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CANCER BIOMARKERS

Pan-tumor genomic biomarkers
for PD-1 checkpoint
blockade–based immunotherapy
Razvan Cristescu*, Robin Mogg, Mark Ayers, Andrew Albright, Erin Murphy,
Jennifer Yearley, Xinwei Sher, Xiao Qiao Liu, Hongchao Lu, Michael Nebozhyn,
Chunsheng Zhang, Jared Lunceford, Andrew Joe, Jonathan Cheng, Andrea L. Webber,
Nageatte Ibrahim, Elizabeth R. Plimack, Patrick A. Ott, Tanguy Seiwert, Antoni Ribas,
Terrill K. McClanahan, Joanne E. Tomassini, Andrey Loboda, David Kaufman

INTRODUCTION: Immunotherapy targeting
the programmed cell death protein–1 (PD-1)
axis elicits durable antitumor responses in
multiple cancer types. However, clinical re-
sponses vary, and biomarkers predictive of re-
sponse may help to identify patients who will
derive the greatest therapeutic benefit. Clin-
ically validated biomarkers predictive of re-
sponse to the anti–PD-1 monoclonal antibody
pembrolizumab include PD-1 ligand 1 (PD-L1)
expression in specific cancers and high micro-
satellite instability (MSI-H) regardless of tumor
type. Tumor mutational burden (TMB) and
T cell–inflamed gene expression profile (GEP)

are emerging predictive biomarkers for pembro-
lizumab. Both PD-L1 andGEP are inflammatory
biomarkers indicative of a T cell–inflamed
tumormicroenvironment (TME), whereas TMB
andMSI-H are indirectmeasures of tumor anti-
genicity generated by somatic tumormutations.
However, the relationship between these two
categories of biomarkers isnotwell characterized.

RATIONALE: This study assessed the poten-
tial for TMB and a T cell–inflamed GEP to
jointly predict clinical response to pembro-
lizumab in >300 patient samples with ad-
vanced solid tumors and melanoma across 22

tumor types from four KEYNOTE clinical
trials. To assess the individual and joint clinical
utility of TMB and GEP, patients were strat-
ified in four biomarker-defined clinical response
groups [GEP low and TMB low (GEPlo TMBlo),
GEP low and TMB high (GEPlo TMBhi), GEPhi

TMBlo, and GEPhi TMBhi] based on predefined
cutoffs for TMB and GEP. These patient-defined
biomarker groups were further used to guide
transcriptome and exome analyses of tumors
in a large molecular database [The Cancer
Genome Atlas (TCGA)] (n = 6384 tumors) to
identify targetable patterns of biology that
may modulate response and resistance.

RESULTS: TMB and GEP exhibited only mod-
est correlation and were independently pre-

dictive of response across
the KEYNOTE clinical
datasets. We found that
objective response rates
were strongest in patients
with GEPhi TMBhi (37 to
57%), moderate in those

with GEPhi TMBlo (12 to 35%) andGEPlo TMBhi

(11 to 42%), and reduced or absent in those
with GEPlo TMBlo (0 to 9%) (see the figure).
Additionally, longer progression-free surviv-
al times were seen in patients with higher
levels of both TMB and GEP. Findings were
comparable when TMB and PD-L1 expression
were jointly assessed. Within TCGA database,
GEP and TMB again had a low correlation,
demonstrating the potential to jointly stratify
transcriptomic and genomic features across
cancer types. Specific gene expression patterns
reflective of TME biology showed significant
associations with TMB, GEP, or both. In par-
ticular, gene set enrichment analysis identified
proliferative and stromal,myeloid, and vascular
biology corresponding to specific TMB-defined
subgroups within GEPhi tumors. In TMBhi

tumors, indication-dependent somatic DNA
alterations in key cancer driver genes showed
a strong negative association with GEP.

CONCLUSION: This analysis shows that TMB
and inflammatory biomarkers (T cell–inflamed
GEP and PD-L1 expression) can jointly stratify
human cancers into groups with different clin-
ical responses to pembrolizumab monotherapy
and identify patterns of underlying, targetable
biology related to these groups. TMB and in-
flammatory biomarkers independently predict
response andmay capture distinct features of
neoantigenicity and T cell activation, respec-
tively. This approach may provide a precision
medicine framework for rationally constructing
and evaluating anti–PD-1– and/or –PD-L1–based
combination therapy regimens.▪
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Biomarker-defined responses to pembrolizumab monotherapy identify targetable-
resistance biology. (A) Tumors have low TMB and low neoantigenicity and lack a
T cell–inflamed TME. (B) Tumors can evade the immune response despite high TMB and
high neoantigenicity. (C) Although T cells are present, stromal and/or endothelial factors
in the TME, low TMB, and low neoantigenicity impede their activity. (D) Tumors have high
TMB, high neoantigenicity, and a T cell–inflamed TME, typified by activated T cells and
other immune cells with cytolytic roles.
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CANCER BIOMARKERS

Pan-tumor genomic biomarkers
for PD-1 checkpoint
blockade–based immunotherapy
Razvan Cristescu1*, Robin Mogg1†, Mark Ayers1, Andrew Albright1, Erin Murphy1,
Jennifer Yearley1, Xinwei Sher1, Xiao Qiao Liu1, Hongchao Lu1, Michael Nebozhyn1,
Chunsheng Zhang1, Jared K. Lunceford1, Andrew Joe1, Jonathan Cheng1,
Andrea L. Webber1, Nageatte Ibrahim1, Elizabeth R. Plimack2, Patrick A. Ott3,
Tanguy Y. Seiwert4, Antoni Ribas5, Terrill K. McClanahan1, Joanne E. Tomassini1,
Andrey Loboda1, David Kaufman1†

Programmed cell death protein–1 (PD-1) and programmed cell death ligand–1 (PD-L1)
checkpoint blockade immunotherapy elicits durable antitumor effects in multiple cancers, yet
not all patients respond.We report the evaluation of >300 patient samples across 22 tumor
types from four KEYNOTE clinical trials.Tumor mutational burden (TMB) and a Tcell–inflamed
gene expression profile (GEP) exhibited joint predictive utility in identifying responders and
nonresponders to the PD-1 antibody pembrolizumab.TMB and GEP were independently
predictive of response and demonstrated low correlation, suggesting that they capture distinct
features of neoantigenicity and Tcell activation. Analysis of The Cancer GenomeAtlas database
showed TMB and GEP to have a low correlation, and analysis by joint stratification revealed
biomarker-defined patterns of targetable-resistance biology.These biomarkers may have
utility in clinical trial design by guiding rational selection of anti–PD-1 monotherapy and
combination immunotherapy regimens.

E
merging immune-relevant biomarkers for
checkpoint blockade immunotherapy re-
sponse can be placed broadly into two cat-
egories: those related to tumor neoepitope
burden, such as microsatellite instability

(MSI) or high tumor mutational burden (TMB),
and those indicative of a T cell–inflamed tumor
microenvironment (TME). The latter include pro-
grammedcell death ligand–1 (PD-L1)protein expres-
sion on tumor and immune cells, which in many
cases is up-regulated in response to local T cell–
derived interferon-g (IFN-g), and gene signatures of
activated T cells (1–3). TMB is correlated with
clinical response to cytotoxic T lymphocyte–
associated antigen–4 blockade in advanced mel-
anoma (4–6) and with anti–programmed cell
death protein–1 (PD-1) and/or PD-L1 blockade in
melanoma (7), non–small cell lung cancer (NSCLC)
(8, 9), colorectal and gastric cancers (10, 11), and
urothelial cancer (12). Similarly, tumors with MSI
that have high levels of both single-nucleotide and
frameshift mutations [high MSI (MSI-H)] are
responsive to anti–PD-1 therapy in colorectal
cancer and other malignancies (10, 11). Expres-

sion of genes related to immune cytolytic activity
have also been shown to be associated with cli-
nical response to checkpoint blockade in certain
tumors (13, 14). Recently, a T cell–inflamed gene
expression profile (GEP) was shown to predict
response to anti–PD-1–directed therapy (15).
However, the interplay between these two distinct
categories of biomarkers has not been well char-
acterized across cancer types with respect to their
ability either to independently or jointly predict
response to immunotherapy or to reveal underly-
ing genomic and/or transcriptomic features of
tumor antigenicity and TME.
We evaluated the relationship between somatic

TMB and clinical response to anti–PD-1 immuno-
therapy with pembrolizumab. Twenty-two cancer
types were included in the discovery and valida-
tion cohorts and were analyzed for the inde-
pendent and joint predictive values of TMB and
T cell–inflamed GEP. Additionally, by using large
molecular databases [e.g., The Cancer Genome
Atlas (TCGA) (16)], we explored transcriptomic
and genetic features associated with the pres-
ence or absence of either of these two markers.

Study cohorts and tumor and
mutation types

The predictive values of TMB and the T cell–
inflamed GEP were first assessed separately by
rigorous stepwise testing in four cohorts of pa-
tients across the pembrolizumab clinical devel-
opment program (one discovery, one pan-tumor

validation, and two single-indication summary
cohorts). TMB was evaluated by whole-exome
sequencing (WES) of germline and tumor DNA,
and the T cell–inflamed GEP was analyzed by
targeted gene expression profiling of tumor RNA
(with the NanoString platform) from formalin-
fixed, paraffin-embedded (FFPE) pretreatment
samples. The initial discovery cohort for TMB
comprised patients with PD-L1–positive head and
neck squamous cell carcinoma (HNSCC) from a
phase 1b clinical trial (KEYNOTE-012 B1 cohort;
n = 34 patients), and the pan-tumor validation
cohort consisted of patients with PD-L1–positive
advanced solid tumors (n = 119 patients) from
two multicohort phase 1b trials across 20 cancer
types [KEYNOTE-028 (17 cohorts;n= 80 patients)
and KEYNOTE-012 (A, C, and D cohorts; n = 39
patients)]. The HNSCC single-indication cohort
(n = 107 patients) included patients in the phase
1b KEYNOTE-012 B1 cohort and additional pa-
tients with PD-L1–unselected HNSCC (n = 73 pa-
tients) from the KEYNOTE-012 B2 cohort. The
melanoma single-indication cohort included pa-
tients with advanced melanoma from the phase
1b (KEYNOTE-001; n= 30 patients) and the phase
3 (KEYNOTE-006 pembrolizumab arm; n = 59
patients) trials. The clinical characteristics of each
cohort are listed in table S1, and the character-
istics of all patients included in this study are
listed in table S2.
The distribution of tumor mutational signa-

tures across the study cohorts largely reflected
recognized cancer subtype–dependent determi-
nants of mutagenesis (17) (table S3 and fig. S1).
The dominant mutational signatures varied across
tumor types in the pan-cancer cohort, with higher
TMB associated with tissue-specific signatures,
such as smoking in small cell lung cancer; apo-
lipoprotein B mRNA editing enzyme, catalytic
polypeptide–like (APOBEC) in genitourinary
tumors; and mismatch repair (MMR) in gastro-
intestinal cancer. Within the pan-cancer valida-
tion cohort, the DNA polymerase epsilon catalytic
subunit (PolE) signature and the Val411 mutation
in POLE were observed in an endometrial
carcinoma tumor that had the highest TMB (5464).
Dominant signatures in the single-indication
cohorts were more homogenous, with an APOBEC
signature in the HNSCC cohort (61% of tumors)
and an ultraviolet (UV) light exposure signature
in melanoma (in 78% of the tumors, >30% of
mutations were UV light induced).

Association of TMB and Tcell–inflamed
GEP with clinical response

Clinical response associations were assessed on
the basis of best overall response (BOR) and
progression-free survival (PFS) by RECIST 1.1.
BOR and PFS associations with TMB and the
T cell–inflamedGEPwere assessed in all patients
who hadWES and transcriptomic data available.
We first assessed the predictive value of each

individual genomic biomarker separately across
the different cohorts. In the HNSCC B1 discovery
cohort, higher TMB predicted a greater frequency
of clinical response (BOR) (P = 0.0123). This was
validated by using the pan-tumor cohort, inwhich
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TMB was again associated with BOR (P < 0.001)
(Fig. 1A). Higher T cell–inflamed GEP scores were
also positively associated with BOR in the pan-
tumor cohort (P < 0.01) (Fig. 1B), showing that a
T cell–activated tumor environment also affects
response in addition to TMB. Similarly, both TMB
and T cell–inflamed GEP scores were positively
associated with BOR in the single-indication
cohorts of HNSCC (P < 0.05 and P < 0.001, re-
spectively) and melanoma (P < 0.05 for both)
patients (Fig. 1, A and B). In this study, we did not
evaluate the effect of human papillomavirus
(HPV) antigens on the association of TMB with
response in the HNSCC cohort; however, we have
previously described the association of TMBwith
clinical outcome in a larger, overlapping group
of HNSCC patients (KEYNOTE-012 B1 and B2
cohorts) stratified by HPV status (18). Although
we found that TMBwasmore strongly associated
with BOR inHPV-negative patients than inHPV-
positive patients, those exploratory findings await
validation in larger, independent studies.
The clinical utility of TMB in predicting BOR

was generally high, and degrees of utility were
similar across cancer types, with areas under the
receiver operating characteristic curves (AUROCs)
of 0.740, 0.617, and 0.602 in the pan-tumor,
HNSCC, and melanoma cohorts, respectively.
Similar results were observed for the T cell–
inflamed GEP across the cohorts (AUROCs =
0.782, 0.768, and 0.638, respectively) (Fig. 1C). The
potential performance of a targeted sequencing–
based TMB assay was simulated by using the
genes in the Foundation Medicine targeted se-
quencing platform (19). The correspondingAUROC
across the cohorts was comparable to that ob-
servedby usingWES (0.721), suggesting potential
translatability to a targetedpanel diagnostic. Taken
together, these data imply that both TMB and the
T cell–inflamedGEPhave comparable performance
characteristics and potential diagnostic utility.
We next evaluated the joint utility of the two

genomic biomarkers in predicting response. The
correlation between TMB and GEP was low in
the pan-tumor andmelanoma cohorts (Spearman
correlation coefficient r = 0.221, P < 0.05, and r =
0.252, P < 0.05, respectively), and there was no
correlation in the HNSCC cohort (r = −0.020, P =
0.841) (Fig. 2A). This lack of correlation, combined
with the observed individual predictive values,
suggested that TMB and the T cell–inflamedGEP
are independent predictivemeasures of response
to pembrolizumab. When tested in a multivariate
model adjusted for each measure, both TMB and
T cell–inflamed GEP retained significant predic-
tive value in the pan-tumor (P=0.0028 and0.0051,
respectively) and HNSCC (P = 0.0013 and 0.0004)
cohorts, whereas only GEP remained significant
in the melanoma cohort (P = 0.1644 and 0.026).
Although a portion of the patients in this study
were PD-L1 selected, these relationships were
observed even in those cohorts of patients that
were not PD-L1 selected.
We evaluated the association of the genomic

biomarkers with PD-L1 immunohistochemistry
(IHC) scores (fig. S2). TMB was significantly but
moderately correlated with PD-L1 in the pan-

tumor cohort [combined positive score (CPS), r =
0.330; P = 0.0038] and showed no association
with PD-L1 in the HNSCC cohort (CPS, r = 0.020;
P = 0.8084) or in the melanoma cohort [mela-
noma (MEL) score, r = 0.049; P = 0.6473]. In
contrast, GEP was more significantly correlated
with PD-L1 in the pan-tumor, HNSCC, and mel-
anoma cohorts (r = 0.49, 0.51, and 0.53, res-
pectively; all P values < 0.001), consistent with
the known regulation of PD-L1 gene expression
by T cell–derived IFN-g (1–3). This correlation
suggests that a PD-L1 IHC–based assay is rel-
evant in assessing a T cell–inflamed TME. As
seenwith high TMB (TMBhi) and highGEP scores
(GEPhi), responses in patients who had both

TMBhi and greater PD-L1 expression (PD-L1+;
CPS ≥ 1) were greater than those in patients who
had low levels of both TMB and PD-L1 expression.
We next studied the potential joint utility of

TMB and GEP for patient stratification and
treatment outcome prediction. Clinical response
was evaluated on the basis of cut points as-
sociated with the Youden Index (derived from
the AUROCs for TMB in each cohort) and a dis-
covery cutoff of −0.318 for the T cell–inflamed
GEP score (selected via analysis of pan-cancer
data) (15). Rates of response to pembrolizumab
were greater in patients with TMBhi (greater
than or equal to Youden Index cut points) than in
those with low TMB (TMBlo) (less than Youden
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Fig. 1. Individual association of TMB or Tcell–inflamed GEP with anti–PD-1 response across
multiple patient cohorts. (A and B) The association of (A) TMB, defined as the sum of somatic
nonsynonymous mutations, and (B) T cell–inflamed GEP with BOR was assessed in pan-tumor,
HNSCC, and melanoma cohorts by central radiology review for all-patients-as-treated populations in all
cohorts. A responder is defined as having a partial response (PR) or a complete response (CR); a
nonresponder is defined as having no PR or CR. Nonresponders and responders for TMB, respectively,
were n = 103 and n = 16 for pan-tumor, n = 86 and n = 21 for HNSCC, and n = 51 and n = 38 for
melanoma cohorts. For GEP score analysis, nonresponders and responders were n = 97 and n = 16
for pan-tumor, n = 84 and n = 21 for HNSCC, and n = 48 and n = 38 for melanoma cohorts. For both
(A) and (B), raw data are displayed in standard box plots with medians and interquartile ranges.
(C) AUROCs for TMB and T cell–inflamed GEP in the three patient cohorts. Youden Index–associated
cutoffs for TMB in each cohort are shown.
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Index cut points) and were similarly greater for
those with higher T cell–inflamed GEP scores
(greater than or equal to the cutoff of −0.318)
than for those with lower scores (less than the
−0.318 cutoff) (Fig. 2B). The highest objective
response rate was observed for patients within
each cohort who had both TMBhi and GEPhi.
Additionally, among patients with both TMBlo

and low T cell–inflamed GEP scores (GEPlo), no
responses were observed in the pan-tumor and
HNSCC cohorts and only one response was ob-
served in the melanoma cohort, suggesting
greater sensitivity for the combination of bio-
markers. Patients who had high scores for only
one of the biomarkers (TMBlo GEPhi and TMBhi

GEPlo) had moderate responses (Fig. 2B). These
data suggest the potential for greater positive
and negative predictive value when these bio-
markers are used together in the setting of PD-1–
directed monotherapy.
Patient stratification by TMB and GEP was

also differentially associated with PFS. In all
three cohorts, hazard ratios associated with PFS
were <1.0 (implying PFS benefit) among patients
with high versus low TMB and high versus low
T cell–inflamedGEP scores. Themost pronounced
PFS-associated hazard ratios were observed for
TMBhi GEPhi tumors in the pan-tumor (Fig. 3A),
HNSCC (Fig. 3B), and melanoma cohorts (Fig.
3C). The greatest differential was observed in
each cohort for patients with TMBhi GEPhi versus
patients with TMBlo GEPlo. Patients who had
greater levels of either TMB or GEP (TMBhi or
GEPhi) versus low levels of these biomarkers
(TMBlo or GEPlo) also had longer PFS.
We also explored the feasibility and potential

clinical value of identifying a pan-cancer thresh-
old for TMB across our cohorts that maximizes
its joint predictive utility with GEP by using a

method similar to that of Panda et al. (20). A
TMB cutoff of ≥123 mutations per exome max-
imized the effect size of the difference in GEP
distributions between tumors having TMB less
than and greater than the cutoff. The response
rates to pembrolizumab in the TMB-GEP–defined
groups of each clinical cohort were comparable
to those observed by using the cohort-specific cut
points for TMB reported above (fig. S3). The
hazard ratios observed for PFS were also gen-
erally similar with the use of the TMB cutoff of
≥123 mutations per exome (fig. S4). A pan-tumor
threshold may be further optimized with the
availability of additional data beyond those in
our study. For example, a pan-tumor TMB thresh-
old of ≥175 mutations per exome was recently
reported for response to pembrolizumab (21).

Association of other DNA-based
measures with response

The predictive value of other DNA-based mea-
sures of mutation status in relation to response
was also evaluated in these cohorts, including
predicted neoantigen signature, smoking status,
APOBEC-driven mutations, UV light exposure,
DNA transversions, homologous recombination
deficiency, and MSI. Aside from MSI, none of
these specific measures of genetic alteration pro-
vided additional meaningful improvement in
predictive value over TMB assessment alone. The
predicted neoantigen load was highly correlated
with TMB in the pan-tumor, HNSCC, and mela-
noma cohorts (r = 0.87, 0.83, and 0.90, respec-
tively), as expected (fig. S5). In the pan-tumor
cohort, most measures of mutagenic processes
were significantly associated with BOR (e.g.,
predicted neoantigen load and smoking; both
P values = 0.001), with similar relevant trends
toward significant association with PFS (table

S4). By using aWES-based method to infer MSI
(22), two patients with MSI-H tumors (gastric
and biliary tract carcinomas) were identified, and
both were responders; the MSI status of these
patients was confirmed with standard MSI poly-
merase chain reaction (PCR) methods. In the
melanoma cohort, the percentage of UV light–
inducedmutations correlated with TMB (r = 0.77;
P < 1 × 10−10) (fig. S1) and was significantly as-
sociated with response (P = 0.02). These data
suggest that nonsynonymous mutations arising
from a wide variety of mutagenic processes are
capable of enhancing the antigenicity of tumors,
with comparable effects on the response to PD-
1 checkpoint blockade.
Somatic mutation clonality and copy number

variation (CNV) have previously been reported
to positively and negatively associate, respectively,
with response to PD-1 checkpoint blockade
(23, 24). In an analysis of clonal versus nonclonal
tumors (clonality of 1 versus <1, respectively), the
treatment response rates were numerically higher
in clonal tumors in the pan-tumor cohort (18%
versus 10%) but not different in the HNSCC (21%
versus 23%) or melanoma (44% versus 41%) co-
hort. A low and nonsignificant overall correlation
was observed between clonality and TMB (r =
0.05; P > 0.05) in the pooled dataset, suggesting a
potential utility of including clonality assessment
in the application of a TMB-based biomarker.
Higher levels of CNV trended toward negative
associations with response but approached sta-
tistical significance only in the HNSCC andmel-
anoma cohorts (AUROCs = 0.48, 0.35, and 0.42;
P= not significant, 0.1, and 0.1 for the pan-tumor,
HSNCC, and melanoma cohorts, respectively).
Correlations between TMB and CNV load were
low in the pan-tumor (r = −0.03), HNSCC (r =
0.16), andmelanoma (r= −0.12) cohorts (P > 0.05
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Fig. 2. Joint relationship of TMB or T cell–
inflamed GEP with anti–PD-1 response across
multiple patient cohorts. (A) Relationships
of both TMB and T cell–inflamed GEP signatures
with BOR. A responder is defined as having
a PR or CR (filled circles); a nonresponder has
no PR or CR (open circles). Dashed horizontal
lines represent the Youden Index–associated
cutoffs for TMB in each cohort as derived from
AUROCs in Fig. 1C. Dashed vertical lines
represent a discovery cutoff for the Tcell–
inflamed GEP selected via analysis of pan-cancer
data. (B) Response (PR or CR) rates [expressed
as a percentage calculated as the number
of responders divided by the number in the
cutoff-defined group, with 95% confidence inter-
vals (CI)] per TMB cutoff status and Tcell–
inflamed GEP cutoff status as designated in (A).
TMBhi and TMBlo response groups are defined by
values greater than or equal to and less than
Youden Index–associated cut points (102.5, 86,
and 191.5 for pan-cancer, HNSCC, and mela-
noma cohorts, respectively); GEPhi and GEPlo

groups are defined by cutoffs greater than or
equal to and less than −0.318, respectively.
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for all), suggesting a potential complementary
role of CNV in biomarker-based prediction of
responders versus nonresponders.

TMB and Tcell–inflamed GEP relationships
can be applied to a wide range of tumor
types across genomic databases

To explore the generalizability of our findings
and the utility of our stratification schema
across tumor types, the relationship among TMB,
T cell–inflamed GEP, and related genomic fea-
tures was further explored in TCGA (n = 9963
patients with transcriptomic data, 6384 of which
also had WES data) (16). Patients were stratified
by TMB (WES score ≤ 100 mutations per ex-
ome) and T cell–inflamed GEP score (below the
top tertile of data) by using cutoffs equivalent in
terms of prevalence to those that were used to
define the clinical response groups in the pan-
tumor cohort (Fig. 4A). Consistent with our cli-
nical data, TMB and the T cell–inflamed GEP
were found to have low but significant correla-
tions (r = 0.30; P < 1 × 10−4), as did TMB and PD-
L1 gene expression (r = 0.16; P < 1 × 10−4) and
TMB and PD-L2 gene expression (r = 0.22; P <
1 × 10−4). By contrast, both PD-L1 expression and
PD-L2 expression, which are induced by IFN-g
from activated Th1 and cytotoxic T cells (1–3),
were highly correlated with the T cell–inflamed
GEP (r = 0.61 and 0.72; P < 1 × 10−10). MSI-H
tumors made up a subset of tumors with TMBhi

in both T cell–inflamed and noninflamed tumors.
Even in these tumors, which exhibit very high
mutational burdens, the modest correlation be-
tween GEP and TMB was preserved. The fre-
quency of the TMBhi GEPhi subgroup, which
was identified as the most clinically responsive
population in our datasets, varied across cancer
types (Fig. 4B), with enrichment among pa-
tients with tumors that are generally more re-
sponsive to pembrolizumab, such as melanoma
and NSCLC (25, 26), and underrepresentation
among patients with tumors such as prostate
cancer and glioblastoma that are typically more
resistant to immunotherapy (27, 28).
Rooted in the well-studied field of T cell in-

flammation and cytolytic process (13, 29–31),
the T cell–inflamed GEP signature was derived
by a stepwise process of discovery, validation, and
refinement of candidate gene sets associated with
patient response to pembrolizumab across mul-
tiple solid tumors with the use of a NanoString
platform enriched in immune genes (15) and thus
represents a universal signature. Notably, in
TCGA dataset, we observed a strong correlation
(r > 0.9) between the GEP and several other
previously published transcriptional signatures
reflective of a T cell–inflamed TME associated
with cytolytic processes (Fig. 5A).

Stratification of additional
genomic features by TMB and
Tcell–inflamed GEP

The patient groups defined by TMB and GEP
status show notable differences in clinical re-
sponse to pembrolizumab. In particular, the two
groupswith only one positive biomarker indicative

of potential for pembrolizumab response (TMBhi

GEPlo or TMBlo GEPhi) have markedly lower re-
sponse rates than theTMBhi GEPhi group, suggest-
ing thatmechanismsof resistance to pembrolizumab
may exist that are specific to each respective group.
In order to identify potential mechanisms of re-
sistance, we assessedmolecular differences among
tumors that belong to different TMB- and T cell–
inflamed GEP–defined groups through analyses
in TCGA molecular database.
First, we compared the correlation of genes

in the transcriptome with GEP in TMBhi and in
TMBlo tumors separately. Both distributions of
correlations diverged from a normal distribution
because of a pattern of significant skewing to-
ward positive correlations with the T cell–
inflamed GEP, consistent with robust coregula-
tion of gene expression markers of cell types
present in a cytolytic TME. However, there were
no major differences in the correlations of in-
dividual genes with the T cell–inflamed GEP
betweenTMBhi (TMB> 100mutations per exome)
and TMBlo (TMB ≤ 100 mutations per exome)

tumors (r = 0.76; P < 1 × 10−20) (Fig. 5B), sug-
gesting a lack of qualitative difference in T cell
inflammation markers as a function of tumor
neoantigenicity.Notably,much smaller deviations
from a normal distribution were observed in the
negative range of correlations with GEP in both
TMBhi andTMBlo tumors, suggesting the absence
of major pan-cancer transcriptional signatures
strongly associated with T cell exclusion.
To understand the origin of the skewness

toward positive correlations with the T cell–
inflamed GEP, genes positively correlated with
the T cell–inflamed GEP (r > 0.15) were classified
into two sets by using cutoffs defined by devia-
tions from a normal distribution of the correla-
tion with the T cell–inflamed GEP at 83% and
98% quantiles, respectively (Fig. 5C). Set 1 com-
prised genes that had a Spearman correlation r >
0.6 with the T cell–inflamed GEP (the lower
bound for the correlation of individual genes
in the signature with the signature as a whole),
whereas set 2 genes had correlations with GEP
that ranged between 0.15 and 0.6. Additionally,
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Fig. 3. Relationship between TMB and Tcell–inflamed GEP signatures and PFS after
anti–PD-1 treatment across multiple patient cohorts. Relationships of TMB and T cell–inflamed
GEP with PFS in all patients as treated per TMB cutoff and GEP cutoff as described in the legend
to Fig. 2. Median PFS times in days for (A) pan-tumor, (B) HNSCC, and (C) melanoma cohorts
for TMBhi versus TMBlo were 115 versus 59 (hazard ratio, 0.48; 95% CI, 0.30 to 0.76), 64 versus
64 (0.70; 0.46 to 1.07), and 502 versus 85 (0.48; 0.28 to 0.84); those for GEPhi versus GEPlo

were 96 versus 57 (0.54; 0.35 to 0.81), 103 versus 57 (0.45; 0.28 to 0.72), and 418 versus 90 (0.73;
0.40 to 1.31); those for TMBhi GEPhi versus TMBlo GEPlo or TMBlo GEPlo were 189 versus 59 (0.43;
0.26 to 0.71), 110 versus 62 (0.51; 0.32 to 0.82), and 504 versus 123 (0.63; 0.36 to 1.09). Kaplan-Meier
plots are shown, and median survival was estimated on the basis of Kaplan-Meier estimates. Hazard
ratios with 95% CI were derived from a Cox proportional model fit, with adjustment for baseline
ECOG score and protocol where relevant.
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genes negatively correlated with the T cell–
inflamed GEP and divergent from a normal dis-
tribution (r < −0.15 at 14% quantile) were
grouped in set 3.
As expected, a strong enrichment of genes

related to T cell–inflamed cytolytic processeswas
observed in set 1 (table S5). By contrast, set 2
showed enrichment in genes specific to other
cell types in the TME, including vascular endo-

thelium and myeloid infiltrate, but did not show
enrichment of genes for T cell–inflamed cytolytic
processes or tumor cell–intrinsic pathways. Genes
in set 1 and set 2 were further grouped as mod-
ules of gene coexpression by K-means cluster-
ing (K = 10 for set 2, andK = 4 for set 1). Modules
in set 1 did not show a strong association with
TMB, consistent with the weak associations be-
tween TMB and the T cell–inflamed GEP de-

scribed above. However, several modules in set 2
(table S6) displayed distinct patterns of correla-
tion or anticorrelation with TMB. Annotation of
the genes in themodules that weremost strongly
correlated and anticorrelated with TMB (mod-
ules 4 and 5, respectively), revealed enrichment
in biology related to cell proliferation (module 4)
and vasculature (module 5). These data suggest
that distinct patterns of underlying biology can
be identified by using TMB and the T cell–
inflamedGEP to categorize tumors (Fig. 5D). The
association of the average expression of these
gene modules (modules 4 and 5) with TMB and
T cell–inflamed GEP is represented in Fig. 5D in
the upper left and lower right panels, respectively,
by using the cytolytic module 1 from set 1 in the
upper right panel as a reference.
The group of genes in set 3 that were anti-

correlated with the T cell–inflamed GEP (r <
−0.15) was also investigated; however, the bio-
logical annotation of the resulting coexpression
modules was less informative than that for genes
positively correlated with the T cell–inflamed
GEP. However, some modules in this group
were anticorrelated with TMB as well as with
T cell–inflamed GEP. In particular, a module
enriched in stromal and Wnt signaling elements
was identified in tumors with both TMBlo and
T cell–inflamed GEPlo (Fig. 5D, lower left panel).
An additional analysiswas performedby inter-

rogating the entire transcriptome for genes as-
sociated with TMB in T cell–inflamed tumors,
independently of the GEP-based clustering ap-
proach described above. Similar to the analysis
of modules, this analysis showed that genes that
positively correlatedwith TMBwere enriched for
proliferation whereas those that were anticorre-
lated with TMB were related to vascular and
stromal biology (table S7). Consistent with these
analyses, the distribution of previously identified
signatures of stromal biology, proliferation, cyto-
lytic activity, and Wnt signaling (13, 32–34) also
showed similar patterns of association with TMB
and the T cell–inflamedGEP (fig. S6). However, in
this analysis, we were not able to identify a gene
expression signature of TMBhi that was as pre-
dictive as TMB itself for response to pembrolizumab.
A complementary approach was used to iden-

tify genomic determinants of low cytolytic tran-
scriptomic activity (absence of a T cell–inflamed
GEP) in tumors with TMBhi as potential drivers
of immune evasion in amutagen-rich context. As
described above, the transcriptomic correlation
of the T cell–inflamedGEP in TMBhi tumors (Fig.
5B) showed a distribution that skewed toward
positive correlation with GEP, suggesting the
absence of a robust transcriptome signal in tu-
mors with TMBhi and GEPlo. Therefore, DNA
alterations in TCGA were explored to reveal
potential negative associations of somatic muta-
tions with GEP by using a previously reported
approach (13) but focusing specifically on tumors
with TMBhi. Among known cancer drivers, serine-
threonine kinase 11 (STK11) [also known as liver
kinase B1 (LKB1)] mutation in lung adenocar-
cinoma,Kelch-likeECH-associatedprotein1 (KEAP1)
mutation in lung adenocarcinoma and lung
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Fig. 4. Relationships of TMB, GEP, and other key biomarkers with gene expression across tumor
types in TCGA. (A) Data are stratified by TMB and GEP cutoffs, which are equivalent in terms of
prevalence to those that define the clinical response groups in the pan-tumor cohort of patients
treated with pembrolizumab from the KEYNOTE studies.TheWES cutoff of >100mutations per exome for
TMB was chosen to match the Youden Index–associated TMB cutoff defined for the pan-tumor cohort.
The GEP cutoff was chosen as the top pan-cancer tertile value. Columns represent individual tumors, and
rows represent genomic features. Red and green represent elevated and decreased expression,
respectively (versus the median, in black), for continuous variables, and red and white represent true and
false for Boolean (binary) variables. In the absence of MSI evaluation across cancer types, MSI-H status
was determined by loss of MLH1 gene expression by using cutoffs determined by the bimodality in the
distribution of expression. (B) Percentages of tumors in each cancer type in biomarker-defined response
groups as defined in (A) in TCGA database. SCC, squamous cell carcinoma; MSS, microsatellite stable;
TNBC, triple-negative breast cancer.
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squamous cell carcinoma, and adenomatous poly-
posis coli (APC) mutation in colorectal cancer
showed highly significant negative associations
with the T cell–inflamed GEP (Fig. 6). Notably,
none of these associations passed the nominal sig-
nificance level (P< 0.01) in the pan-cancer analysis,
suggesting a potential cancer type–specific role for
these somatic alterations. Other genes demon-
strating negative associations with the T cell–
inflamed GEP were either of low frequency or
were not known cancer drivers (Fig. 6B).

Discussion
Several studies have shown that either TMBhi or
cytolytic elements of the TME are associated with
clinical response to checkpoint blockade immu-
notherapy in some tumor types (4–9, 11–13, 15).
However, the relationship between these two
central aspects of tumor immunobiology and
their combined association with clinical response
to checkpoint blockade immunotherapy has not
been well-studied across multiple cancer types.
Here, we show that TMB and a T cell–inflamed

GEP are tissue-agnostic measures of distinct
aspects of tumor immunobiology and indepen-
dently predict response to anti–PD-1 therapy
in multiple tumors. In particular, limited clin-
ical responses to pembrolizumab occurred in
patients with low levels of both TMB and T cell–
inflamed GEP, whereas the greatest response
rates were seen in patients with high levels of
both biomarkers. Similarly, improved responses
were seen in patients who had high levels of
both PD-L1 IHC expression and TMB, reflective
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Fig. 5. Transcriptomic and genomic features
defined by the GEP and TMB biomarker–based
stratification in TCGA database. (A) Association
of T cell–inflamed GEP (15) with other key markers
and expression signatures representative of
T cell inflammation and a cytolytic environment,
including chemokine signature (29), Immunoscore
(30), and cytolytic activity (CYT) (13). (B) Association
between T cell–inflamed GEP and expression of
each gene in TCGA for tumors with a TMB of
>100 mutations per exome (x axis) and in tumors
with a TMB of ≤100 mutations per exome (y axis).
(C) Each gene in the transcriptome is assigned
to one of four clusters determined by cutoffs obtained
from the distribution of correlation with the T cell-
inflamed GEP. The cutoffs used were the inflection
point where the distribution deviates from normal on
the positive side (0.15; 83rd quantile), the cut point
that selects T cell–inflamed GEP genes (0.6; 98%
quantile), and the inflection point where the
distribution deviates from normal on the negative
side (−0.15; 15th quantile). Vertical lines represent
cutoffs for gene sets 1, 2, and 3 (r > 0.6, r = 0.15 to
0.6, and r < −0.15, respectively); gene sets are color
coded on the regression line. (D) Gene set annotation
in each cluster suggested enrichment for biological
patterns with distinct relevance for the individual
biomarker-based groups. Contour plots illustrate the
association with TMB and GEP of selected patterns
of TME and cellular biology represented by gene
expression modules formed by genes coexpressed in
TCGA database. Blue and red represent under- and
overexpression, respectively.
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of the relationship of PD-L1 and GEP to a T cell–
inflamed TME. These observations suggest that
using inflammatory biomarkers such as the
T cell–inflamed GEP or PD-L1 jointly with TMB
may help to identify patients who are responsive
to anti–PD-1 therapies. Additional IHC assays have
been developed that measure protein markers of
a cytolytic T cell environment, and evaluating
their performance characteristics in conjunction
with TMB in future studies may be useful (14, 35).
More broadly, our study demonstrates the or-
thogonal relationship between universal measures
of tumor antigenicity and tumor infiltration that
can occur by activated T cells (14, 36–38). Al-
though these are upstream and downstream
components, respectively, of a robust antitumor
T cell response, there is sufficient intervening
biology such that biomarkers for each process
can provide complementary information.
As an increasing number of PD-1– and PD-L1–

based combination regimens show clinical ben-
efit, it will become challenging to determine the
relative utility of each regimen for an individual
patient. A refined set of biomarker tools that can
stratify underlying patterns of tumor immuno-
biology may enable rational and biology-driven
personalization of these various treatment regi-

mens, such as selection of patients with tumors
typically less responsive to immunotherapy. Our
data demonstrate that TMB and a T cell–inflamed
GEP can be used to categorize tumors into dis-
crete subgroups that exhibit distinct patterns of
potentially targetable biology to enhance clinical
response. These patterns include tumor type–
agnostic signatures of proliferative, vascular,
myeloid, and stromal biology, as well as tumor
type–specific dysregulation of tumor cell–intrinsic
signaling pathways. Although the utility of TMB,
T cell–inflamed GEP, and PD-L1, as well as other
emerging tumor-agnostic biomarkers, will need
to be prospectively validated for use in predicting
response to various immunotherapy regimens,
including combination therapies, the findings
reported here suggest a rationale for further
exploring the utility of these biomarkers as
guides for precision cancer immunotherapy.

Materials and methods
Clinical tumor samples

Associations of TMB and the T cell–inflamed
GEP with BOR and PFS were evaluated by using
tumor samples from subgroups of patients treated
with pembrolizumab in clinical trials who had
WES data available. These included a discovery

cohort of patients with HNSCC (KEYNOTE-012
B1), a pan-tumor validation cohort (KEYNOTE-
012/028), and single-indication cohorts of pa-
tients with HNSCC (KEYNOTE-012 B1+B2) and
melanoma (KN001 and 006). The discovery cohort
included 34 of 297 total enrolled patients with PD-
L1–selected (≥1%, modified proportion score or
interface pattern, QualTek IHC) (39) HNSCC (B1
cohort). The pan-tumor cohort comprised patients
with PD-L1–positive (≥1%, modified proportion
score or interface pattern, QualTek IHC) (39)
advanced solid tumors pooled from two multi-
cohort trials, including 39 of 297 total enrolled
patients in KEYNOTE-012 (cohorts A, C, and D:
triple-negative breast cancer, urothelial cancer,
and gastric cancer, respectively) and 80 of 450 total
enrolled patients inKEYNOTE-028 (17 of 20 cohorts
with anal, biliary, carcinoid, cervical, colorectal,
endometrial, esophageal, estrogen receptor–positive
human epidermal growth factor receptor-2–negative
breast, pancreatic, salivary gland, prostate, small
cell lung, thyroid, and vulvar cancers and neuro-
endocrine tumors, mesothelioma, and leiomyo-
sarcoma). Single-indication cohorts included 107
HNSCC patients from the KEYNOTE-012 PD-L1–
positive (≥1%, modified proportion score or inter-
face pattern, QualTek IHC) (39) B1 (n = 34) and
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Fig. 6. Cancer driver genes associated with immune evasion in
selected tumor types. (A) Volcano plots of AUROC and rank sum
P values illustrating the association of somatic SNV mutations with GEP in
lung squamous cell carcinoma, lung adenocarcinoma, and colorectal
adenocarcinoma in TCGA database. Analysis was restricted to cancer
types having >20% of tumors with TMBhi (>100 mutations per exome). For
each cancer type, the negative log10-transformed rank sum P value

between GEP and mutations was calculated for each gene. (B) Rank sum
P values of association between GEP and mutations in selected genes.
The selection was made on the basis of a nominal P value of <0.01 for
negative association with GEP in any cancer type and an alteration
frequency of ≥10% in that cancer type. Negative and positive associations
are represented in blue and red, respectively. Negative associations for
known cancer driver genes are shown in boxes.
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PD-L1–unselected B2 (n = 73) cohorts (40, 41) and
patients with advanced melanoma from the
pembrolizumab arms of the KEYNOTE-001 (n =
30 of 668 total enrolled patients) and KEYNOTE-
006 (n= 59 of 834 total enrolled patients) studies
(26, 42). Tissue specimens were obtained with
the approval of the institutional review boards,
and patients provided informed consent [clinical
trial registration: KEYNOTE-012 (NCT01848834);
KEYNOTE-028 (NCT02054806); KEYNOTE-001
(NCT01295827); KEYNOTE-006 (NCT01866319)].

Clinical end points

BOR was assessed in the discovery HNSCC, pan-
tumor, and HNSCC cohorts by central radiology
review and in the melanoma cohort by integrated
radiology and oncologist assessment. For BOR, a
responder was defined as a patient with a partial
response (PR) or complete response (CR), andPFS
was defined as the time from the start of treatment
to documented evidence of progressive disease or
death. BOR and PFSwere both assessed in the all-
patients-as-treated populations, defined as those who
had received ≥1 dose of study drug, in each cohort.

Processing of tissue samples

DNA sequencing (WES) and RNA analysis (gene
expression profiling) were performed by using
FFPE sections of pretreatment tumor samples
from the above-listed studies.WESwas performed
on both germline and tumor samples, and gene
expression profiling was performed on tumor
samples. With a fresh scalpel, the tissue was
either macrodissected from the marked tumor
area (tissue containing <20% tumor) or scraped
from the entire section and transferred to a 1.5-ml
tube containing 200 ml of 100% ethanol.

Gene expression (RNA) profiling:
NanoString methodology

The previously described T cell–inflamed GEP
was derived by using a stepwise derivation pro-
cess of discovery, validation, and refinement of
candidate gene sets across a wide variety of solid
tumors (15). TheGEPwas composed of 18 inflam-
matory genes related to antigen presentation,
chemokine expression, cytolytic activity, and
adaptive immune resistance, including CCL5,
CD27, CD274 (PD-L1), CD276 (B7-H3), CD8A,
CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1,
HLA-E, IDO1, LAG3, NKG7, PDCD1LG2 (PDL2),
PSMB10, STAT1, andTIGIT. ForGEPanalysis, total
RNA was isolated from 5-mm-thick FFPE sections
of tumor tissue fixed on positively charged slides
(Ambion RecoverAll total nucleic acid isolation kit
for FFPE; catalog no. AM1975) at ALMAC, United
Kingdom. Total RNA concentrations were mea-
sured using the NanoDrop ND1000 (Thermo
Fisher Scientific) in 1.5 ml of test sample.
Gene expression analysis was conducted on

the NanoString nCounter gene expression plat-
form (NanoString Technologies, Seattle, WA) as
described previously (15). Per sample, 50 ng of
total RNA was mixed in a final volume of 5 to
7 ml with a 3′-biotinylated capture probe and
5′-reporter probe tagged with a fluorescent
barcode, from the desired custom gene expres-

sion codeset (HUIMR680_V2_C2406+PLS_SPI-
KE80_C2765 for Batch 1 and HUIMR800_C3176
for Batch 2), containing probes designed to
function as positive and negative hybridization
controls. Probes and target transcripts were hy-
bridized overnight at 65°C for 14 to 18 hours as
per manufacturers’ recommendations. Hybridized
samples were run on the NanoString nCounter
preparation station by using a high-sensitivity pro-
tocol where excess capture and reporter probes
were removed and transcript-specific ternary com-
plexes were immobilized on a streptavidin-coated
cartridge. The cartridge samples were scanned
at maximum resolution by using the nCounter
digital analyzer. GEP scores were calculated as
a weighted sum of normalized expression values
for the 18 genes. Quality control of the gene ex-
pression data followed an approach similar to
that of the NanoString clinical-grade assay, with
theuseof joint criteria thatassessed the relationships
between housekeeping genes and the negative
control probes plus a weighted score evaluat-
ing the GEP gene counts versus background-
subtracted counts. For housekeeping normalization,
raw counts for the individual genes were log10
transformed and then normalized by subtracting
the arithmetric mean of the log10 counts for a set
of 11 housekeeping genes.

WES pipeline
Somatic single-nucleotide variant
(SNV) calling

Whole-exome sequence reads were aligned to
reference human genome GRCh37 by using bwa
mem (43) followed by preprocessing steps includ-
ing duplicate marking, indel realignment, and
base recalibration with Picard (v1.114) and GATK
(Genome Analysis Toolkit, v2) (44) to generate
analysis-ready BAM files. MuTect was used to
generate somatic SNV calls using default param-
eters by comparing BAM files from tumor and
matchednormal samples (45).MuTect-calledSNVs
present in the Single Nucleotide Polymorphism
Database (dbSNP, v141) (46) but not in the Cat-
alogue of Somatic Mutations in Cancer (COSMIC,
v68) (47) were filtered out. The SNVs withmutant
reads of <4 in tumor samples were also elimi-
nated. TMB for a subject was defined as the sum
of somatic nonsynonymous SNVs that passed all
the filters described.

HLA class I typing

HLA-I major loci, A, B and C, were typed at four-
digit resolution by using OptiType (v1.0) (48).
For output typed alleles not found in the

NetMHC (v3.4) (49) input list, the corresponding
supertype was identified for each allele (50, 51)
and the supertype-representative allele was used
for NetMHC.

SNV annotation and neoantigen detection

Somatic mutations were annotated with VEP
(Variant Effect Predictor) (52), and nonsynon-
ymous mutations in protein coding regions were
counted for TMB. All possible 9-mer peptide
sequenceswithmutated amino acid inside for each
nonsynonymous mutation locus were extracted,

and binding affinities for patientHLA-A andHLA-
B alleles were computed by using NetMHC (v3.4).
The 9-mer peptide with the highest binding af-
finitywith theHLAalleles from a nonsynonymous
mutation locus was selected as the representative
antigen for themutation. Representative antigens
with HLA-A or -B binding affinity of <50 nM
were considered neoantigens.

Microsatellite instability (MSI) calling

MSI phenotypewas detected by applyingmSINGS
on WES data from tumor samples (22). The
stability of each mononucleotide microsatellite
locus was evaluated, and the proportion of un-
stable microsatellite loci was determined as the
MSI score. Samples with an MSI score of more
than 20% were classified as MSI-high (MSI-H)
positive. MSI was confirmed by PCR by using the
Promega MSI analysis system, version 1.2.

Mutation signature analysis

Mutational signature analysis was performed by
using the deconstructSigs package (v1.6.0) in R
that selects the combination of knownmutational
signatures that can account for the observedmuta-
tional profile in each sample (53). Exome regions
were defined by Agilent Sureselect V5 target
region. Only somaticmutations in exome regions
were considered, and trinucleotide counts were
normalized by the number of times each tri-
nucleotide context was observed in the exome
region. Mutational signatures as defined by
Alexandrov et al. (54) and named as signatures.
nature 2013 were the target signature set to be
screened. The relationships of these variousmuta-
tional signatures, including specific nucleotide
changes, DNA repair, smoking, neoantigen, TP53,
and APOBEC, with BOR and PFS were evaluated
in patient samples in the pan-tumor cohort.

Allele-specific copy number and
purity estimation

VarScan2 (55) output copy number ratio and SNP
were input to Sequenza (56) to provide a maxi-
mum a posteriori estimation for cellularity and
segmented allele-specific copy number for each
sample.

Clonality

For each sample,MuTect-called somatic SNVswith
variant allele frequency information, combined
with Sequenza output allele-specific copy number
and cellularity estimation, were input to PyClone
to estimate cellular prevalence for all somatic
SNVs. Mutational clonality was also inferred
through the clustering process of PyClone (57).

PD-L1 expression

PD-L1 expression levels were evaluated in pre-
treatment samples by IHC staining by using the
PD-L1 IHC 22C3 pharmDx kit (Agilent Technol-
ogies) in the pan-tumor and HNSCC cohorts (39);
expression levels were reported as the CPS, de-
fined as the number of PD-L1–positive cells (tumor
cells, lymphocytes, macrophages) divided by the
total number of tumor cells × 100. CPS was pre-
viously reported as a percentage and is now
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reported as an equivalent unitless measure. This
assay differs from the one used to determine PD-
L1 positivity (≥1%, modified proportion score or
interface pattern, QualTek IHC) for enrollment
eligibility as described above for the pan-tumor
and HNSCC clinical cohorts (58). For the mela-
noma cohort, PD-L1 levels were assessed by IHC
by using theMEL score, and positivitywas defined
as a score of ≥2 membranous PD-L1 staining in at
least 1% of tumor and tumor immune cells (59).

TCGA molecular data

Gene expression data for 9963 tumors and somatic
alterations data for 6384 tumors were obtained
through TCGA portal (16) as of September 2015.

Statistical methods
The retrospective, statistical analysis of clinical
samples in this study was prespecified and per-
formed in a blinded fashion, with genomic end
points generated without access to clinical out-
comes. Associations with BOR were tested by
using logistic regression, and associations with
PFS were examined by using Cox proportional
hazards models. All models (logistic regression
and Cox models) were adjusted for baseline
Eastern Cooperative Oncology Group (ECOG)
score performance. One-sided nominal P values
were reported. Associations between continuous
variables were assessed by using Spearman cor-
relation, and associations between continuous
variables and binary variables (e.g., BOR) were
further assessed by using AUROC and rank sum
P values. Statistical analyses and visualizations
were performedwithMatlabR2010 orwith R3.4.1.
TMB cutoffs for the pan-tumor and single-
indication clinical cohorts were the Youden
Index values derived in AUROC analysis. An
additional, exploratory, pan-tumor TMB threshold
was derived by using TMB and GEP data across
each cohort, similar to a previously described
method (20).
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