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Abstract 
Freight is fundamental to economic growth, however, the trucks that haul this freight are 
pollution intensive, emitting criteria pollutants and greenhouse gases at high rates. The 
increasing volume and time-sensitivity of freight demand over the past decade has encouraged 
carriers to take the fastest route, which is often not an eco-friendly route. The increase in urban 
freight movement has thus brought along negative externalities such as congestion, emissions, 
and noise into cities. Alternative fuel technologies, such as electric trucks and hydrogen-fuel 
trucks can significantly reduce freight-related emissions. However, despite their lower 
operational costs, the high purchase cost and consequent longer payback periods compared to 
traditional vehicles, have resulted in slow adoption rates. Since the need to reduce global 
greenhouse gas emissions and local criteria pollutants is immediate, accounting for externalities 
in carriers’ tactical and operational decision-making in the form of eco-routing can bring about 
desired reductions in emissions. The objectives of this work are to explore the possibilities and 
potential of eco-routing from the perspective of the carrier, in terms of cost-benefits and trade-
offs, and from the perspective of the regulator, in terms of network-wide effects and policy 
initiatives that could encourage carriers to eco-route. This study evaluates reduction in global 
greenhouse emissions and local criteria pollutants, with a particular focus on direct impacts on 
disadvantaged communities in the Southern California Association of Governments (SCAG) 
region. 
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Cargo Routing and Disadvantaged Communities 

Executive Summary 
Can eco-routing be an important step towards sustainable zero-emission transportation? What 
is the cost-benefit tradeoff for a carrier accounting for emissions in its routing decision (eco-
routing)? Generally, the carrier’s increased operational costs tradeoff with reduction in 
emissions from eco-routing, highlighting the lack of incentive for the carrier to eco-route. This 
result shouldn’t be surprising. Had there been a monetary advantage for the carrier to reduce 
emissions, carriers would consistently eco-route. Moreover, this work found a net monetary 
loss for the system (private carrier+ society), as the monetary gain from a carrier eco-routing its 
fleet in the form of reduced emissions for society were offset by the monetary loss for the 
carrier in the form of increased costs of hauling. Were the benefits from NOx and CO2 reduction 
at least 10 times more valuable to society, eco-routing could render a net gain for the system. 
Yet, it is possible that carriers could choose to eco-route, despite an increase in costs, as this 
work found that other important travel metrics relevant to the carrier such as travel distance, 
travel time, and fuel consumed, may reduce due to eco-routing. 

To further establish the potential of eco-routing, this study developed the network-wide effects 
of eco-routing by developing a multi-class improved Traffic Assignment by Paired Alternative 
Segments (m-iTAPAS) algorithm. With all of the trucks eco-routed in the network, the emission 
reductions peaked in the range of 1%-5%, at lower congestion levels. This highlights the 
potential of eco-routing to reduce emissions during off-peak hours, i.e., early morning and late 
night, when passenger car traffic is significantly lower. Yet it is important to note that while 
emissions may reduce on aggregate, certain parts of the region may observe a significant rise in 
emissions. However, such spatial variations in the emissions did not disproportionately affect, 
either negatively or positively, disadvantaged communities in the SCAG region.  

Given the lack of incentive for carriers to eco-route, and the possibility of increased emissions 
for certain disadvantaged communities, this work explores geofencing as a tool to protect 
disadvantaged communities in the region. Today, these communities experienced an increased 
burden. The authors developed two geofences for this work, one for census tracts with high 
CalEnviroScreen (CES) scores - a pollution exposure index accounting for pollution burden and 
population characteristics, and another for the Southeast LA (SELA) region. In both cases, 
emissions within the geofence reduced significantly. NOx emissions reduced by as much as 70%, 
due to reduced truck travel within the geofence, although the geofence area may also 
experience increased passenger car traffic. Again, these reduction in emissions for the geofence 
area brings along increases in emissions elsewhere in the region. These impacts, though, do not 
disproportionally affect, either positively or negatively, other disadvantaged communities in the 
region. Thus, geofencing can bring about a desired outcome in the form of a reduction in 
emissions for the disadvantaged region, with minimal but equitable increases in network-wide 
emissions. 
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I. Introduction 
In the past century, global climate change has become one of the pressing concerns for 
subsistence of humankind on earth. Swedish scientist, Svante Arrhenius, in 1896 was the first to 
establish an anthropological link to the rise in global temperatures (Weart, 2008). Ever since 
then, rigorous scientific evidence has corroborated the greenhouse gas (GHG) effect. 
Transportation is one of the major sectors that contributes to this effect, amounting to a share 
of 24% at the global stage, and 34% in the US, for carbon-dioxide (CO2) emissions 
(Environmental Protection Agency (EPA), 2019a; Tiseo, 2020). Freight movement, which is 
typically a high-intensity long-duration travel, renders a major chunk of these transportation-
related emissions. In 2017, the transportation sector in the US produced 1787 million metric 
tons of CO2 emissions, about a quarter of which were produced by medium- and heavy-duty 
trucks alone (Environmental Protection Agency (EPA), 2020). Moreover, of these 1787 million 
metric tons of CO2 emissions, California produced 218 million metric tons, the second highest 
for any state in the US, behind only Texas (Environmental Protection Agency (EPA), 2019b).  

Beyond freight’s impact on global climate change, criteria pollutants from urban freight 
movement adversely affect the health of local populations. The recent trends in freight 
distribution with the growth of e-commerce and subsequent rise of rush-deliveries has 
significantly affected urban freight flows, resulting in frequent less-than-truckload urban freight 
movement on faster routes which often are not energy-efficient or eco-friendly (Jaller et al., 
2020b). Such urban freight movement thus brings negative externalities such as congestion, 
noise and air pollution (Jaller and Pahwa, 2020), which particularly affect disadvantaged 
communities, where logistic facilities may be concentrated owing to lower property rates. Jaller 
and Pineda (2017), Jaller et al. (2020a), and Jaller et al. (2020b) evinced this logistics relocation 
and freight concentration in the core, dense, urban parts of Southern California. Such logistics 
relocation closer to the urban core, however, also provides opportunities for the use of zero-
emission vehicles in the last-mile distribution. Thus, to foster a sustainable and eco-friendly 
freight movement, the state incentivizes carriers to transition towards Zero-Emission Vehicles 
(ZEVs) with the California Sustainable Freight Action plan, Air Resources Board regulations for 
zero emission trucks and the Advanced Clean Truck (ACT) rule. However, a significant change in 
the carrier’s fleet can take a considerable amount of time, while there is an urgent need for 
operational improvement initiatives that could provide efficient alternatives to address global 
climate change and local pollution impacts of urban freight in Southern California. Towards this 
end, policy initiatives that encourage and incentivize carriers to account for emissions in their 
routing decisions (eco-friendly truck routing) could make more immediate contributions to 
solving the imminent environmental crisis. 

The objective of this work is to explore possibilities related to eco-friendly routing for the 
carriers and regulators in the Southern California Association of Governments (SCAG) region. To 
do so, the authors will explore the potential of eco-routing from: 1) the perspective of the 
carrier, in terms of cost-benefits and trade-offs for a carrier eco-routing in a stochastic network; 
and 2) the perspective of the system (e.g., regulator, society) in terms of 2.1) network-wide 
reductions in emissions from system-wide truck eco-routing, and 2.2) policy initiatives such as 
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geofencing, access control, and infrastructure use restrictions that could mitigate negative 
impacts of urban freight movement for disadvantaged communities. 

The following section (Section 2) discusses pertinent literature pertaining to eco-routing, 
vehicle routing and traffic assignment. Section 3 presents the workflow and the methodology 
for this study. Section 4 and 5 then develop the numerical experiments and the results for the 
case study of SCAG. This study concludes with a discussion of the results (Section 5), particularly 
in the context of possible immediate policy initiatives that would serve as an intermediary step 
towards the long-term objective of freight sustainability.  
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II. Literature Review 
With a growing pressure for sustainable transportation, the last couple of decades have 
witnessed a substantial increase in studies related to eco-routing. In the context of the scope of 
analysis, these studies largely pertain to point-to-point routing (Huang and Peng, 2018; 
Schröder and Cabral, 2019), classical vehicle-routing problem (VRP) (Erdoğan and Miller-Hooks, 
2012; Hooshmand and MirHassani, 2019) or traffic assignment (Ahn and Rakha, 2008; Guo et 
al., 2012). In order to evaluate fuel consumption and emissions, some of the earlier work 
(Ericsson et al., 2006) relied on single point values (macroscale models), while more recent 
work have employed mesoscale (Yao and Song, 2013) and microscale (Nie and Li, 2013) models, 
accounting for different factors that can influence vehicle efficiency. Zhou et al. (2016) broadly 
categorized these factors into travel, weather, vehicle, roadway, traffic, and driver related. 
Research work with in-situ and in-vitro experiments estimated the impacts of these factors on 
vehicle efficacy and thus developed meso and microscale models (Huang et al., 2018).  

Mesoscale models estimate fuel consumption and emission rates from aggregated information, 
such as average vehicle speed on the street, average street grade, etc., while more 
sophisticated microscale models employ traffic dynamics and vehicle trajectories for more 
precise estimates. Literature has commonly categorized these models as white-box, e.g., 
carbon balance; grey-box; and black-box models, e.g., VTMicro, CMEM, EMFAC; in the order of 
most to least transparent between inputs and output. In practice, the impacts of the 
aforementioned factors are realized by strategic, tactical, and operational decision-making 
(Sivak and Schoettle, 2012). In the context of routing, these strategic decisions are long-term 
decisions related to the vehicle type and configuration, tactical decisions on the other hand 
pertain to route choice and amount of payload, while the operational decisions account for 
driving style. While the decision to eco-route involves an obvious trade-off between travel 
time/travel distance and fuel consumption/emissions, eco-friendly paths may also render 
savings in cost (Yao and Song, 2013; Zeng et al., 2016). Figure 1 provides a taxonomy of the eco-
routing literature, and Table 1 presents a non-exhaustive list of different eco-routing studies, 
summarizing the transportation problem addressed, and the externalities considered in the 
study. 

In general, fuel consumption and emission models are convex shaped curves that achieve peak 
efficiency at moderate levels of vehicle operation, i.e., speed, acceleration, and braking. 
Passiveness or aggression on the pedal renders a drop in vehicle efficiency, increasing overall 
fuel consumption and vehicle emissions. Hence, eco-routing encompasses a trade-off between 
trip travel distance/time and vehicle efficiency (emissions and fuel consumption), which may 
also result in cost savings. Ericsson et al. (2006) for instance, found that about half of all the 
trips in the city of Lund, Sweden did not take the most fuel-efficient path, and could reduce fuel 
consumption by about 8% if they did so. Yao and Song (2013) identified that mid-range distance 
trips (5-10mi) under heavy congestion can have a significant reduction in fuel consumption, 
though at the cost of a substantial increment in travel time in comparison to the fastest path. 
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Figure 1. Taxonomy of eco-routing literature 

 

This study performs eco-routing analyses in the context of origin-destination routing and traffic assignment, using mesoscale black 
box models, thus incorporating emissions in carrier’s tactical and operational decision making. 
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Table 1. A non-exhaustive summary of eco-routing studies 

Research article Scope Key Feature Externality 
considered 

Ericsson et al. (2006) PPR Streel level FC modeling FC 

Nie and Li (2013) PPR Microscopic FC modeling  FC, CO2 

Yao and Song (2013) PPR Time-dependent model FC, CO2 

Bandeira et al. (2014) PPR Strategic decision making FC, CO, CO2, HC, NOx 

Scora et al. (2015) PPR Freight specific eco-routing FC 

Sun and Liu (2015) PPR Microscopic FC modeling FC, CO, CO2, HC, NOx 

Zeng et al. (2016) PPR Multi-objective routing FC, CO2 

Huang and Peng (2018) PPR Emission constrained routing FC 

Schröder and Cabral (2019) PPR 3-dimensional routing model FC 

Tzeng and Chen (1993) TA Multi-objective modeling CO 

Rilett and Benedek (1994) TA System equitable assignment CO 

Benedek and Rilett (1998) TA System equitable assignment CO 

Nagurney et al. (1998) TA Pollution permits Generic 

Nagurney (2000) TA Strategic decision making Generic 

Sugawara and Niemeier (2000) TA Emission-flow relationship CO 

Ahn and Rakha (2008) PPR, TA Micro-simulation study FC, CO, CO2, HC, NOx 

Guo et al. (2012) TA Multiclass TA FC, CO, NOx 

Rakha et al. (2012) TA Multiclass TA FC, CO, CO2, HC, NOx 

Aziz and Ukkusuri (2014) TA Time-dependent modeling CO2 

Elbery et al. (2016) TA Ant colony-based assignment FC, CO, CO2, HC, NOx 

Elbery and Rakha (2019) TA Eco-routing market penetration FC 

Figliozzi (2010) VRP Time-dependent modeling CO2 

Erdoğan and Miller-Hooks (2012) VRP Strategic decision making FC 

Hooshmand and MirHassani (2019) VRP Time-dependent modeling FC, CO2 

This work PPR, TA Stochastic routing 
multiclass TA with geofencing 
freight specific eco-routing 

FC, CH4, CO2, CO, NOx, 
PM, ROG 

FC – Fuel Consumption, PPR – Point-to-Point Routing, VRP – Vehicle Routing Problem, TA – Traffic Assignment  

Similar conclusions were drawn by Zeng et al. (2016). The authors in the study found that the 
eco-route, the shortest, and the fastest path were in ascending order for emissions and 
descending order for travel time. Scora et al. (2015) found a 16% reduction in fuel consumption 
with eco-friendly routing, but much like other studies, the authors also observed a 31% 
increment in travel time for the same. Yet, about half of all of the eco-friendly routes resulted in 
a small, on average 2%, reduction in total cost. Other important studies have evaluated the 
impact of congestion and road grades in the emissions and fuel consumption for eco-routing 
and eco-driving initiatives (Barth and Boriboonsomsin, 2008, 2009; Boriboonsomsin et al., 
2012). In the context of vehicle-routing, Figliozzi (2010) also suggested a possible reduction in 
emissions with little or no increment in operational cost. While these results are limited to an 
analysis of certain origin-destination pairs, network-wide effects of eco-routing have also been 
established previously. 
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As mentioned, beyond routing, the impacts of eco-routing have also been studied under traffic 
equilibrium. In this context, Tzeng and Chen (1993) is one of the earliest works, wherein the 
authors established emissions-based User Equilibrium (UE) for the city of Taipei, Taiwan. While 
the study found an emissions-based assignment to reduce total pollution by 27%, the total 
network travel time was up by 14% in comparison to the conventional time-based assignment. 
Rilett and Benedek (1994) went a step further and compared System Optimal (SO) and User 
Equilibrium (UE) performance for travel-time based and carbon-monoxide (CO)-based traffic 
assignment. While the SO-CO assignment had a 3% increment in network travel-time, it far 
outperformed the UE-CO assignment, which observed a 9% increment in comparison to the 
system optimal travel time. Later, in Benedek and Rilett (1998), the authors performed an 
equitable traffic assignment with CO-a societal objective wherein the aim was to have equal CO 
pollution in major residential corridors. While this resulted in an equal distribution of 
externalities, the overall pollution levels in the network increased consequently. More recently, 
Guo et al. (2012) and Elbery and Rakha (2019) evaluated the impact of eco-routing on network 
penetration, performing a multi-criteria traffic equilibrium. In the latter, the authors developed 
a targeted network penetration, wherein for any level of network penetration, the vehicles that 
rendered the highest savings from eco-routing were eco-routed. In process, the network 
achieved saturation level, i.e., a 12% emission reduction at only 40% penetration, with a 3% 
increment in network travel time. In comparison, randomized network penetration achieved a 
similar 12% emission reduction at 90% penetration, but at the cost of a much higher 8% 
increase in total travel time.  

These studies therefore highlight the potential benefits from eco-routing and the need to 
develop policy initiatives that can encourage eco-friendly routing. As discussed earlier, 
alternate fuel vehicles such as electric trucks, hydrogen-fuel trucks, etc., can mitigate negative 
externalities from freight. Yet, despite government efforts to incentivize carrier fleet transition 
to zero-(tailpipe)-emission vehicles, adoption rates have been slow. Towards this end, eco-
friendly truck routing can render reductions in emissions to a lesser but significant extent. Thus, 
the objectives of this work are to explore the possibilities and potential of eco-routing from the 
perspective of the carrier, in terms of cost-benefits and trade-offs, and from the perspective of 
the regulator, in terms of network-wide effects and policy initiatives that could encourage 
carriers to eco-route. This study evaluates reduction in global greenhouse gas emissions and 
local criteria pollutants, with a particular focus on direct impacts on disadvantaged 
communities in the Southern California Association of Governments (SCAG) region. These 
disadvantaged communities are identified and established using California Communities 
Environmental Health Screening Tool (CalEnviroScreen; CES) scores, a pollution exposure index 
accounting for pollution burden and population characteristics (California Office of 
Environmental Health Hazard Assessment, 2017). This study aligns with California’s efforts to 
further environmental justice which calls for fair treatment of individuals and communities 
regardless of identity, status, or income (California Environmental Protection Agency, n.d.). 
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III. Methodology 
To develop a comprehensive understanding of eco-routing, this work explores its potential from 
the perspective of a carrier hauling truck fleet operating between different origin-destination 
pairs in the form of expected cost-benefits, trade-offs, and travel reliability from minimizing 
expected emissions (eco-routing) in a stochastic network with probabilistic arc speeds. 
Additionally, the authors consider the network-wide effects of truck eco-routing using traffic 
assignment from a systems perspective, or the perspective of a regulator. This work carries out 
numerical analyses for the Southern California Association of Governments (SCAG) region, with 
a particular focus on disadvantaged communities and initiatives that could mitigate negative 
impacts on disadvantages communities. This work develops: a) a point-to-point routing tool for 
a stochastic network with (empirically developed) probabilistic arc speeds; and b) a multi-class 
traffic assignment tool. Fundamental to all of the analyses, the authors develop mesoscale 
emission and vehicle fuel consumption rate models. Specifically, this study develops the 
shortest path (SP), fastest path (FP), least-emissions path (LEP), and least-cost path (LCP) truck 
routing over specific origin-destination pairs and establishes a corresponding multi-class traffic 
equilibrium to evaluate the network-wide effects of eco-routing. Below are the formulations 
and solution algorithms for point-to-point truck routing in a stochastic network with 
probabilistic arc speeds, and multi-class traffic assignment.  

Point-to-point routing in a stochastic network with probabilistic arc speeds 

To begin, the authors introduce a network as a directed graph - 𝐺(𝑁, 𝐴), with a set of nodes 𝑁 
and a set of arcs 𝐴 = {(𝑖, 𝑗); 𝑖, 𝑗 ∈ 𝑁}. A vehicle traversing through this network observes costs 
pertaining to travel-related parameters 𝑝 ∈ 𝑃, which manifest on the arc at a rate defined by a 

polynomial function on arc speed, given by, ∑ 𝜂𝑛
𝑝𝑣𝑖𝑗

𝑛
𝑛 , where 𝜂𝑛

𝑝 is the coefficient of the 

polynomial term 𝑣𝑖𝑗
𝑛  (arc speed 𝑣𝑖𝑗 raised to the power 𝑛). 

𝑁: Set of nodes 
𝐴: Set of arcs 
𝑃: Set of parameters 
𝑐𝑖𝑗: Cost of arc (𝑖, 𝑗) 

𝑑𝑖𝑗: Length of arc (𝑖, 𝑗) 

𝑣𝑖𝑗: Vehicle speed on arc (𝑖, 𝑗) 

𝑡𝑖𝑗: Travel time on arc (𝑖, 𝑗) 

𝑥𝑖𝑗: Binary: 1 if arc (𝑖, 𝑗) ∈ 𝐴 is traversed by the vehicle, else 0 (𝑖, 𝑗) 

𝜃𝑝 : Cost of parameter 𝑝 

𝜂𝑛
𝑝: Coefficient of 𝑣𝑖𝑗

𝑛  for parameter 𝑝 

𝑟, 𝑠: Origin, Destination 
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Thus, the generalized arc cost 𝑐𝑖𝑗 is, 

𝑐𝑖𝑗 = ∑ 𝜃𝑝𝑡𝑖𝑗 ∑ 𝜂𝑛
𝑝𝑣𝑖𝑗

𝑛
𝑛𝑝 ∈ 𝑃         (1) 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑣𝑖𝑗
         (2) 

To develop a comprehensive understanding of eco-routing, this work assumes a stochastic 
nature of the network with arc speeds being probabilistic. Under such a stochastic setting, the 
authors assume a priori decision making, with posterior realization of arc costs, rendering the 
objective function as, 

min
𝑥𝑖𝑗; (𝑖, 𝑗) ∈ 𝐴 𝑧 = ∑ 𝐸[𝑐𝑖𝑗]𝑥𝑖𝑗 (𝑖,𝑗) ∈ 𝐴       (3) 

𝑣𝑖𝑗 ~𝑓𝑣𝑖𝑗
         (4) 

Subject to flow conservation, 

∑ 𝑥𝑖𝑗𝑖 ∈ 𝑇(𝑗) = ∑ 𝑥𝑗𝑘𝑘 ∈ 𝐻(𝑗)        (5) 

∑ 𝑥𝑟𝑗𝑗 ∈ 𝐻(𝑟) = 1        (6) 

∑ 𝑥𝑖𝑠𝑖 ∈ 𝑇(𝑠) = 1        (7) 

Where, 𝐻, 𝑇 are the node predecessor (tail) and successor (head) functions, respectively. 

𝑇(𝑖) = {𝑘; (𝑘, 𝑖) ∈ 𝐴}        (8) 

𝐻(𝑖) = {𝑘; (𝑖, 𝑘) ∈ 𝐴}        (9) 

The above-developed optimization is analogous to the deterministic routing problem, and 
hence can be solved by classical Dijkstra’s algorithm (Dijkstra, 1959) . 

Multi-class traffic assignment 

For the purpose of traffic assignment analysis, again, the authors define the network as a 
directed graph - 𝐺(𝑁, 𝐴), with 𝑁 and 𝐴 denoting sets of nodes and arcs in the network, 
respectively. Further, this section introduces a set of origins 𝑅 and a set of destination 𝑆 with 
demand 𝑞𝑟𝑠 between origin 𝑟 ∈ 𝑅 and destination 𝑠 ∈ 𝑆. To explore network-wide impacts of 
truck eco-routing, the authors assume 𝐾 classes of vehicles in the network, wherein vehicle 

class 𝑘 ∈ 𝐾 traverses arc (𝑖, 𝑗) ∈ 𝐴 at cost 𝑐𝑖𝑗
𝑘 , defined on the parameters from the set 𝑃.  

𝑁: Set of nodes 
𝐴: Set of arcs 
𝑃: Set of parameters 
𝑅: Set of origins 
𝑆:  Set of destinations 

𝐾: Set of vehicle classes 
𝑞𝑟𝑠

𝑘 : Demand for vehicle class 𝑘 between origin 𝑟 and destination 𝑠 
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𝑆𝑟:  Set of destinations with non-zero demand from origin 𝑟 {𝑠 ∈ 𝑆: 𝑞𝑟𝑠
𝑘 > 0} 

𝑐𝑖𝑗
𝑘 : Cost of arc (𝑖, 𝑗) for vehicle class 𝑘 

𝑑𝑖𝑗: Length of arc (𝑖, 𝑗) 

𝑣𝑖𝑗: Vehicle speed on arc (𝑖, 𝑗) 

𝑡𝑖𝑗: Travel time on arc (𝑖, 𝑗) 

𝑥𝑖𝑗: Flow on arc (𝑖, 𝑗) 

𝑥𝑖𝑗
𝑘𝑟: Flow of vehicle class 𝑘 on arc (𝑖, 𝑗) from origin 𝑟 

𝑉𝑖𝑗: Volume capacity for arc (𝑖, 𝑗)  

𝛼𝑖𝑗: BPR parameters for arc (𝑖, 𝑗) 

𝛽𝑖𝑗: BPR parameter for arc (𝑖, 𝑗) 

𝜃𝑝 : Cost of parameter 𝑝 

𝜂𝑛
𝑝

: Coefficient of 𝑣𝑖𝑗
𝑛  for parameter 𝑝 

A vehicle traversing through the network observes costs pertaining to travel-related 
parameters from the set 𝑃, which manifest on the arc at a rate defined by the polynomial 

function on arc speed, given by, ∑ 𝜂𝑛
𝑝𝑣𝑖𝑗

𝑛
𝑛 . This generalized cost function, must be strictly 

positive, continuously differentiable, and monotonically non-decreasing to guarantee the 
existence of the traffic assignment solution, uniqueness of the equilibrium, and absence of 
infinite loops, respectively. Additionally, this work assumes arc costs to be separable, i.e., costs 
on an arc only depend on the flow of that arc and none other. These assumptions are further 
explained, enforced, and explored in the Appendix - A. Unlike in the previous subsection, the 
arc travel time here is deterministic, defined by the BPR function. 

𝑐𝑖𝑗
𝑘 (𝑥𝑖𝑗) = ∑ 𝜑𝑝

𝑘𝜃𝑝𝑡𝑖𝑗(𝑥𝑖𝑗) ∑ 𝜂𝑛
𝑝

𝑣𝑖𝑗
𝑛

𝑛𝑝 ∈ 𝑃      (10) 

𝑡𝑖𝑗(𝑥𝑖𝑗) = 𝑡𝑖𝑗
𝑜 (1 + 𝛼𝑖𝑗 (

𝑥𝑖𝑗

𝑉𝑖𝑗
)

𝛽𝑖𝑗

)       (11) 

𝑣𝑖𝑗(𝑥𝑖𝑗) =
𝑑𝑖𝑗

𝑡𝑖𝑗(𝑥𝑖𝑗)
        (12) 

To realize the complete potential of eco-routing freight, this work analyzes the network-wide 
impacts of eco-routing by developing a multi-class Traffic Assignment (TA) tool through an 
origin-based formulation, with the objective, 

min
𝑥𝑖𝑗

𝑘𝑟; (𝑖, 𝑗) ∈ 𝐴    𝑧𝑘(𝒙) = ∑ ∫ 𝑐𝑖𝑗
𝑘 (𝑢)𝑑𝑢

𝑥𝑖𝑗
𝑘𝑟+𝑥𝑖𝑗

𝑘𝑟−

0(𝑖,𝑗) ∈ 𝐴     ∀  𝑘 ∈ 𝐾  (13) 

Subject to, 

𝑥𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑗
𝑘𝑟

𝑘 ∈ 𝐾𝑟 ∈ 𝑅         (14) 

𝑥𝑖𝑗
𝑘𝑟− =  𝑥𝑖𝑗 − 𝑥𝑖𝑗

𝑘𝑟        (15) 

∑ 𝑥𝑛𝑖
𝑘𝑟

𝑛 ∈ 𝑇(𝑖) = ∑ 𝑥𝑖𝑛
𝑘𝑟

𝑛 ∈ 𝐻(𝑖) + 𝑞𝑖
𝑘𝑟      (16) 
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𝑞𝑖
𝑘𝑟 = {

∑ 𝑞𝑟𝑠
𝑘

𝑠 ∈ 𝑆𝑟
   if 𝑖 ∈ 𝑅 

−𝑞𝑟𝑠
𝑘    if 𝑖 ∈ 𝑆𝑟

0   otherwise

       (17) 

To solve this optimization problem, authors Lagrange transform the above formulation and 
consequently apply Karush-Kuhn-Tucker (KKT) conditions rendering, 

ℒ𝑘(𝒙, 𝒖) = 𝑧𝑘(𝒙) + ∑ ∑ ∑ 𝑢𝑖
𝑘𝑟(𝑞𝑖

𝑘𝑟 + ∑ 𝑥𝑖𝑛
𝑘𝑟

𝑛 ∈ 𝐻(𝑖) − ∑ 𝑥𝑛𝑖
𝑘𝑟

𝑛 ∈ 𝑇(𝑖) )𝑖 ∈ 𝑁𝑘 ∈ 𝐾𝑟 ∈ 𝑅  (18) 

Developing the KKT conditions, 

𝑥𝑖𝑗
𝑘𝑟 𝜕ℒ𝑘

𝜕𝑥𝑖𝑗
𝑘𝑟 = 0;   

𝜕ℒ𝑘

𝜕𝑥𝑖𝑗
𝑘𝑟 ≥ 0, 𝑥𝑖𝑗

𝑘𝑟 ≥ 0      (19) 

𝜕ℒ𝑘

𝜕𝑥𝑖𝑗
𝑘𝑟 = 𝑐𝑖𝑗

𝑘 (𝑥𝑖𝑗) + 𝑢𝑖
𝑘𝑟 − 𝑢𝑗

𝑘𝑟       (20) 

𝑥𝑖𝑗
𝑘𝑟𝜋𝑖𝑗

𝑘𝑟 = 0;   𝜋𝑖𝑗
𝑘𝑟 ≥ 0, 𝑥𝑖𝑗

𝑘𝑟 ≥ 0      (21) 

Where, 𝜋𝑖𝑗
𝑘𝑟 is the reduced cost for a vehicle, belonging to class 𝑘 ∈ 𝐾, origination from node 

𝑟 ∈ 𝑅, for traversing arc (𝑖, 𝑗) ∈ 𝐴, defined as 𝑢𝑖
𝑘𝑟 + 𝑐𝑖𝑗

𝑘 (𝑥𝑖𝑗) − 𝑢𝑗
𝑘𝑟. Here, 𝑢𝑖

𝑘𝑟 is the minimum 

travel cost for vehicle class 𝑘 ∈ 𝐾 from origin 𝑟 ∈ 𝑅 to node 𝑖 ∈ 𝑁. The above-developed KKT 
conditions are akin to the classical Wardrop’s equilibrium condition, wherein the cost of all 
traversed paths between an origin and a destination must be equal, and less than the cost of all 
untraversed paths between this origin and destination. Here, an analogous interpretation of the 
KKT condition suggests that all traversed arcs at equilibrium must have zero reduced cost 
(corresponding to the particular origin and vehicle class). Such an origin-based traffic 
assignment model was first formulated by Bar-Gera (2002), who later developed the Traffic 
Assignment by Paired Alternative Segments (TAPAS) algorithm (Bar-Gera, 2010) to get the 
assignment solution. Xie and Xie (2016) made further advancements, developing the improved 
TAPAS (iTAPAS).  

This study expands the origin-based framework for multi-class traffic assignment, thus 
developing a multi-class TAPAS (mTAPAS). The fundamental idea behind the mTAPAS algorithm 

is to identify potential arcs, i.e., arcs that have a non-zero/substantial origin-based flow (𝑥𝑖𝑗
𝑘𝑟 >

𝜖) and non-zero/substantial origin-based reduced cost (𝜋𝑖𝑗
𝑘𝑟 > 𝜃), and to consequently adjust 

flow on these arcs. This flow shift occurs between Paired Alternative Segments (PAS), which are 
the sequence of arcs sharing a tail and a head node. Starting from the head node of the 
potential arc, the first segment traces back the least-cost path between origin and the head-
node of the potential arc. The second segment on the other hand backtracks from the tail node 
of the potential arc, choosing predecessor nodes with maximum cost, until it converges with 
the least-cost path between origin and the head node of the potential arc. This renders a pair of 
sequence of arcs sharing a tail node at the point of intersection and a head node at the head of 
the potential arc. Once identified, flow is adjusted on the PAS based on Newton method (Dial, 
2006). This process of identifying potential arcs and adjusting flow on the associated PAS 
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continues until the relative gap (𝑟𝑔) falls below a pre-defined tolerance level, 𝑡𝑜𝑙. Below is a 
brief description of the mTAPAS algorithm with the accompanying Maximum Cost Search (MCS) 
algorithm to establish PAS, and Newton Flow Shift (NFS) algorithm to perform flow shifts on the 
identified PAS. The implementation in this work employs 𝜖 = 10−12, 𝜃 = 10−16 and 𝑡𝑜𝑙 =
10−6.  

𝑟𝑔 = 1 −
∑ ∑ ∑ 𝑞𝑟𝑠

𝑘 .𝑘∈𝐾𝑠∈𝑆𝑟𝑟∈𝑅 𝑢𝑟𝑠
𝑘

∑ ∑ ∑ 𝑥𝑖𝑗
𝑘𝑟.𝑐𝑖𝑗

𝑘 (∑ ∑ 𝑥𝑖𝑗
𝑘𝑟

𝑘∈𝐾𝑟∈𝑅 )(𝑖,𝑗)∈𝐴𝑘∈𝐾𝑟∈𝑅

     (22) 

This study employs Julia v1.4.2 (Bezanson et al., 2017) on an Intel Core i5-10210U CPU @ 
1.60GHz PC to develop and run the traffic assignment algorithm. For a comprehensive 
description of the algorithm and corresponding Julia code, refer to the GitHub release (Pahwa, 
2021). 
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multi-class Traffic Assignment by Paired Alternative Segments (mTAPAS) – 𝑚𝑇𝐴𝑃𝐴𝑆(𝜖, θ, 𝑡𝑜𝑙)  

Step 1. Initialize origin-based arc flows 𝑥𝑖𝑗
𝑘𝑟 and origin-based reduced arc cost 𝜋𝑖𝑗

𝑘𝑟 at zero.  Initialize an empty set 𝜌 

to store Paired Alternative Segments (PAS). 
Step 2. Perform All-or-Nothing (AON) assignment – From each origin 𝑟, find the least cost path to every destination 

𝑠, for every vehicle class 𝑘, and assign demand 𝑞
𝑟𝑠
𝑘  to this path. Update 𝑥𝑖𝑗

𝑘𝑟 and 𝜋𝑖𝑗
𝑘𝑟 for arcs on this path. 

Step 3. Iterate until the algorithm converges 

Step 3.1. Identify potential arcs, i.e., arcs with 𝑥𝑖𝑗
𝑘𝑟 > 𝜖 and 𝜋𝑖𝑗

𝑘𝑟 > 𝜃. 

Step 3.2. For every potential arc, develop and store PAS in set 𝜌 using Maximum Cost Search (MCS) method. 
Step 3.3. Perform flow shift on the identified PAS based on the Newton Method. 
Step 3.4. Randomly sample a subset of PAS from set 𝜌 and perform flow shift to fasten algorithm convergence.  

Step 4. Remove PAS which no longer results in significant improvement in the solution. 
Step 5. If relative gap - 𝑟𝑔, is smaller than the tolerance level - 𝑡𝑜𝑙, go to Step 6, else repeat Step 3. 

Step 6. Return origin-based arc flows 𝑥𝑖𝑗
𝑘𝑟. 

 

Maximum Cost Search Algorithm (MCS) – 𝑚𝑐𝑠(𝑎, 𝑘, 𝑟); (𝑖, 𝑗) → 𝑎  

Step 1. Initialization 

Step 1.1. Set status label 𝑙𝑢 to 1 for node 𝑖, -1 for all nodes on least cost path for vehicle class 𝑘 between origin 
node 𝑟 and node 𝑗, and 0 for all other nodes.  

Step 1.2. Set predecessor label 𝐿𝑢 of node 𝑗 to node 𝑖, and to null for all other nodes.  

Step 1.3. Set the tail and head node on arc 𝑎, (𝑡, ℎ) → 𝑎. 
Step 2. Iterate.  

Step 2.1. Set the current node to the tail node, 𝑣 → 𝑡. 
Step 2.2. Find the maximum cost arc headed on to the current node and set the tail and head node on this arc. 

𝑡, ℎ → argmax
𝑛∈𝑇(𝑣)

𝑐𝑛𝑣
𝑘 , 𝑣 

Step 2.3. Set the predecessor label of the current node to this tail node, 𝐿𝑣 → 𝑡 

Step 2.4. If the tail node happens to be on the least cost path for vehicle class 𝑘 between origin node 𝑟 and node 

𝑗, i.e., if 𝑙𝑡 = −1 then the algorithm can establish a PAS. 

Step 2.4.1. Establish the first segment of PAS - 𝑒1, as the segment between the tail node 𝑡 and node 𝑗 on the 
least cost path for vehicle class 𝑘 between origin node 𝑟 and node 𝑗. 

Step 2.4.2. Establish the second segment of the PAS - 𝑒2, using predecessor labels, backtracking from node 𝑗 to 
the tail node 𝑡. Go to step 3. 

Step 2.5. If the tail node is a previously identified predecessor, i.e., if 𝑙𝑡 = 1, then the algorithm has found a cycle. 
Perform shift flow on this cycle based on Newton Method and restart the process from Step 1. 

Step 2.6. Else update the status of the tail node to 1 and continue to step 2.1 
Step 3. Return PAS (𝑒1, 𝑒2) 

 

Newton Flow Shift (NFS) on PAS (𝑒1, 𝑒2) – 𝑠ℎ𝑖𝑓𝑡((𝑒1, 𝑒2), 𝑘, 𝑟)  

Step 1. Set 𝑐1 and 𝑐2 as the sum of arc costs for vehicle class 𝑘 on 𝑒1 and 𝑒2 respectively. 

Step 2. Set 𝑐1
′  and 𝑐2

′  as the sum of derivative* of arc cost for vehicle class 𝑘 on 𝑒1 and 𝑒2 respectively. 

Step 3. Set 𝑓
1
 and 𝑓

2
 as the minimum arc flow for vehicle class 𝑘 from origin 𝑟 on 𝑒1 and 𝑒2 respectively. 

Step 4. Compute Δ as (𝑐2 − 𝑐1) (𝑐1
′ + 𝑐2

′ )⁄ .  
Step 5. Compute 𝛿 – if Δ ≥ 0 𝛿 → min(𝑓2, Δ) else 𝛿 → max (−𝑓1, Δ). 

Step 6. Add flow 𝛿 for arcs on 𝑒1 and reduce flow 𝛿 for arcs on 𝑒2, for vehicle class 𝑘 originating from node 𝑟 

Step 7. Update reduced cost for arcs on 𝑒1 and 𝑒2, for vehicle class 𝑘 originating from node 𝑟. 

* Derivative with respect to total arc flow 
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IV. Case Study 
This work develops an analysis for southern California, encompassing Imperial, Los Angeles, 
Orange, Riverside, San Bernardino, and Ventura counties, together forming the region 
administered by the Metropolitan Planning Organization (MPO) of Southern California 
Association of Governments (SCAG) (Figure 2). This region caters to some of the country’s 
busiest freight terminals, such as the Port of Los Angeles (POLA), warehouses in San Bernardino, 
Los Angeles Airport (LAX) and more. The freight sector (retail trade/wholesale 
trade/transportation and warehousing) in this region employs about 20% of the work force, 
thus amounting to 16% of SCAG’s GDP (US Census Bureau, n.d.). Table 2 offers county-wise 
insights into some of the region’s relevant characteristics such as demography and economy.  

Figure 2. Southern California Council of Governments (SCAG) region – scope of this work 

 
Network: Southern California Association of Governments (2016) 
CalEnviroScreen scores: California Office of Environmental Health Hazard Assessment (2017) 

While freight is essential for the economy, SCAG sustains a significant amount of freight traffic 
on its network, which brings along negative externalities such as congestion, emissions, and 
noise. Los Angeles county, for instance, with its relatively dense population and disadvantaged 
communities, faces adverse effects of transportation-related externalities. Emissions, 
specifically, Criteria Pollutants (CP) such as Carbon Monoxide (CO), Nitrogen Oxides (NOx) and 
Particulate Matter (PM) have adverse negative health impacts on local communities, while 
Greenhouse Gases (GHGs) such as Methane (CH4), Carbon Dioxide (CO2), and Reactive Organic 
Gases (ROG) have implications on global climate change, and thus are studied in this work. To 
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establish vehicle emission rates for these pollutants, the authors employ the EMission FACtor 
(EMFAC) tool (California Air Resources Board (CARB), 2017) (Figure 3). See Appendix B for a 
comparison of emission rates for the average vehicle considered and those under the EMFAC 
Port of Los Angeles designation. For fuel consumption rates, the authors use the model 
developed by Scora et al. (2015) (Figure 4). Table 3 summarizes emission and fuel consumption 
rates for Heavy-Duty Trucks (HDT) and Light Duty Automobiles (LDA) (vehicle definitions from 
EMFAC), accounting for continuously differentiable, monotonically non-decreasing, and strictly 
positive properties of generalized cost function, as defined in the previous section 

Table 2. Relevant features of counties in the SCAG region 

 Ventura LA SB Orange Riverside Imperial 

Demographics a       

Population (million) 0.85 10.1 2.14 3.16 2.38 0.18 

Land Area (sq. miles) 1843 4058 20057 791 7206 4177 

Per capita income (thousand $) $36.9 $32.5 $24.0 $39.6 $27.1 $17.6 

Pop. density (per sq. mi.) 460 2489 106 4002 331 43 

Economy a       

GDP (billion $) $53.4 $710.9 $85.1 $230.1 $79.8 $8.0 

% GDP from freight sector 13.7% 15.0% 22.7% 16.0% 18.1% 13.5% 

% Employed in freight sector 16.9% 19.6% 25.9% 17.6% 22.2% 22.8% 

Vulnerable population a       

% BPL 9.6% 16.0% 17.3% 11.5% 14.7% 24.2% 

% Unemployed 5.9% 6.8% 8.8% 5.1% 8.6% 15.3% 

% Young (age <= 9) 12.4% 12.2% 14.7% 12.0% 13.7% 15.9% 

% Elderly (age >= 60) 20.4% 18.3% 16.0% 19.5% 19.0% 17.3% 

CalEnviroScreen (CES) Score b       

Avg. CES Score 19.9 36.5 36.1 22.6 29.1 39.9 

Median CES Score 18.0 36.4 36.5 21.1 27.8 39.6 

Max CES Score 58.7 80.7 90.7 58.1 74.1 58.1 
a US Census Bureau (n.d.) 
b California Office of Environmental Health Hazard Assessment (2017) 
CES Score is a pollution exposure index accounting for pollution burden and population characteristics. 

For the first part of the analyses, this work evaluates the opportunities associated with eco-
routing for a carrier hauling Heavy Duty Truck (HDT) fleet between different origin-destination 
pairs in the SCAG region with arc speeds following Weibull distribution (Figure 5) developed 
using HERE, a crowd-based platform (HERE Technologies, 2019). Given the stochastic nature of 
the network, this work assumes the carrier to make a priori choices of route with posterior 
realizations of arc speed, thus minimizing the expected cost of routing. For this carrier, the 
authors develop and compare the shortest path (SP), fastest path (FP), and least-cost path (LCP) 
with the eco-route being the one that minimizes expected emissions for different pollutants, 
i.e., the least-emissions path (LEP).  
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Figure 3. Pollutant emission rates for Light-Duty Automobile (LDA) and Heavy-Duty Trucks 
(HDT) 

 

Note: Emission rates are for the SCAG region in 2020; Trendlines in the figure represents OLS model without 
accounting for continuously differentiable, monotonically non-decreasing, and strictly positive properties of the 
generalized cost function. 

HDT

y = 2E-6v2 - 1.6E-4v + 6.9E-3

R² = 0.62

LDA

y = 1.1E-7v2 - 4.4E-6v +5.3E-4

R² = 0.63 0.E+0 0

2.E-04

4.E-04

6.E-04

8.E-04

1.E-03

0.E+0 0

2.E-03

4.E-03

6.E-03

8.E-03

0 20 40 60 80

Em
is

si
o

n
 r

at
e 

(k
g/

h
r)

Vehicle speed (mph)

Reactive Organic Gasses (ROG)

HDT

LDA

LDA

y = 6.3E-8v2 - 3.7E-6v + 1.6E-4

R² = 0.79

HDT

y = 8.4E-8v2- 6.9E-6v + 3.9E-4

R² = 0.45

0.E+0 0

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

0 20 40 60 80

Em
is

si
o

n
 r

at
e 

(k
g/

h
r)

Vehicle speed (mph)

Methane (CH4)

LDA

HDT

LDA

y = 5.3E-4v2 + 0.2v + 2.7

R² = 0.97

HDT

y =1.1E-2v2 - 2.1E-2v + 22.6

R² = 0.97

0.E+0 0

2.E+0 1

4.E+0 1

6.E+0 1

8.E+0 1

0 20 40 60 80

Em
is

si
o

n
 r

at
e 

(k
g/

h
r)

Vehicle speed (mph)

Carbon Dioxide (CO2)

LDA

HDT

HDT

y = 4.4E-5v2 - 1.5E-3v + 8.2E-2

R² = 0.95

LDA

y = 6.6E-8v2 + 4.1E-5v + 3.3E-4

R² = 0.97
0.E+00

1.E-03

2.E-03

3.E-03

4.E-03

5.E-03

0.E+0 0

5.E-02

1.E-01

2.E-01

2.E-01

3.E-01

0 20 40 60 80

Em
is

si
o

n
 r

at
e 

(k
g/

h
r)

Vehicle speed (mph)

Nitrogen Oxides (NOx)

HDT

LDA

HDT

y = 9.2E-7v2 - 1.7E-5v + 7.3E-4

R² = 0.98

LDA

y = 1.3E-8v2 - 5.1E-7v + 6.6E-5

R² = 0.66
0.0E+ 00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

0.E+0 0

1.E-03

2.E-03

3.E-03

4.E-03

5.E-03

0 20 40 60 80

Em
is

si
o

n
 r

at
e 

(k
g/

h
r)

Vehicle speed (mph)

Particulate Matter (PM)

HDT

LDA

LDA

y = -6E-6v2 + 9E-4v + 4.7E-3

R² = 0.98

HDT

y = 4.2E-6v2 - 5.3E-5v + 2.1E-2

R² = 0.86

0.E+0 0

1.E-02

2.E-02

3.E-02

4.E-02

5.E-02

0 20 40 60 80

Em
is

si
o

n
 r

at
e 

(k
g/

h
r)

Vehicle speed (mph)

Carbon Monoxide (CO)

LDA

HDT



Cargo-Routing and Disadvantaged Communities 
 
 

28 

Figure 4. Fuel consumption for Light-Duty Automobile (LDA) and Heavy-Duty Trucks (HDT) 

 

Note: Trendlines in the figure represents OLS model without accounting for continuously differentiable, 
monotonically non-decreasing, and strictly positive properties of the generalized cost function. 

Table 3. Emission and fuel consumption models 

Parameter Vehicle ηp
0 ηp

1 ηp
2 R2 Cost 

Fuel consumption      

FC 
LDA 8.48E+00 -3.77E-01 8.29E-03 0.805 $0.994/litre a 

HDT 8.48E+00 -1.13E-01 8.29E-03 0.884 $1.051/litre a 

Criteria Pollutants (CPs)      

CO 
LDA 1.13E-02 4.39E-04 9.00E-08 0.919 

$0.199/kg b 
HDT 2.14E-02 -5.26E-05 4.16E-06 0.855 

NOx 
LDA 3.30E-04 4.04E-05 6.55E-08 0.970 

$79.28/kg b 
HDT 5.39E-02 8.98E-04 1.07E-05 0.864 

PM 
LDA 6.62E-05 -5.13E-07 1.31E-08 0.660 

$649.2/kg b 
HDT 4.54E-04 3.37E-05 9.00E-08 0.855 

Green-House Gases (GHGs)     
 

CH4 
LDA 1.30E-04 -1.04E-06 2.58E-08 0.632 

$1.781/kg c 
HDT 3.78E-04 -6.22E-06 7.50E-08 0.446 

CO2 
LDA 2.66E+00 1.96E-01 5.28E-04 0.968 

$0.068/kg c 
HDT 1.55E+01 5.78E-01 3.07E-03 0.940 

ROG 
LDA 5.29E-04 -4.35E-06 1.05E-07 0.628 

$4.925/kg b 
HDT 6.21E-03 -1.06E-04 1.23E-06 0.538 

Results from constrained OLS accounting for continuously differentiable, monotonically non-decreasing, and strictly 
positive properties of the generalized cost function. 
a AAA Gas Prices (n.d.) 
b Caltrans (2017) 
c Environmental Protection Agency (EPA) (2019a) 
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Figure 5. Class-wise histogram and best fit Weibull distribution of observed vehicle speeds 
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In the second part of the analyses, the authors develop network-wide effects using traffic 
assignment for the SCAG network with two vehicle classes: Light Duty Automobile (LDA), i.e., 
passenger cars, and Heavy-Duty Trucks (HDT). While the passenger cars route on the fastest 
path, the trucks can route on the shortest path (SP assignment), fastest path (FP assignment), 
least-cost path (LCP assignment), or on the least-emissions path (LEP assignment). In addition 
to estimating the network-wide effects of eco-routing, this work explores eco-routing’s impacts 
on disadvantaged communities identified using CalEnviroScreen score (Figure 6). Moreover, the 
authors develop and compare SP, FP and LCP assignments with and without geofencing for 
these identified disadvantaged communities. 

Figure 6. Identified disadvantaged communities 

 

a) South East LA

b) High CES score census tracts
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V. Empirical analysis of eco-routing 

Private impacts 

The first part of the analyses deals with the cost-benefits of eco-routing for a carrier hauling to 
different destinations in the SCAG region from the Port of LA (POLA). In particular, the authors 
compare the costs and benefits of eco-routing (least emissions path - LEP) with conventional 
routing options such as the shortest path (SP), fastest path (FP) and the least-cost path (LCP). 
The “cost” in the least-cost path, referred to as “travel cost” from here on, accounts for travel 
distance, travel time and fuel consumed. The benefits of eco-routing pertain to reductions in 
emissions realized from eco-routing, while the cost of eco-routing is contextual to the 
conventional routing option in comparison. The cost of eco-routing pertains to increase in 
travel distance when compared with shortest path, travel time when compared with fastest 
path, and travel cost when compared with least-cost path. Authors here assume a stochastic 
network; wherein arc speeds follow a Weibull distribution (Figure 5). Additionally, the analysis 
assumes a carrier making a priori plans for routing its fleet with posterior realizations of arc 
costs, thus minimizing its expected cost of routing.  

To begin with, the analysis here presents a comparison of carbon-dioxide eco-routing (LEP - 
CO2) with the three conventional routing options for freight trips between POLA and San 
Bernardino (SB) (Table 4, Figure 7, Figure 8 and Figure 9). Due to the stochastic nature of arc 
speeds, the travel time, amount of fuel consumed, and emissions also exhibit a probabilistic 
nature. In each of the three figures, the expected benefits can be seen to be counterbalanced 
by the expected cost of eco-routing, though the magnitudes of the respective costs and 
benefits differ across the three. This is evident by the three tables comparing eco-routing with 
conventional routing options for all trips from POLA to different destinations in the SCAG region 
(see column 2 and 3 of Table 5, Table 6 and Table 7). The increase in carrier’s costs due to eco-
routing suggest a lack of incentive for the carrier to carry out eco-friendly routing. Though a 
reduction in other parameters (see Table 5), could motivate that carrier to eco-route. 

In general, the costs and benefits of eco-routing are significant in the context of shortest path 
routing. In comparison with the other two conventional options, the costs and benefits of eco-
routing are relatively modest. On a further cost-benefit analysis, taking log10(cost/benefit), 
almost none of the eco-routes render a net monetary gain for the carrier and society combined. 
Benefits to the society from a reduction in emissions due to carrier eco-routing are 
compensated for by an increase in cost to the carrier from eco-routing. Only if the carrier would 
otherwise route its fleet for shortest distance, does NOx eco-routing (eco-route minimizing NOx 
emissions) render a higher monetary benefit for society than the monetary cost to the carrier, 
as reflected by the -0.19 value in Table 5. In fact, the cost-benefit values from the tables reflect 
an emission cost factor (in the order of 10) that can balance, or break even, the costs and 
benefits of eco-routing. Currently NOx is valued at $79.28/kg, however, for NOx eco-route to 
break even with least cost path, monetary benefits to the society from NOx reduction must be 
10 times higher, at $792.8/kg (see Table 7). Thus, considering the cost-benefit values, the order 
of best-to-worst eco-route is NOx, CO2, PM, ROG, CO, CH4, across all the three comparisons. 
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Table 4. Description of POLA to SB routes 

Route # Arcs Arc capacity (PCU/hr) Arc length (mi) Arc FFT (hr) % Car traffic % Truck traffic 

SP 85 1324 0.799 0.029 72.5% 27.6% 

FP 143 1254 0.586 0.014 80.8% 19.2% 

LCP 121 1236 0.625 0.017 80.0% 20.0% 

LEP-CO2 74 1114 1.194 0.047 75.4% 24.6% 

All arc values are average values on the route. PCU – Passenger Car Unit, FFT – Free Flow Travel Time 

Figure 7. Carbon Dioxide eco-routing (LEP - CO2) vs. shortest path routing (SP) – POLA to SB 

 

Figure 8. Carbon Dioxide eco-routing (LEP - CO2) vs. fastest path routing (FP) – POLA to SB 

 

Figure 9. Carbon Dioxide eco-routing (LEP - CO2) vs. least-cost routing (LCP) – POLA to SB 
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Table 5. Least Emissions Path (LEP) vs. Shortest Path (SP) 

Pollutant % ∆TD % ∆E % ∆TT % ∆FC Cost-Benefit 

CH4 13.3% -21.1% -17.5% 1.4% 3.86 

CO 6.3% -13.6% -16.7% -3.9% 2.87 

CO2 3.9% -6.3% -15.8% -4.9% 0.44 

NOx 4.4% -9.0% -16.2% -4.7% -0.19 

PM 2.8% -3.8% -14.6% -5.0% 1.01 

ROG 14.1% -21.6% -17.4% 2.0% 2.23 

Cost of eco-routing – θTD . ∆TD, Benefit of eco-routing – θE . ∆E, Cost-Benefit – log10(Cost/Benefit) 

Table 6. Least Emissions Path (LEP) vs. Fastest Path (FP) 

Pollutant % ∆TT % ∆E % ∆TD % ∆FC Cost-Benefit 

CH4 0.06% -0.03% 0.58% 0.42% 5.13 

CO 1.1% -0.63% -4.9% -4.3% 4.10 

CO2 2.2% -3.5% -6.9% -5.2% 0.93 

NOx 1.8% -2.4% -6.5% -5.0% 0.57 

PM 3.9% -4.8% -7.8% -5.3% 1.39 

ROG 0.13% -0.08% 1.4% 1.0% 3.37 

Cost of eco-routing – θTT . ∆TT, Benefit of eco-routing – θE . ∆E, Cost-Benefit – log10(Cost/Benefit) 

Table 7. Least Emissions Path (LEP) vs. Least Cost Path (LCP) 

Pollutant % ∆TC % ∆E % ∆TD % ∆TT % ∆FC Cost-Benefit 

CH4 2.1% -2.2% 7.8% -1.2% 6.0% 4.98 

CO 0.18% -0.04% 1.2% -0.26% 0.54% 4.14 

CO2 0.16% -0.25% -1.0% 0.89% -0.49% 1.15 

NOx 0.04% -0.04% -0.54% 0.40% -0.28% 1.00 

PM 0.85% -0.70% -2.0% 2.5% -0.59% 1.82 

ROG 2.4% -2.4% 8.7% -1.2% 6.6% 3.35 

Travel cost (TC) – θTD . TD + θTT . TT + θFC . FC, Cost of Eco-routing – θTD . ∆TD + θTT . ∆TT + θFC . ∆FC, 
Benefit of eco-routing – θE . ∆E, Cost-Benefit – log10(C/B)  

In addition to the expected costs and benefits from eco-routing, this work also reflects on the 
reliability aspect of eco-routing, owing to the stochastic nature of the network. In particular, 
the analysis looks at emission (E), travel distance (TD), travel time (TT), fuel consumption (FC) 
and travel cost (TC) reliability. To measure reliability, the authors employ two metrics–
coefficient of variation and inter-decile range. While the former reflects on the deviation 
around the mean, the latter represents the range. A smaller value in either metric reflects 
better reliability. Based on the discussion above, emission reliability is worst on the shortest 
path, best on fastest path, with the eco-route and least-cost paths as close 2nd or 3rd best (Table 
8 and Table 9). While the order of best-to-worst eco-route for travel time, fuel consumption 
and travel cost reliability is CH4, ROG, CO, NOx, CO2, PM (Table 10 and Table 11).  Travel 
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distance reliability is mentioned for the sake of thoroughness. All of the results discussed above 
are weighted by demand between the origin-destination pairs. 

Table 8. Emission reliability – coefficient of variation 

Pollutant SP FP LCP LEP 

CH4 0.21 0.13 0.15 0.13 

CO 0.16 0.09 0.10 0.10 

CO2 0.09 0.04 0.05 0.06 

NOx 0.12 0.06 0.07 0.08 

PM 0.07 0.03 0.04 0.05 

ROG 0.21 0.14 0.15 0.13 

Table 9. Emission reliability – log of inter-decile range 

Pollutant SP FP LCP LEP 

CH4 -3.38 -3.71 -3.65 -3.71 

CO -2.58 -2.91 -2.84 -2.85 

CO2 -0.19 -0.52 -0.45 -0.41 

NOx 0.42 0.09 0.16 0.19 

PM -0.74 -1.07 -1.00 -0.94 

ROG -1.73 -2.05 -1.99 -2.06 

Table 10. Eco-route reliability – coefficient of variation 

Path TD TT FC TC 

LEP - CH4 7.30E-16 0.10 0.05 0.07 

LEP - CO 7.22E-16 0.12 0.07 0.08 

LEP - CO2 7.23E-16 0.13 0.08 0.09 

LEP - NOx 7.29E-16 0.12 0.07 0.09 

LEP - PM 7.28E-16 0.14 0.08 0.10 

LEP - ROG 7.24E-16 0.10 0.05 0.07 

Table 11. Eco-route reliability – log of inter-decile range 

Path TD TT FC TC 

LEP - CH4 -14.52 1.04 0.37 1.10 

LEP - CO -14.79 1.10 0.43 1.16 

LEP - CO2 -14.85 1.14 0.47 1.21 

LEP - NOx -14.86 1.13 0.46 1.20 

LEP - PM -14.81 1.16 0.50 1.23 

LEP - ROG -14.55 1.04 0.37 1.10 
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System impacts 

Truck eco-routing 

Having established the impacts of eco-routing for the carrier, in the second part of the analyses 
the authors consider the network-wide impacts of eco-routing through traffic assignment. The 
analysis here assumes two class of vehicles: light-duty automobile (LDA), i.e., passenger cars, 
and heavy-duty trucks (HDT), i.e., delivery trucks. While the passenger cars in the network each 
minimize their travel time, the delivery trucks, as in the previous section, will minimize either 
their travel distance, travel time, travel cost, or emissions. For the sake of simplicity, the 
analysis here refers to each of the assignments as SP assignment, FP assignment, LCP 
assignment and LEP assignment, respectively, indicating the particular routing decision for the 
delivery truck, while passenger cars continually minimize travel time. 

In a preliminary analysis, authors found insignificant network-wide reductions in emissions from 
eco-routing trucks. However, given that 95% of the traffic is passenger cars, such a modest 
result is unsurprising. Thus, to better evaluate the possibilities of eco-routing, the authors carry 
out a traffic assignment analysis at different congestion levels of passenger cars. Figure 10 
presents the reduction in network-wide emissions from eco-routing delivery trucks (LEP 
assignment) in comparison with a SP, FP, and LCP assignment, respectively, for different 
passenger car congestion levels. The congestion level essentially reflects a multiplicative factor 
for passenger car demand between origin-destination pairs relative to the current level of 
demand. Much like in the previous subsection, the network-wide reductions in emissions from 
LEP assignment are significant in the context of the SP assignment; peaking in the absence of 
passenger cars in the network (Figure 10a), but relatively moderate when compared to the FP 
and LCP assignment; wherein the emission reductions peak for an optimal level of passenger 
car congestion in the network (Figure 10b,c). For most part, eco-routing trucks renders a 
reduction in network-wide emissions, with the exception of a few cases. For instance, eco-
routing trucks to minimize CO2 emissions in place of minimizing travel costs results in a net 
increase in network-wide carbon-dioxide emissions, at certain passenger car congestion levels. 
This increase in network-wide emissions is due to a significant increase in passenger car 
emissions despite a reduction in truck emissions. Authors observe a similar opposite effect for 
Vehicle Miles Traveled (VMT); a reduction in truck VMT is compensated for by an increase in 
passenger car VMT, and vice-versa, leading to a net increase/decrease in network-wide VMT 
depending on the passenger car congestion level in the network (see Appendix C).  

Understanding such micro-level variations is essential to understanding the full system-wide 
potential of eco-routing. Figure 11 presents these spatial impacts of eco-routing on the network 
for certain pollutants. And while the SCAG region as a whole realizes a reduction in emissions 
owing to eco-routed trucks as discussed above, certain parts of the region may observe an 
increase in emissions. However, such spatial variations in the emissions did not 
disproportionately affect, either negatively or positively, disadvantaged communities in the 
SCAG region. Thus, certain disadvantaged communities observed an increase in emissions, 
while other disadvantaged communities in equal effect observed a reduction in emissions. 
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Figure 10. Network-wide reduction in emissions from eco-routing trucks 
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Figure 11. Spatial effects of eco-routing 

 

a) LEP-CO2 assignment vs. SP assignment – Change in CO2 emissions

b) LEP-NOx assignment vs. FP assignment – Change in NOx emissions

c) LEP-PM assignment vs. SP assignment – Change in PM emissions
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Geofencing South East Los Angeles (SELA) 

In addition to the network-wide effects of eco-routing, this work assesses impacts for the South 
East LA (SELA) region, a disadvantaged region identified using CalEnviroScreen for the purpose 
of this work (Figure 6a). At current traffic demand levels, certain pollutant emissions within the 
SELA region may increase as a consequence of trucks eco-routing in the network. For instance, 
NOx and PM emissions in the SELA region increase by 5.1% and 17.8%, respectively, due to eco-
routing in comparison to least-cost routing. Thus, in order to reduce the emission burden on 
disadvantaged communities like SELA, in this case, this work proposes geofence as an alternate 
eco-friendly routing mechanism. As explored in the previous subsection, the carrier currently 
has no direct incentive to eco-route and reduce emissions, however, imposing a fee for 
traveling within the disadvantaged region can bring about some of the desired reductions in 
emissions impacting the disadvantaged region. The fee considered in this work is a per-mile fee 
when trucks route for shortest path (SP assignment), a per-hour fee when trucks route for 
fastest path (FP assignment), and a combined per-mile, per-hour and per-gallon of diesel fee 
when trucks route for the least-cost path (LCP assignment). Thus, the carrier observes the 
operational cost and an additional fee, as described above, when traveling within the 
geofenced region. 

Figure 12 shows the change in externalities, i.e., Vehicle Miles Traveled (VMT), Vehicle Hours 
Traveled (VHT), Vehicle Energy Consumed (VEC) and emissions, within the SELA region due to 
geofencing, for SP, FP and LCP assignment at different levels of geofence fee. As is evident from 
the figure, geofencing can bring about significant reductions in emissions in the SELA region, 
with the most notable reductions in NOx emissions followed by ROG, PM, CO2, CH4 and with the 
least reductions in CO emissions. Other externalities, such as VMT, VHT and VEC, may increase 
owing to increased passenger car traffic within the SELA region, though the magnitude of 
increase is quite moderate compared to the magnitude of emission reductions. On the 
network-wide scale, geofencing the SELA region makes only a marginal impact, with at most 1% 
increase in emissions in the worst case (NOx emissions, which increase by 0.83% network-wide 
for the SP assignment). Yet, it is important to note that a reduction in emissions in the SELA 
region brings along an increase in emissions in other parts of the region, as is the case with the 
outer census tracts adjoining the SELA region (Figure 13). For instance, under the LCP 
assignment, geofencing SELA with a large geofence fee, reduces NOx emissions within the SELA 
region by about 74%, but at the same time 14% of the links in the network experience a more 
than 100% increase in NOx emissions, while 4.4% of the links observe a ten-fold increase. Under 
the SP and FP assignments, the corresponding numbers are 7.6%, 2.6% and 18%, 3.5% 
respectively. Yet, these impacts, as discussed earlier, are not disproportional with respect to 
CES scores. Therefore, at any level of CES score, one can find a census tract (excluding the 
geofence) with as much reduction in emissions as increase in emissions in another census tract. 
Thus, geofencing can bring about a desired outcome in the form of a reduction in emissions for 
the disadvantaged region with a minimal but equitable increase in network-wide emissions.  
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Figure 12. Local impacts of geofencing South-East LA (SELA) region 
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Figure 13. Spatial effects of geofencing SELA region 

 

a) SP assignment- with vs. without SELA geofence – Change in CO2 emissions

b) FP assignment- with vs. without SELA geofence – Change in NOx emissions

c) LCP assignment- with vs. without SELA geofence – Change in PM emissions
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Geofencing high CalEnviroScreen score census tracts 

For the final part of the analyses, the authors carry out a geofencing exercise similar to the SELA 
exercise, restricting truck movement in the high CalEnviroScreen (CES) score census tracts, i.e., 
census tracts falling in the high 90%ile for the CES score (Figure 6b) by raising costs for the 
carrier to operate in this region. These census tracts, when put together, amount to a larger 
geofenced area than the SELA region, however, unlike the SELA region, the identified census 
tracts do not form a contiguous and continuous space. Thus, establishing and implementing a 
geofence “around” such a region may not be viable, nevertheless, the purpose of this analysis is 
to establish an extreme case of geofencing. The geofence fee levied on the carrier is as much as 
the operational cost to the carrier for operating within the geofence. 

Figure 14 presents network-wide and local impacts of geofencing. The reduction in externalities 
within the geofence region falls in a similar range and follows a similar pattern as those 
associated with the SELA geofence. NOx emissions observe the most reduction, followed by 
ROG, PM, CO2, CH4, while CO emissions show the least reduction. However, due to the larger 
size and spread of this geofence region compared with the SELA geofence, the network is 
slightly more impacted. NOx emissions, in particular, may increase by 1%-5% network-wide due 
to restricted truck movements in the geofence. And since NOx is a criteria pollutant, the spatial 
spread of this increase could be critical. For instance, the 84% drop in NOx emissions in the 
geofence under FP assignment brings about a simultaneous rise in NOx emissions in 42% of the 
census tracts. However, the more disadvantaged census tracts (excluding the geofence) 
observed a small but statistically insignificant drop in emissions, as discussed in the previous 
subsections/analyses. Thus, as noted previously, geofencing can bring about the desired 
reduction in emissions for the geofenced region, with marginal but equitable increase in 
network-wide emissions (Figure 15).  
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Figure 14. Network-wide and local impacts of geofencing high CES census tracts 

 

a) SP assignment- with vs. without geofence
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b) FP assignment- with vs. without geofence
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c) LCP assignment- with vs. without geofence
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Figure 15. Spatial effects of geofencing high CES score census tracts 

 

a) SP assignment- with vs. without geofence – Change in CO2 emissions

b) FP assignment- with vs. without geofence – Change in NOx emissions

c) LCP assignment- with vs. without geofence – Change in PM emissions
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VI. Discussion 
Can eco-routing be an important step towards sustainable zero-emission transportation? What 
are the costs and benefits of eco-routing for the stakeholders, i.e., the carrier and the system? 
This study is an effort to explore these lines of inquiry. The authors found an obvious trade-off 
or counterbalance between increased carrier costs and reductions in emissions from eco-
routing, highlighting the lack of incentive for carriers to choose to eco-route. This result 
shouldn’t be surprising; had there been a monetary advantage for carriers to reduce emissions, 
carriers would be eco-routing consistently. Yet, what is interesting are the cost-benefit analyses 
of eco-routing for the whole system, the carrier and society put together. This work found a net 
monetary loss for the system from eco-routing, as the monetary gain in the form of reduced 
emissions for society were more than compensated for by a monetary loss in the form of 
increased costs of hauling for the carrier. Had the benefits from NOx and CO2 reductions been 
at least 10 times more valuable to society, eco-routing could have provided a net gain for the 
system. While NOx and CO2 are the two most viable eco-routes, on the other end of spectrum is 
CH4, the benefits of which need to be 0.1 million times more valuable for methane eco-routing 
to be viable for the system. While the study’s analyses present a less-than encouraging picture 
for eco-routing, it is possible that carriers might still want to eco-route. Despite an increase in 
cost for the carrier, other important travel metrics relevant to the carrier may reduce due to 
eco-routing. For instance, this study found a 5.2% reduction in fuel consumption and a 6.9% 
reduction in travel distance from carbon-dioxide eco-routing (3.5% reduction in CO2) for a 
carrier otherwise routing its fleet for shortest path. 

To further establish the potential of eco-routing, this study considered its network-wide effects 
by developing a multi-class improved Traffic Assignment by Paired Alternative Segments (m-
iTAPAS) algorithm. For current congestion levels, the authors found very modest reductions in 
network-wide emissions from trucks eco-routing. This is largely due to 95% of the traffic being 
passenger cars. However, this study found reductions to peak at lower passenger car traffic 
concentrations, which is around 20% of the current demand level. This highlights the potential 
of eco-routing to reduce emissions during off-peak hours, i.e., early morning and late night, 
when passenger car traffic is significantly lower. Yet it is important to note that while emissions 
may reduce on aggregate, certain parts of the region may observe a significant rise in 
emissions. This is particularly important in the context of criteria pollutants such as NOx and 
PM, which can adversely affect human health. However, the authors also found that such 
spatial variations in the emissions did not disproportionately affect, either positively or 
negatively, the disadvantaged communities in the SCAG region. Thus, certain disadvantaged 
communities observed an increase in emissions, while other disadvantaged communities in 
equal effect observed a reduction in emissions. 

Given the lack of carrier incentive to eco-route, and the possibility of increased emissions for 
certain disadvantaged communities, this work explores geofencing as a tool to protect 
disadvantaged communities in the region. Today, disadvantaged communities in the area 
experience a disproportionate burden from freight activity. For this purpose, the authors 
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developed two geofences, one for the well-defined South East LA (SELA) region, thus exploring 
a real-life example of a disadvantaged community, and another with the high CalEnviroScreen 
(CES) score census tracts forming a non-contiguous and non-continuous region, thus exploring 
an extreme case of geofencing. In both of the cases, emissions within the geofence reduced 
significantly due to reduced truck travel, although the geofence area may experience increased 
passenger car traffic. Like with eco-routing, these reductions in emissions for the geofence area 
brings along increases in emissions elsewhere in the region. These impacts, as discussed, do not 
disproportionally affect other disadvantaged communities in the region. Thus, geofencing can 
bring about a desired outcome in the form of reductions in emissions for the disadvantaged 
region, with minimal but equitable increase in network-wide emissions. 

The findings from this research will help support planning activities within the State, and 
contribute to the goals of having and efficient, sustainable, and competitive system. Results are 
relevant to policies such as Sustainable Communities, the Senate Bill 535 released by the Office 
of Environmental Health Hazard Assessment (OEHHA), the Climate Protection Act of 2008 (SB 
375), and the California Global Warming Solutions Act of 2006 (AB 32). More importantly, the 
findings could help inform agency activities related to the implementation of strategies and 
efforts as part of the Community Air Protection Program, developed in response to Assembly 
Bill 617. Additionally, although the focus of the work was not to address zero emission vehicle 
technologies, the models will be updated and these technologies considered in future work. 
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VIII. Data Management 

Products of Research  

This study develops two analytical tools using the Julia Programming Language - 

1. Point-to-Point Routing tool (PPR) to evaluate private impacts of eco-routing for a carrier 
hauling diesel trucks in the Southern California Associating of Governments (SCAG) 
region. 

2. Multi-class Traffic Assignment by Paired Alternative Segments (mTAPAS) to evaluate 
network-wide effects of system-wide freight eco-routing. 

These two tools employ the SCAG regional network, and the CalEnviroScreen (CES) Scores for 
analyses. The Point-to-Point routing tool also employs HERE traffic API, a crowd-based platform 
to fetch vehicle speeds in the SCAG network. Additionally, the authors used the Air Resources 
Board’ EMFAC model to estimate vehicle emission functions. 

Data Format and Content 

The dataset contains SCAG network and origin-destination matrices, and CalEviroScreen scores 
in the .csv format. Additionally, the authors estimated speed functions for different types of 
network infrastructure using the data collected from HERE traffic.  

Data Access and Sharing  

For SCAG files, the user is referred to https://scag.ca.gov/post/requesting-model-data to 
request the model data directly from SCAG. 

Other SCAG related files can be accessed through SCAG GIS Open Data Portal https://gisdata-
scag.opendata.arcgis.com/ 

Other files uploaded to Dryad are gathered from their public or open access systems and are 
provided as consolidated file sources to the research community and to replicate the findings of 
this research. 

Interested individuals will be able to access the data available through Dryad and should 
contact the Principal Investigator, Dr. Miguel Jaller prior to accessing the data. The data should 
not be hosted in other locations and should only use the Dryad repository. 

Users of the data should reference the system providers, and the data repository in Dryad. The 
DOI for the data is: https://doi.org/10.25338/B8934T  

Reuse and Redistribution  

Dr. Miguel Jaller and the other co-authors of the work (identified in this Final Report) hold the 
intellectual property rights to the data and models generated by the research.  

https://scag.ca.gov/post/requesting-model-data
https://gisdata-scag.opendata.arcgis.com/
https://gisdata-scag.opendata.arcgis.com/
https://doi.org/10.25338/B8934T
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Data will not be able to be transferred to other data archives besides the ones approved by the 
PI and Co-PIs. The data can be used by anyone with proper referencing to the authors: 

Pahwa, Anmol; Jaller, Miguel (2021), Cargo routing and disadvantaged communities, Dryad, 
Dataset, https://doi.org/10.25338/B8934T 

Other data is provided for reuse and redistribution under the MIT License. 

https://doi.org/10.25338/B8934T


Cargo-Routing and Disadvantaged Communities 
 
 

52 

IX. Appendix 

Appendix A – Properties of the generalized cost function 

To develop the necessary properties of the generalized cost function, authors further generalize 
and simplify the generalized cost function as a function on arc travel time, which itself is 
defined by the BPR function. 

𝑐𝑖𝑗 = ∑ 𝜃𝑝𝑡𝑖𝑗 ∑ 𝜂𝑘
𝑝𝑣𝑖𝑗

𝑘2
𝑘=0𝑝∈𝑃        (23) 

𝑐𝑖𝑗 = (𝐴𝑣𝑖𝑗
2 + 𝐵𝑣𝑖𝑗 + 𝐶)𝑡𝑖𝑗       (24) 

𝑐𝑖𝑗 =
𝐴𝑑𝑖𝑗

2

𝑡𝑖𝑗
+ 𝐵 + 𝐶𝑡𝑖𝑗        (25) 

𝑡𝑖𝑗 = 𝑡𝑖𝑗
𝑜 (1 + 𝛼𝑖𝑗 (

𝑥𝑖𝑗

𝑉𝑖𝑗
)

𝛽𝑖𝑗

) ; 𝑡𝑖𝑗
𝑜 , 𝑉𝑖𝑗 > 0; 𝛼𝑖𝑗 , 𝛽𝑖𝑗 ≥ 0    (26) 

The authors here assume (𝐴𝑣𝑖𝑗
2 + 𝐵𝑣𝑖𝑗 + 𝐶) to be strictly convex in 𝑣𝑖𝑗, rendering 𝐴 > 0. Such 

vehicle behavior is typical in context of vehicle efficiency, fuel consumption and emission rate. 
Now, in order to guarantee existence of the traffic assignment solution, uniqueness of the 
equilibrium and absence of infinite loops, this works assumes the generalized cost function to 
be continuously differentiable, monotonically non-decreasing and strictly positive, respectively, 
each of which are analyzed or imposed below. 

1. Continuously differentiable 

To establish continuous differentiability of 𝑐𝑖𝑗, the analysis here establishes differentiability for 

𝑐𝑖𝑗 and continuity of 𝑐𝑖𝑗
′  in the domain of 𝑐𝑖𝑗: ℝ+ → ℝ, where ℝ+: {𝑥𝑖𝑗 ∈ ℝ: 𝑥𝑖𝑗 ≥ 0}. 

𝑐𝑖𝑗 =
𝐴𝑑𝑖𝑗

2

𝑡𝑖𝑗
+ 𝐵 + 𝐶𝑡𝑖𝑗        (27) 

𝑐′𝑖𝑗 =
𝑑𝑐𝑖𝑗

𝑑𝑥𝑖𝑗
         (28) 

𝑐′𝑖𝑗 =
𝑡𝑖𝑗

𝑜 𝛼𝑖𝑗

𝑉𝑖𝑗

𝛽𝑖𝑗
(𝐶 −

𝐴𝑑𝑖𝑗
2

𝑡𝑖𝑗
2 ) 𝑥𝑖𝑗

𝛽𝑖𝑗−1
       (29) 

Since 𝑡𝑖𝑗 > 0, 𝑐𝑖𝑗 is continuous in its domain, while 𝑐′𝑖𝑗  is continuous in the domain of 𝑐𝑖𝑗 for 

𝛽𝑖𝑗 ≥ 1. Note, for 𝛽𝑖𝑗 ∈ (0,1), 𝑐′𝑖𝑗  is undefined at 𝑥𝑖𝑗 = 0, hence the condition, 𝛽𝑖𝑗 ≥ 1 is 

essential for the generalized cost function to be continuously differentiable. 
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2. Monotonically non-decreasing 

𝑐′𝑖𝑗 ≥ 0          (30) 

𝑡𝑖𝑗
𝑜 𝛼𝑖𝑗

𝑉𝑖𝑗

𝛽𝑖𝑗
(𝐶 −

𝐴𝑑𝑖𝑗
2

𝑡𝑖𝑗
2 ) 𝑥𝑖𝑗

𝛽𝑖𝑗−1
≥ 0       (31) 

𝐶 −
𝐴𝑑𝑖𝑗

2

𝑡𝑖𝑗
2 ≥ 0         (32) 

𝐶

𝐴
≥ 𝑣𝑖𝑗

2           (33) 

The above condition must hold true for the maximum possible speed in the network, thus, 

𝐶

𝐴
≥

max
(𝑖, 𝑗) ∈ 𝐴 𝑣𝑖𝑗

𝑜 2
        (34) 

3. Strictly positive 

Since the generalized cost function is monotonically non-decreasing, 𝑐𝑖𝑗 > 0 at 𝑥𝑖𝑗 = 0 ensures 

strict positivity, thus, 

𝐴𝑑𝑖𝑗
2

𝑡𝑖𝑗
𝑜 + 𝐵 + 𝐶𝑡𝑖𝑗

𝑜 > 0        (35) 

𝐵 > − (
𝐴𝑑𝑖𝑗

2

𝑡𝑖𝑗
𝑜 + 𝐶𝑡𝑖𝑗

𝑜 )        (36) 

For above condition to hold true for all arcs, 

𝐵 >
max

(𝑖, 𝑗) ∈ 𝐴 − (
𝐴𝑑𝑖𝑗

2

𝑡𝑖𝑗
𝑜 + 𝐶𝑡𝑖𝑗

𝑜 )       (37) 

𝐵 >
min

(𝑖, 𝑗) ∈ 𝐴
(

𝐴𝑑𝑖𝑗
2

𝑡𝑖𝑗
𝑜 + 𝐶𝑡𝑖𝑗

𝑜 )       (38) 
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Appendix B – Comparison of truck emissions between POLA and aggregated rates 

Figure 16. Emission rates for aggregated and POLA Heavy-Heavy Duty Truck (T7) 
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Appendix C – Impact of eco-routing on HDT and LDA VMT 

Figure 17. Changes in VMT for trucks and passenger cars under eco-routing 
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