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ABSTRACT OF THE THESIS 

Theory and Design of High-Speed CMOS 
 Frequency Dividers 

 
 

By 

Fatemehe Molainezhad 

Master Degree  

in Electrical & Computer Engineering 

University of California, Irvine, 2015 

Professor Michael Green, Chair 

 

A frequency divider is one of the most fundamental and challenging blocks used in high-

speed communication systems. Three high-speed dividers with different topologies, LC-tank 

frequency divider, CML ring frequency divider, and CML DFF frequency divider with negative 

feedback, are analyzed based on the locking phenomena. The locking to the injected signal 

happens as long as the frequency and the amplitude of the injected signal are in the desired 

operation region of the divider's sensitivity curve. A phase shift (which is a function of both 

frequency and the amplitude of the injected signal) occurs in the circuit and the divider will be 

locked to the injected frequency. 

Locking to an external signal may not necessarily occur just by considering the frequency 

of the injection signal being in the locking range, even if the frequency of the injection signal is 

very close to the self-oscillation frequency in a wide locking range scenario without the proper 

injected signal amplitude.  
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To measure the phase shift, ϕ (Ainj , ωinj) when the oscillator is locked to the injected 

frequency, a novel procedure is developed. This procedure gives us a very precise tool to 

measure the locking phase, instantaneous phase, or the phase between any two signals inside the 

topology loop and provides a good ability for better understanding of the injection locking 

concept and the behavior of the divider in the presence of an injected signal. The simulations are 

using transistor models from TSMC 65nm CMOS process.   
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

A frequency divider is a fundamental block in many systems. Such circuits are widely used 

in high-speed communication systems and are considered as one of the most challenging blocks 

to design in both wired and wireless transceivers [2]. Frequency dividers have been the subject of 

extensive study for decades and a number of papers have been published about this subject. 

Different approaches for injection locking phenomena have been investigated and several novel 

frequency dividers that allow for higher frequencies and wider locking ranges have been 

proposed. 

In [4], it is described how the injection of an external signal into an oscillator affects both 

the instantaneous amplitude and instantaneous frequency if the self-oscillation frequency is close 

to the injection frequency. Using the assumption that the time constants in the oscillator circuit 

are small compared to the length of one beat cycle, a differential equation is derived which gives 

the phase between the oscillator output voltage and the injected signal as a function of time.   

In [5], it is shown that locking to an external signal can occur when the frequency of the 

injected signal is within a certain range of frequencies, called the "locking range," that contains 

the self-oscillation frequency. An oscillator is said to be locked when the phase difference θ 

between the locking signal and the oscillator is constant, so that the instantaneous frequency 

difference, dθ /dt, is equal to zero.  

In [6], it is presented if the amplitude and frequency of Iinj are chosen properly, the circuit 

indeed oscillates at ωinj rather than at ωo and injection locking occurs. 



2 
 

In [1], two main categories of clock dividers are described: The first category includes 

those that operate entirely based on injection locking, such as the LC-tank and the ring oscillator 

frequency dividers. The second category includes divide-by-two circuits based on D flip-flops 

(DFF) realized by current mode logic (CML) with negative feedback. In the latter category due 

to the presence of nonlinearities, a wider frequency locking range, which is usually desirable, can 

result. 

In this thesis, three different topologies, LC-tank, CML ring, and CML DFF frequency 

dividers are designed to achieve higher operation speed and minimum power consumption. They 

are analyzed based on the following condition: As long as the frequency ωinj  = ωo + ∆ω  and the 

amplitude Ainj of the injected signal are in the desired operation region of the frequency divider's 

sensitivity curve, a phase shift, ϕ (Ainj , ωinj) will occur in the circuit and the oscillator will be 

locked to the injected frequency. 

The DFF frequency divider has a very wide sensitivity curve, which is a big advantage for 

this topology. On the other hand, the frequency divider realized by a CML ring oscillator has a 

higher self-oscillation frequency, but its sensitivity curve is not as wide as that of the DFF 

frequency divider. Finally, an LC-tank frequency divider has a very narrow sensitivity curve, but 

its self-oscillation frequency is much higher than either of the other two topologies and thus it is 

suitable to be used in some applications for very high-frequency operation. 

The variations of instantaneous frequency and phase are analyzed for all three dividers. 

The instantaneous frequency can vary due to both changing the amplitude of the injection signal 

and/or changing the phase between the injection and the oscillation signals. Controlling the 

amplitude and the starting time to inject the signal can be used to reduce the settling time and 

allow a faster locking to the injected frequency.  
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Based on the model of each topology and the concept of injection locking, the relationship 

between the instantaneous and the locking phase is mathematically formulated. The analytical 

results are then compared with the simulation results utilizing a procedure that is developed to 

measure locking phase, instantaneous phase, or the phase between any two signals. 

 

1.2 Outline 

The remainder of thesis is organized as follows. Chapter 2 provides an overview of 

published work on frequency dividers with an emphasis on high-speed clock dividers based on 

the LC-tank frequency divider, CML ring frequency divider, and DFF frequency divider. This 

overview covers the theoretical analysis of injection locking concept, frequency locking range, 

and a derivation of the instantaneous phase, dθ /dt.  

Chapter 3 analyzes the three divider topologies based on the injection-locking concept and 

their sensitivity curves. The instantaneous frequency and phase when an external signal is 

injected is analyzed in detail. A procedure is developed to measure the phase between two the 

signals and verifying that the derivative of the instantaneous phase is equal to zero when the 

divider locks to the injected frequency.  

Chapter 4 models the three divider topologies, and equations are derived for the locking 

phase and the instantaneous phase. The analytical results are discussed and compared with the 

simulation results that are generated using transistors models from TSMC 65nm CMOS process.  

Chapter 5 summarizes the findings and the conclusions.  
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CHAPTER 2. REVIEW OF PUBLISHED WORK 

2.1 A Study of Injection-Locking and Pulling in Oscillators 

A study of injection locking and pulling between coupled oscillators realized in CMOS 

integrated circuits was reported in [6]. This paper describes the concept of injection locking, 

based on Adler's formulation [6]. In the simple oscillator shown in Figure 2-1(a), the resonance 

frequency of the tank is ωo = 1/ LLC . The ideal inverter provides the complementary 180o 

phase shift which is needed to close the feedback loop and ensures the oscillation. 

 

Figure 2-1 (a) Conceptual oscillator, (b) Frequency shift by injection, (c) Open-loop characteristics, and 

(d) Phase difference between input and output currents [6]. 

Figure 2-1(b) shows that conceptual oscillator when an external signal is injected to the 

output node. As described in [6], “if the amplitude and frequency of Iinj are chosen properly”, 

injection locking occurs and the circuit oscillates at the injection frequency rather than at ωo. By 



5 
 

considering this condition the paper describes that the tank provides phase ϕo at ωinj ≠ωo, 

therefore Vout rotates with respect to the sum current IT. It also describes that Iinj forms an angle 

θ with Iosc such that the output voltage becomes aligned with resultant current. As a result, Vout 

and Iinj must have a phase difference as shown in Figure 2-1(d). Using this concept of injection 

locking, the locking range for LC-tank oscillator is formulated as following:   

 

2

2

1

1..
2

osc

injosc

injo
injo

I
II

I
Q

−

=−
ωωω                                                           (2-1) 

The above equation shows how the amplitude of injected signal changes the locking range. 

When the amplitudes of injected signal decreases while the injection frequency is held fixed, to 

maintain phase ϕo which corresponds to the oscillation frequency,  Iosc must form a bigger angle 

with respect to Iinj. This paper also shows the application of the injection locking when oscillator 

operates as a divide by two and investigates the nonlinearities in injection locking for LC-tank 

oscillator. 

 

2.2 Analysis of Nonlinearities in Injection-Locked Frequency Dividers 

Analysis of nonlinearities in injection-locked frequency dividers is reported in [2]. This 

paper investigated the locking range of frequency dividers and it was shown that the wider 

locking range as the case for CML DFF frequency divider is due to the presence of 

nonlinearities. The paper also presents a different approach to the analysis of nonlinearities in 

ILFD and introduces a new definition and then proposes a new frequency divider topology based 

on the new definition.  
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Figure 2-2 (a) Current injection mode of CML-DFF divider, (b) Schematic of new frequency divider [2]. 

Figure 2-2(a) shows an equivalent schematic of a conventional DFF divider, but with half-

rate current sources Iinj injected directly into the output nodes. As discussed in [2], it can be 

shown that this is equivalent to the normal voltage injection with an appropriate conversion 

factor, but lends itself better to a more detailed analysis. If the divider is under free-running 

condition, then the drain currents Id are equivalent to Iosc. Itotal is the total current conducted 

through the resistors. The phase relationships between currents Iinj, Iosc, and IT determine the 

divider frequency range. For normal injection locking, as the case for LC or ring oscillator 

dividers, it is generally assumed that all three currents stay in phase at the self-oscillation 

frequency, regardless of the amplitude of the injected current. However as shown in [2], this does 

not hold for the DFF clock divider. 

A new definition is introduced in [2]: the In-Phase Frequency, which is the frequency at 

which injected current signal, Iinj, Iosc, and IT, all remain in phase as a function of a given 

amplitude of Iinj. The fundamental cause of the strong nonlinearity existing in the DFF frequency 

divider can be narrowed down to the latch structure. Then the paper proposes a new frequency 

divider topology based on that technique which provides robust operation and wide lock-in while 

exhibiting higher operating frequency, as shown in Figure 2-2(b). The new topology employs a 

cross-coupled source follower in place of the latch, which maintains nonlinearity similar to that 
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of the conventional DFF clock divider, while decreasing the capacitance at the output nodes, 

thereby increasing the self-oscillation frequency. 

 

2.3 A Study of Locking Phenomena in Oscillators  

A study of locking phenomena in oscillators is reported in [4]. This paper explains how the 

instantaneous amplitude and frequency of vacuum tube-based oscillators are both affected when 

an external signal with a frequency very close to the natural frequency of the oscillator is injected 

to the loop. A differential equation for the phase between feedback and injected signals as a 

function of time is derived under the assumption that time constants in the oscillator are small 

compared to the oscillation period. 

The main purpose of this paper is to derive a differential equation for the oscillator phase 

as a function of time and how it is related to the phase and amplitude relationships between 

oscillator voltage and injected signal. The derived equation also describes the transient and 

steady state behaviors of the oscillator. It is assumed in the analysis that the frequency of the 

injected signal is close to the self-oscillation frequency. 

        

Figure 2-3 (a) Adler's model for oscillator circuit, (b) Vector diagram of instantaneous voltages for 

oscillator [4]. 
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Adler investigated locking phenomena in vacuum tube-based oscillators using the model in 

Figure 2-3(a). The grid voltage, Eg is the vector sum of the injected voltage EL and the tank 

voltage EF which is transformer-coupled into the grid and denoted as Eo in the diagram. The 

following symbols are used:  

ωo = self-oscillation or “natural” frequency 

ωl = frequency of  injected signal 

∆ωo= “undisturbed” beat frequency (or inherent frequency difference )(ωo -ωl )  

ω = oscillator's instantaneous frequency  

∆ω = instantaneous beat frequency (or instantaneous frequency difference )(ω -ωl) 

Q = quality factor of tuned circuit. 

Using the following three assumptions, the differential equation for the model in Figure 

2-3(a) was developed. 

1)  ωo /2Q>>∆ωo; that is, the locking frequency should be very close to the natural frequency 

of the tuned circuit. 

2) T <<1/∆ωo; that is, the time contestants in the oscillator are small compared to the 

oscillation period. 

3)  EL / Eo <<1; that is, the amplitude of injected signal is much smaller than the output 

voltage. 

Adler's derivation of the phase as a function of time was based on the vector diagram of 

instantaneous voltages shown in Figure 2-3(b). Under the presence of an injected signal, there is a 

phase angle ϕ between the voltage E returned through the feedback circuit and the grid voltage 

Eg. Assuming EL / Eo <<1, Figure 2-3(b) gives: 
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ααϕ sin)sin(
E
E

E
E L

o

L −=
−

=                                         (2-2) 

It is also concluded in [4] that under the presence of an injected signal, the instantaneous 

frequency would exceed ωo by an amount which will produce a lag equal to ϕ. For locking 

frequencies close to the oscillator's natural frequency, this phase can be written as: 

][)]()[()( 0 olol dt
dAAA ωαωωωωωωϕ ∆−=−−−=−=                          (2-3) 

where A=2Q/ωo for small values of ϕ. 

Combining equations (2-1) and (2-2) would result Adler's equation [4]: 

o
ol

QE
E

dt
d ωαωα

∆+−= sin
2

.                                                  (2-4) 

Equation (2-3) derives the instantaneous angular beat frequency, ∆ω= dα/dt as a function 

of the oscillator's natural frequency, oscillator voltage and injected signal amplitudes, and the 

phase relationship between them. 
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CHAPTER 3. High Frequency Clock Dividers 

A frequency divider is a challenging block, especially for high-frequency and low-power 

operation used in high-speed communication systems. In this chapter, three different topologies, 

LC-tank, CML ring, and CML DFF frequency dividers are analyzed based on the following 

locking condition: As long as the frequency, ωinj  = ωo + ∆ω and the amplitude, Ainj of the 

injected signal are in the desired operation region of the frequency divider's sensitivity curve, a 

phase shift,ϕ (Ainj , ωinj) will be created and the oscillator is locked to the injected frequency.  

The instantaneous frequency and phase of the frequency dividers are analyzed when the 

divider is under an injected signal. A new procedure is developed to measure any phase 

difference between two signals when the oscillator is locked. The simulations are using transistor 

models from TSMC 65nm CMOS process with the power supply voltage of 1.2V. 

In the following sections, the three types of frequency dividers are discussed in detail. 

   

3.1 High-Speed Frequency Divider Based on CML D Flip-Flop   

Since the CML DFF frequency divider is primarily based on a CML structure, one of the 

key points to analyze this topology is the design and specifications of CML buffer.  

 

3.1.1 CML Buffer 

 Figure 3-1 shows the structure and the dc characteristics of a simple resistive load CML 

buffer. In such structures, the large-signal characteristic of the transistors is of primary 

importance. In other words, the intention is to have the current steered completely from one leg 

to another at the target speed. 
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Figure 3-1 (a) CML differential pair [10], (b) Characteristics of a simple CML buffer [9]. 

 To derive the voltage swing that is illustrated in Figure 3-1, the exact values of high and 

low output voltages should be determined. When the input voltage, Vin+ goes high, the tail 

current Iss is conducted through transistor M1 and as a result Vout- falls to Vdd - IssR. Similarly Vout+ 

reaches Vdd. These voltages correspond to output low and output high, respectively. The dc 

characteristics of a simple resistive load CML buffer is shown in Figure 3-1(b). Since output 

voltages high and low are VHigh=Vdd and VLow=Vdd - IssR respectively, the output swing voltage is, 

Vswing= VHigh - VLow= IssR  [10].  The condition to achieve full current switching is given by:  

min
2)( V

L
WC

IVVV
oxn

ss
IssIdtGSswing ==−≥ =

µ
                                   (3-1) 

where Vmin is the minimum differential voltage that is required to completely turn off one 

transistor. By dividing both sides of (3-1) by Vmin, we have (Vswing / Vmin) >1 as the condition for 

current being fully switched [10].  

Typical chosen Vswing is equal to 0.3×Vdd to guarantee, 1) being large enough to allow 

sufficient gain-bandwidth product and 2) being small enough to prevent transistors from going 

into triode [10].  

One systematic approach to size and bias CML structures for high-speed operations is to 

cascade three stages of similar buffers and connect an ideal signal source of the desired speed to 
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the input of the first buffer. This configuration represents a close to real condition for the middle 

buffer since its input signal is generated from a buffer with real load and its output stage is 

looking at a real load. The buffer size, both transistors and resistors, and bias condition should be 

made in such a way that when looked differentially, the input and the output of the second buffer 

have the same voltage swing. This ensures that 1) the input voltage swing is large enough to steer 

the current completely from one leg to another and also 2) provides similar voltage swing for the 

next stage. Having similar voltage swings at both input and output of middle buffer guarantees 

that signal logic will be passed through stages at the desired speed. 

To determine low power consumption, considering the electro-migration constraints for the 

buffer, the proper value for current source, Iss is chosen to be 400uA [10]. Assuming Vdd =1.2V, 

the typical swing voltage is equal to Vswing = 0.3×Vdd  = 0.4V. On the other hand, Vswing= IssR, as a 

result the load resistance should be R=1k. Based on these values the proper W/L ratio of the 

transistors would be 60 which is resulted from simulation. 

 

3.1.2 CML D Flip-Flop Divider 

A simple topology of a divide-by-two D-flip-flop frequency divider, shown in Figure 3-2, 

consists of two cascaded D-latches with a negative feedback configuration.  

           

Figure 3-2 Topology of a DFF frequency divider. 
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A static DFF frequency divider, realized by current mode logic, (CML) with negative 

feedback is shown in Figure 3-3. The maximum operation frequency of this structure is generally 

limited by its parasitic capacitances. 

 

Figure 3-3 CML D Flip-Flop clock divider schematic. 

Depending on the design specification, each CML D-latch can utilize different components 

and structures as output load. Initially, the static loads are implemented by fixed resistors. This 

implementation suffers from the process variations. However, it has the advantage of providing 

the same rising and falling times that are equal to τ=R×CL. The load capacitance CL is the sum of 

the buffer's gate-source parasitic capacitance Cgs,b2  of the second latch, the gate-source parasitic 

capacitance Cgs,c1 of cross-coupled transistor for the first latch, the buffer's drain-substrate 

parasitic capacitance Cds,b1 for the first latch, and the drain-substrate parasitic capacitance Cds,c1 

of the cross-coupled for the first latch where Cgs = γCoxWL [10].  

The common-mode output voltage for the circuit shown in Figure 3-3, is given by: 

RIVV ssddoutcm ×−= 5.0,                                                 (3-2) 
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where Vcm,out is the common-mode output voltage, Vdd is the power supply voltage, Iss is the 

current source, and R is the resistor load. Because the output voltage of each D-latch is applied to 

the input voltage of another D-latch, Vcm,out = Vcm,in. Substituting Vdd =1.2V, Iss = 400uA, and 

R=1k  in equation (3-2), would result Vcm,out =1V.  

 The optimum common-mode input clock voltage, Vcm,clk that is applied to the clock inputs, 

CKP/N is found by varying the common-mode voltage using differential dc sweep runs. Define 

signals applied to the CKP/N inputs as Vcm + Vramp and Vcm − Vramp where Vramp voltage is varied 

from −400mV to 400mV with step size of 10mV while the Vcm voltage is varied from 0.4V to 1V 

with step size of 0.1V.  The drain currents of the clocked differential transistor pairs are then 

monitored. Simulation results for finding the optimum common-mode input voltage for CKP/N 

inputs are shown in Figure 3-4. 

 

Figure 3-4 Finding optimum common-mode input voltage for CKP/N inputs. 

The optimum input common-mode voltage occurs when the current is fully steered from 

one branch to another while all transistors stay in saturation region. If the common-mode input 

voltage goes higher, then the clock differential pair transistors can go into triode region, which 

decreases gm. For a lower input common-mode voltage, the current source enters the triode 
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region. Based on the simulation result shown in Figure 3-4 and the common-mode output voltage 

value, Vcm,out =1, and the optimal value for clkcmV ,  would be 0.6 volt subsequently. 

 The circuit parameters of the DFF frequency divider shown in Figure 3-3 are listed in 

Table 3-1. 

   Table 3-1 Circuit parameters of the DFF frequency divider. 

  

 

 

3.1.3 Plotting Sensitivity Curve  

A clock divider can be accurately characterized by its sensitivity curve [3], which specifies 

the minimum injected input clock amplitude, at a given frequency, for the divider to lock.  

The procedure that is used to plot the frequency divider's sensitivity curve is defined by 

following steps:  

1)  Find the self-oscillation frequency (Fself) when the clock amplitude is zero as shown in 

Figure 3-5(a). 

2)  Apply a differential sinusoid voltage to the differential CKP/N inputs with maximum 

clock amplitude (Vm) which is Vswing /2. Run a parametric analysis sweeping the clock 

frequency, for example from ωo -10G to ωo +10GHz. Monitor the frequency of 

differential output voltage using Cadence's "frequency" function. If the range is too wide 

or too narrow change it until  to find the minimum (FMin-m) and maximum (FMax-m) 

frequencies that oscillator operates as the divide-by-two correctly as is shown in Figure 

3-5(b). 

Circuit Parameters Iss Vdd W/L R 

Value 400u 1.2v 60 0.9k 
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3)  Reduce the clock amplitude (Vm-1), and re-run the parametric analysis with frequency 

sweep range less than previous run. Similar to step (2) find the minimum (FMin-m-1) and 

maximum (FMax-m-1) frequencies which oscillator operates as the divide-by-two correctly. 

4)  Repeat step (3) until the clock amplitude will be close to zero is shown in Figure 3-5(c). 

5)  Connect the points in the following order 

(FMin-m,Vm), (FMin-m-1,Vm-1), ... (Fself,0), ... (FMax-m-1,Vm-1), (FMax-m,Vm) 

               

Figure 3-5 Sample of the simulation results for plotting the DFF divider's sensitivity curve.   

Connecting the points to make the plot can be done in Excel or by running a skill code 

program which is loaded in Cadence's Interface Window, CIW. Based on the circuit parameter 

values given in Table 3-1 and the above procedure, the DFF frequency divider's sensitivity curve 

shown in Figure 3-6 is found by running a series of parametric transient simulations. 

The CML DFF frequency divider has a very wide sensitivity curve such that ∆ω is 

comparable with its ωo as shown in Figure 3-6, which is a desirable characteristic. It is important 

to note that, if the divider is to be used in a synthesizer, one of necessary conditions for locking 

is that the VCO frequency range should be within the desired operation region of the frequency 

divider's sensitivity curve.  
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Figure 3-6 Sensitivity curve for the DFF frequency divider. 

 

3.1.4 Procedure to Measure Phase Difference Between Two Signals 

To measure the phase shift, ϕ when the oscillator is locked to the injected frequency a 

novel procedure is developed. This procedure gives us a very precise tool to measure the locking 

phase, instantaneous phase, or any phase shift between two signals inside the topology loop and 

provides a good ability for better understanding of injection locking concept and the behavior of 

the divider under an impressed signal. The procedure that is used to measure the phase difference 

between two signals is defined by following steps:  

1)  Run the transient simulations with the desired setup. 

2)  Find the time of zero crossing points for the rising edge of any two desired signals 

(voltage or current), Sig1t0, Sig1t1, ... Sig1tn and Sig2t0, Sig2t1, ... Sig2tn 

where Sig1tm is the time of the mth zero crossing point of the first signal, Sig1. 

3)  For all the zero crossing times (t0, t1, ... tn), calculate the following: 

a. Freqm = 1/(Sig1tm−Sig1tm-1)  for m=0 ... n 
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where Freqm is the inverse of the time difference between two consecutive zero 

crossing points. 

b. Phasem = 360 × (Sig2tm−Sig1tm) × Freqm for m=0 ... n 

where Phasem is the mth phase shift between the two signals 

Implementation of the procedure is done by a skill code program which is loaded in 

Cadence's Interface Window, CIW or in the ocean program.  

 

3.1.5 Analyzing Instantaneous Frequency and Phase for DFF Divider 

In this section, the variation of instantaneous frequency is analyzed. The instantaneous 

frequency can vary due to 1) changing the amplitude of the injection signal and/or 2) changing 

the phase between the injection signal and the oscillation output signal. When an external signal 

is injected to the loop of the oscillator, there is a transient duration that the amplitude and the 

instantaneous frequency (the difference between two consecutive zero crossing points) of the 

oscillation changes until the divider locks and they are settled. Note that the frequency and the 

amplitude of the injected signal should be in the desired operation region of the frequency 

divider's sensitivity curve in order to guarantee the locking happens. 

To investigate the variation of instantaneous frequency, a differential sinusoid voltage 

signals is applied to the differential CKP/N inputs of the DFF frequency divider shown in Figure 

3-3 when the DFF frequency divider is free running. Figure 3-7 shows  an example of the 

injected signal and the resulting divider output signal.  
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Figure 3-7 Simulation results for an injected signal and its effect on instantaneous frequency.  

Figure 3-7(a) shows two signals: 1) the differential clock input with amplitude equal to 

400mV and injection frequency equal to 32GHz which is applied at the starting time of 4ns and 

2) the differential output of the DFF frequency divider which oscillates at free running frequency 

of 15.18GHz until 4ns and then locks after a few cycles to the 16GHz frequency that is half of 

the input 32GHz injection frequency. Figure 3-7(b) shows the locking states and also the 

transition of oscillation frequency between the two stable conditions. Figure 3-7(c) shows the 

phase between the output and injection currents. The derivative of the phase is zero when the 

divider locks to the frequency of the injected signal as shown in Figure 3-7(d). 

To determine the variation of instantaneous frequency when the amplitude of the injection 

signal is changed, the following tests are done. Figure 3-8 shows the results. 
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Figure 3-8 Simulation results when the clock amplitude is changed for DFF divider. 

Figure 3-8(a) shows just a small change in the instantaneous frequency when the 34GHz 

clock amplitude is varied from 200mV to 400mV with the step size of 100mV. For clock 

amplitudes less than 50mV, the divider cannot lock to the 34GHz input frequency. Figure 3-8(b) 

shows the result when a 30.4GHz input clock amplitude is varied from 20mV to 50mV with the 

step size of 10mV. Simulation results show that amplitude variations of injection signal do not 

have notable impact on the instantaneous frequency. Figure 3-8(c) shows the derivative of the 

phase for a few cases when the divider locks to the frequency of the injected signal. 

We now consider the effect of the time at which the injection signal is applied while the 

clock amplitude and frequency are held constant. 

The starting time when the clock is injected to the divider, can occur anytime during the 

oscillation cycle. For example, it can occur around the zero crossing in rising or falling edges or 

in the peaks of the cycle.  
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Figure 3-9 Simulation results when the clock is applied at different starting times for DFF divider. 

Figure 3-9 shows the simulation result when the clock is applied to the divider at different 

stating times. Figure 3-9(a) shows the case when starting time is at 3.942ns and is around the 

zero crossing in the rising edge of oscillation cycle. Figure 3-9(b) shows the case when starting 

time is at 3.958ns and is around the peak of the oscillation cycle. Figure 3-9(c) shows the case 
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when starting time is at 3.978ns and is around the zero crossing in the falling edge of oscillation 

cycle. As the simulation results show, the instantaneous frequency is changed significantly by 

changing the phase between the injection signal and the oscillation signal. The transient response 

behavior and the settling time are both affected by the variation of the phase between the 

injection signal and the oscillation signal. However, in all cases the same steady-state behavior is 

reached. 

More simulations are done to show how the settling time is affected by the variation of the 

phase between the injection and the oscillation signals. In the following tests the starting time to 

inject the clock is changed by constant step size during one period of the divider oscillation. 

Figure 3-10 shows the simulation results.  

     

Figure 3-10 Transient response due to phase variations of the injection signal for DFF divider. 

Figure 3-10(a) shows the results when the starting time to inject the clock is changing from 

3.997ns to 4.007ns with the step size of 1ps. The clock amplitude is 300mV and its frequency is 

constant and equal to 30.4GHz. Figure 3-10(b) shows the simulation results when the clock 

amplitude is reduced to 30mV.  

Simulation results show that the settling time is affected significantly by the variation of 

the phase between the injection and the oscillation signals and the injection signal amplitude. By 
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controlling the clock amplitude and the starting time to inject the clock, the settling time can be 

reduced and as a result a faster locking to the injected frequency occurs. 

 

3.2 High-Speed Frequency Dividers Based on CML Ring  

The problem with a CML divide-by-two D-flip-flop frequency divider is that the output 

nodes of two D-latches see a large capacitance load. The cross-coupled transistor pair used in the 

D-latch is one of the main contributors to the output capacitance [3]. Different techniques and 

topologies are suggested to reduce [1], [7] or eliminate [3] the parasitic capacitance of the cross-

coupled transistor pair. One of the topologies that eliminates the cross-coupled transistor pairs, is 

the CML ring frequency divider which is realized by CML buffers as shown in Figure 3-11.  

 

Figure 3-11 CML ring clock divider schematic. 

By eliminating the cross-coupled transistor pair as shown in Figure 3-11, the capacitance at 

output nodes is reduced and as a result the higher speed can be achieved [3]. However, it has the 

same rising and falling times that are equal to τ=RCL  which CL is defined by CL = Cds,bi 

+Cgs,b(i+1). The capacitance, Cds,bi is the buffer's drain-substrate parasitic of any given buffer and 

capacitance Cgs,b(i+1) is the buffer's drain-substrate parasitic of the following buffer, where Cgs = 
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γCoxWL [10]. As a result the load capacitance size, CL of the CML ring frequency divider is the 

half of the load capacitance size of the CML DFF frequency divider.  

The CML ring frequency divider exhibits a substantial increase in the maximum frequency 

with the wide range of operation. In this configuration CML buffers function as both low-pass 

filter and amplifier., Also the CML buffer functions as a single balanced mixer when a full rate 

clock is applied. A realization of single balanced mixer is shown in Figure 3-12.  

 

Figure 3-12 Realization of single balanced mixer.  

It is assumed all the transistors are in saturation region and identical. When a sinusoidal  

clock signal, VCK is applied to the CLK input, the drain current of the transistor M1, will be 

Id1=(gmVCK +Iss). The clock signal is defined as VCK =Acosωt. A differential sinusoid voltage is 

applied to the differential VinP/N inputs and the positive input is VinP =Bcosωot. This is a time 

variant linear system, therefore I = Id1 × Iin,  where Iin is gmVinP/N, subsequently:  

NinPmCKmss VgVgII /)( ×+=                                        (3-3) 

By substituting VCK =Acosωt  and VinP/N =Bcosωot in (3-3), the result would be: 

tBgtAgII ommss ωω cos)cos( ×+=      

ttABgtBgII omomss ωωω coscoscos 2+=                               (3-4) 

We know that cosωot×cosωt=1/2(cos(ω -ωo)t + cos(ω +ωo)t), and cos(ω +ωo)t is filtered 

out by its RC low pass filter. Therefore (3-4) can be simplified to: 
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tABgtBgII omomss )cos(
2
1cos 2 ωωω −+=                                    (3-5)  

When the divider is locked, ω  is equal to 2×ωo ,  (3-5) can be written as: 

I = K cosωot                                                             (3-6)                                                                        

where K = Iss gmB +0.5AB(gm)2. 

 

3.2.1 Circuit Parameters Design  

The CML buffer presented in Section 3.1.1 is used in the ring oscillator design. When Iss is 

set to 600uA and Vswing is set to 0.4V, R=0.9k. The transistor size of the ring buffers have the 

same ratio W/L of 60 as the previously designed CML buffer's transistor size. 

The common-mode output voltage, Vcm,out for the circuit that is shown in Figure 3-11, is 

Vcm,out = Vdd − 0.5× IssR. Because the output voltage of each buffer is applied to the input voltage 

of next buffer, we have Vcm,out = Vcm,in , where Vcm,in is the common-mode input voltage for each 

buffer. By knowing Vdd =1.2V, Iss = 600uA, and R=0.9k,  we have Vcm,out = Vcm,in =0.93V. 

The optimum common-mode input clock voltage, Vcm,clk that is applied to the clock inputs, 

CKP/N inputs is the same as DFF frequency divider's common-mode input clock voltage. The 

optimal value for clkcmV ,  is 0.6V. The circuit parameters of the ring frequency divider shown in 

Figure 3-11 are listed in Table 3-2. 

   Table 3-2 Circuit parameters of the ring frequency divider. 

 

  

 

Circuit Parameters Iss Vdd W/L R 

Value 600uA 1.2V 60 0.9k 
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3.2.2 CML Ring Frequency Divider's Sensitivity Curve  

The procedure that is defined in Section 3.1.3 is used to plot the sensitivity curve of the 

ring frequency divider shown in Figure 3-11. Based on the circuit parameter values in Table 3-2 

and the defined procedure, the points are obtained to plot the sensitivity curve. In the first step, 

the self-oscillation frequency is found. Figure 3-13 shows the self-oscillation frequency of the 

ring frequency divider.  

 

Figure 3-13 Self oscillation frequency for ring divider. 

Figure 3-13 gives the (Fself,0) point in the sensitivity curve, where Fself=27.16GHz is the 

self-oscillation frequency when clock amplitude is zero volts. In next steps all the points (FMin-

m,Vm) and (FMax-m,Vm), the minimum and maximum output frequencies when clock amplitude is 

defined at certain value in the sensitivity curve are found. For example when the clock amplitude 

is 400mV, the simulation gives two points as shown in Figure 3-14. 
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Figure 3-14 An example of finding two points in the sensitivity curve for Vm=400mV. 

Figure 3-14 provides the (21GHz, 400mV) and (31.5GHz, 400mV) points in the sensitivity 

which are the minimum and  maximum output frequencies that divider locks when clock 

amplitude is 400mV. When clock amplitude is varied, the minimum and  maximum output 

frequencies that divider locks will be changed. Therefore, similar to this example all the points 

are found and connected to plot the ring frequency divider's sensitivity curve shown in Figure 

3-15. 

 

Figure 3-15 Sensitivity curve for 4-stage ring frequency divider. 

In summary CML ring frequency divider has a wide sensitivity curve, but is not as wide as 

CML DFF frequency divider sensitivity curve and its self-oscillation frequency is also higher. 
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3.2.3 Analyzing Instantaneous Frequency and Phase Shift 

The variation of instantaneous frequency is analyzed similar to CML DFF frequency 

divider. As described in Section 3.1.5, the instantaneous frequency can vary due to 1) changing 

the amplitude of the injection signal and/or 2) changing the phase between the injection signal 

and the oscillation output signal by applying the injection signal at different starting time during 

the oscillation cycle. To investigate the variation of instantaneous frequency, a differential 

sinusoidal voltage signal is applied to the differential CKP/N inputs of the CML ring frequency 

divider shown in Figure 3-11 when the ring frequency divider oscillates in its free running 

frequency. It should be noted that the frequency and the amplitude of the injected signal should 

be in the desired operation region of the divider's sensitivity curve in order to guarantee that 

locking occurs. Figure 3-16 shows an example of the injected signal and the resulting divider 

output signal. 

 

Figure 3-16 An example of the effect of an injected signal on instantaneous 

 frequency and phase for ring divider. 
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As shown in Figure 3-16(a), the differential clock input with amplitude equal to 400mV 

and injection frequency equal to 55GHz is applied with starting time of 4ns. It also shows the 

differential output of the ring frequency divider which oscillates at free running frequency until 

4ns and then locks after a few cycles to the 27.5GHz frequency that is half of the 55GHz injected 

clock frequency. Figure 3-16(b) shows the locking states and also the transition of oscillation 

frequency between the two stable conditions. Figure 3-16(c) shows the phase between the output 

and injection currents. 

To investigate the variation of instantaneous frequency and phase as a result of variations 

of the injection signal amplitude, the following tests are done. Figure 3-17 shows the results. 

 

Figure 3-17 Simulation results when the clock amplitude is changed for ring divider.  

Figure 3-17(a) shows the zero crossing changes while the clock amplitude is varied. The 

55GHz clock signal is injected at starting time equal to 4ns and is varied from 100mV to 400mV 

with the step size of 100mV. Figure 3-17(b) shows the phase between the output current and 

injection current when the 55GHz clock amplitude is varied from 100mV to 400mV with the step 

size of 100mV. Simulation results show, when the injection signal amplitude changes 1) it does 

not have notable impact on the instantaneous phase but the locking phase is changed and 2) it has 
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a notable impact on the instantaneous frequency and the settling time. The settling time increases 

when the injection signal amplitude decreases. 

Now, the clock amplitude and frequency are held constant while the starting time to inject 

the clock is changed. The following tests show the effect of the different starting time to apply 

the clock on the instantaneous frequency. The starting time can occur at anytime during the 

oscillation cycle. Figure 3-18 shows an example of the injected signal and the resulting divider 

output signal, while the starting time to inject the clock is changed.   

 

Figure 3-18 Simulation results when the clock is applied at different starting times for ring divider.  

Figure 3-18(a) shows the result when the starting time to inject the55GHz, 400mV clock is 

changing from 3.999ns to 4.035ns with a step size of 4ps. Figure 3-18(b) shows the phase 

between the output current and injection current when the starting time to inject the clock is 

varied from 3.999ns to 4.035ns with the step size of 4ps. Simulation results show when the 

starting time to inject the clock is changing while the clock signal amplitude and clock frequency 

are constant: 1) it has a notable impact on the instantaneous phase but the locking phase is not 

changed and 2) it has a significant impact on the instantaneous frequency and the settling time. 
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The settling time decreases when the starting time of the injection signal is around the zero 

crossing of oscillation cycle. 

The time derivative of the phase difference between Iout and Iinj becomes zero and when the 

frequency divider locks. Figure 3-19(a) shows this behavior during the self-oscillation and when 

it locks to injected signal's frequency.  

 

Figure 3-19 The instantaneous phase due to injection signal for ring divider.  

 

3.3 High-Speed Frequency Dividers Based on LC-tank Oscillator  

The LC-tank oscillator can be designed as either single-ended or differential type. The 

differential type has higher rejection of common mode interferers and stronger attenuation of 

even-order harmonics than the single-ended type. Therefore, the differential type is commonly 

required in most applications although it needs more components and consumes more power. 

The LC-tank frequency divider is realized by a differential LC-tank oscillator where input clock 

is fed through the source as shown in Figure 3-20.  
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Figure 3-20 LC-tank frequency divider schematic. 

The resonant frequency of the tank is ωo = 1/ LLC . This type of divider is suitable for 

very high-frequency operation, however, it occupies a large area due to the on-chip inductor. 

To design of the LC-tank oscillator parameters circuit, we use the same transistor size that 

is used in the DFF and ring frequency dividers. The current source, Iss was set to 400uA. As 

shown in Figure 3-20, the divider output is connected to the input of a CML buffer to provide a 

realistic load capacitance. The capacitance CL is the sum of the gate-source parasitic capacitance, 

Cgs,b  of the buffer, the gate-source parasitic capacitance Cgs,c of the cross-coupled transistor pair, 

the drain-substrate parasitic capacitance Cds,c of the cross-coupled transistor pair, the tank 

capacitor, C, and parasitic capacitance of the inductor CP,L where Cgs = γCoxWL [10] and 

CP,L=1/(Lω2
SRF). For this circuit the self-resonant frequency of the inductor is 5 times the self-

oscillation frequency. Based on simulation results, the proper value for inductor is 1nH. The 

circuit parameters of the LC-tank frequency divider shown in Figure 3-20 are listed in Table 3-3. 

Table 3-3 Circuit parameters of the LC-tank frequency divider. 

 

 

Circuit Parameters Iss Vdd W/L L C CL 

Value 400uA 1.2V 60 1nH 3.69fF 13.16fF 
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3.3.1 LC-tank Frequency Divider's Sensitivity Curve  

The procedure that is defined in Section 3.1.3 is used to plot the sensitivity curve of the 

LC-tank frequency divider shown in Figure 3-20. Based on the circuit parameters value in Table 

3-3, the points are obtained to plot the sensitivity curve. In the first step, the self-oscillation 

frequency is found. Figure 3-21 shows the self-oscillation frequency of the LC-tank frequency 

divider.  

 

Figure 3-21 Self oscillation frequency for LC-tank frequency divider. 

Figure 3-21 gives the (Fself,0) point in the sensitivity curve, where Fself=43.87GHz is the 

self-oscillation frequency when clock amplitude is zero volts. By varying the amplitude, the 

points (FMin-m,Vm) and (FMax-m,Vm) in the sensitivity curve will be found. Figure 3-22 shows an 

example that is used to find the minimum and maximum output frequencies that divider locks 

when the clock amplitude is 400mV, 300mV, 200mV, or 100mV.  
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Figure 3-22 An example to find (FMin-m,Vm) and (FMax-m,Vm) points for the LC-tank divider.  

Figure 3-22 gives (43.6GHz, 400mV) and (44.07GHz, 400mV) points for the minimum 

and the maximum output frequencies that divider locks when clock amplitude is 400mV. For 

clock amplitude of 300mV, (43.7GHz, 300mV)  and (44.04GHz, 300mV) points are found. For 

clock amplitude of 200mV, (43.76GHz, 200mV) and (43.98GHz, 200mV) points and for 100mV 

(43.82GHz, 100mV)  and (43.94GHz, 200mV) points are found respectively. Similar to this 

example more points are found and connected to plot the LC-tank frequency divider's sensitivity 

curve as shown in Figure 3-23.  

 

Figure 3-23 Sensitivity curve for LC-tank frequency divider. 
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The LC-tank frequency divider has a very narrow sensitivity curve, but its self-oscillation 

frequency is much higher than the other two topologies. This frequency divider is capable to 

have a much higher self-oscillation frequency, therefore suitable to be used in some applications 

for very high frequency operation. 

 

3.3.2 Analyzing Instantaneous Frequency and Phase Shift for LC-tank 

The variation of instantaneous frequency for the LC-tank is analyzed similar to the other 

two frequency dividers. As described in Section 3.1.5, the instantaneous frequency can vary due 

to 1) changing the amplitude of the injection signal and/or 2) changing the phase between the 

injection signal and the oscillation signal by applying the injection signal at different starting 

time during the oscillation cycle.  

 

Figure 3-24 An injected signal and its effect on LC-tank frequency divider's output.  

To investigate the variation of instantaneous frequency, a sinusoidal voltage signal is 

applied to the clock input, CLK of the LC-tank frequency divider shown in Figure 3-20 when the 

LC-tank frequency divider oscillates in its free running frequency. It should be noted that the 
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frequency and the amplitude of the injected signal should be in the desired operation region of 

the LC-tank frequency divider's sensitivity curve in order to guarantee that locking happens.  

Figure 3-24 shows an example of the injected signal and the resulting divider oscillation 

output signal. As shown in Figure 3-24(a), the clock input with amplitude equal to 400mV and 

injection frequency equal to 87.9GHz is applied with starting time at 4ns. It also shows the 

differential output of the LC-tank frequency divider which oscillates at free running frequency 

until 4ns and then locks after a few cycles to the 43.95GHz frequency that is half of the 87.9GHz 

injected frequency. Figure 3-24(b) shows the locking states and also the transition of oscillation 

frequency between the two stable conditions. Figure 3-24(c) shows the phase difference between 

the output and injection signal and also shows the time derivative of the phase that is equal to 

zero when the divider locks. 

To determine the variation of instantaneous frequency as a result of changing the 

amplitude of the injection signal while the injected frequency and the starting time to inject the 

clock are held constant, the following tests are done. Figure 3-25 shows the results. 

 

Figure 3-25 Simulation results when the clock amplitude is changed for LC-tank divider. 
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Figure 3-25(a) shows that the transition response changes while the 87.9GHz clock 

amplitude that is injected at starting time equal to 4ns, is varied from 200mV to 400mV with a 

step size of 100mV. Figure 3-25(b) shows the variations of phase when the 87.9GHz clock 

amplitude is varied from 200mV to 400mV with the step size of 100mV. Simulation results 

show, when the injection signal amplitude changes, it has a notable impact on the instantaneous 

frequency and the settling time. The settling time increases when the injection signal amplitude 

decreases. They also show that the locking phase between the output and injection signal is 

changing when the clock amplitude is varied. 

Now, the clock amplitude and frequency are held constant while the starting time to inject 

the clock is changed. The following tests show the effect of the different starting time to apply 

the clock on the instantaneous frequency. The starting time can occur at any time during the 

oscillation cycle. Figure 3-26 shows an example of the injected signal and the resulting divider's 

oscillation output signal, while the starting time to inject the clock is changed.   

 

Figure 3-26 Simulation results when the clock is applied at different starting times for LC-tank divider. 
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Figure 3-26(a) shows the clock when the injection starting time is changing from 4.007ns 

to 4.026ns with a step size of 3ps. The 87.9GHz clock amplitude is set to 100mV. Figure 3-26(b) 

shows the transient response behavior of oscillation frequency between the two stable conditions 

when the starting time to inject the signal is changing. Figure 3-26(c) and Figure 3-26(d) show 

the variations of instantaneous phase when the injection starting time is changing from 4.007ns 

to 4.026ns with a step size of 3ps. The simulation results show that the instantaneous frequency, 

settling time and instantaneous phase are changed significantly by the variation of the phase 

between the injection signal and the oscillation output signal. And also show that the locking 

phase between the output and injection signal is constant when the starting time to inject the 

signal is varied.  

Figure 3-27 shows an example of the variation of instantaneous output frequency as a 

result of changing the amplitude of the injection signal and  the starting time to inject the clock 

while the injected frequency is constant.  

 

Figure 3-27 Simulation results when the clock amplitude and injection starting times are varied. 

Figure 3-27 shows the changes in the transition response while the 87.9GHz clock 

amplitude is varied from 400mV to 200mV with a step size of 100mV and also the starting time 

to inject the clock is changing from 4.01ns to 4.024ns with a step size of 6ps. The simulation 
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results show that the instantaneous frequency and settling time are changed significantly and the 

locking phase between the output and injection signal is changed when the clock amplitude is 

varied.  
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CHAPTER 4. Analyzing Locking Phase 

In this section, three different topologies, LC-tank frequency divider, CML ring frequency 

divider, and CML DFF frequency divider,  will be modeled. Based on model and topology, the 

locking and the instantaneous phase equations will be derived. The analytical results will be 

compared and discussed with the simulation results.  

 

4.1 LC-Tank Frequency Dividers 

For simplicity of the analysis, a differential half rate frequency current is injected into the 

tank nodes instead of the clock voltage with full rate frequency as shown in Figure 4-1. 

 

Figure 4-1 Schematic of the LC-tank frequency divider with current injected to the tank nodes. 

This circuit shown in Figure 4-1 can be modeled as shown in Figure 4-2. 
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Figure 4-2 (a) Equivalent circuit, (b) Block diagram and (c) Vector representation of LC-tank divider. 

An equivalent circuit for the LC-tank divider is shown in Figure 4-2(a), where iinj is the 

injected current, id is the feedback current, and their sum is output current, io = id + iinj.  The 

block diagram equivalent is shown in Figure 4-2(b). A vector representation of the three currents 

is shown in Figure 4-2(c) where the locking phase, ϕ is the angle between the feedback current id 

and the sum current io, which goes to the load; phase θ is the angle between the feedback current 

id and the current iinj that is injected into the drain.  

Using the procedure to measure phases described in Section 3.1.1, Figure 4-3 is the 

simulated vector representation of the three currents in Figure 4-2(c). 

 

Figure 4-3 An example of simulation results showing vector representation of the three. 
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From Figure 4-2(c), we can write the sum current io as a complex number by the following 

relation:  

θθ sincos injinjdo jiiii ++=  

θ

θ
θ

θ
ϕ

cos1

sin.
cos

sin
tan

d

injd

inj

injd

inj

i
ii

i
ii

i

+
=

+
=                                     (4-1) 

This is an important periodic function that appears in any type of divider. The graph in 

Figure 4-4 shows one period of the negative of this function for three different values of the 

modulation index iinj/id: 

 

Figure 4-4 Periodic function that appears in any type of divider. 

To find the phase shift, first the output impedance should be formulated. The output 

impedance, Z(jω ) for LC-tank can be written as:  

R
LjLC

LjjZ
ωω

ωω
+

=
)-(1

)(
2

                                             (4-2) 

where R, C, and L are the output resistance, capacitance, and inductance, respectively and the 

phase shift of this impedance is given by: 

 ) 
1

(tan-
2

 )](arg[ 2
1-

LC
R
L

jZ
ω

ωπωϕ
−

==                                  (4-3) 



43 
 

We have 111 tan
2

tan −−− −= απα  , and (4-3) can be rewritten as:  

)1(tan)(
2

1-

R
L
LCf

ω

ωωϕ −
==                                      (4-4) 

Assuming ω =ωo+∆ω is in the desired operation region of the frequency divider's 

sensitivity curve, then the Taylor expansion for ƒ(ω) around ωo would be:  

...))(())(()()( 2 +−′′+−′+== ooooo ffff ωωωωωωωωϕ     (4-5) 

where 
LCo
1

=ω  is the self-oscillation frequency of the divider. Then we can write the 

following: 
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As expected, phase shift at the self-oscillation frequency is equal to zero. 

To find the first-order term of (4-5), using 
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u
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By substituting 
LCo
1

=ω  in (4-7), it simplifies to ƒ'(ωo) = -2RC, therefore we have: 

)(2))(( ooo RCf ωωωωω −−=−′                                          (4-8) 

If we multiply and divide the equation (4-8) by ωo, we will have:  
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oL
CR

ω
ωϕ ∆

−= ..2                                                   (4-9) 

The sensitivity curve for this topology is very narrow and we can assume ∆ω<<ωo for any 

ω chosen in the desired frequency divider operation region of its sensitivity curve. Considering 

the typical ωo and ∆ω provided in Table 4-1, ∆ω/ωo<0.01 and consequently (∆ω/ωo)2 <10-4. 

Therefore, the second-order term can be ignored. 

Now, we should investigate the correctness of assuming tan(ϕ) equal to ϕ. In order to 

calculate the value of 
L
CR ×2 , the values of R and C should be known. We have fo=43.87GHz 

and L=1nH, therefore per ωo = 1/ LLC , it would result to C=13.16fF. Considering oLp LQR ω= , 

where L=1nH and QL=5.5, then Rp =1.51k.  Knowing the values of R, C, and L we can calculate 

the value of the coefficient in equation (4-9):    

112 ≈×
L
CR  

But the load capacitor has also quality factor, Qc. It is necessary to know the overall quality 

factor, Qt  to calculate a more accurate value for  Rp= Qt Lωo. The overall Qt is: 

cLt QQQ
111

+=  

A practical way to calculate the overall Qt is running an ac analysis simulation, looking at 

the output impedance, measuring the -3dB band-width and calculating the overall quality factor 

using Qt =ωo / ∆ω-3dB where ∆ω-3dB is the -3dB band-width and ωo is the self-oscillation 

frequency for LC-tank. The ac analysis simulation result is shown in Figure 4-5. 
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Figure 4-5 Finding the quality factor. 

From Figure 4-5, we can calculate the overall quality factor, Qt =38.4/9.25=4.15. Knowing 

L=1nH, Qt =4.15, and fo= 43.87GHz, Rp= Qt Lωo is equal to 1.144k. Therefore the value of the 

coefficient in equation (4-9) would be:   

3.82 ≈×
L
CR  

Table 4-1 shows the value of ϕ in equation (4-9), and tanϕ for different values of locking 

frequencies, ω where ω =ωo+∆ω is in the desired operation region given by the sensitivity curve 

shown in Figure 3-23. 

Table 4-1 Comparison of ϕ and tanϕ for LC-tank frequency divider. 

 

 

 

 

 

 

Locking frequency,ω (GHz) 43.67 43.77 43.95 
43.48 

(min) 

44.1 

(max) 

∆ω (GHz) 0.2 0.1 0.08 0.39 0.23 

oL
CR

ω
ωϕ ∆

××= 2 (rad) 0.038 0.019 0.015 0.074 0.044 

tanϕ 0.038 0.019 0.015 0.074 0.044 
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Table 4-1 verifies that we can assume ϕ and tanϕ  are equal,  therefore we can combine 

equations (4-1) and (4-9), and it would result: 

θ

θω
cos1

sin.2

d

injd

inj

i
ii

i
RC

+
=∆−                                        (4-10) 

Now, the following variable substitutions can be made:  

● ∆ωo= ω− ωo= (ω−ωinj) − (ωo−ωinj) where ωinj is the injection frequency. 

● ∆ωo= (ωo−ωinj) 

Note that (ω−ωinj) is the difference between the injection frequency and the oscillator 

output instantaneous frequency, which based on Figure 4-2(c) is the same as the derivative of 

θ with respect to time. Applying these substitutions in equation (4-10), we have:  
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=∆−−                                    (4-11) 

W can rewrite equation (4-11) and get to the following differential equation:  

      o

d

injd

inj

i
ii

i
RCdt

d ω
θ

θθ
∆+

+
−=

cos1

sin..
2

1                                  (4-12) 

If we first consider the case where the injected frequency is the same as the self-oscillation 

frequency (i.e., where ∆ωo=0), then Figure 4-4 shows two equilibrium points: a stable 

equilibrium at θ = 0 and an unstable equilibrium at θ = ±π. For the case where ∆ωo≠0, Figure 4-4 

curve would be shifted up or down by that amount. 
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4.1.1 Validating Calculation of ϕ by Simulation Results for LC-tank Divider 

Now, we need to verify the calculated values of ϕ  by the simulation result. Figure 4-6 

shows the locking frequency and the locking phase when an ac current with half-rate frequency 

and 20uA amplitude is injected to the drain, iinj. 

 

Figure 4-6 Simulation results for LC-tank based frequency divider. 

Figure 4-6(a) shows the simulations results for the LC-tank frequency divider which is free 

running at the frequency of 43.87GHz until 4ns. A 20uA current with starting time of 4ns with 

frequencies of 43.67-, 43.77-, 43.87-, 43.95-, and 44.1-GHz is injected to the divider. The LC-

tank divider locks at the injected frequency after a few cycles. Figure 4-6(b) shows the locking 

phase, ϕ between the drain current of the transistor M1, id  and the current that goes to the total 

load, io corresponding to the injected frequencies. Table 4-2 compares the ϕ value from 

calculation and simulation.  
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Table 4-2 Comparison of calculation and simulation values of ϕ for LC-tank divider. 

 

 

 

 

 

 

The value of ϕ from simulation, the third row in Table 4-2, is not equal to zero at self-

oscillation similar to the calculated value in the second row. Although the expression in (4-9) is 

independent of the injection amplitude, the simulation does show some dependency on it. This 

difference seems to be the reason that ϕ from simulation is not zero at ωo. In order to better 

comparison of the calculated and simulated values, the simulation values are subtracted from the 

self-oscillation value (2.501o). These latter values are shown in the last row of Table 4-2. 

Comparing the values in the second and the last rows of Table 4-2 implies when the 

absolute value of ∆ω increases, the absolute value of ϕ also increases in both calculation and 

simulation. But the values are different. 

For a better comparison, more simulations were done for ωinj values that are in the desired 

operation region and also very close to ωo. The simulation results are shown in Figure 4-7. For 

these simulations, similar to the previous case, the LC-tank frequency divider is in the self-

oscillation mode until 4ns with the free running frequency of 43.87GHz and a 20uA current is 

injected starting at 4ns. The frequency values of injected signal are 43.85-, 43.86-, 43.87-, 43.88-

, and 43.89-GHz. Figure 4-7 shows the locking frequency and phase, corresponding to these 

frequencies. Table 4-3 summarizes the value of ϕ from calculation and simulation. 

Locking frequency, ω (GHz) 43.67 43.77 
43.87 

(ωo) 43.95 
44.1 

(max) 

oL
CR

ω
ωϕ ∆

−= ..2  -2.168 o -1.084 o 0 0.867 o 2.493 o 

ϕ from simulation 0.281 o 1.622 o 2.501 o 2.931 o 2.966 o 

ϕ from simulation-2.501 o -2.220 o -0.879 o 0 0.430 o 0.465 
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Figure 4-7 Simulation results showing the locking frequency and phase for LC-tank divider. 

Table 4-3 Comparison of calculation and simulation values of ϕ for frequencies closer to ωo. 

 

 
 

 
 
 
 

 
 

Comparing the values in the second and last rows of Table 4-3 shows when the absolute 

value of ∆ω increases, the absolute value of ϕ also increases in both calculation and simulation. 

It also shows when ∆ω doubles, the value of ϕ from both simulation and calculation almost 

doubles similar to calculation results, although there is a difference between the calculated and 

simulation values. The difference between the values can be related to the inherent difference 

between simulation and calculation. In calculation, equation (4-9), ϕ depends on the injection 

frequency while in simulation, it is a function of both the frequency and amplitude of injection 

signal. 

Locking frequency, ω (GHz) 43.85 43.86 
43.87 

(ωo) 43.88 43.89 

oL
CR

ω
ωϕ ∆

−= ..2  -0.217 o -0.108 o 0 0.108 o 0.217 o 

ϕ from simulation 2.361 o 2.431 o 2.501 o 2.571 o 2.639 o 

ϕ from simulation-2.501 o -0.140 o -0.070 o 0 0.070 o 0.138 o 
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Table 4-4 shows the value of ϕ from simulation results is a function of both the frequency 

and amplitude of injection signal. 

Table 4-4 Simulation results for different frequency and amplitude values of injected signal. 

 

 

 

 

 

 

 

 

 

 

Analyzing the values in Table 4-4, points out the difference between calculation and 

simulation results. Despite the independence of the calculation values to the injection amplitude, 

the simulation results for the same ∆ω with different injection amplitudes are not the same. For 

instance, the value of ϕ from simulation for ω=43.77GHz are -1.62o, -0.88o and -0.06o when 

injection amplitudes of 20uA, 15uA and 10uA respectively while the calculation value for the 

same frequencies from Table 4-2 is -1.084 o without any dependencies to injection amplitude. 

 

4.2 CML Ring Frequency Divider 

 Similar to LC-tank frequency divider, for simplicity of the analysis a differential current at 

half-rate frequency is injected to the output nodes as shown in Figure 4-8, instead of injecting the 

signal via the clock voltage inputs at full-rate frequency.  

  iinj 

  20uA 15uA 10uA 5uA 0uA 

 

  

 

 

 

ω

  

43.67GHz ϕ=0.28 o     

43.72GHz ϕ=1.02 o ϕ=0.18 o    

43.77GHz ϕ=1.62 o ϕ=0.88o ϕ=0.06 o   

43.82GHz ϕ=2.11 o ϕ=1.42 o ϕ=0.73 o ϕ=0.2 o  

43.87GHz (ωo) ϕ=2.51 o ϕ=1.82 o ϕ=1.18 o ϕ=0.53 o ϕ=0 

43.92GHz ϕ=2.8 o ϕ=2.11 o ϕ=1.46 o ϕ=0.77 o  

43.97GHz ϕ=2.99 o ϕ=2.28 o ϕ=1.54 o   

44.02GHz ϕ=3.03 o ϕ=2.3 o    

44.07GHz ϕ=3.06 o     
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Figure 4-8 Schematic of the ring frequency divider with current injected to output nodes. 

 

Figure 4-9 (a) Equivalent circuit, (b) Block diagram and (c) Vector representation for ring divider. 

The circuit shown in Figure 4-8 can be modeled as shown in Figure 4-9. An equivalent 

circuit corresponding to the first stage of an n-stage ring (driven by the output Vo of the last 

stage) is shown in Figure 4-9(a) where iinj  is the injected current, id is the feedback current which 

is the drain buffer current of the first stage, and their sum is, io = id + iinj which goes to the total 

load of the first stage. The block diagram form is shown in Figure 4-9(b). A vector representation 

of the three currents is shown in Figure 4-9(c) where the locking phase ϕ is the angle between 

the feedback current, id and the sum current, io, and phase θ is the angle between the feedback 
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current, id and the injection current, iinj that is injected to the drain buffer of the first stage. Figure 

4-10 is an example of a simulation result showing the vector representation of the three currents 

similar to Figure 4-9(c). 

 

Figure 4-10 Vector representation of the three currents in ring frequency divider. 

To find the phase shift, the output impedance should be formulated first. The output 

impedance, Z(jω ) of the first stage can be written by the following equation:  

RCj
RjZ
ω

ω
+

=
1

)(                                                           (4-13) 

and based on the block diagram shown in Figure 4-9(b) the output impedance of n stages is: 

n

nn
m

RCj
RgjZ

)(1
)(

1

ω
ω

+
=

−

                                                      (4-14) 

where R and C are respectively the output resistance and capacitance of each stage. The resulting 

phase shift due to each buffer impedance is given by: 

   ) (tan )](arg[ 1 RCjZ ωω −−=                                                     (4-15) 

If the divider has n stages, then the phase shift of each stage is π /n. Thus, assuming n is 

even, the overall phase shift around the loop can be written as: 

) (tan )](arg[ 1 RCnjZn ωπωπϕ −−=+=  

  ) (tan)( 1 RCnf ωπωϕ −−==                                               (4-16) 
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where the π term corresponds to the inverting connection between the output of the last stage and 

input of the first stage. Without injection, the divider will self-oscillate at frequency ωo, and the 

phase shift around the loop is equal to 2π. When a signal with a frequency of ω is injected in to 

the loop where ω =ωo+∆ω is in the desired operation region of its sensitivity curve, then phase 

shift ϕ will be created, and the phase shift around the loop is also equal to 2π as shown in Figure 

4-11.  

 

Figure 4-11 Amplitude and phase of current signals of different stages. 

Figure 4-11(a) shows the output currents of each stage. Where the ring frequency divider 

oscillates at its free running frequency until 4ns when the injection signal is applied to the loop 

and as a result the frequency and amplitude of the output currents change until locked.  

Figure 4-11(b) shows the phase between each stage before and after injection when divider 

locks. It can be seen in this figure that the phase between the first and second stages, θ (Io1,Io2) is 

equal to -46.06o before injection and is equal to -47.65o after injection. The phase between the 

second and third stages, θ (Io2,Io3) is equal to -43.93o before injection and is equal to -48.08o after 
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injection. The phase between the third and fourth stages, θ (Io3,Io4) is equal to -46.06o before 

injection and is equal to -49.06o after injection. Figure 4-11(c) shows the phase between the 

fourth and first stages, θ (Io4,Io1) is equal to 136.1o before injection and is equal to 145.3o after 

injection. The sum of all phases before injection is equal to -46.06o + -43.93o +-46.06o +136.1o = 

0.05o ≅ 0 and the sum of all phases after injection is also equal to -47.65o+ -48.08o + -49.6o 

+145.3o = 0.03o ≅ 0. The sums are almost zero. This result verify that the phase shift around the 

loop after injection is also equal to 2π , although the phases between the individual stages have 

been changed due to the injection. 

The phase shift ϕ = ƒ(ω) is a function of ω. The Taylor expansion of ƒ(ω) around ωo is:  

 ...))(())(()()( 2 +−′′+−′+== ooooo ffff ωωωωωωωωϕ                         (4-17) 

knowing that  

)(tan)( 1 RCnf oo ωπω −−=  

 
which is the phase shift at the self-oscillation frequency and is equal to zero. 

We have 
dx
du

u
u
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d

2
1

1
1tan

+
=−  and assuming u = ωoRC, then the first and second-order 

polynomials of the Taylor expansion would be:  
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We know that the phase shift around the loop at self-oscillation frequency for n-stage ring 

oscillator is π = n×tan-1(ωoRC), therefore for the 4-stage CML ring oscillator, we have:  
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where RC in expressions (5) and (6) is replaced by RC=1/ωo, we have: 
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Now, we need to investigate if the second-order polynomial in (4-21) can be ignored. 

Table 4-5 shows the calculated values for the first- and second-order polynomials of the Taylor 

expansion, namely expressions (4-20) and (4-21), considering n=4 and ω =ωo+∆ω is in the 

desired operation region given by its sensitivity curve shown in Figure 3-15. 

  Table 4-5 First and second-order Taylor expansion polynomials of ring divider. 

   ωo =27.16GHz, n=4 

 Locking frequency, ω (GHz) 

 

∆ω (GHz) o

n
ω

ω∆
2

 2)(
2 o

n
ω

ω∆  

28.16 1.00 0.074rad 4.22 o 0.0027rad 0.155 o 

29.16 2.00 0.148rad 8.44 o 0.012rad 0.62 o 

30.00 2.84 0.21rad 11.98 o 0.022rad 1.25 o 

24.00 3.16 0.23rad 13.3 o 0.027rad 1.55 o 

31.50 (max) 4.34 0.32rad 18.31 o 0.051rad 2.93 o 

21.00 (min) 6.16 0.45rad 25.99 o 0.103rad 5.89 o 

 

Looking at values in Table 4-5, the second-order polynomial values are much smaller than 

the first-order polynomial values. The value of ∆ω/ωo ((∆ω/ωo)2) is less than 0.11 (0.01) for 

frequencies close to self-oscillation frequency and less than 0.22 (0.05) in the worst case for 

frequencies on the edge of locking range, therefore (4-17) can be approximated by its first-order 

Taylor expansion polynomial. 
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Therefore, the  phase difference due to the injected signal is: 

ω
ω

ϕ ∆
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Using an argument similar to LC-tank , from Figure 4-9(c) we can write:  
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Similar to LC- tank, we need to investigate the correctness of assuming ϕ is equal to tanϕ. 

Table 4-6 shows the value for the first-order polynomials of expression (4-20), ϕ and tanϕ 

for locking frequencies.   

Table 4-6 Comparison of the values of first-order polynomial, ϕ and tanϕ. 

 
 

Table 4-6 shows that we can assume ϕ and tanϕ  are equal for frequencies close to the self-

oscillation frequency and within 6.7% in the worst case, for frequencies close to the edge of 

locking range. Though, we should be careful to generalize this assumption. In this case, 

equations (10)  and (11) could be combined, therefore we have: 

Locking frequency, ω (GHz) 28.16 29.16 30 24 
31.5 

(max) 

21 

(min) 

∆ω (GHz) 1 2 2.84 3.16 4.34 6.16 

oω
ωϕ ∆

= .2 (rad) 0.074 0.148 0.21 0.23 0.32 0.45 

tanϕ 0.074 0.148 0.21 0.23 0.33 0.48 

Error 0% 0% 0% 0% 3.125% 6.67% 



57 
 

θ

θωθ
ω cos1

sin.)(
)(1 2

d

injd

inj
o

o

i
ii

i
dt
d

RC
nRC

+
=∆−

+
−                                (4-25) 

Consequently, the differential equation is: 
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for n stages. If we consider the case with m points that signals at full-rate frequency are injected 

to the divider, then the expression in (4-26) should be modified to: 
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                           (4-27) 

Equation (4-27) implies: 1) The derivative of θ with respect to time, dθ/dt, depends not 

only on the injection ratio Iinj/Id, but also to the product of the self-oscillation frequency and the 

RC time constant. Normally this product is constant for a given value of n. For the divider shown 

in Figure 4-8, it is normal to apply two points of injection, m=2 by applying a differential signal. 

2) When dθ/dt is equal to zero, the divider is locked. 

 

4.2.1 Validating Calculation of ϕ by Simulation Results for Ring Divider 

Now, we need to verify the calculated values of ϕ  by the simulation result. Figure 4-12 

shows the locking frequency and the locking phase when a 50uA current, Iinj with half-rate 

frequency is injected to the drain buffer of the first and the third stages, as shown in Figure 4-8. 

ω is in the desired operation region of frequency divider's sensitivity curve. 
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Figure 4-12 Simulation results showing locking frequency and phase for ring divider. 

Table 4-7 Comparison of calculation and simulation values of ϕ for ring divider. 

 

 
 
 
 
 
 
 
 
 

Figure 4-12(a) shows the simulations results for ring frequency divider which is in free 

running at frequency of 27.16GHz until 4ns and a 50uA current with frequencies of 25.16-, 

26.16-, 27.16-, 28.16-, and 29.16-GHz is injected with a starting time of 4ns. The ring frequency 

divider locks at the injected frequency after few cycles. Figure 4-12(b) shows the locking phase, 

ϕ  between the drain buffer current, id1  and the current which goes to the total load, io1 for the 

first stage corresponding to the injection frequencies. The phase values shown in Figure 4-12(b) 

have units of degree. 

Locking frequency, ω(GHz) ,  

Iinj=50uA 
25.16 26.16 

27.16 

(ωo) 
28.16 29.16 

oω
ωϕ ∆

×= 2  -8.44 o -4.22 o 0 4.22 o 8.44 o 

ϕ from simulation 3.455 o 7.503 o 10.51o 12.76 o 14.32 o 

ϕ from simulation-10.51o -7.055 o -3.007 o 0 2.21 o 3.71 o 
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Table 4-7 shows the locking phase, ϕ  corresponding to locking frequencies from the 

calculation and simulation. The simulation value of ϕ, the third row in Table 4-7, is not equal to 

zero at self-oscillation similar to the calculated value in the second row. One of the reasons could 

be because the simulation value of ϕ is a function of both the frequency and amplitude of 

injection signal. Similar to the LC-based divider, for better comparison of the calculated and 

simulated values, the simulation values are subtracted from the self-oscillation value (10.51o). 

These latter values are shown in the last row of Table 4-7. 

Comparing the values in the second and the last rows of Table 4-7 implies that: 1) when 

the absolute value of ∆ω increases, the absolute value of ϕ also increases in both calculation and 

simulation, and 2) when the ∆ω value multiplies by two, the value of ϕ almost multiplies by two. 

It seems that the simulation results confirm a similar trend as calculation, although the values are 

different.  

 

Figure 4-13 Simulation results of injection frequencies very close to ωο. 
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More simulations were done for ωinj values closer to ωo .The injection frequencies are in 

the desired operation region of the divider's sensitivity curve. The simulation results are shown in 

Figure 4-13. Similar to previous tests, Figure 4-13(a) shows the simulation results of ring 

frequency divider which is free running at 27.16GHz until 4ns and a 50uA current is injected at a 

starting time of 4ns. The values of injection frequency are 26.96-, 27.06-, 27.16-, 27.26-, and 

27.36-GHz. Figure 4-13(b) shows the locking phase, ϕ corresponding to these frequencies.  

Table 4-8 Comparison of calculation and simulation values of ϕ for ring divider. 

 
 
 
 
 
 
 
 
 
 
 

Table 4-8 summarizes the ϕ value from calculation and simulation of the latter tests. 

Comparing the values in the second and the last rows of Table 4-8 shows when the absolute value 

of ∆ω increases, the absolute value of ϕ also increases in both calculation and simulation. It also 

shows when ∆ω doubles, the value of ϕ from both simulation and calculation doubles although 

there is a difference between the calculated and simulation values. The difference between the 

values is related to the inherent difference between simulation and calculation. In calculation, 

ϕ depends on the injection frequency while in simulation, it is a function of both the frequency 

and amplitude of injection signal. 

Ignoring the differences between the calculated and simulation values , the simulation 

results confirm the calculation results for injection frequencies very close to ωο. 

 

Locking frequency, ω(GHz) 26.96 27.06 
27.16 

(ωo) 
27.26 27.36 

oω
ωϕ ∆

= .2  -0.84 o -0.42 o 0 0.42 o 0.84 o 

ϕ from simulation 9.98 o 10.25 o 10.51 o 10.77 o 11.02 o 

ϕ from simulation-10.51o -0.53 o -0.26 o 0 0.26 o 0.51 o 
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4.3 CML D Flip-Flop Frequency Divider 

Similar to LC-tank frequency divider, for simplicity of the analysis a differential current 

with half-rate frequency is injected to the output nodes as shown in Figure 4-14, instead of 

injecting the signal via the clock voltage inputs at full-rate frequency.  

 

Figure 4-14 Schematic of the DFF frequency divider with current injected to output nodes. 

 

Figure 4-15 (a) Equivalent circuit, (b) Block diagram and (c) Vector representation for the DFF divider. 
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The circuit shown in Figure 4-14 can be modeled as shown in Figure 4-15. An equivalent 

circuit corresponding to the first latch of the DFF frequency divider (driven by the output Vo of 

the second latch) is shown in Figure 4-15(a); The block diagram is shown in Figure 4-15(b); And 

a vector representation of the three currents is shown in Figure 4-15(c), where it is the sum of the 

buffer current, idb that is the feedback current and the cross coupled current, idc; Locking phase, 

ϕ is the angle between the sum current, it and the current goes to the total load, io for the first 

latch; The phase angle θ, is the angle between the sum current, it and the injection current iinj that 

is injected to the sum of the drain buffer current and drain cross coupled current. Using the 

procedure to measure phases described in Section 3.1.1, Figure 4-16 is an example of a 

simulation result showing the vector representation of the three currents in Figure 4-15(c). 
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Figure 4-16 Vector representation of the three currents in DFF frequency divider. 

From vector representation shown in Figure 4-15(c), we can write io as real and imaginary 

terms by the following equation:   

θθ sincos injinjto jiiii ++=      

θ

θ
θ

θ
ϕ

cos1

sin.
cos

sin
tan

t

injt

inj

injt

inj

i
ii

i
ii

i

+
=

+
=                                  (4-28) 
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To find  phase shift, the output impedance should be found first. The output impedance, 

Z(jω) for the first latch can be written as the following equation: 

1
-1

1.
1

)(

−
−

−=

Rgm
CRjRgm

RjZ

c

c ω
ω                                   (4-29) 

where R, C, and gmc are the output resistance, capacitance, and the trans-conductance of the 

cross coupled transistors pair, respectively of each latch. Assuming: 

1
1||

−
−=

−
=

Rgm
R

gm
RR

cc
eq                                         (4-30) 

and then combining equations (4-29) and (4-30), consequently results: 

CRj
R

jZ
eq

eq

ω
ω

+
=

1
)(                                             (4-31) 

The phase shift due to impedance is given by: 

) (tan )](arg[ 1 CRjZ eqωω −−=                                      (4-32) 

The DFF output impedance is: 

2

2

)(1
)(

CRj
RjZ

eq

eq
DFF ω

ω
+

=                                         (4-33) 

Because the DFF divider has 2 Latches, the phase shift of each latch is π/2. Thus, the 

overall phase shift around the loop can be written as:  

) (tan2 )](arg[2 1 CRjZ eqωπωπϕ −−=+=       

  ) (2tan-)( -1 CRf eqωπωϕ ==                                       (4-34) 

where the π term corresponds to the inversion realized by the inverting connection between the 

output of the second latch and input of the first latch. Without injection, the divider will self-

oscillate at frequency ωo, and the phase shift around the loop will be 2π. When a signal with the 
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frequency ω is injected in to the loop, assuming the frequency, ω =ωo+∆ω is in the desired 

operation region of its sensitivity curve, then the phase shift ϕ will be created, although the phase 

shift around the loop will be 2π again.  

The phase shiftϕ =ƒ(ω) is a function of ω and the Taylor expansion for ƒ(ω) around ωo 

would be: 

 ...))(())(()()( 2 +−′′+−′+== ooooo ffff ωωωωωωωωϕ               (4-35) 

knowing that  

)(tan2)( 1 CRf eqoo ωπω −−=                                       (4-36) 

is the phase shift at the self-oscillation frequency. 

We have 
dx
du

u
u

dx
d

2
1

1
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=−  and  assume that CRu eqoω= , then :  
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Now the question is whether or not the second-order polynomial given in (4-38) can be 

ignored when compared to the first-order polynomial given in (4-37). To simplify the equations 

(4-37) and (4-38), the relationship between time constant, ReqC and self-oscillation frequency, ωo 

can be found using Tosc =2n.tp where tp is a propagation delay of each latch and is equal to tp 

=0.69× ReqC. 

oo
eq

p
o CR

tn ωω
ω

8.2
1

69.022
1

..2
1

≅
××

=⇒=  

By substituting ReqC in the first and the second-order polynomials of the Taylor expansion 

given in expressions (4-37) and (4-38), with ReqC =1/(2.8ωo), we have: 
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o
oof

ω
ωωωω ∆

×≅−′ 7.0))((                                           (4-39) 

Table 4-9 shows the calculated values for the first and the second-order polynomials of the 

Taylor expansion given in (4-35), considering ω =ωo+∆ω is in the desired operation region given 

by its sensitivity curve shown in Figure 3-6. 

  Table 4-9 First and second-order Taylor expansion polynomials of DFF divider. 

0ω =15.18GHz 

 Locking frequency, ω (GHz) 

∆ω  
(GHz) 

))(( oof ωωω −′

=
oω
ω∆

×7.0  

2))(( oof ωωω −′′

= 2)(15.0
oω
ω∆

×  

16.18 1.00 0.046rad 2.64 o 6.51-04rad 0.037 o 

17.18 2.00 0.092rad 5.28 o 2.61-03rad 0.149 o 

11.00 4.18 0.193rad 11.04 o 0.012rad 0.651 o 

7.00 8.18 0.377rad 21.61 o 0.044rad 2.52 o 

19.5 (max) 4.32 0.199rad 11.41 o 0.012rad 0.696 o 

2G (min) 13.18 0.868rad 34.8 o 0.113rad 6.49 o 

 

Looking at Table 4-9 values, the second-order polynomial values are within 6% of the 

first-order polynomial values for frequencies close to the self-oscillation frequency and less than 

18% in the worst case, for frequencies close to the edge of locking range. Therefore, the Taylor 

expansion in (4-35) can be approximated by its first-order polynomial. 

 ...))(()()( +−′+== ooo fff ωωωωωϕ  
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As a result, the phase difference due to the injected signal is: 
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ω
ω

ϕ ∆
+

−≈ 2)(1
2

CR
CR

eqo

eq                                               (4-41) 

Now, we need to investigate the correctness of assuming ϕ is equal to tanϕ. Table 4-10 

shows the value of ϕ in equation (4-41), and tanϕ for different values of injection frequencies, ω 

where ω =ωo+∆ω is in the desired operation region given by the divider's sensitivity curve shown 

in Figure 3-6. 

 Table 4-10 Comparison of the values of first-order polynomial, ϕ and tanϕ for DFF divider. 

 
Table 4-10 shows that we can assume ϕ and tanϕ to be equal for the injection frequencies 

which are close to the self-oscillation frequency, the first few columns from left, but the 

difference widens up as ∆ω increases. This is due to the fact that the desired operation region in 

sensitivity curve for DFF divider is very wide, and the approximation of tanϕ being equal to ϕ 

cannot be generalized for all injection frequencies in the desired operation region of sensitivity 

curve. 

 

4.3.1 Validating Calculation of ϕ by Simulation Results for DFF Divider 

The next step is to see whether or not the calculated value forϕ  is matching the simulation 

result. Table 4-11 summarizes the calculation and simulations results for DFF frequency divider 

which is in the self-oscillation frequency of 15.18GHz until 4ns, and a 40uA current with 

Locking frequency, ω (GHz) 16.18 17.18 11.0 7.0 19.0 2.0 

∆ω (GHz) 1G 2 4.18 8.18 4.32 13.18 

oω
ωϕ ∆

×= 7.0 (rad) 0.046 0.092 0.193 0.377 0.199 0.868 

tanϕ (rad) 0.046 0.092 0.195 0.395 0.202 1.18 

Error 0% 0% 1.04% 4.77% 1.5% 35.9% 
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frequencies of 7-, 11-, 13.18-, 14.18-, 15.18-, 16.18-, 17.18-, and 19-GHz is injected starting at 

4ns. The DFF frequency divider locks at the injected frequency after a few cycles. The locking 

phase, ϕ is the phase between it1  and the current that goes to the total load, io1 corresponding to 

the injected frequencies for the first latch. The injected frequencies are in the desired frequency 

divider operation region.  

 Table 4-11 Comparison of calculation and simulation values of ϕ for DFF divider when Iinj=40uA. 

As mentioned earlier, the simulated values are dependent on the amplitude of the injected 

signal. This might be one of the reasons why the value of ϕ from simulation, the third row in 

Table 4-11, is not equal to zero at self-oscillation similar to the calculated value in the second 

row. In order to better comparison of the calculated and simulated values, the simulation value is 

subtracted from its self-oscillation value (12.77o). This latter value is shown in the last row of 

Table 4-11. 

Comparing the values in the second and the last rows of Table 4-11 shows when the 

absolute value of ω∆  increases, the absolute value of ϕ also increases in both calculation and 

simulation, in the other word shows the calculation follows the same trend as simulation result. 

The values in the table show when the absolute value of ∆ω >1GHz (∆ω/ωo≅0.07 ), the 

difference between simulated and calculated values of ϕ gets bigger than 4% (23%) on the 

negative (positive) values of ∆ω. 

Locking frequency, ω(GHz) 

Iinj=40uA 
7.0 11.0 13.18 14.18 

15.18 

(ωo) 
16.18 17.18 19.0 

 ϕ =0.7×(∆ω/ωo) -21.67 o -11.04 o -5.28 o -2.64 o 0 2.64 o 5.28 o 11.41 o 

ϕ from simulation -57.32o  -5.42o 7.11o 10.25 o 12.77o 14.90o 16.75 o 19.90 o 

ϕ from simulation -12.77o -70.09o -18.19 o -5.66 o -2.52 o 0  2.13 o 3.98 o 5.13 o 
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Table 4-11 values are for the injection amplitude of 40uA where the desired operation 

region of sensitivity curve is wide and covers a wide range of frequencies. Since the simulation 

results convey that the model matches better for the injection signal frequencies closer to self-

oscillation frequency, one way to evaluate this, would be to lower the injection signal amplitude 

where the desired operation region of sensitivity curve becomes narrower. Following are the 

results when injection current amplitude is 10uA and 5uA. 

When the injection current amplitude is 10uA, the desired operation region of sensitivity 

curve is narrower. The injected frequencies chosen for simulation are 13.68-, 14.18-, 14.68-, 

15.18-, 15.68-, 16.18-, and 16.68-GHz with the starting time of 4ns. Table 4-12 summarizes the 

calculation and simulation results when Iinj=10uA.  

When the injection current amplitude is 5uA, the desired operation region of sensitivity 

curve gets even more narrower. The injected frequencies chosen for simulation are 14.48-, 

14.68-, 14.98-, 15.18-, 15.38-, 15.68-, and 15.88-GHz. 

Table 4-12 Comparison of calculation and simulation values of ϕ for DFF divider when Iinj=10uA. 

  
 Table 4-13 Comparison of calculation and simulation values of ϕ for DFF divider when Iinj=5uA. 

Locking frequency, ω(GHz) 

Iinj=10uA 
13.68 14.18 14.68 

15.18 

(ωo) 
15.68 16.18 16.68 

ϕ =0.7×(∆ω/ωo) -3.96 o -2.64 o -1.32 o 0 1.32 o 2.64 o 3.96 o 

ϕ from simulation -4.17o 0.42o 2.85 o 4.51o 5.69o 6.48 o 7.01 o 

ϕ from simulation -4.51o -8.68 o -4.09 o -1.67 o 0  1.18 o 1.97 o 2.50 o 

Locking frequency, ω(GHz)  

Iinj=5uA 
14.48 14.68 14.98 

15.18 

(ωo) 
15.38 15.68 15.88 

ϕ =0.7×(∆ω/ωo) -1.85 o -1.32 o -0.53 o 0 0.53 o 1.32 o 1.85 o 

ϕ from simulation -0.84o 0.52o 1.87 o 2.52o 3.01o 3.49o 3.63o 

ϕ from simulation -2.52o -3.36 o -1.99 o -0.65 o 0  0.50 o 0.98 o 1.11 o 
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Results in Table 4-11, Table 4-12, and Table 4-13 validate when the absolute value of ∆ω 

increases the absolute value of ϕ also increases in both calculation and simulation, but the values 

are different between calculation and simulation.  

Analyzing the values in Table 4-11, Table 4-12, and Table 4-13, also points out another 

difference between calculations and simulation results. Despite the independence of the 

calculation values to the injection amplitude, the simulation results for the same ∆ω with 

different injection amplitudes are not the same. For instance, the ϕ from simulation for 

ω=14.68GHz in Table 4-12, and Table 4-13 are -1.67o and -1.99o respectively as opposed to their 

calculation values being -1.32 o for both cases. 

Summarizing the findings in Table 4-11, Table 4-12, and Table 4-13, it can be noted that 

the calculation values for ϕ depend on the injection frequency but the measured values of ϕ from 

simulation, are a function of both frequency and amplitude of injection signal. This is in 

accordance with the findings for LC-tank and ring frequency dividers that were previously 

presented. 

It should be noted that for small values of ∆ω the assumption of ϕ being equal to tanϕ is 

valid for DFF frequency divider. As a result, equations (4-28)  and (4-41) could be combined and 

with the same argument that have been done for LC-tank and ring frequency dividers, we can 

write: 
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2
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The resulting differential equation is: 
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As mentioned earlier, this is only valid when the injections amplitude is very low and the 

injection frequency is very close to self-oscillation frequency. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

In this thesis, three high-speed dividers, the LC-tank frequency divider, the CML ring 

frequency divider, and the CML DFF frequency divider with negative feedback, are analyzed 

based on a defined condition for injection locking. Based on the model of each topology and the 

concept of injection locking, the instantaneous and locking phase equations are mathematically 

formulated. 

It should be noted that for the case of DFF frequency divider because of its very wide 

desired operation region, the derived equations are mainly valid either for lower injection 

amplitudes where the desired operation region of its sensitivity curve is relatively narrow or 

injection frequencies very close to its self-oscillation frequency regardless of injection amplitude. 

The analytical results are compared with the simulation results utilizing a novel procedure 

that is developed to measure locking phase, instantaneous phase, or the phase between any two 

signals. This procedure provides a good ability to better understand the behavior of the divider 

under an impressed signal. 

Regarding the locking phase, the simulation results follow a similar trend as the derived 

equations for all three topologies although the absolute values are different. The difference 

between the values can be related to the inherent difference between simulation and calculation. 

In calculation, locking phase ϕ depends on the injection frequency while in simulation, it is 

observed to be a function of both the frequency and amplitude of injection signal. 

In summary, considering the locking phase as a function of both frequency and amplitude 

of the injection signal, opens a new chapter in this area of research. 
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