  PAH.  One is  another  DFT analysis  which

considers the potential of side-on O2 binding to the metal, but does not include any water ligands

and is thus suspect given EXAFS data.234 The other is a QM/MM study of PAH, which while

thorough only considers the reaction of the activated iron(IV)-oxo complex with phenylalanine

rather than the steps involving the binding of BH4 and activation of O2.235 The best mechanism to

explain the malfunction of PAH is therefore unclear and demanded this study.

System Construction

The initial structures of the enzymes were obtained from the Research Collaboratory for

Structural Bioinformatics Protein Data Bank (PDB code 1J8U219 for the Seigbahn mechanism

and 1KW0220 for the Solomon mechanism). The 1J8U form of PAH contains  BH4 as well as

water molecules around the active site, including three bound to the metal. To prepare our active

site for the Seigbahn mechanism all water was removed except for two bound to the metal and

one  which  forms  a  critical  hydrogen  bond  with  the  cofactor  and  added  a  diatomic  oxygen

molecule  between  the  metal  and  the  cofactor.  The  1KW0  form  of  PAH  contains  BH4 and

thienylalanine, an analog of the phenyalanine substrate, as well as water molecules around the
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active site. Two systems were prepared based on this PDB: one with diatomic oxygen between

the metal and cofactor and one without. In both of these systems the thienylalanine was replaced

with the zwitterion of phenylalanine and all of the water was removed except for the one bound

to the metal. In all simulations iron was modeled with an oxidation state of II which corresponds

to the active site before  O2 cleavage.236 These active sites were constructed to approximate the

rate determining step as described by each mechanism without having to expend the extensive

resources to determine transition state structures. In principle, modeling with bound transition

states  is  possible,  but  it  would require  expensive,  continuous reevaluation of  the  Hessian  to

ensure the system remains on a saddle point.

Solomon Structures with Oxygen Results

The results of the Solomon system with O2 present may suggest that the activity of PAH

is dictated before  O2 binds. As with all of our simulations, the full RMSD indicate converged

trajectories:  2.06  ± 0.17  Å for  the  wild  type  versus  2.14  ± 0.24  Å for  R158Q.  Unlike  the

simulations with  O2 absent, the difference in the average cofactor to metal angle is somewhat

small at 44.8 ± 35.4 degrees for the wild type and 55.9 ± 34.8 degrees for R158Q. However, note

the massive standard deviations.  A histogram of the angle at  the end of each iteration of all

replicates is bimodal for both the wild type and mutant (Figure D.1). Consistent with the results

without  O2, the mutant, in which the  H2O2 forming pathway dominates, populates the higher

angle peak slightly more.  Again,  the difference in  the average QM energy between the two

angles across both forms of the protein is small enough to suggest that both are energetically

accessible, with the three most populous histogram bins of the higher angle peak 4.62 kcal/mol

less than those of the lower angle peak. However, the protein in this state does not explain the
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experimentally observed large difference in activity due to the nearly equal population of these

geometries. Instead, in the framework of the Solomon mechanism this data suggests that when

O2 binds it selects one of the two competing reactions of PAH. Each of the simulations that ran

with O2 bound did not deviate significantly from the cofactor angle it selected after equilibration,

indicative  of  a  high  barrier  between  the  two  geometries  at  this  point  (Figure  D.2).  Once  a

reaction is selected by O2 binding, the protein is effectively incapable of deviating to the other

reaction. Furthermore, in the Solomon mechanism the significant populations of each geometry

for both forms of the protein seem consistent with experimental results which show that while

each form of the protein prefers a different reaction, both forms are capable of both reactions.

Note that this hypothesis is not conclusive, as the metal is often too close to the cofactor at the

low angle for it to easily incorporate O2 into its coordination sphere as would be necessary for

proper  O2 cleavage (Figure D.3). This strange behavior likely derives from the fixed oxidation

state of the metal in our simulations; to represent the active site with O2 strongly bound to iron

there may be a change to its oxidation state as discussed in the Seigbahn mechanism. Ultimately,

a full mechanistic analysis of the Solomon system would be necessary to assess this hypothesis.
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Figure D.1. Histogram of the metal to cofactor angle in the Solomon mechanism system with O2

present for the wild type (red) and the R158Q mutant (blue). The height of each bar represents
the number of iterations across all replicates with an angle in that five degree threshold. The
color visible above a bar with blended colors represents the form of the protein in excess for that
threshold.
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Figure D.2. Plot of wild type (dark red) and mutant (medium blue) cofactor to metal center
angles by replicate of the Solomon mechanism system with oxygen present. Notice how no
replicates cross over from one geometry to the other after equilibration. This suggests that the
binding  of  O2 decides  the  reaction  PAH  will  perform,  with  the  observed  differences  in
activity dictated by the angular preferences of the protein before O2 binds.
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Figure D.3.  Exemplary QM regions of the Solomon mechanism system with O2 with metal to
cofactor angles of 10 (A) and 80 (B) degrees. These geometries are the same for both the mutant
and wild type. Note that the existence of two geometries may explain the two pathways observed
experimentally, but that the distance between BH4 and the metal in the 10 degree geometry may
not be consistent with this.

Coupled Dynamics Analysis of Siegbahn Structures

Coupled dynamics simulations with the Dokholyan method of the Siegbahn structures

show long, diffuse coupled-dynamics pathways between the site of mutation and Tyr377 (Figure

D.4). None of these pass through the series of loops identified in the Solomon structures. These

results further discredit the capability of the Siegbahn mechanism to explain the effect of the

distant mutations and their role in manipulating PAH activity.
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Figure D.4. Coupled-dynamics pathways (deep green bars) between the site  of mutation (in
bright green and red) and Tyr377 (in yellow) identified by coupled-dynamics in the exemplary
structures from QM/DMD for the Siegbahn system WT (A) and R158Q mutant (B). Residues are
colored in a heat map going from red to blue indicating motion more to less correlated with the
site of mutation. Notice how the pathways go deep into the protein and avoid the surface loops
identified in the Solomon structures.

QM/DMD Simulation Convergence

All conducted forms of analysis indicate that the QM/DMD simulations performed for

this study are converged. The full protein all-atom RMSD is found in the methods section of the

main text. Included here are plots for each system of the active site all-atom RMSD (Figure D.5)

and trajectories of the DMD energy (Figure D.6) and QM energy (Figure D.7).
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Figure D.5. Plots of the active site, all-atom RMSD by timestep for every QM/DMD simulation
in this study. The plots include all replicates of the wild type (dark red), R158Q mutant (medium
blue), and E280K mutant (light violet, only in Seigbahn simulations). Notice how all replicates
oscillate around the value of 1 Å, indicating convergence.

Figure D.6. Plots of the DMD energy relative to the lowest energy structure by timestep for
every QM/DMD simulation in this study. The plots include all replicates of the wild type (dark
red),  R158Q  mutant  (medium  blue),  and  E280K  mutant  (light  violet,  only  in  Seigbahn
simulations).

Figure D.7. Plots of the QM energy relative to the lowest energy structure by timestep for every
QM/DMD simulation in this study. The plots include all replicates of the wild type (dark red),
R158Q mutant (medium blue), and E280K mutant (light violet, only in Seigbahn simulations).

130



References

  

(1) Kepp, K. P. Heme: From Quantum Spin Crossover to Oxygen Manager of Life. Coord. 
Chem. Rev. 2017, 344, 363–374.

(2) Valdez, C. E.; Smith, Q. A.; Nechay, M. R.; Alexandrova, A. N. Mysteries of Metals in 
Metalloenzymes. Acc. Chem. Res. 2014, 47 (10), 3110–3117.

(3) Tripp, B. C.; Bell, C. B.; Cruz, F.; Krebs, C.; Ferry, J. G. A Role for Iron in an Ancient 
Carbonic Anhydrase. J. Biol. Chem. 2004, 279 (8), 6683–6687.

(4) Gantt, S. L.; Gattis, S. G.; Fierke, C. A. Catalytic Activity and Inhibition of Human 
Histone Deacetylase 8 Is Dependent on the Identity of the Active Site Metal Ion. 
Biochemistry 2006, 45 (19), 6170–6178.

(5) Nechay, M. R.; Gallup, N. M.; Morgenstern, A.; Smith, Q. A.; Eberhart, M. E.; 
Alexandrova, A. N. Histone Deacetylase 8: Characterization of Physiological Divalent 
Metal Catalysis. J. Phys. Chem. B 2016, 120 (26), 5884–5895.

(6) Zhu, J.; Dizin, E.; Hu, X.; Wavreille, A.-S.; Park, J.; Pei, D. S-Ribosylhomocysteinase 
(LuxS) Is a Mononuclear Iron Protein. Biochemistry 2003, 42 (16), 4717–4726.

(7) Rajagopalan, P. T. R.; Yu, X. C.; Pei, D. Peptide Deformylase: A New Type of 
Mononuclear Iron Protein. J. Am. Chem. Soc. 1997, 119 (50), 12418–12419.

(8) Renata, H.; Wang, Z. J.; Arnold, F. H. Expanding the Enzyme Universe: Accessing Non-
Natural Reactions by Mechanism-Guided Directed Evolution. Angew. Chemie Int. Ed. 
2015, 54 (11), 3351–3367.

(9) Hyster, T. K.; Ward, T. R. Genetic Optimization of Metalloenzymes: Enhancing Enzymes 
for Non-Natural Reactions. Angew. Chemie Int. Ed. 2016, 55 (26), 7344–7357.

(10) Fasan, R.; Meharenna, Y. T.; Snow, C. D.; Poulos, T. L.; Arnold, F. H. Evolutionary 
History of a Specialized P450 Propane Monooxygenase. J. Mol. Biol. 2008, 383 (5), 
1069–1080.

(11) Lewis, J. C.; Bastian, S.; Bennett, C. S.; Fu, Y.; Mitsuda, Y.; Chen, M. M.; Greenberg, W. 
A.; Wong, C.-H.; Arnold, F. H. Chemoenzymatic Elaboration of Monosaccharides Using 
Engineered Cytochrome P450BM3 Demethylases. Proc. Natl. Acad. Sci. 2009, 106 (39), 
16550–16555.

131



(12) Rentmeister, A.; Brown, T. R.; Snow, C. D.; Carbone, M. N.; Arnold, F. H. Engineered 
Bacterial Mimics of Human Drug Metabolizing Enzyme CYP2C9. Chem. Cat. Chem. 
2011, 3 (6), 1065–1071.

(13) Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, 
C. S.; Ruckthong, L.; Qayyum, H.; Pecoraro, V. L. Protein Design: Toward Functional 
Metalloenzymes. Chem. Rev. 2014, 114 (7), 3495–3578.

(14) Reetz, M. T. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune
the Selectivity of Transition Metal Catalysts? Acc. Chem. Res. 2019, 52 (2), 336–344.

(15) Prier, C. K.; Arnold, F. H. Chemomimetic Biocatalysis: Exploiting the Synthetic Potential 
of Cofactor-Dependent Enzymes to Create New Catalysts. J. Am. Chem. Soc. 2015, 137 
(44), 13992–14006.

(16) Natoli, S. N.; Hartwig, J. F. Noble- Metal Substitution in Hemoproteins: An Emerging 
Strategy for Abiological Catalysis. Acc. Chem. Res. 2019, 52 (2), 326–335.

(17) Finney, L. A.; O’Halloran, T. V. Transition Metal Speciation in the Cell: Insights from the 
Chemistry of Metal Ion Receptors. Science 2003, 300 (5621), 931–936.

(18) Tottey, S.; Harvie, D. R.; Robinson, N. J. Understanding How Cells Allocate Metals Using
Metal Sensors and Metallochaperones. Acc. Chem. Res. 2005, 38 (10), 775–783.

(19) Tottey, S.; Waldron, K. J.; Firbank, S. J.; Reale, B.; Bessant, C.; Sato, K.; Cheek, T. R.; 
Gray, J.; Banfield, M. J.; Dennison, C.; others. Protein-Folding Location Can Regulate 
Manganese-Binding versus Copper-or Zinc-Binding. Nature 2008, 455 (7216), 1138.

(20) Foster, A. W.; Osman, D.; Robinson, N. J. Metal Preferences and Metallation. J. Biol. 
Chem. 2014, 289 (41), 28095–28103.

(21) Xiao, Z.; Wedd, A. G. The Challenges of Determining Metal–Protein Affinities. Nat. 
Prod. Rep. 2010, 27 (5), 768–789.

(22) Pieczenik, S. R.; Neustadt, J. Mitochondrial Dysfunction and Molecular Pathways of 
Disease. Exp. Mol. Pathol. 2007, 83 (1), 84–92.

(23) Ibrahim, D.; Froberg, B.; Wolf, A.; Rusyniak, D. E. Heavy Metal Poisoning: Clinical 
Presentations and Pathophysiology. Clin. Lab. Med. 2006, 26 (1), 67–97.

(24) Exley, C.; Burgess, E.; Day, J. P.; Jeffery, E. H.; Yokel, R. A. Aluminum Toxicokinetics. J.
Toxicol. Environ. Heal. Part A 1996, 48 (6), 569–584.

(25) Tinoco, A. D.; Thomas, H. R.; Incarvito, C. D.; Saghatelian, A.; Valentine, A. M. 
Cytotoxicity of a Ti (IV) Compound Is Independent of Serum Proteins. Proc. Natl. Acad. 
Sci. 2012, 109 (13), 5016–5021.

132



(26) Guo, M.; Sun, H.; McArdle, H. J.; Gambling, L.; Sadler, P. J. TiIV Uptake and Release by 
Human Serum Transferrin and Recognition of Ti(IV)-Transferrin by Cancer Cells: 
Understanding the Mechanism of Action of the Anticancer Drug Titanocene Dichloride. 
Biochemistry 2000, 39 (33), 10023–10033.

(27) Jakupec, M. A.; Keppler, B. K. Gallium in Cancer Treatment. Curr. Top. Med. Chem. 
2004, 4 (15), 1575–1583.

(28) Exley, C. Human Exposure to Aluminium. Environ. Sci. Process. & Impacts 2013, 15 
(10), 1807–1816.

(29) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper Homeostasis and 
Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and 
Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106 (6), 1995–2044.

(30) Hoops, S. C.; Anderson, K. W.; Merz Jr, K. M. Force Field Design for Metalloproteins. J. 
Am. Chem. Soc. 1991, 113 (22), 8262–8270.

(31) Dal Peraro, M.; Spiegel, K.; Lamoureux, G.; De Vivo, M.; DeGrado, W. F.; Klein, M. L. 
Modeling the Charge Distribution at Metal Sites in Proteins for Molecular Dynamics 
Simulations. J. Struct. Biol. 2007, 157 (3), 444–453.

(32) Neves, R. P. P.; Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. Parameters for Molecular 
Dynamics Simulations of Manganese-Containing Metalloproteins. J. Chem. Theory 
Comput. 2013, 9 (6), 2718–2732.

(33) Cho, A. E.; Goddard III, W. A. Metalloproteins: Theory, Calculations, and Experiments; 
CRC Press, 2015.

(34) Dal Peraro, M.; Vila, A. J.; Carloni, P.; Klein, M. L. Role of Zinc Content on the Catalytic 
Efficiency of B1 Metallo β-Lactamases. J. Am. Chem. Soc. 2007, 129 (10), 2808–2816.

(35) Zhang, J.; Yang, W.; Piquemal, J.-P.; Ren, P. Modeling Structural Coordination and Ligand
Binding in Zinc Proteins with a Polarizable Potential. J. Chem. Theory Comput. 2012, 8 
(4), 1314–1324.

(36) Rydberg, P.; Sigfridsson, E.; Ryde, U. On the Role of the Axial Ligand in Heme Proteins: 
A Theoretical Study. JBIC J. Biol. Inorg. Chem. 2004, 9 (2), 203–223.

(37) Tantillo, D. J. How an Enzyme Might Accelerate an Intramolecular Diels- Alder Reaction:
Theozymes for the Formation of Salvileucalin B. Org. Lett. 2010, 12 (6), 1164–1167.

(38) Kries, H.; Blomberg, R.; Hilvert, D. De Novo Enzymes by Computational Design. Curr. 
Opin. Chem. Biol. 2013, 17 (2), 221–228.

133



(39) Kiss, G.; Çelebi-Ölçüm, N.; Moretti, R.; Baker, D.; Houk, K. N. Computational Enzyme 
Design. Angew. Chemie Int. Ed. 2013, 52 (22), 5700–5725.

(40) Vaissier Welborn, V.; Head-Gordon, T. Computational Design of Synthetic Enzymes. 
Chem. Rev. 2018, 119 (11), 6613–6630.

(41) Blomberg, M. R. A.; Borowski, T.; Himo, F.; Liao, R.-Z.; Siegbahn, P. E. M. Quantum 
Chemical Studies of Mechanisms for Metalloenzymes. Chem. Rev. 2014, 114 (7), 3601–
3658.

(42) Ryde, U. QM/MM Calculations on Proteins. In Methods in enzymology; Elsevier, 2016; 
Vol. 577, pp 119–158.

(43) Ahmadi, S.; Barrios Herrera, L.; Chehelamirani, M.; Hostaš, J.; Jalife, S.; Salahub, D. R. 
Multiscale Modeling of Enzymes: QM-Cluster, QM/MM, and QM/MM/MD: A Tutorial 
Review. Int. J. Quantum Chem. 2018, 118 (9), e25558.

(44) Sparta, M.; Shirvanyants, D.; Ding, F.; Dokholyan, N. V; Alexandrova, A. N. Hybrid 
Dynamics Simulation Engine for Metalloproteins. Biophys. J. 2012, 103 (4), 767–776.

(45) Ding, F.; Tsao, D.; Nie, H.; Dokholyan, N. V. Ab Initio Folding of Proteins with All-Atom 
Discrete Molecular Dynamics. Structure 2008, 16 (7), 1010–1018.

(46) Valdez, C. E.; Morgenstern, A.; Eberhart, M. E.; Alexandrova, A. N. Predictive Methods 
for Computational Metalloenzyme Redesign–a Test Case with Carboxypeptidase A. Phys. 
Chem. Chem. Phys. 2016, 18 (46), 31744–31756.

(47) Reilley, D. J.; Popov, K. I.; Dokholyan, N. V; Alexandrova, A. N. Uncovered Dynamic 
Coupling Resolves the Ambiguous Mechanism of Phenylalanine Hydroxylase Oxygen 
Binding. J. Phys. Chem. B 2019, 123 (21), 4534–4539.

(48) Valdez, C. E.; Alexandrova, A. N. Why Urease Is a Di-Nickel Enzyme Whereas the CcrA 
$β$-Lactamase Is a Di-Zinc Enzyme. J. Phys. Chem. B 2012, 116 (35), 10649–10656.

(49) Sparta, M.; Valdez, C. E.; Alexandrova, A. N. Metal-Dependent Activity of Fe and Ni 
Acireductone Dioxygenases: How Two Electrons Reroute the Catalytic Pathway. J. Mol. 
Biol. 2013, 425 (16), 3007–3018.

(50) Valdez, C. E.; Gallup, N. M.; Alexandrova, A. N. Co2+ Acireductone Dioxygenase: Fe2+ 
Mechanism, Ni2+ Mechanism, or Something Else? Chem. Phys. Lett. 2014, 604, 77–82.

(51) Nedd, S.; Redler, R. L.; Proctor, E. A.; Dokholyan, N. V; Alexandrova, A. N. Cu, Zn-
Superoxide Dismutase without Zn Is Folded but Catalytically Inactive. J. Mol. Biol. 2014, 
426 (24), 4112–4124.

134



(52) Reilley, D. J.; Fuller III, J. T.; Nechay, M. R.; Victor, M.; Li, W.; Ruberry, J. D.; Mujika, J.
I.; Lopez, X.; Alexandrova, A. N. Toxic and Physiological Metal Uptake and Release by 
Human Serum Transferrin. Biophys. J. 2020, 118 (12), 2979–2988.

(53) Genheden, S.; Ryde, U. Will Molecular Dynamics Simulations of Proteins Ever Reach 
Equilibrium? Phys. Chem. Chem. Phys. 2012, 14 (24), 8662–8677.

(54) Guggenheim, E. A. The Conceptions of Electrical Potential Difference between Two 
Phases and the Individual Activities of Ions. J. Phys. Chem. 1929, 33 (6), 842–849.

(55) Klotz, I. M.; Rosenberg, R. M. Chemical Thermodynamics; Wiley, 1994.

(56) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Aqueous Solvation Free Energies of Ions and 
Ion− Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free 
Energy of the Proton. J. Phys. Chem. B 2006, 110 (32), 16066–16081.

(57) Myers, R. W.; Wray, J. W.; Fish, S.; Abeles, R. H. Purification and Characterization of an 
Enzyme Involved in Oxidative Carbon-Carbon Bond Cleavage Reactions in the 
Methionine Salvage Pathway of Klebsiella Pneumoniae. J. Biol. Chem. 1993, 268 (33), 
24785–24791.

(58) Oram, S. W.; Ai, J.; Pagani, G. M.; Hitchens, M. R.; Stern, J. A.; Eggener, S.; Pins, M.; 
Xiao, W.; Cai, X.; Haleem, R.; others. Expression and Function of the Human Androgen-
Responsive Gene ADI1 in Prostate Cancer. Neoplasia (New York, NY) 2007, 9 (8), 643.

(59) Dai, Y.; Wensink, P. C.; Abeles, R. H. One Protein, Two Enzymes. J. Biol. Chem. 1999, 
274 (3), 1193–1195.

(60) Wray, J. W.; Abeles, R. H. The Methionine Salvage Pathway in Klebsiella Pneumoniae 
and Rat Liver IDENTIFICATION AND CHARACTERIZATION OF TWO NOVEL 
DIOXYGENASES. J. Biol. Chem. 1995, 270 (7), 3147–3153.

(61) Borowski, T.; Bassan, A.; Siegbahn, P. E. M. DFT Study of the Uncatalyzed 
Dioxygenation of Acireductone. J. Mol. Struct. 2006, 772 (1–3), 89–92.

(62) Dai, Y.; Pochapsky, T. C.; Abeles, R. H. Mechanistic Studies of Two Dioxygenases in the 
Methionine Salvage Pathway of Klebsiella Pneumoniae. Biochemistry 2001, 40 (21), 
6379–6387.

(63) Chai, S. C.; Ju, T.; Dang, M.; Goldsmith, R. B.; Maroney, M. J.; Pochapsky, T. C. 
Characterization of Metal Binding in the Active Sites of Acireductone Dioxygenase 
Isoforms from Klebsiella ATCC 8724. Biochemistry 2008, 47 (8), 2428–2438.

(64) Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F. Turbomole. 
Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4 (2), 91–100.

135



(65) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative Assessment of a New
Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. 
Chem. Phys. 2003, 119 (23), 12129–12137.

(66) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio 
Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements
H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.

(67) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and 
Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. 
Chem. Chem. Phys. 2005, 7 (18), 3297–3305.

(68) Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the 
Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99 (7), 2224–
2235.

(69) Kouzarides, T. Acetylation: A Regulatory Modification to Rival Phosphorylation? EMBO 
J. 2000, 19 (6), 1176–1179.

(70) Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M. L.; Rehman, M.; Walther, T. C.; Olsen, J.
V; Mann, M. Lysine Acetylation Targets Protein Complexes and Co-Regulates Major 
Cellular Functions. Science 2009, 325 (5942), 834–840.

(71) Phillips, D. M. P. The Presence of Acetyl Groups in Histones. Biochem. J. 1963, 87 (2), 
258.

(72) Allfrey, V. G.; Faulkner, R.; Mirsky, A. E. Acetylation and Methylation of Histones and 
Their Possible Role in the Regulation of RNA Synthesis. Proc. Natl. Acad. Sci. 1964, 51 
(5), 786–794.

(73) Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, Histone 
Deacetylation and Gene Transcription: From Molecular Biology to Cancer Therapeutics. 
Cell Res. 2007, 17 (3), 195.

(74) Haberland, M.; Montgomery, R. L.; Olson, E. N. The Many Roles of Histone Deacetylases
in Development and Physiology: Implications for Disease and Therapy. Nat. Rev. Genet. 
2009, 10 (1), 32.

(75) Marks, P. A.; Breslow, R. Dimethyl Sulfoxide to Vorinostat: Development of This Histone 
Deacetylase Inhibitor as an Anticancer Drug. Nat. Biotechnol. 2007, 25 (1), 84.

(76) West, A. C.; Johnstone, R. W. New and Emerging HDAC Inhibitors for Cancer Treatment.
J. Clin. Invest. 2014, 124 (1), 30–39.

136



(77) Lobera, M.; Madauss, K. P.; Pohlhaus, D. T.; Wright, Q. G.; Trocha, M.; Schmidt, D. R.; 
Baloglu, E.; Trump, R. P.; Head, M. S.; Hofmann, G. A.; others. Selective Class IIa 
Histone Deacetylase Inhibition via a Nonchelating Zinc-Binding Group. Nat. Chem. Biol. 
2013, 9 (5), 319.

(78) Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.-H.; Nishiyama, M.; Nakajima, H.; 
Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; others. FK228 (Depsipeptide) as a 
Natural Prodrug That Inhibits Class I Histone Deacetylases. Cancer Res. 2002, 62 (17), 
4916–4921.

(79) Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; 
Breslow, R.; Pavletich, N. P. Structures of a Histone Deacetylase Homologue Bound to the
TSA and SAHA Inhibitors. Nature 1999, 401 (6749), 188.

(80) Drummond, D. C.; Noble, C. O.; Kirpotin, D. B.; Guo, Z.; Scott, G. K.; Benz, C. C. 
Clinical Development of Histone Deacetylase Inhibitors as Anticancer Agents. Annu. Rev. 
Pharmacol. Toxicol. 2005, 45, 495–528.

(81) Dojindo Molecular Technologies, I. Metal Chelates.

(82) Anderegg, G. Critical Survey of Stability Constants of EDTA Complexes; Pergamon Press:
New York, 1977.

(83) Passer, E.; White, J. G.; Cheng, K. L. The Crystal Structure of Mg2EDTA·9H2O. 
Inorganica Chim. Acta 1977, 24, 13–23.

(84) Li, H.; Sadler, P. J.; Sun, H. Rationalization of the Strength of Metal Binding to Human 
Serum Transferrin. Eur. J. Biochem. 1996, 242 (2), 387–393.

(85) Tinoco, A. D.; Valentine, A. M. Ti (IV) Binds to Human Serum Transferrin More Tightly 
than Does Fe (III). J. Am. Chem. Soc. 2005, 127 (32), 11218–11219.

(86) Tinoco, A. D.; Incarvito, C. D.; Valentine, A. M. Calorimetric, Spectroscopic, and Model 
Studies Provide Insight into the Transport of Ti (IV) by Human Serum Transferrin. J. Am. 
Chem. Soc. 2007, 129 (11), 3444–3454.

(87) Vera, J. L.; Román, F. R.; Meléndez, E. Study of Titanocene--DNA and Molybdenocene--
DNA Interactions by Inductively Coupled Plasma--Atomic Emission Spectroscopy. Anal. 
Bioanal. Chem. 2004, 379 (3), 399–403.

(88) Mokdsi, G.; Harding, M. M. Inhibition of Human Topoisomerase II by the Antitumor 
Metallocenes. J. Inorg. Biochem. 2001, 83 (2–3), 205–209.

(89) Cini, M.; Bradshaw, T. D.; Woodward, S. Using Titanium Complexes to Defeat Cancer: 
The View from the Shoulders of Titans. Chem. Soc. Rev. 2017, 46 (4), 1040–1051.

137



(90) Sun, H.; Li, H.; Sadler, P. J. Transferrin as a Metal Ion Mediator. Chem. Rev. 1999, 99 (9), 
2817–2842.

(91) Li, H.; Qian, Z. M. Transferrin/Transferrin Receptor-Mediated Drug Delivery. Med. Res. 
Rev. 2002, 22 (3), 225–250.

(92) Gupta, Y.; Jain, A.; Jain, S. K. Transferrin-Conjugated Solid Lipid Nanoparticles for 
Enhanced Delivery of Quinine Dihydrochloride to the Brain. J. Pharm. Pharmacol. 2007, 
59 (7), 935–940.

(93) Lesley, J.; Schulte, R.; Woods, J. Modulation of Transferrin Receptor Expression and 
Function by Anti-Transferrin Receptor Antibodies and Antibody Fragments. Exp. Cell 
Res. 1989, 182 (1), 215–233.

(94) Huwyler, J.; Wu, D.; Pardridge, W. M. Brain Drug Delivery of Small Molecules Using 
Immunoliposomes. Proc. Natl. Acad. Sci. 1996, 93 (24), 14164–14169.

(95) Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin-and Transferrin-Receptor-
Antibody-Modified Nanoparticles Enable Drug Delivery across the Blood--Brain Barrier 
(BBB). Eur. J. Pharm. Biopharm. 2009, 71 (2), 251–256.

(96) Noinaj, N.; Easley, N. C.; Oke, M.; Mizuno, N.; Gumbart, J.; Boura, E.; Steere, A. N.; 
Zak, O.; Aisen, P.; Tajkhorshid, E.; Evans, R. W.; Gorringe, A. R.; Mason, A. B.; Steven, 
A. C.; Buchanan, S. K. Structural Basis for Iron Piracy by Pathogenic Neisseria. Nature 
2012, 483 (7387), 53.

(97) Dautry-Varsat, A.; Ciechanover, A.; Lodish, H. F. PH and the Recycling of Transferrin 
during Receptor-Mediated Endocytosis. Proc. Natl. Acad. Sci. 1983, 80 (8), 2258–2262.

(98) Sipe, D. M.; Murphy, R. F. Binding to Cellular Receptors Results in Increased Iron 
Release from Transferrin at Mildly Acidic PH. J. Biol. Chem. 1991, 266 (13), 8002–8007.

(99) Grossman, J. G.; Crawley, J. B.; Strange, R. W.; Patel, K. J.; Murphy, L. M.; Neu, M.; 
Evans, R. W.; Hasnain, S. S. The Nature of Ligand-Induced Conformational Change in 
Transferrin in Solution. J. Mol. Biol. 1998, 279, 461–472.

(100) MacGillivray, R. T. A.; Moore, S. A.; Chen, J.; Anderson, B. F.; Baker, H.; Luo, Y.; 
Bewley, M.; Smith, C. A.; Murphy, M. E. P.; Wang, Y.; Mason, A. B.; Woodworth, R. C.; 
Brayer, G. D.; Baker, E. N. Two High-Resolution Crystal Structures of the Recombinant 
N-Lobe of Human Transferrin Reveal a Structural Change Implicated in Iron Release. 
Biochemistry 1998, 37 (22), 7919–7928.

(101) Dhungana, S.; Taboy, C. H.; Zak, O.; Larvie, M.; Crumbliss, A. L.; Aisen, P. Redox 
Properties of Human Transferrin Bound to Its Receptor. Biochemistry 2004, 43 (1), 205–
209.

138



(102) He, Q.-Y.; Mason, A. B.; Tam, B. M.; MacGillivray, R. T. A.; Woodworth, R. C. Dual Role
of Lys206- Lys296 Interaction in Human Transferrin N-Lobe: Iron-Release Trigger and 
Anion-Binding Site. Biochemistry 1999, 38 (30), 9704–9711.

(103) Steinlein, L. M.; Ligman, C. M.; Kessler, S.; Ikeda, R. A. Iron Release Is Reduced by 
Mutations of Lysines 206 and 296 in Recombinant N-Terminal Half-Transferrin. 
Biochemistry 1998, 37 (39), 13696–13703.

(104) Eckenroth, B. E.; Steere, A. N.; Chasteen, N. D.; Everse, S. J.; Mason, A. B. How the 
Binding of Human Transferrin Primes the Transferrin Receptor Potentiating Iron Release 
at Endosomal PH. Proc. Natl. Acad. Sci. 2011, 108 (32), 13089–13094.

(105) Jeffrey, P. D.; Bewley, M. C.; MacGillivray, R. T. A.; Mason, A. B.; Woodworth, R. C.; 
Baker, E. N. Ligand-Induced Conformational Change in Transferrins: Crystal Structure of 
the Open Form of the N-Terminal Half-Molecule of Human Transferrin. Biochemistry 
1998, 37 (40), 13978–13986.

(106) Steere, A. N.; Byrne, S. L.; Chasteen, N. D.; Mason, A. B. Kinetics of Iron Release from 
Transferrin Bound to the Transferrin Receptor at Endosomal PH. Biochim. Biophys. Acta 
(BBA)-General Subj. 2012, 1820 (3), 326–333.

(107) Tinoco, A. D.; Saxena, M.; Sharma, S.; Noinaj, N.; Delgado, Y.; Quiñones González, E. P.;
Conklin, S. E.; Zambrana, N.; Loza-Rosas, S. A.; Parks, T. B. Unusual Synergism of 
Transferrin and Citrate in the Regulation of Ti (IV) Speciation, Transport, and Toxicity. J. 
Am. Chem. Soc. 2016, 138 (17), 5659–5665.

(108) Curtin, J. P.; Wang, M.; Cheng, T.; Jin, L.; Sun, H. The Role of Citrate, Lactate and 
Transferrin in Determining Titanium Release from Surgical Devices into Human Serum. 
JBIC J. Biol. Inorg. Chem. 2018, 23 (3), 471–480.

(109) Baker, H. M.; Nurizzo, D.; Mason, A. B.; Baker, E. N. Structures of Two Mutants That 
Probe the Role in Iron Release of the Dilysine Pair in the N-Lobe of Human Transferrin. 
Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 63 (3), 408–414.

(110) Mujika, J. I.; Escribano, B.; Akhmatskaya, E.; Ugalde, J. M.; Lopez, X. Molecular 
Dynamics Simulations of Iron- and Aluminum-Loaded Serum Transferrin: Protonation of 
Tyr188 Is Necessary to Prompt Metal Release. Biochemistry 2012, 51 (35), 7017–7027. 
https://doi.org/10.1021/bi300584p.

(111) Rinaldo, D.; Field, M. J. A Computational Study of the Open and Closed Forms of the N-
Lobe Human Serum Transferrin Apoprotein. Biophys. J. 2003, 85 (6), 3485–3501.

139



(112) Mujika, J. I.; López, X.; Rezabal, E.; Castillo, R.; Marti, S.; Moliner, V.; Ugalde, J. M. A 
QM/MM Study of the Complexes Formed by Aluminum and Iron with Serum Transferrin 
at Neutral and Acidic PH. J. Inorg. Biochem. 2011, 105 (11), 1446–1456.

(113) Sakajiri, T.; Yajima, H.; Yamamura, T. Density Functional Theory Study on Metal-Binding
Energies for Human Serum Transferrin-Metal Complexes. ISRN Biophys. 2012, 2012 (Iii),
1–5. https://doi.org/10.5402/2012/124803.

(114) Lei, P.; Ayton, S.; Bush, A. I.; Adlard, P. A. GSK-3 in Neurodegenerative Diseases. Int. J. 
Alzheimer’s Dis. 2011, 2011.

(115) Lin, R.; Jones, N. C.; Kwan, P. Unravelling the Role of Glycogen Synthase Kinase-3 in 
Alzheimer’s Disease-Related Epileptic Seizures. Int. J. Mol. Sci. 2020, 21 (10), 3676.

(116) Hooper, C.; Killick, R.; Lovestone, S. The GSK3 Hypothesis of Alzheimer’s Disease. J. 
Neurochem. 2008, 104 (6), 1433–1439.

(117) King, M. K.; Pardo, M.; Cheng, Y.; Downey, K.; Jope, R. S.; Beurel, E. Glycogen 
Synthase Kinase-3 Inhibitors: Rescuers of Cognitive Impairments. Pharmacol. Ther. 2014,
141 (1), 1–12.

(118) Aourz, N.; Serruys, A.-S. K.; Chabwine, J. N.; Balegamire, P. B.; Afrikanova, T.; Edrada-
Ebel, R.; Grey, A. I.; Kamuhabwa, A. R.; Walrave, L.; Esguerra, C. V. Identification of 
GSK-3 as a Potential Therapeutic Entry Point for Epilepsy. ACS Chem. Neurosci. 2018, 
10 (4), 1992–2003.

(119) Morales-García, J. A.; Susín, C.; Alonso-Gil, S.; Pérez, D. I.; Palomo, V.; Pérez, C.; 
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