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Extreme geographic misalignment of 
healthcare resources and HIV treatment 
deserts in Malawi
 

Joan Ponce1,5, Justin T. Okano    1, Andrea Low2, Luckson Dullie3, 
Wongani Mzumara4 & Sally Blower    1 

The Joint United Nations Programme on HIV and AIDS has proposed that 
human rights should be at the center of efforts to end the HIV pandemic 
and achieving equity in access to antiretroviral therapy (ART) and HIV 
healthcare is essential. Here we present a geospatial and geostatistical 
modeling framework for conducting, at the national level, an equity 
evaluation of access to ART. We apply our framework to Malawi, where HIV 
prevalence is ~9%. Access depends upon the number of available healthcare 
facilities (HCFs), the travel times needed to reach these HCFs, the mode of 
transportation used (walking, biking, driving) and the supply-to-demand 
ratio for ART at the HCFs. We find extreme inequities in access to ART. 
Access maps show striking geographic patterns, revealing clusters of 
communities with very low or high levels of access. We discover that an 
extreme geographic misalignment of healthcare resources with respect to 
need has generated a new type of medical desert: an HIV treatment desert. 
Around 23% of people living with HIV reside in deserts where they have to 
walk up to 3 h to reach HCFs; in 2020, these HCFs only received 3% of the 
national supply of ART. We recommend strategies for shrinking deserts; if 
not implemented, deserts will grow in size and number.

The HIV pandemic is centered in sub-Saharan Africa (SSA), where ~25.5 
million people live with HIV infection1. In 2024, the Joint United Nations 
Programme on HIV and AIDS (UNAIDS) proposed an approach that puts 
human rights at the center of efforts to end the pandemic by 2030: 
this is referred to as ‘Take the Rights Path to End AIDS’2. The underly-
ing foundation of this approach is to eliminate inequalities in access 
to antiretroviral therapy (ART) and HIV healthcare. One important 
inequality is geographic. It is essential to eliminate geographic inequali-
ties in access, because, if severe, these inequalities can generate medi-
cal deserts3. These are areas where there is low access to healthcare 
resources and access is specified in terms of distance or travel time3. 

To date, many types of medical deserts have been found to exist: for 
example, pharmacy deserts4, mental healthcare deserts5, contraceptive 
deserts6 and vaccine deserts7.

Geographic inequalities in access to ART and HIV healthcare have 
previously been evaluated by analyzing differences in utilization rates 
(represented by differences in the ART coverage level) between urban 
and rural populations8; these inequalities have not been analyzed from 
a geospatial perspective. A 2024 report of 15 African countries based 
on survey data from the Population-Based HIV Impact Assessment 
(PHIA) Project showed that, on average, there was lower treatment 
coverage and worse treatment outcomes (higher AIDS-related deaths) 
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(that is, the localized supply-to-demand ratio). Within the model, mul-
tiple communities can use the same HCF and each community can use 
multiple HCFs. To estimate travel times, we constructed an impedance 
map24 of Malawi: a three-dimensional representation based on topog-
raphy, vegetation, rivers and other water bodies, and road networks. 
Precise geographic delimitation of the catchment area around HCFs 
is uncommon in SSA25. Therefore, we conducted a spatial sensitivity 
analysis and varied catchment size. We examined six sizes by varying 
the maximum one-way travel time (1 h, 2 h or 3 h) and considering two 
modes of transportation (walking only or a combination of motorized 
transportation, bicycling and walking). Most Malawians walk to access 
healthcare. In 2020–2021, only 2% of households owned cars or trucks, 
4% owned motorbikes or scooters, and 34% owned bicycles23.

Variation in access
The 9,208 communities varied considerably (range: 0–332) in the 
number of HCFs in their catchment area (Fig. 2a and Extended Data 
Table 1). The 758 HCFs showed considerable variation in their localized 
supply-to-demand ratio for ART (Fig. 2b and Supplementary Table 1). 
Variation in these two factors resulted in substantial variation, among 
communities, in the value of their SAA index, that is, in their access to 
ART (Fig. 2c and Extended Data Table 2). Geographic variation in access 
is shown in Fig. 3a,b and Extended Data Fig. 1; access to ART in certain 
communities was substantially higher or lower than the national aver-
age (Extended Data Fig. 2 and Extended Data Table 2). For example, 
considering the catchment size based on walking for a maximum of 
3 h, access to ART in some communities was ~36 times greater than the 
national average; however, some communities had no access.

On average, the number of HCFs in the catchment area around a 
community increases with catchment size (Fig. 2a); varying the maxi-
mum one-way travel time (from 1 h to 3 h) has less effect on the rate of 
increase than changing the mode of transportation. Changing travel 
speeds has a similar effect as changing the maximum one-way travel 
time (Extended Data Table 1 and Supplementary Table 2). The value of 
the supply-to-demand ratio for ART (Fig. 2b) and the SAA index (Fig. 2c) 
are relatively insensitive to catchment size, except for the smallest 
size. However, it is unlikely that this catchment size was the ‘true’ size 
because only ~60% of people living with HIV can reach an HCF within 
an hour of walking (Extended Data Table 1), whereas in 2020–2021, 86% 
of people living with HIV were known to be receiving ART at HCFs11.

Lorenz curves and Gini coefficients
The results of our country-level equity evaluation of access to ART are 
shown in terms of Lorenz curves26 (Fig. 3c) and their corresponding 
Gini coefficients27 (Supplementary Table 3). These results reveal that 
the population’s lack of access to transportation had a substantial 
impact on generating inequity in access to ART in Malawi. For exam-
ple, considering the largest catchment size based on a travel time of 
3 h, the Gini coefficient increases from 0.21 (assuming individuals can 
use transportation) to 0.53 (assuming individuals have to walk). We 
identify a relationship between travel time (if walking) and inequity in 
access: the further that people living with HIV are able to walk (that is, 
the larger the catchment size), the lower the inequity. Taken together, 
our econometric results show that access to ART in Malawi in 2020 was 
highly inequitable: based on walking, the Gini coefficient was between 
0.53 and 0.79.

Identifying HIV treatment deserts
We found significant spatial autocorrelation in the values of the SAA 
index for all six catchment sizes: the Global Moran’s Index28 varies from 
0.34 to 0.91 (P < 0.001; Fig. 3d and Supplementary Table 4). Therefore, 
regardless of catchment size, there is significant geographic cluster-
ing of communities with very similar values (either very high or very 
low) of the SAA index. These results reveal the existence of a new type 
of medical desert: an HIV treatment desert. We define HIV treatment 

among rural compared with urban communities8. In addition, these 
data showed that poorer compared with richer communities, men as 
opposed to women, and individuals younger than 25 years old were 
similarly disadvantaged in terms of coverage and outcomes. Although 
men have lower ART coverage than women, HIV incidence (and preva-
lence) in women is far greater than in men: in Africa, the highest inci-
dence rate is in adolescent girls and young women2.

Here we present a geospatial and geostatistical modeling frame-
work for conducting, at the national level, an equity evaluation of 
access to ART: our analysis focuses on geographic inequalities. We 
apply our framework to Malawi (Fig. 1a) because it has one of the most 
severe HIV epidemics in the world: HIV prevalence was 9% in the general 
population in 2020–20219. The country is close to UNAIDS treatment 
targets for 203010 but still needs more people living with HIV on treat-
ment: 14% of people living with HIV in Malawi were in need of ART in 
2020–202111. The aims of our study are (1) to calculate access to ART 
for every community in Malawi, (2) to use econometrics to evaluate 
the degree of inequity in access at the national level, (3) to identify geo-
graphic areas where there are gaps in health services and (4) to evaluate 
the geographic distribution of resources for HIV healthcare relative 
to need. We use our results to recommend strategies for increasing 
equity in access to ART and attaining UNAIDS 2030 targets using a 
human-rights-based approach2.

Results
Study design
To conduct our analysis, we calculated the spatial accessibility of ART 
for every community in Malawi. Spatial accessibility is a widely used 
metric in the fields of health policy, public health and health geograph-
ics; it measures the opportunity that a community has to access a 
specific resource12–21. To model the spatial accessibility of healthcare, 
a metric is calculated that takes into account the geographic infra-
structure of the healthcare system, the time needed to reach the loca-
tion where healthcare is provided (referred to as travel time) and the 
relationship between the supply of, and demand for, the healthcare 
resource being accessed. Floating catchment area (FCA) models are 
frequently used for calculating the spatial accessibility of many types 
of healthcare and identifying geographic inequalities in access12–21. 
Here we use the balanced FCA model22 to calculate a metric we refer 
to as the spatial accessibility of ART (SAA) index. Our index functions 
as a health service metric to measure the degree of geographic ineq-
uity in the provision of HIV healthcare and to identify gaps in services. 
Subsequently, we refer to ‘spatial accessibility’ as ‘accessibility’ and 
‘spatial access’ as ‘access’.

Our FCA model includes the entire national HIV healthcare infra-
structure and every community in Malawi. Each census unit (that is, 
enumeration area) is assumed to contain one community; there are 
9,208 enumeration areas. In 2020, 758 healthcare facilities (HCFs) 
provided ART (Fig. 1b); ~100% of people living with HIV picked up their 
medications at these facilities23. The supply of ART at each HCF was 
defined as the maximum quarterly number of people living with HIV 
treated with ART in 2020; this ranged from 5 patients at a rural clinic 
to 25,067 patients at the Bwaila District Hospital in Lilongwe (Fig. 1c). 
Communities contained ~1,000 individuals (range: 2–23,967) aged 15 
or older. The demand for ART in each community was defined as the 
total number of people living with HIV (aged 15 or older) living in that 
community; this ranged from 0 to 2,478 people living with HIV per 
community (Fig. 1d). We estimate that there were a total of 1,035,525 
people living with HIV aged 15 or older in Malawi in 2020.

We calculated the value of the SAA index for each community; 
higher values represent greater access. The value depends upon the 
geographic location of the community, the geographic location of all 
HCFs in the catchment area surrounding the community, the travel 
time needed to reach each HCF, the type of transportation used and the 
supply-to-demand ratio for ART in the catchment area around each HCF 
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deserts as areas where there is significant (assessed at α = 0.05) spatial 
clustering among communities, and all communities have very low 
values of the SAA index, that is, very low access to ART. These communi-
ties had significantly lower values of the SAA index than communities 
outside deserts (P < 0.001; Supplementary Table 5). Our results also 
reveal the existence of areas where there is significant spatial cluster-
ing, and communities have very high values of the SAA index: in these 
areas, ART is highly accessible. We subsequently refer to these clusters 
as clusters of abundance.

The Local Index of Spatial Association (LISA)29 cluster maps show 
striking patterns in terms of the two distinct types of clusters: HIV 
treatment deserts and clusters of abundance (Fig. 4). The maps reveal 
the location and delimit the geographic boundaries of both types. HIV 
treatment deserts contain 15–23% of people living with HIV (16–27% of 
communities; Supplementary Tables 6 and 7). Clusters of abundance 
contain 4–13% of people living with HIV (5–11% of communities; Supple-
mentary Tables 6 and 7). In each LISA cluster map, the spatial clustering 
that generates the HIV treatment deserts and the clusters of abundance 

contribute to the positive global spatial autocorrelation shown by 
the Global Moran’s Index. Areas that contain communities with high 
values of the SAA index and neighboring communities with low values, 
and areas that contain communities with low values of the SAA index 
and neighboring communities with high values, are spatial outliers. 
Essentially, no people living with HIV live in areas that are spatial outli-
ers. The majority of communities (62–76%) are, with respect to their 
SAA index, randomly distributed: there is no evidence of a significant 
spatial association with neighboring communities.

Multiple HIV treatment deserts of varying sizes existed in Malawi 
in 2020 (Fig. 4). If people living with HIV have to walk to access ART—as 
catchment size increases—the number of deserts decreases from 168 
to 74, but their size increases from 15% to 23% of people living with 
HIV (and from 16% to 27% of communities): there are fewer, but larger, 
deserts (Extended Data Table 3). If people living with HIV can use trans-
portation, increasing catchment size has relatively little impact on the 
number of deserts (range: 43–46) or their size (range: 22–23% of people 
living with HIV, 25–26% of communities; Extended Data Table 3).
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Fig. 1 | Health geographics in Malawi and the geographic distribution of 
people living with HIV. a, Map of Malawi showing regions (solid black line 
demarcations), cities (red circles), water bodies (dotted light blue areas), and 
primary and secondary roads (gray lines). b, Map showing the geographic 
location and clinic size of the 758 HCFs that provided ART in 2020: >5,000 

patients (red dots), 3,000–5,000 patients (blue dots) and <3,000 patients 
(yellow dots). The solid lines delineate Malawi’s three regions. c, Histogram of 
clinic size in terms of the maximum quarterly number of patients provided with 
ART in 2020. d, Density of infection map showing the number of people living 
with HIV (PWH) in each of the 9,208 communities in Malawi.
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Spatial uncertainty analysis
The results from our spatial uncertainty analysis are shown in the form 
of a heat map (Fig. 5). The map shows the number of times each of the 
9,208 communities in Malawi is found in an HIV treatment desert: a 
value of 0 signifies that the community is never found in a desert, and 
a value of 6 signifies that the community is always found in a desert 
(that is, for every catchment size). The map shows that there are certain 
communities that are almost always found in deserts, regardless of 
assumptions about catchment size. This demonstrates the consistency 
of our results in identifying the existence and geographic location of 
HIV treatment deserts in Malawi.

Characterizing HIV treatment deserts
To determine the extent to which communities in HIV treatment deserts 
were underserved with respect to HIV healthcare, we compared them 
with communities in the rest of Malawi. We compared the number of 
HCFs, the type of healthcare services these HCFs provided, the percent-
age of the national supply of ART these HCFs received and the number 
of people living with HIV (per 100) who received ART at these HCFs.

We first determined (based on geographic coordinates) which 
of the 758 HCFs that provided ART in 2020 (Fig. 1b) were inside and 
which were outside deserts. Our results show that deserts, regardless 
of catchment size, contained disproportionately fewer HCFs than 
areas outside deserts (Table 1). For example, if the catchment size was 
based on walking for up to 3 h, deserts only contained 7% of the HCFs 
providing ART despite containing 23% of the HIV-infected population.

The distribution of the types of HCF that provided ART was very 
different inside and outside deserts (Supplementary Table 8). HCFs in 
Malawi provide three levels of care: primary, secondary and tertiary. 
Deserts only contained 1–4% of the HCFs that provided secondary or 
tertiary care, despite containing 15–23% of the HIV-infected population 
(Table 1). Healthcare services, in terms of both HIV prevention and 
treatment, were much more limited at HCFs providing primary care 
than at HCFs providing secondary and tertiary healthcare (Extended 
Data Table 4). Only secondary and tertiary HCFs provided treatment 
for tuberculosis and noncommunicable diseases (NCDs).

In 2020, the Ministry of Health (MoH) distributed a substantial sup-
ply of ART: enough to treat 86% of people living with HIV in the entire 
country11. We found that, regardless of catchment size, the geographic 
allocation of the national supply of ART was severely misaligned with 
respect to the geographic distribution of people living with HIV: deserts 
received a disproportionately smaller percentage of the national sup-
ply of ART than areas outside deserts (Table 1). For example, if the 

catchment size was based on walking for up to 3 h, HCFs in deserts only 
received 3% of the national supply of ART despite containing 23% of 
the HIV-infected population. In this case, HCFs only received enough 
ART to treat 12 per 100 people living with HIV, whereas HCFs outside 
deserts received enough ART to treat 107 per 100 people living with 
HIV (Table 1); this implies that some people living with HIV residing in 
treatment deserts traveled outside deserts for treatment. Access to 
transportation would have substantially decreased the geographic 
imbalance between deserts and areas outside deserts (Table 1).

Discussion
Our study was motivated by the recently proposed UNAIDS human- 
rights-based approach for ending the pandemic by 20302. We have 
developed a geospatial and geostatistical modeling framework, based 
on the concept of spatial accessibility and econometrics, and used 
it to conduct a country-level equity evaluation of access to ART. We 
have measured access to ART by developing a health services metric, 
the SAA index; this metric enables the identification of geographic 
gaps in health services. We have found that access to ART in Malawi in 
2020 was extremely geographically inequitable at the national level 
and that this was, in part, owing to the population’s limited access to 
transportation. We have uncovered the existence of clusters of com-
munities where ART was highly accessible and clusters of communities 
that had extremely low access to ART. These findings have led us to 
discover a new type of medical desert: the HIV treatment desert. We 
have found multiple, fairly large, HIV treatment deserts throughout 
Malawi: in these areas, there are substantial gaps in health services for 
HIV patients. Although there was enough ART in 2020–2021 to treat 
86% of people living with HIV in the country11, there was an extreme 
geographic misalignment of healthcare resources with respect to 
need. This misalignment generated the HIV treatment deserts, as 
well as clusters of abundance where ART was highly accessible. Taken 
together, our results indicate that Malawi still has substantial chal-
lenges to meet to attain the 2030 goal of UNAIDS—achieving equity 
in access to HIV treatment.

Healthcare deserts create major and often complex problems 
for public health: they worsen health outcomes, increase healthcare 
costs and often compound economic burdens in socially vulnerable 
populations3. Many people living with HIV throughout SSA30,31 have 
comorbidities; in 2020 in Malawi, ~45% of people with active tuber-
culosis32 and ~8% of people diagnosed with NCDs33 were also infected 
with HIV. However, we found that people living with HIV who lived in 
deserts and chose not to (or were unable to) travel outside deserts to 
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transportation, bicycling and walking (MBW). The boxes include median values 
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9,208 communities in Malawi and for all 758 HCFs that provided ART in 2020.  
a, Boxplots showing the number of HCFs in the catchment area surrounding each 
community. b, Boxplots of the level of service at each HCF (the level of service is 
defined as the localized supply-to-demand ratio for ART in the catchment area 
around the HCF). c, Boxplots of the SAA index.
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access healthcare would have been substantially less likely to receive 
treatment for HIV, TB or NCDs than people living with HIV in the rest 
of Malawi. Therefore, their health outcomes (on average and over the 
long term) would have been worse, and their life expectancy consid-
erably shorter, than those of people living with HIV residing outside 
deserts. For example, the life expectancy of people living with HIV 
on ART is approximately equal to the life expectancy of persons with-
out HIV34. In the absence of treatment, people living with HIV have 
a substantially reduced life expectancy: the average time from HIV 
infection to death is 8–13 years (ref. 35). Our results suggest that some 
residents of deserts chose to travel extremely long distances outside 
deserts to obtain healthcare; this does not negate the existence of HIV 
treatment deserts nor the importance of eliminating them. Healthcare 
deserts are defined based on the resources that residents of deserts 
can access within the desert’s geographic boundaries3. The current 

UNAIDS human-rights-based approach to eliminate HIV is based on 
achieving equity in access to HIV healthcare2.

The overall goal of public health is to provide equitable access 
to healthcare. Currently, many governments in SSA (South Africa, 
Kenya, Uganda and Malawi) use distance from HCFs as a measure of 
accessibility to healthcare and the percentage of the population that 
receives services as a measure of equity25. For example, the Govern-
ment of Malawi has set a goal for 2030 of building or rehabilitating 
enough HCFs to ensure that 90% of their population lives within 5 km 
of an HCF36. The World Health Organization uses travel time to HCFs 
as a measure of access37; this is a more appropriate metric than dis-
tance, as it takes into account topography and road networks. The 
World Health Organization is currently constructing a database of the 
geographic location of HCFs in all 194 Member States38; their plan is to 
estimate travel times to HCFs and identify healthcare deserts. We24 and 
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Fig. 3 | The SAA in Malawi. a, Map of the SAA index for a catchment size based 
on walking for a maximum of 1 h. The map shows values of the SAA index 
categorized into quantiles. b, Map of the SAA index for a catchment size based 
on using a combination of motorized transportation, bicycling and walking, and 
a maximum one-way travel time of 1 h. The map shows values of the SAA index 
categorized into quantiles. c, The Lorenz curves are shown for the six catchment 
sizes explored in the spatial sensitivity analysis; the diagonal line represents the 
line of equity in access to ART. Curves are shown for a maximum one-way travel 

time of 1 h (red), 2 h (green) and 3 h (blue) and mode of transportation: walking 
only (solid line) or using a combination of motorized transportation, bicycling 
and walking (dashed line). d, The Moran scatterplot shows the association 
between the value of the SAA index and its neighboring (spatially lagged) value. 
Results are for a catchment size based on using a combination of motorized 
transportation, bicycling and walking, and a maximum travel time of 1 h. The 
value of the Global Moran Index is 0.79; this indicates a very high degree of 
geographic clustering of communities with similar values of the SAA index.
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others39–41 have previously used travel time to HCFs to measure acces-
sibility to healthcare. However, using travel time as a metric can result 
in overestimating accessibility (and hence underestimating the size or 
number of healthcare deserts) as the metric does not account for the 
supply-to-demand ratio for resources at HCFs. UNAIDS has called for 
the development of new spatial methods and metrics for measuring 
the accessibility of healthcare and equity in access42. Here we have pre-
sented a method and metric for measuring access and equity in access 
to ART. Our methodology could be used by any government in SSA to 
evaluate their level of equity in access to ART, to determine whether HIV 

treatment deserts exist in their country and to ascertain whether their 
healthcare resources are geographically aligned with need.

We have designed the mathematical model that we have presented 
here to calculate the accessibility of ART and HCFs. We have used it to 
evaluate equity in access to HIV healthcare at the national level and to 
reveal gaps in healthcare services. Our model differs from previous HIV 
models as it takes into consideration the geographic infrastructure of 
the healthcare system, travel time to access healthcare, transporta-
tion availability and the supply-to-demand ratio for ART at HCFs. Our 
modeling framework could help inform the design of geographically 

a c
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b

Fig. 4 | LISA cluster maps of the SAA index. LISA cluster maps show the localized 
spatial autocorrelation of the SAA index for communities throughout Malawi. 
Clusters are areas where all communities have a significantly (assessed at 
α = 0.05) lower SAA index (blue) or higher SAA index (red) than surrounding 
communities. The map also shows areas that are spatial outliers: areas where 
communities with a low SAA index (light blue) are surrounded by communities 
with a significantly higher SAA index or where communities with a high SAA 
index (pink) are surrounded by communities with a significantly lower SAA index. 
Areas that were neither part of clusters or spatial outliers are shown in light gray. 

Clusters in blue show the geographic location of HIV treatment deserts. Clusters 
in red show the geographic location of clusters of abundance. a–f, LISA cluster 
maps are shown for the six catchment sizes explored in the spatial sensitivity 
analysis, based on walking for a maximum of 1 h (a); walking for a maximum 
of 2 h (b); walking for a maximum of 3 h (c); using a combination of motorized 
transportation, bicycling and walking for a maximum of 1 h (d); using a 
combination of motorized transportation, bicycling and walking for a maximum 
of 2 h (e); and using a combination of motorized transportation, bicycling and 
walking for a maximum of 3 h (f).
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optimized HIV healthcare systems—specifically systems that provide 
equitable access to HIV healthcare. This approach could be developed 
by coupling geospatial optimization models with our FCA model and 
identifying systems that minimize countrywide differences in the SAA 
index. These coupled models could also be used to develop optimal 
solutions for providing and delivering HIV healthcare services and 
to design community-level ART allocation strategies that maximize 
equity in access. This is the subject of our current research with public 
health officials in Malawi. Finally, our modeling framework could be 
used to develop a new type of HIV transmission model that combines 
the geographic infrastructure of healthcare systems with the geo-
graphically varying transmission dynamics of HIV. The analysis of 
such models would lead to the identification of new types of epidemic 
control strategies that satisfy dual objectives: minimize HIV transmis-
sion and maximize equity in access to healthcare. These models could 
be used to investigate whether HIV treatment deserts serve as barriers 
to HIV elimination.

Communities with the lowest access to ART and HIV healthcare ser-
vices live in HIV treatment deserts. These underserved communities are 
very likely to be in the most rural areas: areas that contain communities 
living in extreme poverty43. By identifying areas where there are gaps in 
health services for HIV patient care, our research provides actionable 
insights for health policy officials in Malawi. To minimize gaps, the 

accessibility of ART in deserts needs to increase. This could be accom-
plished by constructing new HCFs (which is a stated aim of the Govern-
ment of Malawi36) or introducing and expanding non-facility-based 
delivery systems: for example, mobile deliveries44,45, drones46 or other 
non-facility-based systems47, either community based48 or patient 
centered49,50. Currently, non-facility-based delivery systems are only 
in their infancy or being piloted in Malawi36,51,52. All of these strategies 
would decrease inequalities in access to ART, shrink treatment deserts, 
increase treatment coverage in deserts and, potentially, reduce HIV 
transmission53. If deserts are not targeted, current geographic inequali-
ties in access to ART in Malawi are likely to be exacerbated, and deserts 
will grow in size and number.

In 2020–2021, 14% of people living with HIV in Malawi were not 
on treatment11; our results suggest that a fairly high percentage of 
these people may be living in HIV treatment deserts and unaware of 
their status. Gaps in awareness of HIV status are an important driver 
of population-level HIV viremia in Malawi9. Therefore, we recommend 
instigating intensive targeted HIV-testing campaigns in HIV treatment 
deserts. These campaigns may lead to a higher-than-average yield of 
people living with HIV who are currently untreated. Testing campaigns 
may also potentially lead to the identification of HIV-negative individu-
als who have, because of where they live, a higher-than-average risk 
of infection; these individuals should be offered effective prevention 
modalities such as pre-exposure prophylaxis. However, to most effec-
tively target prevention campaigns, prevention deserts, rather than 
treatment deserts, should be identified. Prevention and treatment 
deserts may or may not overlap. Pre-exposure prophylaxis deserts 
have recently been identified in the United States54.

Our study has several limitations. When using empirical Bayes-
ian kriging (EBK)55 to generate the HIV prevalence map, we used 
geomasked cluster site locations from the 2020–2021 Malawi 
Population-Based HIV Impact Assessment (MPHIA2) survey23. The 
clusters were geomasked to ensure anonymization56; geomasking 
introduced location error and, hence, potential bias in our prevalence 
estimates. Our choice of the Worldpop dataset57 is also a potential 
limitation. There are several choices of population gridded datasets. 
We used the top-down constrained version of the 2020 WorldPop 
dataset that constrains the population to areas where settlements 
have been identified by high-resolution satellite data. We chose this 
version as it has been shown to be appropriate for modeling acces-
sibility to healthcare58. In addition, our study is limited (as are all 
studies using FCA models) in that the exact size of catchment areas 
is unknown. However, our results are robust to catchment size; for all 
sizes, we identified substantial geographic inequity in access to ART 
and treatment deserts. Furthermore, we have found that, regardless 
of catchment size, some communities are always, or almost always, in 
deserts. Our study is potentially limited by data quality; there may be 
biases in the MPHIA2 data23 due to survey non-response. The MPHIA2 
data that we have analyzed were collected in 2020–2021; treatment 
coverage is now slightly above 86%. Depending upon where cover-
age has increased, geographic inequalities in access to ART may have 
decreased or increased.

Taken together, our results show that there was substantial geo-
graphic misalignment in resources for HIV healthcare in Malawi in 2020 
and that this led to the emergence of HIV treatment deserts. Based 
on human rights, deserts need targeting with an increased supply of 
ART to redress current inequalities in the provision of HIV healthcare. 
However, these may not be the most efficient strategies for reducing 
incidence because equity and efficiency can be in opposition59. Many 
other countries in SSA such as Lesotho, Eswatini and Zambia have simi-
lar characteristics to Malawi with respect to the geographic distribution 
of their healthcare systems and the geographic variation in their HIV 
epidemics39,60. Therefore, it is possible that many of these countries 
will also contain HIV treatment deserts. The modeling approach that 
we have used for HIV may be applicable to other regions in Africa to 
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Fig. 5 | Heat map of HIV treatment deserts. These are the results of the spatial 
uncertainty analysis. The map shows the number of times a community is found 
in an HIV treatment desert, ranging from 0 (the community is never found in a 
desert) to 6 (the community is always found in a desert). Water bodies are shown 
with striped blue lines.
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identify geographic inequalities in access to medicines and vaccines for 
other highly prevalent communicable diseases and, more importantly, 
to begin to determine how to redress these health inequities.
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Methods
The balanced FCA model and the SAA index
To conduct our study, we used the balanced FCA (bFCA) model devel-
oped previously22 and used in other studies20,61,62. Conceptually, an 
FCA model computes the ratio of supply to demand within a catch-
ment area centered at each supplier’s location, and then ‘floats’ these 
catchment areas over population centers to determine the allocation 
of the available resources to each of the demand sites. Catchment 
areas are delimited by specifying a maximum one-way travel time 
between the supplier’s location and the demand site. The bFCA model 
has an important advantage over the other types of FCA model as it 
corrects for issues of inflation of demand and service levels and takes 
competition among supply sites into account22. The bFCA model, as 
do all FCA models, produces an estimate of the spatial accessibility 
of a resource.

We used the bFCA model to estimate the SAA in Malawi, that is, to 
estimate, for each community in Malawi, their access to ART. The SAA 
reflects the geographic distribution of the HCFs that provide ART, the 
geographic distribution of the available supply of ART among HCFs, 
the geographic distribution of communities with people living with 
HIV, the mobility of the population (as specified by travel time to an 
HCF and mode of transportation) and the behavioral phenomenon of 
distance decay: the probability of using an HCF decreases as the time 
needed to travel to the HCF increases63,64. For a variety of reasons (for 
example, concern about being stigmatized), people living with HIV 
may choose not to use their nearest HCF; this behavior is referred to 
as bypass behavior and has been observed in SSA65–67. The bFCA model 
allows bypass behavior by letting people living with HIV use any of the 
HCFs that lie within their community’s catchment area.

The bFCA model is specified by five equations. For our applica-
tion of the bFCA model, we specify communities as demand sites and 
HCFs as supply sites. The model includes i communities (i ∈ {1,…, N}) 
and j HCFs (j ∈ {1,…, J}). Equation (1) calculates the demand for ART at 
each HCF in the country; demand is specified in terms of the number 
of people living with HIV. The demand at each HCF depends upon how 
many communities are in its catchment area, how many people living 
with HIV each of these communities contain, the travel time from the 
HCF to each community, the mode of transportation used and the 
behavioral phenomenon of distance decay. It is defined by:

D j =
N
∑
i=1
PiWi

ij (1)

where the demand (Dj) at HCF j is the sum of the number of people living 
with HIV (Pi) in community i, weighted by the probability (Wi

ij) that 
people living with HIV from community i use HCF j. Wi

ij is a standardized 
impedance weight. People living with HIV from community i can use 
HCF j if community i lies within the catchment area of HCF j.

Impedance weights (Wij) provide a measure of the difficulty of 
moving from community i to HCF j given a specified mode of transpor-
tation. They are estimated by using a function f(∙) that depends on the 
travel time tij between community i and HCF j, using a specified mode 
of transportation. f(∙) is modeled with a decreasing function to repre-
sent the behavioral phenomenon of distance decay63,64. HCFs cannot 
be used by a community if they are outside the community’s catchment 
area. By evaluating f(∙) for all travel times tij, impedance weights 
Wij = f (tij)  are obtained. The impedance weights are then 
standardized:

Wi
ij = Wij/

J
∑
j
Wij such that

J
∑
j
W i
ij = 1 (2)

Equation 3 calculates the level of service (Lj) at each HCF j in 
the country. The level of service at an HCF is a measure of the local-
ized supply-to-demand ratio in the catchment area of that HCF. It is 

calculated by dividing the supply at the HCF by the localized demand 
at that HCF:

Lj =
Sj
Dj

=
Sj

∑N
i=1PiW

i
ij

(3)

The supply Sj of each HCF j is defined to be the maximum quarterly 
number of people living with HIV treated at HCF j during the year.

Equation (4) calculates the SAA index for community i (SAAi). SAAi 
is the weighted sum of the level of service at all of the HCFs that are 
contained within the catchment area of community i:

SAAi =
J
∑
j=1
LjWj

ij (4)

Here the standardized impedance weight (Wj
ij) is the probability that 

HCF j can be used by people living with HIV in community i; it is calcu-
lated as follows:

Wj
ij = Wij/

N
∑
i
Wij such that

N
∑
i
W j
ij = 1 (5)

The standardized impedance weights produce the ‘balance’ in the 
model by preventing inflated demand and service levels, which occur 
in other types of FCA models22. For example, without these weights, 
there could be multiple communities with high probabilities of using 
the same HCF at levels that are not commensurate with the ART supply 
available at that HCF.

The spatial potential accessibility ratio
The spatial potential accessibility ratio (SPAR) is a measure of a com-
munity’s accessibility to the available supply of healthcare resources 
relative to the national average68. For example, if a community has a 
SPAR of 0.5, then its accessibility to ART is 50% lower than average.  
A good score is a value of SPAR > 1; the higher the value, the better the 
accessibility to ART relative to the average. A bad score is a value of 
SPAR < 1; the lower the value, the worse the accessibility relative to 
the national average.

Parameterization
To parameterize the model, we needed to know, for 2020, (1) the geo-
graphic location of every HCF that provided ART, (2) the supply of ART 
at each HCF, (3) the geographic location of every community in Malawi, 
(4) the number of people living with HIV in each community (demand) 
and (5) the standardized impedance weights. We programmed the 
model in R (v.4.1.2)69.

The geographic location of every HCF that provided ART. Each of the 
758 HCFs that provided ART in 2020 was geolocated at the geographic 
coordinates (latitude and longitude) obtained from the master list 
provided by Malawi’s MoH.

The supply of ART at each HCF. Malawi’s government-funded national 
healthcare system is free for all Malawians at the point of delivery. The 
supply of ART (Sj) at each HCF j was estimated from 2020 data provided 
by Malawi’s MoH. Malawi used a centralized ART distribution system 
that was based on push dynamics: (1) all HCFs that provided ART were 
consulted quarterly by the MoH as to how much ART they needed for 
the next 3 months, (2) they were allocated the amount they requested 
and (3) they distributed all of the ART that they received. Supply data 
were validated each quarter. Malawi uses multi-month scripting for 
ART: prescriptions are typically for 3 months. The distribution system 
ensured that all people living with HIV who requested ART in 2020 
received treatment; there were no stock outs, and HCFs were not under-
utilized (that is, they did not have a supply of ART that was not utilized). 
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Based on this distribution system, we defined the total supply of ART 
that was provided in 2020 as the maximum number of people living 
with HIV that were treated in 2020. We estimated the supply at each 
HCF by calculating the maximum quarterly number of people living 
with HIV (aged 15 or older) that were treated, at that specific HCF, in 
any one of the four quarters in 2020.

The geographic location of every community in Malawi. Each com-
munity was geolocated at the population-weighted centroid of their 
enumeration area70. The population was specified in terms of the num-
ber of people living with HIV in the community.

The number of people living with HIV in each community (demand). 
We estimated the demand for ART in each community in terms of the 
total number of people living with HIV they contained. To estimate 
these numbers, we first constructed an HIV prevalence map for peo-
ple living with HIV aged 15 or older (Extended Data Fig. 3a; maps of 
the corresponding 95% confidence intervals and standard errors are 
shown in Extended Data Fig. 3b–d). The prevalence map was based on 
HIV-testing data collected in MPHIA223. The MPHIA2 survey collected 
blood samples from a representative sample of the population of 
Malawi in 2020–202111. These data were collected between January 
2020 and April 2021; the majority were collected in 2020. The survey 
used a two-stage cluster sampling design. All individuals were nested 
within georeferenced survey clusters; the clusters were geomasked 
to ensure anonymization56. The individual-level data on HIV testing 
(n = 22,662) were aggregated at the cluster level.

We created the HIV prevalence map by using EBK55 to spatially inter-
polate the cluster-level HIV prevalence estimates calculated from the 
MPHIA2 data. EBK is a geostatistical technique for spatial interpolation; 
it uses a function (in our case, a K-Bessel function) to model the empiri-
cal semivariogram. The semivariogram reflects the degree of spatial 
correlation in the data. EBK accounts for the error in estimating the 
semivariogram by deriving a distribution of empirical semivariograms 
at each location. A geographic visualization of the distribution of semi-
variograms at four different locations is shown in Extended Data Fig. 4. 
We used cross-validation to assess how well the EBK model was able to 
predict values at locations where HIV prevalence data had not been col-
lected. Cross-validation metrics are shown in Supplementary Table 9.

After constructing the HIV prevalence map, we combined it (using 
raster multiplication) with the gridded raster dataset (for 15 years and 
older) of the 2020 WorldPop data57 for Malawi; this produced a density 
of infection (DoI) map (Extended Data Fig. 5). WorldPop data are grid-
ded data of population density at a resolution of 100 m by 100 m; data 
are updated annually to reflect UNAIDS-predicted urban–rural growth 
rates. We used the top-down constrained version of the 2020 WorldPop 
dataset. The DoI map was constructed at a spatial resolution of 100 m 
by 100 m. We then used ArcGIS to partition the DoI map into the 9,208 
communities in Malawi and estimated the number of people living 
with HIV in each community. The total number of people living with 
HIV in community i is Pi.

The standardized impedance weights. To calculate the standardized 
impedance weights, we first calculated an origin–destination (OD) 
matrix of travel times. In the OD matrix, the columns represent HCFs and 
the rows represent communities; the coefficients of the matrix specify 
the travel time tij between every community i and every HCF j, based on 
a specified mode of transportation. As in all FCA models, all travel times 
begin from the population-weighted centroid of the community’s enu-
meration area. To calculate travel times, we used an impedance map24. 
This map is essentially a three-dimensional representation of Malawi; 
it includes data on topography71, land cover72, rivers and other water 
bodies72, and road networks73. The map provides estimates of the time 
needed for an average individual to traverse each square kilometer of 
Malawi, using a specified mode of transportation. We calculated this 

map using AccessMod (v.5)37, geospatial data files70–73 and travel speeds 
for several modes of transportation (Supplementary Table 10). Previous 
studies have used Google Maps Platform Application Programming 
Interfaces to estimate travel times to HCFs in Africa74,75. We used the 
platform to estimate the average travel time needed to travel 1 km in 
Malawi (for each type of road in our study; Supplementary Table 10); 
we then calculated the reciprocal of this value to obtain the average 
travel speed (in kilometers per hour). Using these travel speeds and the 
impedance map, we calculated the travel times between all HCFs and all 
communities. As there are 758 HCFs and 9,208 communities in Malawi, 
there are ~7 million coefficients in the OD matrix.

We then used the OD matrix and a distance decay function f(∙) to 
calculate the impedance matrix. f(∙) was estimated by using a data-based 
methodology that was designed to estimate a distance decay function 
for an FCA model76. The distance decay function fitted to the data is 
shown in Extended Data Fig. 6. Using this function enabled us to opera-
tionalize the phenomenon of distance decay: the further individuals 
have to travel to reach an HCF, the less likely they are to visit the HCF; 
this phenomenon has frequently been found to occur in SSA63,64. We 
calculated the coefficients for the impedance matrix by evaluating f(∙) 
for all travel times in the OD matrix (that is, we calculated f(tij)). Notably, 
the majority of the coefficients were zero, as people living with HIV in 
any given community are not able to reach the majority of HCFs in the 
country within their specified maximum one-way travel time. The 
impedance matrix was then row standardized and column standard-
ized, as in equations (2) and (5), respectively, to ensure that the popula-
tion was allocated proportionally to the HCFs. The resulting matrices 
contain the standarized impedance weights Wi

ij and Wj
ij for the model.

We calculated standardized impedance weights based on each 
mode of transportation: walking only or a combination of motorized 
transportation, bicycling and walking.

Spatial sensitivity analysis
To conduct the spatial sensitivity analysis, we varied catchment size; the 
size was defined by setting catchment boundaries. Boundaries were set 
by constructing an impedance map of Malawi24, specifying a maximum 
one-way travel time between supply sites (HCFs) and demand sites 
(communities), and stipulating a mode of transportation.

We varied two factors that delimit catchment boundaries: the 
maximum time that people living with HIV spend traveling (one way) 
to HCFs to receive their medications and the type of transportation 
that they use to reach HCFs. The 2020–2021 MPHIA2 data indicate 
that 44% of people living with HIV on ART spent less than 1 h traveling 
to an HCF, 37% spent 1–2 h and 19% spent more than 2 h (ref. 23). We 
used three values to specify the maximum one-way travel time: 1 h, 
2 h or 3 h. The MPHIA2 survey also collected data on the ownership of 
different types of transportation. Only 2% of households owned cars or 
trucks, 4% owned motorbikes or scooters, and 34% owned bicycles23. 
Therefore, we modeled two modes of transportation: the slowest pos-
sible (only walking) and the fastest possible. The fastest possible mode 
was based on using a combination of three types of transportation: 
motorized transportation, bicycling and walking. The type of transpor-
tation used depends upon the type of road or track that is traveled on 
(Supplementary Table 10). By crossing the two factors (the maximum 
one-way travel time and the mode of transportation), we examined 
six catchment sizes in the spatial sensitivity analysis. The longer the 
maximum travel time and/or the faster the mode of transportation, 
the larger the catchment. The smallest catchment size was based on 
walking one way for a maximum of 1 h. The largest catchment size was 
based on using a combination of the three types of transportation and 
traveling one way for a maximum of 3 h.

Varying travel speeds
We conducted an analysis to investigate the impact of varying travel 
speeds on the geographic accessibility of HCFs. Following published 
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methods41,77, we examined slower and faster travel speeds relative to 
the baseline travel speeds that we used in our spatial sensitivity analy-
sis (Supplementary Table 10): specifically ±20% of the baseline travel 
speeds. We considered two modes of transportation: walking or using a 
combination of motorized transportation, bicycling and walking, with 
a maximum one-way travel time of 2 h.

Model verification
In all bFCA models, the sum of the level of service (equation (3)) for all 
of the HCFs should equal the sum of the SAA index (equation (4)) for 
all of the communities. We verified the bFCA model that we used in our 
analysis by checking, for all six catchment sizes in the spatial sensitivity 
analysis, that this relationship held.

Calculating Lorenz curves and Gini coefficients
We conducted a country-level equity evaluation of access to ART in 
Malawi in 2020 by using econometrics to calculate and visualize an 
overall summary measure of the degree of inequity in access. The 
Lorenz curve26 and the Gini coefficient27 are metrics developed over 
a century ago to quantify economic inequities at the national level. If 
the income distribution in a population is perfectly equal, the Lorenz 
curve is a diagonal line; the further the curve is from the diagonal, the 
greater the inequity. The Gini coefficient measures the area between 
the Lorenz curve and the line of absolute equality, and is expressed as a 
percentage of the maximum area under the line. Thus, a Gini coefficient 
of zero represents perfect equity, while a value of one implies complete 
inequity. Both the Lorenz curve and Gini coefficient have previously 
been used to measure health inequities78,79.

First, we computed a Gini coefficient based on each of the six 
catchment sizes explored in the spatial sensitivity analysis. We then 
constructed the six corresponding Lorenz curves. Lorenz curves were 
constructed by computing the cumulative distribution function of 
the SAA index.

Geostatistical clustering analysis
To determine whether there was significant spatial clustering in com-
munities based on their SAA index, we calculated the Global Moran’s 
Index28. This index measures the strength of the spatial autocorrelation 
between neighboring communities and varies from −1 to +1; negative 
values signify dispersion and positive values signify clustering of com-
munities with similar values of the SAA index. For the SAA indices gener-
ated, based on the six catchment sizes explored in the spatial sensitivity 
analysis, we calculated the Global Moran’s Index. We then calculated 
the LISA statistic29 and plotted country-level LISA cluster maps.

Spatial uncertainty analysis
To determine the robustness of our results in identifying the existence 
and geographic location of HIV treatment deserts, we conducted a 
spatial uncertainty analysis. To conduct this analysis, we determined, 
for each of the six catchment sizes that were explored in the spatial 
sensitivity analysis, which communities occurred in deserts and then 
plotted the results in the form of a heat map of Malawi. The heat map 
shows the number of times a community is found in an HIV treatment 
desert: a value of 0 signifies that the community living in that specific 
location is never found in a treatment desert and a value of 6 signifies 
that the community living in that specific location is always found (that 
is, for every catchment size) in a treatment desert.

Calculating the numbers treated per 100 people living with 
HIV
We calculated, using data from the MoH, the number of people living 
with HIV (per 100 people living with HIV) who were treated with ART at 
HCFs inside deserts by (1) summing the number of people living with 
HIV who were treated with ART at every HCF that was in a desert, (2) 
summing the number of people living with HIV in every community 

that was in a desert and (3) dividing (1) by (2) and multiplying by a hun-
dred. We made the same calculation for the number of people living 
with HIV (per 100 people living with HIV) who were treated with ART 
at HCFs outside deserts.

Statistical analyses
Statistical analyses were performed in R (v.4.1.2)69 and GeoDa 
(v.1.22.0.4)80. Summary numbers and statistics are presented as means 
unless otherwise indicated. Two-sample t-tests were used to com-
pare the mean SAA index inside and outside deserts; significance was 
assessed at α = 0.05. The LISA cluster maps were created in GeoDa; 
clusters and spatial outliers were assessed using two-tailed tests at a 
significance level of α = 0.05.

Ethics and inclusion statement
This project was initiated by researchers at the University of Cali-
fornia, Los Angeles, in collaboration with researchers and medical 
doctors from Partners in Health in Malawi, and the Ministry of Health 
of the Government of Malawi. As such, this paper includes authors 
from many backgrounds throughout the international scientific 
community. Roles and responsibilities were agreed upon before 
the research was conducted. From the early stages of the project, 
all team members collaborated on data ownership and study design. 
Our study is focused on Malawi; therefore, in-country experts were 
team members. These team members played a critical role in provid-
ing detailed knowledge of Malawi’s medical system with a focus on 
HIV treatment. All team members are co-authors of this paper. We 
have cited local and regional research that is relevant to our study. 
As our study has focused only on modeling, capacity building has 
not been discussed.

This study involves secondary analysis of data that were collected 
from previous studies. The MPHIA2 data that we have used are publicly 
available; during its original collection, the PHIA study protocols were 
reviewed and approved by in-country ethics and regulatory bodies. The 
Malawi ART supply data were provided to us in the form of aggregated, 
de-identified HCF-level data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
PHIA data are freely available for registered users at the PHIA project 
website: https://phia-data.icap.columbia.edu/. WorldPop’s spatial 
demographic data are freely available at https://www.worldpop.org/. 
Malawi HIV clinic geolocations and ART supply data were obtained 
from the MoH in Malawi and cannot be provided for reasons of 
confidentiality.

Code availability
The code used to carry out these analyses is available via GitHub at 
https://github.com/joanponce90/bFCA-model-ART-MWI.
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Extended Data Fig. 1 | Maps of the SAA index in Malawi. a–d, Maps of the SAA 
index are shown in the form of quantiles, for four of the catchment sizes that are 
used in the spatial sensitivity analysis. Specifically, for catchment sizes based 
on: (a) walking for a maximum of 2 h; (b) walking for a maximum of 3 h; (c) using 

a combination of motorized transportation, biking, and walking for a maximum 
of 2 h; and (d) using a combination of motorized transportation, biking, and 
walking for a maximum of 3 h.
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Extended Data Fig. 2 | Maps of the SPAR in Malawi. The SPAR is a measure, for 
each community, of its accessibility to the available supply of ART relative to 
the national average. a–f, The maps show the SPAR for each of the six catchment 
sizes that are used in the spatial sensitivity analysis, where individuals: (a) walk 
for a maximum of 1 h; (b) walk for a maximum of 2 h; (c) walk for a maximum 

of 3 h; (d) use a combination of motorized transportation, biking, and walking 
for a maximum of 1 h; (e) use a combination of motorized transportation, 
biking, and walking for a maximum of 2 h; or (f) use a combination of motorized 
transportation, biking, and walking for a maximum of 3 h.
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Extended Data Fig. 3 | HIV prevalence map, standard error map, and 95% 
confidence interval maps. a, HIV prevalence map. The map was created by 
using EBK to spatially interpolate cluster-level HIV prevalence estimates 
calculated using data from MPHIA2. b, Standard error (SE) map. c, Map showing 
95% lower bound for HIV prevalence. d, Map showing 95% upper bound for HIV 

prevalence. Maps (a), (c), and (d) are plotted on the same scale. There are several 
places in central Malawi where the 95% lower bound falls below zero. This is 
to be expected—despite the SEs being fairly small (mean 0.03)—because HIV 
prevalence is as low as 0.02 in some areas. Validation statistics for the EBK model 
are provided in Supplementary Table 9.
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Extended Data Fig. 4 | Semivariograms from EBK model. The background map 
shows the HIV prevalence map, as in Extended Data Fig. 3a. The insets provide a 
visualization of the distribution of semivariograms used in the EBK model, and 
how the distribution varies geographically. The spectrum of semivariograms 

is shown with light blue lines, the median of the distribution is shown by a solid 
pink line, the 25th and 75th percentiles by dashed red lines, and the empirical 
semivariances by the blue crosses.
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Extended Data Fig. 5 | DoI map of Malawi. The DoI map was constructed at a spatial resolution of 100 m by 100 m, and is presented here aggregated to a resolution of 
1 km by 1 km.
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Extended Data Fig. 6 | Distance decay function. The distance decay function 
is shown in orange. It shows the relationship between travel time and the 
‘exceedance probability’, that is, the cumulative proportion of communities that 
can reach a HCF in a certain travel time (or longer). The distance decay function 

was estimated by fitting a logistic function through data (blue) on the travel 
times between each community and the nearest HCF (Residual Sum of Squares, 
RSS = 0.0019).
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Extended Data Table 1 | The number of healthcare facilities (HCFs) within a community’s catchment area

Results are shown for the six catchment sizes explored in the spatial sensitivity analysis. Catchment sizes are based on varying the maximum one-way travel time (one, two, or three hours), 
and mode of transportation: walking only (W), or using a combination of motorized transportation, bicycling and walking (MBW). The travel speeds used in this analysis (that is, baseline travel 
speeds) are shown in Supplementary Table 10. Results show the percentage of communities (and, in parenthesis, the percentage of people living with HIV) that cannot access any HCFs in the 
maximum one-way travel time (this is labeled as: No HCFs), and the percentage of communities (and, in parenthesis, the percentage of people living with HIV) that can only access one HCF in 
the maximum one-way travel time (this is labeled as: One HCF).
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Extended Data Table 2 | The Spatial Accessibility of ART (SAA) index and the Spatial Potential Accessibility Ratio (SPAR)

Results are shown for the six catchment sizes explored in the spatial sensitivity analysis. Catchment sizes are based on varying the maximum one-way travel time (one, two, or three hours), 
and mode of transportation: walking only (W), or using a combination of motorized transportation, bicycling and walking (MBW).
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Extended Data Table 3 | Number and size of HIV treatment deserts

Results show, for the six catchment sizes explored in the spatial sensitivity analysis, the number of HIV treatment deserts and percentage of communities and people living with HIV that they 
contain. Catchment sizes are based on varying the maximum one-way travel time (one, two, or three hours), and mode of transportation: walking only (W), or using a combination of motorized 
transportation, bicycling and walking (MBW).
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Extended Data Table 4 | Healthcare services available at all three levels of care in Malawi
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