
UC Santa Barbara
GIS Core Curriculum for Technical Programs (1997-1999)

Title
Unit 9: Spatial Data Conversion

Permalink
https://escholarship.org/uc/item/9q94d63j

Authors
9, CCTP
Dodson, Rustin

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9q94d63j
https://escholarship.org
http://www.cdlib.org/

UNIT 9: SPATIAL DATA CONVERSION
Written by Rustin Dodson, Santa Barbara, California

Context

Spatial datasets are produced and distributed in a variety of formats:
vector, raster, point,
 line, polygon, image, etc. Often datasets
are designed for certain computer systems (Unix,
 DOS/Windows, Macintosh)
or software programs (GRASS, Idrisi, Arc/Info). In the likely
 event
that an important dataset is available, but in the wrong format, the GIS
analyst must be
 aware of the issues, methods, and tools for converting
spatial data to a format which is
 compatible with the current GIS project.

Learning Outcomes

Awareness:

Students should be aware of common data formats, computer systems, and spatial data
 handling software programs that are likely to be encountered. Students should be able to
 convert between data formats using the built-in conversion tools of a GIS program.

Competency:

Students should have a working knowledge of image data conversion issues, including image
 formats, data types, and byte swapping.

Mastery:

Students should be fluent in a programming or scripting language which allows custom
 creation of data conversion tools.

Example Application

As part of a study in mapping potential ranges of plant species, a GIS analyst has been
 assigned the task of identifying locations in the USA which are not subject to frost (sub-

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 1

freezing temperatures), based on the past 20 years of temperature observations. The
 analyst has located a set of daily temperature measurements made by the National
 Climatic Data Center (NCDC). The temperature measurements are stored as simple
 text files which contain the measurement station ID, the date and time of measurement,
 and the temperature observations themselves. Another text file contains the ID and
 location for each measurement station.

After downloading the necessary data files, the GIS analyst needs to

1. Extract data records with the desired temperature variable (daily minimum
temperature) and for the desired time period (the past 20 years).

2. Identify and account for missing values in the temperature records.
3. Convert daily minimum temperatures to a measure of mean frost days per
year

(FROSTDAYS).
4. Obtain the geographic locations of the measurement stations, and attach
them to

FROSTDAYS for each station.
5. Convert the station locations and FROSTDAYS into a GIS dataset (a point layer).
6. Attempt to derive a continuous surface of FROSTDAYS from the point dataset
in

the previous step.

Preparatory Units

Recommended:

Data acquisition (UNIT 1)
Using and interpreting metadata (UNIT 7)
Projecting data (UNIT 10)

Complementary:

Error checking (UNIT 8)
Registration and Conflation (UNIT 11)
Planning a digitizing project (UNIT 12)
Planning a scanning project (UNIT 16)

Awareness

Learning Objectives:

After completing this section you should be able to:

Describe some common spatial data formats.
Identify some common GIS software packages and describe some of their data
formats.

Vocabulary:

Import

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 2

Export
USGS
Spatial data transfer standard (SDTS)
USGS digital line graph (DLG) format
USGS digital elevation model (DEM) format
US Bureau of the Census TIGER files
DXF file format
Image band
Band sequential (BSQ) image format
Band interleaved by pixel (BIP) image format
Band interleaved by line (BIL) image format
Scripting languages

AWK
PERL

Byte-swapping
Big endian
Little endian

Basic Knowledge/Skills:

Generic spatial data formats

Imagine a simple map of the contiguous 48 United States. Such a map
could be stored in a
 variety of formats:

1. Vector polygons, where each state is stored as a continuous chain of points
and indexed
 by a unique ID number.

2. Vector lines, where state boundaries are stored as chains of points, but
no polygon IDs
 are present.

3. Raster polygons, where each pixel of a raster image stores the ID number
of state or a
 background value such as zero.

4. Raster lines, where pixels which fall on a state boundary have non-zero
values while the
 rest of the image contains zeros.

Each format above contains information on the shapes and locations of the 48 states. Some
 formats are better suited for analysis in a GIS, while others are useful for display only.
 Sometimes data are available in only one format and must be converted in order to be usable
 within a given GIS project. For example, if a hard-copy map is scanned, the resulting dataset
 is often in format 4 above (raster lines). To be useful for analysis, the dataset may have to be
 converted to one of the other formats (1-3).

Advanced Knowledge/Skills:

Published spatial data formats
The following formats are used by government agencies who
 publish spatial
datasets. Many GIS packages contain built-in functionality for importing

and/or exporting these common formats.

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 3

SDTS - Spatial Data Transfer Standard.

Created by the Federal Geographic Data Committee (FGDC) over a period of several
 years, this is a detailed and exhaustive standard which includes vector and raster data.
 Federal agencies are required to support SDTS, and are in the process of converting
 their spatial datasets to SDTS format. Most GIS software producers have completed or
 are in the process of creating SDTS translators for their GIS products. In addition, a
 number of public-domain SDTS conversion programs are available:

SDTS-to-MapInfo and SDTS-to-DXF translators are available at
[link removed]
A freeware program, MICRODEM, manipulates DEM files in DTED, USGS
 DEM, and SDTS formats. MICRODEM runs on Windows 95/NT, and is
available at [link removed]

DLG - Digital Line Graph.

DLGs are vector data files created and maintained by the USGS.
They are available at
 several scales, and typically include:

1. Political and physical boundaries
2. Transportation, including roads, trails, railroads, pipelines, and airports
3. Hydrography, including streams, rivers, and lakes
4. Man-made features, including built-up areas, capitals, county seats, populated

places, and population range
5. Public Land Survey System, including land grants, township, range, and

subdivisions of the public lands.

DLG files were originally provided in their own format, known as DLG format.
Many
 GIS packages contain functions for importing DLG format data.
Since the adoption of
 the SDTS, however, the USGS has been creating SDTS
versions of the national DLG
 dataset. At some point in the future,
the DLG format may disappear completely, but for
 the time being there is
quite a bit of DLG format data available.

DEM - Digital Elevation Model format.

In GIS jargon, "DEM" is often used to generically refer to "a set of
gridded elevation
 data". However, "DEM" can also refer to the format
used by the USGS for distributing
 its digital elevation model data.
USGS DEMs are available at several scales over most
 of the United States
(coverage is not complete for the finest resolution DEM data).
 DEM
conversion tools exist within many commercial GIS packages. The USGS
is in
 the process of converting DEM format data to the SDTS format.

TIGER - Topologically Integrated Geographic Encoding and Referencing.

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 4

ftp://ftp.nadn.navy.mil/pub/oceano/website/plghome.htm

TIGER files are produced and maintained by the US Census Bureau, and
contain vector
 boundary data designed for use with population and demographic
data collected by the
 Census Bureau. TIGER files contain:

1. Polygon data, including census tracts and blocks, congressional districts,
and ZIP
 code boundaries

2. Line data, including highways and streets
3. Attribute data for street segments, including address ranges and ZIP codes
4. Point data, including landmarks and "key geographic features"

DXF - Drawing eXchange Format.

DXF is a vector format used by the AutoCAD software package.
Many GIS programs
 offer functions to import and/or export the DXF format.

GIS-specific formats

The following list describes the data formats used by a number of popular
GIS packages.
 Most full-function GIS programs, like the ones listed
below, can import and export data from
 a number of standard data formats.
In addition, most can export data to simple text files so
 that data can
be manipulated with user-written programs. For example, the GRASS
GIS has
 the commands r.out.ascii and v.out.ascii which
convert raster and vector data to text
 files. Arc/Info has the commands
gridascii and ungenerate, which do the same thing, but

create text files of a slightly different format.

NOTE: The selection of GIS programs below reflects those which
have been used extensively
 by the author. This is not intended to
be an exhaustive list of GIS software, nor is it meant to
 be a list of
the best or most popular GIS programs.

Data formats supported by some common GIS packages:

GRASS

GRASS primarily supports raster map layers. Vector point, line,
and polygon layers are
 available at a slightly lower level of functionality.
When raster maps are uncompressed
 (using the r.compress command),
raster data are stored as standard flat image data,
 with an associated
text file containing the image header information. (Flat image
 format
and other image data issues are discussed in the "Competency" section of
this
 document.)
Arc/Info

Arc/Info supports vector point, line, and polygon coverages; shape
files (a vector format
 which allows overlapping polygons); and raster grids.
Arc/Info provides a proprietary
 export format which allows data to be moved
between different versions of Arc/Info.
 This format is used, for
example, when converting Arc/Info data from the Unix
 operating system to
the DOS/Windows operating system. Raster data may be
 converted to
flat image format with the gridimage command.
Idrisi

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 5

Idrisi supports primarily raster images. Vector point, line,
and polygon layers are
 available at a slightly lower level of functionality.
Idrisi supports flat image data as one
 of its native formats. Image
data are stored in .img files, and header data are provided
 in
.doc files.
Erdas Imagine

Imagine is more of an image processing system than a GIS, and supports
primarily
 raster images. It can, however, read Arc/Info vector files
directly.

Software Example (Arc/Info):

Convert a text file of point locations into an Arc/Info point coverage:
The Arc/Info
 GENERATE command reads text files of point, line, and polygon
data. In this example, you
 will import a text file containing point
data into Arc/Info, verify the data conversion, and then
 convert the point
data into Arc/Info GRID format.

1) For point data, the GENERATE command expects a text file
with three fields per line: An
 integer point identifier (ID), followed
by an X-coordinate, followed by a Y-coordinate. The
 final line of
the text file should contain the word "end". We will use the following
text file as
 the starting point for this exercise:

Text file: foo.gen
 1 12.1 15.3
 2 9.5 23.0
 3 99.4 66.99
 end

2) The following dialog generates a coverage called FOOPTS, using
data from the text file
 "foo.gen":

Arc: generate foopts

Copyright (C) 1982-1997 Environmental Systems Research Institute,
Inc.

All rights reserved.

GENERATE Version 7.1.1 (Thu Feb 6 23:26:50 PST 1997)

Generate: input foo.gen

Generate: points

Creating points with coordinates loaded from foo.gen

Generate: quit

Externalling BND and TIC...

3) Next, we'll build point topology and add the X/Y coordinates to
the Point Attribute Table
 (PAT):

Arc: build foopts point

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 6

 Building points...

Arc: addxy foopts

Adding X,Y Coordinates to foopts.PAT

4) To verify that the data were correctly converted, list the PAT:

Arc: list foopts.pat

Record AREA
PERIMETER FOOPTS# FOOPTS-ID X-COORD
Y-
COORD

 1
0.000 0.000
1 1
12.100
 15.300

 2
0.000 0.000
2 2
9.500
 23.000

 3
0.000 0.000
3 3
99.400
 66.990

Note that we have three points, with IDs of 1, 2, and 3, and that the X and Y coordinates
 match those in the "foo.gen" file. A visual check like this a good idea in order to catch
 bugs that might have been in the
original data file, such as missing fields, extra fields,
 or extraneous
characters. Even if you are converting a large amount of data, you
should
 spot-check at least a handful of data values from the beginning,
middle, and end of the
 data file.

5) Suppose that the three points you've converted to Arc/Info represent
locations of
 archaeological dig sites, and that you wish to use these point
locations in a raster-based model
 which runs in the Arc/Info GRID environment.
You'll need to convert the point coverage
 FOOPTS into a grid called FOOGRID.
Let's assume that your X/Y coordinate units are
 meters, and that you want
your resulting grid to have a 1-meter cell resolution.

Arc: pointgrid foopts foogrid foopts-id

 Converting points from foopts to grid foogrid

Cell Size (square cell): 1

Convert the Entire Coverage(Y/N)?: y

Enter background value (NODATA | ZERO): nodata

Number of Rows = 53

Number of Columns = 91

6) Now verify the grid by listing its Value Attribute Table (VAT):

Arc: list foogrid.vat

Record VALUE
COUNT

 1
1 1

 2
2 1

 3
3 1

Note that the grid FOOGRID contains three cells with values 1,
2, and 3. The COUNT
 field above indicates that there is one instance
of each grid cell. The remainder of the
 grid's cells have the value
NODATA.

Competency

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 7

Learning Objectives:

After completing this section you should be able to:

Describe several types of image file formats and data types.
Understand the concept of byte swapping.

Image data

Image data are published in several different file formats and data types.
The file format
 determines the manner in which image pixels are
organized. For example, given a two-band
 image, one file format might
store all pixels for band 1 together, followed by all pixels for
 band 2.
Another file format might alternate between band 1 pixels and band 2 pixels.
The
 data type of an image determines the manner in which pixel values
are stored. For example,
 one image might store each pixel as a one-byte
integer, while another image might store each
 pixel as a four-byte floating
point number.
Image file formats
In general, image data are
 stored starting at the top-left image corner
and following a left-to-right scan order of each row
 of the image.
For single-band images, this format is often called flat image data,
or a flat
 image file. When there is more than one image band,
the bands are organized in one of three
 ways: band sequential (BSQ),
band interleaved by line (BIL), and band interleaved by pixel
 (BIP).

Flat image data (single-band)

Pixel data are stored starting at the top-left image corner and following
a left-to-right
 scan order of each row of the image.
Band sequential

Pixel data for each image band are contiguous: all data for band
one are stored first,
 followed by all of band two, etc.
Band interleaved by line

Pixel data for each row of each band are contiguous: data for
row one of band one are
 followed by row one of band two, etc. until row
one of all bands has been stored. Data
 for subsequent rows are then
stored, band-by-band as for row one.
Band interleaved by pixel

Pixel one of band one is followed by pixel one of band two, pixel one
of band three,
 etc. No pixels of a given band are stored contiguously.

Image data types

The image data type refers to the manner in which each image pixel is stored
in the
 computer. In general one wants to use the most compact data
type possible in order to
 minimize the storage size of an image.
However, the more compact the data type, the smaller
 the range of values
that can be stored. For example, a typical one-byte image uses one
byte (8
 bits) per pixel. A one-byte number has a range of 28,
or 256. Thus pixels in a one-byte image

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 8

 can take on values ranging
from 0 to 255. Since these values are all positive numbers, 0-255

is called the unsigned range. If a one-byte image needs to
store positive and negative
 numbers, the 256 possible values are split
into the signed range: -128 to 127.

Ranges of possible pixel values for various image
data

 types
Image data

 type
Bits per

 pixel
Unsigned

 range Signed range

One-byte
 integer 8 0 to 255 -128 to 127

Two-byte
 integer 16 0 to 65,535 -32,768 to 32,767

Four-byte
 integer 32 0 to

 4,294,967,295
-2,147,483,648 to

 2,147,483,647
Floating-

point

(single

 precision)

32 Not
 applicable

System-dependent;
 typically +/- 137

with 6 digits of precision

Floating-
point

(double
 precision)

64 Not
 applicable

System-dependent;
 typically +/- 1128

with 15 digits of precision

Transferring image data to other computer systems

The format of the floating-point data type often varies from one computer
system to another.
 For example, floating-point data on a Macintosh
system are typically not readable on a
 Windows or Unix system. When
transferring image data to another computer system, it is
 best to use integer
data types. One-byte integer data tends to be the most stable image

format. Two- and four-byte integer data can often be read directly
from computer to
 computer, however certain computer architectures use different
formats for storing multi-byte
 integer data. These formats are known
as the byte order, and refer to the order in which the
 individual
bytes for a multi-byte integer are stored. The terms big-endian
and little-endian
 are often used to describe the two types of byte
ordering. DOS/Windows systems are
 typically little-endian while many
Unix systems are big-endian. Software tools exist for
 switching between
the two byte orderings, or byte-swapping. For example, the
Unix system
 has a built-in command called dd which has an option
for swapping data bytes. Similarly, the
 Idrisi GIS has a command
called SWAP.

The origin of "endian"

The concept of "big-endian" and "little-endian" comes from Jonathan Swift's
book

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 9

 Gulliver's Travels, in which certain people ate their hard-boiled
eggs starting at the
 small end, and some ate their eggs starting at the
big end. The ordering of bytes within
 an integer is similarly arbitrary.

Image header formats

In addition to the image data, a set of related data is required which
stores important attributes
 of the image such as the number of rows and
columns, the data type and file format, and the
 map projection information.
This attribute information is usually known as header data,
 because
it is often found at the beginning of an image file. Header data
can also be stored as a
 separate file.

Below is an example of the header data created by the Arc/Info gridascii
command. The
 header data contains enough information for a GIS to
correctly interpret the number of image
 rows and columns. The xllcorner,
yllcorner, and cellsize parameters allow a GIS to
 georeference
the image to other spatial data.

Example of image header data
ncols 1530

nrows 1769

xllcorner -2416518.9111918

yllcorner 1961603.4472114

cellsize 1000

NODATA_value -9999

-9999 -9999 -9999 -9999 -9999 ...

The gridascii command also creates a separate file with map projection
information. This
 information is required to correctly interpret
an image's X/Y coordinate data. Here is an
 example .prj
file:

Example of image projection information
Projection ALBERS

Zunits NO

Units METERS

Spheroid CLARKE1866

Xshift 0.0000000000

Yshift 0.0000000000

Parameters

 29 30 0.000 /* 1st standard parallel

 45 30 0.000 /* 2nd standard parallel

-96 0 0.000 /* central meridian

 23 0 0.000 /* latitude of projection's origin

0.00000 /* false easting (meters)

0.00000 /* false northing (meters)

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 10

Software Example (Arc/Info):

Application:

You've just created a floating-point grid which contains the average
January temperature over
 the USA in degrees Celsius. You want to
make these data available over the internet, and you
 don't want to exclude
those without access to Arc/Info. You decide to publish the data
in a
 generic flat image format. You'll need to round the floating-point
data to integer values.
 Assume that the floating-point image is called
JANFLOAT:

janint = con(janfloat >= 0, int(janfloat + 0.5), int(janfloat -
0.5))

Since the grid function int() truncates values rather than rounding
them, we add 0.5 to
 positive values of JANFLOAT and subtract 0.5 from negative
values of JANFLOAT. The
 above conversion has properly rounded the
January temperatures to the nearest integer.
 However, is this what
we want? All JANFLOAT cells with values from 4.500 to 5.499 are
 given
a value of 5 in the JANINT grid. We don't want to lose all of JANFLOAT's
floating-
point precision when we convert to integer, but we don't necessarily
need the full six digits of
 precision either. Let's assume that our
temperature grid is accurate to the nearest one-tenth
 degree. In
order to keep this information in the integer grid, we'll multiply JANFLOAT
by 10
 before rounding:

janint2 = con(janfloat >= 0, int(janfloat * 10 + 0.5), int(janfloat
* 10
 - 0.5))

Now JANINT2 contains our desired level of precision. Note that the
JANINT2 grid has units
 of tenths-of-a-degree Celsius, while JANINT and
JANFLOAT have units of degrees Celsius.
 The final step is to use
the GRIDIMAGE command to convert JANINT2 to a flat image
 format.

Mastery

Learning Objectives:

After completing this section you should:

Be aware of some scripting languages for creating custom data conversion
tools.
Have a rudimentary knowledge of the AWK language.

Tools for custom conversion

Sometimes a GIS has no built-in conversion command for a given dataset.
When this occurs,
 the best solution is often to create a custom conversion
tool. This can be done with a standard

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 11

 programming language such
as C, C++, Pascal, or Java. These languages allow a maximum
 amount
of freedom and flexibility for highly complex tasks, however they can be

cumbersome when used for less complicated tasks. Many data conversion
tasks can be done
 with much simpler scripting languages, which offer less
programming flexibility but result in
 programs (scripts) that are shorter,
easier to maintain, and easier to debug.
Scripting
 languages

The following are some common scripting languages which are available on
most hardware
 platforms:

AWK

The AWK program was created by Alfred Aho, Peter Weinberger,
and Brian
 Kernighan. AWK is a simple scripting language which
is designed to process text files
 on a line-by-line basis. Spatial
data are often available in formats which are perfectly
 suited for the
AWK language, such as data from the National Climatic Data Center in
 which
each line of a data file contains information for one measurement station.

AWK is most commonly found on the Unix operating system, however there are several
 versions available for DOS/Windows. There is an online awk manual
at: [link removed]

An AWK script is a simple text file, where each line consists of a pattern
followed by
 an action. The pattern determines whether or not
to act on the current line of the input
 file. If the pattern matches
the current input line, then the action is performed on that
 line.
Patterns are AWK expressions or Unix regular expressions (which
are beyond the
 scope of this document), and actions are AWK expressions
which are enclosed in curly
 braces: {}. When an AWK script is invoked
on a given input file, AWK automatically
 splits each field of the input
line into the variables $1, $2, $3, etc.

Let's say you have a text file with a list of longitude, latitude coordinates:

Longitude Latitude

-120.05 79.99

 123.11 81.23

 20.01 -11.45

 179.88 -0.21

 235.64 22.50

 -37.22 91.00

-111.11 87.23

The following AWK script could be used to extract all points south of the
equator:

 $2 < 0 {print}

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 12

The first part of the script, "$2 < 0" is the pattern. It matches
all lines of the input file
 where the second field (latitude, which is
automatically set to $2) is less than zero. The
 action of the script
is "{print}", which means to print the current line of the input file.

So the output of the script would contain the lines "20.01 -11.45"
and "179.88
 -0.21" .

Note that the text file above contains some illegal values for longitude
or latitude. The
 following script would find and print all lines
containing illegal values: (Note: "||" is
 the "or"
operator.)

 $1 > 180 || $1 < -180 || $2 > 90 || $2 < -90 {print}

Suppose your GIS software imports files only in the lon, lat order rather
than lat, lon.
 The following AWK script will reverse the order of
the longitude, latitude fields. Note
 that by omitting the pattern
in the script below, we have told AWK to process every
 line of the file.
The script contains only an action:

 {print $2, $1}

PERL - Practical Extraction and Report Language

Written by Larry Wall, PERL is "an interpreted language optimized for
scanning
 arbitrary text files, extracting information from those text files, and printing reports
 based on that information." PERL is similar to AWK, but contains far more flexibility
 and functionality, including complex data structures, the ability to handle binary data,
 numerous libraries of special functions, and object orientation. Like AWK, PERL was
 designed for the Unix operating system, however versions are available for
 DOS/Windows systems. PERL software and documentation are available at [link
removed]. A detailed introduction to the PERL language is beyond the
 scope
of this document.

Tasks:>

Write an AWK script which converts longitude/latitude coordinates from
 degrees/minutes/seconds to decimal degrees:

dms2dd.awk

AWK script for converting deg min sec coordinates to decimal
degrees.

Written for NCGIA CCTP By Rusty Dodson, 1/21/98.

If input file not specified, print usage and exit

BEGIN { # "begin" block executes
 once

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 13

 if (ARGC < 2) {

 printf("\n Usage: awk
-f dms2dd.awk infile \n")

 printf("\n Input file
format: lonD lonM lonS latD latM latS
 ID\n")

 exit 1

 }

}

The following statements execute once for each line of the input

file.

Input fields are automatically split into $1, $2, $3 ...

For readability, assign names to input fields 1-7

 { Xd = $1; Xm = $2; Xs = $3;

 Yd = $4; Ym = $5; Ys = $6;

 id = $7

 }

Convert longitude; account for negative degrees

 { if (Xd >= 0)

 lon = Xd + (Xm / 60) + (Xs / 3600)

 }

 { if (Xd < 0)

 lon = Xd - (Xm / 60) - (Xs / 3600)

 }

Convert latitude; account for negative degrees

 { if (Yd >= 0)

 lat = Yd + (Ym / 60) + (Ys / 3600)

 }

 { if (Yd < 0)

 lat = Yd - (Ym / 60) - (Ys / 3600)

 }

Print the results

 { printf("%12.6f %12.6f %15s\n", lon, lat, $7) }

Given the following text file (dms.dat) of degree/minute/second coordinate
data:

dms.dat
-149 54 1 61 13 5 Anchorage

 80 11 38 25 46 26 Miami

-119 41 50 34 25 15 SantaBarbara

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 14

Running the conversion script:

awk -f dms2dd.awk dms.dat

produces the following output:

 -149.900278 61.218056
Anchorage

 80.193889 25.773889
Miami

 -119.697222 34.420833
SantaBarbara

NOTE: the script can be written concisely as:

Concise version of dms2dd.awk
dms2dd.awk

 { printf("%12.6f %12.6f %15s\n",

 $1 >= 0 ? $1 + ($2
/ 60) + ($3 / 3600) : $1 - ($2 / 60) - ($3 /
 3600),

 $4 >= 0 ? $4 + ($5
/ 60) + ($6 / 3600) : $4 - ($5 / 60) - ($6 /
 3600),

 $7)

 }

Write a PERL script to convert signed integer image data to floating-point:

The following PERL script was written because, at the time, Arc/Info
could not properly
 read signed image data. The int2flt.pl
script was a quick-and-dirty solution to that
 problem. By converting
signed integer image data to floating-point, the Arc/Info
 command FLOATGRID
could be used to import the signed image data.

Extra comments were added to the PERL code below, yet much of it is
cryptic to those
 unfamiliar with the language. The point of including
it here is to demonstrate that a
 fairly complex data conversion can be
implemented with just 9 lines of PERL code.

int2flt.pl

#!/usr/local/bin/perl5 -w

By Rusty Dodson, 08/27/96.

Convert signed 2-byte integer image to 4-byte float:

set buffer size, initialize input buffer:

$bufsiz = 1024;

$inbuf = "";

while (1) {
infinite
 loop

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 15

 # read a chunk of data from the input data stream,
remembering
 number

 # of bytes read ($n_in):

 $n_in = read(STDIN, $inbuf, $bufsiz);

 # use "unpack" to convert integer data to the
array "@inval":

 @inval = unpack("s*", $inbuf); #
s = signed short integer

 # "pack the @inval array into a chunk of floating-point
data:

 $outbuf = pack("f*", @inval);
pack as float

 # write the float chunk to the output stream:

 $n_out = syswrite(STDOUT, $outbuf, $n_in * 2);
outbytes is
 2*inbytes

 print STDERR "read $n_in, wrote $n_out bytes...\n";

 # when end-of-file is reached, break the infinite
loop:

 exit 0 if(eof(STDIN));

}

Follow-up Units

Project management (UNIT 52)
Communicating about and distributing GIS products (UNIT 53)

Resources
[Outdated links have been removed.]

Contains information on DLG data, DEM data, land use/land cover data,
hydrologic
 data, and more.
SDTS frequently asked questions list
US Census Bureau
National Spatial Data Infrastructure

 Created: May 14, 1997. Last updated: October 5, 1998.

Unit 9: Spatial Data Conversion

The NCGIA Core Curriculum for Technical Programs
1996 - 1998

Page 16

