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Semi-analytical modeling of anchor loss in plate-mounted resonators

Christoph Schaala,b,∗, Robert M’Closkeyb, Ajit Malb

aDepartment of Mechanical Engineering, California State University, Northridge, California, USA
bMechanical and Aerospace Engineering Department, University of California, Los Angeles, California, USA

Abstract

A semi-analytical technique for estimating the energy loss in a resonator mounted to an infinite plate

substrate is proposed in this paper. In a plate, only Lamb waves have to be considered, leading to a

simplified characterization of the energy carried away from a vibrating source on the plate surface. Instead

of employing absorbing elements at the boundaries of the plate-resonator finite element model, it is shown

how the semi-analytical approach of stitching together analytical Lamb wave expressions to the finite element

model can be utilized. The approach is demonstrated for single and double cantilever configurations on a

plate. The results have excellent agreement with those of conventional transient finite element simulations.

Keywords: Micro-resonator, anchor loss, Lamb waves, semi-analytical, FEM

1. Introduction

Damping in miniature resonators (e.g. vibratory gyroscopes) is a consequence of many factors and

for the designer of such devices it is important to determine the dominant mechanisms that contribute to

energy loss [1]. Energy loss in a vibratory gyroscope due to the interaction with the substrate to which it

is mounted, commonly termed anchor loss, has been widely studied [2–4]. Most treatments, however, have

assumed a semi-infinite medium due to the small dimensions of the resonator compared to the substrate

thickness [5]. Recently reported high quality factor resonators, though, typically have resonant frequencies

from a few kilohertz up to several hundred kilohertz [6–9, 4], and due to the wavelengths involved, the

substrate is more accurately treated as a plate, not as a semi-infinite medium. These substrate plates are

often made of fused silica or Pyrex glass and can therefore be treated as an isotropic medium [9, 10]. In

any case, it is common practice to create a model of the resonator that includes a small segment of the

plate with a finite element (FE) software in conjunction with absorbing boundary elements [11, 5]. As an

alternative to implementing absorbing boundary elements, semi-analytical methods have been developed

in which such elements are replaced by analytical expressions for Lamb waves [12]. By means of a modal

superposition of all possible Lamb waves, any displacement and stress field can be represented due to the
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fact that Lamb waves form a complete set [13]. Such semi-analytical methods have been successfully applied

to investigate Lamb wave-scattering from damaged areas using FE models [14, 15] and boundary element

(BE) models [16], and can also be applied here. The semi-analytical approach requires the specification of

a harmonic load and the determination of the subsequent harmonic response at a point on the resonator.

The modal frequency and damping can be estimated from the frequency response function (FRF) that has

been computed on a frequency grid. The solution of transient problems can be obtained through inversion

of the frequency domain solution using IFFT codes.

Extensive research has been conducted on the propagation of Lamb waves in isotropic and anisotropic

plates [17–21]. Mal and Lih [22] and Lih and Mal [23] have derived the exact solution of three-dimensional

problems, consisting of multi-layered, angle-ply laminates of finite thickness and large lateral dimensions

that are subject to various types of surface loads. Approximate thin-plate theories have also been developed

to obtain the analytical solutions for the response of thin isotropic and anisotropic plates to surface loads

[24]. However, the derivation of the expressions for the sources created in the support region by the resonator

motion can be challenging to determine [25]. Other semi-analytical methods, such as the distributed point

source method (DPSM) [26], have recently been developed extend the scope of such analyses.

This paper revisits the previously described semi-analytical approach, in which an external load is artifi-

cially applied to the resonator for purpose of computing the FRF. The resonator and a small section of the

substrate plate are discretized using standard FE methods, and then analytical expressions are used to apply

appropriate boundary conditions according to the Lamb wave theory. The resulting overdetermined system

of linear equations can be solved in a least-square sense. A wave and finite element (WFE) approach [27, 28]

is used to determine the required roots of the Lamb wave dispersion equations. It should be noted that

the WFE-based approach can also be applied to more complex anisotropic structural components [21, 29].

Alternatively, the spectral finite element (SFE) method [30, 31] can also be used to determine these roots.

Without loss of generality, only two dimensional problems are considered in this paper. The idea is first

demonstrated on a single cantilever attached to an elastic plate. For high quality factor resonators with

minimal material damping and anchor loss, transient simulations become impractical and alternative meth-

ods are required for estimating the apparent damping in the resonator. Hence, a second case is investigated

with the semi-analytical method in order to demonstrate its feasibility for the case of two cantilevers located

in close proximity to each other.

The paper is organized as follows. A motivating example consisting of a discrete undamped spring-mass

resonator attached to a semi-infinite beam is discussed in Section 2. The frequency response of the mass

position due to a harmonic force applied to the mass has a closed form solution. In Section 3, the semi-

analytical methods to solve the more realistic case of a resonator attached to an elastic plate are presented.

The fundamentals of guided ultrasonic wave propagation in plates are briefly reviewed in Section 3.1. The

semi-analytical frequency response method for the given class of problems is formulated in Section 3.2. In
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Figure 1: Discrete spring-mass system pinned to a semi-infinite beam

Section 4, the semi-analytical method is applied to cantilever beam resonators in various configurations.

Additionally, results are also obtained from transient FE simulations. Some observations and discussion are

given in Section 5, and Section 6 presents concluding remarks.

2. Motivating example

In this section, an example is considered for which the semi-analytical steady-state frequency response

analysis can be determined in closed-form. The model is a semi-infinite beam which is coupled at one end

to a spring-mass subsystem, as shown in Fig. 1. The spring (spring constant k0) and discrete mass m0

represent a lossless subsystem, which is coupled to the beam with a pin joint (zero moment). The beam is

assumed to have mb mass per unit length, Young’s modulus E and cross-sectional moment of inertia I.

For low frequencies, the dynamics of this system are described by the Euler-Bernoulli beam equation

a2 ∂
4v

∂x4 + v̈ = 0 , a =
√
EI

mb
(1)

with the boundary conditions

m0ÿ = −k0y + f − EI ∂
3v

∂x3

∣∣∣∣
x=0

and ∂2v

∂x2

∣∣∣∣
x=0

= 0 , (2)

where v represents the transverse displacement of the beam, x ≥ 0 is the distance along the beam, and y is

the displacement of the discrete mass (y(t) = v(0, t)).

Assuming beam motion of the form ei(kx−ωt), yields the beam dispersion relation k4 = ω2/a2. Two

wavenumbers are of physical relevance to this problem when ω > 0: a real, positive solution k1 =
√
ω/a

that represents a right-propagating wave (x → +∞), and another positive imaginary solution k2 = i
√
ω/a

that represents a decaying non-propagating wave. In order to determine the frequency response of the

discrete mass, the external force is defined as the harmonic function f(t) = e−iωt. The function

v(x, t) = u1 ei(k1x−ωt) +u2 ei(k2x−ωt) (3)
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satisfies the beam equation and u1, u2 ∈ C are constants to be determined such that this solution is also

consistent with the mass motion and zero-moment interface conditions. This yields the expression−ω2m0 + k0 − iEIk3
1 −ω2m0 + k0 − iEIk3

2

k2
1 k2

2


︸ ︷︷ ︸

D(ω)

u1

u2


︸ ︷︷ ︸

u

=

1

0

 , (4)

from which {u1, u2} are determined to be

u1 = u2 =
1
2

−ω2m0 + k0 − 1
2EI

ω
a

√
ω
a (1 + i)

.

The harmonic beam response is

v(x, t) =
1
2
(
eik1x + eik2x

)
−ω2m0 + k0 − 1

2EI
ω
a

√
ω
a (1 + i)

e−iωt ,

and the discrete mass response is

y(t) = v(0, t) = 1
−ω2m0 + k0 − 1

2EI
ω
a

√
ω
a (1 + i)

e−iωt . (5)

Due to the phase of the harmonic forcing, the expression multiplying e−iωt in Eq. (5) is the complex conjugate

of the Fourier transform of the discrete mass impulse response. Thus, if h denotes the impulse response of

the discrete mass, then the frequency response function associated with its position is

F(h) = 1
−ω2m0 + k0 − 1

2EI
ω
a

√
ω
a (1− i)

, (6)

where F(·) is the Fourier transform operator.

The magnitude and phase of the FRF in Eq. (6) are shown in Fig. 2(a) when the model parameters

are selected as EI = 1 Nm2, a = 1 m2/s, k0/m0 = 1 1/s2, mb = 1 kg/m and m0 = 2 kg. These parameters

are selected for illustrative purposes and are not intended to model a physical system. The inverse Fourier

transform of Eq. (6) is numerically approximated and yields the impulse response h, shown in Fig. 2(b)

(numerically approximated). This analysis is analogous to the well-established semi-analytical approach for

studying the steady-state properties of plates and layered media in unbounded domains. In this example,

the analytical expression for the wave motion in the beam, i.e. v(x, t), is a proxy for the plate Lamb

waves’ expressions, and the discrete spring-mass system represents the discretized FE portion of the plate

and attached resonator. For a harmonic force applied to the discrete spring-mass system, the amplitudes

{u1, u2} of the analytical expression for the beam are determined such that the discrete spring-mass motion

matches that of the beam at their interface.

A typical approach to compute the apparent damping in the discrete mass position is to fit a single

degree of freedom (SDOF) damped linear harmonic oscillator model to the FRF data shown in Fig. 2(a).

An interesting feature of this example, though, which is also shared by the semi-analytical method applied
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Figure 2: Response graphs for the discrete mass m0 coupled to a semi-infinite beam

to plate problems, is the fact that the FRF is not a rational function of ω. Hence, attempts to estimate

a “natural frequency” and associated “damping” from the magnitude and phase graphs (or time domain

response) are necessarily approximations. Nevertheless, from a practical perspective, reasonable estimates

can be obtained. For example, since the impulse response of a linear, damped SDOF system is given by

hSDOF(t) = αe−σt sin(ω̃t)1(t), where 1 is the Heaviside step function, the parameters {α, σ, ω̃} are determined

so that the Euclidean norm of the difference between the numerically estimated impulse response of the mass-

beam system and hSDOF(t) is minimized over a desired time interval. Here, these parameters are chosen to

minimize
∑
k(h(tk) − hSDOF(tk))2, where the summation index k covers the time grid of the numerical

estimate of h(t) on the interval [0, 100] s. This optimization yields the parameters α = 0.4676, σ = 0.0970,

and ω̃ = 0.8841. The graph of hSDOF(t) is shown as a solid gray line in Fig. 2(b) and is observed to be

indistinguishable from the actual impulse response h(t) (red dashed) on the displayed scale.

3. Analysis of resonators attached to plates

3.1. Ultrasonic wave propagation in plates

The fundamentals of ultrasonic wave propagation in plates are briefly reviewed in this section. Guided

ultrasonic wave propagation in homogeneous isotropic plates as well as in more complex media, e.g. isotropic

multi-layered plates, have been studied by numerous authors (e.g. [17, 18, 32]). More recently, theoretical

and experimental studies in anisotropic media have also been carried out [20, 21]. Guided waves in homo-

geneous plates are called Lamb waves [12]. The characteristic equations for Lamb waves, denoted ∆a for

antisymmetric wave motion and ∆s for symmetric wave motion, are well known and can be expressed in the
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Figure 3: Frequency response approach: the resonator and a small segment of the substrate plate are modeled with finite
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form [33]

∆a =
(
2k2 − k2

2
)2 sinh(η1H) cosh(η2H)− 4k2η1η2 cosh(η1H) sinh(η2H) = 0 and (7)

∆s =
(
2k2 − k2

2
)2 cosh(η1H) sinh(η2H)− 4k2η1η2 sinh(η1H) cosh(η2H) = 0 . (8)

In above equations,

ηj =
√
k2 − k2

j , kj = ω

cj
, for j = 1, 2 , (9)

where ω is the angular frequency, k is the wavenumber, H is half the plate thickness and c1 and c2 are the P-

and S-wave speeds, respectively. For the sake of brevity, the general expressions for displacement and stress

fields for symmetric and anti-symmetric Lamb waves are omitted here but can be found in the literature

(e.g. [34]).

Solving for the real, imaginary and complex roots of the transcendental equations (7) and (8) is challeng-

ing, however, the necessity of having all these roots and their meaning has been addressed by various authors

[35–37]. A number of so-called semi-analytical methods have recently been developed to determine the roots

of the dispersion equations corresponding to propagating, non-propagating and evanescent Lamb waves in

multi-layered waveguides [30, 31, 27]. In all of these methods, roots of Eqs. (7) and (8) are determined. In

this paper, the wave and finite element (WFE) approach [27, 38, 28] is used to determine the real, imaginary

and complex roots of the aforementioned dispersion equations due to the method’s versatility

3.2. Frequency response analysis

A semi-analytical method is used to determine the harmonic response of a harmonically forced resonator

mounted to a plate. A finite element (FE) model of the resonator and finite portion of the substrate plate

is created as shown in Fig. 3 where, without loss of generality, a cantilever beam represents the resonator.

Analytical Lamb wave expressions are matched to the nodal displacements and forces at the FE plate

boundaries. Since a forcing mechanism is required in this analysis, the resonator is harmonically loaded,

and the harmonic response at a reference node on the resonator is used as the “pick-off” in order create a

FRF for the system.
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The FE modeling process yields the dynamics of the resonator and plate segment, which are described

by the equations of motion

Mü+Ku = f , (10)

where M and K are the mass and stiffness matrices, and u and f are the nodal displacement and forces,

respectively. Note that material damping is not considered in this analysis. Assuming harmonic forcing of

the form e−iωt with ω ∈ R, a harmonic particular solution can be determined fromDII DIB

DBI DBB


︸ ︷︷ ︸

D

uI

uB

 =

f I

fB

 , (11)

where the dynamic stiffness matrix D is given by

D = −ω2M +K. (12)

The displacement and force arrays are arranged into two partitions: the subscripts I and B denote interior

and boundary nodes, respectively. Although the inner degrees of freedom uI can be eliminated from Eq. (11)

by applying

uI = D−1
II (f I −DIBuB) , (13)

this would involve a numerically costly inversion of the matrix DII. Instead, the necessary inversion is

performed on the boundary nodes as shown below.

At the boundary interfaces, continuity and equilibrium equations must hold between the FE and ana-

lytical models [14]:

uana = uB and fana = −fB . (14)

Using the Lamb wave theory, analytical expressions for displacements uana and tractions tana can be written

as a superposition of nm modes

uana =
nm∑
i=1

ûiai = Ûa and tana =
nm∑
i=1

t̂iai = T̂ a , (15)

where the columns of the matrices of modal displacements Û and tractions T̂ are composed of the corre-

sponding mode shape vectors, i.e.

Û =
[
û1 û2 . . . ûnm

]
and T̂ =

[
t̂1 t̂2 . . . t̂nm

]
. (16)

The scalar unknown modal amplitudes ai are dependent on any wave sources in the FEA model and are

combined into the column matrix a. The tractions are determined from the corresponding stresses σ

(e.g. [34]) and the relation t = σ ·n, where n is the normal vector of the corresponding boundary interface.

The expressions for the displacements and stresses are typically given for right-propagating waves, i.e. waves
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that propagate towards +∞. Since waves through the left interface must propagate to the left (towards

−∞), the wavenumber k is replaced by −k to transform the expression for right-propagating waves into the

appropriate counterparts for left-propagating waves. It is also worth mentioning that other truncations of

the infinite sums in Eq. (15) might be desirable for other problems [39, 40]. In order to satisfy Eq. (14),

the analytical expressions are evaluated at spatially discretized nodes that correspond to the nodes of the

FE model. Furthermore, tractions t̂ are converted into nodal forces f̂ via a common integration technique

using shape functions.

Combining the expressions from Eqs. (14) and (15), writing tractions in the form of nodal forces (t̂→ f̂

and T̂ → F̂ ), and noting that Û has full column rank allows the nodal forces at the FE-analytical boundary

to be written in terms of the wave amplitudes at the boundary nodes

fB = F̂ Û
†
uB , (17)

where Û † denotes the Moore-Penrose generalized-inverse of Û . Substituting Eq. (17) into Eq. (11) and

rearranging yields DII DIB

DBI DBB − F̂ (ω)Û †(ω)


︸ ︷︷ ︸

Da(ω)

uI

uB

 =

f I(ω)

0

 , ω ∈ R , (18)

where Da(ω) is the augmented dynamic stiffness matrix. The fact that the generalized-inverse of Û is

used is a well-established practice for this purpose [41]. The only non-zero entries in the array f I of nodal

forces at interior nodes correspond to the external excitation of the resonator. Assuming a sufficiently fine

discretization of the FE model, Eq. (18) is an overdetermined system of linear equations for which a least-

squares solution is determined for each frequency of interest. The solution [uI uB]T is calculated at every

node and frequency response functions are thus determined.

4. Numerical results

In the following, the semi-analytical methods are applied to two problems: a cantilever beam mounted

on a substrate plate in Section 4.1 (see Fig. 4(a)), and a double cantilever problem in Section 4.2 (see

Fig. 4(b)). The resonator-plate system is assumed to follow homogeneous, isotropic, linearly elastic material

behavior. Plane-strain FE models are implemented in the software package Abaqus and post-processing is

performed in Matlab. To this end, the interface conditions between the numerical and analytical domains

are implemented after importing nodal information and global mass and stiffness matrices into Matlab. For

the FE model, 4-node bilinear elements (CPE4) are used with a spatial resolution of about 0.1 mm, which is

over 40 times smaller than the smallest wave length of the Lamb waves in the considered frequency range.

For the FRF analysis, the resonator is harmonically loaded at all nodes on the top edge, and the harmonic

8
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Figure 4: Scale figures of the FE models used in semi-analytical methods. Loading is only applied for determining the FRF at
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response is determined at the reference node. Transient FE simulations are also performed in both cases for

comparison to the steady-state analysis results.

4.1. Single Cantilever

Consider a cantilever (length d = 1.906 mm, thickness w = 0.445 mm) that is bonded to a substrate

plate segment (thickness 2H = 1.78 mm, l = 20 mm) of the same material (aluminum, Young’s modulus

E = 69 GPa, shear modulus G = 26 GPa, density ρ = 2700 kg/m3), as shown in Fig. 4(a). This system will

first be analyzed for its frequency response according to Section 3.2. A uniform shear traction in the x-

direction is applied to all nodes on the top edge of the cantilever while all other interior nodes are unforced.

The WFE method is used to compute the necessary wavenumbers for the propagating, non-propagating

and evanescent waves for frequencies between 50 kHz and 500 kHz. For example, the wavenumbers for

f = 100 kHz are shown in Fig. 5. The two relevant real roots are denoted by ×, the imaginary root by +

and complex roots are marked by •.

For the considered plate segment, the interfaces between the FE and analytical domain are about six

plate thicknesses away from the cantilever “source,” and only nine roots (real, imaginary and complex)

are retained for the analysis. The corresponding mode shape vectors form Û and F̂ so that Eq. (18) can

be solved. Magnitude and phase of the solution of Eq. (18) for this problem are shown as solid lines in

Fig. 6(a). The maximum amplitude is located at f = 83.7 kHz, and this eigenfrequency corresponds to the

first eigenmode of the cantilever coupled to the substrate plate. The damping is approximated as 14.1 1/s

based on the fit of an SDOF model to the FRF data, minimizing the Euclidean norm of the differences.

Referring to the example in Section 2, the frequency response function is not a rational function of ω, so

the fit can only be achieved in an approximate sense. Note that the non-zero damping value indicates

that this mode shape, corresponding to what would be considered the first bending mode of the cantilever,

9
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Figure 6: FRFs at reference node for single cantilever problem. Solid lines correspond to the l = 20 mm model and dashed
lines denote results for the l = 10 mm model. Magnitudes are normalized to maximum value

experiences damping due to the energy transport of the propagating Lamb waves in the substrate plate [25].

The frequency of this damped mode is lower than the frequency of the cantilever’s first bending mode when

it is fixed to a rigid inelastic substrate. The FRF near the second eigenmode is also shown in Fig. 6(b) and it

is observed that the apparent damping of this mode is higher than that of the first eigenmode. In addition,
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l = 20 mm model and dashed lines denote results for the l = 10 mm model

a second model is created with a plate segment size of l = 10 mm. In this configuration, the interfaces are

only about three plate thicknesses away from the source. The results for nm = 9 are shown as dashed lines

in Figs. 6(a) and 6(b), and it is seen that the curves are close to those from the 20 mm model.

In a second step, the influence of the number of considered modes is investigated, while keeping the

length l = 20 mm of the plate segment and the mesh size δ = 100 µm constant. For this purpose, the

reader is referred to Fig. 5 for the complex wavenumbers and corresponding numbering of the modes. It is

commonly assumed that at distances larger than about five times the thickness of the plate (5 · 2H) from

the source, only the propagating modes are relevant (e.g. [32]). However, as it is shown in Fig. 7, even

for the l = 20 mm case, at least one additional non-propagating mode needs to be considered for accurate

results. At nm = 7, convergence is achieved. For the l = 10 mm model, at least seven modes need to be

considered for accurate results. Further increasing the number of considered modes to nm = 9 does not

seem to improve the results. Note that for the convergence graphs in Fig. 7, a maximum of nm = 9 modes

has been considered since the least-square problem does not yield accurate results for a larger number of

modes. This is in part due to the fact that the number of unknown wave amplitudes approaches the number

of equations.

In order to compare the results from the semi-analytical approaches, a standard transient FE simulation

is carried out. A full two-dimensional plane-strain model of the investigated cantilever mounted on a

substrate plate is created in Abaqus, however, the substrate plate is created with a length of 1 m such that

edge reflections do not interfere with the data of interest within the simulation time. In order to avoid

rigid body motion, fixed boundaries are introduced at the left and right edge of the plate, i.e. u = 0 at

x = ±0.5 m, while all other edges are considered traction free. In order to calculate the transient responses

at the reference nodes, Abaqus’ explicit time integration mode is used with a fixed time step of 10 ns and a
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Figure 8: Transient FE results for cantilever demonstrator are shown as red solid lines. The impulse response of the fitted
SDOF system is shown a gray dashed line. Signals are normalized to the maximum value

simulation duration of 150 µs. Meshing parameters are the same (i.e. δ = 100 µm), however, CPE4 elements

are replaced by their CPE4R counterparts for explicit time integration. The horizontal displacement u(t) of

the reference node on the cantilever due to an initial velocity that is applied to the top edge of the cantilever

is shown in Fig. 8(a) as a red solid line. The first eigenfrequency of the damped cantilever is identified by

fitting an SDOF system to the data, resulting in f = 84.4 kHz and σ = 14.0 1/ms. The impulse response of

the SDOF system is shown as a gray dashed line. In Fig. 8(b), the time history of the vertical displacement

v(t) for the node on the substrate plate at x = 20 mm is shown. It can be seen that the cantilever induces

propagating Lamb waves in the substrate plate. Evaluating the arrival time of the wave front, it can be

concluded that mostly antisymmetric waves are induced from the bending of the cantilever.

Results from both the semi-analytical and the transient FE analysis are summarized in Table 1, showing

good agreement.

4.2. Double cantilever

Demonstrating the capabilities of the proposed modal analysis approach becomes more evident for a

problem for which standard FE methods are less practical. That is, for a high quality factor resonator,

energy loss from the resonator into the plate is small and evaluating the transient result would require very

long simulation times in order to estimate an accurate decay rate. However, in order to avoid reflections

Table 1: Results for the single cantilever problem
FRF Transient

Eigenfrequency f 83.7 84.4 kHz
Damping σ 14.1 14.0 1/ms
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Figure 9: FRF results for double cantilever problem with symmetric (anti-phase) and anti-symmetric loading (in-phase) near
first eigenfrequency. Magnitudes are normalized to maximum value

from the ends of the plate, either a very large plate has to be modeled or absorbing boundary conditions

have to be implemented [11]. The forced semi-analytical does not suffer from such drawbacks. For the sake

of simplicity, the chosen resonator is a double cantilever problem that consists of two identical cantilevers

perfectly attached to a substrate plate of the same material, as shown in Fig. 4(b). Geometrical and material

parameters are identical to the ones from the previous problem. The distance between the two cantilevers

is chosen to be 0.5 mm.

By utilizing the frequency response approach, the FRFs for the top left corner node of the left cantilever

are determined for symmetric (anti-phase) loading, as shown in Fig. 4(b), and anti-symmetric (in-phase)

loading and are shown in Fig. 9(a) and Fig. 9(b), respectively. Comparing the two results, it can also be

seen that anti-symmetric loading causes significantly higher damped vibrations.

In addition, the transient response at the top left corner of the left cantilever to a symmetric (anti-phase)

initial velocity field is shown in Fig. 10(a). It can be seen that the anti-phase motion of the cantilevers and

their close proximity results in a destructive interference of the induced waves, producing reduced energy

loss for this mode of vibration. In other words, the amplitudes of induced propagating Lamb waves are very

small. On the other hand, for an antisymmetric (in-phase) initial velocity field, strong damping occurs. The

13



Time [µs]

N
or

m
.

di
sp

la
ce

m
en

t

0 50 100 150
−1

−0.5

0

0.5

1

(a) Reponse for symmetric loading

Time [µs]

N
or

m
.

di
sp

la
ce

m
en

t

0 50 100 150
−1

−0.5

0

0.5

1

(b) Response for antisymmetric loading

Figure 10: Transient FE results for double cantilever problem with symmetric (anti-phase) and anti-symmetric loading (in-
phase) through initial velocity field are shown as red solid lines. Signals are captured at the reference node on the top left
corner of the left cantilever and are normalized to maximum value of envelope functions. The impulse responses of fitted SDOF
systems are shown as gray dashed lines

transient response for this case is shown in Fig. 10(b).

Comparing the results from both methods, summarized in Table 2, again good agreement can be found.

5. Discussion

Transient FE simulations can be considered the most established method for determining the damping

time constants [42]. However, for high quality factor resonators this approach is inadequate due to the fact

that the simulated response will not exhibit sufficient decay in amplitude in the reflection-free time interval

in order to estimate an accurate value of the damping. Another challenge for the transient simulations is

the selection of initial conditions to excite the desired mode. In the cantilever transient simulations (cf.

Fig. 8), the initial conditions clearly excite multiple modes despite the fact that the initial conditions were

chosen so that a single mode dominated the response. For more complicated resonators, the selection of

initial conditions so that the subsequent response is dominated by the mode of interest may not be so

Table 2: Results for the double cantilever problem
FRF Transient

Symmetric (anti-phase) motion
Eigenfrequency fs 86.0 84.4 kHz
Damping σs 1.1 1.70 1/ms
Anti-symmetric (in-phase) motion
Eigenfrequency fa 86.1 84.6 kHz
Damping σa 29.6 28.0 1/ms
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clear. A related challenge for the semi-analytical steady state analysis is the selection of the forcing term(s)

to preferentially excite a given mode. For modes that are well-spaced in frequency, it is straightforward to

estimate a quality factor from the frequency response function in a neighborhood of the resonance. However,

for modes that are in close proximity, the forcing details and “pick-off” locations can have a large influence on

the resulting FRF and so it is more complicated to determine the frequencies and damping values associated

with the interacting modes. Furthermore, since the FRF analysis is equivalent to an impulse response

calculation, the broadband aspect of the excitation creates frequency response functions that are irrational

functions of frequency and, thus, the modal frequency and damping that one associates with an SDOF

model can only be an approximation. Nevertheless, from a practical perspective, this is a minor objection

since reasonable SDOF responses can be fit to either the transient data or the FRF as was shown in the

examples.

6. Concluding remarks

In this paper, a semi-analytical technique for estimating the energy loss in a resonator mounted to a plate

substrate has been proposed. The method of stitching together a finite element model and analytical Lamb

wave expressions is utilized to generate FRF data to which a SDOF system is fitted in order to approximate

modal frequency and damping values. The method has been applied to several plane-strain problems includ-

ing single- and double-cantilever resonators mounted to thin homogeneous, isotropic plates. By means of

this approach, the damping time constants have been directly identified for all investigated eigenfrequencies

of the resonator-plate systems. A comparison of the results to those from the semi-analytical frequency

response approach and to those from transient FE simulations reveal excellent agreement. Improving the

method’s computational efficiency will be part of future research, as well its application to more realistic

resonator models including three dimensional problems, such as hemispherical resonator gyroscopes.
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