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Clinical validation of an AI-based 
pathology tool for scoring of metabolic 
dysfunction-associated steatohepatitis

Hanna Pulaski    1,19, Stephen A. Harrison    2,19, Shraddha S. Mehta1,12, 
Arun J. Sanyal    3, Marlena C. Vitali1,13, Laryssa C. Manigat1, Hypatia Hou1, 
Susan P. Madasu Christudoss1,14, Sara M. Hoffman1,15, Adam Stanford-Moore    1, 
Robert Egger1, Jonathan Glickman    1,16, Murray Resnick1,17, Neel Patel1, 
Cristin E. Taylor1, Robert P. Myers4, Chuhan Chung5, Scott D. Patterson    6, 
Anne-Sophie Sejling7, Anne Minnich8, Vipul Baxi8, G. Mani Subramaniam4, 
Quentin M. Anstee    9, Rohit Loomba    10, Vlad Ratziu    11, 
Michael C. Montalto1,18, Nick P. Anderson1, Andrew H. Beck    1 & 
Katy E. Wack    1 

Metabolic dysfunction-associated steatohepatitis (MASH) is a major cause 
of liver-related morbidity and mortality, yet treatment options are limited. 
Manual scoring of liver biopsies, currently the gold standard for clinical trial 
enrollment and endpoint assessment, suffers from high reader variability. 
This study represents the most comprehensive multisite analytical and 
clinical validation of an artificial intelligence (AI)-based pathology system, 
AI-based measurement of metabolic dysfunction-associated steatohepatitis 
(AIM-MASH), to assist pathologists in MASH trial histology scoring. 
AIM-MASH demonstrated high repeatability and reproducibility compared 
to manual scoring. AIM-MASH-assisted reads by expert MASH pathologists 
were superior to unassisted reads in accurately assessing inflammation, 
ballooning, MAS ≥ 4 with ≥1 in each score category and MASH resolution, 
while maintaining non-inferiority in steatosis and fibrosis assessment. These 
findings suggest that AIM-MASH could mitigate reader variability, providing 
a more reliable assessment of therapeutics in MASH clinical trials.

Metabolic dysfunction-associated steatotic liver disease (MASLD)1 is 
emerging as an important global health challenge, affecting approxi-
mately a quarter of the global population2. The progression of MASLD to 
MASH has emerged as the foremost reason for liver transplants among 
women3, with predictions suggesting that it may soon account for the 
leading overall cause of liver transplant4. The urgency of the situation 
is underscored by the limited number of approved therapeutic inter-
ventions by the Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) for MASH, even though it affects a substantial 
number of patients worldwide. The landscape of drug development in 

this domain is fraught with trials that have shown borderline results or 
outright failures based on liver histology.

The challenge is exacerbated by the absence of a reliable and vali-
dated histologic scoring mechanism to ascertain patient suitability for 
clinical trials and to evaluate the success of experimental treatments. 
Histologic-based assessment of liver biopsies is currently the gold 
standard for MASH diagnosis. This diagnosis is based on the presence 
of specific histologic patterns observed in the absence of substantial 
alcohol consumption, and the patterns with extent of fibrosis play a piv-
otal role in disease staging. The FDA has recognized that alterations in 

Received: 6 May 2024

Accepted: 16 September 2024

Published online: 4 November 2024

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: katy.wack@pathai.com

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-024-03301-2
http://orcid.org/0000-0001-8092-0066
http://orcid.org/0000-0001-8285-2204
http://orcid.org/0000-0001-8682-5748
http://orcid.org/0000-0002-0689-2607
http://orcid.org/0000-0003-0910-2655
http://orcid.org/0000-0002-9840-4964
http://orcid.org/0000-0002-9518-0088
http://orcid.org/0000-0002-4845-9991
http://orcid.org/0000-0002-6865-3791
http://orcid.org/0000-0002-9978-134X
http://orcid.org/0009-0008-7761-3637
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-024-03301-2&domain=pdf
mailto:katy.wack@pathai.com


Nature Medicine | Volume 31 | January 2025 | 315–322 316

Article https://doi.org/10.1038/s41591-024-03301-2

verification of the AIM-MASH (AI-based measurement of nonalcoholic 
steatohepatitis) AI-based clinical trial tool21. In this previous body of 
work, the algorithm was developed and verified for accuracy compared 
to a panel of manual readers to confirm that the tool was ready to be 
locked. As proof of concept, the algorithm alone (without pathologist 
review) was also retrospectively deployed on the ATLAS clinical trial 
dataset to demonstrate the utility of the tool. The work presented here 
represents extensive, multisite analytical and clinical validation of the 
algorithm alone and as an assist to MASH pathologists, as it would be 
used prospectively in a clinical trial, with each histologic component 
score being assessed individually and as a part of histologic-based com-
posite inclusion criteria and endpoint determination. This validation 
study, the largest known of its kind, included approximately 13,000 
independent reads for over 1,400 biopsies across four completed, 
global MASH clinical trials with various drug mechanisms of action. The 
study was performed across multiple sites and included samples with 
extensive variation in disease activity as well as biopsy, staining and 
scanning quality. Multiple prospectively collected pathologist reads 
per case (in which readers were either unassisted (independent manual 
readers; IMR) or assisted by AI) were collected from MASH expert 
pathologists, including reads from an independent ‘gold-standard’ 
consensus group or ground truth (GT). These reads were used to exter-
nally and robustly test both the algorithm alone and as used as an aid 
to pathologists (Fig. 1a) in representative trial settings. This extensive 
collection of AIM-MASH validation studies and analyses was designed 
in partnership with the FDA, the EMA and multiple experts from aca-
demia and drug development over several years of collaborative work. 
The aim was to demonstrate the tool’s ability to provide a reliable, 
efficient solution for pathologists to address the urgent unmet need 
for accurate, standardized, clinical trial enrollment and histologic 
endpoint assessments, paving the way for more streamlined MASH 
drug approval pathways.

Once a tool is analytically and clinically validated and is fully 
qualified by the FDA and the EMA in the Drug Development Tool and 
Novel Methodologies for Drug Development programs, it is then more 
broadly available for use by pathologists in place of manual scoring for 
all histologic assessments in MASH trials.

A clinical diagnostic intended use could require further training 
and/or validation to align with the clinical MASLD intended use popula-
tion because this may differ from the clinical trial population but could 
be beneficial to pathologists in the diagnostic setting.

Results
Overlay validation analyses
The overlay validation was a substudy, independent of the analytical 
and clinical validations, designed to validate the use of the algorithm- 
generated overlays to assist the pathologist in reviewing the slide and 
AIM-MASH scores. Up to 160 frames or regions of interest within the 
whole-slide image (WSI) with a predefined area per feature (steatosis, 
lobular inflammation, hepatocellular ballooning, fibrosis, hematoxylin 
and eosin (H&E) artifact and trichrome artifact) were evaluated in this 
study (some frames were enrolled for multiple features). Distributions 
of frames based on slide-level score (GT scores) are listed in Extended 
Data Table 1, and distributions of frames based on frame-level scores 
(collected from the enrollment pathologist) are listed in Extended Data 
Table 2. For each frame and each feature, the pathologists indicated 
whether the feature was present (yes or no), shown in Extended Data 
Table 3.

The acceptance criteria for true positive (TP; evaluation of under-
estimation by overlay) success were met for all feature overlays except 
for hepatocellular ballooning, where it was narrowly missed, and the 
mean success rates were all above 0.85. H&E artifact TP success rate 
was 0.97 (95% confidence interval (CI), 0.95–0.99), trichrome arti-
fact was 0.99 (95% CI, 0.97–1), lobular inflammation was 0.94 (95% CI, 
0.92–0.96), steatosis was 0.96 (95% CI, 0.93–0.98), and fibrosis was 

these histologic attributes, observable through liver biopsies, are likely 
indicative of clinical benefits5. Consequently, these score-based disease 
activity and stage changes are deemed viable surrogate endpoints in 
MASH clinical trials for accelerated approvals6,7. Key instruments like 
the MASLD activity score (MAS) by the MASH Clinical Research Network 
(CRN) facilitate disease activity measurement8, while the CRN fibrosis 
scale evaluates fibrosis progression or improvement and is an influen-
tial predictor of long-term outcomes9. Regulatory bodies such as the 
FDA and the EMA predominantly rely on the CRN MASH measurement 
systems to determine surrogate endpoints6,7,10.

The recent emergence of noninvasive tests (NITs) has led to an 
initiative to replace biopsies with NITs and has been discussed in the 
MASH community. However, there are no NITs or combination of NITs 
that are currently analytically or clinically validated for broad use 
in trials, which demonstrate high sensitivity, specificity and repro-
ducible grading and staging of patients with MASH for use as surro-
gate endpoints in MASH clinical trials. Acquiring this validation data, 
including clinical outcomes across multiple drug candidates, will take 
years. Many biopsy-based MASH clinical trials are currently in phase 
2 and 3 trials, and the recent accelerated approval of resmetirom was 
achieved through consensus scoring, with re-read methods used to 
confirm histologic score-based primary endpoints11. This burdensome 
approach can be necessary to overcome questions around reader bias 
and variability, which can affect the accuracy of histologic-based score 
change and, therefore, determination of whether a drug candidate 
has met its primary endpoint or to measure and monitor its efficacy. 
Additionally, the current gold-standard approach is still subject to 
substantial interpanel variability, demonstrating that there remains 
a lack of standardization and therefore of reliable, accurate scoring12. 
Full approval will not occur until clinical outcomes show a favorable 
benefit-to-risk profile in treated patients when these results are col-
lected over multiple years. This substantial read variability is a major 
risk for potentially effective treatments to fail in phase 2b trials, which 
have relatively low sample sizes, and phase 3 trials or to require very 
costly and burdensome, multiple-read strategies to confirm and meas-
ure efficacy. Therefore, there is still an urgent unmet need for a tool that 
can be used by pathologists to enroll and measure histologic change 
for accelerated approval accurately, precisely and in a standardized 
manner. In addition, it will be important to understand the relationship 
between histologic-based assessments in validating NITs for diagnostic 
contexts of use.

The interpretation of the current scoring systems presents sub-
stantial challenges to clinical trial outcome analysis, particularly con-
cerning reproducibility13–17. Given that the gold-standard endpoint for 
accelerated approval is a difference in histological scores from base-
line to treatment time points, inherent intra-reader and inter-reader 
variability can confound the measurement of true drug effect12. This 
variability can substantially undermine the power of a study, posing 
challenges especially in trials with smaller sample sizes, such as phase 
1 and 2 trials. To circumvent this limitation, trials are often required to 
be overpowered, adding cost and time to trials. Such variability likely 
arises due to discrepancies in feature interpretation, feature heteroge-
neity within a biopsy sample and the quantification of these features 
using scoring systems18. Additionally, the current scoring criteria were 
not developed to quantify changes in disease activity.

The rapidly evolving field of AI offers a promising avenue to 
address these challenges. AI has demonstrated notable advancements 
in numerous medical disciplines, with a marked increase in CE-marked 
(a standard for European health, safety, performance and environmen-
tal requirements) and FDA-approved in vitro diagnostics for AI-based 
medical devices and algorithms from 2015 to 2020 (ref. 19), including 
the FDA authorization for an AI product in digital pathology in 2021 
for Paige Prostate20. However, the field of quantitative pathology in 
MASH therapeutic development still awaits a tool that is scalable, repro-
ducible and validated. Recently, we described the development and 
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0.97 (95% CI, 0.95–0.99). For hepatocellular ballooning, the overall TP 
success rate was 0.87, with 95% CI (0.83–0.91). The acceptance criteria 
for the false positive (FP; evaluation of overestimation by overlay) suc-
cess rate was met for all six feature overlays. H&E artifact success rate 
for FP was 0.97 (95% CI, 0.95–0.99), trichrome artifact was 0.93 (95% 
CI, 0.90–0.96), lobular inflammation was 0.99 (95% CI, 0.98–0.99), 
steatosis was 1.00 (95% CI, 0.98–1), hepatocellular ballooning was 0.92 
(95% CI, 0.90–0.94), and fibrosis was 0.99 (95% CI, 0.99–1).

The individual pathologist TP and FP success rates are listed in 
Table 1. The number of frames for which all three evaluating patholo-
gists agreed on the presence of the feature (independent of any overlay) 

divided by the number of frames for which at least one pathologist 
indicated the presence of feature in a frame was 89% (132 of 148 frames) 
for H&E artifact, 55.1% for hepatocellular ballooning (65 of 118 frames), 
80.0% (124 of 155 frames) for lobular inflammation, 99.4% (158 out of 159 
frames) for steatosis, 72.0% (108 of 150 frames) for trichrome artifact 
and 96.8% (149 of 154 frames) for fibrosis. Given that the agreement 
for the presence of hepatocellular ballooning was the lowest (55.1%) 
and the TP success rate for ballooning was above 0.90 for two of three 
of the pathologists, the sources of variability between pathologists 
for this feature were further examined. For the 65 frames for which all 
three evaluating pathologists indicated the presence of hepatocellular 
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Fig. 1 | AI-assisted workflow with representative AIM-MASH overlays and 
GT panel workflows. a, In the AI-assisted workflow, the primary pathologist 
reviews the AIM-MASH output and does a quality control (QC) review of the 
Hematoxylin and Eosin (H&E) and Masson's Trichrome (MT) slides (determines 
whether restaining or rescanning of the slide is necessary, confirms that all 
trial-specific criteria are met and notes any additional findings). If the primary 
pathologist disagrees with any MASH component(s) by two points or more, the 
case goes to a review by a secondary pathologist, who independently reviews 
the discordant AIM-MASH score(s). If the secondary pathologist agrees with the 
primary pathologist’s modified score, this will be the final score; if they disagree 
with the primary pathologist or agree with AIM-MASH, the two pathologists will 

convene on a consensus call in which they agree on the final score. b, Consensus 
GT for each biopsy was determined by one of two panels of hepatopathologists. 
Each panel consisted of two main reader pathologists and an auxiliary tiebreaker 
pathologist. Discrepancies in scoring among the primary readers prompted the 
intervention of the tiebreaker pathologist, who was blind to initial assessments. 
When the tiebreaker’s scoring diverged from that of both primary readers, a 
panel discussion was convened for consensus, with the tiebreaker’s score being 
decisive in rare cases of continued disagreement. c, For the median GT score, 
when the tiebreaker’s scoring diverged from that of both primary readers, 
the median of the three scores was considered final. Overall, five distinct 
pathologists contributed to establishing the GT.
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ballooning, the TP success rate was calculated. Pathologists A and B 
identified underestimation in one and three of the 65 frames, respec-
tively, resulting in TP success rates of 0.99 for pathologist A and 0.95 
for pathologist B for those frames. However, pathologist C identified 
underestimation in ten of the 65 frames, showing a TP success rate of 
0.85. Additionally, pathologist C identified a total of 111 frames that 
had some ballooned cells compared to 92 and 71 for pathologists A and 
B (Extended Data Table 3), indicating that pathologist C may identify 
more cells as ballooned hepatocytes than the other two pathologists 
and the algorithm. This is predictable given the lack of standardiza-
tion across expert pathologists in both identifying and quantifying 
ballooned hepatocytes22.

Algorithm repeatability and reproducibility
For interday scanner repeatability (AIM-MASH deployment on the same 
glass slides on different scans from the same scanner on different days), 
the mean agreement rate between the AIM-MASH scoring on the three 
separate WSIs for steatosis was 0.93 (95% CI, 0.89–0.96; P < 0.0001), 
for lobular inflammation was 0.96 (95% CI, 0.94–0.99; P < 0.0001), for 
hepatocellular ballooning was 0.96 (95% CI, 0.93–0.98; P < 0.0001) and 
for fibrosis was 0.93 (95% CI, 0.89–0.96; P < 0.001) (Fig. 2a).

For intersite scanner reproducibility (AIM-MASH deployment 
on the same glass slides on different scans from three different sites), 
the mean agreement rate for hepatocellular ballooning was 0.91 (95% 
CI, 0.87–0.95; P = 0.02), meeting the acceptance criteria. The mean 
agreement rates for steatosis, lobular inflammation and fibrosis were 
approximately 85%, but the CIs fell slightly below the 0.85 acceptance 
criteria (steatosis, 0.86 (95% CI, 0.81–0.9; P = 0.39); lobular inflamma-
tion, 0.85 (95% CI, 0.80–0.89; P = 0.53); fibrosis, 0.87 (95% CI, 0.82–0.91; 
P = 0.21)) (Fig. 2b).

Pairwise inter-reader agreements were calculated between IMR 
pathologists across all cases (Supplementary Table 1) to explicitly 
compare reproducibility across study pathologists to reproducibility 
achieved by AIM-MASH across sites and scanners. For all histologic 
components, interscan, intrasite repeatability and interscan, inter-
site reproducibility were higher than for pathologist mean pairwise 

agreement (for pairs of pathologists who read at least ten common 
cases) (Table 2).

Accuracy of the algorithm alone and as a pathologist-assist 
tool
Evaluation of the non-inferior accuracy of AIM-MASH (algorithm only 
and AI assisted) to IMRs was assessed in 1,481 cases by comparing the 
mean weighted kappa (WK) of IMRs with GT (workflow in Fig. 1b) to the 
WK of AIM-MASH with GT (workflow in Fig. 1b (Fig. 3)).

For AIM-MASH only (Fig. 3a), the difference in WK for AIM-MASH 
and GT compared to mean WK for IMR and GT for hepatocellular bal-
looning was 0.15 (95% CI, 0.11–0.18; non-inferiority P < 0.0001) and 
for lobular inflammation was 0.12 (95% CI, 0.08–0.17; non-inferiority 
P < 0.0001) with P < 0.0001 for superiority for both components. The 
difference in WK for AIM-MASH only and GT compared to WK of mean 
IMR and GT for steatosis was 0.01 (95% CI, −0.02 to 0.03; non-inferiority 
P < 0.0001) and for fibrosis was −0.01 (95% CI, −0.04 to 0.02; 
non-inferiority P < 0.0001). Steatosis and fibrosis met non-inferiority 
but did not achieve superiority.

For AI-assisted pathologist reading of the 1,481 cases (Fig. 3b), 
the difference in WK for AI assisted and GT compared to mean WK for 
IMR and GT for hepatocellular ballooning was 0.15 (95% CI, 0.11–0.19; 
non-inferiority P < 0.0001) and for lobular inflammation was 0.12 (95% 
CI, 0.08–0.17; non-inferiority P < 0.0001) with P < 0.0001 for superior-
ity for both components. The difference in WK for AI assisted and GT 
compared to mean WK for IMR and GT for steatosis was 0.01 (95% CI, 
−0.02 to 0.04; non-inferiority P < 0.0001) and for fibrosis was 0.01 (95% 
CI, −0.02 to 0.03; non-inferiority P < 0.0001). Steatosis and fibrosis 
met non-inferiority but did not achieve superiority. For all MASH score 
components, WKs for AI assisted and GT were in the ranges of published 
CRN pathologist WKs8,14.

For AI-assisted pathologist reading, accuracy was higher for com-
posite histologic scores than for IMRs (Fig. 3c). The WKs for AI assisted 
and GT and WKs for IMR and GT for fibrosis 2 and 3 (F2 and F3) versus 
other were equivalent, with WK for AI assisted and GT being slightly 
higher than WK for IMR and GT (0.57 versus 0.53, respectively; Fig. 3c). 
WKs for the trial-relevant enrollment criteria MAS ≥ 4 with ≥1 in each 
score category between AI assisted and GT were significantly (lower 
bound (LB) of the 95% CI for AI assisted versus GT kappa was greater than 
the upper bound of the 95% CI for IMR versus GT kappa) higher than the 
WK between IMR and GT (0.63 versus 0.51, respectively, with a difference 
of 0.11 and a 95% CI of 0.07–0.16) and, for MASH resolution (defined as 
a hepatocellular ballooning score of 0, a lobular inflammation score 
of 0 or 1 and any steatosis score) between AI assisted and GT, were also 
significantly higher than the WK between IMR and GT (0.54 versus 0.37, 
respectively, with a difference of 0.16 and a 95% CI of 0.10–0.22) (Fig. 3c).

For AI-assisted evaluation against a median of a panel of patholo-
gists (GT workflow described in Fig. 1c), non-inferiority was met for all 
histologic components for agreement of AI-assisted reads with median 
GT reads, compared to the agreement between median read scores 
derived from two different groups of pathologists (GT workflow in 
Fig. 1c, results in Fig. 4). For steatosis, the average WK for AI assisted 
versus GT was 0.68 and for manual median versus GT was 0.75, with a dif-
ference of –0.07; for lobular inflammation, the WK for AI assisted versus 
GT was 0.43 and for manual median versus GT was 0.44, with a difference 
of –0.02; for hepatocellular ballooning, the WK for AI assisted versus 
GT was 0.56 and for manual median versus GT was 0.53, with a differ-
ence of 0.04; and, for fibrosis, the WK for AI assisted versus GT was 0.65 
and for manual median versus GT was 0.72, with a difference of –0.09.

Discussion
AI-based tools have the potential to solve many issues around stand-
ardized, accurate and reproducible scoring, within and across trials. 
Multiple pathologists can assess biopsies on validated WSI viewers23 
for sample adequacy and evaluability and for overall diagnosis and 

Table 1 | TP and FP success rates per individual pathologist 
for overlay validation

Feature Pathologist TP success rate 
(95% CI)

FP success rate 
(95% CI)

H&E artifact

A 0.97 (0.94, 0.99) 0.96 (0.92, 0.99)

B 0.98 (0.95, 1.0) 0.98 (0.95, 0.99)

C 0.97 (0.94, 0.99) 0.99 (0.97, 1.0)

Hepatocellular 
ballooning

A 0.96 (0.91, 0.99) 1.00 (0.98, 1.0)

B 0.94 (0.89, 0.99) 1.00 (0.98, 1.0)

C 0.72 (0.64, 0.81) 0.76 (0.70, 0.83)

Lobular inflammation

A 0.98 (0.95, 1.0) 1.00 (0.98, 1.0)

B 0.98 (0.95, 1.0) 1.00 (0.98, 1.0)

C 0.86 (0.81, 0.92) 0.98 (0.95, 0.99)

Steatosis

A 0.94 (0.90, 0.98) 1.00 (0.98, 1.0)

B 0.99 (0.97, 1.0) 1.00 (0.98, 1.0)

C 0.94 (0.90, 0.98) 1.00 (0.98, 1.0)

Trichrome artifact

A 0.99 (0.97, 1.0) 0.88 (0.82, 0.92)

B 0.98 (0.96, 1.0) 0.94 (0.91, 0.98)

C 0.99 (0.97, 1.0) 0.98 (0.95, 0.99)

Fibrosis

A 0.97 (0.94, 0.99) 1.00 (0.98, 1.0)

B 0.99 (0.98, 1.0) 1.00 (0.98, 1.0)

C 0.95 (0.91, 0.98) 0.99 (0.98, 1.0)
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additional findings, while using AI tools to efficiently provide the accu-
rate, standardized and consistent scores needed.

The AIM-MASH outputs have been validated according to their 
proposed use with representative trial datasets, including a sam-
ple of screen failures and a majority of enrolled patients at risk for 
MASH (defined as nonalcoholic fatty liver disease (NAFLD) activity 
score (NAS) ≥ 4 with fibrosis score ≥2), both baseline and follow-up 
time points variable in disease activity, stain, scanning site and drug 
candidate intervention. Furthermore, the overlays presented to the 
pathologist, identifying key areas that the model predicts as artifact, 
steatosis, hepatocellular ballooning, lobular inflammation and fibrosis, 
have been validated by multiple pathologist readers on a frame level, 
demonstrating that they are highly sensitive and sufficiently specific 
in playing their role as a highlighter to guide pathologist review, along 
with the associated model scores. The variability of overlay validation 
results observed between pathologists for ballooning was as expected22 
and highlights the need for an accurate, reproducible scoring tool, such 
as was demonstrated by AIM-MASH here (Figs. 2 and 3a), combined 
with a workflow that allows for diagnosis confirmation and sample 
and score quality control, but limits when the pathologist can change 
the algorithm score (the two-point rejection workflow used here) to 
maximize standardization and minimize individual bias. These results 
demonstrate the precision of AIM-MASH in measuring each component 
of the CRN scoring system in liver biopsies from patients screened and/
or enrolled in a MASH clinical trial.

Repeatability studies demonstrated superior performance of 
AIM-MASH when compared to a performance goal of 85% as well as to 

relevant published manual intrapathologist trial read agreements (stea-
tosis, 0.72; lobular inflammation, 0.55; hepatocellular ballooning, 0.70; 
fibrosis, 0.72) described in the literature14. AIM-MASH reproducibility 
across the three external laboratories, using different operators and 
different Leica Aperio AT2 scanners, was higher for all MASH compo-
nents than published interpathologist variability across expert MASH 
pathologists (0.63 for steatosis, 0.60 for lobular inflammation, 0.63 
for hepatocellular ballooning and 0.51 for fibrosis)14. Furthermore, the 
repeatability and reproducibility agreement achieved in this study with 
AIM-MASH was higher than the interpathologist agreement for IMRs.

Finally, the clinical validation study demonstrated that AIM-MASH 
consistently brought individual pathologists closer to GT reads 
(approach in Fig. 1b) for the histologic components historically most 
difficult to score (hepatocellular ballooning and lobular inflammation) 
while maintaining high levels of accuracy for steatosis and fibrosis. 
To evaluate AIM-MASH reads against a statistical consensus currently 
being used as a gold-standard read during MASH trials, the agree-
ment of AI-assisted reads with the median consensus of the GT reads 
(approach in Fig. 1c), ‘panel 1’, was compared to the agreement between 
two different median consensus groups (derived from GT patholo-
gist reads, ‘panel 1’ or IMR pathologist reads, ‘panel 2’) in the same 
non-inferiority analysis used in the primary endpoint for accuracy. 
AI-assisted reads achieved non-inferiority for every histologic compo-
nent score in this analysis, and AI-assisted read agreement with median 
GT for hepatocellular ballooning was higher than that for median IMR 
agreement with median GT. For steatosis, although the two manual 
median groups’ mean agreement with each other was higher than that 
for AIM-MASH versus median GT, AI-assisted reads were still within the 
non-inferiority margin. Additionally, accuracy and reproducibility 
are interconnected in the MASH trial context of use for assessment of 
primary endpoints, and AIM-MASH provides a more reliable, reproduc-
ible read across all components. Furthermore, the gold standard is 
still subject to enrollment bias and lack of standardization, as demon-
strated by the kappas achieved by the median IMR versus the median 
GT in this study (Fig. 4) and supported by findings from Sanyal et al.12, 
which evaluated agreement between two gold-standard panel reads. 
Finally, the achievement of non-inferiority by AIM-MASH for accuracy 
compared to a gold-standard read across a robust clinical validation 
dataset provides strong evidence that AIM-MASH agrees with two 
consensus groups (panel 1 and panel 2) as well as that they agree with 
each other and, therefore, could replace the current gold-standard 
consensus read approach for trials while enabling a more-standardized, 
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three nonconsecutive days (intrasite, interscan). b, For scanner reproducibility, 
the same slides were scanned once at three different laboratories by three 
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magnification (intersite). Bootstrap percentile P values showing statistical 
significance for the one-sided hypothesis that the mean agreement rate between 
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Table 2 | Manual pathologist versus AIM-MASH 
repeatability and reproducibility

Feature Mean 
AIM-MASH 
interscan, 
intrasite 
repeatability 
(% agreement)

Mean 
AIM-MASH 
intersite 
reproducibility 
(% agreement)

Mean 
pairwise 
agreement 
for 
pathologists 
(% 
agreement)

Steatosis 93.1 85.6 70.3

Lobular inflammation 95.8 84.7 45.3

Hepatocellular ballooning 96.3 91.2 55.6

Fibrosis 92.6 86.8 61.5
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less-biased approach to accurately enrolling and determining changes 
in score over time for primary histologic endpoints.

The sum of the ordinal scores for steatosis, lobular inflammation 
and hepatocellular ballooning (MAS) being greater than or equal to 
4 (MAS ≥ 4) is one of the main indicators for a probable MASH diag-
nosis as well as commonly being a requirement for trial inclusion. 
Additionally, one component of the composite endpoint is MASH 
resolution, defined as a hepatocellular ballooning score of 0, a lobular 
inflammation score of 0 or 1 and any score for steatosis. AI-assisted 
reads for MAS ≥ 4 with ≥1 in each component category and for MASH 
resolution were superior compared to IMRs in their agreement with GT 
(Figs. 1b and 3c) This is an important indicator that AIM-MASH can be 
a powerful tool in increasing accuracy and standardizing key aspects 
of trial scoring for enrollment and for FDA- and EMA-recommended 
endpoints.

The AIM-MASH algorithm alone has also been demonstrated to 
either recapitulate or demonstrate that primary efficacy results were 
met across several trials and drug candidates (semaglutide, pegbelfer-
min, resmetirom24–27). In a phase 2b study for pegbelfermin, AIM-MASH 
revealed a statistically significant difference in the proportion of 
primary endpoint responders in treatment versus placebo groups, 
whereas the central pathologist scoring did not reveal a statistically sig-
nificant difference25. In a phase 2b study for resmetirom, all endpoints 
met via both individual manual readers used in the trial were also met 
by AIM-MASH26. In the phase 3 study for resmetirom, for both MASH 
resolution and the fibrosis improvement endpoint, the percentages of 
patients who responded were comparable when assessed by AIM-MASH 
or manual pathology assessment27. Lastly, in a cirrhotic patient popula-
tion from another phase 2 study for semaglutide, a numerically higher 
proportion of patients was seen across both assessment methods 
(AIM-MASH and manual reads) for semaglutide versus placebo for 
inflammation, steatosis and ballooning from baseline to week 48. Addi-
tionally, a lower placebo effect response was observed with AIM-MASH 
than with manual reads24. This supportive evidence, along with the 
accuracy of AIM-MASH alone and as an AI assist to pathologists, dem-
onstrates the robust nature of AIM-MASH across a wide range of disease 
activity and in multiple phases of clinical drug trials.
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As the samples for this study were sourced from completed clinical 
trials with a wide range of sample quality and the reads were performed 
retrospectively, the limitations of the study include the inability of 
the pathologists to request a restain or a rescan of samples when they 
thought the sample was not of sufficient quality. This could have led to 
higher rates of samples being deemed inadequate or non-evaluable for 
scoring, as, in a clinical trial setting, these samples could be restained 
or rescanned. However, these cases represented less than 4% of all 
clinical validation cases. Additionally, although the dataset was large 
and robust, new trial populations and/or drug candidates with novel 
mechanisms of actions not encountered here could potentially present 
a challenge to the algorithm in its current state. This highlights the 
importance of the pathologist evaluation and quality control of the 
algorithm results. Performance monitoring will be used to indicate 
when there may be room for future improvement through additional 
training.

Together, the above data support the use of AIM-MASH by pathol-
ogists in trials, and this use can play an important role in resolving 
the accuracy and precision gaps in MASH assessment, while guiding 
pathologists in an efficient evaluation to a standardized and repro-
ducible score within and across trials. This in turn could substantially 
benefit patients with MASH by helping to bring truly effective therapies 
to market.
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Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
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Methods
Inclusion and ethics
This study included existing de-identified liver biopsies from three clin-
ical trials (Intercept Pharmaceuticals REGENERATE trial NCT02548351, 
Bristol Myers Squibb FALCON 1 trial NCT03486899 and FALCON 2 trial 
NCT03486912 and Novo Nordisk semaglutide trial NCT02970942). All 
patients provided written consent for the original trial; research in this 
study was granted expedited approval by the WCG Institutional Review 
Board (IRB00000533).

Datasets and study oversight
The analysis used existing de-identified glass slides and WSIs derived 
from liver biopsies procured during four MASH clinical trials, including 
three phase 2 trials and one phase 3 trial (screen failures and enrolled 
population from the Intercept Pharmaceuticals REGENERATE trial, 
enrolled population from the Bristol Myers Squibb FALCON 1 trial and 
FALCON 2 trial and enrolled population from the Novo Nordisk sema-
glutide trial). These data encompassed a broad spectrum of disease 
manifestations, captured both screened and enrolled participants and 
mirrored the variances observed in the MASH clinical trial population. 
Demographic information was not available for this study; however, 
all trials enrolled a balanced cohort with respect to sex and gender. 
Sample collection varied, encompassing historical and study biopsies, 
with staining procedures executed across multiple sites.

AIM-MASH development
AIM-MASH was trained using 103,579 pathologist-provided anno-
tations of 6,235 H&E and 6,223 Masson’s trichrome WSIs from six 
completed phase 2b and phase 3 MASH clinical trials. For every WSI, 
AIM-MASH employs a sequential approach in which convolutional neu-
ral networks produce tissue overlays containing colorized predictions 
of segmentation, signifying various histologic features. Additionally, 
slide-level quantifications of the proportionate area of each feature are 
generated. Simultaneously, graph neural networks predict an ordinal 
MASH CRN grade or stage for each histologic feature. The development 
of AIM-MASH is further described by Iyer et al.21.

Overlay validation analyses
To assess the accuracy of the heatmap overlays generated by the 
AIM-MASH model to enable efficient review of key histologic features 
considered by the algorithm, up to 160 500 × 500-µm-sized frames 
for each feature (steatosis, lobular inflammation, hepatocellular bal-
looning, fibrosis, H&E artifact and trichrome artifact) were selected to 
represent a wide range of each histology and commonly encountered 
artifacts (for example, tissue folds, stain pooling, scanning blur). Only 
usable tissue is considered in predicting scores. These overlays are 
intended to facilitate the pathologist’s review in the AIM-MASH scoring 
workflow and, therefore, were designed with preference for sensitiv-
ity. The enrolling pathologist estimated the amount of each feature in 
each frame on images with no overlays. Three board-certified expert 
hepatopathologists were provided with the enrolled frames from both 
H&E and trichrome slides. The pathologists were asked specific ques-
tions for each frame to determine to what extent the overlay may or may 
not be underestimating or overestimating a given feature, defined as 
TP and FP success rates. Overlay performance was considered accept-
able if the TP success rate and the FP success rate were greater than or 
equal to 85%.

Frames from 222 WSIs were enrolled. Overall, 312 unique H&E 
frames and 249 trichrome frames were enrolled from three clinical 
trials (both baseline and follow-up time points from placebo and treat-
ment groups).

Repeatability and reproducibility analyses
For the assessment of AIM-MASH’s reproducibility, we incorporated 
glass slides from two completed phase 2 trials (one non-cirrhotic and 

one cirrhotic) and a phase 3 MASH trial. To gauge interday repeat-
ability, 150 cases, each comprising an H&E and a trichrome slide, were 
repeatedly scanned using the same Leica Aperio AT2 scanner at ×40 
magnification across three nonsequential days. For intersite repro-
ducibility assessment, identical cases were singularly scanned at three 
distinct laboratories by different operators using separate AT2 scan-
ners. Reproducibility and repeatability were deemed acceptable when 
mean pairwise agreement rates consistently matched or surpassed 
85%. No pathologist review of AIM-MASH scores was incorporated in 
repeatability and reproducibility studies.

Establishment of ground truth
GT, defined as the presumed accurate diagnosis, was determined 
for each case by one of two unique panels of hepatic pathologists. 
Each panel consisted of two main reader pathologists and an auxiliary 
tiebreaker pathologist (the tiebreaker was the same between the two 
panels). Discrepancies in scoring among the primary readers prompted 
the intervention of the tiebreaker pathologist, who was blinded to 
initial assessments. When the tiebreaker’s scoring diverged from both 
primary readers, a joint panel call or consensus panel was convened for 
consensus, with the tiebreaker’s score being decisive in rare cases of 
continued disagreement. Overall, five distinct pathologists contrib-
uted to establishing the GT (Fig. 1b). The results from all cases were 
pooled in the final analysis.

Analytical validation protocol
For analytical validation, 1,481 cases extracted from two finalized phase 
2 trials and select cases from a phase 3 trial, representing three differ-
ent drug candidates with unique mechanisms of action (semaglutide, 
pegbelfermin, resmetirom), were evaluated in comparison to GT and 
IMR. Cases from the phase 3 trial were selected to match the original 
trial enrolled population (baseline and follow-up time points) and 
included screen failures. Each case underwent scanning via a Leica 
Aperio AT2 scanner at ×40 magnification. Notably, this phase excluded 
pathologist review of resultant scores.

Clinical validation protocol
The same cohort of 1,481 cases incorporated in the analytical validation 
phase was used for clinical validation. This phase aimed to ascertain 
AIM-MASH’s capability to bolster pathologists’ accuracy in MASH diag-
nosis in a therapeutic trial context. The AI-assisted workflow integrated 
pathologist review of sample quality, staining, scanning adequacy, 
assessment of any additional findings and subsequent AIM-MASH 
scoring. Although pathologists could record minor disagreements 
with AIM-MASH scores, only major discrepancies (two-point or greater 
difference) permitted score alterations (Fig. 1a) to prevent introduction 
of interpathologist variability.

Panel comparison
The same cohort of 1,481 cases used in analytical and clinical valida-
tion was used to determine the accuracy of AI-assisted reads against 
two panels of readers. Panel 1 was GT using median scores from the GT 
readers (median GT) instead of panel consensus calls (Fig. 1c). Panel 2 
was the median derived from a minimum of three IMRs (median IMR). 
Results using these comparisons are described in Fig. 4.

Statistical analysis
Both analytical and clinical validation phases were designed to ini-
tially assess AIM-MASH’s non-inferiority to manual scoring. Upon 
confirmation of non-inferiority, its accuracy was further assessed 
for superiority. Non-inferiority was established when the difference 
between AIM-MASH Cicchetti–Allison kappa with the GT exceeded a 
non-inferiority margin of −0.1 compared to the IMR WK with the GT for 
each MASH component (bootstrap percentile P < 0.025). Linearly WK 
was used, as pairwise comparisons are used to determine the level of 
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agreement and, using this metric, agreement between raters adjust-
ing for the agreement that might occur by chance could be computed. 
The linear weights, in this case, penalize disagreement due to distant 
scores (for example, 3 versus 1) more than that between closer ordi-
nal scores (for example, 2 versus 1). This non-inferiority analysis was 
performed for the algorithm only and AI-assisted results depicted in 
Fig. 3a,b and for the Fig. 4 results, which compared AI-assisted perfor-
mance to two different panels. For repeatability and reproducibility, 
bootstrap percentile P values were computed to test the hypothesis 
that the mean agreement rate, for each MASH component, is greater 
than 0.85. Additionally, for the post hoc comparisons, where P values 
were not computed, 95% CIs of the point estimates were compared to 
establish difference.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The histopathology data collected for this study are maintained by 
PathAI to preserve patient confidentiality and the proprietary image 
analysis. Access to histopathology features will be granted to academic 
investigators without relevant conflicts of interest for noncommercial 
use who agree to not distribute the data. Access requests can be made to 
A.H.B. (andy.beck@pathai.com). Any additional information required 
to reanalyze the data reported in this paper relating directly to the 
clinical datasets (REGENERATE, FALCON 1, FALCON 2 and semaglutide 
datasets) will be considered at the discretion of the source institute for 
the clinical trial in question. Requests will be considered from academic 
investigators without relevant conflicts of interest for noncommercial 
use who agree to not distribute the data. Data requests should be sent to 
A.H.B. (andy.beck@pathai.com). PathAI will respond to these requests 
within 1 month of receipt.

Code availability
Not all original code can be made publicly available. The codes for cell 
and tissue type model training, inference and feature extractions are not 
disclosed. To safeguard PathAI’s intellectual property, access requests 
for such code will not be considered. An application for a US patent for 
the algorithm discussed here has been submitted (WO2022/165433). 
The source code for all downstream data analyses and figure generation 
in this work is publicly available and can be downloaded from GitHub 
at https://github.com/Path-AI/NASH_DDT_Manuscript.
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Extended Data Table 1 | Frame Distribution based on Slide Level Score for Overlay Validation

Multiple frames from within each WSI could be sampled. n=number of WSIs with a particular score within a histologic category from which frames were sampled. N=total number of WSIs for 
the particular histologic category from which frames were sampled.
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Extended Data Table 2 | Frame Distribution based on Frames Level Score for Overlay Validation

n=number of frames with the indicated score category. N=total number of frames per indicated feature.
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Extended Data Table 3 | Presence of Feature per Pathologist for Overlay Validation

n=number of frames with feature present per pathologist. N=total number of frames per feature.
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