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Abstract

Scaling limits of random trees

by

Douglas Paul Rizzolo

Doctor of Philosophy in Mathematics

University of California, Berkeley

James W. Pitman, Chair

We investigate scaling limits of several types of random trees. The study of scaling limits of
random trees was initiated by Aldous in the early 1990’s. One of the primary goals of his
work was to study the uniform distribution on trees with n vertices as n grew to infinity,
as well as uniform distributions on other combinatorially motivated models of trees with n
vertices. We are motivated by studying combinatorial models of random trees with n leaves
as n goes to infinity. Conditioning on the number of leaves rather than the number of vertices
has significant consequences in terms of what techniques are applicable. We deal with these
issues by developing a general theory for scaling limits of Markov branching trees whose size
is given by their number of vertices with out-degree in a fixed set. This general theory is
then applied to obtain scaling limits of Galton-Watson trees conditioned on their number
of vertices with out-degree in a fixed set. We also show that many combinatorial models
of trees with n leaves can be realized as Galton-Watson trees (or probabilistic transforms
thereof) conditioned to have n leaves.
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Chapter 1

Introduction

1.1 Background

The study of scaling limits of random trees was initiated by Aldous in the early 1990’s
in his three paper Continuum Random Tree series [1, 2, 3]. One of the primary goals of
these papers was to study the uniform distribution on trees with n vertices as n grew to
infinity, as well as uniform distributions on other combinatorially motivated models of trees
with n vertices. The first paper, [1], introduced the notion of scaling limits of random trees
and considered scaling limits of uniformly random labeled unordered trees. The limiting
objects were called continuum random trees, which are random metric spaces that often have
additional structure, such as a measure. The results for uniformly random labeled unordered
trees were extended in [3] to obtain scaling limits for critical finite variance Galton-Watson
trees conditioned to have n vertices. Conditioned Galton-Watson trees are natural to consider
in this context because many combinatorial models of random trees with n vertices can be
recognized as conditioned Galton-Watson trees. One of the central ideas put forth in these
papers was that it is profitable to consider random trees as random metric spaces and to
examine their scaling limits in an appropriate topology, typically a variant of the Hausdorff
topology on compact subsets of a metric space.

Since the initial contributions of Aldous, the field of scaling limits of random trees has
been developed by many authors using a wide variety of techniques. Initially, and still,
substantial focus has been on extending the results and refining the techniques, for studying
Galton-Watson trees conditioned to have n vertices. For example, in [10] in 2003 Duquesne
extended the results of [3] to obtain scaling limits for conditioned Galton-Watson trees whose
offspring distribution was in the domain of attraction of a stable law with index α ∈ (1, 2].
At the same time Marckert and Mokkadem in [20] obtained a relatively elementary proof
of the scaling limit for conditioned Galton-Watson trees whose offspring distribution had
exponential moments. More recently, Le Gall combined the ideas of [20] with excursion
theory for Brownian motion in [19] to obtain a relatively simple proof of the scaling limit of
finite variance Galton-Watson trees. Many other authors have contributed to the study of
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Galton-Watson trees conditioned have n vertices and we do not attempt to give a complete
list.

At the same time as the theory for Galton-Watson trees conditioned to have n vertices
was being developed, another line of research was building connections between continuum
random trees and coalescent and fragmentation processes. The first connection to coales-
cent processes was made in [3], which showed that Kingman’s coalescent can be viewed as
a continuum random tree. Then, Aldous and Pitman showed in [4] that the standard ad-
ditive coalescent could be constructed from a continuum random tree. In [14] Haas and
Miermont showed that many continuum random trees of interest could be constructed as
the genealogical trees of self-similar fragmentation processes. In this context of genealogical
trees of coalescent and fragmentation processes, the trees under consideration have n leaves
rather than n vertices. The first general result for fragmentation trees with n leaves was
obtained in 2008 in [16] under a consistency assumption, which was recently removed in [15].
The models in this context are generally motivated by phylogenetic models, rather than the
combinatorial problems that motivated the study of Galton-Watson trees.

In this dissertation, we are motivated by models that blend these two areas. In particular,
we are motivated by natural combinatorial models of trees with n leaves. We will use tools
from both areas, and develop some new tools as well, to obtain scaling limits for these trees.

1.2 A motivating example

As a motivating example consider, as prelude to Chapter 2, the following problem. Suppose
you take the set [n] := {1, . . . , n}, and partition it into nonempty sets B1, . . . , Bk with k ≥ 2.
Then take each set Bi with more than two elements and partition it into at least two sets.
Continue this process until you have only singletons. If Bn is the collection of sets that
appeared in this process, then there is a natural rooted tree structure Tn on Bn. Namely, Bn

is the set of vertices, [n] is the root and if A,B ∈ Bn, then there is an edge connected A and
B if A ( B and there is no C ∈ Bn such that A ( C ( B (or the equivalent condition is
satisfied with A and B reversed). A tree Tn derived in this fashion is called a fragmentation
tree (with n leaves). See Figure 1.2 for an example of a fragmentation tree with 6 leaves.
Note that we only need to keep track of the rooted tree structure and the leaf labels, since
the sets that make up the internal nodes of the tree can be recovered from this information.

From both a combinatorial perspective and from the perspective of trees derived from
fragmentation processes, it is natural to ask: If Tn is selected uniformly at random from the
set of fragmentation trees with n leaves, what does Tn look like for large n? In particular,
can we derive a scaling limit for Tn in the sense discussed above? While Tn is a tree derived
from a fragmentation processes, indeed it even falls into the family of Gibbs fragmentation
trees [21], it lacks a consistency property that until recently has been essential for studying
the asymptotics of these types of trees [16].

In our efforts to ascertain the asymptotic properties of Tn, we will be led to develop
several different areas of the general theory of scaling limits of random trees. We start by



CHAPTER 1. INTRODUCTION 3

{3} {6}

{1} {4} {2} {3, 6} {5}

{1, 4} {2, 3, 5, 6}

{1, 2, 3, 4, 5, 6}

Figure 1.1: A fragmentation tree with 6 leaves

investigating the combinatorial properties of the set of fragmentation trees with n leaves
and the law of Tn. This leads to two primary insights. The first is that the (exponential)
generating function for the number of fragmentation trees with n leaves satisfies a nice
functional equation. If we let cn be the number fragmentation trees with n leaves and define

C(z) =
∑
n≥1

cn
zn

n!
,

then C(z) = z +G(C(z)) where G(z) =
∑

i≥2 z
n/n!. See Section 2.2 for details. Generating

function relations of this form have only appeared sparingly in the literature, but it allows
for the machinery of analytic combinatorics to be applied to the study of Tn. In Section 2.3
we use the tools from analytic combinatorics to prove several asymptotic properties of Tn,
such as the limiting distribution of the (appropriately normalized) height of a leaf chosen
uniformly at random from Tn.

The second insight is that Tn is closely related, by a probabilistic transformation, to a
particular Galton-Watson tree conditioned to have n leaves. Specifically, suppose that T̃ is
distributed like a Galton-Watson tree with offspring distribution ξ given by

ξ0 =
2 log(2)− 1

log(2)
, ξ1 = 0, and ξj =

(log(2))j−1

j!
for j ≥ 2,

and T̃n is distributed like T̃ conditioned to have n leaves. We then have that Tn is equal
in distribution to the tree obtained from T̃n by labeling its leaves from left to right by an
independent uniform permutation of [n] and forgetting the order structure of T̃n. This is a
special case of general result proved in Corollary 2. While scaling limits of Galton-Watson
trees conditioned to have n vertices are well studied, Galton-Watson trees conditioned to
have n leaves do not appear to have been studied before.

This connection to Galton-Watson trees allows for the translation of results about Galton-
Watson trees into results about fragmentation trees. Thus, to obtain scaling limits of Tn, we
may switch to studying Galton-Watson trees conditioned have n leaves. The advantage of this
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is that Galton-Watson trees are naturally rooted ordered trees (as opposed to fragmentation
trees which are labeled but unordered) and are nicely encoded by excursions of random walks.
Nonetheless, the classical work on scaling limits of conditioned Galton-Watson trees relies
heavily on the fact that the conditioning is on the number of vertices in the tree and not on
the number of leaves. We deal with this difficulty by utilizing recent advances in the study of
Markov branching trees [15]. The framework of Markov branching trees is inherently quite
technical, so we will delay discussing it in detail until Section 3.2. In Chapter 3, we develop
the theory of Markov branching trees to the point where we can, in Chapter 4, prove the
following theorem for Galton-Watson trees.

Theorem. Let T be a critical Galton-Watson tree with offspring distribution ξ such that
0 < σ2 = Var(ξ) <∞ and let A ⊆ {0, 1, 2, . . . } contain 0. Suppose that for sufficiently large
n the probability that T has exactly n vertices with out-degree in A is positive, and for such
n let TAn be T conditioned to have exactly n vertices with out-degree in A, considered as a
rooted unordered tree with edge lengths 1 and the uniform probability distribution µ∂ATAn on
its vertices with out-degree in A. Then

1√
n
TAn

d→ 2

σ
√
ξ(A)

TBr,

where the convergence is with respect to the rooted Gromov-Hausdorff-Prokhorov topology
and TBr is the Brownian continuum random tree.

Taking A = {0} in this theorem, we obtain scaling limits for Galton-Watson trees con-
ditioned on their number of leaves, which in turn gives the scaling limit of the uniform
fragmentation tree Tn that motivated this line of inquiry. When A = N we recover the clas-
sical case of scaling limits for Galton-Watson trees conditioned on their number of vertices
(in fact, in this case our proof specializes to the proof given in [15]). For A 6= N the result
is new. Note, however, that after a draft of the article [29] was posted on the arXiv, similar
results were obtained using different methods by Kortchemski in [18].

1.3 Organization

The organization of this thesis is as follows. In Chapter 2 we introduce a general combi-
natorial model for random trees with n leaves. Our model is the natural adaption of the
simply generated trees first introduced in [22], which are trees with n vertices, to the setting
of trees with n leaves. Special cases of our model have appeared previously in the literature,
for example in [12], typically under the name of uniform hierarchies. As such, no systematic
study of the combinatorial properties of this model exists in the literature. The main purpose
of Chapter 2 is to develop these properties and to prove relationships between this model
and other models previously studied in the literature. We also show how the framework of
analytic combinatorics, which has been a staple in the study of simply generated trees, can
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be applied to our models of trees with n leaves. Most of the results of this chapter appear
on the arXiv in a paper co-authored by Pitman and Rizzolo [28].

In Chapter 3 we introduce the notion of Markov branching trees and their scaling limits.
The limiting objects are certain random compact pointed metric measure spaces that are
commonly called continuum trees. We take some time to carefully formalize the notion of a
metric space of compact pointed metric measure spaces because there is some confusion in
the literature over how this is done. Our notion of Markov branching trees is a generalization
of the Markov branching trees in [15] and the main result of Chapter 3 is an extension of
the convergence results in [15] to our case.

Finally, in Chapter 4 we address scaling limits of conditioned Galton-Watson trees. In
order to fit Galton-Watson trees conditioned on their number of vertices with out-degree in
A ⊆ N (with 0 ∈ A) into the framework for scaling limits of Markov branching trees that
we develop, we also need to generalize the classical Otter-Dwass formula. To accomplish
this, we are led to a class of deterministic transformations of the set of rooted ordered trees,
interesting in their own right, that leave the family of Galton-Watson laws invariant. With
the help of these transformations we will show that the number of vertices of a Galton-Watson
tree with out-degree in A is distributed like the total number of vertices in a Galton-Watson
tree with a related offspring distribution. Most of the results of Chapters 3 and 4 appear in
a paper by Rizzolo [29] on the arXiv.
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Chapter 2

Random trees with a given number of
leaves

2.1 Schröder’s problems

The example we gave in the introduction of uniform fragmentation trees is really a prob-
abilistic variant of one of four related questions in enumerative combinatorics. In his now
classic paper [30], Schröder posed four combinatorial problems about bracketings of words
and sets: how many binary bracketings are there of a word of length n? how many bracket-
ings are there of a word of length n? how many binary bracketings are there of a set of size
n? and how many bracketings are there of a set of size n? These questions are well studied
and [31] gives a good account of the solutions. The problem of uniform fragmentation trees
is equivalent to the problem of, given a uniform pick from the bracketings of a set of size
n, what does it look like? The same question can be asked in the setting of the other three
problems as well. To answer these questions, we will use the well known correspondence of
bracketings described above to various types of trees, which we now describe.

The first problem: The correspondence is best illustrated by example. For n = 4 the
binary word bracketings are

(xx)(xx) x(x(xx)) ((xx)x)x x((xx)x) (x(xx))x.

A binary bracketing of a word with n letters corresponds to rooted ordered binary tree
with n leaves in a natural way. This is most easily described if we put brackets around
the entire word and each letter, which are left out of our example because they are visually
cumbersome. The tree corresponding to a bracketing is constructed recursively. A single
bracketed letter is a leaf. For a word with more than one letter, the bracketing of the whole
word is the root. Attached as subtrees to the root are, in order of appearance, the trees
corresponding to the maximal proper bracketed subwords. For n = 4, this is illustrated by
Figure 2.1.

It is worth noting that these trees are in bijection with rooted ordered trees with n
vertices, but this correspondence is not as natural as the one above.
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• • • •
• •

•

• •
• •
• •
•

• •
• •
• •
•

• •
• •
• •
•

• •
• •
• •
•

(xx)(xx) x(x(xx)) ((xx)x)x x((xx)x) (x(xx))x

Figure 2.1: Binary word bracketings and rooted ordered binary trees for n = 4

The second problem: General word bracketings are defined similarly to binary word
bracketings and correspond to rooted ordered trees with n leaves and no vertices with out
degree equal to one.

The third problem: The trees associated to binary set bracketings are constructed
similarly to those associated to binary word bracketings. They are rooted, unordered, leaf-
labeled binary trees. Figure 2.2 shows a sample of the correspondence for n = 4 (for n = 4
there are 15 bracketings, so showing the whole correspondence is unwieldy).

•1 •2 •3 •4

• •
•

•1 •3 •2 •4

• •
•

•1 •4 •2 •3

• •
•

{1,2}{3,4} {1,3}{2,4} {1,4}{2,3}

•3 •4

•2 •

•1 •
•

•3 •4

•1 •

•2 •
•

•1 •4

•3 •

•2 •
•

1{2{3,4}} 2{1{3,4}} 2{3{1,4}}

Figure 2.2: Binary set bracketings and rooted unordered leaf-labeled binary trees for n = 4

The fourth problem: General set bracketings are defined similarly to binary set brack-
etings and correspond to rooted unordered leaf-labeled trees with n leaves and no vertices
with out degree equal to one. In the literature, these trees are also called fragmentation trees
[16] and hierarchies [12]. The correspondence for n = 3 is in Figure 2.3.

Scaling limits of uniform picks from the trees appearing in the first and third problems
are well studied. A uniform pick from rooted ordered binary trees with n leaves has the same
distribution as a Galton-Watson tree with offspring distribution ξ0 = ξ2 = 1/2 conditioned
to have 2n − 1 vertices. Thus it falls within the scope of the results in [3]. Similarly, a



CHAPTER 2. RANDOM TREES WITH A GIVEN NUMBER OF LEAVES 8

•2 •3

•1 •

•

•1 •3

•2 •

•

•1 •2

•3 •

•

•1 •2 •3

•
1{2,3} 2{1,3} 3{1,2} 1,2,3

Figure 2.3: Set bracketings and rooted unordered leaf-labeled trees for n = 3

uniform pick from rooted unordered leaf-labeled binary tree’s with n leaves is a uniform
binary fragmentation tree with n leaves, and scaling limits of these are studied in [16]. In
this thesis we present a unified approach that is able to handle all four of these types of trees
simultaneously. In this chapter we develop the combinatorial theory necessary to work with
these types of trees and show how tools from analytic combinatorics can be used to begin
to obtain asymptotic results. We also draw a connection to certain Gibbs fragmentation
trees, which were originally studied in [21]. The scaling limits for these trees are obtained in
Theorem 23.

2.2 Combinatorial models and Galton-Watson trees

In this section we develop several combinatorial and probabilistic models of trees. There are
two primary types of trees we will be dealing with in the sequel: rooted ordered unlabeled
trees and rooted unordered leaf-labeled trees. Combinatorial relations between rooted or-
dered unlabeled trees and rooted unordered labeled trees are well known when the size of a
tree is its number of vertices (se e.g. [27, 2, 12, 8]). In this section we develop analogous rela-
tions when the size of a tree is its number of leaves. Particularly important for us is Corollary
2, which relates Schröder’s problems to particular Galton-Watson trees conditioned on their
number of leaves.

We briefly give an account of the formal constructions of the trees we will be considering.
Fix a countably infinite set S; we will consider the vertex sets of all graphs discussed to
be subsets of S. Let Tn denote the set of rooted unordered trees with n leaves (where the
root is considered a leaf if and only if it is the only vertex in the the tree) whose leaves are
labeled by {1, 2, . . . , n}. More precisely, we consider the set T Sn of all trees whose vertex
sets are contained in S that have a distinguished root and n leaves, whose leaves are labeled
by {1, 2, . . . , n} and set Tn = T Sn / ∼ where t ∼ s if there is a root and label preserving
isomorphism from t to s. This is the only time we shall go through this formal construction,
but all other sets of trees we discuss should be considered as formally constructed in an
analogous fashion. We also let T = ∪n≥1Tn. We let T (o)

n be the set of rooted ordered

unlabeled trees with n leaves and T (o) = ∪n≥1T (o)
n .

We will be proving analogous results for trees in T and T (o), so analogous that the only
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difference in the statements will be the superscript (o). To avoid repetition we will use T ∗
and T ∗n when we do not want to specify whether we are in T , T (o), Tn or T (o)

n . That is, in a
given result you may replace all the ∗’s by nothing or (o). For a tree t ∈ T ∗, we define |t| to
be the number of leaves in t and #t to be the number of vertices in t.

Probabilities on trees

Let ζ = (ζi)i≥0 be a sequence of real numbers. We may then define the weight of a tree
t ∈ T ∗ to be

wζ(t) =
∏
v∈t

ζdeg(v).

Here and throughout, deg(v) is the out degree of v, i.e., the number of children of v. We will
assume the following conditions:

Condition 1. (i) ζi ≥ 0 for all i, (ii) ζ0 > 0, and (iii) for each n we have
∑

t∈T ∗n
wζ(t) <∞.

Observe that part (iii) of this condition is necessary because we do not requite ζ1 = 0
and, consequently, it is possible for T ∗n to contain infinitely many trees with positive weight.
For each n such that wζ(t) > 0 for some t ∈ T ∗n we may define a probability measure on T ∗n
by

Qζ∗
n (t) =

wζ(t)∑
s∈T ∗n

wζ(s)
.

We wish to consider generating functions, but we want an ordinary generating function for
T (o) and an exponential generating function for T . In order to do this all at once, for z ∈ C,
we define yn(z) = zn/n! and y

(o)
n (z) = zn, both for n ≥ 0, and we use y∗n in the same fashion

as T ∗. The weighted generating function induced on T ∗ by ζ with the weights defined above
is

C∗ζ (z) =
∑
t∈T ∗

wζ(t)y
∗
|t|(z).

Let Gζ,∗(z) =
∑∞

i=1 ζiy
∗
i (z)

Theorem 1. C∗ζ satisfies the functional equation

C∗ζ (z) = ζ0z +Gζ,∗(C
∗
ζ (z)), (2.1)

in the sense of formal power series.

This is very straightforward when ∗ = (0), but in the case when ∗ is nothing, it is
somewhat technical to deal with the labeling rigorously. Thus we include the proof for the
case when ∗ is nothing.
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Proof. Suppose T ∈ T and let v be a vertex of T . Define Tv to be the subtree of T whose
vertices are v together with the vertices above v in T such that v is distinguished as the root
and leaves of Tv are labeled as they were in T . Order the vertices of height 1 in T by least
label; that this let {v1, . . . , vk} be the vertices of height 1 indexed such that the smallest leaf
label in Tvi is smaller than the smallest leaf label in Tvi when i < j. With this ordering, we
will denote the root-subtree Tvi by Ti. Also, we denote by BTi the set of labels of leaves in
Ti. Observe that a tree is uniquely determined by its root-subtrees.

More precisely, we define an ordered k-forest of rooted leaf-labeled trees to be an ordered
k-tuple (t1, . . . , tk) of rooted leaf-labeled trees where (Bt1 , . . . , Btk) is an ordered partition of
[|t1|+ · · ·+ |tk|]. Let Fk be the set of all labeled k-forests of rooted leaf-labeled trees and let
Fok be the subset of Fk of k-forests such that the least element of Bti is less than the least
element of Btj when i < j. The map Fk(T ) = (T1, . . . , Tk) is a bijection between trees in T
with root degree k and Fok . Furthermore, letting Sk be the symmetric group on k elements
we have a bijection Jk : Sk ×Fok → Fk given by

Jk(σ; (T1, . . . , Tk)) = (Tσ(1), . . . , Tσ(k)).

Suppose that T is a rooted unordered tree with n leaves whose leaves are labeled by B ⊆ N.
The leaves of T are then naturally ordered by the size of their labels. A reduced tree of T
is the tree T̃ ∈ Tn for which there is a rooted graph isomorphism Λ : T → T̃ that preserves
the order of the leaves. It is immediate that reduced trees exist, are unique, and there is
a bijection between trees labeled by B and their reduced trees. Let Pnn1,...,nk

be the set of
ordered partitions of n into blocks of sizes (n1, . . . , nk). Then, for each x ∈ T k we have, a
bijection

Hx : {(t1, . . . , tk) ∈ Fk : (t̃1, . . . , t̃k) = x} → P |x||x1|,...,|xk|,

given by
Hx(t1, . . . , tk) = (Bt1 , . . . , Btk).
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With this notation we can, in excruciating detail, make the following computation

Cζ(z) = ζ0z +
∞∑
r=1

∑
{T∈T |deg(root(T ))=r}

wζ(T )
z|T |

|T |!

= ζ0z +
∞∑
r=1

ζr

 ∑
{T∈T |deg(root(T ))=r}

r∏
i=1

wζ(Ti)
z|T |

|T |!


= ζ0z +

∞∑
r=1

ζr

 ∑
(t1,...,tr)∈For

r∏
i=1

wζ(ti)
z|t1|+···+|tr|

(|t1|+ · · ·+ |tr|)!


= ζ0z +

∞∑
r=1

ζr
r!

 ∑
(σ;(t1,...,tr))∈Sr×For

r∏
i=1

wζ(tσ(i))
z|tσ(1)|+···+|tσ(r)|(

|tσ(1)|+ · · ·+ |tσ(r)|
)
!


= ζ0z +

∞∑
r=1

ζr
r!

 ∑
(t1,...,tr)∈Fr

r∏
i=1

wζ(ti)
z|t1|+···+|tr|

(|t1|+ · · ·+ |tr|)!


= ζ0z +

∞∑
r=1

ζr
r!

 ∑
x=(x1,...,xr)∈T r

∑
{(t1,...,tk)∈Fk : (t̃1,...,t̃k)=x}

r∏
i=1

wζ(ti)
z|t1|+···+|tr|

(|t1|+ · · ·+ |tr|)!


= ζ0z +

∞∑
r=1

ζr
r!

 ∑
(x1,...,xr)∈T r

( ∑r
i=1 |xi|

|x1|, . . . , |xr|

) r∏
i=1

wζ(xi)
z|x1|+···+|xr|

(|x1|+ · · ·+ |xr|)!


= ζ0z +

∞∑
r=1

ζr
r!
Cζ(z)r = z +Gζ(Cζ(z)).

(2.2)

Note, implicit in our computation is the following relation:

C
(r)
ζ (z) =

∑
{T∈T |deg(root(T ))=r}

wζ(T )
z|T |

|T |!
=
ζr
r!
Cζ(z)r, (2.3)

where C
(r)
ζ (z) is the weighted generating function for trees with root-degree r.

Our interest is in the measures Qζ
n and, in particular, we would like to find a Galton-

Watson tree T such that Qζ
n is the law of T conditioned to have n leaves. Recall that if (ξi)i≥0

is a distribution on Z+ with mean less than or equal to one and ξ0 > 0, a Galton-Watson
tree with offspring distribution ξ is a random element T of T (o) with law

P(T = t) =
∏
v∈t

ξdeg(v).
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T is called critical if ξ has mean equal to one. This leads to the notion of tilting, which
is similar to exponential tilting for Galton-Watson trees conditioned on their number of
vertices.

Proposition 1. Suppose that ζ satisfies Condition 1 and suppose that a, b > 0. Define ζ̃ by

ζ̃0 = aζ0 and ζ̃i = bi−1ζi for i ≥ 1.

Then Qζ∗
n = Qζ̃∗

n for all n ≥ 1.

Proof. This follows immediately from the computation that, for t ∈ T ∗n , wζ̃(t) = anbn−1wζ(t).

The above result is the equivalent of exponential tilting for trees conditioned on their
number of vertices. A consequence of this is that we can find a Galton-Watson tree T such
that Q

ζ(o)
n is the law of T conditioned to have n leaves if we can find a, b > 0 such that

aζ0 +
Gζ,(o)(b)

b
= 1.

Furthermore, T will be critical if Gζ,(o)
′(b) = 1. An immediate consequence of this is the

following corollary.

Corollary 1. Let ξu = (ξui )∞i=0 be the probability distribution defined by

ξu0 = 2−
√

2 ≈ 0.5858, ξu1 = 0, and ξui =

(
2−
√

2

2

)i−1

≈ (0.2929)i−1 for i ≥ 2.

Note that ξu has mean 1 and variance 4
√

2. Let T be a Galton-Watson tree with offspring
distribution ξu. Then the law of T conditioned to have n leaves is uniform on the subset of
T (o)
n of trees with no vertices of out degree one.

Proof. The proof follows immediately from the discussion above by noting that, if ζi = 1 for
i 6= 1 and ζ1 = 0 then then Q

ζ(o)
n is uniform on T (o)

n . Explicitly, the distribution ξu is found
by solving G′ζ,(o)(b) = 1, setting a = (b−Gζ,(o)(b))/b, and tilting as in Proposition 1.

Given the similarities in the constructions of Qζ
n and Q

ζ(o)
n , there should be a natural way

to go back and forth between them.

Proposition 2. Suppose that ζ satisfies Condition 1 for ∗ = (o). Define ζ̂ by ζ̂n = n!ζn.

Suppose that T is distributed like Q
ζ(o)
n and let U be a uniformly random ordering of {1, . . . , n}

independent of T . Define T̂ ∈ Tn to be the tree obtained from T by labeling the leaves of T
by U and forgetting the ordering of T . Then T̂ is distributed like Qζ̂

n.
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Results of this type connecting plane and labeled trees where the size of a tree is given
by the number of its vertices can be traced back to [17, 24, 25]. See [27] for a more complete
history. Our proposition is analogous to an implicit discussion in [2, Section 2.1] as well
as Theorem 7.1 in [27], which considered the case where the size of a tree is given by the
number of its vertices. To prove this proposition, we will need some notation. For a rooted
ordered tree x let shape(x) be the rooted unordered tree obtained by forgetting the order
on x. Similarly, for t ∈ T , shape(t) is defined to be the rooted unlabeled tree obtained
from forgetting the labeling of t. For t ∈ T , x ∈ T (o), and a rooted unordered tree y define
#labelst(x) to be the number of ways to label the leaves of x such that when you forget the
order on x you get t and #ordered(y) to be the number of ordered trees whose shape is y.
Observe that #labelst(x) depends only on shape(x), so we will abuse our notation and write
#labelst(shape(x)).

Proof. Fix t ∈ Tn. Observe that

P(T̂ = t) =
∑
x∈T (o)

n

P(T = x)P(T̂ = t|T = x).

Furthermore, observe that

P(T̂ = t|T = x) =
#labelst(shape(x))

n!
,

Observe that #labelst(shape(x)) = 0 unless shape(t) = shape(x). Furthermore, P(T = x)
depends only on shape(x), and is given by

P(T = x) =

∏
v∈shape(x) ζdeg(v)∑
s∈T (o)

n
wζ(s)

.

Consequently we have

P(T̂ = t) =
#ordered(shape(t))

∏
v∈shape(t) ζdeg(v)

#labelst(shape(t))
n!∑

s∈T (o)
n
wζ(s)

. (2.4)

But
#ordered(shape(t)) #labelst(shape(t)) =

∏
v∈shape(t)

(deg(v)!). (2.5)

This is because both sides count the number of distinct leaf-labeled ordered trees that equal
t upon forgetting their order. On the left hand side, you pick a ordered tree and the label
it and, on the right hand side, you label an unordered tree with the appropriate shape and
then order the children of each vertex.

Therefore we have

P(T̂ = t) =
wζ̂(t)

n!
∑

s∈T (o)
n
wζ(s)

.
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The last step is to observe that

n!
∑
s∈T (o)

n

wζ(s) =
∑
s∈Tn

wζ̂(s).

This is because for s ∈ T (o)
n , there are n! rooted ordered leaf-labeled trees whose ordered

tree is s upon forgetting the labeling, so the left hand side is the weighted number of rooted
ordered leaf-labeled trees with n leaves. Furthermore, we have already noted above that
for s ∈ Tn, there are

∏
v∈s(deg(v)!) rooted ordered leaf-labeled trees whose labeled tree is

s upon forgetting the ordering. Thus the right hand side is also the weighted number of
rooted ordered leaf-labeled trees with n leaves. Note that this step also shows that ζ̂ satisfies
Condition 1 for ∗ being nothing.

Combining with tilting, we have the following corollary.

Corollary 2. Let ζ satisfy Condition 1 with ∗ being nothing and ζ0 = 1. Suppose there exist
r > 0 and s > 0 satisfying s = r + Gξ(s) and G′ξ(s) ≤ 1. Define ξ = (ξi)

∞
i=0 by ξ0 = rs−1

and ξj = sj−1ζj/j! for j ≥ 1. Note that ξ is a probability distribution on Z+. Let T be a

Galton-Watson tree with offspring distribution ξ and construct T̂ by labeling the leaves of
T uniformly at random with {1, . . . , |T |}, independently of T and forgetting the order of T .
Then P(T̂ ∈ ·||T | = n) = Qζ

n(·) for all n ≥ 1 such that Qζ
n is defined. Furthermore, for n

such that Qζ
n is not defined, P (|T | = n) = 0.

Schröder’s problems

In this section we record which of the trees above correspond to the trees that appear in
Schröder’s problems. The proofs of the claims here are simple applications of the results in
Section 2.2.

The first problem: The trees here are uniform binary rooted ordered unlabeled trees.
We can obtain these by taking ∗ = (o) and ζ0 = ζ2 = 1 and ζi = 0 for i /∈ {0, 2}. Letting ξ
be the probability distribution given by ξ0 = ξ2 = 1/2 and T be a Galton-Watson tree with
offspring distribution ξ, we have that T conditioned to have n leaves is a uniform binary
rooted ordered unlabeled tree with n leaves. Also note that T is critical and the variance of
ξ is equal to one.

The second problem: These are uniform rooted ordered trees with no vertices of out
degree one. These were dealt with in Corollary 1

The third problem: These are uniform binary unordered leaf-labeled trees. We can
obtain these by taking ∗ to be nothing and ζ0 = ζ2 = 1 and ζi = 0 for i /∈ {0, 2}. In this case,
if T is the Galton-Watson tree defined in the first problem and T̂ is defined as in Corollary
2, then T̂ conditioned to have n leaves is a uniform binary unordered leaf-labeled tree with
n leaves.
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The fourth problem: These are uniform rooted unordered leaf-labeled trees with no
vertices with out-degree 1. We can obtain these by taking ∗ to be nothing and ζ1 = 0 and
ζi = 1 for i 6= 1. We define a probability distribution ξ by

ξ0 =
2 log(2)− 1

log(2)
, ξ1 = 0, and ξj =

(log(2))j−1

j!
for j ≥ 2.

Note that ξ has mean 1 and variance Var(ξ) = 2 log 2. Letting T be a Galton-Watson tree
with offspring distribution ξ and defining T̂ is as in Corollary 2, we have that T̂ conditioned
to have n leaves is a uniform unordered leaf-labeled tree with no vertices of out degree one
and n leaves.

Gibbs trees

Above we saw a natural way to put probability measures on Tn that are concentrated on
fragmentation trees (the trees appearing in Schröder’s fourth problem); namely, take ζ1 =
0. Another natural type of probability to put on fragmentation trees is a Gibbs model,
which we now describe. First, we need to set up the natural framework in which to view
fragmentation trees. The idea is that, while in Schröder’s fourth problem we have an arbitrary
set bracketing, for fragmentations we recursively partition a set. This dynamic view of
constructing a set bracketing makes Gibbs models quite natural.

Definition 1 ([21]). A fragmentation of the finite set B is a collection tB of non-empty
subsets of B such that

1. B ∈ tB

2. If #B ≥ 2 then there is a partition of B into k ≥ 2 parts B1, . . . , Bk, called the children
of B, such that

tB = {B} ∪ tB1 ∪ · · · ∪ tBk ,

where tBi is a fragmentation of Bi.

We can naturally consider tB as a tree whose vertices are the elements of tB and whose
edges are defined by the parent-child relationship. Considering the properties of such a tree
leads naturally to the following definition of a fragmentation tree on B.

Definition 2. A fragmentation tree T on n leaves is a rooted tree such that

1. The root of T does not have degree 1,

2. T has no non-root vertices of degree 2,

3. The leaves of T are labeled by a set B with #B = n. We denote the label of a leaf v
by `(v).
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The idea of the Gibbs model is that, at each step in the fragmentation the next step is
distributed according to multiplicative weights depending on the block sizes. We first take
a sequence {αn}, αn ≥ 0 of weights and a Gibbs weight, which is a function g : Z+ → R+

with g(0) = 0 and g(1) > 0. Then, for n ≥ 2, define a normalization constant

Z(n) =
∑

{B1,...,Bk}

αk

k∏
j=1

g(#Bj),

where the sum is over unordered partitions of [n] into at least two elements. Whenever
we write a formula like this, we assume that each block Bi is nonempty. Now, assuming
Z(n) > 0, define the probability of a partition of [n] by

P g,α
n (B1, . . . , Bk) =

αk
∏k

j=1 g(#Bj)

Z(n)
.

The probability of a fragmentation X of [n] is then defined as

P g,α
n (X) =

∏
B∈X

P g,α
n (B1, . . . , Bk),

where B1, . . . , Bk are the children of B. Using the correspondence between fragmentations
and fragmentation trees, for Tn ∈ Tn, we define P g,α

n (Tn) to be P g,α
n (X) where X is the

fragmentation determined by Tn. The probabilistic properties of Gibbs models are studied
in [21].

Theorem 2. Suppose that ζ satisfies Condition 1 with ∗ being nothing and ζ1 = 0. Define
αk = ζk and g(k) = k![zk]Cζ(z). Then Z(n) = g(n) and Qζ

n = P g,α
n . Furthermore, given

a nonnegative weight sequence α and a Gibbs weight g such that Z(n) = g(n), there is a ζ
satisfying Condition 1 with ∗ being nothing and ζ1 = 0 such that Qζ

n = P g,α
n .

Proof. Arguing similarly as in (2.1), we see that for n ≥ 2

Z(n) =
∑

{B1,...,Bk}

αk

k∏
j=1

g(#Bj) =
∞∑
k=2

αk
k!

∑
(n1,...,nk)∈Nk
n1+···+nk=n

(
n

n1, . . . , nk

) k∏
j=1

g(nj) = n![zn]Cζ(z).

Consequently we have Z(n) = g(n). Using this, one proves inductively that P g,α
n (Tn) =

Qζ
n(Tn). Furthermore, observe that the condition Z(n) = g(n) implies that there is a weight

sequence (ζi)i≥0 from which the fragmentation model can be derived in the above manner;
just take ζ0 = g(1), ζ1 = 0, and ζk = αk for k ≥ 2.

When we have Z(n) = g(n), the model is called a combinatorial Gibbs model. This is
justified by the fact that, in this case, Z(n) (and thus g(n)) is the weighted number of trees
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with n leaves. For example, if we let g(n) be the number of fragmentation trees with n
leaves, and αk = 1 for k ≥ 2, we then see that

Z(n) =
∑

{B1,...,Bk}

k∏
j=1

g(#Bj).

The right hand side of this equation is just the sum over partitions at the root of a fragmen-
tation tree with n leavse of the number of fragmentation trees with that partition at the root,
which is precisely the number of fragmentation trees with n leaves. That is, Z(n) = g(n).

Note that combinatorial Gibbs models are a generalization of the hierarchies studied in
[12] and, as previously observed, a special case of the Gibbs models introduced in [21].

2.3 Explicit computations using analytic

combinatorics

In this section we demonstrate that the models of random trees we have been discussing
are amenable to the methods of analytic combinatorics. In particular, we will use tools
from analytic combinatorics to obtain asymptotic results about several natural statistics of
these trees. This analytic approach is based on considering the asymptotics of generating
functions. The primary source for asymptotics in general is [12], which develops the theory
with extensive examples.

Our main goal in this section is to develop the general framework of additive functionals
for leaf-labeled trees whose size is counted by their number of leaves. We use this to compute
a number of asymptotic results, such as the height of a uniformly randomly chosen leaf, the
number of leaves or vertices at a fixed level, and the degree of the root. These computations
are meant to be illustrative and by no means exhaust the power of analytic combinatorics
framework. Indeed, it seems that most of the techniques used to study simple varieties of
trees (see [12] for a summary of the extensive work in this area) have close analogs that will
provide results about the trees we are considering here.

Analytic background

We summarize some of the fundamental results here, but make no attempt to prove them.
The approach is based on the asymptotics of several universal functions. Recall that if f(z)
is either a formal power series, [zn]f(z) denotes the coefficient of zn. Similarly, if f : C→ C
is analytic at 0 then [zn]f(z) denotes the coefficient of zn in the power series expansion of f
at 0.

Proposition 3. Let f(z) = (1 − z)1/2, g(z) = (1 − z)−1/2, and h(z) = (1 − z)−1. Then
[zn]f(z) ∼ −1/2

√
πn3, [zn]g(z) ∼ 1/

√
nπ, and [zn]h(z) = 1.



CHAPTER 2. RANDOM TREES WITH A GIVEN NUMBER OF LEAVES 18

To use these classical results we need a special type of analyticity called ∆-analyticity,
which we now define.

Definition 3 (Definition VI.I p. 389 [12]). Given two numbers φ and R with R > 1 and
0 < φ < π/2, the open domain ∆(φ,R) is defined as

∆(φ,R) = {z | |z| < R, z 6= 1, | arg(z − 1)| > φ}.

For a complex number ζ a domain D is a ∆-domain at ζ if there exist φ and R such that
D = ζ∆(φ,R). A function is ∆-analytic if it is analytic on a ∆-domain.

Let

S =
{

(1− z)−αλ(z)β | α, β ∈ C
}

where λ(z) ≡ 1

z
log

1

1− z
.

Theorem 3 (Theorem VI.4 p. 393 [12]). Let f(z) be a function analytic at 0 with a singu-
larity at ζ, such that f(z) can be continued to a domain of the form ζ∆0, for a ∆-domain
∆0. Assume that there exist two function σ and τ , where σ is a (finite) linear combination
of elements of S and τ ∈ S, so that

f(z) = σ(z/ζ) +O(τ(z/ζ)) as z → ζ in ζ∆0.

Then the coefficients fn = [zn]f(z) of f(z) satisfy the asymptotic estimate

fn = ζ−nσn +O(ζ−nτ ?n),

where τ ?n = na−1(log n)b, if τ(z) = (1− z)−aλ(z)b.

Occasionally we will also need to deal with derivatives and the next theorem shows us
how this is done.

Theorem 4 (Theorem VI.8 p. 419 [12]). Let f(z) be ∆-analytic with singular expansion
near its singularity of the simple form

f(z) =
J∑
j=0

cj(1− z)aj +O((1− z)A),

with aj ≥ 0 for all j. Then, for each integer r > 0, the derivative f (r)(z) is ∆-analytic. The
expansion of the derivative at its singularity is obtained through term by term differentiation:

dr

dzr
f(z) = (−1)r

J∑
j=0

cj
Γ(aj + 1)

Γ(aj + 1− r)
(1− z)aj−r +O((1− z)A−r).

The generating functions we will work with fall into the smooth implicit-function schema,
which provides a way to derive coefficient asymptotics from functional equations.
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Definition 4 (Definition VII.4 p. 467 [12]). Let y(z) be a function analytic at 0, y(z) =∑
n≥0 ynz

n, with y0 = 0 and yn ≥ 0. The function is said to belong to the smooth implicit-
function schema if there exists a bivariate function G(z, w) such that

y(z) = G(z, y(z)),

where G(z, w) satisfies the following conditions.

(i) G(z, w) =
∑

m,n≥0 gm,nz
mwn is analytic in a domain |z| < R and |w| < S, for some

R, S > 0.

(ii) The coefficients of G satisfy gm,n ≥ 0, g0,0 = 0, g0,1 6= 1, and gm,n > 0 for some m and
for some n ≥ 2.

(iii) There exist two numbers r and s such that 0 < r < R and 0 < s < S, satisfying the
system of equations

G(r, s) = s, Gw(r, s) = 1, with r < R, s < S,

which is called the characteristic system.

Definition 5 (Definition IV.5 p. 266 [12]). Consider the formal power series f(z) =
∑
fnz

n.
The series f is said to admit span d if for some r

{fn}∞n=0 ⊆ r + dZ+.

The largest span is the period of f . If f has period 1, then f is aperiodic.

With this definition, we get the following theorem. It is worth noting that this result
appears in several places in the literature. We give the version that appears as Theorem
VII.3 on page 468 of [12]. In that source it is footnoted that many statements occurring
previously in the literature contained errors, so caution is advised.

Theorem 5 (Theorem VII.3 p. 468 [12]). Let y(z) belong to the smooth implicit-function
schema defined by G(z, w), with (r, s) the positive solution of the characteristic system. Then
y(z) converges at z = r, where it has a square root singularity,

y(z) =
z→r

s− γ
√

1− z/r +O(1− z/r), γ ≡

√
2rGz(r, s)

Gww(r, s)
,

the expansion being valid in a ∆-domain. If, in addition, y(z) is aperiodic, then r is the
unique dominant singularity of y and the coefficients satisfy

[zn]y(z) =
n→∞

γ

2
√
πn3

r−n
(
1 +O(n−1)

)
.
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We will also need the following theorem.

Theorem 6 ((A special case of) Theorem IX.16 p. 709 [12]). Let H(z) be ∆-continuable
and of the form H(z) = σ − h(1 − z/ρ)1/2 + O(1 − z/ρ) and let kn = xnn

1/2 for xn in any
compact subinterval of (0,∞). Then

[zn]H(z)kn ∼ σknρ−n
hkn

2σ
√
πn3

exp

(
−h

2k2
n

4σ2n

)
.

Restricting the generality

So far we have been considering a very general situation. However, in what follows we will be
doing computations that are tedious to do in full generality. Consequently, we will restrict
the generality. In particular, we will let ζ = (ζi)i≥0 be a sequence of non-negative weights
such that ζ0 = 1, ζ1 = 0, gcd{k : ζk 6= 0} = 1, and

Gζ(z) =
∞∑
j=2

ζj
zj

j!

is entire. These conditions can be relaxed, but doing so makes the analysis more difficult.

Proposition 4. With ζ as above, Cζ (defined in Section 2.2) belongs to the smooth implicit-
function schema with G(z, w) = z + Gζ(w). Furthermore, in the case where ζ corresponds
to Schröder’s third problem (r, s) = (1/2, 1) and in the case of the fourth problem, we have
(r, s) = (2 log(2)− 1, log(2)) . Additionally

[zn]Cζ(z) ∼ γ

2
√
πn3

r−n, γ =

√
2r

G′′ζ (s)
.

Proof. All that really needs to be checked is that the characteristic system has a positive
solution. For G(z, w) = z+Gζ(w), the characteristic system is s = r+Gζ(s) and G′ζ(s) = 1.
Using that Gζ is entire, G′ζ(0) = 0 and G′ζ(+∞) = +∞, and G′ζ is increasing on R+, the
intermediate value theorem yields s > 0. An easy computation yields that Gζ(s) < sG′ζ(s) =
s, so r > 0 as well.

Root Degrees

As our first application, we consider the distribution of root degress. For n such that Tn is
nonempty, let Πn be the partition of [n] given by the labels of vertices of Tn of height 1.
The main result of this section is that the number of blocks in Πn converges in distribution
without normalization.

Theorem 7. Let Tn have law Qζ
n and let X be distributed like P (X = k) = ζks

k−1/(k− 1)!.

Then #Πn
d→ X.
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Proof. To see that the definition of the distribution of X is valid, note that s is the unique
positive number such that ζ ′(s) = 1 and consequently

∞∑
k=2

ζk
sk−1

(k − 1)!
= G′ζ(s) = 1.

Recall that, in equation (2.3), we derived the equation

C
(k)
ζ (z) = ζk

Cζ(z)k

k!
.

Consequently for n ≥ 2,

P (#Πn = k) = ζk1(k ∈ [2, n])
[zn]Cζ(z)k

k![zn]Cζ(z)
.

By Theorem 5 and Proposition 4 we have that

Cζ(z) =
z→r

s− γ
√

1− z/r +O(1− z/r), γ =

√
2r

G′′ζ (s)
. (2.6)

Therefore
Cζ(z)k = sk − sk−1kγ

√
1− z/r +O(1− z/r).

Consequently we have that

P (#Πn = k) = ζk1(k ∈ [0, n])
[zn]Cζ(z)k

k![zn]Cζ(z)
∼ ζk

sk−1

(k − 1)!
.

The result for the uniform cases follows from the fact that s = log(2) in this case.

The height of a random leaf

Let Hn be the height of a randomly chosen leaf from a tree in Tn. Specifically, to get Hn, we
choose a tree Tn from Tn according to Pn and then choose a leaf uniformly at random from
Tn. Our main result in this section is the following theorem.

Theorem 8.
λ√
n
Hn

d→ Rayleigh(1),

for λ =
√
G′′ζ (s)r. In Schröder’s third problem λ = 1/

√
2, and in the fourth problem λ =√

4 log(2)− 2.
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Our approach will be that of additive functionals, whose theory we now develop. We
parallel the development of these functions in [12], p. 457. Their work was done for simple
varieties of trees whose size was determined by the number of vertices. Here we work with
trees whose size is determined by the number of leaves.

For a rooted unordered tree t whose leaves are labeled by B ⊆ N, let t̃ ∈ T be the
tree that results from relabeling the leaves of t by the unique increasing bijection from B to
{1, 2, . . . , |B|} (where |B| is the cardinality of B). Suppose we have functions ξ, θ, ψ : T → R
satisfying the relation

ξ(t) = θ(t) +

deg(t)∑
j=1

ψ(t̃j),

where deg(t) is the root degree of t and the {tj} are the root subtrees of t ordered in increasing
order of the leaf with the smallest label. Letting • denote the tree on one leaf, we note that
deg(•) = 0, so in particular ξ(•) = θ(•). Define the exponential generating functions

Ξ(z) =
∑
t∈T

ξ(t)w(t)
z|t|

|t|!
, Θ(z) =

∑
t∈T

θ(t)w(t)
z|t|

|t|!
, and Ψ(z) =

∑
t∈T

ψ(t)w(t)
z|t|

|t|!
.

Our results make use of the following lemma, which is a relation of formal power series.

Lemma 1. We have the relation

Ξ(z) = Θ(z) +G′ζ(Cζ(z))Ψ(z). (2.7)

In the purely recursive case where ξ ≡ ψ we have

Ξ(z) =
Θ(z)

1−G′ζ(Cζ(z))
= C ′ζ(z)Θ(z). (2.8)

Proof. We clearly have

Ξ(z) = Θ(z) + Ψ̃(z), where Ψ̃(z) =
∑
t∈T

w(t)
z|t|

|t|!

deg(t)∑
j=1

ψ(t̃j)

 .
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Decomposing by root degree and using that ξ(•) = θ(•), we have

Ψ̃(z) =
∑
r≥1

∑
deg(t)=r

ζr

r∏
j=1

w(t̃j)
z|t1|+···+|tr|

(|t1|+ · · ·+ |tr|)!
(ψ(t̃1) + · · ·+ ψ(t̃r))

=
∑
r≥1

ζr
r!

∑
(t1,...,tr)∈T r

r∏
j=1

w(tj)

(
|t1|+ · · ·+ |tr|
|t1|, . . . , |tr|

)
z|t1|+···+|tr|

(|t1|+ · · ·+ |tr|)!
(ψ(t1) + · · ·+ ψ(tr))


=
∑
r≥1

ζr
r!

∑
(t1,...,tr)∈T r

r∏
j=1

w(tj)
z|t1|+···+|tr|

|t1|! · · · |tr|!
(ψ(t1) + · · ·+ ψ(tr))


=
∑
r≥1

ζr
(r − 1)!

Cζ(z)r−1Ψ(z)

= G′ζ(Cζ(z))Ψ(z).

This yields (2.7). In the recursive case, we have Ξ(z) = Θ(z) + G′ζ(Cζ(z))Ξ(z). Solving
for Ξ(z) gives the first equality in (2.8). To get the second, we differentiate (2.1) to get
C ′ζ(z) = 1 +G′ζ(Cζ(z))C ′ζ(z). Solving for C ′ζ(z) gives C ′ζ(z) = 1/(1−G′ζ(Cζ(z))), from which
the second equality in (2.8) is immediate.

Two immediate applications are to counting the weighted numbers of leaves and vertices
of a given height.

Theorem 9. The expected number of leaves at height k converges to G′′ζ (s)rk and the expected
number of nodes at height k converges to sG′′ζ (s)k + 1.

Proof. Let ξk(t) be the number of leaves of height k in t, so that ξk(t)w(t) is the weighted
number of leaves of height k. Define Ξk =

∑
t ξk(t)w(t)z|t|/|t|!. For k ≥ 1 we apply the

lemma with ξ = ξk, θ = 0 and ψ = ξk−1 to obtain

Ξk(z) = G′ζ(Cζ(z))Ξk−1(z),

which easily yields

Ξk(z) =
[
G′ζ(Cζ(z))

]k
Ξ0(z) = z

[
G′ζ(Cζ(z))

]k
.

Letting Λk(z) be the generating function for the weighted number of vertices of height k we
similarly get

Λk(z) =
[
G′ζ(Cζ(z))

]k
Λ0(z) = Cζ(z)

[
G′ζ(Cζ(z))

]k
.

Using these forms, we are able to compute asymptotics. Expanding G′ζ about s, we have
that G′ζ(z) = 1 + G′′ζ (s)(z − s) + O((z − s)2). Plugging in the asymptotic expansion of Cζ
we get from Proposition 4 and Theorem 5 and doing some algebra, we have

G′ζ(Cζ(z)) = 1−G′′ζ (s)γ
√

1− z/r +O(1− z/r). (2.9)
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Hence, using that (1− z)k = 1− kz +O(z2), we see that

[G′ζ(Cζ(z))]k = 1−G′′ζ (s)kγ
√

1− z/r +O(1− z/r).

Thus, using Theorem 3, we have

[zn]Ξk(z) = [zn]z
[
G′ζ(Cζ(z))

]k ∼ G′′ζ (s)kγ

2rn−1
√
πn3

,

and, similarly with a bit more algebra,

[zn]Λk(z) = [zn]Cζ(z)
[
G′ζ(Cζ(z))

]k ∼ γ(skG′′ζ (s) + 1)

2rn
√
πn3

.

Using the result on p. 474 of [12], that [zn]Cζ(z) ∼ γ/2rn
√
πn3, we find that

ETn(ξk) =
n![zn]Ξk(z)

n![zn]Cζ(z)
∼ G′′ζ (s)rk.

Letting ζk : T → Z be the number of nodes of height k in t, we have that

ETn(ζk) =
n![zn]Λk(z)

n![zn]Cζ(z)
∼ sG′′ζ (s)k + 1.

The proof of Theorem 8 is similar, but we make use of Theorem 6 for the asymptotics.

Proof of Theorem 8. Let {kn} be a sequence of integers varying such that ckn/n
1/2 → x ∈

(0,∞) for some c > 0. By Theorem 6 and equation (2.9) we see that

[zn][G′ζ(Cζ(z))]kn ∼ r−n
G′′ζ (s)γ

2
√
πn3

kn exp

(
−
G′′ζ (s)

2γ2k2
n

4n

)
. (2.10)

Therefore

[zn]Ξkn(z) ∼ r−(n−1)
G′′ζ (s)γ

2
√
πn3

kn−1 exp

(
−
G′′ζ (s)

2γ2k2
n−1

4(n− 1)

)
.

This yields

ETn(ξkn) ∼ G′′ζ (s)rkn−1 exp

(
−
G′′ζ (s)

2γ2k2
n−1

4(n− 1)

)
= G′′ζ (s)rkn−1 exp

(
−
G′′ζ (s)rk

2
n−1

2(n− 1)

)
.
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Note that P (Hn = k) = ETn(ξk)/n. Observe that {kn} satisfies the hypotheses of the above
theorem. Consequently, we have that

√
n

c
Pn

(
c√
n
Hn =

c√
n
kn

)
=

√
n

c
P (Hn = kn)

=
1

c
√
n
ETn(ξkn)

∼ 1

c2
G′′ζ (s)r

ckn−1√
n

exp

(
−
G′′ζ (s)r

2c2

c2k2
n−1

(n− 1)

)
→

G′′ζ (s)r

c2
x exp

(
−
G′′ζ (s)r

2c2
x2

)
.

The proof is finished by an application of a standard corollary of Scheffé’s theorem (see
Theorem 3.3 in [7] for an idea of the proof, just adapted for a distribution on (0,∞)) and

choosing c =
√
G′′ζ (s)r.

In addition to proving convergence in distribution we can prove convergence of the first
moment.

Theorem 10. ETnHn ∼
√

π
2rG′′ζ (s)

n1/2.

The approach is to first compute the expected sum of the heights of the leaves of a tree.

Theorem 11. Let φ(t) be the sum of the heights of the leaves of t. Then ETnφ ∼
√

π
2rG′′ζ (s)

n3/2.

Proof. Observe that

φ(t) = |t|+
deg(T )∑
j=1

φ(t̃j).

Let Φ(z) be the exponential generating function associated with φ. Applying Lemma 1, we
have

Φ(z) = z(C ′ζ(z))2.

By Theorem 4 we have

C ′ζ(z) =
γ

2r
(1− z/r)−1/2 +O(1).

Consequently,

(C ′ζ(z))2 =
γ2

4r2
(1− z/r)−1 + ((1− z/r)−1/2).

Therefore

ETnφ =
n![zn−1](C ′ζ(z))2

n![zn]Cζ(z)
∼

γ2r−n+1

4r2
γ

2
√
πn3

r−n
=
γ
√
π

2r
n3/2 =

√
π

2rG′′ζ (s)
n3/2.
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Proof of Theorem 10. Simply observe that ETnHn = 1
n
ETnφ.

The Number of Nodes and Node Degrees

We can also derive distributions for the out-degree of a random node. First we need the the
asymptotic number of nodes.

Theorem 12. The expected number of nodes in Tn is asymptotic to sn/r and the expected
number of internal nodes is asymptotic to (s− r)n/r.

Proof. Letting ξ(t) be the number of nodes in t we apply the recursive case of Lemma 1 with
θ ≡ 1 to get that Ξ(z) = C ′ζ(z)Cζ(z). From Theorem 4 we find that

C ′ζ(z) =
γ

2r

(
1− z

r

)−1/2

+O(1),

and consequently for any k ≥ 1 (we will need the k 6= 1 case later)

C ′ζ(z)Cζ(z)k =
γsk

2r

(
1− z

r

)−1/2

+O(1).

It now follows from Proposition 3 that

[zn]C ′ζ(z)Cζ(z)k ∼ γsk

2rn+1
√
πn

.

From this, we find that the expected number of nodes in a tree is

ETn(ξ) =
n![zn]Ξ(z)

n![zn]Cζ(z)
∼ s

r
n.

Since the number of leaves is always n, the expected number of internal nodes, ν(t) is then

ETn(ν) = ETn(ξ)− n ∼ s− r
r

n.

The above result is of interest in statistical classification theory (see e.g., [32, 9]), where
the number of internal nodes is the number of classification stages.

We now turn to the out-degree of a random node. The first question is: What do we
mean by a random node? An interpretation we would like to answer is, suppose that we
choose a tree Tn according to Pn, and then choose a node uniformly from the nodes of Tn,
what is the probability that the out-degree is k? Unfortunately, current methods do not
allow us to answer this question. Rather, we consider the following set up. For t ∈ T , let
Nt be the set of nodes of t and define

Nn =
∐
t∈Tn

Nt.
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We define the probability PNn on Nn by

PNn (A, t) =
w(t)

n![zn]Ξ(z)
.

That is, the probability of a node A in t is the weighted number of occurrences of A over
the weighted number of nodes in trees of size n. We will find the out-degree distribution for
nodes chosen from Nn according to PNn .

Theorem 13. Let Dn be the out-degree of a random node chosen from Nn according to PNn .

Then PNn (Dn = k|Dn > 0)→ ζks
k

Gζ(s)k!
.

Proof. Let ξk(t) be the number of nodes of t of out-degree k. Observe that

ξk(t) = 1(deg(t) = k) +

deg(t)∑
j=1

ξk(t̃i).

Hence we are in the recursive case of Lemma 1. Since Θ(z) = C
[k]
ζ (z), we have, for k ≥ 2,

Ξk(z) = C ′ζ(z)Θ(z) =
ζk
k!
C ′ζ(z)Cζ(z)k

and Ξ0(z) = zC ′ζ(z). Consequently for k ≥ 2

[zn]Ξk(z) ∼ ζkγs
k

2rn+1k!
√
nπ

,

and
[zn]Ξ0(z) ∼ γ

2rn
√
πn

.

Therefore for k ≥ 2,

PNn (Dn = k) = 1(k ≤ n)
n![zn]Ξk(z)

n![zn]Ξ(z)
∼ ζks

k−1

k!
,

and

PNn (Dn = 0) =
n![zn]Ξ0(z)

n![zn]Ξ(z)
∼ r

s
.

Notice that
r

s
+
∞∑
k=2

ζks
k−1

k!
=
r

s
+
Gζ(s)

s
= 1,

thus giving us convergence in distribution of the out-degree. Since internal nodes are exactly
the nodes with out-degree greater than 0, we have that the probability that a randomly
chosen internal node has degree k ≥ 2 is

PNn (Dn = k|Dn > 0) =
PNn (Dn = k)

PNn (Dn > 0)
→

ζks
k−1

k!

1− r
s

=
ζks

k

(s− r)k!
=

ζks
k

Gζ(s)k!
.
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Chapter 3

Markov Branching Trees

3.1 Introduction

In this chapter, we introduce Markov branching trees and their scaling limits. We generalize
the notion of Markov branching trees in [15] to allow for the construction of random trees
with a given number of nodes whose out-degree are in a given set A ⊆ Z+ such that 0 ∈ A.
We then introduce the limiting objects, which are random compact metric measure spaces
that are constructed as the genealogical trees of certain fragmentation trees. Finally, in
Theorem 18 we prove scaling limits for Markov branching trees based on the fluctuations of
the size of the subtrees attached to the root as the number of vertices with out-degree in A
goes to infinity. Theorem 18 will be one of the cornerstones of our analysis of scaling limits
of conditioned Galton-Watson trees in Chapter 4 and thus also, by the results of Chapter 2,
for all of the types of trees considered in this thesis.

3.2 Markov branching trees

In this section we extend the notion of Markov branching trees developed in [15], where
Markov branching trees were constructed separately in the cases A = {0} and A = Z+. Here
we give a construction for general A such that 0 ∈ A. Let T u be the set of rooted unordered
trees considered up to root preserving isomorphism. If t is in T (o) or T u and v ∈ t is a vertex,
the out-degree of v is the number of vertices in t that are both adjacent to v and further
from the root than v with respect to the graph metric. The out-degree of v will simply be
denoted by deg(v), since we will only ever discuss out-degrees. Fix a set A ⊆ Z+ such that
0 ∈ A and for t in T (o) or T u define #At to be the number of vertices in t whose out-degree
is in A. Furthermore, we define T (o)

A,n and T uA,n by

T (o)
A,n = {t ∈ T (o) : #At = n} and T uA,n = {t ∈ T u : #At = n}.

Let P̄n be the set of partitions of n and, for λ ∈ P̄n, let p(λ) be the number of nonzero
blocks in λ and mj(λ) the number of blocks in λ equal to j. For convenience, we take



CHAPTER 3. MARKOV BRANCHING TREES 29

P̄1 = {∅, (1)} and define p(∅) = −1. Define P̄A1 = P̄1 and for n ≥ 2, define P̄An by

P̄An = {λ ∈ P̄n : p(λ) /∈ A} ∪ {λ ∈ P̄n−1 : p(λ) ∈ A}.

Let (nk) be an increasing sequence of integers. A sequence (qnk)k≥1, such that qnk is a
probability measure on P̄Ank , is called compatible if for each k, qnk is concentrated on partitions
λ = (λ1, . . . , λp) such that qλi is defined for all i. Our goal is to construct a sequence of
laws (Pq

nk
)∞k=1 such that Pq

nk
is a law on T uA,nk and such that the subtrees above a vertex are

conditionally independent given the degree of that vertex. Consequently, we suppose further
that q1 is defined, qnk((nk)) < 1 if 1 /∈ A and q2((1)) = 1 if 1 ∈ A.

Remark 1. Note that these assumptions put nontrivial restrictions on the compatible se-
quences we consider. For example, if 1 /∈ A and 2 ∈ A then q2 cannot exist because
PA2 = {(2)} and we are supposing that q2((2)) < 1. In terms of the trees we are consid-
ering this is to be expected because if a tree has root degree 2 then it has at least 2 leaves and,
as a result, cannot possibly have exactly 2 vertices with out-degree in A.

Define Pq
1 to be the law of the path with a root attached to a leaf by a path with G

edges where G = 0 if 1 ∈ A and has the geometric distribution P(G = j) = q1(∅)(1− q1(∅))j,
j ≥ 0 if 1 /∈ A. For k ≥ 2, P q

nk
is defined as follows: Choose Λ ∈ P̄Ank \ {(nk)} according to

qnk(·|PAnk \{(nk)}) and independently choose G′ with G′ = 1 if 1 ∈ A and G′ has a geometric
distribution

P(G′ = j) = (1− qnk((nk)))qnk((nk))j−1, j ≥ 1,

if 1 /∈ A. Let (T1, T2, . . . , Tp(Λ)) be a vector of trees, independent of G′, such that the Ti are
independent and Ti has distribution Pq

Λi
and let T be the tree that results from attaching

the roots of the Ti to the same new vertex and then if G′ = 1 call this vertex the root, and
otherwise attach that vertex to a new root by a path with G′ − 1 edges. Pq

nk
is defined to

be the law of T . An easy induction shows that Pq
nk

is concentrated on the set of unordered
rooted trees with exactly nk vertices whose out-degree is in A.

To connect with [15], if (nk) = (1, 2, 3, . . . ), the case A = {0} corresponds to the Pq
n

defined in [15] and the case A = Z+ corresponds to the Qq
n defined in [15]. Other choices

of A interpolate between these two extremes. A sequence (Tnk)k≥1 such that for each k, Tnk
has law Pq

nk
for some choice of A and q (independent of n) is called a Markov branching

family. For ease of notation, we will generally drop the subscript k and it will be implicit
that we are only considering n for which the quantities discussed are defined.

3.3 Trees as metric measure spaces

The trees we have been talking about can naturally be considered as metric spaces with the
graph metric. That is, the distance between two vertices is the number of edges on the path
connecting them. Let (t, d) be a tree equipped with the graph metric. For a > 0, we define
at to be the metric space (t, ad), i.e. the metric is scaled by a. This is equivalent to saying
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the edges have length a rather than length 1 in the definition of the graph metric. More,
generally we can attach a positive length to each edge in t and use these in the definition of
the graph metric. Moreover, the trees we are dealing with are rooted so we consider (t, d)
as a pointed metric space with the root as the point. Moreover, we are concerned with
the vertices whose out-degree is in A, so we attach a measure µ∂At, which is the uniform
probability measure on ∂At = {v ∈ t : deg(v) ∈ A}. If we have a random tree T , this gives
rise to a random pointed metric measure space (T, d, root, µ∂AT ). To make this last concept
rigorous, we need to put a topology on pointed metric measure spaces. This is hard to do in
general, but note that the pointed metric measure spaces that come from the trees we are
discussing are compact.

We would like to consider the set of equivalence classes of compact pointed metric measure
spaces (equivalence here being up to point and measure preserving isometry). Unfortunately,
we cannot do this directly if we are working in Zermelo-Fraenkel set theory with the axiom
of choice (which we are). To see the problem, note that if C is a set, {C} can be thought of
as a one point metric space and we have immediately run into set-of-all-sets type problems.
What we can do, however, is note that there is a set M such that every compact metric
space is isometric to exactly one element of M.

Theorem 14. There is a setM such that every compact metric space is isometric to exactly
one element of M.

Proof. It is clearly sufficient to note that every compact metric space embeds isometrically
into `∞(N). This is the content of Fréchet’s embedding theorem, whose proof is simple enough
that we recall it here for completeness. Let X be a compact metric space. This implies X
is separable, so we can let {xi}i≥1 be a countable dense subset of X. Define φ : X → `∞(N)
by φ(x) = {d(x, xi)− d(xi, x1)}i≥1. It is trivial to verify that φ is isometric.

Consequently, there exists a set (which we denote by Mw) of compact pointed metric
measure spaces such that every compact pointed metric measure space is equivalent to exactly
one element ofMw. We metrizeMw with the pointed Gromov-Hausdorff-Prokhorov metric
(see [15]). Fix (X, d, ρ, µ), (X ′, d′, ρ, µ′) ∈Mw and define

dGHP(X,X ′) = inf
(M,δ)

inf
φ:X→M
φ′:X′→M

[δ(φ(ρ), φ′(ρ′)) ∨ δH(φ(X), φ′(X ′)) ∨ δP (φ∗µ, φ
′
∗µ
′)] ,

where the first infimum is over metric spaces (M, δ), the second infimum if over isometric
embeddings φ and φ′ of X and X ′ into M , δH is the Hausdorff distance on compact subsets
of M , and δP is the Prokhorov distance between the pushforward φ∗µ of µ by φ and the
pushforward φ′∗µ

′ of µ′ by φ′. Again, the definition of this metric has potential to run into
set-theoretic difficulties, but they are not terribly difficult to resolve in a similar fashion to
how we resolved the problems with Mw.

Proposition 5 (Proposition 1 in [15]). The space (Mw, dGHP) is a complete separable metric
space.



CHAPTER 3. MARKOV BRANCHING TREES 31

An R-tree is a complete metric space (T, d) with the following properties:

• For v, w ∈ T , there exists a unique isometry φv,w : [0, d(v, w)]→ T with φv,w(0) = v to
φv,w(d(v, w)) = w.

• For every continuous injective function c : [0, 1]→ T such that c(0) = v and c(1) = w,
we have c([0, 1]) = φv,w([0, d(v, w)]).

If (T, d) is a compact R-tree, every choice of root ρ ∈ T and probability measure µ on T
yields an element (T, d, ρ, µ) of Mw. With this choice of root also comes a height function
ht(v) = d(v, ρ). The leaves of T can then be defined as a point v ∈ T such that v is not in
[[ρ, w[[:= φρ,w([0, ht(w))) for any w ∈ T . The set of leaves is denoted L(T ).

Definition 6. A continuum tree is an R-tree (T, d, ρ, µ) with a choice of root and probability
measure such that µ is non-atomic, µ(L(T )) = 1, and for every non-leaf vertex w, µ{v ∈ T :
[[ρ, v]] ∩ [[ρ, w]] = [[ρ, w]]} > 0.

The last condition says that there is a positive mass of leaves above every non-leaf vertex.
We will usually just refer to a continuum tree T , leaving the metric, root, and measure as
implicit. A continuum random tree (CRT) is an (Mw, dGHP ) valued random variable that
is almost surely a continuum tree. The continuum random trees we will be interested in are
those associated with self-similar fragmentation processes.

Self-similar fragmentations

For any set B, let PB be the set of countable partitions of B, i.e. countable collections
of disjoint sets whose union is B. For n ∈ N := N ∪ {∞}, let Pn := P[n]. Suppose that
π = (π1, π2, . . . ) ∈ Pn (here and throughout we index the blocks of π in increasing order of
their least elements), and B ⊆ N. Define the restriction of π to B, denoted by π|B or π ∩B,
to be the partition of [n]∩B whose elements are the blocks πi ∩B, i ≥ 1. We topologize Pn
by the metric

d(π, σ) :=
1

inf{i : π ∩ [i] 6= σ ∩ [i]}
.

It is worth noting that this is, in fact, an ultra-metric, i.e. for π1, π2, π3 ∈ Pn, we have

d(π1, π2) ≤ max(d(π1, π3), d(π2, π3)).

Note that (Pn, d) is compact for all n.

Definition 7 (Definition 3.1 in [6]). Consider two blocks B ⊆ B′ ⊆ N. Let π be a partition
of B with #π = n non-empty blocks (n = ∞ is allowed), and π(·) = {π(i), i = 1, · · · , n} be
a sequence in PB′. For every integer i, we consider the partition of the i-th block πi of π
induced by the i-th term π(i) of the sequence π(·), that is,

π
(i)
|πi =

(
π

(i)
j ∩ πi j ∈ N

)
.
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As i varies in [n], the collection
{
π

(i)
j ∩ πi : i, j ∈ N

}
forms a partition of B, which we denote

by Frag(π, π(·)) and call the fragmentation of π by π(·).

Note that Frag is Lipschitz continuous in the first variable, and continuous in an appro-
priate sense in the second. Also, if π is an exchangeable partition and π(·) is a sequence of
independent exchangeable partitions (also independent of π), then π and Frag(π, π(·)) are
jointly exchangeable. See chapter 3 of [6] for both of these facts. We will use the Frag
function to define the transition kernels of our fragmentation processes.

Define

S↓ =

{
(s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}
,

and

S1 =

{
(s1, s2, . . . ) ∈ [0, 1]N |

∞∑
i=1

si ≤ 1

}
,

and endow both with the topology they inherit as subsets of [0, 1]N with the product topology.
Observe that S↓ and S1 are compact. For a partition π ∈ P∞, we define the asymptotic
frequency |πi| of the i’th block by

|πi| = lim
n→∞

πi ∩ [n]

n
,

provided this limit exists. If all of the blocks of π have asymptotic frequencies, we define
|π| ∈ S1 by |π| = (|π1|, |π2|, . . . ).

Definition 8 (Definition 3.3 in [6]). Let Π(t) be an exchangeable, càdlàg P∞-valued process
such that Π(0) = 1N := (N, 0, . . . ) such that

1. Π(t) almost surely possesses asymptotic frequencies |Π(t)| simultaneously for all t ≥ 0
and

2. if we denote by Bi(t) the block of Π(t) which contains i, then the process t 7→ |Bi(t)|
has right-continuous paths.

We call Π a self-similar fragmentation process with index α ∈ R if and only if, for every
t, t′ ≥ 0, the conditional distribution of Π(t + t′) given Ft is that of the law of Frag(π, π(·)),
where π = Π(t) and π(·) =

(
π(i), i ∈ N

)
is a family of independent random partitions such

that for i ∈ N, π(i) has the same distribution as Π(t′|πi|α).

One important tool for studying self-similar fragmentations is the equivalent of the Lévy-
Itô decomposition of Lévy processes. Suppose, for the moment, that Π is a self-similar
fragmentation process with α = 0 (these are also called homogeneous fragmentations). In
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this case, it turns out that Π is a Feller process as is Π|[n] for every n. Thus it is natural to
try to identify the jump rates of these processes. For π ∈ Pn \ {1[n]}, let

qπ = lim
t→0+

1

t
P(Π|[n](t) = π).

By exchangeability, it is obvious that qπ = qσ(π) for every permutation σ of [n]. Less obvious,
but still true, is that the law of Π is determined by the jump rates {qπ : π ∈ Pn\{1[n]}, n ∈ N}.
Furthermore, there is a nice description of these rates. For π ∈ Pn and n′ ∈ {n, n+1, . . . ,∞},
define

Pn′,π = {π′ ∈ Pn′ : π′|[n] = π}.

Proposition 6 (Propositions 3.2 and 3.3 in [6]). Suppose we have a family {qπ : π ∈ Pn \
{1[n]}, n ∈ N}. This family is the family of jump rates of some homogeneous fragmentation
Π if and only if there is an exchangeable measure µ on P∞ satisfying

1. µ({1N}) = 0 and,

2. µ({π ∈ P∞ : π|[n] 6= 1[n]}) <∞ for every n ≥ 2,

such that µ(P∞,π) = qπ. Furthermore, this correspondence is bijective, and we call µ the
splitting rate of Π.

For n ∈ N, let ε(n) be the partiton of N with exactly two blocks, {n} and N \ {n} and
define

ε =
∞∑
n=1

δε(n) .

For a measure ν on S↓ such that ν({1}) = 0 and
∫
S↓(1− s1)ν(ds) <∞, define a measure ρν

on P∞ by

ρν(·) =

∫
s∈S↓

ρs(·)ν(ds).

Theorem 15 (Theorem 3.1 in [6]). Let µ be the splitting rate of a homogeneous fragmenta-
tion. Then there exists a unique c ≥ 0 and a unique measure ν on S↓ with ν({1}) = 0 and∫
S↓(1− s1)ν(ds) <∞, such that

µ = cε+ ρν .

The interpretation of this is that c is the erosion coefficient, i.e. the rate at which mass
is lost continously, and ν is the dislocation measure, i.e. it measures the rate of macroscopic
fragmentation. From this theorem, it is clear that every homogeneous fragmentation process
is characterized by the pair (c, ν). Given a homogeneous fragmentation Π0(t) with parameters
(0, ν), and α < 0, we can construct an α-self-similar fragmentation with parameters (α, 0, ν)
by a time change. Let πi(t) be the block of Π0 that contains i at time t and define

Ti(t) = inf

{
u ≥ 0 :

∫ u

0

|πi(r)|−αdr > t

}
.
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For t ≥ 0, let Π(t) be the partition such that i, j are in the same block of Π(t) if and only
if they are in the same block of Π0(Ti(t)). Then (Π(t), t ≥ 0) is a self-similar fragmentation
with characteristics (α, 0, ν). See [5] for details.

We will need trees associated to fragmentations with characteristics (α, 0, ν), where α < 0
and ν(

∑
i si < 1) = 0. What these assumptions tell us is that there is no continuous

loss of mass due to erosion (c = 0), mass is not lost during macroscopic fragmentations
(ν(
∑

i si < 1) = 0), and the fragmentation eventually becomes the partition into singletons
(Proposition 2 in [5], the rate of convergence is give in Proposition 14 in [13]). Henceforth,
we let Π be such a self-similar fragmentation.

The tree associated with a fragmentation processes Π is a continuum random tree that
keeps track of when blocks split apart and the sizes of the resulting blocks. For a continuum
tree (T, µ) and t ≥ 0, let T1(t), T2(t), . . . be the tree components of {v ∈ T : ht(v) > t},
ranked in decreasing order of µ-mass. We call (T, µ) self-similar with index α < 0 if for every
t ≥ 0, conditionally on (µ(Ti(t)), i ≥ 1), (Ti(t), i ≥ 1) has the same law as (µ(Ti(t))

−αT (i), i ≥
1) where the T (i)’s are independent copies of T .

The following summarizes the parts of Theorem 1 and Lemma 5 in [14] that we will need.

Theorem 16. Let Π be a (α, 0, ν)-self-similar fragmentation with α < 0 and ν as above
and let F := |Π|↓ be its ranked sequence of asymptotic frequencies. There exists an α-self-
similar CRT (T−α,ν , µ−α,ν) such that, writing F ′(t) for the decreasing sequence of masses of
the connected components of {v ∈ T−α,ν : ht(v) > t}, the process (F ′(t), t ≥ 0) has the same
law as F . Furthermore, TF is a.s. compact.

The choice of where to put negative signs in the notation in the above theorem is to
conform with the notation of [15].

Definition 9. The Brownian CRT is the −1/2-self-similar random tree with dislocation
measure ν2 given by∫

S↓
ν2(ds)f(s) =

∫ 1

1/2

√
2

πs3
1(1− s1)3

ds1f(s1, 1− s1, 0, 0, . . . ).

It is denoted by T1/2,ν2 or TBr depending on whether we want to emphasize the connection
to fragmentation processes or Brownian motion.

Since we will always have c = 0, we will drop it and for a measure ν satisfying the above
conditions and γ > 0, we refer to (−γ, ν) as fragmentation pair, which is associated to a
(−γ, ν)-self-similar fragmentation.

3.4 Convergence of Markov branching trees

We first recall some of the main results of [15]. Let A ⊆ Z+ contain 0 and let (qn) be a
compatible sequence of probability measures satisfying the conditions of Section 3.2. Define
q̄n to be the push forward of qn onto S↓ by λ 7→ λ/

∑
i λi.
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Theorem 17 (Theorems 1 and 2 in [15]). Suppose that A = {0} or A = Z+. Further suppose
that there is a fragmentation pair (−γ, ν) with 0 < γ < 1 and a function ` : (0,∞)→ (0,∞),
slowly varying at ∞ (or γ = 1 and `(n)→ 0) such that, in the sense of weak convergence of
finite measures on S↓, we have

nγ`(n)(1− s1)q̄n(ds)→ (1− s1)ν(ds).

Let Tn have law Pq
n and view Tn as a random element of Mw with the graph distance and

the uniform probability measure µ∂ATn on ∂ATn = {v ∈ Tn : deg v ∈ A}. Then we have the
convergence in distribution

1

nγ`(n)
Tn → Tγ,ν ,

with respect to the rooted Gromov-Hausdorff-Prokhorov topology.

The case where A = {0} this is a special case of Theorem 1 in [15] and the case A = Z+

is Theorem 2 in the same paper. The case A = Z+ is proved by reduction to the A = {0}
case. We extend this to the case of general A containing 0.

Theorem 18. The conclusions of Theorem 17 are valid if the only assumption on A ⊆ Z+

is that 0 ∈ A.

As argued at the start of Section 4 in [15], we may assume that q1(∅) = 1. This is because
each leaf is connected to the rest of the tree by a stalk of vertices with out-degree one and
geometric length. Setting q1(∅) = 1 collapses these to be length one. Since these stalks are
independent from one another, with probability approaching one, this costs log(n) in the
Gromov-Hausdorff-Prokhorov metric. This is negligible since we are scaling by (nγ`(n))−1.
Let t be a rooted unordered tree with n vertices whose out-degree is in A and let t◦ be the
tree obtained from t by attaching a leaf to every non-leaf vertex of t whose out-degree is in
A.

Define the inclusion ι : P̄n−1 → P̄n by ι(λ) = (λ, 1). We now define a sequence q◦n of
probability measures on P̄n. Define q◦1(∅) = 1 and for n ≥ 2,

q◦n(λ) =


qn(λ) if λ ∈ P̄An \ ι(P̄An ∩ P̄n−1),

qn(λ) + qn(λ′) if λ ∈ P̄An and λ = ι(λ′) for some λ′ ∈ P̄An ∩ P̄n−1,

qn(λ′) if λ /∈ P̄An and λ = ι(λ′) for some λ′ ∈ P̄An ∩ P̄n−1,

0 otherwise.

Lemma 2. If Tn has distribution Pq
n then T ◦n has distribution Pq◦

n .

Proof. We prove this by induction. The result is clear for n = 1. For n ≥ 2, we condition on
the root partition. Indeed, since in both T ◦n and a tree with law Pq◦

n the subtrees attached
to the root are independent given the root partition, by induction (and a little care about
when the partition at the root is (n)), we need only check that the laws of the partitions at
the root agree. This, however, is immediate from the construction of q◦n.
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Therefore Theorem 18 is an immediate consequence of the following lemma.

Lemma 3. If
nγ`(n)(1− s1)q̄n(ds)→ (1− s1)ν(ds),

then
nγ`(n)(1− s1)q̄◦n(ds)→ (1− s1)ν(ds).

Proof. Let f : S↓ → R be Lipschitz continuous (with respect to the uniform norm) with
both the uniform norm and Lipschitz constant bounded by K. Observe that for λ ∈ P̄n,∣∣∣∣f ( ι(λ)

n+ 1

)
− f

(
λ

n

)∣∣∣∣ ≤ K

p(λ)∑
i=1

λi
n(n+ 1)

+
K

n+ 1
=

2K

n+ 1
.

Letting g(s) = (1− s1)f(s), we have

|q̄◦n(g)− q̄n(g)| ≤
∑

λ∈P̄An ∩P̄n−1

qn(λ)

∣∣∣∣(1− λ1

n

)
f

(
ι(λ)

n

)
−
(

1− λ1

n− 1

)
f

(
λ

n− 1

)∣∣∣∣
≤

∑
λ∈P̄An ∩P̄n−1

qn(λ)

(
Kλ1

n(n− 1)
+

2K

n

)
≤ 3K

n
.

Multiplying by nγ`(n), we see that this upper bound goes to 0 and the result follows.

Proof of Theorem 18. Note that, if a > 0, then dGHP(at, at◦) ≤ a. Consequently

dGHP

(
1

nγ`(n)
Tn,

1

nγ`(n)
T ◦n

)
≤ 1

nγ`(n)
→ 0.

Since (nγ`(n))−1T ◦n → Tγ,ν by Lemma 3 and Theorem 17, (nγ`(n))−1Tn → Tγ,ν as well.
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Chapter 4

Scaling limits of Galton-Watson trees

4.1 Introduction

As a consequence of Theorem 18 we obtain a new theorem for scaling limits of Galton-Watson
trees. In the literature on scaling limits of random trees, much interest has been focused on
limits of Galton-Watson trees conditioned on their total number of vertices. Furthermore,
the techniques employed generally rely heavily on the fact that the conditioning is on the
number of leaves. Using the framework of Markov branching trees, we are able to modify
the conditioning to condition on the number of vertices with out-degree in a given set. In
particular, we prove the following theorem.

Theorem 19. Let T be a critical Galton-Watson tree with offspring distribution ξ such that
0 < σ2 = Var(ξ) <∞ and let A ⊆ {0, 1, 2, . . . } contain 0. Suppose that for sufficiently large
n the probability that T has exactly n vertices with out-degree in A is positive, and for such
n let TAn be T conditioned to have exactly n vertices with out-degree in A, considered as a
rooted unordered tree with edge lengths 1 and the uniform probability distribution µ∂ATAn on
its vertices with out-degree in A. Then

1√
n
TAn

d→ 2

σ
√
ξ(A)

T1/2,ν2 ,

where the convergence is with respect to the rooted Gromov-Hausdorff-Prokhorov topology
and T1/2,ν2 is the Brownian continuum random tree.

In the case A = Z+ = {0, 1, 2, . . . } we recover the classical result about the scaling
limit of a Galton-Watson tree conditioned on its number of vertices first obtained in [3].
For other choices of A the result appears to be new. We note, however, that subsequent
to the appearance of [29] on the arXiv, Kortchemski obtained similar results by different
techniques in [18]. The condition that for sufficiently large n the probability that T has
exactly n vertices with out-degree in A is positive is purely technical and could be dispensed
with at the cost of chasing periodicity considerations through our computations. In addition
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to generalizing the results of [15], the key to proving this theorem is a generalization of the
classical Otter-Dwass formula, which we prove in Section 4.2. The Otter-Dwass formula (see
[26]) has been an essential tool in several proofs that the Brownian continuum random tree
is the scaling limit of Galton-Watson trees conditioned on their number of vertices, including
the original proof in [3] as well as newer proofs in [19] and [15]. While we follow the approach
in [15], our generalization of Otter-Dwass formula should allow for proofs along the lines of
[3] and [19] as well. Furthermore, with our results here, it should be straightforward to prove
the analogous theorem in the infinite variance case using the approach in [15].

We begin by proving our generalization of the Otter-Dwass formula and we then use this
to analyze the asymptotics of the partition at the root of a Galton-Watson tree. Bringing
this together with the results of Chapter 3, we give a proof of Theorem 19. We finish
by incorporating the results of Chapter 2 to prove Theorem 23, which gives the precise
statements for the scaling limits appearing in Schröder’s problems.

4.2 Galton-Watson trees

We first recall the definition of a Galton-Watson tree. Let ξ = (ξi)i≥0 be a probability
distribution with mean less than or equal to 1, and assume that ξ1 < 1. A Galton-Watson
tree with offspring distribution ξ is a random element T of T (o) with law

GWξ(t) = P(T = t) =
∏
v∈t

ξdeg(v).

The fact that ξ has mean less than or equal to 1 implies that the right hand side defines an
honest probability distribution on T (o).

Otter-Dwass type formulae

In this section we develop a transformation of rooted ordered trees that takes Galton-Watson
trees to Galton-Watson trees. This transformation is motivated by the observation that the
number of leaves in a Galton-Watson tree is distributed like the progeny of a Galton-Watson
tree with a related offspring distribution. This simple observation was first made in [23]. Let
ξ = (ξi)i≥0 be a probability distribution with mean less than or equal to 1, and assume that
ξ1 < 1. Let T be a Galton-Watson tree with offspring distribution ξ and let

C(z) =
∞∑
i=1

P(#{0}T = i)zi

be the probability generating function of the number of leaves of T . Furthermore, let

φ(z) =
∞∑
i=0

ξi+1z
i.
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Decomposing by the root degree, we see that C(z) satisfies the functional equation

C(z) = ξ0z + C(z)φ(C(z)).

Note this is just a slightly modified form of the functional equation obtained in Theorem 1.
Solving for C(z) yields

C(z) = z

(
ξ0

1− φ(C(z))

)
. (4.1)

Define

θ(z) =
ξ0

1− φ(z)
. (4.2)

Observe that θ has nonnegative coefficients, [z0]θ(z) = ξ0/(1 − ξ1) and θ(1) = 1. Thus the
coefficients of θ are a probability distribution, call it ζ = (ζi)i≥0.

Proposition 7. Let T be a Galton-Watson tree with offspring distribution ξ and let T ′ be a
Galton-Watson tree with offspring distribution ζ where ξ and ζ are related as above. Then
for all k ≥ 1, P(#{0}T = k) = P(#Z+T ′ = k). Also, T ′ is critical (subcritical) if and only if
T is critical (subcritical).

Proof. The computations above show that the probability generating functions for #{0}T
and #Z+T ′ satisfy the same functional equation and the Lagrange inversion formula implies
they have the same coefficients. The criticality claims follows from Equation (4.2), which
can also be used to obtain higher moments of ζ.

Corollary 3. Let Fn be an ordered forest of n independent Galton-Watson trees all with
offspring distribution ξ. Let ζ be related to ξ as in Proposition 7. Let (Xi)i≥1 be an i.i.d.

sequence of ζ distributed random variables and let Sk =
∑k

i=1(Xi − 1). Let #{0}Fn denote
the number of leaves in Fn. Then for 1 ≤ k ≤ n

P(#{0}Fk = n) =
k

n
P(Sn = −k).

Proof. This follows immediately from Proposition 7 and the Otter-Dwass formula (see [26]).

This relationship between T and T ′ can also be proved in a more probabilistic fashion.
Indeed, by taking a more probabilistic approach we can get a more general result that
includes the results in [23] as a special case. To prove the result in full generality, it is more
convenient to work with the depth-first queue of T than with T itself.

For x ∈ ZN = Z{1,2,3,... }, let τ−1 = inf {n :
∑n

i=1 xn = −1}. Let D be the set of sequences
of increments first-passage bridges from 0 to −1 in ZN that are bounded below by −1.
Formally,

D =
{
x ∈ ZN : xi ≥ −1 for i ≥ 1, xi = 0 for i ≥ τ−1(x), τ−1(x) <∞

}
.
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For t ∈ T (o) with n vertices, index the vertices V of t from 1 to n by order of appearance on
the depth-first walk of t. Define DQ(t) = (DQk(t))

∞
k=1 by DQk(t) = deg vk−1 for k ≤ n and

0 for k > n, which are the increments of the depth-first queue of t. Note that DQ(t) ∈ D .
Furthermore t 7→ DQ(t) is a bijection from T (o) to D (see e.g. [26]).

Let πn be the projection onto the n’th coordinate of ZN and let Fn = σ(πk, k ≤ n). Let
θn be the shift (θnx)(i) = x(n + i). Let N ′ be a stopping time with respect to (Fn). Let
N0 = 0 and for i ≥ 1 define N i = N i−1 + (N ′ ∧ τ−1) ◦ θN i−1 . Define x̂ by

x̂(k) =

{∑Nk

i=Nk−1+1 x(i) if Nk <∞
0 if Nk =∞.

Proposition 8. If x ∈ D , then x̂ ∈ D .

Proof. The only non-trivial part is to see that for each x ∈ D there exists k such that
Nk = τ−1. Clearly N1 ≤ τ−1. Let k = max{i : N i ≤ τ−1}. Suppose, for the sake of

contradiction, that Nk < τ−1. We then have that
∑Nk

i=1 x(i) ≥ 0, so
∑τ−1

i=Nk+1
x(i) ≤ −1, so

Nk+1 ≤ τ−1, which is our contradiction.

Combining these ideas, we obtain the following theorem.

Theorem 20. Let ξ be a probability distribution on Z+ with 0 < ξ0 < 1. Suppose that T is a
Galton-Watson tree with offspring distribution ξ. Let N ′ be a stopping time and let T̂ be the

tree determined by D̂Q(T ) by the bijection above. Let X = (X1, X2, . . . ) be a vector with i.i.d.
entries distributed like P (X1 = k) = ξk+1. Then T̂ is a Galton-Watson tree whose offspring

distribution is the law of 1 +
∑N1(X)

i=1 Xi. Furthermore, if E|X1| <∞ and E(N ′ ∧ τ−1) <∞
then

E

1 +

N1(X)∑
i=1

Xi

 = 1 + EX1E(N ′ ∧ τ−1),

and if, additionally, EX1 = 0 (i.e. T is critical) and Var(X1) = σ2 <∞, then

Var

1 +

N1(X)∑
i=1

Xi

 = σ2E(N ′ ∧ τ−1).

Proof. Define R(X) to be the vector with R(X)k = Xk1(k ≤ τ−1(X)). It is well known
that DQ(T ) =d R(X) and that the vectors {(XN i+1, . . . , XN i+1)}∞i=0 are i.i.d. Consequently
X̂ is the vector of increments of a random walk with jump distribution given by the law of∑N1(X)

i=1 Xi. Observing that D̂Q(T ) =d R̂(X) = R(X̂) shows that T̂ is a Galton-Watson tree
with the appropriate offspring distribution. The last claims follow from Wald’s equations.

Let us give a specific example of how the general theorem above may be applied. For a
nonempty subset A of Z+ let DA

n be the set of paths in D with exactly n terms no later than
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τ−1(x) in A − 1. When A = Z+, we just write Dn. Note that for every n ≥ 1, t 7→ DQ(t)

restricts to a bijection from T (o)
A,n to DA

n . We obtain the following plethora of Otter-Dwass
type formulae.

Corollary 4. Fix A ⊆ Z+ such that 0 ∈ A and define N ′(x) = inf{i : xi + 1 ∈ A}. Define

T , T̂ , and X as in Theorem 20 and let X̂1, X̂2, . . . be i.i.d. distributed like 1 +
∑N1(X)

i=1 Xi.
Then

P(#AT = n) = P(T̂ = n) =
1

n
P

(
n∑
i=1

X̂i = −1

)
.

The corresponding result for forests also holds. Furthermore, if T is critical with variance
0 < σ2 <∞, then Var(X̂i) = σ2/ξ(A).

Proof. This follows from the observation that, with this N ′, x ∈ DA
n if and only if x̂ ∈ Dn.

The formula for the variance follows from the fact that N ′ is geometric with parameter
ξ(A).

We note that, in the context of Corollary 4, the same construction can be done directly on
the trees without first passing to the depth-first queue, though setting up the formalism for
the proof and the proof itself are slightly more involved. The idea is a lifeline construction.
You proceed around the tree in the order of the depth-first walk and when you encounter
a vertex whose degree is in A you label the edges and vertices on the path from the vertex
to the root that are not yet labeled by that vertex. This labeled path can be considered
the lifeline of the vertex. A new tree is constructed by letting the root be the first vertex
encountered whose degree is in A and attaching vertices whose degree is in A to the earliest
vertex whose lifeline touches its own. Going through the details of this helps make this
transformation more concrete, so the case of A = {0} is included below.

Suppose that t ∈ T (o)
{0},n and label the leaves by the order they appear in the depth-first

walk of t. We will now color all of the edges of t. Color every edge on the path from leaf 1
to the root with 1. Continuing in increasing order of their labels, color all edges on the path
from leaf i to the root that are not colored with an element of {1, 2, . . . , i− 1} with i, until
all edges are colored. Note that for any 1 ≤ k ≤ n the subtree spanned by leaves {1, . . . , k}
is colored by {1, . . . , k} and an edge is colored by an element in {1, . . . , k} if and only if it is
in this subtree. Furthermore, the path from leaf k to any edge colored k contains only edges
colored k. See Figure 4.1 for an example of such a coloring. Call two edges of t coincident
if they share a common vertex.

Lemma 4. If t is colored as above and 2 ≤ j ≤ n, then there is exactly one edge colored j
that is coincident to an edge with a smaller color.

Proof. First we show existence. Consider the path from leaf j to the root. Let e be the
last edge in this path that is not contained in the subtree spanned by leaves {1, . . . , j − 1}.
By construction this edge is colored j and is coincident to an edge colored by an element of
{1, . . . , j − 1}.
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To see uniqueness, suppose that f is an edge with the desired properties. Then f is on
the path from j to the root and f is coincident to an edge in the subtree spanned by leaves
{1, . . . , j − 1}. If f contains the root, then f is the last edge on the path from j to the root
that is colored j, i.e. f = e. Otherwise, after f , we finish the path from j to the root within
this subtree. Hence f is the last edge on the path from j to the root that is colored j and
again f = e.

With t labeled as above we define a rooted plane tree with n vertices, called the life-line
tree and denoted ť, as follows. The vertex set of ť is {1, 2, . . . , n}, 1 is the root. Furthermore,
if i < j, i is adjacent to j if i is the smallest number such that there exist coincident edges
e1, e2 in t with e1 colored i and e2 colored j. Finally, the children of a vertex are ordered by
the appearance of the corresponding leaves in the depth-first search of t. See Figure 4.1 for
an example of this map.

•2

2
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3

•1

1

•
2

•4

4

•
1

•
2
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5

•3 •4

•
1

•
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•6
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� ∨ // •2 •5 •6

• •1

Figure 4.1: A colored tree and its image under ∨

Lemma 5. The life-line tree is a tree.

Proof. We must show that ť is connected and acyclic. Suppose that ť has at least two
components. Let j be the smallest vertex not in the same component as 1. By Lemma 4,
there exists 1 ≤ i < j and coincident edges e1, e2 in t labeled i and j respectively. Thus i is
adjacent to j, a contradiction.

Suppose that ť contains a cycle. Let j be the largest vertex in this cycle. Then j is
adjacent to two smaller vertices, contradicting our definition of ť.

Let (v1, . . . , vk) be the list of vertices (ordered by order of appearance in the depth-first
walk of t) in t that are children of vertices on the path from 1 to the root, but not actually
on that path themselves. Let tvi be the plane subtree of t above vi. It is then easily verified
that ť is obtained by joining the trees (ťv1 , . . . , ťvk) to a common root with their natural order
(and renaming the vertices as they appear in the depth first walk).
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Lemma 6. Let T be a Galton-Watson tree with offspring distribution ξ. Condition T on the
event that the first leaf on the depth-first walk of T has height n and that there are exactly
k vertices in T that are children of vertices on the path from the root to the first leaf on the
depth-first walk that are not on this path themselves. Let vn1 , . . . , v

n
k be these vertices (again in

order of appearance) and let Tvnj be the plane subtree of T above vnj . The collection {Tvnj }
k
j=1

is a collection of i.i.d Galton-Watson trees with common distribution T .

Proof. Let t1, . . . , tk be rooted ordered trees. Let U be the set of trees t such that the first
leaf on the depth-first walk of t has height n and that there are exactly k vertices v1, . . . , vk
(listed in order of appearance on the depth-first walk) in t that are children of vertices on
the path from the root to the first leaf on the depth-first walk that are not on this path
themselves. Let V ⊆ U be the set of trees such that tj is the tree above vj for all 1 ≤ j ≤ k.
Let W be the set sequences that appear as the sequence of degrees of vertices on the path
from the root to the left-most leaf of a tree in U . Note that

P(T ∈ U) =
∑

(y1,...,yn+1)∈W

n+1∏
i=1

ξyi

since, given (y1, . . . , yn+1) ∈ W , there are k places to attach trees to the path from the root
to the left-most leaf, and we sum over all ways of doing this. Consequently, we have

P(Tvnj = tj, 1 ≤ j ≤ k) =
1

P(U)

∑
t∈V

P(T = t)

=
1

P(U)

∑
(y1,...,yn+1)∈W

n+1∏
i=1

ξyi

k∏
i=1

P(T = ti)

=
k∏
i=1

P(T = ti).

Theorem 21. Let T be a Galton-Watson tree with offspring distribution ξ and define Ť and

T ′ as above (see Proposition 7 for T ′). Then Ť
d
= T ′.

Proof. Let t be a rooted plane tree and consider P(Ť = t). If t has one vertex, it is clear that
P(Ť = t) = P(T ′ = t). Suppose that the result is true for all trees with less than n vertices,
and suppose that t has n vertices. Let t1, . . . , tk be the subtrees of t attached to the root of
t, listed in order of appearance of the depth-first walk of t. Let Ai,k be the event that the
first leaf to appear on the depth-first walk of T has height i and that there are k vertices in
T that are children of vertices on the path from the root to the first leaf on the depth-first
walk that are not on this path themselves. Let vi1, . . . , v

i
k be these vertices (again in order of

appearance) and let Tvij be the plane subtree of T above vij. Lemma 6 shows that, for fixed
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i, conditionally on Ai,k, the Tvij are i.i.d. distributed like T . From our discussion above, we

have that conditionally on Ai,k, Ť = t if and only if Ťvij = tj for all j. Since tj has fewer

than n vertices, the inductive hypothesis implies

P(Ť = t) =
∞∑
i=1

P(T ∈ Ai,k)P(Ťvij = tj for all j | T ∈ Ai)

=

(
k∏
j=1

P(T ′ = tj)

)(
∞∑
i=1

P(T ∈ Ai,k)

)
.

Hence it remains to show that
∞∑
i=1

P(T ∈ Ai,k) = ζk.

Let (Xi)
∞
i=0 be i.i.d.distributed like ξ. We then have

P(T ∈ Ai,k) = P

(
X0 = 0,

i∑
j=1

(Xj − 1) = k,Xj − 1 ≥ 0 for 1 ≤ j ≤ i

)
= ξ0[zk]φ(z)i,

where for a power series ψ(z), [zk]ψ is the coefficient of zk. Thus we have

∞∑
i=1

P(T ∈ Ai,k) = ξ0[zk]
∞∑
i=0

φ(z)i = [zk]
ξ0

1− φ(z)
= ζk,

where the interchange of limits is justified by positivity of the coefficients involved and we
may start the second sum at 0 since k ≥ 1.

4.3 The partition at the root

Let ξ = (ξi)i≥0 be a probability distribution with mean 1 and variance 0 < σ2
1 < ∞. Let

T be a Galton-Watson tree with offspring distribution ξ (denote the law of T by GWξ).

Let A ⊆ Z+ contain 0 and construct T̂ as in Corollary 4. Then, by Theorem 20, T̂ is a
Galton-Watson tree. Let ζ be its offspring distribution. Again by Theorem 20, ζ has mean 1
and variance σ2 = σ2

1/ξ(A). Assume that for sufficiently large n, P(#AT = n) > 0. Let TAn
be T conditioned to have exactly n vertices with out-degree in A (whenever this conditioning
makes sense).

For a t be rooted unordered tree with exactly n vertices with out-degree in A, let ΠA(t)
be the partition of n or n− 1 (depending on whether or not the degree of the root of t is in
A) defined by the number of vertices with out-degree in A in the subtrees of t attached to
the root.
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Lemma 7. (i) Considered as an unordered tree, the law of TAn is equal to Pq
n where, for

n ≥ 2 such that TAn is defined, and λ = (λ1, . . . , λp) ∈ P̄An , we have

qn(λ) = P(ΠA(TAn ) = λ) =
p!∏

j≥1mj(λ)!
ξ(p)

∏p
i=1 P(#AT = λi)

P(#AT = n)
.

(ii) Let X1, X2, . . . be i.i.d.distributed like #AT and τk = X1 + · · ·+Xk. We have

P(p(ΠA(TAn )) = p) = ξ(p)
P(τp = n− 1(p ∈ A))

P(τ1 = n)
,

and P(ΠA(TAn ) ∈ · | {p(ΠA(TAn )) = p}) is the law of a non-increasing rearrangement of
(X1, . . . , Xp) conditionally on X1 + · · ·+Xp = n− 1(p ∈ A).

Proof. (i) Letting c∅(T
A
n ) be the root degree of TAn and a1, . . . , ap ∈ N with sum n−1(p ∈ A)

we have

P(c∅(T
A
n ) = p,#A[(TAn )i] = ai, 1 ≤ i ≤ p) = ξ(p)

∏p
i=1 P(#AT = ai)

P(#AT = n)
. (4.3)

Part (i) now follows by considering the number of sequences (a1, . . . , ap) with the same
decreasing rearrangement.

(ii) This follows from Equation (4.3).

To simplify notation, let qn be the law of ΠA(TAn ) and let 1p = 1(p ∈ A). Let (Sr, r ≥ 0)
be a random walk with step distribution (ζi+1, i ≥ −1). By Corollary 4, we have

qn(p(λ) = p) = ξ(p)

p
n−1pP(Sn−1p = −p)

1
n
P(Sn = −1)

=
n

n− 1p
ξ̂(p)

P(Sn−1p = −p)
P(Sn = −1)

, (4.4)

where ξ̂(p) = pξ(p) is the size-biased distribution of ξ.
Define q̄n to be the pushfoward of qn onto S↓ by the map λ 7→ λ/

∑
i λi.

For a sequence (x1, x2, . . . ) of non-negative numbers such that
∑

i xi < ∞, let i∗ be a
random variable with

P(i∗ = i) =
xi∑
j≥1 xj

.

The random variable x∗1 = xi∗ is called a size-biased pick from (x1, x2, . . . ). Given i∗, we re-
move the i∗’th entry from (x1, x2, . . . ) and repeat the process. This yields a random re-ording
(x∗1, x

∗
2, . . . ) of (x1, x2, . . . ) called the size-biased order (if ever no positive terms remain, the

rest of the size-biased elements are 0). Similarly for a random sequence (X1, X2, . . . ) we
define the size-biased ordering by first conditioning on the value of the sequence. For any
non-negative measure µ on S↓, define the size-biased distribution µ∗ of µ by

µ∗(f) =

∫
S↓
µ(ds)E[f(s∗)],
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where s∗ is the size-biased reordering of s.
Define the measure ν2 on S↓ by∫

S↓
ν2(ds)f(s) =

∫ 1

1/2

√
2

πs3
1(1− s1)3

ds1f(s1, 1− s1, 0, 0, . . . ).

Theorem 22. With the notation above,

lim
n→∞

n1/2(1− s1)q̄n(ds) =
σ1

√
ξ(A)

2
(1− s1)ν2(dds),

where the limit is taken in the sense of weak convergence of finite measures.

Proof. We follow the reductions in Section 5.1 of [15]. By Lemma 16 in [15] (which is a easy
variation of Proposition 2.3 in [6]) it is sufficient to show that

lim
n→∞

n1/2((1− s1)q̄n(ds))∗ =
σ1

√
ξ(A)

2
((1− s1)ν2(ds))∗.

Note that for any finite non-negative measure µ on S↓ and non-negative continuous function
f : S1 → R we have

((1− s1)µ(ds))∗(f) =

∫
S1
µ∗(dx)(1−max x)f(x).

Consequently the theorem follows from the following Proposition.

Proposition 9. Let f : S1 → R be continuous and let g(x) = (1−max x)f(x). Then

√
nq̄∗n(g)→

σ1

√
ξ(A)√
2π

∫ 1

0

dx

x1/2(1− x)3/2
g(x, 1− x, 0, . . . ).

First note that, by linearity, we may assume that f ≥ 0 and ||f ||∞ ≤ 1. We begin the
proof of this Proposition with several Lemmas regarding the concentration of mass of q̄∗n. We
also note that for the remainder of this section we are following Section 5.1 in [15] very closely
with minor differences to account for our more general setting and we invoke Corollary 4
rather than the Otter-Dwass formula – and we get different intermediate constants than they
get, but the end results are the same. Nonetheless, the full computation is worth including
because it makes clear why the factor of

√
ξ(A) appears in the scaling limit.

Lemma 8. For every ε > 0,
√
nqn(p(λ) > ε

√
n)→ 0 as n→∞.

Proof. Observe that we have the local limit theorem (see e.g. Theorem 3.5.2 in [11])

lim
n→∞

sup
p∈Z

∣∣∣∣√nP(Sn = −p)− 1

σ
√

2π
exp

(
− p2

2nσ2

)∣∣∣∣ = 0. (4.5)

Using this and Equation (4.4) we have qn(p(λ) = p) ≤ Cξ̂(p) for some C independent of
n and p. Since ξ has finite variance, ξ̂ has finite mean so ξ̂((k,∞)) = o(k−1). The result
follows.



CHAPTER 4. SCALING LIMITS OF GALTON-WATSON TREES 47

Note that an immediate consequence of the local limit theorem is that for any fixed k > 0
we have

lim
n→∞

sup
1≤p≤kn1/2

∣∣∣∣σ√2πn exp

(
p2

2nσ2

)
P(Sn = −p)− 1

∣∣∣∣ = 0,

and this is often the result we are really using when we cite the local limit theorem.

Lemma 9. For g as in Proposition 9 we have

lim
η↓0

lim sup
n→∞

√
nq̄∗n(|g|1{x1>1−η}) = 0 and lim

n→∞

√
nq̄∗n(1{x1<n−7/8}) = 0.

Proof. Fix η > 0. Since we are assuming ||f ||∞ ≤ 1, we know that |g(x)| ≤ (1 − x1).
Observing that

P(X∗1 = m|X1 + · · ·+Xp = n) =
pm

n

P(X1 = m)P(X2 + · · ·+Xp = n−m)

P(X1 + · · ·+Xp = n)
,

and using (ii) in Lemma 7 we see that
√
nq̄∗n(|g|1{x1>1−η}) is bounded above by o(1) plus

n1/2
∑

1≤p≤n1/2

qn(p(λ) = p)
∑

(1−η)n≤m1

(
1− m1

n− 1p

)
pm1

n− 1p

P(X1 = m1)P(τp−1 = n−m1 − 1p)

P(τp = n− 1p)
,

where the o(1) term is justified by Lemma 8 and our restriction to 1 ≤ p ≤ n1/2. Observe
that Equation (4.5) implies that

P(τ1 = n) =
1

n
P(Sn = −1) ∼ 1

σ
√

2π
n−3/2.

Using Corollary 4, and again that qn(p(λ) = p) ≤ Cξ̂(p) for some C independent of n and
p, we find that for large n,

√
nq̄∗n(|g|1{x1>1−η}) is bounded above by o(1) plus

Cn1/2
∑

1≤p≤n1/2

p2ξ(p)

×
∑

(1−η)n≤m1<n−1p

(
1− m1

n− 1p

)
m1

n− 1p
m
−3/2
1

n− 1p
n−m1 − 1p

P(Sn−m1−1p = −p+ 1)

P(Sn−1p = −p)
.

Simplifying we get

√
nq̄∗n(|g|1{x1>1−η}) ≤ o(1) + C

∑
1≤p≤n1/2

p2ξ(p)
1

n

∑
(1−η)n≤m1≤n−1p

√
n

m1

P(Sn−m1−1p = −p+ 1)

P(Sn−1p = −p)
.

Equation (4.5) implies that, for 1 ≤ p ≤ n1/2,
√
nP(Sn−1p = −p) and

√
n−m1P(Sn−1p =

−p+ 1) are bounded below and above respectively for some constants independent of n and
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p. Hence we have

√
nq̄∗n(|g|1{x1>1−η}) ≤ o(1) + C

∑
1≤p≤n1/2

p2ξ(p)
1

n

∑
(1−η)n≤m1<n−1p

1√
m1

n

(
1− m1

n

)
≤ o(1) + C

∞∑
p=1

p2ξ(p)
1

n

∑
(1−η)n≤m1<n−1p

1√
m1

n

(
1− m1

n

) .
Note that the m1 = n term has been absorbed into the o(1) term. The upper bound converges

to C
∫ 1

1−η(x(1− x))−1/2dx, which goes to 0 as η → 0. A little bit of care must be taken here
since the integral is improper as a Riemann integral, however this is fine since the sums
actually under approximate the integral in this case.

The second limit can be proved in a similar fashion. Note that
√
nq̄∗n(1{x1<n−7/8}) is

bounded above by

n1/2
∑

1≤p≤n1/2

qn(p(λ) = p)
∑

m1≤n1/8

pm1

n− 1p

P(X1 = m1)P(τp−1 = n−m1 − 1p)

P(τp = n− 1p)
+ o(1)

≤ Cn−3/8
∑

1≤p≤n1/2

p2ξ(p)
∑

1≤m1≤n1/8

P(τp−1 = n−m1 − 1p)

P(τp = n− 1p)
+ o(1)

≤ Cn−3/8
∑

1≤p≤n1/2

p2ξ(p)
∑

1≤m1≤n1/8

P(Sn−m1−1p = −p+ 1)

P(Sn−1p = −p)
+ o(1)

≤ Cn−1/4
∑

1≤p≤n1/2

p2ξ(p) + o(1),

where the last step is justified by the local limit theorem.

Lemma 10. For every η > 0 we have

lim
n→∞

√
nq̄∗n(1{x1+x2<1−η}) = 0.

Proof. Fix 0 < ε < 1. Up to addition by an o(1) term depending on ε we have that√
nq̄∗n(1{x1+x2<1−η}) is bounded above by

C
√
n

∑
1≤p≤εn1/2

pξ(p)

×
∑

m1+m2≤(1−η)n

pm1

n− 1p

(p− 1)m2

n−m1 − 1p

P(X1 = m1)P(X2 = m2)P(τp−2 = n−m1 −m2 − 1p)

P(τp = n− 1p)
,

where m1,m2 ≥ 1. If m1 + m2 ≤ (1 − η)n then n −m1 −m2 ≥ ηn and, in particular, the
quantity on the left goes to∞ as n does. Consequently Corollary 4 and Equation (4.5) imply
that

P(τp−2 = n−m1 −m2 − 1p)

P(τp = n− 1p)
≤ C

η3/2
,
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for C independent of 1 ≤ p ≤ εn1/2. Our assumption that ε < 1 implies that C is independent
of ε as well. Again using that n3/2P(X1 = n) is bounded we have

√
nq̄∗n(1{x1+x2<1−η}) ≤ o(1) +

C

η5/2
√
n

∑
1≤p≤εn1/2

p3ξ(p)
1

n2

∑
m1+m2≤(1−η)n

√
n

m1

√
n

m2

≤ o(1) +
Cε

η5/2

∞∑
p=1

p2ξ(p)

∫ 1

0

∫ 1

0

dxdy
√
xy
.

Taking the lim sup as n→∞ and then letting ε→ 0 yields the result.

Lemma 11. There exists a function βη = o(η) as η ↓ 0 such that

lim
η↓0

lim inf
n→∞

√
nq̄∗n(g1{x1<1−η,x1+x2>1−βη}) = lim

η↓0
lim sup
n→∞

√
nq̄∗n(g1{x1<1−η,x1+x2>1−βη})

=
σ1

√
ξ(A)√
2π

∫ 1

0

g((x, 1− x, 0, . . . ))
x1/2(1− x)3/2

dx.

Proof. Fix η > 0 and suppose that η′ ∈ (0, η). Using Lemmas 8 and 9 we decompose
according to the events {p(λ) > ε

√
n} and {x : x1 ≤ n−7/8} to get

√
nq̄∗n(g1{x1<1−η,x1+x2>1−η′}) = o(1) +

√
n

∑
1≤p≤εn1/2

qn(p(λ) = p)

×
∑

n1/8≤m1≤(1−η)(n−1p)

(1−η′)(n−1p)≤m1+m2≤n−1p

E[g((m1,m2, X
∗
3 , . . . , X

∗
p , 0, . . . )/(n−1p))|τp = n−1p, X

∗
1 = m1, X

∗
2 = m2]

× pm1

n− 1p

(p−1)m2

n−1p

1− m1

n−1p
P(X1 = m1)P(X2 = m2)

P(τp−2 = n−m1 −m2 − 1p)

P(τp = n− 1p)
. (4.6)

Observe that, if 1 ≥ x1 + x2 ≥ 1 − η′ and x1 ≤ 1 − η, then x2/(1 − x1) ≥ 1 − η′/η and
(1− x1)/x2 ≥ 1.

Using the local limit theorem we observe that

sup
1≤p≤εn1/2

∣∣∣∣σ√2πn exp

(
p2

2nσ2

)
P(Sn = −p)− σ

√
2πn exp

(
1

2nσ2

)
P(Sn = −1)

∣∣∣∣→ 0

Consequently,

sup
1≤p≤εn1/2

∣∣∣∣∣∣
qn(p(λ)=p)

ξ̂(p)

exp
(

1−p2
2nσ2

) − 1

∣∣∣∣∣∣ = sup
1≤p≤εn1/2

∣∣∣∣∣
√

2πσ2n exp(p2/2nσ2)nP(Sn−1p = −p)
√

2πσ2n exp(1/2nσ2)(n− 1p)P(Sn = −1)
− 1

∣∣∣∣∣→ 0.

Thus, for sufficiently large n and small ε, we have

1− η ≤ qn(p(λ) = p)

ξ̂(p)
≤ 1 + η,
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for all 1 ≤ p ≤ εn1/2. Using the local limit theorem and Corollary 4 we have

sup
1≤p≤εn1/2

∣∣∣∣p−1σ
√

2πn3/2 exp

(
p2

2nσ2

)
P(τp = n)− 1

∣∣∣∣→ 0.

Thus, for sufficiently large n and small ε, we have

1− η
σ
√

2π
≤ p−1n3/2P(τp = n) ≤ 1 + η

σ
√

2π
,

for all 1 ≤ p ≤ εn1/2. We note in particular that τ1 = X1 =d X2. Furthermore, for
n1/8 ≤ m1 ≤ (1− η)n and m1 +m2 ≥ (1− η′)n we have m2 ≥ (η − η′)n so that m1 and m2

go to infinity as n does. Thus, for large n (how large now depends on η′) we have

(1− η)2

2πσ2
≤ (m1m2)3/2P(X1 = m1)P(X2 = m2) ≤ (1 + η)2

2πσ2
.

Now, recall that f is uniformly continuous on S1. Furthermore, on the set {x ∈ S1 :
x1 + x2 > 3/4} we have max x = x1 ∨ x2 and x 7→ max x is thus uniformly continuous on
this set. Therefore for η′ < (1/4) ∧ η2 sufficiently small we have

|g((m1,m2,m3, . . . )/n)− g((m1, n−m1, 0, . . . )/n)| ≤ η,

for every (m1,m2, . . . ) with sum n sufficiently large such that m1 + m2 ≥ (1 − η′)n. Take
βη := η′.

Given the symmetry of the bounds we have just established it is easy to see that the
proofs for the lim sup and lim inf will be nearly identical, one using the upper bounds and
the other the lower. We will only write down the proof for the lim inf. For sufficiently large n
we have that, up to addition of an o(1) term,

√
nq̄∗n(g1{x1<1−η,x1+x2>1−η′}) is bounded below

by

(1− η)3(1− η′/η)

(1 + η)

∑
1≤p≤εn1/2

(p− 1)ξ̂(p)
1

n− 1p

×
∑

n1/8≤m1≤(1−η)(n−1p)

(g((m1, n−m1 − 1p, 0, . . . )/(n− 1p))− η)

× 1

(m1/(n− 1p))1/2

1

(1−m1/(n− 1p))3/2

1

σ
√

2π

×
∑

(1−η′)(n−1p)−m1≤m2≤n−m1−1p

P(τp−2 = n−m1 −m2 − 1p).

Observe that this last sum is equal to
∑η′(n−1p)

m=0 P(τp−2 = m). By the local limit theorem,
this can be made arbitrarily close to 1 independent of 1 ≤ p ≤ n1/2. Using the convergence
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of Riemann sums (again care must be taken since the integral we get is improper), we have

lim inf
n→∞

√
nq̄∗n(g1{x1<1−η,x1+x2>1−η′})

≥ (1− η)3(1− η′/η)

1 + η

∞∑
p=1

(p− 1)ξ̂(p)

∫ 1−η

0

dx

σ
√

2πx1/2(1− x)3/2
(g(x, 1− x, 0, . . . )− η)

Letting η ↓ 0 coupled with observing that
∑∞

p=1(p − 1)ξ̂(p) = σ2
1 and recalling that σ2 =

σ2
1/ξ(A) completes the proof.

Proof of Proposition 9. Observe that

|q̄∗n(g)− q̄∗n(g1{x1<1−η,x1+x2>1−η′})| ≤ q̄∗n(|g|1{x1≥1−η}) + q̄∗n(|g|1{x1+x2≤1−η′}).

Fix ε > 0 and apply Lemmas 9 and 11 to find η, η′ such that

√
nq̄∗n(|g|1{x1≥1−η}) <

ε

2

and ∣∣∣∣∣√nq̄∗n(g1{x1<1−η,x1+x2>1−βη})−
σ1

√
ξ(A)√
2π

∫ 1

0

g(x, 1− x, 0, 0, . . . )
x1/2(1− x)3/2

dx

∣∣∣∣∣ ≤ ε

2
,

for large enough n. For this choice of η, η′ and large n we have∣∣∣∣∣√nq̄∗n(g)−
σ1

√
ξ(A)√
2π

∫ 1

0

g(x, 1− x, 0, 0, . . . )
x1/2(1− x)3/2

dx

∣∣∣∣∣ ≤ ε+
√
nq̄∗n(|g|1{x1+x2≤1−η′}).

By Lemma 10 the upper bound goes to ε as n→∞, and the result follows.

As an immediate corollary of these results, we also identify the unnormalized limit of q̄n.

Corollary 5. q̄n
d→ δ(1,0,0,... ).

Proof. Taking f ≡ 1 in Proposition 9 gives q̄n(1 − s1) → 0. Since L1 convergence implies
convergence in probability, it follows that for all 0 < η < 1 we have q̄n(s1 ≥ η)→ 1.

Note that, as a consequence of Equation (4.4), we have qn(p(λ) = p)) → ξ̂(p). Thus,
while the degree of the root vertex may be large, only one of the trees attached to the root
will have noticeable size.



CHAPTER 4. SCALING LIMITS OF GALTON-WATSON TREES 52

4.4 Convergence of Galton-Watson trees

We are now prepared to prove Theorem 19, which, after all of our work above, is rather
straightforward.

Proof. Lemma 7 shows that TAn has law Pq
n for a particular choice of (qn)n≥1. Theorem 22

then shows that the hypotheses of Theorem 18 are satisfied.

As a consequence of Theorem 19 and the results connecting Schröder’s problems to
Galton-Watson trees in Section 2.2, we obtain the following theorem.

Theorem 23. For i = 1, 2, 3, 4, let T in be a uniform random tree of the type appearing in
Schröder’s i’th problem with n leaves. For each i and n equip T in with the graph metric where
edges have length one and the uniform probability measure on its leaves. We then have the
following limits with respect to the rooted Gromov-Hausdorff-Prokhorov topology:

(i)
1√
n
T 1
n

d→ 2
√

2TBr (ii)
1√
n
T 2
n

d→
√

2

2
√√

2− 1
TBr

(iii)
1√
n
T 3
n

d→ 2
√

2TBr (iv)
1√
n
T 4
n

d→ 2√
4 log(2)− 2

TBr,

where TBr is the Brownian continuum random tree.

We remark that parts (i) and (iii) were originally proven in [3] and [16] respectively. Parts
(ii) and (iv) appear to be new.
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