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The Joint United Nations Programme on HIV and AIDS has proposed that
human rights should be at the center of efforts to end the HIV pandemic

and achieving equity in access to antiretroviral therapy (ART) and HIV
healthcare is essential. Here we present a geospatial and geostatistical
modeling framework for conducting, at the national level, an equity
evaluation of access to ART. We apply our framework to Malawi, where HIV
prevalenceis ~-9%. Access depends upon the number of available healthcare
facilities (HCFs), the travel times needed to reach these HCFs, the mode of
transportation used (walking, biking, driving) and the supply-to-demand
ratio for ART at the HCFs. We find extreme inequities in access to ART.
Access maps show striking geographic patterns, revealing clusters of
communities with very low or high levels of access. We discover that an
extreme geographic misalignment of healthcare resources with respect to
need has generated a new type of medical desert: an HIV treatment desert.
Around 23% of people living with HIV reside in deserts where they have to
walk up to 3 htoreach HCFs; in 2020, these HCFs only received 3% of the
national supply of ART. We recommend strategies for shrinking deserts; if
notimplemented, deserts will grow in size and number.

The HIV pandemicis centered in sub-Saharan Africa (SSA), where -25.5
million people live with HIV infection'. In 2024, the Joint United Nations
Programme on HIV and AIDS (UNAIDS) proposed anapproach that puts
human rights at the center of efforts to end the pandemic by 2030:
this is referred to as ‘Take the Rights Path to End AIDS%. The underly-
ing foundation of this approach is to eliminate inequalities in access
to antiretroviral therapy (ART) and HIV healthcare. One important
inequality isgeographic.Itis essential to eliminate geographic inequali-
tiesinaccess, because, if severe, these inequalities can generate medi-
cal deserts’. These are areas where there is low access to healthcare
resources and access is specified in terms of distance or travel time>.

To date, many types of medical deserts have been found to exist: for
example, pharmacy deserts*, mental healthcare deserts’, contraceptive
deserts®and vaccine deserts’.

Geographicinequalitiesinaccessto ART and HIV healthcare have
previously been evaluated by analyzing differencesin utilization rates
(represented by differencesin the ART coverage level) between urban
and rural populations®; these inequalities have not been analyzed from
ageospatial perspective. A 2024 report of 15 African countries based
on survey data from the Population-Based HIV Impact Assessment
(PHIA) Project showed that, on average, there was lower treatment
coverage and worse treatment outcomes (higher AIDS-related deaths)
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among rural compared with urban communities®. In addition, these
data showed that poorer compared with richer communities, men as
opposed to women, and individuals younger than 25 years old were
similarly disadvantaged in terms of coverage and outcomes. Although
men have lower ART coverage thanwomen, HIV incidence (and preva-
lence) in women is far greater than in men: in Africa, the highest inci-
dencerateisinadolescent girls and young women’.

Here we present a geospatial and geostatistical modeling frame-
work for conducting, at the national level, an equity evaluation of
access to ART: our analysis focuses on geographic inequalities. We
apply our framework to Malawi (Fig. 1a) because it has one of the most
severe HIV epidemicsinthe world: HIV prevalence was 9% in the general
population in 2020-2021°. The country is close to UNAIDS treatment
targets for 2030" but still needs more people living with HIV on treat-
ment: 14% of people living with HIV in Malawi were in need of ART in
2020-2021". The aims of our study are (1) to calculate access to ART
for every community in Malawi, (2) to use econometrics to evaluate
the degree of inequity inaccess at the national level, (3) toidentify geo-
graphicareaswhere therearegapsin health services and (4) to evaluate
the geographic distribution of resources for HIV healthcare relative
to need. We use our results to recommend strategies for increasing
equity in access to ART and attaining UNAIDS 2030 targets using a
human-rights-based approach?

Results

Study design

To conduct our analysis, we calculated the spatial accessibility of ART
for every community in Malawi. Spatial accessibility is a widely used
metricinthefields of health policy, public health and health geograph-
ics; it measures the opportunity that a community has to access a
specific resource . To model the spatial accessibility of healthcare,
ametric is calculated that takes into account the geographic infra-
structure of the healthcare system, the time needed toreach theloca-
tion where healthcare is provided (referred to as travel time) and the
relationship between the supply of, and demand for, the healthcare
resource being accessed. Floating catchment area (FCA) models are
frequently used for calculating the spatial accessibility of many types
of healthcare and identifying geographic inequalities in access> ..
Here we use the balanced FCA model* to calculate a metric we refer
to as the spatial accessibility of ART (SAA) index. Our index functions
as a health service metric to measure the degree of geographic ineq-
uity inthe provision of HIV healthcare and to identify gapsin services.
Subsequently, we refer to ‘spatial accessibility” as ‘accessibility’ and
‘spatial access’ as ‘access’.

Our FCA modelincludes the entire national HIV healthcare infra-
structure and every community in Malawi. Each census unit (that is,
enumeration area) is assumed to contain one community; there are
9,208 enumeration areas. In 2020, 758 healthcare facilities (HCFs)
provided ART (Fig. 1b); -100% of people living with HIV picked up their
medications at these facilities”. The supply of ART at each HCF was
defined as the maximum quarterly number of people living with HIV
treated with ART in 2020; this ranged from 5 patients at a rural clinic
to 25,067 patients at the Bwaila District Hospital in Lilongwe (Fig. 1c).
Communities contained -1,000 individuals (range: 2-23,967) aged 15
or older. The demand for ART in each community was defined as the
total number of people living with HIV (aged 15 or older) living in that
community; this ranged from O to 2,478 people living with HIV per
community (Fig. 1d). We estimate that there were a total of 1,035,525
peopleliving with HIV aged 15 or older in Malawi in 2020.

We calculated the value of the SAA index for each community;
higher values represent greater access. The value depends upon the
geographiclocation of the community, the geographiclocation of all
HCFs in the catchment area surrounding the community, the travel
time needed to reach each HCF, the type of transportation used and the
supply-to-demand ratio for ART inthe catchment areaaround each HCF

(thatis, the localized supply-to-demand ratio). Within the model, mul-
tiplecommunities can use the same HCF and each community can use
multiple HCFs. To estimate travel times, we constructed animpedance
map?* of Malawi: a three-dimensional representation based on topog-
raphy, vegetation, rivers and other water bodies, and road networks.
Precise geographic delimitation of the catchment area around HCFs
is uncommon in SSA”. Therefore, we conducted a spatial sensitivity
analysis and varied catchment size. We examined six sizes by varying
the maximum one-way traveltime (1 h,2 hor3 h) and considering two
modes of transportation (walking only or acombination of motorized
transportation, bicycling and walking). Most Malawians walk to access
healthcare.In2020-2021, only 2% of households owned cars or trucks,
4% owned motorbikes or scooters, and 34% owned bicycles®.

Variationin access

The 9,208 communities varied considerably (range: 0-332) in the
number of HCFs in their catchment area (Fig. 2a and Extended Data
Table1). The 758 HCFs showed considerable variationin their localized
supply-to-demand ratio for ART (Fig. 2b and Supplementary Table 1).
Variationin these two factors resulted in substantial variation,among
communities, in the value of their SAA index, thatis, in their access to
ART (Fig. 2c and Extended Data Table 2). Geographic variationinaccess
isshownin Fig.3a,b and Extended Data Fig. 1; access to ART in certain
communities was substantially higher or lower than the national aver-
age (Extended Data Fig. 2 and Extended Data Table 2). For example,
considering the catchment size based on walking for a maximum of
3 h,accessto ART insome communities was ~36 times greater than the
national average; however, some communities had no access.

On average, the number of HCFs in the catchment area around a
community increases with catchment size (Fig. 2a); varying the maxi-
mum one-way travel time (from1 hto 3 h) has less effect on the rate of
increase than changing the mode of transportation. Changing travel
speeds has a similar effect as changing the maximum one-way travel
time (Extended Data Table1and Supplementary Table 2). The value of
the supply-to-demand ratio for ART (Fig.2b) and the SAA index (Fig. 2c)
are relatively insensitive to catchment size, except for the smallest
size. However, it is unlikely that this catchment size was the ‘true’ size
because only ~-60% of people living with HIV can reach an HCF within
an hour of walking (Extended Data Table 1), whereasin 2020-2021, 86%
of people living with HIV were known to be receiving ART at HCFs".

Lorenz curves and Gini coefficients

Theresults of our country-level equity evaluation of access to ART are
shown in terms of Lorenz curves® (Fig. 3c) and their corresponding
Gini coefficients” (Supplementary Table 3). These results reveal that
the population’s lack of access to transportation had a substantial
impact on generating inequity in access to ART in Malawi. For exam-
ple, considering the largest catchment size based on a travel time of
3 h, the Gini coefficientincreases from 0.21 (assuming individuals can
use transportation) to 0.53 (assuming individuals have to walk). We
identify arelationship between travel time (if walking) and inequity in
access: the further that people living with HIV are able to walk (that is,
thelarger the catchmentsize), the lower the inequity. Taken together,
our econometric results show thataccess to ART in Malawiin 2020 was
highly inequitable: based on walking, the Gini coefficient was between
0.53and 0.79.

Identifying HIV treatment deserts

We found significant spatial autocorrelation in the values of the SAA
index for all six catchment sizes: the Global Moran’s Index* varies from
0.34t00.91(P<0.001; Fig. 3d and Supplementary Table 4). Therefore,
regardless of catchment size, there is significant geographic cluster-
ing of communities with very similar values (either very high or very
low) of the SAA index. These results reveal the existence of anew type
of medical desert: an HIV treatment desert. We define HIV treatment
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Fig.1|Health geographics in Malawi and the geographic distribution of
people living with HIV. a, Map of Malawi showing regions (solid black line
demarcations), cities (red circles), water bodies (dotted light blue areas), and
primary and secondary roads (gray lines). b, Map showing the geographic
location and clinic size of the 758 HCFs that provided ART in 2020:>5,000

>5,000

patients (red dots), 3,000-5,000 patients (blue dots) and <3,000 patients
(yellow dots). The solid lines delineate Malawi’s three regions. ¢, Histogram of
clinic size in terms of the maximum quarterly number of patients provided with
ARTin2020.d, Density of infection map showing the number of people living
with HIV (PWH) in each of the 9,208 communities in Malawi.

desertsas areas where thereis significant (assessed at a = 0.05) spatial
clustering among communities, and all communities have very low
values of the SAAindex, thatis, very low access to ART. These communi-
ties had significantly lower values of the SAA index than communities
outside deserts (P < 0.001; Supplementary Table 5). Our results also
reveal the existence of areas where there is significant spatial cluster-
ing, and communities have very high values of the SAAindex:in these
areas, ART is highly accessible. We subsequently refer to these clusters
as clusters of abundance.

The Local Index of Spatial Association (LISA)* cluster maps show
striking patterns in terms of the two distinct types of clusters: HIV
treatment deserts and clusters of abundance (Fig. 4). The mapsreveal
thelocation and delimit the geographic boundaries of both types. HIV
treatment deserts contain15-23% of people living with HIV (16-27% of
communities; Supplementary Tables 6 and 7). Clusters of abundance
contain4-13% of people living with HIV (5-11% of communities; Supple-
mentary Tables 6 and 7). Ineach LISA cluster map, the spatial clustering
thatgenerates the HIV treatment deserts and the clusters of abundance

contribute to the positive global spatial autocorrelation shown by
the Global Moran’s Index. Areas that contain communities with high
values of the SAA index and neighboring communities with low values,
and areas that contain communities with low values of the SAA index
and neighboring communities with high values, are spatial outliers.
Essentially, no peopleliving with HIV livein areas that are spatial outli-
ers. The majority of communities (62-76%) are, with respect to their
SAAindex, randomly distributed: there is no evidence of a significant
spatial association with neighboring communities.

Multiple HIV treatment deserts of varying sizes existed in Malawi
in2020 (Fig. 4).If peopleliving with HIV have to walk to access ART—as
catchment size increases—the number of deserts decreases from 168
to 74, but their size increases from 15% to 23% of people living with
HIV (and from 16% to 27% of communities): there are fewer, but larger,
deserts (Extended Data Table 3). If people living with HIV can use trans-
portation, increasing catchmentsize hasrelatively littleimpact on the
number of deserts (range: 43-46) or their size (range: 22-23% of people
living with HIV, 25-26% of communities; Extended Data Table 3).
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9,208 communities in Malawi and for all 758 HCFs that provided ART in 2020.

a, Boxplots showing the number of HCFs in the catchment area surrounding each
community. b, Boxplots of the level of service at each HCF (the level of service is
defined as the localized supply-to-demand ratio for ART in the catchment area
around the HCF). ¢, Boxplots of the SAA index.

Spatial uncertainty analysis

Theresults from our spatial uncertainty analysis are shown in the form
of aheat map (Fig. 5). The map shows the number of times each of the
9,208 communities in Malawi is found in an HIV treatment desert: a
value of 0 signifies that the community is never foundin a desert, and
avalue of 6 signifies that the community is always found in a desert
(thatis, for every catchmentsize). The map shows that there are certain
communities that are almost always found in deserts, regardless of
assumptions about catchment size. This demonstrates the consistency
of our results in identifying the existence and geographic location of
HIV treatment deserts in Malawi.

Characterizing HIV treatment deserts

To determine the extent to which communitiesin HIV treatment deserts
were underserved with respect to HIV healthcare, we compared them
with communities in the rest of Malawi. We compared the number of
HCFs, the type of healthcare services these HCFs provided, the percent-
age of the national supply of ART these HCFs received and the number
of people living with HIV (per 100) who received ART at these HCFs.

We first determined (based on geographic coordinates) which
of the 758 HCFs that provided ART in 2020 (Fig. 1b) were inside and
which were outside deserts. Our results show that deserts, regardless
of catchment size, contained disproportionately fewer HCFs than
areasoutside deserts (Table1). For example, ifthe catchment size was
based on walking for up to 3 h, deserts only contained 7% of the HCFs
providing ART despite containing 23% of the HIV-infected population.

The distribution of the types of HCF that provided ART was very
differentinside and outside deserts (Supplementary Table 8). HCFsin
Malawi provide three levels of care: primary, secondary and tertiary.
Deserts only contained 1-4% of the HCFs that provided secondary or
tertiary care, despite containing 15-23% of the HIV-infected population
(Table 1). Healthcare services, in terms of both HIV prevention and
treatment, were much more limited at HCFs providing primary care
than at HCFs providing secondary and tertiary healthcare (Extended
Data Table 4). Only secondary and tertiary HCFs provided treatment
for tuberculosis and noncommunicable diseases (NCDs).

In2020, the Ministry of Health (MoH) distributed asubstantial sup-
ply of ART: enough to treat 86% of people living with HIV in the entire
country", We found that, regardless of catchment size, the geographic
allocation of the national supply of ART was severely misaligned with
respect tothe geographic distribution of people living with HIV: deserts
received adisproportionately smaller percentage of the national sup-
ply of ART than areas outside deserts (Table 1). For example, if the

catchment size was based on walking forupto 3 h, HCFsin deserts only
received 3% of the national supply of ART despite containing 23% of
the HIV-infected population. In this case, HCFs only received enough
ART to treat 12 per 100 people living with HIV, whereas HCFs outside
deserts received enough ART to treat 107 per 100 people living with
HIV (Table 1); this implies that some people living with HIV residing in
treatment deserts traveled outside deserts for treatment. Access to
transportation would have substantially decreased the geographic
imbalance between deserts and areas outside deserts (Table 1).

Discussion

Our study was motivated by the recently proposed UNAIDS human-
rights-based approach for ending the pandemic by 2030°. We have
developed ageospatial and geostatistical modeling framework, based
on the concept of spatial accessibility and econometrics, and used
it to conduct a country-level equity evaluation of access to ART. We
have measured access to ART by developing a health services metric,
the SAA index; this metric enables the identification of geographic
gapsinhealthservices. We have found that access to ART in Malawiin
2020 was extremely geographically inequitable at the national level
and that thiswas, in part, owing to the population’s limited access to
transportation. We have uncovered the existence of clusters of com-
munities where ART was highly accessible and clusters of communities
that had extremely low access to ART. These findings have led us to
discover anew type of medical desert: the HIV treatment desert. We
have found multiple, fairly large, HIV treatment deserts throughout
Malawi:in these areas, there are substantial gapsin health services for
HIV patients. Although there was enough ART in 2020-2021 to treat
86% of people living with HIV in the country, there was an extreme
geographic misalignment of healthcare resources with respect to
need. This misalignment generated the HIV treatment deserts, as
well as clusters of abundance where ART was highly accessible. Taken
together, our results indicate that Malawi still has substantial chal-
lenges to meet to attain the 2030 goal of UNAIDS—achieving equity
inaccess to HIV treatment.

Healthcare deserts create major and often complex problems
for public health: they worsen health outcomes, increase healthcare
costs and often compound economic burdens in socially vulnerable
populations®. Many people living with HIV throughout SSA***' have
comorbidities; in 2020 in Malawi, ~45% of people with active tuber-
culosis* and ~-8% of people diagnosed with NCDs* were also infected
with HIV. However, we found that people living with HIV who lived in
deserts and chose not to (or were unable to) travel outside deserts to
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Fig.3| The SAAin Malawi. a, Map of the SAA index for a catchment size based
onwalking for amaximum of 1 h. The map shows values of the SAA index
categorized into quantiles. b, Map of the SAA index for a catchment size based
on using acombination of motorized transportation, bicycling and walking, and
amaximum one-way travel time of 1 h. The map shows values of the SAA index
categorized into quantiles. ¢, The Lorenz curves are shown for the six catchment
sizes explored in the spatial sensitivity analysis; the diagonal line represents the
line of equity inaccess to ART. Curves are shown for amaximum one-way travel

SAA index

time of 1 h (red), 2 h (green) and 3 h (blue) and mode of transportation: walking
only (solid line) or using acombination of motorized transportation, bicycling
and walking (dashed line). d, The Moran scatterplot shows the association
between the value of the SAA index and its neighboring (spatially lagged) value.
Results are for a catchment size based on using a combination of motorized
transportation, bicycling and walking, and a maximum travel time of 1 h. The
value of the Global Moran Index is 0.79; this indicates a very high degree of
geographic clustering of communities with similar values of the SAA index.

access healthcare would have been substantially less likely to receive
treatment for HIV, TB or NCDs than people living with HIV in the rest
of Malawi. Therefore, their health outcomes (on average and over the
long term) would have been worse, and their life expectancy consid-
erably shorter, than those of people living with HIV residing outside
deserts. For example, the life expectancy of people living with HIV
on ART is approximately equal to the life expectancy of persons with-
out HIV®**. In the absence of treatment, people living with HIV have
a substantially reduced life expectancy: the average time from HIV
infectionto deathis 8-13 years (ref. 35). Our results suggest that some
residents of deserts chose to travel extremely long distances outside
desertsto obtain healthcare; this does not negate the existence of HIV
treatment deserts nor theimportance of eliminating them. Healthcare
deserts are defined based on the resources that residents of deserts
can access within the desert’s geographic boundaries’. The current

UNAIDS human-rights-based approach to eliminate HIV is based on
achieving equity inaccess to HIV healthcare.

The overall goal of public health is to provide equitable access
to healthcare. Currently, many governments in SSA (South Africa,
Kenya, Uganda and Malawi) use distance from HCFs as a measure of
accessibility to healthcare and the percentage of the population that
receives services as a measure of equity”. For example, the Govern-
ment of Malawi has set a goal for 2030 of building or rehabilitating
enough HCFs to ensure that 90% of their population lives within 5 km
of an HCF®°. The World Health Organization uses travel time to HCFs
as a measure of access”; this is a more appropriate metric than dis-
tance, as it takes into account topography and road networks. The
World Health Organizationis currently constructing a database of the
geographiclocation of HCFs in all 194 Member States’®; their plan s to
estimate travel times to HCFs and identify healthcare deserts. We?* and
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Fig. 4 | LISA cluster maps of the SAAindex. LISA cluster maps show the localized
spatial autocorrelation of the SAA index for communities throughout Malawi.
Clusters are areas where all communities have a significantly (assessed at
a=0.05) lower SAAindex (blue) or higher SAAindex (red) than surrounding
communities. The map also shows areas that are spatial outliers: areas where
communities with alow SAA index (light blue) are surrounded by communities
withasignificantly higher SAA index or where communities with a high SAA
index (pink) are surrounded by communities with a significantly lower SAA index.
Areas that were neither part of clusters or spatial outliers are shown in light gray.

)
Clustersinblue show the geographic location of HIV treatment deserts. Clusters
inred show the geographic location of clusters of abundance. a-f, LISA cluster
maps are shown for the six catchment sizes explored in the spatial sensitivity
analysis, based on walking for amaximum of 1 h (a); walking for a maximum
of 2 h (b); walking for amaximum of 3 h (c); using a combination of motorized
transportation, bicycling and walking for amaximum of 1 h (d); using a
combination of motorized transportation, bicycling and walking for amaximum
of2 h (e); and using acombination of motorized transportation, bicycling and
walking for amaximum of 3 h (f).

others* *'have previously used travel time to HCFs to measure acces-
sibility to healthcare. However, using travel time as ametric canresult
inoverestimating accessibility (and hence underestimating the size or
number of healthcare deserts) as the metric does not account for the
supply-to-demand ratio for resources at HCFs. UNAIDS has called for
the development of new spatial methods and metrics for measuring
theaccessibility of healthcare and equity in access*2. Here we have pre-
sented amethod and metric for measuring access and equity inaccess
to ART. Our methodology could be used by any government in SSA to
evaluatetheir level of equity in access to ART, to determine whether HIV

treatment deserts existin their country and to ascertain whether their
healthcare resources are geographically aligned with need.

We have designed the mathematical model that we have presented
here to calculate the accessibility of ART and HCFs. We have used it to
evaluate equity inaccess to HIV healthcare at the national level and to
revealgapsinhealthcare services. Our model differs from previous HIV
models asit takesinto consideration the geographicinfrastructure of
the healthcare system, travel time to access healthcare, transporta-
tion availability and the supply-to-demand ratio for ART at HCFs. Our
modeling framework could help inform the design of geographically
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Fig. 5|Heat map of HIV treatment deserts. These are the results of the spatial
uncertainty analysis. The map shows the number of times acommunity is found
inan HIV treatment desert, ranging from O (the community is never foundina
desert) to 6 (the community is always found in a desert). Water bodies are shown
with striped blue lines.

optimized HIV healthcare systems—specifically systems that provide
equitable access toHIV healthcare. This approach could be developed
by coupling geospatial optimization models with our FCA model and
identifying systems that minimize countrywide differencesinthe SAA
index. These coupled models could also be used to develop optimal
solutions for providing and delivering HIV healthcare services and
to design community-level ART allocation strategies that maximize
equityinaccess. Thisis the subject of our current research with public
health officials in Malawi. Finally, our modeling framework could be
used to develop anew type of HIV transmission model that combines
the geographic infrastructure of healthcare systems with the geo-
graphically varying transmission dynamics of HIV. The analysis of
such models would lead to the identification of new types of epidemic
control strategies that satisfy dual objectives: minimize HIV transmis-
sionand maximize equity inaccessto healthcare. These models could
beusedtoinvestigate whether HIV treatment deserts serve asbarriers
to HIV elimination.

Communities with thelowest access to ART and HIV healthcare ser-
viceslivein HIV treatment deserts. These underserved communities are
very likely to bein the most rural areas: areas that contain communities
livingin extreme poverty*. By identifying areas where there are gapsin
health services for HIV patient care, our research provides actionable
insights for health policy officials in Malawi. To minimize gaps, the

accessibility of ART indeserts needs to increase. This could be accom-
plished by constructing new HCFs (whichis astated aim of the Govern-
ment of Malawi*®) or introducing and expanding non-facility-based
delivery systems: for example, mobile deliveries***, drones* or other
non-facility-based systems®, either community based*® or patient
centered*>*°. Currently, non-facility-based delivery systems are only
in their infancy or being piloted in Malawi****2, All of these strategies
would decreaseinequalitiesinaccessto ART, shrink treatment deserts,
increase treatment coverage in deserts and, potentially, reduce HIV
transmission®. If deserts are not targeted, current geographic inequali-
tiesinaccessto ART in Malawi are likely to be exacerbated, and deserts
will grow in size and number.

In 2020-2021, 14% of people living with HIV in Malawi were not
on treatment”; our results suggest that a fairly high percentage of
these people may be living in HIV treatment deserts and unaware of
their status. Gaps in awareness of HIV status are an important driver
of population-level HIV viremia in Malawi’. Therefore, we recommend
instigating intensive targeted HIV-testing campaigns in HIV treatment
deserts. These campaigns may lead to a higher-than-average yield of
peoplelivingwith HIVwho are currently untreated. Testing campaigns
may also potentially lead to the identification of HIV-negative individu-
als who have, because of where they live, a higher-than-average risk
of infection; these individuals should be offered effective prevention
modalities such as pre-exposure prophylaxis. However, to most effec-
tively target prevention campaigns, prevention deserts, rather than
treatment deserts, should be identified. Prevention and treatment
deserts may or may not overlap. Pre-exposure prophylaxis deserts
have recently been identified in the United States**.

Our study has several limitations. When using empirical Bayes-
ian kriging (EBK)* to generate the HIV prevalence map, we used
geomasked cluster site locations from the 2020-2021 Malawi
Population-Based HIV Impact Assessment (MPHIA2) survey®. The
clusters were geomasked to ensure anonymization®’; geomasking
introduced locationerror and, hence, potential biasin our prevalence
estimates. Our choice of the Worldpop dataset™ is also a potential
limitation. There are several choices of population gridded datasets.
We used the top-down constrained version of the 2020 WorldPop
dataset that constrains the population to areas where settlements
have been identified by high-resolution satellite data. We chose this
version as it has been shown to be appropriate for modeling acces-
sibility to healthcare®®. In addition, our study is limited (as are all
studies using FCA models) in that the exact size of catchment areas
isunknown. However, our results are robust to catchmentssize; for all
sizes, we identified substantial geographic inequity in access to ART
and treatment deserts. Furthermore, we have found that, regardless
of catchment size, some communities are always, or almost always, in
deserts. Our study is potentially limited by data quality; there may be
biasesinthe MPHIA2 data” due to survey non-response. The MPHIA2
data that we have analyzed were collected in 2020-2021; treatment
coverage is now slightly above 86%. Depending upon where cover-
age hasincreased, geographicinequalitiesinaccess to ART may have
decreased or increased.

Taken together, our results show that there was substantial geo-
graphic misalignmentin resources for HIV healthcarein Malawiin2020
and that this led to the emergence of HIV treatment deserts. Based
on human rights, deserts need targeting with an increased supply of
ART toredress currentinequalities in the provision of HIV healthcare.
However, these may not be the most efficient strategies for reducing
incidence because equity and efficiency can be in opposition®. Many
other countriesin SSA such as Lesotho, Eswatini and Zambia have simi-
lar characteristics to Malawi with respect to the geographic distribution
of their healthcare systems and the geographic variation in their HIV
epidemics®*®°. Therefore, it is possible that many of these countries
will also contain HIV treatment deserts. The modeling approach that
we have used for HIV may be applicable to other regions in Africa to
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Table 1| HIV healthcare resources available inside and outside HIV treatment deserts in 2020

Catchment W, 1h W, 2h W, 3h MBW, 1h MBW, 2h MBW, 3h
Desert In Out In Out In Out In Out In Out In Out
PWH (%) 15 85 23 77 23 77 23 77 22 78 22 78
HCFs (%) 1 99 6 94 7 93 15 85 16 84 17 83
Secondary plus tertiary (%) 1 99 1 99 1 99 1 99 4 96 3 97
ART supply (%) 1 99 4 96 & 97 n 89 12 88 12 88
Number treated per 100 PWH 3 100 13 106 12 107 | 98 45 96 45 96

In 2020, 758 HCFs in Malawi were able to provide ART to 86% of people living with HIV. ‘PWH (%)’ is the percentage of people living with HIV that lived inside and outside deserts. ‘HCFs (%)’

is the percentage of HCFs that were located inside and outside deserts. ‘Secondary plus tertiary (%)’ is the percentage of all of the secondary and tertiary HCFs that were inside and outside
deserts. ‘ART supply (%)’ is the percentage of the national supply of ART that the MoH provided to HCFs inside and outside deserts. ‘Number treated per 100 PWH’ is the number of people living
with HIV that were treated with ART at HCFs per 100 people living with HIV inside and outside deserts. Results are shown for all six catchment sizes explored in the spatial sensitivity analysis:
walking (W) or using a combination of motorized transportation, bicycling and walking (MBW) for a maximum one-way travel time of 1h, 2h or 3h.

identify geographicinequalitiesin access to medicines and vaccines for
other highly prevalent communicable diseases and, moreimportantly,
to begin to determine how to redress these health inequities.
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maries, source data, extended data, supplementary information,
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Methods

The balanced FCA model and the SAA index

To conduct our study, we used the balanced FCA (bFCA) model devel-
oped previously?? and used in other studies***"*2, Conceptually, an
FCA model computes the ratio of supply to demand within a catch-
ment area centered at each supplier’s location, and then ‘floats’ these
catchmentareas over population centers to determine the allocation
of the available resources to each of the demand sites. Catchment
areas are delimited by specifying a maximum one-way travel time
between the supplier’slocationand the demand site. The bFCA model
has an important advantage over the other types of FCA model as it
corrects forissues of inflation of demand and service levels and takes
competition among supply sites into account®’. The bFCA model, as
do all FCA models, produces an estimate of the spatial accessibility
of aresource.

We used the bFCA model to estimate the SAA in Malawi, thatis, to
estimate, for each community in Malawi, their access to ART. The SAA
reflects the geographic distribution of the HCFs that provide ART, the
geographic distribution of the available supply of ART among HCFs,
the geographic distribution of communities with people living with
HIV, the mobility of the population (as specified by travel time to an
HCF and mode of transportation) and the behavioral phenomenon of
distance decay: the probability of using an HCF decreases as the time
needed to travel to the HCF increases®***. For a variety of reasons (for
example, concern about being stigmatized), people living with HIV
may choose not to use their nearest HCF; this behavior is referred to
asbypass behavior and has been observed in SSA®*. The bFCA model
allows bypass behavior by letting people living with HIV use any of the
HCFs that lie within their community’s catchment area.

The bFCA model is specified by five equations. For our applica-
tion of the bFCA model, we specify communities as demand sites and
HCFs as supply sites. The model includes i communities (i € {1,..., N})
andjHCFs (je{l,...,/}). Equation (1) calculates the demand for ART at
each HCF in the country; demand is specified in terms of the number
of peopleliving with HIV. The demand at each HCF depends upon how
many communities are inits catchment area, how many people living
with HIV each of these communities contain, the travel time from the
HCF to each community, the mode of transportation used and the
behavioral phenomenon of distance decay. Itis defined by:

N
Dj=Z;PiM/,; 1
P

where the demand (D)) at HCFjis the sum of the number of peopleliving
with HIV (P,) in community i, weighted by the probability (Wl;,) that
peopleliving with HIV from community i use HCFj. le isastandardized
impedance weight. People living with HIV from community i can use
HCFjif community i lies within the catchment area of HCF .

Impedance weights (W;) provide a measure of the difficulty of
moving from community i to HCF jgiven a specified mode of transpor-
tation. They are estimated by using afunctionf{-) that depends onthe
travel time t;between community i and HCFj, using a specified mode
of transportation.f{(-) is modeled with a decreasing function to repre-
sent the behavioral phenomenon of distance decay®***. HCFs cannot
be used by acommunity if they are outside the community’s catchment
area. By evaluating f(:) for all travel times ¢;, impedance weights
W; =f(t;) are obtained. The impedance weights are then
standardized:

J J
Wi = Wyl 3 Wy such that 3 W =1 ()
J J

Equation 3 calculates the level of service (L) at each HCFj in
the country. The level of service at an HCF is a measure of the local-
ized supply-to-demand ratio in the catchment area of that HCF. It is

calculated by dividing the supply at the HCF by the localized demand
atthat HCF:
S:

=— €))

Lj = = ——
N -
LizaPi M/;j

Si

D;
Thesupply S;of each HCFjis defined to be the maximum quarterly

number of people living with HIV treated at HCF j during the year.
Equation (4) calculates the SAAindex for community i (SAA)). SAA;

is the weighted sum of the level of service at all of the HCFs that are
contained within the catchment area of community i:

S
SAA; =) LW, (4)
J=1

Here the standardized impedance weight (W{jﬂ) is the probability that
HCFjcanbe used by people living with HIV in community i; it is calcu-
lated as follows:

N N
Wy, = Wyl 3, Wy such that ) W) =1 5)
L L

Thestandardized impedance weights produce the ‘balance’in the
model by preventing inflated demand and service levels, which occur
in other types of FCA models™. For example, without these weights,
there could be multiple communities with high probabilities of using
the same HCF at levels that are not commensurate with the ART supply
available at that HCF.

The spatial potential accessibility ratio

The spatial potential accessibility ratio (SPAR) is a measure of acom-
munity’s accessibility to the available supply of healthcare resources
relative to the national average®®. For example, if a community has a
SPAR of 0.5, then its accessibility to ART is 50% lower than average.
Agood scoreisavalue of SPAR > 1; the higher the value, the better the
accessibility to ART relative to the average. A bad score is a value of
SPAR <1; the lower the value, the worse the accessibility relative to
the national average.

Parameterization

To parameterize the model, we needed to know, for 2020, (1) the geo-
graphiclocation of every HCF that provided ART, (2) the supply of ART
ateach HCF, (3) the geographiclocation of every community in Malawi,
(4) the number of people living with HIV in each community (demand)
and (5) the standardized impedance weights. We programmed the
modelinR (v.4.1.2)%.

The geographic location of every HCF that provided ART. Each of the
758 HCFsthat provided ART in 2020 was geolocated at the geographic
coordinates (latitude and longitude) obtained from the master list
provided by Malawi’s MoH.

The supply of ART at each HCF. Malawi’s government-funded national
healthcare systemis free for all Malawians at the point of delivery. The
supply of ART (S;) at each HCF j was estimated from 2020 data provided
by Malawi’s MoH. Malawi used a centralized ART distribution system
that was based on push dynamics: (1) all HCFs that provided ART were
consulted quarterly by the MoH as to how much ART they needed for
the next 3 months, (2) they were allocated the amount they requested
and (3) they distributed all of the ART that they received. Supply data
were validated each quarter. Malawi uses multi-month scripting for
ART: prescriptions are typically for 3 months. The distribution system
ensured that all people living with HIV who requested ART in 2020
received treatment; there were no stock outs, and HCFs were not under-
utilized (that s, they did not have asupply of ART that was not utilized).
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Based on this distribution system, we defined the total supply of ART
that was provided in 2020 as the maximum number of people living
with HIV that were treated in 2020. We estimated the supply at each
HCF by calculating the maximum quarterly number of people living
with HIV (aged 15 or older) that were treated, at that specific HCF, in
any one of the four quarters in 2020.

The geographic location of every community in Malawi. Each com-
munity was geolocated at the population-weighted centroid of their
enumeration area’. The population was specified in terms of the num-
ber of people living with HIV in the community.

The number of people living with HIV in each community (demand).
We estimated the demand for ART in each community in terms of the
total number of people living with HIV they contained. To estimate
these numbers, we first constructed an HIV prevalence map for peo-
ple living with HIV aged 15 or older (Extended Data Fig. 3a; maps of
the corresponding 95% confidence intervals and standard errors are
showninExtended DataFig.3b-d). The prevalence map was based on
HIV-testing data collected in MPHIA2?. The MPHIA2 survey collected
blood samples from a representative sample of the population of
Malawi in 2020-2021". These data were collected between January
2020 and April 2021; the majority were collected in 2020. The survey
used a two-stage cluster sampling design. All individuals were nested
within georeferenced survey clusters; the clusters were geomasked
to ensure anonymization®. The individual-level data on HIV testing
(n=22,662) were aggregated at the cluster level.

We created the HIV prevalence map by using EBK* to spatially inter-
polate the cluster-level HIV prevalence estimates calculated from the
MPHIA2 data. EBK is ageostatistical technique for spatial interpolation;
itusesafunction (inour case, a K-Bessel function) to model the empiri-
cal semivariogram. The semivariogram reflects the degree of spatial
correlation in the data. EBK accounts for the error in estimating the
semivariogram by deriving adistribution of empirical semivariograms
ateachlocation. Ageographic visualization of the distribution of semi-
variograms at four differentlocations is shownin Extended Data Fig. 4.
We used cross-validation to assess how well the EBK model was able to
predictvalues atlocations where HIV prevalence datahad not been col-
lected. Cross-validation metrics are shown in Supplementary Table 9.

After constructing the HIV prevalence map, we combined it (using
raster multiplication) with the gridded raster dataset (for15 yearsand
older) of the 2020 WorldPop data®* for Malawi; this produced a density
ofinfection (Dol) map (Extended DataFig. 5). WorldPop dataare grid-
ded dataof populationdensity ataresolution of 100 mby 100 m; data
areupdated annually toreflect UNAIDS-predicted urban-rural growth
rates. We used the top-down constrained version of the 2020 WorldPop
dataset. The Dol map was constructed at a spatial resolution of 100 m
by 100 m. We then used ArcGIS to partition the Dol map into the 9,208
communities in Malawi and estimated the number of people living
with HIV in each community. The total number of people living with
HIVincommunity iis P,

The standardized impedance weights. To calculate the standardized
impedance weights, we first calculated an origin—destination (OD)
matrix of travel times. Inthe OD matrix, the columns represent HCFs and
therows represent communities; the coefficients of the matrix specify
thetravel time ¢;between every community iand every HCFj, based on
aspecifiedmode of transportation. Asinall FCAmodels, all travel times
begin from the population-weighted centroid of the community’s enu-
merationarea. To calculate travel times, we used animpedance map**.
This map is essentially a three-dimensional representation of Malawi;
itincludes data on topography”, land cover’, rivers and other water
bodies’, and road networks’. The map provides estimates of the time
needed for an average individual to traverse each square kilometer of
Malawi, using a specified mode of transportation. We calculated this

map using AccessMod (v.5)”, geospatial datafiles”* > and travel speeds
for several modes of transportation (Supplementary Table 10). Previous
studies have used Google Maps Platform Application Programming
Interfaces to estimate travel times to HCFs in Africa’”. We used the
platform to estimate the average travel time needed to travel 1km in
Malawi (for each type of road in our study; Supplementary Table 10);
we then calculated the reciprocal of this value to obtain the average
travel speed (inkilometers per hour). Using these travel speeds and the
impedance map, we calculated the travel times between allHCFs and all
communities. As there are 758 HCFs and 9,208 communities in Malawi,
there are -7 million coefficients in the OD matrix.

We then used the OD matrix and a distance decay function f() to
calculatetheimpedance matrix. f{-) was estimated by using a data-based
methodology that was designed to estimate a distance decay function
for an FCA model™. The distance decay function fitted to the data is
shownin Extended DataFig. 6. Using this function enabled us to opera-
tionalize the phenomenon of distance decay: the further individuals
have to travel to reach an HCF, the less likely they are to visit the HCF;
this phenomenon has frequently been found to occur in SSA®***, We
calculated the coefficients for the impedance matrix by evaluatingf{(-)
foralltravel timesin the OD matrix (thatis, we calculated(¢;)). Notably,
the majority of the coefficients were zero, as people living with HIV in
any given community are not able to reach the majority of HCFsin the
country within their specified maximum one-way travel time. The
impedance matrix was then row standardized and column standard-
ized, asinequations (2) and (5), respectively, to ensure that the popula-
tion was allocated proportionally to the HCFs. The resulting matrices
contain the standarized impedance weights W and W{ for the model.

We calculated standardized impedance weights based on each
mode of transportation: walking only or a combination of motorized
transportation, bicycling and walking.

Spatial sensitivity analysis

To conduct the spatial sensitivity analysis, we varied catchment size; the
size was defined by setting catchment boundaries. Boundaries were set
by constructing animpedance map of Malawi*, specifying a maximum
one-way travel time between supply sites (HCFs) and demand sites
(communities), and stipulating a mode of transportation.

We varied two factors that delimit catchment boundaries: the
maximum time that people living with HIV spend traveling (one way)
to HCFs to receive their medications and the type of transportation
that they use to reach HCFs. The 2020-2021 MPHIA2 data indicate
that44% of people living with HIV on ART spent less than 1 h traveling
to an HCF, 37% spent 1-2 h and 19% spent more than 2 h (ref. 23). We
used three values to specify the maximum one-way travel time: 1h,
2hor3h. The MPHIA2 survey also collected data on the ownership of
different types of transportation. Only 2% of households owned cars or
trucks, 4% owned motorbikes or scooters, and 34% owned bicycles®.
Therefore, we modeled two modes of transportation: the slowest pos-
sible (only walking) and the fastest possible. The fastest possible mode
was based on using a combination of three types of transportation:
motorized transportation, bicycling and walking. The type of transpor-
tation used depends upon the type of road or track thatis traveled on
(Supplementary Table 10). By crossing the two factors (the maximum
one-way travel time and the mode of transportation), we examined
six catchment sizes in the spatial sensitivity analysis. The longer the
maximum travel time and/or the faster the mode of transportation,
the larger the catchment. The smallest catchment size was based on
walking one way foramaximum of1h. Thelargest catchment size was
based onusing acombination of the three types of transportation and
traveling one way for amaximum of 3 h.

Varying travel speeds
We conducted an analysis to investigate the impact of varying travel
speeds on the geographic accessibility of HCFs. Following published
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methods*”7, we examined slower and faster travel speeds relative to
the baseline travel speeds that we used in our spatial sensitivity analy-
sis (Supplementary Table 10): specifically +20% of the baseline travel
speeds. We considered two modes of transportation: walking or using a
combination of motorized transportation, bicycling and walking, with
amaximum one-way travel time of 2 h.

Model verification

InallbFCA models, the sum ofthe level of service (equation (3)) for all
of the HCFs should equal the sum of the SAA index (equation (4)) for
all ofthe communities. We verified the bFCA model that we used in our
analysis by checking, for all six catchment sizes in the spatial sensitivity
analysis, that this relationship held.

Calculating Lorenz curves and Gini coefficients

We conducted a country-level equity evaluation of access to ART in
Malawi in 2020 by using econometrics to calculate and visualize an
overall summary measure of the degree of inequity in access. The
Lorenz curve® and the Gini coefficient” are metrics developed over
acentury ago to quantify economic inequities at the national level. If
theincome distribution in a population is perfectly equal, the Lorenz
curveisadiagonalline; the further the curve is from the diagonal, the
greater the inequity. The Gini coefficient measures the area between
theLorenz curve and theline of absolute equality, andis expressed asa
percentage of the maximumarea under the line. Thus, a Gini coefficient
ofzerorepresents perfect equity, while avalue of oneimplies complete
inequity. Both the Lorenz curve and Gini coefficient have previously
been used to measure health inequities’™”.

First, we computed a Gini coefficient based on each of the six
catchment sizes explored in the spatial sensitivity analysis. We then
constructed the six corresponding Lorenz curves. Lorenz curves were
constructed by computing the cumulative distribution function of
the SAAindex.

Geostatistical clustering analysis

To determine whether there was significant spatial clustering in com-
munities based on their SAA index, we calculated the Global Moran’s
Index?. Thisindex measures the strength of the spatial autocorrelation
between neighboring communities and varies from -1to +1; negative
valuessignify dispersion and positive values signify clustering of com-
munities with similar values of the SAAindex. For the SAA indices gener-
ated, based onthe six catchment sizes explored in the spatial sensitivity
analysis, we calculated the Global Moran’s Index. We then calculated
the LISA statistic* and plotted country-level LISA cluster maps.

Spatial uncertainty analysis

To determine therobustness of our results inidentifying the existence
and geographic location of HIV treatment deserts, we conducted a
spatial uncertainty analysis. To conduct this analysis, we determined,
for each of the six catchment sizes that were explored in the spatial
sensitivity analysis, which communities occurred in deserts and then
plotted the results in the form of a heat map of Malawi. The heat map
shows the number of times acommunity is found inan HIV treatment
desert: avalue of O signifies that the community living in that specific
locationis never found in a treatment desert and a value of 6 signifies
that the community living in that specific locationis always found (that
is, for every catchment size) in atreatment desert.

Calculating the numbers treated per 100 people living with
HIV

We calculated, using data from the MoH, the number of people living
with HIV (per100 people living with HIV) who were treated with ART at
HCFs inside deserts by (1) summing the number of people living with
HIV who were treated with ART at every HCF that was in a desert, (2)
summing the number of people living with HIV in every community

thatwasinadesertand (3) dividing (1) by (2) and multiplying by a hun-
dred. We made the same calculation for the number of people living
with HIV (per 100 people living with HIV) who were treated with ART
atHCFs outside deserts.

Statistical analyses

Statistical analyses were performed in R (v.4.1.2)*° and GeoDa
(v.1.22.0.4)%°. Summary numbers and statistics are presented as means
unless otherwise indicated. Two-sample ¢-tests were used to com-
pare the mean SAAindexinside and outside deserts; significance was
assessed at a = 0.05. The LISA cluster maps were created in GeoDa;
clusters and spatial outliers were assessed using two-tailed tests at a
significance level of a = 0.05.

Ethics and inclusion statement

This project was initiated by researchers at the University of Cali-
fornia, Los Angeles, in collaboration with researchers and medical
doctors from Partnersin Health in Malawi, and the Ministry of Health
of the Government of Malawi. As such, this paper includes authors
from many backgrounds throughout the international scientific
community. Roles and responsibilities were agreed upon before
the research was conducted. From the early stages of the project,
allteam members collaborated on data ownership and study design.
Our study is focused on Malawi; therefore, in-country experts were
team members. These team members played a critical role in provid-
ing detailed knowledge of Malawi’s medical system with a focus on
HIV treatment. All team members are co-authors of this paper. We
have cited local and regional research that is relevant to our study.
As our study has focused only on modeling, capacity building has
notbeen discussed.

This study involves secondary analysis of data that were collected
from previous studies. The MPHIA2 data that we have used are publicly
available; duringits original collection, the PHIA study protocols were
reviewed and approved by in-country ethics and regulatory bodies. The
Malawi ART supply datawere provided to usin the form of aggregated,
de-identified HCF-level data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

PHIA data are freely available for registered users at the PHIA project
website: https://phia-data.icap.columbia.edu/. WorldPop’s spatial
demographic dataare freely available at https://www.worldpop.org/.
Malawi HIV clinic geolocations and ART supply data were obtained
from the MoH in Malawi and cannot be provided for reasons of
confidentiality.

Code availability
The code used to carry out these analyses is available via GitHub at
https://github.com/joanponce90/bFCA-model-ART-MWI.
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Extended Data Fig. 1| Maps of the SAA index in Malawi. a-d, Maps of the SAA acombination of motorized transportation, biking, and walking for amaximum
index are shownin the form of quantiles, for four of the catchment sizes that are of2 h; and (d) using acombination of motorized transportation, biking, and
used in the spatial sensitivity analysis. Specifically, for catchment sizes based walking for amaximumof3 h.

on: (a) walking for amaximum of 2 h; (b) walking for amaximum of 3 h; (c) using
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Extended Data Fig. 2| Maps of the SPAR in Malawi. The SPAR is ameasure, for of 3 h; (d) use acombination of motorized transportation, biking, and walking
each community, of its accessibility to the available supply of ART relative to for amaximum of 1 h; (e) use acombination of motorized transportation,
the national average. a-f, The maps show the SPAR for each of the six catchment biking, and walking for a maximum of 2 h; or (f) use a combination of motorized
sizes that are used in the spatial sensitivity analysis, where individuals: (a) walk transportation, biking, and walking for amaximumof 3 h.

for amaximum of 1h; (b) walk for a maximum of 2 h; (c) walk for amaximum
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Extended DataFig. 3| HIV prevalence map, standard error map, and 95% prevalence. Maps (a), (c), and (d) are plotted on the same scale. There are several
confidence interval maps. a, HIV prevalence map. The map was created by placesin central Malawi where the 95% lower bound falls below zero. This is
using EBK to spatially interpolate cluster-level HIV prevalence estimates to be expected—despite the SEs being fairly small (mean 0.03)—because HIV
calculated using data from MPHIA2. b, Standard error (SE) map. ¢, Map showing prevalenceis as low as 0.02 in some areas. Validation statistics for the EBK model
95% lower bound for HIV prevalence. d, Map showing 95% upper bound for HIV are provided in Supplementary Table 9.
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Extended DataFig. 4| Semivariograms from EBK model. The background map isshown with light blue lines, the median of the distribution is shown by a solid
shows the HIV prevalence map, as in Extended Data Fig. 3a. The insets provide a pinkline, the 25th and 75th percentiles by dashed red lines, and the empirical
visualization of the distribution of semivariograms used in the EBK model, and semivariances by the blue crosses.

how the distribution varies geographically. The spectrum of semivariograms
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Extended DataFig. 5| Dol map of Malawi. The Dol map was constructed at a spatial resolution of 100 m by 100 m, and is presented here aggregated to a resolution of
1kmby1km.
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Extended Data Fig. 6 | Distance decay function. The distance decay function was estimated by fitting a logistic function through data (blue) on the travel
isshownin orange. It shows the relationship between travel time and the times between each community and the nearest HCF (Residual Sum of Squares,

‘exceedance probability’, that is, the cumulative proportion of communities that RSS=0.0019).
canreachaHCFinacertain travel time (or longer). The distance decay function
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Extended Data Table 1| The number of healthcare facilities (HCFs) within a community’s catchment area

Number of HCFs
Catchment
Median Mean Max No HCFs One HCF

W 1 hour 1 2 29  48.2% (39.8%) 32.6% (30.8%)
W 2 hours 2 5 44 11.4% (8.8%) 29.2% (22.7%)
W 3 hours 4 8 55 1.8% (1.5%) 10.3% (7.5%)
MBW 1 hour 20 34 126 0.6% (0.5%) 0.5% (0.3%)
MBW 2 hours 109 108 232 0.2% (0.1%) 0.1% (0.1%)
MBW 3 hours 199 192 332 0.0% (0.0%) 0.1% (0.1%)

Results are shown for the six catchment sizes explored in the spatial sensitivity analysis. Catchment sizes are based on varying the maximum one-way travel time (one, two, or three hours),

and mode of transportation: walking only (W), or using a combination of motorized transportation, bicycling and walking (MBW). The travel speeds used in this analysis (that is, baseline travel
speeds) are shown in Supplementary Table 10. Results show the percentage of communities (and, in parenthesis, the percentage of people living with HIV) that cannot access any HCFs in the
maximum one-way travel time (this is labeled as: No HCFs), and the percentage of communities (and, in parenthesis, the percentage of people living with HIV) that can only access one HCF in

the maximum one-way travel time (this is labeled as: One HCF).
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Extended Data Table 2 | The Spatial Accessibility of ART (SAA) index and the Spatial Potential Accessibility Ratio (SPAR)

SAA Index SPAR

Catchment

Median Mean Max Median Mean Max
W 1 hour 0.007 0.167 20.01 0.045 1 119.70
W 2 hours 0.048 0.087 5.05 0.548 1 58.09
W 3 hours 0.047 0.076 270 0.617 1 35.58
MBW 1 hour 0.064 0.072 1.08 0.888 1 14.89
MBW 2 hours 0.067 0.074 0.30 0.912 1 4.08
MBW 3 hours 0.068 0.074 0.30 0.913 1 4.06

Results are shown for the six catchment sizes explored in the spatial sensitivity analysis. Catchment sizes are based on varying the maximum one-way travel time (one, two, or three hours),

and mode of transportation: walking only (W), or using a combination of motorized transportation, bicycling and walking (MBW).
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Extended Data Table 3 | Number and size of HIV treatment deserts

Desert mmuniti PWH
Catchment (N3:1ebesr) Co (%) es (%)
W 1 hour 168 16% 15%
W 2 hours 86 25% 23%
W 3 hours 74 27% 23%
MBW 1 hour 46 26% 23%
MBW 2 hours 43 25% 22%
MBW 3 hours 44 26% 22%

Results show, for the six catchment sizes explored in the spatial sensitivity analysis, the number of HIV treatment deserts and percentage of communities and people living with HIV that they
contain. Catchment sizes are based on varying the maximum one-way travel time (one, two, or three hours), and mode of transportation: walking only (W), or using a combination of motorized

transportation, bicycling and walking (MBW).
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Extended Data Table 4 | Healthcare services available at all three levels of care in Malawi

Primary Secondary Tertiary

Biomedical HIV prevention services

HIV testing services X X X
Post-exposure prophylaxis (PEP) X X X
Condom distribution X X X
Patient education and counselling X X X
Testing for Sexual Transmitted Infections X X X
Oral Pre-exposure Prophylaxis (PrEP) X X
Voluntary medical male circumcision X X
Gender-based violence services X X
HIV care and treatment services
ART X X X
Viral load testing and monitoring X X X
CD4 testing X X X
Treatment of Sexual Transmitted Infections X X X
For patients with Advanced HIV Disease X X X

(AHD): Screening for Tuberculosis,
Cryptococcal Meningitis, Toxoplasmosis,
Kaposi Sarcoma, Viral Hepatitis
Treatment for patients with AHD: Tuberculosis, X X
Cryptococcal Meningitis, Toxoplasmosis,
Kaposi Sarcoma, Viral Hepatitis, other
severe opportunistic infections

Other healthcare services
Maternal, neonatal, and child health services
Sexual reproductive health
Malaria testing and treatment
Treatment for Neglected Tropical Diseases
such as Schistosomiasis
Screening for Non-Communicable Diseases
Nutritional support
Management of Non-Communicable Diseases
Dental healthcare services
Specialist dental care
Specialized medical services
Specialized surgical services
Specialized pediatric care
Specialized obstetric care

X X X X X X
X X X X X X X X
X X X X

X X X X X X X X X
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Data collection  Not applicable as no data were collected.

Data analysis We used Accessmod (v.5) to create an impedance map and calculate travel times. The balanced Floating Catchment Area (bFCA) model was
programmed in R (v.4.1.2) to analyze biometric and treatment data. Statistical analyses of the outputs from the bFCA mode were performed
in R (v.4.1.2) and GeoDa (v.1.22.0.4). Code used to carry out these analyses is available from a Github repository:
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available at: https://www.worldpop.org/. Malawi HIV clinic geolocations and ART supply data were obtained from the MoH in Malawi, and cannot be provided for
reasons of confidentiality.
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Reporting on sex and gender We analyzed data that had been collected in previous studies. Our analyses were at the population-level regarding access to
HIV treatment, and did not differentiate on the basis of sex or gender. Furthermore, while the MPHIA data can be
disaggregated by sex (self-reported), the ART regimen data (that is necessary to run the model) cannot be disaggregated by
sex or gender. For this reason, sex- or gender-specific analyses could not be considered in the study design.

Reporting on race, ethnicity, or = We analyzed data that had been collected in previous studies. We only used data from adults (ages 15 and up). Our analyses

other socially relevant were at the population-level regarding access to HIV treatment, and did not differentiate on the basis of race, ethnicity, or
groupings other social groupings.
Population characteristics This is a secondary data analysis using data from the entire adult population of Malawi. All men and women ages 15 and up

were included.
Recruitment We did not recruit any participants.

Ethics oversight Not applicable. Our analysis was a modeling analysis using data collected in previous studies.
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Sample size We did not do any sampling. This is a modeling study, for which we perform a secondary data analysis on several datasets that are freely
available online. The data for the entire adult (ages 15 and up) population of Malawi in 2020 (N=10,897,547) comes from WorldPop. The HIV-
testing data (N = 22,662) used to estimate prevalence, was previously collected as part of the MPHIA2 survey.

Data exclusions  No data were excluded from the study.

Replication We did not conduct any experiments. We analyzed previously collected data. Custom code was verified by two authors. Repeat calculations
were successful in verifying accuracy.

Randomization  Not applicable, as we did not conduct an experimental study. We conducted a modeling study based on previously collected data.

Blinding Not applicable, as we did not conduct an experimental study. We conducted a modeling study based on previously collected data.
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