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Harmful algae blooms associated with toxic cyanobacteria have been increasing in 

both frequency and severity as a result of global climate change. These blooms are 

responsible for the release of biotoxins, the most common and toxic of which are the 

microcystins (MCs), that are recalcitrant to the operations of conventional drinking water 

treatment plants (DWTPs). Bio-based technologies targeting MC removal, such as 

biofiltration systems, have been proposed as cost-effective and sustainable alternatives to 

advanced treatment technologies (i.e., ozonation). Biofilters rely on native bacterial 

communities endemic to the source water to metabolize microcystin as a carbon and 

energy source. However, biofilter treatment variability is an ongoing challenge, arising 

from variations in environmental conditions including temperature, pH, and the presence 

of other bioavailable nutrients. To effectively address this treatment variability, biofilters 

must be evolved into “engineered” systems, in which MC degrader bioactivity is promoted 

and treatment tightly controlled.  
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This dissertation has amalgamated a series of system modelling, experimental data 

collection efforts, unstructured kinetic modelling, as well as sensitivity and optimal 

experimental design (OED) analyses to arrive at an improved predictive understanding of 

MC biodegradation. The results of these efforts first indicated that the removal of biotoxins 

within biofilters is highly dependent on the pretreatment system and operations employed 

by the DWTP. The kinetics of MC biodegradation by degrading communities were bi-phasic, 

where the taxonomy of the communities and the kinetics of MC degradation were altered in 

the presence of an alternative carbon source. The kinetics of MC metabolism and bacterial 

growth of isolated degrading populations were well predicted by the Moser kinetic model, 

where up to 5 out of 6 parameters could be identified. A novel approach to global 

sensitivity analysis was developed to improve the accuracy and convergence efficiency of 

the sensitivity indices ranking the most influential parameters of the Moser model. Finally, 

the OED procedure designed a fed batch reactor experiment that drastically improved the 

practical identifiability of the parameters of the Moser model. The culmination of these 

analyses has laid the foundation for a comprehensive and practical kinetic model 

describing degrader growth and MC removal in bio-based treatment systems.  
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INTRODUCTION 
 

The significance of marine and freshwater microalgae to sustain life on earth is 

ubiquitous, as these microorganisms contribute to nearly half of the global net primary 

production (Behrenfeld et al. 2006). Although these microalgae sustain vital ecosystem 

services on Earth, an imbalance in any one environmental condition, such as water 

temperature, pH, or availability of nutrients, often favors the dominance of a certain 

population that may cause more inherent detriment than good. Such is the case of the toxic 

or “harmful” microalgae that have existed on this earth for approximately 3.5 billion years. 

In contrast to their vital and historic role in net carbon cycling throughout the globe, the 

proliferation of harmful microalgae (approximately 2% of the total microalgal population 

on earth), that produce toxic secondary metabolites, pose impending threats to the 

wellbeing of humans as well as the structure and function of aquatic ecosystems alike 

(Hallegraef 2010, Paerl and Paul 2012).  

Within the last decade, both the prevalence and duration of these harmful algal 

bloom events (HABs) has been increasing throughout fresh, estuarine, and marine water 

bodies across the globe as a direct consequence of global climate change and associated 

anthropogenic activities (Paerl et al. 2011, Paerl and Paul 2012, Paerl and Otten 2013). In 

2007, Lake Taihu, located in the Northwest province of China, was severely impacted by a 

large scale HAB event associated with the cyanobacterium Microcystis aeruginosa, leaving 

approximately 2 million people without potable water for at least a one-week period (Qin 

et al. 2009a). More recently (2014), a similar magnitude cyanobacterial bloom occurred in 

Lake Eerie, leaving approximately a half million residents of Toledo, Ohio without water for 
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a three-day period, despite robust treatment efforts to remove the high concentrations of 

cyanobacterial toxins (Ho and Michalak 2015). The intrusion of toxic blooms of Microcystis 

sp. in the San Francisco Bay delta (and associated watersheds in the region) is yet another 

well studied estuarine predicament that is threatening agricultural water resources as well 

as the survival of the local fish population, the Delta smelt (Lehman et al. 2005, 2009). One 

of the largest harmful marine algal blooms in history (associated with the alga P. nitzschia, 

which produces the toxin domoic acid) was recorded in June 2015, affecting marine life 

from the tip of Monterrey Bay to the Alaskan coast, and temporarily shutting down 

commercial fisheries and shellfish harvesting operations (DiLiberto, 2015).  

Clearly, the HAB events witnessed across the world have been and continue to be a 

predominant issue affecting freshwater availability and the balance of different aquatic 

ecosystems; but what are the contributing external drivers? Climate change in the 

Northern Hemisphere over the past 20 years has resulted in an increase in air and surface 

water temperatures and prolonged periods of drought, along with less frequent, but more 

intense, storm events (Scavia e al. 2002). Warmer water temperatures (>25 ºC) correlate 

with increased growth rates and productivity for most microalgae and increase the 

temporal lengths and spatial extents of vertical stratification in most water bodies (Paerl 

and Huisman 2009, Paerl and Paul 2012). Light availability and increased CO2 emissions to 

the atmosphere as a result of more persistent periods of drought and continued 

combustion of fossil fuels and biomass also drives the productivity of most microalgae 

species upward (Paerl and Huisman 2009, Paerl and Paul 2012). More intense precipitation 

events, followed by periods of drought, create a flushing and confining effect that increases 
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the nutrient loading and eutrophication potential of water bodies, further exacerbating the 

possibility of HAB events.  

   Anthropogenic activities other than the combustion of fossil fuels, coupled with 

shifts in climactic patterns, synergistically initiate HAB events of great severity and 

duration. Increasing the use of fertilizers to support agricultural practices, containing the 

essential nutrients nitrogen and phosphorus (N & P) to sustain algal growth, have long 

exacerbated the frequency and longevity of HABs throughout coastal, estuarine, and inland 

water bodies (Anderson et al. 2002, Paerl and Huismann 2009, Kosten et al. 2012, Lehman 

et al. 2013). The use of fertilizers containing high levels of N and P has increased worldwide 

to support the growing population and the development of an increasingly urbanized 

environment. The resulting nutrient pollution has overwhelmed many inland and coastal 

watersheds and contributed to the severity and persistence of HAB events (Heisler et al. 

2008). Comparably, the large freshwater footprint (and lack of water reuse) associated 

with the growing population has resulted in a relative scarcity of freshwater resources. As 

the inland freshwater bodies continue to be diminished rather than replenished, the 

proliferation of harmful algae is likely to be increased (Dahm 2010). 

  HABs specifically impair the quality of water due to the production and release of 

soluble, secondary metabolites including taste and odor compounds (MIB and Geosmin) 

and toxic compounds (microcystin, domoic acid, etc.) (Huiman et al. 2006, Otten and Paerl 

2015). Favorable conditions for the production of toxins may include the increased 

prevalence of sunlight, a stable water column, elevated water temperatures, and increased 

abundance of necessary nutrients (N and P, “eutrophic” conditions), among many other co-

varying factors depending on the aquatic environment (i.e., freshwater, estuarine or 
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saltwater) (Huismann et al. 2006, Davis et al. 2009). Environmental effects from HAB 

events are far reaching and range from complete changes to the ecosystem structure and 

function, such as the transition of a water body from mesoeutrophic to hypereutrophic, to 

complete death and intoxication of higher trophic organisms (i.e., fish or marine mammals) 

(Landsberg 2002, Jester et al. 2009a). The most direct human health effects associated with 

these toxins are repeated exposure from drinking water, contaminated fish or shellfish, or 

during recreational activities. These toxins can initiate both acute and chronic human 

health risks from different exposure events (depending on the toxicity, dose, and mode of 

action), and some toxins are known carcinogens (especially the hepatotoxins, microcystin-

LR) (Dittman and Wiegand 2006, Bourne et al. 2006, Hoefel et al. 2009).  

A significant problem with most toxins excreted by harmful algae are their relative 

stability in the environment, as they are very chemically non-reactive, characteristically 

low in molecular weight, and water soluble, thereby resistant to most conventional water 

treatment unit processes such as coagulation, flocculation, membrane treatment processes, 

and chlorine disinfection (Westrick et al. 2010, Cruz et al. 2011). In addition, a majority of 

these toxins are produced and stored internally and not released until unfavorable growth 

conditions or other “stressors,” presenting yet another potential treatment challenge (Ross 

et al. 2006). Advanced oxidation processes (such as ozonation, high pressure UV treatment 

(photolytic oxidation)) and granular/powder activated carbon (GAC/PAC) have been 

introduced as reliable, widely accepted treatment alternatives to chemically/photolytically 

oxidize or adsorb these toxic compounds. However, the main drawback to these advanced 

treatment methods are the fact that they are energy intensive, cost ineffective, subject to 

some inherent treatment variability, and may contribute to unintentional cell lysis 
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(Westrick et al. 2010). The treatment variability and relatively high costs incurred for 

additional advanced treatment processes to remove these toxins has placed a progressive 

stress on both municipal water authorities and responsible government agencies to 

develop alternative and sustainable solutions to these increasingly frequent and severe 

events.   

Biological treatment technologies, such as biological filtration (biofiltration), have 

been introduced in the past as viable water treatment alternatives for the removal of toxins 

produced from HAB events (Ho et al. 2006, Ho et al. 2007a, Ho et al. 2012a). These bio-

based treatment technologies rely on the development of mixed microbial communities, as 

biofilm or suspended communities in the water column, from native bacteria endemic to 

the source water in an engineered reactor that facilitate natural rates of toxin degradation. 

Of the wide array of technologies available, biofiltration has been advocated as the most 

promising treatment configuration to remove microalgal toxins, where up to 100% 

removal of microcystin toxins has been reported for mature, laboratory scale reactors (Ho 

et al. 2007a). Biofilters have been characteristically designed as simple rapid, deep bed 

granular media filters (common to drinking water treatment practice), where medium to 

coarse, uniformly distributed silica sand (mono-media) is commonly used. Ultimately, the 

primary objective of biofiltration systems is to allow toxin degrading bacterial populations 

to form stable biofilm communities that can rapidly and reliably degrade toxins present in 

the influent water (Huck 2000, Ho et al. 2012a).  

   More recently, biofiltration has evolved into a widely accepted and practiced unit 

treatment process for the targeted removal of biological organic matter (BOM) and 

particulate matter (excess turbidity) to both increase the biological stability of the product 
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water in the distribution system and reduce disinfection byproduct formation, among 

many other objectives (Urfer et al. 1997, Huck 2000, Halle et al. 2009). Increased attention 

has also been given to model and optimize biofiltration processes to better comprehend the 

dynamics of the treatment efficiencies of BOM (Hozalski and Bouwer 2001a, 2001b, 

Rittman et al. 2002a). However, a general disconnect between the scientific community and 

the majority of water management utilities is evident, as biofiltration systems are not 

currently managed as true “biological” treatment systems in that conditions for microbial 

growth are not sustained or sometimes even acknowledged (67% of utilities actively 

manage or monitor these systems) (Evans et al. 2010b, Evans et al. 2013a, 2013b). 

Therefore, there has been a movement to standardize biofiltration treatment practices in 

the U.S. with the introduction of a monitoring and control toolbox aimed at existing water 

utilities to provide the scientific resources to modify the treatment efficiencies of existing 

systems (Evans et al. 2013a, 2013b). 

   The advent of “engineered” biofiltration is an innovative concept that focuses on 

developing new amendments to existing theory, design, and operation of traditional rapid 

sand, deep bed mono or dual media filtration systems (Huck 2000, Lauderdale et al. 2012). 

Amendments to the preexisting system operation may include nutrient addition (bio-

stimulation), bacterial culture seeding (bioaugmentation), running the filters without 

chlorine or ozone residual, changing the backwash intensity and method, and manipulating 

filter contact times (Lauderdale et al. 2012). The current benefits of including engineered 

biological filtration units in the drinking water treatment unit process train range as a 

supplement to advanced pre-oxidation processes for excess particulate and dissolved 

organic carbon removal and are not primarily stand-alone treatment unit treatment 
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processes (Huck 2000, Evans et al. 2013a, 2013b). However, little experimentation or 

formal research has been conducted regarding 1) the entire breadth of amendments that 

can be made, 2) which of these amendments are most significant and applicable for 

different contaminants of interest, and more importantly, 3) what operational parameter 

or series of parameters can effectively control or predict treatment performance of the 

substrate of interest.  

  The primary challenge bio-based systems face is that the treatment efficiency of 

algal toxins for most biofiltration systems are recognized to be transient in nature, as the 

population of native microorganisms in the source water is constantly changing and 

environmental conditions (i.e., temperature, pH, nutrient content) are highly variable (Ho 

et al. 2006, Ho et al. 2012a). Many studies have investigated the degradation capability of 

isolated bacterial strains when exposed to cyanobacterial toxins; however, few studies 

have examined the complexity behind toxin degrading bacterial communities (Li et al. 

2011a, 2011b, 2011c, Li et al. 2015, Mou et al. 2013). The biodegradation characteristics 

(i.e., efficiency and kinetics) of the bacterial consortia compared to the bacterial isolates are 

much more realistic to application in engineered systems, are very dynamic, and difficult to 

predict in natural settings. Therefore, one significant challenge is to maintain a reliable and 

robust microbial degrading population within these engineered systems, especially for 

algal toxin degradation, since past studies have indicated that the degrader population is 

rather diverse and not particularly high in abundance (Mou et al. 2013, Liao et al. 2013). 

Furthermore, although the degradation pathway has been characterized for cyanobacterial 

toxins, it is difficult to elucidate potential interactions between community members 

during toxin degradation. Other challenges may include the slow or often bi-phasic 
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degradation kinetics of certain toxins of concern previously observed for bacterial 

consortia (Ho et al. 2012a). Preliminary column experiments have demonstrated that 

microalgal toxin degrading populations were evidenced to have a lag phase on the order of 

days before toxin degradation commences, which may hinder the establishment of a 

reliable degrader community within a given biofiltration system (Ho et al. 2006, Bourne et 

al. 2006).  

 To effectively address the main challenges identified with biological treatment 

systems targeting algal toxins, and to evolve bio-based treatment from passive to 

completely “engineered” systems, a fundamental predictive understanding of the 

microorganisms involved is required.  Therefore, the focus of this dissertation is to develop, 

verify, and improve upon several mechanistic models that can accurately and reliably 

predict algal toxin fate and biodegradation, with a focus directed toward drinking water 

treatment applications. These models are structured on four, progressively finer scales of 

analysis (i.e., the drinking water treatment facility, a biofilter in operation at a treatment 

facility, the toxin degrading bacterial communities underlying bio-based treatment, and 

isolated members of the toxin degrading communities) to offer some comprehensive 

insight into algal toxin fate and biodegradation in drinking water treatment systems 

(Figure 1). To set the stage for application of these predictive models, several leading 

research questions were developed to guide this dissertation research:  

1) What is the fate and distribution of algal biotoxins within current drinking water 

treatment trains and what are the broader current human health risks and 

environmental impacts from the operation of these systems?  
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2) How does the toxin degrading bacterial community respond to different 

environmental stimuli, such as the presence of alternative substrates other than 

microalgal toxins (organic carbon)? 

3) Can a comprehensive biofiltration model be developed that accurately predicts 

microcystin removal? 

4) What unstructured kinetic model can best predict the coupled growth and toxin 

degradation kinetics of isolated, degrading bacterial populations (i.e., within a given 

community) and how accurate and reliable are model predictions and parameter 

estimates? 

5) How can we improve the accuracy and reliability of these unstructured kinetic 

model predictions by focusing on improved parameter identifiability and 

experimental design?   

 

Figure 1. Description of the main Ph.D. research agenda as a function of scale, ranging from 
the A) drinking water treatment facility (DWTP), B) a biofilter unit operating at a treatment 
facility, C) the algal toxin degrading microbial communities within the bio biofiltration units, 
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and D) individual populations of algal toxin degrading bacteria existing within the greater 
community. 

This dissertation research will combine a series of system modelling, experimental, 

computational modelling, and sensitivity/uncertainty analysis approaches in several 

interrelated studies to improve upon our predictive knowledge of the drinking water 

treatment train operations, as well as the bacteria and bacterial communities involved in 

algal toxin removal and biodegradation. In the first chapter of this dissertation, a system 

model will be developed based on the principles of probabilistic materials flow analysis to 

assess the fate and distribution of algal toxins in current drinking water treatment 

processes and to quantify the range in current toxin removal efficacies of these full-scale 

systems. Broader impacts of these treatment systems, such as potential acute human health 

effects from exposure to these toxins, will be assessed from the output of the system model. 

The second chapter of this dissertation will involve a combined experimental-

modelling approach to examine the dynamics of several isolated microcystin degrading 

bacterial communities exposed to an alternative organic carbon source (in addition to the 

toxin of interest).  

Next, the third chapter of this dissertation will be focused on the development and 

verification of a 1-D computational model framework that predicts the removal of algal 

toxins within biofiltration systems.  

The fourth and fifth chapters of this dissertation detail a formal model selection 

effort comparing several unstructured kinetic models used to predict coupled bacterial 

growth and substrate (toxin) degradation, as well as a complete review of parameter 

sensitivity and identifiability of the selected and calibrated models. A novel optimization 

procedure for optimal parameter estimation is further detailed in the fifth chapter.  
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The sixth chapter introduces a new method to improve existing sensitivity analysis 

techniques, where this method can be integrated into an optimal experimental design 

framework for improved parameter estimation and model predictive accuracy.  

The seventh chapter of this dissertation investigates in what ways an experimental 

design can be improved to enhance parameter identifiability and certainty in the context of 

predicting microcystin biodegradation in engineered bio-based treatment systems.  Finally, 

a summary of the main findings from each of these chapters and some future perspectives 

for further research are presented in the Conclusions and Future Directions section of this 

dissertation.  
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BACKGROUND/LITERATURE REVIEW 

 
The background/literature review section of this dissertation focuses on 

familiarizing the reader with previous research and theory related to a) common 

freshwater microalgal toxins and their effects on human health, b) microalgal toxin 

biodegradation, c) biological and engineered biological filtration (i.e., concepts, operation, 

and design), as well as d) past studies exploring biofiltration as an option to target algal 

toxin removal performed on the laboratory scale. It is important to note that since the 

majority of this dissertation proposal focuses on cyanobacterial toxins (cyanotoxins), the 

discussion of toxins of concern is limited to the microcystin suite of toxins associated 

mostly with freshwater and some estuarine environments. Additional information about 

marine toxins of concern is presented in Appendix A for reference.  

I. Cyanotoxins and Human Health 
 

Of the broad class of freshwater microalgal toxins threatening the security and 

quality of water resources, the microcystin class are perhaps the most commonly observed 

and toxic (Edwards and Lawton 2009, Paerl and Otten 2013). Microcystins are a series of 

cyclic heptapeptides (7 amino acids) produced intracellularly by the freshwater 

cyanobacteria Microcystis, Anabaena, Nostoc, Oscillatoria, and Planktothrix. The molecular 

structure of microcystin-LR is composed of seven main amino acids including: 1) the ADDA 

group, 2) the D-glutamic acid group, 3) the N-methyldehydroalanine group, 4) the D-

alanine group, 5), the leucine group, 6) erythro-β-methyl-D-aspartic acid group, and 7) the 

arginine group (Jones and Orr 1994, Bourne et al. 1996). There are over 100+ different 

microcystin congeners, each varying in the amino acid residue at positions 2 and 4 of the 
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cyclic ring structure, with the presence or absence of methylated groups on the 

methylaspartic acid, or the esterification of methyl-aspartic acid or iso-glutamic acid 

(Edwards and Lawton 2009, Figure 2).  

Microcystin-LR is by far the most common and toxic of the microcystin congeners 

(present in 50-100% of total MC environmental samples) and consists of the amino acids 

leucine and arginine in positions 2 and 4 of the ring structure, respectively (Edwards and 

Lawton 2009, Figure 2). Two ionizable carboxylic acid groups on D-glutamate and D-

erthyro-β-methylaspartic acid as well as one ionizable amino on the arginine group 

contribute to MCLR’s high water solubility (Texiera and Rosa 2005). In addition, the ADDA 

group attached to MCLR’s ring structure is relatively hydrophobic, which contributes to an 

appreciable solubility in organic solvents (Texiera and Rosa 2005). 

 
Figure 2. Molecular structure of microcystin-LR with each amino acid identified with a 

different color. 

The mechanism of toxicity of microcystin-LR in humans is directly related to the 

inhibition of protein phosphatases PP1, PP2A, PP4, and PP5 which leads to tumor 

promotion (from an increase in protein phosphorylation in liver cells) and the 
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development of primary liver cancer (Nishiwaki-Matsushima et al. 1992). Potential 

exposure pathways to dissolved or particulate algal toxins include direct intake from 

drinking water, dietary exposure from contaminated shellfish or fish, as well as direct 

contact from recreational exposure events. Limited long-term epidemiological studies have 

been conducted linking the relationship of primary liver cancer to microcystin exposure in 

drinking water even though its carcinogenic potential has been widely studied in mammals 

(WHO 2003, Zhang et al. 2015a). Despite the carcinogenic potential of microcystin-LR, 

acute liver damage and eventual failure from microcystin exposure is also a serious threat 

to human health, where 50 patients were killed at a hemodialysis center in Brazil from an 

exposure event to microcystin contaminated water (LD50 of 5 mg/kg) (Jochimsen et al. 

1998). Therefore, the WHO has adopted a guideline of 1 µg/L of dissolved microcystin for 

drinking water; however, as of yet, the US EPA has not instated any specific regulations on 

the appropriate levels of microcystin in drinking water (WHO 2003, US EPA 2016a). 

Although no specific regulations have been established, the US EPA recommends the WHO 

limit of 1 µg/L as a provisional, national guideline in drinking waters (US EPA 2015a). In 

recent years (2009), the US EPA has added microcystin-LR to its candidate contaminant list 

(CCL) under the Safe Drinking Water Act and guidelines have been created for water 

authorities and utilities to securely manage algal toxins during severe bloom events (US 

EPA 2015a). 

II. Biodegradation of Cyanotoxins  
 

Microcystin biodegradation has been well studied for individual isolates of native 

bacterial consortia present in the source water of HAB events, source water sediments, and 
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from full scale biological treatment unit processes in drinking water treatment facilities 

(Bourne et al. 1996, Saito et al. 2003, Eleutario and Batista 2010, Jimbo et al. 2010, Li et al. 

2011a, Li et al. 2011b, Li et al. 2015a). The majority of the degrader isolates were from the 

family Sphingomonadaceae (under the phylum proteobacteria and alphaproteobacteria 

class) and included different strains of Sphingomonas sp. and Sphingopyxis sp. (Ho et al. 

2012a, Dziga et al. 2013). However, the diversity of potential degraders is very high, as 

evidenced by the large number of isolates obtained from other bacterial classes, families 

and orders. For example, isolates were obtained from a variety of experimental studies 

belonging to the Arthrobacter sp., Brevebacterium sp., Rhodococcus sp., Methylobacillus sp., 

Bacillus sp., Stenotrophomonas (Gamma-Proteobacteria), Novosphingobium sp. (Alpha-

Proteobacteria), Pseudomonas aeruginosa (Gamma-Proteobacteria), Ralstonia 

solanacearum (Beta-Proteobacteria), Paucibacter toxinivorans , Burkholderia sp. , 

Flavobacterium sp., Sphingosinicella sp., Rhizobium gallicum, Morganella morganii, and 

Microbacterium sp. (some of the more commonly reported species) (Dziga et al. 2013, 

Rastogi et al. 2014). Even probiotic bacterial species were evidenced to possess some 

microcystin degrading capabilities, including Lactobacillus sp. and Bifidobacterium (Ho et a. 

2012).  

The corresponding biodegradation pathway of microcystin-LR has been identified 

using a strain of Sphingomonas sp. as a model example (Bourne et al. 1996, 2001). The 

biodegradation pathway was indicated to be a sequential three step process (Figure 3). 

First, a transporter protein coded by the mlrD gene cluster is responsible for bringing the 

microcystin toxin into the bacterial cell. The mlrD encoded transport protein also may 

facilitate the removal of degradation products of microcystin out of the cell. Consequently, 
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the enzyme microcystinase expressed by the mlrA gene cluster, hydrolytically cleaves the 

ADDA-arginine bond to open the cyclical structure of microcystin and form a linearized 

product, reducing the corresponding toxicity by 160 times (M/Z 1012) (Bourne et al. 1996, 

2001). Next, the putative enzyme serine peptidase, is expressed by the mlrB gene cluster to 

further transform the linearized a-MCLR (cleaving at the Ala-Leu bond) to yield a 

tetrapeptide intermediate (NH2-Adda-Glu-Mdha-Ala-OH, M/Z of 614). Finally, the putative 

metallopeptidase enzyme, expressed by the mlrC gene cluster, breaks down the 

tetrapeptide intermediate into much smaller peptides and amino acids (Figure 2) (Bourne 

et al. 1996, 2001). Harada et al. (2004) described that one of the smaller peptides formed 

during the last enzymatic step was the ADDA group, but the complete range in potential 

amino acids and peptides form remains unknown.   

 

Figure 3. Enzymatic pathway for the biodegradation of microcystin-LR 

Although the proposed pathway for Sphingomonas sp. has been confirmed by 

several studies in different strains and species (Imanishi et al. 2005, Kato et al. 2007, 
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Edwards and Lawton 2009, Hashimoto et al. 2009), it is apparent that many degrader 

isolates do not possess the mlr(A-D) gene sequences (Harada et al. 2004, Manage et al. 

2009, Zhang et al. 2010, Lawton et al. 2011). Comparably, the expression of different mlr 

genes may differ across varying bacterial populations. Jiang et al. (2011) indicated that the 

mlrB gene lost its functional activity in the THN1 strain of Novosphingobium sp. In addition, 

other studies have reported contradictory or multiple functions of different enzymes. Dziga 

et al. (2012) and Shimizu et al. (2012) confirmed that the MlrC enzyme is involved in the 

initial hydrolytic linearization of microcystin-LR as well as the breakdown of the 

tetrapeptide product. Thus, it is clear that potentially many other biodegradation pathways 

exist both for microcystin-LR and the range of microcystin congeners across different 

bacterial genus and environmental conditions.  

Based on the proposed biodegradation pathway and the relative importance of the 

mlrA gene to initiate the hydrolysis of the cyclic structure of microcystin, Hoefel et al. 

(2009) developed a sensitive and specific qPCR approach to target and quantify the 

abundance of the mlrA gene for Sphingopyxis sp. In general, the proportion of gene copy 

numbers was determined to be equivalent to the microcystin degrading activity observed 

in an experimental sand filter, validating the method (Hoefel et al. 2009). Ho et al. (2010) 

observed the same result as Hoefel et al. (2009), where mlrA gene copies were proportional 

to microcystin degradation efficiency in a laboratory sand column fed with activated sludge 

treated effluent.  

The functional gene abundance (mlrA, mlrB, mlrC, mlrD), detected using this 

developed technique, was implied as a surrogate for microcystin degrader abundance for a 

number of more recent studies examining the presence of microcystin degraders within 
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biological drinking water treatment processes (Jimbo et al. 2010, Li et al. 2011a, Li et al. 

2015a). Jimbo et al. (2010) demonstrated the year-round presence of microcystin 

degrading bacteria within a biofilm community from a water treatment facility in Japan 

using the qPCR technique, where degrader abundance ratios ranged from 0.0001 to 

0.005% of the total bacterial population. Li et al. (2011a) observed high microcystin 

biodegradation potential of a bacterial consortia isolated from a biological treatment 

process during wintertime, which corresponded to an increase in the mlrA abundance over 

the degradation period. Li et al. (2015) concluded that the trends in degrader abundance 

(using mlrA qPCR) and biodegradation rates were rather similar over a one-year study 

period. Therefore, there is considerable evidence demonstrating that degrader abundance 

can be well approximated by the relative abundance of mlrA genes, which can be further 

used to assess the dynamics of microcystin degradation for native bacterial consortia.  

Biodegradation of microcystin has been either expressed as zero order or first order 

kinetics in the existing literature. Zero order kinetics were derived from a linear 

approximation of the change in microcystin concentration over time (concentration 

independent), whereas first order kinetics were approximated from an exponential 

decrease in microcystin concentration over time (concentration dependent). Rates for zero 

order kinetics were generally vary variable across different bacterial geneses and species, 

ranging from 1.5 to 101,520 µg/L/day, with an average of 7,321 µg/L/day (five orders of 

magnitude variation, summary extrapolated from Dziga et al. 2013). These zero order rates 

corresponded to half-lives ranging from 0.1 hours to 18 days (average of 1.25 days). The 

significantly high variation in reported zero order biodegradation rates was most likely due 

to the different MC variants used, initial concentrations used for each variant, the varying 
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physiological conditions, methods used for MC detection, as well as culture densities 

employed in each reported study. In addition, the fact that isolated degrader cultures were 

used for the majority of these experiments may suggest that isolated populations may not 

perform the degradation as efficiently as compared to within a degrading consortium 

(highlighting the role of the bacterial consortia to improve degradation). Li et al. (2015) 

illustrated that the MCLR biodegradation rate did not vary as drastically as the range 

reported for a variety of isolate studies for a native bacterial consortium taken from a 

biological treatment process located at a drinking water treatment facility. The zero order 

biodegradation rates for this study ranged from 8 to 40 µg/L/day, with higher rates 

observed from mid to late autumn months following an algal bloom collapse.  

First order biodegradation rate constants were compiled from a variety of studies, 

including batch and sand column degradation studies, as a comparison to zero order rates 

reached for studies in the literature (Chorus and Bartel 2006, Grutzmacher et al. 2010, 

Eleutario and Batista 2010, Ho et al. 2006, Ho et al. 2007a, Ho et al. 2012b, Li et al. 2015a). 

Overall, the first order approximations appeared to be much more reasonable (better fit to 

the data) than zero order kinetics and ranged from 1.3E-03/hr to 0.693/hr for these 

experimental studies, with an average of 0.0818/hr (three orders of magnitude difference). 

The corresponding half-lives for microcystin degradation ranged from 1 hour to 22 days, 

(average of 3 days) with less variation observed in the reported data than those 

summarized for zero order kinetics. The summary of half-lives for both zero order and first 

order experimental data shows that the degradation processes, in itself, is subject to a high 

variability, and even the fastest reported rates for degradation may not sustain the removal 

rates required by existing biofiltration systems. Similarly, the representation of the 
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degradation rates is extremely important to adequately predict toxin removals in full scale 

treatment systems. 

III. Biological Filtration 

General Theory of Biological Filtration 
 

Biological filtration relies on physical, chemical, and biological treatment 

mechanisms for removal of algal toxins of concern, similar to its predecessor of deep bed 

filtration. The main objective of engineered biological filtration is to establish consistent 

hydraulic throughput and optimum removal efficiencies of a wide array of water quality 

constituents. In the case of algal toxin removal, adequate hydraulic and environmental 

conditions should allow the formation of microcystin degrading bacterial biofilm 

communities (that will concurrently degrade dissolved nutrients) that are stable over time 

(Ho et al. 2012a). Ultimately, a feedback “bioclogging” mechanism, combined with the 

accumulation of particulate and organic material or cell debris, influences the available 

pore space for water flow over time, which results in the requirement to backwash the 

filter grains and reestablish a relatively clean filter bed (Thullner et al. 2004, Engesgard et 

al. 2002, 2006). The backwash frequency and intensity are likely to be reduced as to not 

completely disturb the existing biofilm communities and to allow full and fast regeneration 

of the previous biofilm communities after filter start up (Emelko et al. 2006).    

The efficiency of biological filtration is first governed by physical-chemical 

mechanisms of contact (transport) and attachment of bacterial and colloidal particles to 

the surface of the collector grains. Contact potential of either bacterial particles or colloids 

to filter grains is controlled by several physical transport mechanisms including straining, 

sedimentation, diffusion, hydrodynamic interactions, inertial impaction, and interception 
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(O’Melia and Stumm 1967, Huisman and Wood 1974, Keir et al. 2009). Straining relates to 

the mechanism of entrapment of bacterial particles or colloids that are too large to fit 

through the pore spaces of the sand grains and depends on the ratio of the diameter of the 

particle in question (dp) to the representative grain diameter of the media (d10) (O’Melia 

and Stumm 1967, Huisman and Wood 1974, Keir et al. 2009). Sedimentation refers to the 

physical settling of bacterial particles or colloids on the grain surface, due to density 

differences between the particle and fluid, and depends on the available surface area 

provided by the collector grains, the hydraulic loading rate, as well as the theoretical 

settling velocity predicted by Stoke’s law (Yao et al. 1971, Huisman and Wood 1974, Keir et 

al. 2009). A comparison of the surface loading rate (HLR normalized by the theoretical 

surface area of grains) to the settling velocity gives some indication to the impacts of 

sedimentation for the removal of bacterial particles and colloidal matter (Huisman and 

Wood 1974).  

Molecular diffusion relates to the random movement of generally submicron 

bacterial particles or colloids from areas of high concentration to low concentration and 

plays a role in mass transfer of particles or water quality constituents from the bulk 

solution of fluid to the biofilm or sand grain surfaces (Dullien 2012, Bear 2013). Contact 

between the particle or colloid of interest and the collector surface may also arise due to 

hydrodynamic actions, or the random, drift in motions associated with migration of 

spherical bacterial particles across non-uniform shear fields experienced in the soil pores 

(Keir et al. 2009). Interception occurs when the streamline of a particular bacterial particle 

or colloid exists within a given radius of the grain surface, resulting in an increased contact 

potential (Yao et al. 1971).   Transport of bacterial particles to grain surfaces may also be 
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mediated by bacterial mobility (Keir et al. 2009). Finally, inertial impaction is related to 

contact with a grain surface as a result of the inertial forces of the particle/water quality 

constituent of interest that causes deviation from the fluid streamlines, thereby impacting 

the collector surface (Yao et al. 1971).  

Once the bacterial particle or colloid of interest comes in contact with the filter grain 

surface, several mechanisms such as electrostatic interactions, London-Van der Waals 

forces, and the nature of the particle and grain surfaces influence the ultimate attachment 

and removal (O’melia and Stumm 1967, Keir et al. 2009). Electrostatic attraction between 

the particle and grain collector surface arise due to variations in the electric double layers 

of the particle or water constituent of interest, primarily as a function of ionic strength and 

pH (O’melia and Stumm 1967, Keir et al. 2009).  Changes to the electric double layer may 

include adsorption of ions in solution or disassociation of functional groups, which may 

result in net attraction or repulsion to the media surface (O’melia and Stumm 1967). Most 

clean quartz or silica sands used in filtration applications carry a net negative surface 

charge, causing the initial deflection of net negatively charged bacteria, anions, and organic 

matter (Tufenkji and Elimelech 2005). However, as filtration progresses, charge reversal 

may occur due to oversaturation of the collector surface with positively charged particles, 

which increases relative adsorption of negatively charged species. Some studies have also 

described local heterogeneities in surface charge of the grain surface that influence 

bacterial attachment, even at high activation energies; therefore, the charge distribution on 

a surface collector should not be considered completely uniform (Tufenkji and Elimelech 

2005). The nature of the bacterial particle surface, such as the presence of organic 

macromolecules (humic or fulvic acids) or steric interactions between adsorbed polymers 
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in solution and the grain surface, may also influence the ultimate attachment efficiency 

(Franchi and O’melia 2003, Bolster et al. 2001). London-Van der Waals dispersion forces 

are associated with dipole moments formed from the temporary asymmetrical distribution 

of electrons on atomic nuclei and are important attachment forces when the separation 

distance between the particle and grain surface is relatively small and the size of the 

molecules or particles of interest is relatively large (Grasso et al. 2002, Tufenkji 2007).  

Other forces influencing attachment include born and hydration forces. Born forces, 

repulsive in nature, occur when the electron clouds of two atoms or molecules overlap 

(McDowell-Boyer 1992, Keir et al. 2009).  Hydration forces can arise due to a disruption or 

change in the molecules surrounding a surface, where repulsive hydration forces exist due 

to the affinity of water molecules to bind to hydrophilic surface groups on the media 

surface (hydroxyl groups and hydrated ions) (Elimelech, M., & O’Melia 1990).  

The nature of the grain collector surface also plays a role in attachment of particles 

or water quality constituents of interest, including the relative hydrophobicity and 

associated interactions due to phase affinity. For example, if a surface is more hydrophobic 

it is more likely to bind with constituents that have a natural affinity to dissolve or interact 

in that phase, such as nonpolar molecules in octanol. The increase in hydrophobicity of the 

surface also reduces the Gibbs free energy of the surface, which may promote bacterial 

attachment (as the net repulsive force is reduced significantly) (Scholl et al. 2003, Chen and 

Strevett, 2003). Similarly, surface roughness or the presence of natural or contrived surface 

coatings (i.e., metal hydroxides) of the collector grain surface may increase particle 

attachment under saturated flow conditions (Bolster et al. 2001, Morales et al. 2009). 
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The summation of the interactions among these forces, both attractive and repulsive in 

nature, termed the resultant adhesive force, influences the ultimate attachment efficiency 

on the grain surface and varies according to the separation distance of the particle and 

grain surface (Keir et al. 2009). Generally, from DLVO theory, the interaction energy 

between the bacteria particle and grain surface is attractive at small separation distances, 

whereas the interaction energy is repulsive at larger distances from the surface. As the 

particle approaches the surface, an energy barrier is present (primary maximum) that must 

be overcome before the particle officially attaches (and reaches) the primary minimum 

energy state. In some cases, a secondary energy minimum is also present at larger 

separation distances that may play a significant role in the irreversible attachment of 

bacterial cells with relatively low thermal energies (Redman et al. 2004). Ultimately, the 

ionic strength and the pH of the medium have a large impact on the distribution of the 

theoretical interaction energy curve, where solutions with high ionic strength (decrease 

double layer thickness) and result in lower activation energies (easier access to the 

primary minimum). High or low pH may also result in protonation or deprotonation of 

functional groups, which may increase the contribution of electric double layer repulsion 

over other forces, thereby increasing the activation energy barrier. However, studies have 

demonstrated that the effect of pH under operational conditions (5-8) on bacterial 

attachment was diminished compared to the effect of ionic strength (Jewett et al. 1995).  

Once a sufficient bacterial population is established on the filter media (termed the 

ripening period), biodegradation of different water quality constituents may commence. 

The proper functioning of the biofilm community depends on the availability of both 

electron acceptors (oxygen) and electron donors (organic carbon, microcystin, etc.) utilized 



25 
 

by heterotrophic bacteria as energy and carbon sources for development of new biomass 

or production of extracellular polysaccharides (EPS) or other cellular byproducts. Of 

course, the presence of autotrophic bacteria (nitrifiers) and inert biomass also affects the 

structure and function of the biofilm matrix (Rittmann 1987, Rittmann et al. 2002). The 

function of the EPS coating in the biofilm community is to provide protection against 

environmental stresses and dehydration as well as to maintain attachment to a given 

surface under a variety of hydrodynamic conditions (Vu et al. 2009). Substrate utilization 

of bacterial biofilm communities is generally limited by the mass transfer of both electron 

donors and acceptors from the bulk liquid in the pore space to the biofilm surface 

(Rittmann and McCarty 1980). Current models of biofilm subsistence have proposed that 

the mass transfer of either electron donors or acceptors to the biofilm surface depend on 

the diffusion coefficient in the pore space and the length of the diffusion layer film, which 

presents a resistance to mass transfer (Fick’s first law) (Rittmann and McCarty 1980, 

Rittmann 1982a). As the EA or ED is transported to the biofilm surface, a spatial gradient of 

either EA or ED from the surface of the biofilm to the grain surface is established, creating a 

concurrent diffusive flux of either the EA or ED into the biofilm matrix (Fick’s second law). 

The diffusive flux of substrate or electron acceptor into the biofilm matrix enables the 

growth of different microbial communities from the utilization of different substrates, 

which is often predicted using a Monod type, hyperbolic equation (where the substrate 

utilization is dependent on the specific microorganism concentration, cell yield, maximum 

growth rate, and half saturation constant). As long as there are no perturbations in the 

system, the biofilm community is assumed to reach steady state, where the net 
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accumulation or microorganisms balances the net decay or release of microorganisms 

(Rittmann and McCarty 1980, Rittmann 1982a).  

The maintenance of the steady state biofilm depends on the rate of microbial 

detachment, as opposed to attachment, which can be physically, chemically, or biologically 

mediated. Of the myriad physico-chemical and biological mechanisms, erosion, abrasion, 

sloughing, predation, and filter backwashing are the main contributing factors (Liu and Tay 

2001, Liu and Li 2008). Erosion of biomass within the biofilm results due to varying 

hydrodynamic shear conditions within the porous media and is analogous to bits and 

pieces of the matrix being “shed” from the existing biomass (Liu and Tay 2001). It has been 

previously demonstrated that conditions of high hydrodynamic shear in porous media lead 

to a thin, stable, smooth, and dense biofilm matrix, preferable for biological filtration 

applications (Liu and Tay 2001). Physical collisions with external particles also lead to 

abrasion of the biofilm matrix (Chaudharry et al. 2003). Sloughing is another physical 

detachment mechanism related to the sudden loss of a large portion of the biofilm matrix 

on the physical size order of the length of the biofilm matrix, most likely a function of the 

hydrodynamic conditions (Telgmann et al. 2004). The potential of grazing by native 

protozoa on heterotrophic bacterial populations within a biofilm is yet another potential 

detachment mechanism that may occur in drinking water treatment biofilters. A more 

direct way, from an operational standpoint, to induce bacterial detachment is the advent of 

a backwashing system using air scour or fluidized bed techniques to promote 

hydrodynamic shear and concomitant losses in biomass from filter grains (Emelko et al. 

2006). The use of a backwashing process is often a necessary tool to ensure efficient 

volumetric throughput of water over the operational life of the filter system. 
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Microorganisms have also been known to actively detach from supporting media as a result 

of nutrient limitations, such as carbon or trace nutrient sources (Sawyer and Hermanowicz 

1998). 

Design and Operation of Conventional Biological Filtration Systems 
 

The design of a conventional biological filtration system depends on the following 

criteria (but is not limited to): 1) media type and characteristics; 2) length of the media (L) 

and presence of alternating layers of media types (i.e., mono, dual media); 3) hydraulic 

(HLR), surface (SLR), and organic loading rates (OLR); 4) empty bed contact time (EBCT); 5) 

limiting substrate fluxes (Jdeep) and concentrations (Smin); 6) as well as the filter backwash 

techniques (Huck 2000, Chaudharry et al. 2003). Other significant parameters that should 

be taken into account are the source water quality such as temperature, ionic strength, pH, 

as well as the concentration of residual oxidants, and whether ozonation is applied to treat 

the source water (from pre or post ozonation processes).   

The most important criteria for biological filtration include a surface supporting 

quick microbial growth, larger surface area to support more biomass growth, and adequate 

surface texture to ensure biomass stability, in which the ultimate selection has major cost 

implications (Chaudharry et al. 2003, Urfer et al. 1997, Huck 2000). The media types for 

most conventional systems range from quartz or silica sands, to anthracite, or to granular 

activated carbon (GAC). The specific surface area (unit surface/unit volume filter) of sands 

is typically higher than GAC, due to the fact that bacteria are not able to colonize the 

microporous structures (1-100 nm) and the effective grain size for sand is lower than GAC 

(Urfer et al. 1997). Benefits of GAC over sand or anthracite include its macroporous 

structure and high surface roughness which promotes bacterial attachment and protects 
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bacterial detachment from hydrodynamic shear. Further, GAC also adsorbs chemical 

constituents in water, such as algal toxins, which sand or anthracite may fail to consistently 

remove (Urfer et al. 1997). In terms of performance, media selection (anthracite vs. sand) 

was determined not to have a significant effect on biodegradable organic matter (BOM) 

removal efficiency for full scale systems, despite the greater amount of biomass observed 

for full scale systems with GAC (Huck 2000). In addition, GAC-sand dual media systems 

were concluded to provide better aldehyde and carboxylic acid removals at colder 

temperatures, establish a BOM biofilm more rapidly, and provide increased protection 

against ozone or chlorine residuals than anthracite-sand systems. The greatest deterrent to 

GAC based systems is the initial capital cost and operational costs associated with 

regeneration compared to anthracite or sand (Huck 2000).  

Media characteristics may include the uniformity coefficient (UC), representative 

grain diameter (d10), and the grain size distribution of particles. In general, grains with low 

uniformity coefficient (1-1.4), medium to coarse grain size distributions (0.20 to 0.75 mm) 

and representative grain diameters are desirable for efficient biological filtration operation 

and water throughput. The depth of media for most conventional biofiltration systems 

ranges from 0.08 to 3.73 m, with an average depth of approximately 0.75 m for 21 WTPs 

surveyed in the U.S. (Evans et al. 2013a, 2013b). Little comparison has been made 

regarding the treatment performance of biological filters with varying grain sizes and 

depths, but it is expected there is an inherent tradeoff between treatment efficiency, media 

size, and water throughput. For example, if smaller representative sizes of sand were 

incorporated, treatment efficiency would most likely improve (due to an increase in 

specific surface area) at the expense of a smaller volume of water throughput. Clearly, the 



29 
 

greater depth of media would potentially increase treatment efficiency of water quality 

constituents but would require more physical resources and area to engineer. Lastly, a 

majority of biofilter systems in the U.S. are also configured as dual media as compared to 

mono and multi-media systems (Evans et al. 2013a, 2013b).  

The theoretical design and operation of a biofilter can be improved through the use 

of several distinct “macroscopic” parameters including the hydraulic loading rate (HLR), 

the surface loading rate (SLR), the organic or substrate loading rate (OLR), and the empty 

bed contact time (EBCT) (Figure 4). These parameters are termed macroscopic in that they 

are relatively coarse (and at the continuum scale), where the level of control of the pore 

scale processes is variable. Hydraulic loading rate (HLR) is specified as the volume of water 

applied to the nominal surface area of the filter and is equivalent to the specific discharge 

in groundwater systems. Comparably, surface loading rates (SLR) are defined as the 

volume of water applied to the specific surface area of the filter grains. If spherical shapes 

are assumed the SLR can be approximated by Equation 1, where Q represents the 

volumetric rate of water application to the filter (m3/sec). The organic loading rate (OLR) is 

defined as the HLR multiplied by the concentration of species in the water, to obtain a mass 

loading per time (Equation 2). The empty bed contact time (EBCT) is simply the length of 

the filter normalized by the hydraulic loading rate (Equation 3). Typical HLRs for 

conventional biofilter systems range from 5 to 30 m/hour, with corresponding EBCTs 

ranging from 5 to 20 minutes, similar to rapid sand filtration systems (Evans et al. 2013a, 

2013b). A number of studies have demonstrated that EBCT is a significant operational and 

design parameter for biological filtration processes as compared to HLR alone (Carlson and 

Amy 1996, 1998). These studies also determined that for a given EBCT, BOM removal was 
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independent of the change in HLR, suggesting that external mass transfer (of nutrients or 

electron acceptors in the bulk liquid to the grain surface) does not play a large role in BOM 

removal (Urfer et al. 1997). Since BOM removal and influent concentration of BOM were 

directly proportional, increasing the EBCT was determined to have a less than proportional 

effect on BOM removal, but still positive nonetheless (Urfer et al 1997, Huck 2000).  

𝑆𝑠 =  
6

𝑑
 (1 − 𝜃) ∗ 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟     (1) 

𝑆𝐿𝑅 =
𝑄

𝑆𝑠
   (2) 

𝑂𝐿𝑅 = 𝐻𝐿𝑅 ∗ 𝐶𝑤  (3) 

𝐸𝐵𝐶𝑇 =
𝐿

𝐻𝐿𝑅
   (4) 

  

 
Figure 4.  A schematic of the drinking water treatment biofiltration process and associated 

coarse design/operational parameters 

Rittman (1982a, 1987, 1989) proposed additional, “microscopic” parameters, 

focused at the pore scale, to aid in fine tuning the design and operation of aerobic biological 

treatment systems.  These microscopic parameters were developed from the theory of 

biofilm kinetics in biological reactor systems. The bulk of the theory is focused on a 

substrate flux (Jdeep, the minimum flux to support a “deep biofilm”) that enters the biofilm, 

which is dependent on the mass transfer rate of substrate from the bulk liquid to the 

biofilm surface, the corresponding substrate utilization rates by biomass in the biofilm, and 
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the length of the biofilm, if the biofilm is at steady state (no net growth or loss of 

microorganisms). The utilization of substrate in the biofilm by heterotrophic 

microorganisms creates a concentration gradient, driving a diffusive flux of substrate 

throughout the depth of the biofilm. Steady state biofilms were categorized into deep, 

shallow or fully penetrated in nature (Rittman and McCarty 1980). Biofilms that are 

considered deep (with sufficient thickness) often have a length scale where the 

concentration at the media surface can be assumed to be zero (and have the highest 

diffusive flux), whereas shallow and fully penetrated biofilms either have a concentration 

of substrate at the media surface that is nonzero or proportional to the concentration at the 

surface of the biofilm (Figure 5). From this theory, the biofilter can be designed to operate 

at the most efficient flux, J (J>Jdeep*3 for heterotrophic organisms) and substrate 

concentration, S (S>Smin) to support an adequate population of degrading microorganisms 

(Equations 5, 6, and 7).  

𝐽 =
𝑄(𝑆0−𝑆𝑒)

𝐴𝐹𝑉
   (5) 

Where S0 and Se are the influent and effluent concentrations, Q is the volumetric flow rate 

of water, AF is the theoretical biofilm surface area, and V is the volume of the reactor. 

𝐽𝑑𝑒𝑒𝑝 = {2[𝑆𝐿𝐹 − ln (1 + 𝑆𝐿𝐹)]}1/2   (6) 

Where SLF is the concentration of the substrate at the biofilm surface (which can be 

equivalent to the concentration in the bulk solution for well mixed systems). 

𝑆𝑚𝑖𝑛 = 
𝐾𝑠∗𝑏

′

(𝑌𝜇𝑚𝑎𝑥−𝑏′)
   (7) 

Where Ks is the half saturation constant, b’ is the overall first order biomass loss coefficient, 

Y is the yield of biomass per substrate consumed, and µmax is the maximum bacterial 

growth rate. 
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Figure 5. Depiction of the Biofilm Theory Proposed by Rittmann and McCarty 1980 

Backwashing strategies present another design and operational parameter to 

control the accumulation of biomass and particulate matter in the biological filtration 

system (Huck 2000). In practice and in theory, it is optimal to carefully manage the existing 

biomass to maintain the system in operation as close to steady state as possible. However, 

at times during operation, there might be a sudden perturbation (such as a change in the 

organic loading rate) that causes a shift in biomass concentration away from steady state 

(either a net loss or accumulation of organisms) that results in clogging of the system 

(reducing the volume of water through the filter) or a breakthrough of considerable 

amount of bacterial or colloidal particles (increasing the turbidity of the effluent water). 

Long term performance of biological filtration systems is very reliant on a proper 

backwashing scheme and may depend on the amount of biomass vs. organic or inorganic 

particulate or colloidal matter (Rasheed et al. 1998, Ahmad and Amirtharajah 1998, 

Emelko et al. 2006, Liao et al. 2014). Optimal backwashing schemes for non-biological 
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filters are traditionally a combination of air and water at sub fluidization velocities to 

obtain collapse-pulse conditions, which results in efficient removal of colloidal and 

particulate matter (Urfer et al. 1997). As compared to non-biological filters, the strength of 

bacterial attachment was found to be significantly greater than colloidal/particulate 

attachment, which ultimately influences the design of an efficient backwashing scheme for 

biological filters (Ahmad and Amarathah 1998). A majority of studies have described little 

to no loss in total biomass from backwashing schemes with and without air scouring (Urfer 

et al. 1997). Emelko et al. (2006) more recently determined that backwashing with air 

scouring did not influence the consequent removal of BOM, even though some biomass was 

lost. Comparably, some studies have reported a relative decrease in biomass with 

chlorinated as compared to non-chlorinated backwash waters (while BOM removal 

efficiency remained unaffected), especially for anthracite media as compared to GAC (Huck 

2000). Regardless of the scheme employed, backwashing is essential to ensure contact time 

is not altered and that substrate biodegradation efficiency is not reduced by the increased 

presence of inorganic or colloidal materials accumulating in the pore spaces.  

Of the environmental conditions that may vary during operation of a biological 

filtration system, temperature has been determined to be one of the most critical. 

Theoretically, higher temperatures lead to increased microbial activity (faster growth and 

substrate utilization kinetics) as well as improved mass transfer of substrate. Several 

studies have reported that BDOC, gloxylate, and aldehyde removal efficiencies increased 

with increasing temperatures (Coffey et al. 1996, Daniel and Teefy 1995, Servais et al. 

1992, Krasner et al. 1993), supporting theoretical inferences.  
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Oxidant residual, or the presence of free chlorine or ozone, is yet another key factor 

that can be more or less controlled or monitored before entering biological filtration 

systems (Urfer et al. 1997). In general, the presence of a residual oxidant may be deemed 

harmful for operation of biological filters, as some microorganisms in the degrading 

population are extremely sensitive to these types of disinfectants. In many cases, the media 

type may significantly decrease the deleterious effect of the oxidant on the biofilm 

communities. For example, GAC has been observed to react with Cl2 and decompose other 

oxidants, which explains why some studies have observed no effect of ozone or chlorine 

residual on biodegradation efficiency of certain compounds in GAC filters over anthracite 

filters (Boere 1991). Hydrogen peroxide (H202), traditionally used to accelerate ozone 

decay, may also show bactericidal properties at relatively high concentrations (Huck et al. 

1991). Further, residual choramines were demonstrated to reduce bacterial populations in 

biofilters at certain concentrations (Ferguson et al. 1990). Above all, the oxidant residual 

should be carefully monitored and controlled as to not disrupt the bacterial populations 

within biofilm communities and to ensure optimal degradation efficiencies. 

If ozonation is included in the pretreatment train, the design and operation of 

biological filters may be tailored to reduce the excess fractions of biodegradable carbon 

created. Ozonation has been observed to increase the biodegradable portion of organic 

carbon in NOM present in the source water, including the formation of hydroxyl, carbonyl, 

and carboxyl groups, loss of double bonds and aromaticity, and the shift from high to low 

molecular weight organics (Volk et al. 1993, Nishijima and Speitel 2004). The 

transformation of organic compounds generally favors the growth of bacteria, as the source 

waters are generally carbon limited (in terms of electron donor) as compared to both 
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nitrogen and phosphorus nutrients (Rittmann 1990).  Several studies have indicated that 

the ozone-biofiltration process must be coupled in order to achieve stringent regulations 

on disinfectant byproduct formation (Hozalski et al. 1999). In addition, the biological 

activity in biofilters generally can reduce the carbon loading to pre-ozonation levels, often 

achieving up to 75% removal for certain compounds generated by ozonation (Urfer et al. 

1997). 

IV.  The Movement Towards Engineered Biological Filtration and Algal Toxin 
Removal  
 

A general shift in consensus among water quality authorities and utilities alike has 

been taking place nationwide concerning the role of biological filtration as a biological 

process during drinking water treatment practice. A recent survey of 77 water utilities 

across the U.S. indicated that approximately 39% of the filtration processes were operated 

as non-biological processes, whereas a greater majority (45%) responded that they 

intentionally operated their filtration process to increase biological activity (Evans et al. 

2010b). The utilities differed in the biological filtration systems that they employed. Of the 

utilities operating their filtration processes in a biological manner, the greater majority 

used combined ozone, post biological filtration systems (44%) compared to biological 

perchlorate/nitrate removal (26%) and rapid biological filtration processes (18%). In 

addition, the majority of the rapid biological filtration processes were converted deep bed 

filtration systems that were not operated with chlorine dosing, suggesting that little 

previous optimization to improve treatment efficiencies in these systems has occurred 

(Evans et al. 2010b).   
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A difference also existed among utilities regarding the operation of their biological 

systems in an intentional or incidental manner as well as the assigned treatment objectives 

of these systems. Greater than 70% of the rapid biological filtration/ozone enhanced 

biofiltration processes were managed intentionally as biological filtration systems, 

whereas over 100% of GAC filtration systems were considered “incidental” in nature 

(Evans et al. 2010b). The primary treatment objectives of these systems were either: 1) 

turbidity or particulate removal or 2) assimilable organic carbon (AOC)/total organic 

carbon removal for reduction in disinfectant byproduct formation, with little emphasis on 

algal toxin removal (Evans et al. 2010b). A similar study of representative water treatment 

utilities in the U.S. concluded that the intentionally managed biological filtration processes 

did not effectively monitor the biological activity of their treatment systems, most likely 

due to the lack of available practical tools, where only pH, turbidity, and flowrate were the 

most common water quality parameters actually monitored (Evans et al. 2013a, 2013b). 

These studies also highlighted that there was little consistency among water utilities in the 

management of their biological filtration systems, partly due to the lack of available 

guidelines and universal monitoring techniques. Therefore, despite the movement, interest, 

and efforts to assimilate biological processes into conventional treatment trains among 

water treatment authorities and utilities, the monitoring and optimization of these filters to 

improve treatment efficiencies has been lagging behind the potential demonstrated by the 

research community. 

The emergence of engineered biological filtration and the transition from operation 

of current systems from passive to active processes is an important stepping stone in the 

potential removal of algal toxins throughout current biological filtration systems 
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(Lauderdale et al. 2012). This concept of intentionally optimizing the biological activity of 

these systems stems from the desire to achieve removal of a wide array of water quality 

constituents, aside from the traditional turbidity and particulate removal expected by most 

passive, conventional processes. Current research on engineered biological filtration has 

been focused on addition of substances or nutrients to the filter system in a manner that 

optimizes both treatment efficiency and hydraulic throughput. The three most studied and 

recognized techniques to improve the biological activity of these systems range from 

biostimulation through nutrient addition, control of EPS production and stimulation of 

enzymes that oxidize organics through peroxide addition, as well as bioaugmentation 

through the addition of isolated consortia capable of degrading certain contaminants of 

concern (Lauderdale et al. 2012, Benner et al. 2013, McKie et al. 2015, Azzeh et al. 2015, 

Rahman et al. 2016).  

Nutrients such as organic carbon, nitrogen, and phosphorus are key to support the 

growth and proliferation of microbial communities in any environment, suspended or 

immobilized. In most aquatic freshwater ecosystems, the amount of bioavailable carbon is 

often limiting, as well as bio available phosphorus (Yu et al. 2003a, 2003b, Rittmann 1990). 

In porous media, the production of extracellular byproducts of microbial communities, 

often termed EPS, can significantly clog pore spaces and reduce the hydraulic throughput 

over time. Thus, there has been considerable interest to optimize biofilter performance 

through nutrient addition to balance EPS production and enhance microbial growth. 

Optimum nutrient ratios of these constituents of approximately 100:10:1 (bioavailable 

organic carbon: ammonium nitrogen: orthophosphate phosphorus) have been reported to 

stimulate microbial activity and reduce EPS secretion (Flemming and Wingender 2001, Liu 
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et al. 2006). However, this reported ratio (100:10:1) is subject to inherent variation due to 

different growth conditions and microbial community composition, among many factors 

(Flemming and Wingender 2001, Scott et al. 2012).  

Past studies that have investigated nutrient amendment scenarios on biofilter 

performance have provided mixed results, suggesting that the role of nutrient addition to 

supplement an engineered biofiltration process is not entirely consistent. Lauderdale et al. 

(2012) reported a 15% decrease in the filter headloss (15% increase in filter run times) 

with phosphoric acid amended biofilters over controls, which was postulated to be a result 

of the decrease in EPS production and stimulation of microbial activity (ATP levels) 

(greater than 30% for each). In addition, phosphorus amended biofilters corresponded 

with a significantly higher removal of DOC, manganese, and MIB than control biofilters 

(Lauderdale et al. 2012). Pharand et al. (2014) found no significant relationship between 

C:N/C:P ratios and biofilter performance as measured by DOC/AOC removal and biomass 

quantity/activity. Removal of AOC was still observed to be substantial under phosphorus 

limited conditions (C:P of 100:0.15) (Pharand et al. 2014).  

The addition of phosphorus had a negligible effect on biofilter biomass and did not 

improve the removal of NOM, specifically biopolymers related to membrane fouling in a 

pilot scale biofiltration experiment (Rahman et al. 2016). The addition of phosphorus to 

pilot scale biofilters slightly increased the removal of DOC and humic substance, but this 

effect was observed to decrease over time (Rahman et al. 2016). Comparably, the effect of 

nutrient additions (nitrogen and phosphorus) to pilot scale GAC and anthracite filters did 

not demonstrate any significant differences in DOC, AOC, or DBP precursor compounds 

compared to a control biofilter (McKie et al. 2015). Azzeh et al. (2015) also did not observe 
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any beneficial results on DOC, biopolymer, or DBP precursor removal for biofilters 

amended with nitrogen and phosphorus (at ratios of up to 100:40:20). Finally, no 

significant differences were observed in filter run times, DOC removal, and head loss 

development for GAC filters amended with nitrogen and phosphorus (Wong et al. 2014). Yu 

et al. (2003b) observed an increase in bacterial growth potential (BGP) and COD removal 

(up to 21%) of pilot scale drinking water treatment biofilters amended with phosphorus, 

where phosphorus addition improved performance over organic carbon addition. The 

differences in treatment efficiencies and headloss development in biofilters from reported 

nutrient amendment strategies may be due to large variations in source water quality 

(available carbon, nitrogen, and phosphorus) and more importantly, the temperature of 

water for most experimental systems.   

Hydrogen peroxide addition has been identified as another potential strategy to 

engineer biological filtration systems through a combined increase in oxidizing functions of 

native microbial consortia as well as a decrease in the bioclogging potential of porous 

media (Lauderdale et al. 2012). Hydrogen peroxide addition at certain prescribed doses to 

immobilized cultures has been shown to degrade biopolymers associated with the EPS 

matrix and to not disrupt the productivity of existing bacterial communities (Christensen et 

al. 1990). Other effects of hydrogen peroxide addition include the induction of microbial 

community expression of oxidoreductase enzymes that may decrease inactive biomass and 

EPS in the biofilm matrix (Pardieck et al. 1992).  

Similar to nutrient amendment scenarios, the addition of hydrogen peroxide to 

actual biofiltration systems has demonstrated variable results. The supplementation of 

peroxide (at 1 mg/L for a 10-day period) increased the removal of DOC at a removal 
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efficiency 50% greater than a control biofilter operated on the pilot scale of analysis and 

provided complete removal of MIB and manganese (Lauderdale et al. 2012). Similar 

peroxide additions also decreased filter head loss by 60% compared to a control biofilter 

and did not affect the productivity of active biomass in the amended biofilter (Lauderdale 

et al. 2012). In contrast to the improved performance reported by Lauderdale et al. (2012), 

Mckie et al. (2015) indicated no improvement in treatment performance (DOC, AOC, DBP 

precursors, biopolymers) comparing GAC biofilters amended with and without hydrogen 

peroxide, which most attributed to the lack of available organic carbon in the drinking 

water treatment plant feed waters. Beneficial biofilter operation was observed by Azzeh et 

al. (2015) when peroxide was dosed between 0.1 to 0.5 mg/L, where head loss decreased 

between 9 and 48%, respectively. Urfer and Huck et al. (2000) observed no appreciable 

increase in biological acetate and formate removals for a sand-anthracite biofilter 

periodically dosed with hydrogen peroxide at (0.5 mg/L). The culmination of these results 

suggests that hydrogen peroxide may have a beneficial effect on treatment efficiencies of 

biological filters, especially when dosed continuously and at appropriate levels as not 

interfere with the biological stability of immobilized biofilm communities.  

Bioaugmentation refers to the addition of supplemental microbial communities or 

isolated bacterial strains to drinking water treatment biological filters to either stabilize or 

enhance treatment efficiencies of contaminants or compounds of concern (Benner et al. 

2013). Generally, degrading populations of certain micro pollutants or algal toxins within 

the source water are not particularly abundant within the microbial community and 

therefore not consistently metabolically represented or active. However, upon addition of 

these stimulated strains or consortia to the existing bacterial community, enhanced 
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mineralization of micropollutants/algal toxins or degradation kinetics may result. This 

improvement in degradation depends on whether microbes within the community actively 

use the algal toxin or micropollutant as a primary substrate or partake in co-metabolic 

degradation of the constituent of concern. The prior degradation ability allows the 

microbial community to mineralize the substrate as an energy and carbon source, whereas 

the latter degradation capacity is mediated by enzymes that the bacteria secrete which 

transform the algal toxin or micropollutant of interest into products that may be favorable 

for other populations within the complex microbial community (Banner et al. 2013).  

Several studies have demonstrated the utility of bioaugmentation for direct elimination of 

microalgal taste and odor compounds as well as microalgal toxins. McDowall et al. (2007, 

2009) revealed that the addition of a geosmin degrading bacterial population increased the 

removal of geosomin by 75% compared to control sand biofilter columns with no 

bioaugmentation. The presence of an existing biofilm on the immobilized media, whether 

active or inert, improved the degradation capacity and efficiency of the seeded culture of 

geosmin degrading bacteria, most likely due to the greater attachment efficiency of these 

microorganisms within the EPS-biofilm matrix. Bourne et al. (2006) studied the 

degradation potential of an inoculated strain of a microcystin degrading bacterium to 

laboratory slow sand filters. No significant differences were observed in the biodegradation 

efficiencies and kinetics of microcystin-LR between slow sand filter columns inoculated 

with and without the isolated degrading strain. These results suggest the potential of 

degrading consortia over isolated degrading strains for improved algal toxin degradation in 

biological filtration systems, especially when the degrading population is under-

represented and variable throughout the course of treatment. 
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The Potential of Engineered Biological Filtration of Algal Toxins 
 

Although many studies have addressed the degradation efficacy of a variety of water 

quality constituents in biologically activated filters, including dissolved organic carbon, 

assimilable organic carbon, biopolymers, and DBP precursors, few have studied the direct 

potential of biofiltration of algal toxins of concern, especially at larger scales of analysis (Ho 

et al. 2006, Bourne et al. 2006, Wang et al. 2007, Ho et al. 2010, Ho et al. 2012a). These 

studies will be briefly reviewed to provide some context into previous work that has been 

conducted regarding the potential removal efficiencies and degradation kinetics of 

microcystin algal toxins in biological filtration systems. 

Ho et al. (2006, 2007) was the first study to confirm that the complete removal of 

microcystin-LA/LR was indeed possible after an initial lag phase from laboratory rapid 

sand filters dosed with reservoir water containing native microbial consortia and packed 

with sand from existing full-scale filtration systems. Moreover, Ho et al. (2006) concluded 

that there were little differences in biodegradation efficiency of microcystin-LA/LR as a 

function of the empty bed contact time (EBCT) and hydraulic loading rate (HLR). In 

addition, pre-exposure to microcystin-LR/LA had a significant impact on degradation 

efficiency, where no lag phases were observed for columns inoculated with sand that was 

previously exposed to these microalgal toxins (Ho et al. 2006, 2007). The biodegradation 

efficiency was also improved when the sand was not autoclaved or cleaned (inactivated) 

prior to experimentation, demonstrating that the initial lag phase may be due to necessary 

cell attachment and biofilm acclimation prior to commencement of degradation (Figure 5) 

(Ho et al. 2007a). Comparably, sand sourced from different treatment plant locations 

developed varying degradation kinetics, indicating the variability in degrading 
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microorganisms present (Figure 5A). Initial concentrations of microcystin also did not 

affect the biodegradation potential in the laboratory columns, in which temperature was 

determined to be the limiting factor (higher temperatures corresponded to higher 

degradation kinetics) (Ho et al. 2007a).  

 

Figure 6. Significant results from previous laboratory-based column biofiltration studies 
targeting microcystin removal from: A) Ho et al. 2007a and B)) Bourne et al. 2006. 

Bourne et al. (2006) researched the removal of microcystin-LR in laboratory slow 

sand filtration as opposed to rapid sand filtration column experiments. Hydraulic 

conditions, including EBCT and HLR, during these experiments were an order of magnitude 

higher (30 hours) or lower (0.0165 m/hr) than the previous experiments conducted by Ho 

et al. (2006, 2007). A series of five column experiments were inoculated with an isolated 
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degrading strain as compared to one treatment with just raw water from the drinking 

water treatment plant reservoir (Figure 5). The degradation kinetics for the slow sand 

filtration experiments were relatively similar for all treatments, where degradation 

commenced after a 2-4-day initial lag period. Microcystin-LR was completely eliminated in 

all columns by day 6 of the study, which was approximately two days longer than the rapid 

sand filter experiments, demonstrating the relative feasibility of rapid sand filters over 

slow sand filters for algal toxin removal. The efficient removal of microcystin analogues in 

biologically active GAC filters as well as in a wastewater environment has been established 

by previous studies, where kinetics and degradation behavior are of a similar nature to 

those presented above.  

The studies that have been conducted and reviewed here have determined that the 

full removal of microcystin analogues can be achieved (on the laboratory scale of analysis); 

however, the main limitations to the degradation process include overcoming a lengthy lag 

phase in degradation resulting in toxin breakthrough for a timescale of several days as well 

as the establishment of a consistent and well-represented bacterial degrading consortium 

(Ho et. al 2012). The concepts described in the previous section regarding the 

establishment of engineered amendments to support the degradation kinetics and 

consistency in treatment of algal toxins have only been explored to a limited extent and 

could offer a solution to future operational challenges observed for full scale systems.    
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Chapter 1: Investigation of Algal Biotoxin Removal during SWRO 
Desalination through a Materials Flow Analysis 
 

Abstract: The operation of seawater reverse osmosis (SWRO) desalination facilities has 

become challenged by the increasing frequency and severity of harmful algal blooms 

(HABs). The efficiency of algal toxins removal during SWRO and pretreatment processes 

has critical human health implications. Therefore, a probabilistic materials flow analysis 

(pMFA) was developed to predict the removal of algal toxins in source water by various 

pretreatment configurations and operations during SWRO desalination. The results 

demonstrated that an appreciable quantity of toxins exists in the SWRO permeate (ng/L–

µg/L levels), the backwash of pretreatment, and final brine rejects (µg/L–mg/L levels). 

Varying the pretreatment train configuration resulted in statistically significant differences 

in toxin removals, where higher removal efficiencies were evidenced in systems employing 

microfiltration/ultrafiltration (MF/UF) over granular media filtration (GMF). However, this 

performance depended on operational practices including coagulant addition and 

transmembrane pressures of MF/UF systems. Acute human health risks during lifetime 

exposure to algal toxins from ingestion of desalinated water were benign, with margins of 

safety ranging from 100 to 4000. This study highlights the importance of pretreatment 

steps during SWRO operation in the removal of algal toxins for managing marine HABs. 
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1. Introduction 
 

Seawater reverse osmosis (SWRO) technology has the potential to meet the growing 

worldwide demand for freshwater by securing the most abundant resource of surface 

water available on the planet: the ocean (Voutchkov 2013). As the stress increases on 

existing surface freshwater supplies due to population growth, agricultural development, 

global climate change, and industrial expansion, SWRO has become a more accepted 

approach to augment the world’s existing freshwater supply, especially in arid regions such 

as the Middle East (Dawoud 2005, Ghaffour et al. 2013a). Coupled with recent advances in 

membrane technology and sustainable sources of energy for operation (such as solar or 

wind power), SWRO is transitioning from a viable alternative to an integral component of 

freshwater provisions for many coastal municipalities and industries worldwide (Schiffler 

2004, Eltawil et al. 2009, Subramani et al. 2011, Ghaffour et al. 2013b). 

Like any emerging or established technology, however, SWRO faces several 

important challenges to gain full acceptance as a reliable technology for freshwater supply 

(Ghaffour et al. 2013b). The increasing frequency and severity of harmful marine algal 

blooms (HABs), has posed a serious threat to full- scale SWRO desalination facilities 

operating worldwide (Laycock et al. 2012, Boerlage and Nada 2015, Seubert et al. 2012). 

Caron and co-workers (2010) acknowledged two important impacts of HABs on 

desalination facilities: (1) complete removal of algal toxins; (2) increased demand on 

pretreatment for membrane fouling prevention. Besides the elevated biomass, algal blooms 

also contribute to excess organic matter (AOM) and transparent extracellular particulate 

(TEP) that intensify the biofouling potential of SWRO membranes (Voutchkov 2010, 

Villacorte 2015a, 2015b). 
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Although HABs cannot be prevented entirely, engineering measures have been 

developed to overcome the issues encountered. Existing responses to HABs at SWRO 

facilities may include changes to the operation or design of pretreatment trains. 

Operational changes may include increasing coagulant/flocculant addition, reducing 

filtration (granular or membrane based) run times, and increasing backwashing intensity 

or cleaning frequency of filtration systems (Voutchkov 2010, 2013). More recently, 

amendments to the design of pretreatment trains may include integrating dissolved air 

flotation (DAF) systems or changing inline coagulation/flocculation systems to an 

individual unit treatment process with separate sedimentation tanks to improve algal cell 

removal (Villacorte et al. 2015b). 

Increased awareness of the harmful effects of HABs on full- scale desalination 

processes has also prompted new monitoring techniques and associated numerical 

modeling efforts to predict HAB events, so plant engineers and operators can be better 

prepared to handle the negative effects of these bloom periods on plant operations (Caron 

et al. 2010, Villacorte et al. 2015b). Integrating online sensing systems—such as fluorescent 

light scattering (i.e. flow cytometry) and/or total organic carbon analyzers—with RO 

membranes also provides a direct way to both detect and assess the deleterious effects of 

HAB periods on permeate water quality (Huang et al. 2015a). 

A topic often overlooked, however, is the fate of marine algal biotoxins throughout 

pretreatment and RO membrane operations in full- scale desalination facilities (Boerlage 

and Nada 2015, Meyerhofer et al. 2010). Most existing studies in the literature have been 

limited to examining removal of these marine algal toxins across RO membranes alone, 

concluding that the RO membranes remove a considerable portion (>99%) of dissolved 
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algal toxins (Laycock et al. 2012, Boerlage and Nada 2015, Seubert et al. 2012, Meyerhofer 

et al. 2010). However, these studies were restricted to the laboratory/pilot scale of analysis 

and did not consider the effects of pretreatment processes on toxin removal. 

In addition, the associated human health risk from consumption of desalinated 

water during HABs has not been fully assessed (Laycock et al. 2012, Boerlage and Nada 

2015, Seubert et al. 2012, Meyerhofer et al. 2010). Preliminary risk assessments have 

ascertained that the risk of acute intoxication from consumption of desalinated water is 

rather low (Laycock et al. 2012, Boerlage and Nada 2015, Seubert et al. 2012). However, 

these assessments were based on data acquired from laboratory-based studies and may 

severely underestimate the environmental and hydraulic conditions RO membranes face in 

practice. The environmental effects of the backwash water and brine rejects during HAB 

periods are even less understood and are under-reported in the scientific literature (Caron 

et al. 2010). Therefore, a probabilistic materials flow analysis (pMFA) was carried out in 

this study to gain a quantitative and holistic understanding of the removal of algal biotoxins 

during full- scale SWRO practice. Ultimately, the pMFA was developed to answer the 

following questions:  

• What is the typical concentration of algal toxins in desalinated water and 

brine/reject water?  

• What pretreatment designs and operations (if any) lead to improved algal toxin 

removals?  

• What is the human health risk from drinking desalinated water during HABs? 

To address these questions, a quantitative comparison of toxin removal efficiencies 

during pre-treatment for several conventional configurations was conducted to estimate 



49 
 

the toxin concentration in the RO permeate as well as the combined pretreatment 

backwash and brine reject. A formal risk assessment framework was adopted to estimate 

the acute human health risks from drinking desalinated water incorporating the posterior 

distributions of toxin concentrations from the pMFA output. Model parameter sensitivity 

and outcome confidence evaluations were conducted to ascertain the validity of the model 

predictions and to prioritize future data collection efforts. 

2. Materials and Methods 

2.1. pMFA Overview and Model Assumptions 

A pMFA was used to simulate the fate of algal toxins through various treatment 

processes (Gottschalk et al. 2010a, 2010b). To best represent a realistic desalination 

system, the study was set in Coastal Southern California, a region actively exploring SWRO 

as a solution to supplement ever increasing drinking water demands, where at least six 

new facilities have been proposed (CDWR 2013). A hypothetical 50 million gallons per day 

(MGD) (1.89 × 105 m3/day) SWRO desalination facility, located in Santa Monica Bay, CA, 

was used to set the theoretical control volume for the pMFA analysis. The system would 

operate with a conventional salt rejection rate of 99.5%, permeate recovery of 50%, and 

intake rate of 100 MGD (3.78 × 105 m3/day). A period of 24 hours was set as the duration 

of the pMFA for facility operation, providing a daily perspective on marine algal toxin 

production and fate in a SWRO facility. 

The conceptual pMFA diagram that includes 10 distinct pretreatment trains 

commonly used in a conventional full-scale desalination facility is shown in Figure 7 (T1–

T10). At the intake, the marine algal toxins enter in either dissolved (extracellular, CE0 in 
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µg/L) or particulate (intracellular, CI0 in pg/cell) forms. The mass flow of intracellular (MI0) 

and extracellular toxins (ME0) entering the facility is calculated using Equation (1) and 

Equation (2). 

𝑀𝐼0 = 𝐶𝐴 ∗ 𝑉𝐼 ∗ 𝐶𝐼0 (1) 

𝑀𝐸0 = 𝐶𝐸0 ∗ 𝑉𝐼 (2) 

where CA is the count of algal cells in intake water (cells/L), VI is the intake volume, CI0 and 

CE0 is the intracellular toxin per cell (pg/cell) and extracellular toxin per liter (µg/L), 

respectively. 

Following the intake into the desalination facility, conventional coagulation 

treatment is considered for each process train with no sedimentation; consequently, no 

mass of toxin is removed during this step. Treatment trains without the coagulation step 

were also used for comparison (Figure 7). In addition, comparisons were made for trains 

with and without DAF before treatment options of: pressurized 

microfiltration/ultrafiltration (MF/UF), submerged MF/UF (vacuum), gravity granular 

media filtration (GMF), and pressurized GMF. The volumetric inflow and backwash for each 

pretreatment process in the pMFA are detailed in Appendix A, Section 1. 

For each pretreatment process a range of toxin removal efficiencies (transfer 

coefficients) were specified. These parameters included: (a) removal of intracellular toxins 

within intact cells during pretreatment processes (K1); (b) removal of dissolved toxins 

during pretreatment processes (K2); and (c) removal of dissolved toxins across the RO 

membrane (K3). An additional model parameter was specified to account for the release of 

intracellular toxin to dissolved toxin as a result of algal cell breakage during each 

pretreatment process (KB). 
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Figure 7. Conceptual pMFA diagram for the full-scale SWRO desalination facility. The 

boundaries of the SWRO facility are indicated by the dashed black line, while pretreatment 
unit processes trains (T1-T10) are grouped by the dashed blue line. The arrows indicate toxin 
mass flow rates expressed in µg/day, simplifying to a mass of toxin (in µg) on the timescale of 

one day. The red arrows specify mass flows within the desalination facility control volume, 
whereas the green arrows indicate mass flows of toxins out of the control volume. 

The core calculations of the pMFA for the combined pretreatment and RO 

membrane processes included three main steps. First, the mass of intracellular toxin in 

intact algal cells (MNB, µg) and that released (MB, µg) due to the cell breakage fraction, KB, 

were determined (Equations (3) and (4)). 

𝑀𝑁𝐵 = (𝑀𝐼0 − 𝐾𝐵 ∗ 𝑀𝐼0)   (3) 

𝑀𝐵 = (1 − 𝑀𝑁𝐵) (4) 

Next, the dissolved toxin concentration (CE1, µg/L) and backwash toxin concentration (CBW, 

µg/L) after treatment by a given unit treatment process were calculated using the 

dissolved toxin (K1) and cellular toxin (K2) removal coefficients and the volume of intake 

water (VI, L) and backwash water (VBW) (Equations (5) and (6)). 
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𝐶𝐸1 = 
(𝑀𝐸0 − (𝐾1 ∗ 𝑀𝐸0) + 𝑀𝐵) + (𝑀𝑁𝐵 − 𝐾2 ∗ (𝑀𝑁𝐵))

𝑉𝐼

 (5) 

𝐶𝐵𝑊 =
(𝐾1 ∗ 𝑀𝐸0) + (𝐾2 ∗ 𝑀𝑁𝐵)

𝑉𝐵𝑊 
 (6) 

Finally, the concentration of dissolved toxin in the RO permeate water (Cp, µg/L) and 

RO brine water rejects (CBR, µg/L) were calculated considering the removal efficiency 

across the RO membrane (K3), the volume of permeate water (Vp, L) and brine/reject water 

(VBR, L) (Equations (7) and (8)). The mass of extracellular toxin entering final RO treatment 

(ME1, µg) was calculated assuming that all intact cells remaining (MNB, µg) were ruptured 

due to the high-pressure RO membrane process. 

𝐶𝑝 = 
(𝑀𝐸1 − 𝐾3 ∗ 𝑀𝐸1)

𝑉𝑝
 (7) 

𝐶𝐵𝑅 =
(𝐾3 ∗ 𝑀𝐸1)

𝑉𝐵𝑅  
 (8) 

Several assumptions were included to reduce the model complexity: (1) no 

biological removal mechanisms were involved due to the lack of published information and 

the complexity of predicting removal; (2) toxins were dissolved into solution upon cell 

breakage; and (3) no generation or storage mechanisms for any treatment train processes 

were considered—flow that entered each treatment process had to leave either in the 

backwash/concentrate waters or water flowing through the RO membrane. 

2.2. Algal and Toxins Concentrations 
 

Algal bloom data at the Santa Monica Pier were taken from the Southern California 

Coastal Ocean Observing System (SCCOOS, http://www.sccoos.org/), which reports 

common bloom formers including Akashiwo sanguinea, Alexandrium species, Dinophysis 

species, Prorocentrum species, Lingulodinium polyedrum, Pseudo-nitzschia species, 

Cochlodinium species, and Phaeocystis species. It is important to note that the Pseudo-
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nitzschia cell abundance data included in the SCCOOS database is not currently identified 

down to the species level (Seubert et al. 2013). Instead, cell abundance is classified into two 

different size fractions by light microscopy: the Pseudo-nitzschia delicatissima class 

(frustule widths >3 µm) and the Pseudo-nitzschia seriata class (frustule widths <3 µm) 

(Seubert et al. 2013). Of these genera listed, only some species of Alexandrium (producer of 

saxitoxin, STX), Dinophysis (producer of okadaic acid, OA), Lingolidinium polyedrum 

(producer of yessotoxin, YTX), and Pseudo-nitzschia (producer of domoic acid, DA) produce 

toxins (Caron et al. 2010). Therefore, only DA, STX, OA, and YTX were included in the pMFA. 

The toxic effects of each toxin are described in Appendix A, Section 2. 

SCCOOS data from a three-year period (2012–2015) were first used to create an 

overview of the frequency and severity of blooms in the region, similar to the time-period 

specified by Seubert and co-workers (2013) (Figure A1). To simplify the pMFA analysis, we 

did not separate bloom periods into either major or minor events as previously described 

(Seubert et al. 2013, Allen et al. 2008, Kim et al. 2009). Instead, a constant chlorophyll-a 

threshold using the overall mean of the 3-year data (~12 µg/L) was incorporated to 

identify significant events (comparable to the definition for minor blooms in Allen et al. 

(2008)). From this analysis, eight significant bloom events were identified (chlorophyll-a 

>12 µg/L). DA producing species exhibited the highest cell abundance and variation over 

each of the eight bloom periods (Table 1), confirming blooms off Southern California were 

greatly dominated by Pseudo-nitzschia sp. (Caron et al. 2010, Schnetzer et al. 2007). STX 

(Alexandrium) and YTX (L. polyedrum) producing species were the least abundant and 

variable in cell numbers during the bloom periods (Table 1 and Figure A2). 
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The statistical distributions of cell concentrations from the bloom periods appeared 

to be nonparametric (after excluding 0 and non-detects), with higher frequency of 

observations at the lower range in cell concentrations (see Appendix A, Figure A3). 

Therefore, to adequately predict cell concentrations in pMFA simulations, an inverse 

empirical concentration distribution function (ECDF) was developed relating the 

probability of occurrence (x-axis) versus the concentration (log10) of species observed 

from field data (see Appendix A, Figure A4). To account for the probability of non-detects, a 

uniform random number generator between 0 and 1 was first used. The selection was then 

sent to sample the corresponding cell concentration from the interpolated, inverse ECDF. 

In comparison with algal cell concentrations, data on dissolved toxin concentrations 

surrounding Santa Monica Pier was sparse. Limited dissolved toxin concentrations (DA, 

STX) reported at the intake of a Southern and Central California SWRO pilot facilities 

(Seubert et al. 2012, Meyerhofer et al. 2010) indicated lower (0–10 µg/L) ranges than those 

observed in coastal and inland marine or estuarine environments (0–150 µg/L) (Allen et al. 

2008, Kim et al. 2009, Schnetzer et al. 2007). These data were perhaps not collected during 

a substantial algal bloom. Thus, coastal and inland marine measurements (Trainer et al. 

2007, Bargu et al. 2008, Lefebvre et al. 2008) collected off the west coast of the continental 

U.S. were considered more representative of severe HAB scenarios and were used in this 

analysis (Table 1). However, dissolved toxin concentrations for OA and YTX were compiled 

from work by Mackenzie and co-workers (2004), which were collected off the coast of New 

Zealand (Table 1). 

 

 



55 
 

Table 1 - Concentration of dissolved marine toxins, toxin producing algal cells and 
intracellular toxin per cell used in the pMFA simulations. 

Environmental 
Variable 

Distribution Unit Specified Range or 
Value 

Mean SD Reference 

Dissolved toxins       
DA Uniform µg/L 60–135.6 - - (Trainer et al. 

2007, Bargu et 
al. 2008) 

STX Uniform µg/L 0.150–0.800 - - (Lefebvre et al. 
2008) 

OA Uniform µg/L 1.31–4.67 - - (MacKenzie et 
al. 2004) 

YTX Uniform µg/L 23.7–126 - - (MacKenzie et 
al. 2004) 

Algal cell conc.1       
Alexandrium sp. ECDF cells/L 374–748 524 205  
Dinophysis sp. ECDF cells/L 123–3886 1112 1120 
L. polyedrum ECDF cells/L 374–748 481 183 
Pseudo-nitzschia 
delicatissima 

ECDF cells/L 374–48,578 15,170 35,896 

Pseudo-nitzschia  
seriata 

ECDF cells/L 374–563,500 22,280 92,575 

Intracellular toxin conc.      
Alexandrium sp. Uniform pg/cell 57.9 - - (Jester et al. 

2009b) 
Dinophysis sp. Uniform pg/cell 2.7 - - (MacKenzie et 

al. 2005) 
L. polyedrum 2 Uniform pg/cell 0.005 - - (Howard et al. 

2008) 
Pseudo-nitzschia 
delicatissima 

Uniform pg/cell 117 - - (Schnetzer et 
al. 2007) 

Pseudo-nitzschia 
seriata 

Uniform pg/cell 117 - - (Schnetzer et 
al. 2007) 

1 All algal cell concentrations were retrieved from SCCOOS Database; 2 This value was collected from laboratory-

grown cells. 

 Only dissolved concentrations obtained by grab sampling as opposed to passive 

sampling methods (SPATT) were included in this analysis given that it is not currently 

possible to directly compare or extrapolate SPATT measurements (µg/g resin) to ambient 

concentrations (µg/L). SPATT integrates sampling both spatially and temporally and, in 

many cases, has been evidenced to be more sensitive than grab sampling methods (Kudela 

et al. 2015, Lane et al. 2010). Although adsorption profiles and extraction efficiencies of 

these toxins (DA, STX) to/from SPATT resins have been extensively studied and verified in 

the laboratory setting, this knowledge is not applicable to uncontrolled conditions in the 

field setting, leading to instances of moderate variability in replicate field measurements 
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(coefficients of variation (COV) 15–37%) (Lane et al. 2010). This observed variability in 

SPATT measurements further supports reliance on grab measurements reported from field 

studies, where COV for replicate measurements are <10% for ELISA kits (per manufacturer 

instructions, ABRAXIS, Warminster, PA, USA). Uniform probability distributions were used 

in the modeling effort due to the lack of published information reporting dissolved toxin 

concentrations (Table 1). 

The intracellular toxin concentrations reported from most field and laboratory 

studies were highly variable in the scientific literature (Schnetzer et al. 2007, Jester et al. 

2009b, MacKenzie et al. 2005). Intracellular toxin concentrations of DA as determined from 

laboratory cultures of Pseudo-nitzschia species, for example, were observed to vary over 9 

orders of magnitude (Trainer et al. 2012). Field reported values of intracellular toxin 

concentrations were less common and were also highly variable due to different physical, 

chemical, and biological factors influencing bloom dynamics in field settings (see Granelli 

and Turner (2006) for additional information). Due to the lack of understanding of the 

intracellular concentration of most species (which likely varies with environmental 

conditions, the phase of the algal bloom, etc.), the highest reported intracellular 

concentration from field reports was used as the model input to represent a worst-case 

scenario (Table 1). A deterministic value of intracellular toxin concentration was further 

used to continue with the conservative, worst-case scenario approach. In the absence of 

field studies, YTX intracellular toxin concentrations were obtained from a laboratory study 

of L. polyedrum isolated from coastal Southern California waters (Howard et al. 2008). 
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2.3. Intracellular and Dissolved Toxin Removal Efficiencies 
 

The removal efficiency of intracellular toxin was directly related to the removal of 

toxin producing algal cells during each pretreatment process. Algal cell removals through 

GMF systems were compiled based on pilot or full-scale SWRO studies reported in the 

literature (Table 2) (Meyerhofer et al. 2010, Leparc et al. 2007, Bar-Zeev et al. 2009, Sabiri 

et al. 2012, Remize et al. 2009, Bar-Zeev et al. 2012, Bar-Zeev et al. 2013, Plantier et al. 

2013, Guastalli et al. 2013). A pooled mean and standard deviation of algal cell removal for 

GMF systems with and without coagulation was calculated and fitted to a normal 

probability distribution (Table 2). However, a uniform probability distribution was used 

for predicting cell removal in pressurized GMF systems due to the lack of data in the 

published literature (Table 2). 

For MF/UF systems, the range in algal cell removal efficiencies was also summarized 

from pilot and full-scale SWRO plant studies [38, 43 –46]. Uniform probability distributions 

were used in the pMFA model for MF/UF systems considering the small number of 

reported observations from the literature (Table 2). 

Table 2 - Intracellular and dissolved toxin removal efficiencies used in the pMFA simulations 

Treatment Trains Specified Range Reference 
Cell Removal   
GMF With Coagulation  79–93% 1 (Bar-Zeev et al. 2009, Remize et al. 

2009, Bar-Zeev et al. 2013) 
GMF Without Coagulation  48–98% 1 (Sabiri et al. 2012, Bar-Zeev et al. 2012, 

Plantier et al. 2013) 
GMF Pressurized 74–99.2% (Meyerhofer et al. 2010, Leparc et al. 

2007, Guastalli et al. 2013) 
MF/UF With Coagulation 99–99.9% (Meyerhofer et al. 2010, Guastalli et al. 

2013) 
MF/UF Without Coagulation 95–100% (Remize et al. 2009, Campinas and Rosa 

2010, Castaing et al. 2011, Frappart et 
al. 2011, Zhang et al. 2011a) 

DAF 43–93% (Guastalli et al. 2013, Kim et al. 2011, 
Zhu et al. 2014) 

RO - - 
Algal Cell Breakage 2   
GMF With Coagulation 0–10% This study 
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GMF Without Coagulation 0–25% This study 
GMF Pressurized 75–100% This study 
MF/UF With Coagulation 75–100% (pressure driven); 15–

35% (submerged) 
This study 

MF/UF Without Coagulation 50–100% (pressure driven); 15–
35% (submerged) 

This study 

DAF - - 
RO - - 
Dissolved toxin removal 3   
GMF With Coagulation 0–34% This study 
GMF Without Coagulation 26–50% This study 
GMF Pressurized 6.6–40% This study 
MF/UF With Coagulation 24.7–76.7% This study 
MF/UF Without Coagulation 3–32.7% This study 
DAF - - 
RO 99.4–99.9% (Laycock et al. 2012, Seubert et al. 

2012, Meyerhofer et al. 2010) 

1 The mean and standard deviation are 86% and 11%, respectively for cell removal by GMF with coagulation; 

and are 72% and 21%, respectively for cell removal by GMF without coagulation.  The mean and deviation were 

not calculated for the remaining parameters in the table due to limited data availability; 2Estimated based on 

transmembrane pressure used in each pretreatment process (see Appendix A, Section 3.6 for details); 
3Estimated based on toxin physical-chemical properties and reference toxin removal rates (see Appendix A, 

Sections 3.1–3.4 for details). 

 DAF algal cell removals were obtained from reports of a mixture of laboratory, pilot, 

and full-scale experiments (Guastalli et al. 2013, Kim et al. 2011, Zhu et al. 2014). The 

reported range in algal cell removal efficiencies ranged between 43–93%, likely due to the 

variations in algal cells encountered and doses/types of coagulants used (Table 2). Again, 

uniform probability distributions were used in the pMFA model for predicting algal cell 

removals in DAF systems.  

 An important consideration during pretreatment for cell removal is algal cell 

breakage that transforms intracellular toxins into dissolved toxins. The magnitude of the 

ranges in algal cell breakage was developed according to Voutchkov (2010) (see Appendix 

A, Section 3.6) and differed for each pretreatment process (Table 2). The wide ranges in cell 

breakage used here reflect the expected variability in breakage among different species and 

groups (diatoms versus dinoflagellates) of marine microalgae. However, the increments of 

the ranges (set to quartiles, i.e. 25–50%, 75–100%) were relatively similar for different 
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treatment processes as a conservative factor in all pMFA simulations. Since DAF processes 

use air bubbles to float the algal cells to the surface, no algal cell breakage was expected. In 

addition, due to the small molecular size, water solubility, and polarity of the toxins, little to 

no removal of dissolved toxins was expected in the DAF process. 

 An extensive literature search indicated a lack of data on the dissolved marine algal 

toxin removal rates through SWRO pretreatment trains. However, removal efficiencies of 

dissolved microcystin-LR (MC-LR) toxins produced by cyanobacteria that impact drinking 

water safety have been reported in both GMF and MF/UF processes. Therefore, the removal 

efficiencies of each targeted marine algal toxin were estimated based on a comparison of 

the physical-chemical properties (including size, structure, polarity and charge) of each 

with those of MC-LR (Table 2) (see Appendix A, Section 3 and Tables A6–A8 for additional 

validation). Uniform probability distributions sampled the range of dissolved toxin removal 

efficiencies in both GMF and MF/UF processes. 

Dissolved marine algal toxins rejection rates by the RO membrane have been 

reported by Laycock and co-workers (2012) and Seubert and co-workers (2012) in 

laboratory and pilot scale studies. The removal efficiencies for RO ranged from 99.0 to 

>99.9% for all toxins studied (Table 2) (see Appendix A, Section 3.5 and Table A9 for 

additional validation). It is important to note that 100% removal was not assumed in this 

study as the analytical detection limits ranged from 0.1, 0.2–0.5, to 0.02 (µg/L) for OA, DA, 

and STX, respectively. Thus, the analytical methods used in these studies were not able to 

detect trace masses of these toxins in the sub-micron to nanogram range or lower (Laycock 

et al. 2012, Seubert et al. 2012). Uniform probability distributions were used to sample the 

range of dissolved toxin removals across the RO membranes. 
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2.4. pMFA Simulation Algorithm 
 

A Monte Carlo based simulation method was the main approach for the pMFA using 

10,000 iterations per run to achieve statistical rigor (Finley and Paustenbach 1994). The 

algorithm developed to run the simulations was based on the following procedure using 

MATLAB (Mathworks Inc. , Natick, MA, USA, r2015b): (1) randomly sample the system 

input of toxins (intracellular and dissolved), toxin removal and generation (from cell 

breakage) efficiency of each treatment processes from the prior initial distribution; (2) run 

the pMFA model using this unique combination of toxin input and plant operation 

efficiency; (3) store the output concentration of toxins in the permeate water and 

backwash/brine water; (4) repeat this process using a different draw of initial toxin input 

and operation efficiency from the prior distribution until the number of iterations had been 

reached.  

2.5. Statistical and Sensitivity Analysis 

A one-way analysis of variance (ANOVA) was conducted to assess the statistical 

significance of the results from the pMFA simulations for toxin concentration distributions 

(TCDs) in both the permeate and combined backwash/brine water. The one-way ANOVA 

specifically tested the hypothesis of whether the means of the resulting posterior 

probability distributions were equal (assuming the TCDs were normally distributed). A 

Tukey honestly significant difference post hoc analysis method was further incorporated to 

assess the statistical significance of the data (for significant ANOVA outcomes only) by 

comparing individual means of toxin concentration from different pretreatment trains 

using variables from the ANOVA output. 
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A sensitivity analysis was conducted to determine which environmental inputs and 

treatment efficiencies were the most influential contributors to the predicted posterior 

TCDs, both in the permeate and backwash/brine waters. The sensitivity analysis was 

separated into two categories: (a) the sensitivity of the pMFA simulations related to the 

environmental inputs and (b) the sensitivity of the model related to the treatment 

efficiencies (Gottschalk et al. 2010a, 2010b, Finley and Paustenbach 1994, Norton 2008). 

The rank of importance was developed for both environmental input and treatment 

efficiency to assess the confidence in the model through comparison of sensitivity and 

relative order of uncertainty (Gottschalk et al. 2010a, 2010b). The sensitivity of the 

posterior toxin distribution related to each removal efficiency or environmental input was 

calculated using Equation (9) (Gottschalk et al. 2010a, 2010b). 

𝑆 =  [

∆𝑋𝑚𝑒𝑎𝑛

𝑋𝑚𝑒𝑎𝑛

∆𝑃𝑚𝑒𝑎𝑛

𝑃𝑚𝑒𝑎𝑛

] ∗ 𝜎 (9) 

S is the sensitivity value (unitless), σ is the standard deviation of original environmental 

input or removal efficiency values, Xmean is the mean of the posterior toxin distribution in 

the permeate waters using the original values, ΔXmean is the difference in means between 

the original posterior distribution and the changed posterior distribution, Pmean is the mean 

of the original prior data probability distribution, and ΔPmean is the difference in means 

between the original prior probability distribution and the changed prior probability 

distribution. 

2.6. Determination of Human Health Risks from Marine Algal Toxins 
 

A quantitative chemical risk assessment was conducted by incorporating the 

predicted concentrations of algal toxins remaining in permeate waters following U.S. 
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Environmental Protection Agency (EPA) guidelines (Fowle and Dearfield 2000). Human 

exposure to the algal toxin through ingestion of desalinated water was evaluated through 

daily intake rate established by U.S. EPA guidelines (Fowle and Dearfield 2000). 

Since all of the target toxins display acute toxicity in humans, a thresholding effect 

based on acute reference doses (RfD) was used. Although RfDs have been established for 

shellfish by the U. S. Food & Drug Administration and European Food Safety Administration 

(EFSA), the relevance of these doses may not carry equal weight when applying them to 

drinking water exposure scenarios. For drinking water purposes, we re-analyzed the RfDs 

for shellfish consumption, assuming the same LOAEL (lowest observed adverse effect level) 

or NOAEL (no observed adverse effect level) and uncertainty factors widely used in the 

shellfish RfD calculations by the EFSA (Paredes et al. 2011) (see Appendix A, Section 4 for a 

complete derivation of RfD values). 

From the estimated RfDs, an acceptable level (AL, also known as a maximum 

contaminant level goal) of each toxin in drinking water was calculated using the RfD, body 

weight (BW, 70 kg), relative source contribution (RSC), and drinking water intake rate (IR, 

2 L/day) (Equation (10), (Cotruvo 1988, Donohue and Zavaleta 2003)). A complete 

derivation of AL values can be found in Appendix A (Section 4). 

𝐴𝐿 =  
𝑅𝑓𝐷 ∗ 𝐵𝑊 ∗ 𝑅𝑆𝐶

𝐼𝑅
 (10) 

The RSC represents the relative expected contribution of exposure from drinking 

water compared to other potential routes of exposure, in which the recommended range is 

between 0.2 and 0.8 (Howd et al. 2004). For this study, we chose a conservative value of 0.5 

to equally account for other potential routes of exposure other than drinking water such as 

ingestion of algal toxins in shellfish or fish. 
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A quantitative estimate of the relative risk of acute human illness was further 

evaluated using a calculated margin of safety (MO) (AL normalized by the concentration of 

algal toxin predicted in the permeate water) (Cotruvo et al. 2011, Trussell et al. 2012). A 

range in MOs was calculated using one standard deviation confidence intervals of the mean 

toxin concentration in the permeate water. MOs greater than 1 indicated that the relative 

risk was low, where higher MOs (>1000) suggested that the relative risk was minimal to 

none (Cotruvo et al. 2011, Trussell et al. 2012). 

3. Results 

3.1. Comparison of Algal Toxin Removal Efficiencies 
 

The pMFA model outputs indicated TCDs followed normal probability distribution 

in RO permeates for all pretreatment train configurations. STX concentration distributions 

were shown as representations for all other toxins (Figure 8). These normal probability 

TCDs were the basis of comparison for the removal efficiency of various pretreatment 

configurations. 

 
Figure 8. STX toxin concentrations in the RO permeate for: (a) GMF processes without 
coagulation (T8), (b) Pressurized MF/UF processes without coagulation (T9), (c) GMF 

processes with coagulation (T6), and (d) Pressurized MF/UF processes with coagulation (T4). 
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The pMFA results demonstrated that a low, but detectable quantity, of algal toxins 

was present in the permeate water, despite 99.0–99.9% removal across the RO 

membranes. Concentrations of DA in the permeate were the most significant out of all algal 

toxins, ranging from 0.5 to 2.8 µg/L, whereas concentrations of STX were considerably 

lower (1–5 ng/L) (Figure 9). Despite the differences in concentrations observed, the risk of 

acute intoxication from STX is comparable in magnitude to DA due to the dramatic 

difference in toxicities of each compound (which are further discussed in Section 3.3). 

In general, MF/UF pretreatment processes with coagulation/DAF outperformed the 

toxin removal by GMF processes, with mean toxin removal efficiencies ranging from 47 to 

57% (Figure 9). This performance depended on whether the MF/UF pretreatment 

processes included coagulation practices as coagulation greatly improved the toxin 

removal for all GMF pretreatment trains (Figure 9). 

Treatment processes without coagulation (for both MF/UF and GMF) demonstrated 

relatively large treatment variability, as noted by the large interquartile ranges and 

increased number of outliers from these results (Figure 9). Again, reliable treatment 

performances (represented by low statistical variability) were observed for both MF/UF 

and GMF systems with coagulation (Figure 9). 

Submerged MF/UF systems demonstrated a slightly improved treatment 

performance as compared to pressurized MF/UF systems when comparing the means of 

the TCDs in the permeate water. The treatment variability of both processes, however, was 

equivalent and overlapping (Figure 9). Similarly, adding a DAF process for most MF/UF 

systems was redundant, as the treatment performance and variability for MF/UF systems 

with and without DAF (with coagulation) were nearly identical for all toxin types. 
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The concentrations of each algal toxin in the combined backwash/brine waters 

were higher in magnitude than those observed in both the inlet and permeate waters 

(Figure 9). Similar to the permeate water, DA concentrations in the backwash/brine waters 

were the highest in magnitude among all toxin types, ranging from 400 to 1200 µg/L (0.4 to 

1.2 mg/L), followed by YTX with concentrations ranging from 100 to 550 µg/L. OA and STX 

concentrations in the backwash/brine waters were much lower in magnitude for all 

pretreatment process, ranging from 5 to 20 µg/L and 1 to 7 µg/L, respectively. The range in 

toxin concentration of the combined brine/backwash waters increased considerably (at 

least 2 to 10 times more concentrated) compared to the inlet range in toxin concentration, 

which greatly depended on the treatment train configuration (see Appendix A, Figures A8 

and A9). 

The reduction in toxicity of the permeate waters for both GMF/MF/UF treatment 

processes employing coagulation corresponded to an appreciable increase in toxicity of the 

backwash/brine waters (Figure 9). Submerged vacuum MF/UF systems (with and without 

coagulation/DAF) resulted in the lowest magnitude of TCDs in the backwash/brine waters 

for all toxin types, followed by pressurized MF/UF and GMF systems (Figure 9). Similar to 

the observation for permeate waters, the inclusion of a DAF system had a negligible effect 

on TCDs in the combined backwash/brine waters (Figure 9). 

The variability of the TCDs in the backwash/brine waters was slightly lower for 

GMF systems employing coagulation compared to systems without coagulation, slightly 

higher for pressurized MF/UF systems (with and without coagulation), and relatively 

unchanged for vacuum MF/UF systems (with and without coagulation) (Figure 9). These 

trends were summarized using all toxin types by examining absolute changes in COV 
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values. In addition, these trends described above were apparent when comparing the 

interquartile ranges (IQRs) for OA and YTX toxins among the treatment configurations for 

pressurized and vacuum MF/UF systems, and the IQRs for STX among configurations for 

GMF systems with and without coagulation (Figure 9, Panels B vs. C). The variation for STX 

toxins in the backwash/brine waters was high under pressurized GMF systems (T7, Figure 

9). Additional results of algal TCDs, toxin concentration factors in backwash and brine 

reject are presented in Appendix A, Sections 5.1–5.3 and in Figures A8–A10. 

 
Figure 9. Toxin concentrations (colored box and whisker plot) in the I. Permeate Water and 
II. Backwash/Brine Waters for all treatment trains (labeled 1–10 for train T1–T10). Results 
are grouped into trains employing (A) DAF, (B) Coagulation, and (C) No Coagulation. Blue, 

green and red colors represent trains including pressurized MF/UF, vacuum MF/UF, and GMF 
treatment processes, respectively. The secondary y-axis portrays the mean toxin removal 

efficiency (shown as open bars) predicted for each treatment train. 
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The one-way ANOVA demonstrated an overall significant difference in the means of 

the TCDs in the permeate water resulting from 10 pretreatment train configurations 

(overall p < 0.05). Similarly, the TCDs in the backwash/brine water from 10 treatment 

processes were all significantly different (overall p < 0.05). The overall results for the one-

way ANOVA were equivalent for all toxin types (STX, DA, OA, YTX) for both the permeate 

and backwash/brine waters. 

Varying results were obtained for the comparison of individual TCDs in the 

permeate and backwash/brine waters from different pretreatment processes (p values 

ranged from <0.05 to 1) (Figure 10). Significant differences were identified when 

comparing treatment trains with and without coagulation (p < 0.05), and trains of no-

coagulation vs. those with DAF systems (p < 0.05). However, for all processes and most 

toxins, there was generally not a significant difference in TCDs from processes employing 

coagulation vs. DAF systems (average p > 0.1) (Figure 10). 

Significant differences were also identified when comparing across all GMF vs. 

MF/UF trains (p < 0.05) (Figure 10). However, the comparison across all pressurized vs. 

vacuum driven MF/UF systems did not yield statistically significant outcomes (p > 0.1) for 

most toxins. A “within” treatment comparison of trains employing GMF (i.e. T3 vs. T6 vs. T7 

vs. T8), or pressurized MF/UF (T1 vs. T4, vs. T9), or vacuum driven MF/UF (T2 vs. T5 vs. 

T10) revealed a large variability of p values, with values mostly below the 0.05 statistically 

significant threshold (Figure 10). The p values for all the pairwise comparisons are 

presented in Appendix A as well as a complementary figure summarizing the Tukey post 

hoc comparison tests for the backwash/brine waters (Section 6, Table A11, Figure A11). 
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Figure 10. Box and whisker plots of p-values summarizing the Tukey post hoc comparison 
tests for the permeate waters categorized by each toxin (i.e. STX, DA, OA, YTX). The black 

dashed lines illustrate the significance level (0.05), while the red lines and black diamonds 
indicate the median and mean of p-values for each group, respectively. Open circles represent 

outlying p-values from each comparison group. 

3.2. Sensitivity Analysis 

Of the model inputs included in the pMFA, the output TCDs were most sensitive to 

the input algal cell concentration and far less sensitive to the dissolved toxin concentration 

and intracellular toxin concentration per algal cell (Figure 11A). Dissolved YTXs was the 

only examined toxin contributing to a noticeable fraction of model sensitivity, ranging from 

12 to 14% of the model outcomes (Figure 11A). The most sensitive parameters for toxin 

removal efficiency varied according to the pretreatment configuration (Figure 11B). Algal 

cell removal efficiencies were more sensitive parameters for GMF (T3, T6, T7, T8) 

processes as compared to MF/UF (T1, T2, T4, T5, T9, T10) processes. Contrarily, the 

resulting TCDs from MF/UF processes were largely affected by the dissolved toxin removal 

and algal cell breakage parameters over all other removal efficiency parameters for all 

toxin types (Figure 11B). 
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Figure 11. Sensitivity fractions of (A) model inputs, and (B) removal efficiency parameters as 
a function of algal toxin type and pretreatment processes (labeled as 1–10 for treatment train 

T1–T10). 

3.3. Acute Human Health Risks 

Acute human health risks were assessed by comparing the calculated AL in drinking 

water to cumulative probability distributions (CDF) of effluent toxin concentrations in the 

permeate water. The ALs for STX, DA, OA, and YTX in drinking water were 3.32, 525, 1.40, 

and 292 µg/L, respectively. The simulation results proved that the simulated CDF would 

never exceed the prescribed AL threshold, based on the acute RfD (Figure 12). The tight 

confidence intervals for these CDF estimates indicated that the certainty in these estimates 

was high (data not shown). Therefore, the pMFA results demonstrated that the human 

health risk from ingesting permeate water during algal bloom periods was minimal to 

none, with greater than 95% certainty. This conclusion is confirmed when comparing the 

tabulated MO values for each pretreatment process (Figure 12A). All of the MO values are 



70 
 

above 1, indicating that there was minimal risk present when consuming permeate water 

during algal bloom periods (Figure 12A). 

The low magnitude of the MO for OA toxins, however, showed that OA toxins 

contribute most to the drinking water risk during bloom periods in Southern California, 

followed by DA, YTX, and STX, respectively (Figure 12). This result may seem 

counterintuitive at first given that the DA toxin loading to the facility is the highest out of all 

algal toxins and is the most sparingly removed toxin during pretreatment and across the 

RO membranes. However, a much lower acute RfD (about four orders of magnitude) and AL 

in the permeate water were estimated for OA as compared to DA. Comparably, the 

difference in permeate toxin concentrations predicted by the pMFA simulation were only 

about 2 orders of magnitude different. Therefore, due to the larger difference in acute RfD 

values between the toxins, the acute RfD was the most influential parameter affecting risk 

calculations, resulting in a higher risk for toxins that are less prevalent in Southern 

California’s coastal waters. 



71 
 

 
Figure 12. Summary of (A) margins of safety (MOs) for various algal toxins in the permeate 
water and (B) cumulative probability distributions of toxin concentrations in the permeate 

water. 

4. Discussion 

4.1. Contribution of the Study 

This study is the first attempt to estimate marine algal toxin concentrations in the 

permeate water and combined brine/backwash waters from a full-scale SWRO facility. The 

removal of algal toxins in full-scale pretreatment systems is important because 

desalination plant managers and designers can directly benefit from reduced toxin loadings 
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to the RO membranes. Since complete (100%) removal of algal toxins by RO treatment is 

rarely achieved in full-scale practice, reduction of the toxin loadings reaching the RO 

membranes can significantly decrease the toxin concentrations in the permeate water and 

the associated human health risks. To illustrate this point, we compare the operation of a 

hypothetical situation where a “baseline” pretreatment system is not optimized for toxin 

removal against the performance of an “optimal” pretreatment configuration presented 

herein. For the baseline system, if we considered minimal to no removal of DA during 

pretreatment and 99% RO removal efficiency, a concentration of 200 µg/L of DA in the 

inlet would result in 2 µg/L in the permeate, which translates to an MO of 263. If, however, 

we assumed an optimal pretreatment system removing 57% DA before reaching the RO 

membrane, the new MO (610), or the risk of acute illness from ingesting produced water, 

would be reduced by a factor of approximately 2. 

Another potential benefit of optimizing pretreatment practices for marine biotoxin 

removal is to avoid toxin breakthrough across the RO membrane due to changes in the RO 

toxin removal efficiency over time. In full-scale practice, it is likely that the RO toxin 

removal efficiency will vary over the course of operation due to changes in RO membrane 

properties and feed water composition. For example, formation of a fouling layer on the 

surface of RO membranes during operation may alter toxin transport, especially for the 

small molecular weight and polar (more hydrophilic) toxins DA and STX (Xu et al. 2006, Ng, 

and Elimelech 2004, Verliefde et al. 2009). Cake enhanced concentration polarization, 

charge interactions, or other mechanisms may lead to increased or decreased rejection of 

these toxins, depending on the concentration of the toxins in the feed water, the physico-

chemical characteristics of the toxins, the membrane (i.e. pore size, hydrophobicity, etc.), as 
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well as the extent and type of membrane fouling (Verliefde et al. 2009). In addition, high 

concentrations of these toxins on the RO membrane surface may serve as exogenous 

carbon and nutrient sources for bacteria escaping pretreatment processes, potentially 

intensifying the biofouling potential of the RO membranes (Stewart et al. 1998). 

Although the primary purpose of SWRO pretreatment is to remove excess turbidity, 

TSS, microorganisms and TOC for RO membrane fouling protection, this study has 

demonstrated that the SWRO pretreatment selection, design, and operation can have a 

significant impact on the removal of algal biotoxins. STX, DA, OA, and YTX removal 

efficiencies were subject to variation, ranging from 15 to 57% for all algal toxins and 

pretreatment processes. The predicted removal efficiencies (up to 57%) accounted for 

nearly one quarter to one half of the overall removal of algal biotoxins, where the other 

three quarters to one half of removal can be accounted for by the RO membranes. The 

fraction of toxin removal predicted by the pMFA during pretreatment was higher than 

initially expected, especially for pretreatment processes not designed to target the removal 

of these toxins. These results suggest that modifications to the operations of SWRO 

pretreatment processes, rather than the design, could have the most pragmatic and far-

reaching impacts on biotoxin removal. Amendments to plant operations, such as coagulant 

addition, would not hinder but provide additional benefits other than toxin removal, such 

as removal of TSS, other colloidal particles, and dissolved organic matter. The most 

significant proof to this supposition was the magnitude of change observed between all 

systems (both GMF and MF/UF) operating with and without coagulation and the 

statistically significant differences in TCDs in the permeate or backwash waters both 

among and within these treatment trains. In both GMF and MF/UF systems, coagulation 
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was critical to (1) reduce the variability in permeate TCDs and (2) increase the magnitude 

of mean toxin removal efficiencies. 

Another potential operational change considered in this study was to assess the 

operation of MF/UF systems at lower transmembrane pressures in submerged 

configurations. Although submerged MF/UF systems (<0.4 bar) had higher mean toxin 

removal efficiencies and lower variability in treatment than the pressurized systems (>0.4 

bar), the TCDs in the permeate and backwash waters were not significantly different 

between the systems. Therefore, the selection of submerged systems over pressurized 

systems in pretreatment design for biotoxin mitigation may not be as critical as expected 

initially. 

Amending the design of the SWRO pretreatment system with a DAF system 

demonstrated mixed results from the pMFA simulations regarding toxin removal 

efficiencies. On one hand, statistically significant reductions in TCDs were observed for DAF 

systems compared to systems operating without coagulation, whereas no statistically 

significant differences were found between systems operating with DAF and those with 

coagulation. It was likely that the above discrepancies observed in the results of the pMFA 

were due to: (1) the high variability of reported removal efficiencies of algal cells in DAF 

systems (i.e. 43–93%) and (2) the scarcity of studies (N = 3) examining algal cell removal in 

DAF systems [42,47,48]. The high variability in reported algal removal efficiencies from 

DAF systems results directly from the site-specific algal species composition during the 

evaluation period for each study (Voutchkov 2010). Voutchkov (2010) stated that removal 

of chlorophyll-a is often lower for DAF treatment systems as most of the influent water (up 

to 50–75% at the intake) comprises picoplankton, which are sparsely removed by DAF 
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processes. Future studies should consider reporting both reductions in chlorophyll-a and 

algal species profiles as determined by microscopy for standardizing their reported results. 

An equally important aspect to consider in future study (that was neglected in this study) is 

the removal of dissolved toxins in DAF systems. Previous studies have indicated 

considerable biopolymer and humic acid removal in these systems (Voutchkov 2010, 

Guastalli et al. 2013, Zhu et al. 2014); therefore, the removal of other soluble organics, such 

as algal toxins, would greatly improve the accuracy of future pMFA simulations. 

Future design of pretreatment systems and configurations should consider the 

impact of HAB periods on plant operations. The results highlighted a great difference in 

treatment potential between GMF and MF/UF systems, with MF/UF systems demonstrating 

improved performances. This difference in performance was attributed to the high range in 

algal cell removal and small cell removal variability reported in the literature for MF/UF 

processes. Subpar removal of algal biotoxins by GMF systems can be attributed to the 

colloidal size of most marine microalgae associated with harmful algal bloom periods. Most 

conventional sand filtration media has an effective size range of 0.4 to 0.6 mm (400 to 600 

µm), which is much larger than the corresponding width and length dimensions of 

dinoflagellates and diatoms (10 to 100 µm) (Voutchkov 2013). Marine microalgae are 

negatively charged and may not adsorb to the negatively charged surface of the filter media 

or organic material already adsorbed to the grain surface. Similarly, the high filtration rates 

often applied during GMF may prevent the conglomeration and straining of algal cells. 

It is also necessary to consider the differences in dissolved toxin removal for both 

GMF and MF/UF processes in the future. Using more hydrophobic membranes has proven 

to increase adsorption of algal toxins, including MC-LR, through partitioning of these toxins 
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based on phase affinity of the membrane surface (Lee and Walker 2006, Gijsbertsen-

Abrahamse et al. 2006, Lee and Walker 2008). Equally critical is the potential for dissolved 

toxin adsorption (mainly by electrostatic interactions) to or phase affinity for the 

compressible organic cake layer formed at the surface of the membrane (Castaing et al. 

2011, Babel and Takizawa 2010). 

Potential benefits of GMF systems—such as increased biological activity—may 

increase the removal of dissolved toxins over MF/UF systems. Voutchkov (2013) has stated 

that the removal of soluble organics in some second stage GMF systems can account to 20–

40% by biological filtration processes alone. Biological treatment has the potential to 

remove dissolved organic carbon and TEP of the source water without requiring expensive 

cleaning/purchase of coagulants or cleaning chemicals, energy intensive backwashing 

(increase in filter run times), and can reduce the replacement frequency of membranes 

over the duration of operation (Bar-Zeev et al. 2012, Bar-Zeev et al. 2013, Jeong et al. 2013, 

Naidu et al. 2013, Simon et al. 2013). 

Other than pretreatment design and operation, the design of a proper seawater 

intake system represents a significant amendment for future SWRO facilities to mitigate the 

effects of HABs (Voutchkov 2010, Villacorte et al. 2015a, Villacorte et al. 2015b). Although a 

majority of current SWRO facilities operate with an open (surface water) intake system, the 

use of subsurface systems (wells and galleries) can significantly reduce the influent 

suspended solids, bacteria, dissolved organic carbon, and toxic/non-toxic algae present in 

the source water (Dehwah et al. 2015, Missimer et al. 2013). Subsurface intakes are well 

suited for coastal regions where the geology is favorable (i.e. the presence of permeable 

rocks, limestones, dolomites or gravels), which may limit the widespread application of 
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these intake systems to future SWRO facilities intending to alleviate the deleterious effects 

of HABs (Missimer et al. 2013). 

4.2. Uncertainty and Variability 

Since there is little experimental data to verify the effluent pretreatment 

concentrations predicted by the pMFA, a certainty/variability analysis was performed to 

elucidate the accuracy of the model predictions. Algal breakage fractions represented the 

highest model uncertainty. The algal cell breakage fractions were informed estimates made 

by extrapolating experimental data summarized in Voutchkov (2010). However, algal cell 

breakage behavior is influenced not only by operational practices (shear in pumps or 

valves, transmembrane pressure), but also algal cell type and species (diatom or 

dinoflagellates) and other biotic factors such as cell age (Vandanjon et al. 1999, Hamm et al. 

2003, Subhash et al. 2005, Losic et al. 2007, Lau et al. 2007, Ladner et al. 2010, Michels et al. 

2010). We reduced this high uncertainty in our model by structuring the distribution of 

breakage coefficients to encompass a relatively large range, and by incorporating uniform 

probability distributions for selecting breakage coefficients during each simulation. 

The dissolved toxin removal coefficients were also subject to a moderate to high 

uncertainty when extrapolating from MC-LR observations summarized from the literature. 

This extrapolation was based on the octanol-water distribution coefficients either 

experimentally derived or modeled from molecular structure alone (see Appendix A, 

Section 3.1). We focused primarily on collecting experimental observations of octanol 

water distribution coefficients over modelled predictions to first reduce the relative 

uncertainty in dissolved toxin removals. In addition, we focused on collecting field and pilot 
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studies examining the dissolved removal of MC-LR over laboratory studies to further 

reduce the uncertainty of pMFA simulations. 

The sensitivity results indicated that algal cell removal was the most sensitive 

parameter for GMF systems, whereas dissolved toxin removal and algal cell breakage were 

the most sensitive parameters for MF/UF systems. Given these results, there is higher 

certainty in the GMF simulations over the MF/UF simulations. However, if we analyze the 

entire system, the algal cell concentration was the most sensitive input. When model inputs 

were grouped with the removal efficiency parameters in the sensitivity analysis, greater 

than 99% of the model output still depended on the algal cell concentration alone (data not 

shown). This is a significant conclusion given that the uncertainty of the algal cell 

concentration is low compared to all other model inputs or parameters. Based on this 

result, the model predictions can be afforded relatively high levels of confidence, despite 

the uncertainty observed for some of the model removal efficiency parameters. 

To improve the pMFA model predictions, several areas of data collection should be 

improved and prioritized. The first and foremost step would be to collect algal toxin data 

from a full-scale SWRO facility at different points in the treatment train for a prolonged 

time period (i.e. 3 years). This data collection effort would allow a clear comparison 

between pMFA model predictions and real-world data, potentially providing the 

opportunity to optimize removal efficiency parameters and compare these removal 

efficiency estimates to those observed in practice. Ultimately, from this data collection, a 

true quantitative estimate of the certainty of model predictions can be reached. An 

additional area of research would be to study the algal cell breakage magnitude for 

different pretreatment configurations during various stages of algal blooms and analyzing 
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the dissolved removal of algal toxins during various pretreatment processes. This study 

extrapolated treatment efficiencies of dissolved toxins from MC-LR removal data, based on 

similarity or differences in physical and chemical properties. The new research should be 

integrated with the field data collection effort to develop an improved understanding of 

toxin removal during SWRO pretreatment. 

4.3. Human Health Effects 

The lifetime risk of acute human illness from ingesting permeate waters during algal 

blooms was determined to be minimal using a quantitative chemical risk assessment 

framework. The AL was determined based on the acute RfD developed by the EFSA. Most of 

these doses (STX, DA, OA) were based on LOAEL from actual human shellfish poisoning 

events and should be more reliable than animal testing data (YTX). In addition, the RfD 

developed by the EFSA considered two to three uncertainty factors (extrapolating from 

LOAEL to NOAEL, accounting for intra-species variation), depending on the toxin, which 

further decreases the margin of acceptable risk. Based on these facts, we are confident in 

the human health effect conclusions presented in this study. 

Although we have thoroughly addressed the acute human health risks from 

exposure to algal toxins, the chronic, accumulated, or compounding human health risks 

associated with exposure to low levels of these toxins in desalinated drinking water are 

relatively unknown. For example, several studies have indicated that repetitive exposure to 

low level doses of OA through shellfish consumption may be correlated to an increase in 

the incidence of colorectal cancers in exposed human populations (Manerio et al. 2008, 

Cordier et al. 2000, López Rodas et al. 2006). Developmental and neurological effects of 

chronic (low-level) DA exposure on infants and young children are a concern, as DA has 
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been shown to cross the placenta, enter the blood brain barrier of infants, and collect in 

amniotic fluid in mammals (Levin et al. 2005, Levin et al. 2006, Lefebvre and Robertson 

2010, Lefebvre et al. 2012, Costa et al. 2010). Chronic DA exposure has also been linked to 

cognitive impairment in mice (Lefebvre et al. 2017). More reliable chronic DA exposure 

epidemiological studies on humans, however, have been rarely reported. A recent study by 

Grattan and co-workers concluded that there was a possible, but not clinically significant, 

connection between long term, low level exposure to DA (through razor clam 

consumption) and memory (Grattan et al. 2016). Future studies should consider the 

development of chronic RfDs of algal biotoxins in desalinated drinking water for lifetime 

exposure human health risk assessments. 

The effect of concentrated brine and backwash waters on both human health and 

the surrounding environment during harmful algal bloom periods should be a topic of 

equal concern for future study, as the results from pMFA simulations indicated a relatively 

high concentration of algal biotoxins in the combined backwash/brine waters (up to mg/L 

levels). Besides ingestion of finished drinking water, humans may be at risk when exposed 

to elevated concentrations of algal biotoxins either through recreational exposure 

pathways or consumption of contaminated seafoods. The ingestion of contaminated 

shellfish harvested near the zone of dilution at the desalination brine discharge point may 

pose the most critical human health risk, as benthic shellfish are chronically exposed to 

elevated concentrations of biotoxins from the combined backwash/brine discharge. An 

important question would be to assess whether the background concentration of dissolved 

toxin during HAB periods contributes more to shellfish bioaccumulation than the actual 

SWRO discharge itself. Studies should equally weigh the potential biomagnification of algal 
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biotoxins in the surrounding ecosystem as another environmental issue emanating from 

concentrated SWRO brine discharge. 

5. Conclusions 

The primary objective of this study was to quantify the removal of algal toxins 

during SWRO using a pMFA approach. The main conclusions drawn from this study are: 

• A detectable quantity of algal toxins is present in the permeate water, despite 

almost 99.0–99.9% removal predicted across the RO membranes (in the ng/L to 

µg/L range); 

• A relatively high concentration of algal toxins was predicted for the combined 

backwash and RO reject waters (in the µg/L to mg/L range);  

• MF/UF systems with coagulation generally had the highest predicted toxin removals 

(and least variability) over all GMF systems/operations (up to 57% of the entire 

removal across SWRO); 

• There is a low to negligible risk of acute intoxication from ingesting desalinated 

water during algal bloom periods (margins of safety ranged from 100 to 4000). 

6.  List of Abbreviations  

SWRO Seawater Reverse Osmosis 
RO Reverse Osmosis 
HABs Harmful Algal Blooms 
pMFA Probabilistic Materials Flow Analysis 
MF/UF Microfiltration/Ultrafiltration 
GMF Granular Media Filtration 
DAF Dissolved Air Flotation 
TEP Transparent Extracellular Particulate 
MGD Million Gallons per Day (international unit) 
SCCOOS Southern California Coastal Ocean Observing System 
STX Saxitoxin 
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DA Domoic Acid 
OA Okadaic Acid 
YTX Yessotoxin 
ECDF Empirical Cumulative Distribution Function 
SPATT Solid Phase Adsorption Toxin Tracking 
MC-LR Microcystin-LR 
ANOVA Analysis of Variance 
RfD Acute Reference Dose 
EFSA European Food Safety Administration 
EPA Environmental Protection Agency 
AL Acceptable Level 
LOEL Lowest Observed Effect Level 
NOAEL No Observed Adverse Effect Level 
RSC Relative Source Contribution 
MO Margin of Safety 
TCD Toxin Concentration Distribution 
IQR Interquartile Range 
COV Coefficient of Variation 
CDF Cumulative Probability Distribution Functions 
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Chapter 2: The Effect of Organic Carbon Addition on the Community 
Structure and Kinetics of Microcystin-Degrading Bacterial Consortia 
 

Abstract: Microcystin (MC), a hepatotoxin that is associated with cyanobacterial blooms in 

freshwater lakes, threatens the quality of drinking water resources. Biodegradation of MC 

using biofiltration is emerging as a cost-effective solution for drinking water treatment. This 

study reports isolation of five MC-degrading microbial consortia and investigation of their 

community structure and kinetics in the presence or absence of a readily-bioavailable 

organic carbon source. The results indicated that the presence of a bioavailable organic 

carbon source caused: (1) the proliferation of community members previously unobserved 

in each consortium cultured without ethanol; (2) a shift in abundance of representative taxa; 

(3) a fluctuation in genera affiliated with MC-biodegradation; and, (4) a unique response in 

simulated diversity among consortia. These changes to each microbial consortium were 

paralleled by a significant decline in MC degradation kinetics. Overall, this study highlights 

the importance of integrating environmental conditions into the design and operation of 

biofiltration systems for MC biodegradation. 
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1. Introduction 
 

Harmful cyanobacterial blooms have increased in both frequency and severity 

worldwide as a result of climate change, population growth, and rapid urbanization (Paerl 

and Paul 2012). These blooms are termed “harmful” in that many cyanobacteria are 

responsible for the production and release of toxins that are harmful to humans and 

existing aquatic ecosystems (Huisman et al. 2006). The most common freshwater genera of 

harmful cyanobacteria include Anabaena, Nostoc, Oscillatoria, Planktothrix, and Microcystis, 

which produce a suite of biotoxins, including microcystin (MC) (Huisman et al. 2006). MCs 

are a class of heptapeptides, which are formed from seven amino acids, in which their 

mono-cyclical structure imparts a high stability in the environment (Edwards and Lawton 

2009). Although approximately 100 structural congeners have been identified, MC-LR (L 

and R standing for Leucine and Arginine, respectively, for two of the variable amino acids 

in the cyclical structure) is the most common and toxic MC (Cheung et al. 2013, US EPA 

2015a). Due to its acute toxicity, both the WHO (World Health Organization) and US EPA 

(United States Environmental Protection Agency) have adopted a guideline of 1 µg/L of 

dissolved MC for drinking water (US EPA 2015a). 

MC-LR, along with other common structural variants observed in the environment 

(i.e., LA, RR), is water soluble, chemically-stable, and low in molecular weight, which 

renders it resistant to most conventional drinking water treatment processes (Westrick et 

al. 2010). Biological filtration (biofiltration), which relies on the development of biofilm 

communities on immobilized media (i.e., sand) to degrade cyanotoxins, has been proposed 

as an alternative, cost-effective, and sustainable drinking water treatment technology to 
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target MC removal (Li et al. 2011a, 2011c, 2015, Ho et al. 2007b, 2012, Huck et al. 2000, 

Urfer et al. 1997).  

Previous studies have demonstrated the complete biodegradation of MC-LR within 

laboratory scale biofiltration systems following a preliminary lag phase of removal (Ho et 

al. 2006, 2007a, Bourne et al. 2006, Dziga et al. 2014). However, the toxin removal 

efficiency and extent of this lag phase can vary significantly with bacterial composition, 

nutrient concentration, and other environmental parameters that are associated with the 

source water. Efforts to evolve biofiltration from a passive process into a more 

standardized, controlled, and perhaps “engineered”, biological treatment process for 

targeted removal of pollutants will require a better understanding of the physiology and 

genetics of MC-degrading bacteria (Huck et al. 2000, Urfer et al. 1997, Ho et al. 2007a, 

Rittmann et al. 1989, Lauderdale et al. 2012, Dziga et al. 2013). 

Significant efforts have been made to isolate and characterize the specific MC-

degrading bacterial populations during algal bloom events in the source water and 

sediments, and from full scale biological treatment units in drinking water treatment 

facilities (Li et al. 2011a, 2011c, 2015, Dziga et al. 2014, Bourne et al. 1996, Saito et al. 

2003, Eleuterio and Batista 2010, Jimbo et al. 2010). However, these studies have not fully 

explored how these isolates function in mixed bacterial communities, nor the influences of 

mutualistic or antagonistic interactions on biodegradation kinetics. Several previous 

studies, however, have considered the effects of environmental stimuli (i.e., varying organic 

carbon concentrations) on MC-degrading bacterial consortia under aerobic conditions (Li 

et al. 2011a, 2011b, 2011c, 2017, Eleuterio and Batista 2010, Christoffersen et al. 2002, 

Yang et al. 2008, Ho et al. 2010). Research showed that addition of organic carbon sources 
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(i.e., glucose, acetate, or uncharacterized dissolved organic carbon (DOC)) significantly 

inhibits MC degradation kinetics of bacterial consortia (Li et al. 2011c, Eleuterio and Batista 

2010, Li et al. 2011b, Ho et al. 2010). Catabolite repression is postulated as a mechanism 

underlying this inhibition, where MC-degrading populations may prefer more 

energetically-favorable (easily metabolized) over more energetically-intensive substrates, 

such as MC (Jones et al. 1994b). Other (fewer) studies have demonstrated that the addition 

of an alternative organic carbon source facilitates MC degradation rates, where the organic 

carbon was postulated to stimulate the growth and energy availability for production of the 

necessary enzymes required for MC-degradation by these bacterial populations (Zhang et 

al. 2015b, Surono et al. 2008). In addition, several studies have reported a net neutral effect 

with the addition of alternative organic carbon sources (Li et al. 2011a, 2011c, 2017, 

Christoffersen et al. 2002). The community structure of the microbial consortia that was 

involved in MC biodegradation was shown to change with environmental conditions (Li et 

al. 2011a, Christoffersen et al. 2002, Mou et al. 2013, Tsao et al. 2017). For example, Mou 

and co-workers (2013) reported that Methylophilales (Methylotenera genus) and 

Burkholderiales (Bortadella, Burkholderia, Cupriavidus, Ralstonia genera) were the most 

significant taxa in microcosms containing MC. There was significant enhancement of the 

broad class of metabolic functions when these MC-degrading populations were exposed to 

MC (Mou et al. 2013). 

Consequently, insight into the changes in community structure in response to a shift 

in environmental condition, and the influence of such change on MC degradation kinetics 

can better inform engineered strategies to improve MC removal under various 

environmental conditions. In this study, we report the comparison of community structure 
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of five MC-degrading consortia in the presence or absence of organic carbon besides MC. 

We asked, “how and to what extent does the MC-degrading community structure and 

degradation kinetics change in response to an organic carbon addition?” We expect that the 

MC degradation kinetics of the consortia will be strongly driven by changes in the 

community structure with the addition of an exogenous carbon source, as changes to the 

presence or absence of community members should directly correlate with changes in 

representative specific metabolic pathways that are involved in MC degradation. 

2. Materials and Methods 

2.1. Isolation of Microcystin-Degrading Bacterial Consortia 
 

One lake surface water sample (LSB) and four bed sediment samples (10B, 11B, 

12B, 14A) were collected from a drinking water reservoir in Southern California that 

experiences periodic cyanobacterial blooms. Bed sediment samples were centrifuged 

(10,000 g   for 10 min) to remove coarse sands. Both the surface water and supernatant 

from the sediment samples were filtered through a 1 µm pore size glass fiber filter to 

remove large protozoa and zooplankton potentially present in the samples. 

The initial isolation of each consortium (i.e., Generation A) involved the addition of 5 

mL of the filtrate from each environmental sample into a flask containing 20 mL of M9 

minimal media (per liter media contains: 12.8 g of Na2HPO4-7H2O, 3.0 g of KH2PO4, 0.5 g of 

NaCl, 1.0 g of NH4Cl, 0.25 g of NaNO3, 0.002 g of MgSO4, 0.001 g of CaCl2, pH of 7.3) with 200 

µg/L of MC-LR, and 316 mg/L of ethanol. The composition of the initial medium used for 

isolation was kept consistent with the composition used for enrichment to effectively 

acclimatize each consortium to the conditions expected during laboratory culturing. This 

isolation period, which was maintained for seven days prior to further enrichment, also 
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allowed for each consortium to consume any residual organic carbon present in the initial 

samples that may have affected batch biodegradation results that were acquired during 

future experimentation.  

To enrich for MC degradation consortia, two parallel tracks of experimentation were 

conducted (Generation B) (Figure 13). The first track involved the addition of 5 mL of the 

previous culture (Generation A) into a flask containing 20 mL of M9 minimal with 200 µg/L 

of MC-LR (a congener common to Southern California lakes) (Izaguirre et al. 2007). The 

seeding concentration of MC (200 µg/L) represented a higher range than that typically 

detected in the environment, but it was within the range of commonly used concentrations 

in enrichment studies to elicit a detectable response from the isolated consortia. The 

second parallel track of enrichment cultures (again with 5 mL of previous culture) was set 

up to include 316 mg/L of ethanol in addition to the M9 media and MC-LR, to serve as the 

comparison of MC biodegradation kinetics and community composition of each MC-

degrading consortia. We expect that predicted MC-degrading half-lives and changes in the 

composition and abundance of the bacterial consortia will be the most effective and 

practical means to compare changes among MC-LR-degrading communities in the presence 

and absence of ethanol. 
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Figure 13. Flow-chart of the experimental design employed in this study. Following initial 

isolation of 5 consortia from different locations within a reservoir, a parallel track of 
enrichment was set up to investigate the effect of ethanol addition on MC-LR biodegradation 

kinetics. The letters (A-U) indicate the relative generation age of each consortium during each 
track of enrichment (1–2). 

The selection of ethanol as an organic carbon substrate was two-fold: (1) MC-LR 

was supplied in ethanol from the manufacturer (Cayman Chemical), thus it requires no 

further purification to include ethanol as an organic supplement; (2) ethanol is an energy-

excess substrate (compared to glucose). Ethanol is readily metabolized by most bacteria in 

the environment and potentially serves as a preferential substrate, as indicated in multiple 

studies (Babel and Müller 1985, Lovanh et al. 2002). The use of ethanol represents the 

availability of labile and simple forms of dissolved organic carbon that become readily 

available in freshwater ecosystems during harmful algal bloom (HAB) periods (Nguyen et 

al. 2005, Zhou et al. 2014). As labile, dissolved organic carbon does not solely originate 

from cyanobacteria during these bloom periods, the concentration of ethanol (316 mg/L) 



90 
 

was set to a similar order of magnitude to resemble the higher range of total dissolved 

organic carbon concentrations that were reported by the USA EPA’s National Lake 

Assessment survey (ranging from 2–516 mg/L) (US EPA 2016b). This concentration of 

ethanol is reflective of dissolved organic carbon concentrations expected during worst case 

bloom conditions in lakes or reservoirs throughout the USA. In addition, this concentration 

of ethanol was considered to be non-inhibitory based on a thorough comparison of ethanol 

tolerances across common bacteria in the environment (i.e., E. coli), which indicated that 

the selected concentration was approximately 79–132 times lower than the threshold of 

growth inhibition (Ingram 1986, 1990, Wang et al. 2013, Jin et al. 2014). 

Sub-culturing of the isolated bacterial consortia involved transferring 5 mL of the 

previous culture into a new sterile tissue flask with 20 mL of M9 minimal media spiked 

with 200 µg/L of MC-LR with or without ethanol. As MC was initially supplied in ethanol, a 

temperature controlled (4 °C), rotary evaporator was used to obtain ethanol free 

suspensions of MC (for Track 1 enrichment cultures only). Sub-culturing frequency was 

intentionally kept to a minimum (every two weeks) to prevent potential shifts in microbial 

community composition prior to performing batch degradation experiments; thus, each 

consortium was transferred approximately twenty times (Generation U) (Figure 1). It is 

important to note that, although five consortia were initially isolated (Generation A: 10B, 

11B, 12B, 14A, LSB), ten distinct consortia were ultimately obtained with the experimental 

enrichment conditions employed. We make the important distinction between consortia 

enriched with (i.e., 10B-WE) or without ethanol addition (10B-NE) to avoid any further 

confusion.  
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MC concentrations in the flasks were monitored using an ADDA-ELISA kit (ABRAXIS, 

Warminster, PA, USA) to evaluate the MC degradation potential of the enriched samples. 

UPLC-MS/MS (Waters Quattro Premier QqQ) was also used initially for the quantification 

of MC. The correlation coefficients for all ELISA and UPLC-MS/MS tests ranged from 0.99 to 

1, indicating that the results for each assay were reproducible (Appendix B, Figures B1 and 

B2). In addition, ELISA and UPLC-MS/MS measurements for initial experiments indicated 

good agreement (data not shown). Only the ELISA kit was used later for MC detection and 

quantification due to the high sensitivity at the low MC concentration range employed (0.1 

µg/L detection limit). The flasks that showed a significant removal of MC (at or below the 

detection limit) within the seven-day enrichment period were deemed as MC-degrading 

consortia and used in later investigations. 

2.2. Batch Degradation Experiments 
 

Batch degradation experiments were carried out to quantify the MC degradation 

kinetics in each consortium using three experimental replicates. Culture conditions during 

batch degradation tests were identical to sub-culturing conditions, except for an additional 

washing step, in which the 5-mL consortium culture was pelleted and washed three times 

to remove any residual MC or ethanol present in the transfer culture. The washed cells 

were finally re-suspended in 5 mL of sterile M9 media and were transferred to the testing 

flasks. The initial optical density (OD at 600 nm) for experiments with and without the 

presence of ethanol was 0.002 and 0.0002, respectively. Although there was a detectable 

change in OD for the consortia amended with ethanol, the consortia without the addition of 

ethanol had a negligible change in OD. Flow cytometry was used to verify the growth of 
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bacterial cells for each consortium cultured without the addition of ethanol (see Appendix 

B, Section 2 for details).  

All of the flasks were shaken at 120 rpm in the dark at ambient temperature (24 °C), 

where 500 µL of sample was taken every 24 h for an eight-day period to quantify the 

concentration of MC-LR using an ADDA-ELISA kit following the manufacturer-

recommended protocols. 

2.3. Kinetic Model of Microcystin Biodegradation  
 

Visual examination of the MC degradation kinetics revealed a 24-hour lag phase for 

all batch experiments, which indicated that simple zero or first order kinetics were not 

adequate to predict MC degradation kinetics. A bi-phasic kinetic model that was proposed 

by Ouiroga and co-workers (1999) for the biodegradation of surfactants was adopted to 

model the removal of MC by each consortium as a function of time because it directly 

accounted for bacterial growth on MC along with substrate (MC) consumption (Equation 

(1)). In this model, the substrate utilization kinetics depend on the concentrations of 

degrading microorganisms (X), the substrate available (C), and the rate of substrate 

consumption (K) by degrading microbes to produce new biomass and other products.   

 
𝑑𝐶

𝑑𝑡
= −𝐾𝐶𝑋 (1) 

 

The analytical solution to Equation 1 results in (see Appendix B, Section 4 for derivation): 

                                                                                𝐶 =  
ℎ(𝑆0−𝑞)−𝑞(𝑆0−ℎ)𝑒𝑝𝑡

(𝑆0−𝑞)−(𝑆0−ℎ)𝑒𝑝𝑡   (2) 

where the substrate MC concentration (C) is related to its initial concentration (S0), the 

maximum MC available for biodegradation (h, in µg/L), the non-biodegradable portion of 



93 
 

MC (q, in µg/L), and the maximum specific growth rate of the degrading microorganisms (p, 

in 1/day).  

The fitting of the experimental data to the bi-phasic kinetic model was carried out 

using the DREAMZS (Differential Evolution Adaptive Metropolis, sampling from past states) 

(v1.0) software package (Laloy and Vrugt 2012, Vrugt 2016). Details of this approach are 

presented in Appendix B, Section 5. The goodness of the model-data fit was compared 

through the assessment of two quantitative metrics, the r2 value and the RMSE (root mean 

square error), as calculated during the fitting process. The distribution in posterior 

parameters derived from DREAMZS was used to estimate the MC degradation half-lives for 

comparison among different consortia and under different conditions. 

2.4. Analysis of Bacterial Community Structure  
 

The bacterial community structure of each bacterial consortia was analyzed using 

the 16S rRNA gene amplicon on a Roche 454 genome sequencer FLX+ (454 GS-FLX+, RTL 

Genomics, Lubbock, TX, USA). The pyrosequencing analysis was conducted immediately 

following one particular replicate of the eight-day batch biodegradation experiments. A 1 

mL sample volume of the batch degradation experiment was pelleted (10,000 g for 15 min), 

supernatant discarded, and shipped on dry ice to the RTL laboratory for further analysis. 

Both the DNA extraction and amplicon sequencing were performed by RTL Genomics 

(Lubbock, TX, USA). The 16S rRNA gene universal eubacterial primers 939F (5’-

TTGACGGGGGCCCGCACAAG-3’) and 1492R (5’-TACCTTGTTACGACTT-3’) were used to 

amplify approximately 550 bp of the variable regions V6 to V8. The pyrosequencing reads 

were analyzed using Quantitative Insights into Microbial Ecology (QIIME) (v. 1.9.1) 

(Caporaso et al. 2010), following the program’s instruction. The bacterial community 
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structure and taxonomic abundance for samples with and without the presence of ethanol 

were compared using the statistical analysis of taxonomic and functional profiles (STAMP) 

bioinformatics software (v.2.1.3) (Parks et al. 2014). The statistical significance of the 

taxonomic abundance on the order level between the samples was determined using a two-

sided G-test with Yates and Fisher’s correction and Bonferroni multiple test correction. The 

difference in taxonomic abundance was deemed to be significant if the calculated p-value 

between the samples was below 0.05. Rarefaction plots, Beta diversity metrics 

(unweighted/weighted Unifrac distances), and jackknifed Beta diversity (principal 

coordinate analysis) were carried out using scripts provided by the QIIME module.  

“True” as opposed to “raw” Alpha diversity indices were adopted in this study to 

facilitate comparisons of the abundance and presence or absence of species within   the MC 

degrading communities with or without ethanol addition (Jost 2006, 2007, 2009, Tuomisto 

2010, Chao et al. 2014). Common “raw” Alpha diversity measures, such as Shannon 

entropy, evenness, or Simpson’s dominance suffer from difficult interpretation and 

comparison, since they do not share a common mathematical grounding (i.e., common 

units, derivation) or favorable mathematical properties (i.e., the “replication” principle) 

(Chao and Jost 2008). In a seminal study, Hill (1973) introduced a unified basis of 

calculation to transform the existing “raw” measures to “true” Alpha diversity measures 

with the advent of a single variable: the diversity order, q (Equation (3), where S is the total 

number of species and pi is the relative proportion of the ith species within a given 

community). Lower diversity orders (q < 0) place more emphasis on the frequency of rarer 

species within a given population, whereas higher diversity orders (q > 1) weigh the 

frequency of dominant species more heavily (Jost 2006, Chao and Jost 2008, Hill 1973). 
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When q is equal to unity (corresponding to Shannon entropy), an equal weight is placed on 

the frequency of rare and dominant species (Jost 2006, Chao and Jost 2008, Hill 1973). 

Intuitively, a zero-order (q = 0) diversity value corresponds to the species richness within a 

given community (Jost 2006, Chao and Jost 2008, Hill 1973). It is important to note that the 

units of all true Alpha diversity orders are in number of species (or genera, depending on 

the taxonomic level), also termed “effective number of species”, which provides a unified 

basis for comparison across diversity orders (Chao and Jost 2008). 

𝐷𝑞 = (∑𝑝𝑖
𝑞

𝑆

𝑖=1

)

1
(1−𝑞)

 (3) 

As biological or technical replicates of the metagenomic analyses were not 

conducted in this study, a series of Monte Carlo (MCA) simulations was conducted to 

simulate the statistical variability in “true” Alpha diversity indices. These simulations were 

based on an empirical, non-linear relationship that was developed between the taxon mean 

relative abundance and standard deviation of replicate measurements that were reported 

across similar metagenomic analyses in the scientific literature (see Appendix B, Section 6, 

Table B5, Figures B7 and B8). After running a sufficiently large number of MCA simulations 

(N = 20,000), normal distributions in true Alpha diversity metrics across several diversity 

orders (q = −1, 0, 1, 2, 3) were reached (Figures B9 and B10). For each MC degrading 

community, the significance of changes in true Alpha diversity metrics (across all diversity 

orders) with the addition of ethanol were simultaneously assessed using a one-way 

analysis of variance (ANOVA) with Bonferroni multiple comparison test correction 

(Pallmann et al. 2012). In addition, both the direction and magnitude of the differences 

between the resulting statistical distributions of the Alpha diversity metrics were 
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quantified using an effect size (ES) calculation (Equation (4), where μwe/ne and σwe/ne refer to 

the mean and standard deviation of normal distributions with or without ethanol addition) 

(Coe 2002). 

𝐸𝑆 =  

(

 
𝜇𝑤𝑒−𝜇𝑛𝑒

√𝜎𝑤𝑒
2 + 𝜎𝑛𝑒

2

2 )

  (4) 

Metagenomic stability, which is defined as the persistence of individual operational 

taxonomic units (OTUs) across different MC degrading communities profiled, of the 

microbial communities was evaluated using the QIIME generated output (OTU vs. 

abundance) from the genera level of analysis (after removing OTUs that comprised less 

than 0.1% of the total communities) (Linz et al. 2017, Woodhouse et al. 2018). Stability 

values were simply the coefficient of variation (CV) ((σ/μ) ×   100%) of the abundance 

across each microbial community with or without ethanol addition, where the values for 

OTUs less than 200% are considered to be stable (Woodhouse et al. 2018). In this study, we 

report an aggregate stability value for MC degrading consortia (with or without ethanol) by 

calculating the proportion of OTUs that are statistically “stable” out of the total number of 

OTUs present. 

3. Results 

3.1. Microcystin Biodegradation Kinetics 

As shown in Figure 14, all five isolated consortia possess the ability to degrade MC 

within three to seven days in the presence or absence of ethanol with a one-day lag phase. 

This degradation was clearly biologically mediated as control experiments (without 

bacterial inoculum) demonstrated slow and relatively insignificant MC removal over the 

eight-day period investigated (Figure B4). The shape of the MC-LR degradation curves was 
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nearly identical for each isolated consortium across three experimental replicates (shown 

by the small standard deviation for each point of measurement), indicating that the 

degradation kinetics were consistent and repeatable. Although multiple measurements 

were taken within the first 24 h, only measurements that were taken at evenly spaced 24-

hour intervals were included in Figure 14 to reduce the noise in the graphs. For consortia 

12B and 14A without ethanol, a sharp decline in MC concentrations at day 2 was followed 

by a rapid rebound at day 3. Notably, this trend was apparent for all experimental 

replicates and was it not considered an error in measurements. It is also important to 

mention that although most of the MC concentrations appear in Figure 14 to be near zero 

after four days, the substrate concentrations rarely approached the limit of detection (0.1 

µg/L). These results suggest that a portion of the MC substrate was potentially non-

biodegradable. Similar results were presented by Eleuterio and Batista (2010) while using 

an ELISA quantification method, with measured MC residuals ranging up to 2 µg/L. 

OD600 and flow cytometry results confirmed cell growth during the degradation 

experiments for MC consortia with and without ethanol addition, respectively. Flow 

cytometry results indicated that initial cell concentrations were on the order of 106–107 for 

consortia without ethanol addition (cells/mL). However, growth rates were highly variable 

across individual replicates for consortia without ethanol addition, with final cell 

concentrations ranging from 108–109 cells/mL (Figure B3).  

The bi-phasic model accurately predicted the experimental results, as noted by the 

narrow widths of the 95% total predictive uncertainty intervals and the close proximity of 

the experimental data points to the best fitting solutions for all consortia analyzed (Figure 

14). The r2 is approaching 1 in 8 of the 10 degradation experiments, indicating a good fit of 
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the model to the experimental data (Figure 14, Table B2). Wider uncertainty intervals were 

observed for consortia 12B and 14A under some of the testing conditions, with r2 ranging 

from 0.68 to 0.79, indicating less accurate model predictions. The wider predictive 

uncertainty intervals were attributed to unknown factors that were not currently 

considered in the model structure. The parameter estimability was relatively high across 

all experiments (as indicated by the defined shape of posterior parameter distributions); 

however, significant correlations were observed between the h (maximum available MC for 

degradation) and p (maximum specific growth rate) parameters, suggesting non-unique 

values of these parameters for these cases (Table B4, Figure B6). 

 
Figure 14. MC-LR biodegradation by microbial consortia isolated from five environmental 

samples (10B, 11B, 12B, 14A, and LSB) in the absence (NE—no ethanol) (A) or presence 
(WE—with ethanol) of ethanol (B). Error bars are standard deviations for three experimental 
replicates at each measurement point (excluding t0 and t24). Light grey shading indicates the 

95% total predictive uncertainty intervals of the kinetic model, while the red line indicates the 
best fit of the model to the experimental data. 

The presence of ethanol slowed the degradation kinetics of MC-LR in all five 

consortia, as indicated by the longer respective mean half-lives (Table 3). This decline in 

MC biodegradation kinetics was statistically-significant for all consortia (p-value < 1 × 
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10−8) based on the distribution of half-lives that was generated by the DREAMZS model-data 

fitting procedure (N = 25,000 samples). Greater variations in predicted degradation 

kinetics were observed in some cases (i.e., 12B and 14A without ethanol), as indicated by 

the moderately high standard deviation of predicted half-lives (Table 3). 

Table 3 - Summary of half-lives and t-test significance for MC-LR degrading consortia 
without ethanol (NE) and with (WE) ethanol addition. The mean and standard deviation of 

the posterior distributions of half-lives are provided for reference. 

Consortia ID 
Half-Life (Day) t-Test  

p-Value NE WE 
10B 1.98 ± 0.003 3.28 ± 0.371 <1 × 10−8 
11B 2.14 ± 0.017 2.30 ± 0.016 <1 × 10−8 
12B 2.74 ± 0.765 3.37 ± 0.367 <1 × 10−8 
14A 2.14 ± 0.835 2.47 ± 0.046 <1 × 10−8 
LSB 2.16 ± 0.016 4.41 ± 0.307 <1 × 10−8 

 
3.2. Community Analysis of Microcystin-Degrading Consortia With and Without 
Ethanol Addition  
 

Pyrosequencing yielded, on average, greater than 2,000 reads per sample (Table 

B9). Rarefaction curves indicated that the sequencing depth was adequate to accurately 

characterize the microbial communities in each consortium (Figure B12). As shown in 

Figure 15A, the taxonomic composition and relative abundance of each MC-degrading 

community varied by the sampling location. In descending order, Pseudomonodales, 

Burkholderiales, Xanthomonadales, and Rhizobiales were the most representative bacterial 

orders in the degrading consortia in the absence of ethanol (Figure 15A). Rhizobiales was a 

more representative order in the consortia isolated from bed sediment (10B, 11B, 12B, 

14A), as compared to the lake water (LSB). However, Xanthomonadales was more 

representative in the lake water consortium as compared to the sediment consortia (Figure 
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15A). In addition, Rhodospirillales dominated the community composition of the 12B 

sediment consortia as compared to other sediment consortia. 

In the presence of ethanol, the general taxonomic composition and relative 

abundance of each MC-degrading community changed noticeably, especially for the 10B 

and 12B consortia (Figure 15B). Specifically, the presence of bacterial populations within 

the Rhizobiales order declined greatly in the 10B, 11B, and 12B consortia. Moreover, the 

Rhodospirillales order declined to a great extent in the 12B consortium cultured with 

ethanol (Figure 15B). The relative abundance of the order Burkholderiales was noticeably 

depressed (and replaced by either Xanthomonadales or Pseudomonadales) in the 10B and 

LSB consortia cultured with ethanol. Relative abundances of Xanthomonadales, 

Burkholderiales, Sphingomonadales, and Caulobacterales increased considerably in the 14A 

consortium that was cultured with ethanol (Figure 15B). In addition, previously 

unobserved taxa within the orders of Actinomycetales, Flavobacteriales, Cytophagales, 

Sphingobacteriales, Rhodobacterales, and Euglenozoa were detected in the 12B consortium 

treated with ethanol (Figure 15B). Comparably, previously unobserved bacterial 

populations within the orders Chlamydiales, Cytophagales, Rickettsiales, Legionellales, and 

Sphingobacteriales were primarily detected in the 10B consortium treated with ethanol 

(Figure 15B). 
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Figure 15. General taxonomic differences in MC-LR degrading consortia isolated from lake 
sediment (10B, 11B, 12B, 14A) or surface water (LSB) analyzed on the order level in the (A) 
absence (NE) or (B) presence (WE) of ethanol. The pyrosequencing analysis was conducted 

immediately following the eight-day batch biodegradation experiments. 

Statistically-significant differences in taxonomic composition and abundance were 

observed when comparing the consortia cultured in the presence or absence of ethanol 

(Figure 16). For most of the MC-LR degrading consortia (three out of five consortia or 

above), the dominant community shifts in the presence of ethanol included an increment in 

bacterial orders of Xanthomonadales, Pseudomonadales, and Burkholderiales, and a 

decrement in Sphingomonadales, Rhodospirillales, and Rhizobiales (Figure 16). In addition, 

consortia with ethanol had many new community members not found in the absence of 
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ethanol, including the bacterial orders Cytophagales, Sphingobacteriales, Flavobacteriales, 

Saprospirales, Chlamydiales, Rhodobacterales, Rhodocyclales, Methylophilales, Legionellales, 

and Rickettsiales (Figure 16). 

 
Figure 16. Statistically-significant differences in relative abundance of the phylogenetic 

orders for all MC-LR-degrading consortia treated with (WE) and without ethanol (NE) (p-
value < 0.05, Bonferroni corrected). Error bars represent 95% confidence intervals for relative 

abundances. X-axes are split to compare differences in relative abundances among isolated 
consortia. Y-axes are split for the 11B and 14A consortia to better visualize changes of 

underrepresented taxa. 

Simulated distributions in Alpha diversity metrics achieved from the MCA analysis 

were used to interpret changes in the within consortium bacterial community taxonomic 

composition and abundances in the presence of ethanol (Table 4). The range in p-values 

resulting from the multiple comparison test (<1 × 10−8 to 4.80 × 10−8) demonstrated a 

statistically significant difference in simulated true Alpha diversity metrics across all 

diversity orders for the 10B, 12B, 14A, and LSB consortia in the presence of ethanol (Table 

4). However, differences in simulated true Alpha diversity metrics were not statistically 

significant for the higher diversity orders (q = 2 and 3) when comparing the 11B 
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consortium (Table 4). In addition, the aggregate metagenomic stability of consortia, or the 

persistence of different OTUs across communities, increased for MC degrading 

communities in the presence of ethanol (from 53.7% to 65.7%, not depicted in Table 4). 

Table 4 - Summary of significant differences (p-values) in Alpha diversity metrics between 
MC-LR degrading bacterial consortia with and without ethanol addition as a function of 

diversity order. 

 Consortia ID 

Diversity Order 10B 11B 12B 14A LSB 

D−1 <1 × 10−8 <1 × 10−8 <1 × 10−8 <1 × 10−8 <1 × 10−8 

D0 <1 × 10−8 <1 × 10−8 <1 × 10−8 <1 × 10−8 4.80 × 10−8 

D1 <1 × 10−8 5.04 × 10−5 <1 × 10−8 <1 × 10−8 <1 × 10−8 

D2 <1 × 10−8 1 <1 × 10−8 <1 × 10−8 <1 × 10−8 

D3 <1 × 10−8 1 <1 × 10−8 <1 × 10−8 <1 × 10−8 

 To address how and to what extent the true Alpha diversity indices were shifting 

with ethanol treatment, both the direction and magnitude of changes in the simulated 

distributions of true Alpha diversity metrics were investigated by incorporating an effect 

size calculation. Figure 17 compares the direction and magnitude of the effect sizes 

calculated between distributions in simulated Alpha diversity metrics with and without 

ethanol addition. The diversity orders are grouped into classes that give heavier (q = −1, 0), 

equal (q = 1), and lesser (q = 2, 3) weight to the frequencies of rare over abundant genera in 

each calculation.  

 The results of the effect size calculations indicated that, in the presence of ethanol, 

there was an increase in simulated Alpha diversity for the sediment consortia (10B, 11B, 

12B, 14A) and a decrease in simulated Alpha diversity for the lake water consortia (LSB) 

when both rare and abundant genera were weighted equally (q = 1, “neutral”), which is 

equivalent to Shannon’s entropy value (Chao and Jost 2008). The magnitude of this shift in 

Alpha diversity (q = 1) varied across each consortium, with the lake water consortium 
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(LSB) demonstrating the largest change in magnitude (and 10B/11B the smallest change) 

(Figure 17). For the sediment consortia (10B-14A), there was a mixed response in the 

direction and magnitude of the shifts in lower (q = −1, 0) and higher order (q = 2, 3) 

diversity indices. Lower order diversity indices for both the 10B and 12B consortia 

increased by a similar level of magnitude, whereas higher order diversity indices increased 

for the 11B, 12B, and 14A consortia, albeit by different magnitudes (Figure 17). 

Comparably, a large depression in higher order diversity indices was observed for the lake 

water consortia (LSB) (Figure 17). These results signified that changes to the overall Alpha 

diversity of each consortium were attributed to: (a) more rare phyla for 10B and 12B 

consortia, as well as (b) more abundant phyla for 14A and LSB consortia. Due to the lack of 

statistical significance in higher order indices (Table 4) and similar magnitude changes 

among low and high diversity orders, inconclusive results were obtained for the 11B 

consortium (Figure 17).  

 
Figure 17. Differences in effect size (direction and magnitude) as a function of true Alpha 

diversity order comparing MC-LR-degrading consortia treated with (WE) and without 
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ethanol (NE). To clarify, the effect size is the difference in means of the distributions in 
diversity orders calculated for communities with ethanol as compared to without, normalized 

by the “average” standard deviations from both distributions (
𝜇𝑤𝑒−𝜇𝑛𝑒

√𝜎𝑤𝑒
2 +𝜎𝑛𝑒

2

2

). Error bars 

represent 95% confidence intervals calculated for the effect sizes (Coe 2002). The diversity 
orders are grouped (and color coded) according to the weight placed on the frequency of rare 
versus abundant species during calculation. For example, diversity orders that place heavier 
weight on the frequencies of rare over abundant genera in each calculation (q = −1, 0) are 

colored in green. 

Beta diversity metrics were analyzed to compare differences in the bacterial 

phylogenetic composition between consortia degrading MC-LR with and without ethanol 

(Table 5). Statistically significant differences were observed in the phylogenetic 

composition for 10B, 12B, and LSB-isolated consortia that were treated with and without 

ethanol (p-value < 1 × 10−8). However, the phylogenetic composition was not statistically 

significant when comparing the 11B and 14A consortia with and without the presence of 

ethanol (p-value = 1) (Table 5). These consortia demonstrated the highest phylogenetic 

similarity (p-value = 1) out of all the pairwise comparisons, indicating that the taxonomic 

composition of some MC-degrading consortia might be less sensitive to changes in the 

availability of alternative organic carbon sources (Table 5). Overall, the majority of 

consortia that were treated with ethanol (3/5) demonstrated statistically significant 

changes in phylogeny, which suggests that the composition of MC-degrading communities 

in the environment will be affected by the availability of alternative organic carbon sources.  
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Table 5 - Summary of Beta diversity metrics and significance testing for MC-LR degrading 
bacterial consortia without (NE) and with (WE) ethanol addition. Beta diversity metrics were 
computed between each consortium (i.e., 10B) with and without the presence of ethanol. The 

corrected Bonferroni p-value was used to ascertain whether the phylogenetics of each 
consortium were in fact statistically significant. 

Consortia ID 
Unweighted  

Unifrac Distance 
Weighted  

Unifrac Distance 
Bonferroni Corrected  

p-Value 
10B 0.957 0.218 <1 × 10−8 
11B 0.425 0.075 1 
12B 0.921 0.382 <1 × 10−8 
14A 0.775 0.218 1 
LSB 0.561 0.112 <1 × 10−8 

4. Discussion 
 

This study has successfully isolated five MC-degrading bacterial consortia from lake 

surface water and bed sediments in the absence of a cyanobacterial bloom. The 

metagenomic analyses indicated highly diverse and distinct bacterial populations in each 

consortium, suggesting that many different MC-degrading and non-degrading populations 

may co-exist in each consortium. A comparison of common genera observed in the 

pyrosequencing results (in the absence of ethanol) to MC-degrading isolates reported in 

the literature indicated that species of the genera Sphingopyxis, Sphingomonas, 

Acinetobacter, Aeromonas, Novosphingobium Pseudomonas, Stenotrophomonas, 

Ochrobactrum, Rhodococcus, and Steroidobacter in the consortia may potentially comprise 

the MC-degrading populations (Figures B13–B16, Table B10) (see (Li et al. 2017) for an 

updated summary). Of these genera identified, Sphingopyxis, Sphingomonas, 

Stenotrophomonas, and Novosphingobium have been affiliated with MC degrading species 

utilizing the well-known mlr gene pathway (Table B10). However, this identification of 

degrading populations is only tentative because MC-degradation by alternative pathways 

(other than mlr) may also exist, but are currently unknown (Mou et al. 2013, Lezcano et al. 
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2016). As these alternative pathways are still yet to be determined, MC-degradation may be 

performed by a much greater number of bacterial genera than those that were identified in 

past research. 

 A comparison of the MC-degradation rates observed in this study with a compilation 

of half-lives reported for both MC-degrading bacterial isolates (n = 146) and microbial 

consortia (n = 167) indicated comparable degradation rates with those reported for 

consortia (Figure B18). However, the range of half-lives observed in all consortia including 

the present study are longer than those of MC-degrading bacterial isolates reported 

previously (Figure B18). In comparison with previous study designs that were focused on 

MC degrading microbial consortia (Eleuterio and Batista 2010, Tsao et al. 2017, Lezcano et 

al. 2016), this study is significantly different in which we have isolated the MC-degrading 

consortia by sub-culturing in minimal media enriched with MC. We have demonstrated the 

stability and unique individual characteristics of each isolated consortia for MC-

degradation. These isolated consortia provide the opportunity to identify the effect of 

specific environmental conditions on MC-degradation kinetics without other interfering 

factors that could skew the results (i.e., the presence of uncharacterized dissolved organic 

matter from field samples or algal extracts). This approach was advantageous, because it 

allowed a parallel track of manipulation of consortia, where we could simultaneously 

enrich consortia with and without the presence of an organic carbon source that was 

supplemented with MC as the sole carbon/energy source from the onset of isolation to the 

batch degradation experiments performed. The large range of degradation rates reported 

in the literature likely reflects the complexity of environmental conditions and degradation 

community responses. 
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 As the complexity of the environmental conditions was tightly controlled in this 

study, the main driver of observed differences in MC degradation kinetics was the initial 

diversity of each microbial community. High diversity, of both potential MC degrading and 

non-degrading populations alike, ultimately led to the isolation of distinct bacterial 

communities with rather unique MC biodegradation kinetic profiles. Ultimately, the trophic 

status of the lake of origin (i.e., productivity and nutrient availability) is an integral factor 

affecting bacterial community diversity (Hengy et al. 2017, Huang et al. 2017, Wobus et al. 

2003, Bouzat et al. 2013, Winters et al. 2014). Although true diversity indices were 

presented in the results, the “raw” Shannon H values that were calculated from microbial 

communities in this study for both lake and sediment samples were on the same order of 

those reported in meso to fully eutrophic lake systems (i.e., 3–4) (Table B8) (Hengy et al. 

2017, Huang et al. 2017, Wobus et al. 2003, Bouzat et al. 2013, Winters et al. 2014). These 

results may suggest that MC-degrading bacterioplankton community diversity may 

increase with trophic status (from oligo to fully eutrophic) of freshwater lakes. However, as 

indicated by (Newton and McLellan 2015, Yannarell and Triplett 2005, Zwirglmaier et al. 

2015), the relationship between trophic status and community diversity of 

bacterioplankton is not so clear-cut, as other studies have reported contradictory trends 

(Yannarell and Triplett 2005, Zwirglmaier et al. 2015). Furthermore, it is still unclear how 

diversity may influence MC biodegradation kinetics in the environment as the temporal 

stability of these bacterioplankton communities is relatively unknown (i.e., do they achieve 

a relative steady state?). It is more likely that in an open system, such as the environment, 

the influence of community diversity on MC biodegradation may be diminished as highly 

variable environmental factors (such as zooplankton predation or hydrodynamics) result 
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in rapid succession, growth, and elimination of different populations comprising the MC-

degrading community.  

 Ethanol addition resulted in a statistically significant increase in the simulated first 

order true Alpha diversity metrics for all sediment consortia along with a statistically 

significant decrease in first order metrics for the lake water consortium (LSB). As this first 

order index equally accounts for the frequency of rare and abundant genera in its 

calculation, it is often viewed as a surrogate of overall changes in community Alpha 

diversity (similar to Shannon entropy) (Chao and Jost 2008). More detailed examination of 

changes in the lower and higher order indices indicated that changes in the overall 

diversity were more affiliated with either changes in the abundance and/or presence of 

rare genera (for 10B and 12B) or dominant genera (for LSB and 14A). Notably, differences 

in true diversity orders also provide evidence as to the relative importance of species 

evenness and richness components to the overall diversity of each community (Chao and 

Jost 2008). For example, as the order of diversity approaches positive infinity, the richness 

component of diversity in the mathematical calculation becomes completely insignificant 

(and vice versa when approaching negative infinity) (Chao and Jost 2008). This 

interpretation suggests that changes in the overall diversity of LSB and 14A consortia were 

likely more influenced by changes in community evenness as opposed to richness (and vice 

versa for 10B and 12B consortia). In the case of the LSB and 14A consortia, the observed 

change in diversity (attributed to evenness over richness) either resulted in an increase in 

the dominance of certain community members or an increase in equitability among certain 

community members, respectively (which is supported by diversity profiles presented in 

Figure B11). 
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 This wide variety of simulated responses in Alpha diversity metrics across each 

consortium was unique, as it defined several potential scenarios that organic carbon 

addition could trigger within MC degrading communities, which may include: (a) an 

increase in equitability of certain members within the community (as in 14A); (b) an 

enrichment (increasing richness) of previously unobserved community members (as in 

10B or 12B); (c) the dominance of a few or more representative taxa within a given 

community (LSB); or, (d) resilience to changes in community composition (11B). 

Statistically significant differences in Beta diversities for 10B and 12B consortia further 

support the notion that the richness increased for these consortia, resulting in MC-

degrading communities that were phylogenetically dissimilar with and without the 

addition of ethanol. It is also important to mention that, as the metagenomic stability 

increased with the addition of ethanol, the proportion of OTUs shared across each 

consortium also increased, suggesting that some of these previously unobserved 

community members (comprising this increase in richness) were of similar phylogenetic 

identity among both the 10B and 12B consortia. Moreover, the lack of a significant change 

in higher order Alpha diversity metrics (q = 2, 3) and Beta diversity metrics for 11B 

confirms some form of resiliency for the 11B consortium to changes in supplemental 

organic carbon concentrations.  

 Changes to the Alpha diversity metrics of each community have critical implications 

in terms of the sustenance, decline, or enhancement of community member interactions 

involving MC and carbon source metabolism in the environment. If, for example, scenario 

(c) defined above occurs for a given community, the average variety of interactions among 

individuals could decline, as the rare species that may be responsible for some more 
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obscure metabolic functions (i.e., microcystin biodegradation) might be replaced by an 

array of fast growing, superabundant species with more generalized metabolic functions 

(i.e., organic carbon metabolism) (Chao and Jost 2008). It was unclear in this study, 

however, whether these changes in Alpha diversity metrics consisted of primarily non-

degrading or MC-degrading community members. Although we did not specifically 

differentiate between non-degrading or degrading community members in this study (by 

measuring total 16S rRNA and mlrA gene copy numbers), similar competitive interactions 

between potentially non-degrading and MC-degrading populations within the greater 

community in the presence of additional organic carbon have been proposed and 

documented by Li and co-workers (Li et al. 2011b, 2011c).  

 The MCA analysis provided a valuable technique to analyze the statistical 

significance of changes in the true Alpha diversity of each community with and without 

ethanol addition. Even though the results generated significant differences in true Alpha 

diversity metrics, it is important to recognize that these are simulated distributions, with 

some given uncertainty, that must be assessed accordingly. To reduce the uncertainty that 

is associated with these simulations, we selected studies from the literature solely 

analyzing the 16S rRNA of bacterial communities, with an emphasis being placed on soil 

and water samples only (see Table B5 for a complete summary). Most of these studies used 

identical platforms (454 pyrosequencing) and analysis pipelines (QIIME), which makes the 

extrapolation of their uncertainty and measurement error to our results very credible. In 

addition, these studies incorporated both biological and technical replicates in their 

experimental designs, which allowed our simulations to account for potential 

heterogeneity in community composition expected from the sampling location in addition 
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to uncertainty that is associated with the combined measurement and analysis processes. 

The main uncertainty in our simulations was derived from the relative lack of abundance 

data (with replication) exceeding 30% mean relative abundance (on the genera level) that 

was reported in the literature. This lack of data resulted in high predictive uncertainty for 

the expected standard deviation among replicates at mean relative abundances exceeding 

this value (>30%). However, since most of the abundance data on the genera level of 

analysis observed in our study was below this threshold, many of the simulated 

distributions in diversity orders had low variability (COVs < 22%, Tables B6 and B7). These 

results confirm that the MCA simulations were indeed valid and adequately reflected the 

uncertainty that is associated with actual 16S rRNA experimental replications. 

 Another contribution of the study was the introduction of a bi-phasic model that 

accounts for coupled bacterial growth and substrate degradation to describe MC 

biodegradation kinetics. Our results showed a more accurate estimation of MC-

biodegradation kinetics, as compared to simple zero or first order models previously used 

to describe MC-biodegradation kinetics. This kinetic model also accounted for portions of 

non-biodegradable substrate observed experimentally and resulted in relevant ranges in 

maximum specific growth rates (Okpokwasili and Nweke 2006). We observed a sudden 

drop of MC and a rapid rebound of MC concentration in two degradation experiments (12B 

and 14A consortia without ethanol), which cannot be fully explained by the current model. 

These degradation kinetic profiles may be attributed to biosorption or passive uptake 

(facilitated diffusion) of MC either onto or into non-degrading cells, both of which have 

been reported for polycyclic aromatic hydrocarbons (PAHs) in the environment (Bugg et al. 

2000). This explanation is similar to that proposed by Jones and co-workers (1994b), 
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attributing some initial removal of MC to non-specific absorption of fast growing, non-MC-

degrading bacterial populations. Future investigations should be directed to adequately 

explain the deviation from the bi-phasic kinetics that was observed in this study and to 

comprehend why a portion of the MC substrate was non-biodegradable. 

 The sampling times and frequency for MC quantification during batch experiments, 

which was limited to uniform, one-day intervals, was a potential drawback of the 

experimental design that should be adequately discussed. As observed in Figure 14, the 

degradation kinetic profiles were quite similar for the 11B consortium (with and without 

ethanol) and very few data points were collected during the most dynamic portions of the 

experiment (i.e., few intermediate concentrations between 0–200 µg/L were measured). 

With few of these intermediate data points available for calibration, there is some 

uncertainty in the degradation response during critical time periods of each experiment. To 

review this uncertainty, another MCA was conducted by simulating experimental datasets 

with a greater number of time points included during model calibration as compared to the 

original dataset (Appendix B, Section 12). We found that including a high number of 

sampling points during the most dynamic time of experimentation did not significantly 

alter our main conclusions (i.e., ethanol still significantly slows MC biodegradation). This 

result was attributed to the inability of the model to mechanistically account for highly 

variable MC-degradation kinetics (similar to results that are presented for 12B-NE and 

14A-NE in Figure 14). This uncertainty can be greatly reduced in future experiments by 

properly designing the sampling times and frequencies of each experiment a priori. 

Ultimately, application of optimal experimental design techniques with global sensitivity 



114 
 

analysis can improve parameter identification and the validity of statistical hypothesis 

tests (Rodriguez-Fernandez et al. 2007, Chu and Hahn 2010, 2013).  

 The isolation of MC-degrading populations in the absence of an on-going or 

proceeding a HAB implies that lake bacteria harbor the degradation capability in the 

absence of MC. These bacteria likely possess diverse metabolic pathways that allow for 

quick adaption to changing environmental conditions through effective, sometimes 

simultaneous, consumption of different sources of organic carbon. Egli (1995, 2010) has 

summarized the diversity of bacteria able to consume multiple carbon sources 

simultaneously under simulated oligotrophic conditions. Jones and co-workers (1994b) 

detailed the isolation of a Sphingomonas strain (ACM-3962) that was capable of degrading 

both complex carbon sources present in a peptone, yeast extract media as well as MC, 

supporting that MC degrading bacteria may exhibit simultaneous consumption patterns. 

Overall, the spatial and temporal persistence of MC-degrading bacterial populations within 

Southern California lakes, afforded by their diverse metabolic pathways, supports the 

potential application of biofiltration technologies. Shotgun metagenomic sequencing, as 

compared to 16S rRNA alone conducted in this study, could provide a more in depth 

understanding of the diverse array of functional genes that are present in these isolated 

MC-degrading consortia and offer some insight as to how this functional profile changes in 

the presence or absence of certain environmental stimuli. 

 However, the high sensitivity of each isolated consortia to the presence of an 

alternative, bioavailable carbon source, poses a significant challenge to the advent of 

biofiltration technology for MC removal from drinking water. Biofiltration systems 

targeting MC removal rely on the formation of stable bacterial communities that can 



115 
 

rapidly assimilate MC toxins along with other bioavailable nutrients. The results of this 

study provided initial evidence that the presence of alternative carbon sources (other than 

MC) offsets the stability of the degrading communities and retards MC biodegradation 

kinetics, thereby increasing MC treatment variability. In the presence of an alternative 

organic carbon source, there was a statistically-significant shift to the bacterial community 

composition, which was paralleled by a statistically-significant decline in MC-LR 

degradation kinetics. These results confirm previous findings by Giaramida and co-workers 

(2013), Li and co-workers (2011a, 2011b), and Eleuterio and Batista (2010). In addition, 

the pyrosequencing results identified the previously unobserved members in each 

community (i.e., Cytophagales, Flavobacteriales, and Rickettsiales) and changes in the 

abundance of representative taxa (i.e., Pseudomonadales, Burkholderiales, or 

Xanthomonadales). The sequencing data also detected both a statistically significant 

increase and a decline in existing bacterial genera that were previously affiliated with MC 

degradation (i.e., Stenotrophomonas and Sphingopyxis, respectively) in the presence of an 

organic carbon source across most consortia (Figure B17). These results may suggest 

different, more complex patterns of substrate utilization or preference among various 

individual MC-degrading populations within each consortium. Given these relatively 

unique community responses to ethanol addition that were observed among several 

isolated MC-degrading consortia, site and season specific biofiltration strategies, such as 

nutrient amendment (biostimulation), could be tailored to both (1) stabilize the natural 

MC-degrading community structure and (2) enhance metabolic functions that are related 

to individual MC-degrading populations comprising the greater community. 



116 
 

 Importantly, the disparity in initial seeding concentrations between MC and ethanol 

employed in this study was targeted to reflect realistic nutrient conditions in most lake and 

reservoir environments. In these freshwater environments (throughout a range in trophic 

levels), MC will not be the primary carbon and energy source being metabolized by 

degrading bacteria, since it is often present in low background concentrations (ng/L to 

ug/L) and not secreted until algal bloom senescence or collapse (Merel et al. 2013, Francy 

et al. 2015). Instead, the presence of other bioavailable dissolved organic carbon (DOC), 

including other non-toxic cyanobacterial oligopeptides or exudates, represents the primary 

carbon and energy source for both competing degrading and non-degrading bacterial 

populations (Eleuterio and Batista 2010). 

 Furthermore, the relatively high magnitude of MC (200 µg/L) and ethanol (~300 

mg/L) concentrations that were employed in this study were selected to represent worst 

case bloom conditions. Past sampling of lakes and reservoirs throughout the United States 

(U.S.) has indicated that concentrations of total MC rarely exceed 200 µg/L (Merel et al. 

2013, Francy et al. 2015, Billam et al. 2006, Heiskary et al. 2014, Hollister and Kreakie 

2016, Loftin et al. 2016,  Howard et al. 2017), whereas total dissolved organic carbon (DOC) 

concentrations ranged from 0.2 to 516 mg/L (US EPA 2016b). It is important to note a 

considerable portion of the readily bioavailable fraction of the total DOC pool may be 

attributed to secreted algal organic matter, especially in HAB impacted environments 

(Nguyen et al. 2005, Zhou et al. 2014). Thus, the shifts in community composition and 

kinetics of MC degrading consortia when exposed to labile organic carbon observed in this 

study are reflective of shifts in composition and kinetics of degrading communities during 

collapse or senescence of a significant bloom event in the environment.   
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 We further recognize the limitations of the current experimental approach because 

isolation based-studies have the tendency to alter MC degradation kinetics from that in the 

environmental setting. Culturing these isolated communities on MC as the sole carbon and 

energy source may have had the most significant impact on changing the original 

physiological state and structure of the natural community (Mou et al. 2013). Moreover, 

sub-culturing, which is necessary for maintaining the viability of each consortium, may 

have led to unintended shifts in the community composition and kinetics of substrate 

metabolism from initial isolation (Jiao et al. 2016). However, regardless of these 

unintended effects from enrichment and culture maintenance, in the absence of an in-situ 

tracking mechanism to follow the dynamics of different MC-degrading populations in the 

natural environment, isolating a consortium and studying its degradation kinetics under 

controlled laboratory conditions is necessary.  

Improvement in the experimental design can be achieved by quantifying the total 

mlr MC-degrading population in each consortium or natural environment through the 

tracking of the known MC-degradation gene, i.e., mlrA gene, by quantitative PCR (qPCR). 

The mlrA gene copy number may be correlated with the period of lag phase in the 

degradation curve, such that MC-degradation can only be observed after the mlrA gene 

level reaches a certain threshold concentration. Determining the ratio of mlrA to 16S rRNA 

gene copy in each consortium or the natural environment may elucidate the difference in 

the degradation kinetics that was observed among different consortia. Confidence in the 

results would have been greatly improved if the presence of these MC-degrading 

populations could be directly evaluated through tracking mlrA gene expression by reverse 

transcription quantitative PCR (TR-qPCR). These analyses would have provided crucial 
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quantitative indications as to the active degradation bacteria. Lastly, tracking the mlrA and 

16S rRNA gene copy number in each consortium could provide some explanation as to the 

high variability in growth rates experimentally observed using OD600 and flow cytometry. 

It is important to acknowledge here that the mlrA gene detection protocols that are 

described above will not quantify the total abundance of degrading populations within 

each consortium. Many previous studies have indicated that alternative degradation 

pathways (i.e., xenobiotic degrading) may exist and contribute to the removal of MCs in 

addition to the mlr pathway identified (Mou et al. 2013, Lezcano et al. 2016). Despite these 

limitations in quantifying total degrader abundances, the initial consortia composition (i.e., 

the proportion of MC-degrading vs. non-degrading populations) was a primary factor 

governing observed differences in cell growth kinetics across replicate experiments.  

5. Conclusions 

The results that are presented in this study exemplify the intimate link between MC-

biodegradation and alternative organic carbon sources in the environment. In the presence 

of a readily available organic carbon source (ethanol), a statistically significant change to the 

taxonomic composition of the MC-degrading communities was observed. The following 

specific, statistically significant changes in taxonomic composition were detected with the 

addition of an organic carbon source: (1) an increase in the abundance of members that were 

previously unobserved in each community without ethanol; (2) a shift in the abundance of 

representative taxa (including Rhizobiales, Pseudomonadales, Xanthomonadales, and 

Burkholderiales); (3) a variation in the abundance of genera previously affiliated with MC 

biodegradation (i.e., Sphingopyxis and Stenotrophomonas); and, (4) an increase or decline in 

simulated Alpha diversity for sediment and lake water consortia, respectively. Changes in 
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simulated Alpha diversity metrics in the presence of ethanol generally agreed with trends in 

experimentally observed Beta diversity metrics. These changes to the community structure 

in the presence of an organic carbon source were paralleled by a statistically significant 

decline in MC biodegradation half-lives, as predicted through the application of a bi-phasic 

kinetic model.  

 The instability of the MC degrading communities in the presence of an organic carbon 

source presents a significant challenge to the advent of MC remediation technologies, such 

as biofiltration. Depending on the environmental conditions of the lake or reservoir (i.e., the 

trophic status), among many factors, high MC treatment variability will be expected in 

practice as other available DOC, as opposed to MC, may be considered as the primary 

carbon/energy source for many degrading populations within these greater bacterial 

communities. However, before biofiltration strategies to address these issues can be fully 

considered, the underlying mechanisms driving these changes must be further elucidated 

and disentangled. In addition to potential substrate competition between MC and available 

DOC, the potential higher order interactions between community members may change 

significantly in the presence of an alternative organic carbon source. Future studies should 

consider the isolated study of these potential mechanisms that are indicated above to more 

clearly identify why changes in MC-degrading bacterial community structure and 

degradation kinetics occurred in the presence of an alternative organic carbon source. 

 In addition to temperature and pH, changes in nutrient availability, such as the 

concentration of alternative organic carbon sources, is likely one of the many environmental 

factors that govern MC-biodegradation kinetics in the environment. The outcome from this 

study highlights the challenges in advancing biofiltration into a truly “engineered” treatment 
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system, as MC removal kinetics may be highly variable under different environmental 

conditions. As of current, biofiltration may serve as a pretreatment or post treatment system 

to reduce dissolved MC concentrations in drinking water. Additional treatment barriers, 

such as ozonation or activated carbon, are necessary to protect the safety and quality of 

drinking water resources. 
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Chapter 3: Development and Verification of a Mechanistic Model to 
Predict Microcystin Removal in Biological Filters 
 
Abstract: Accurate and reliable mechanistic modelling of drinking water biological 

filtration treatment systems is critical to obtain insight into contaminant removal efficiency 

and the identification of efficient operational strategies and design practices to enhance 

contaminant removal. However, modelling any biological treatment system is extremely 

complex, where challenges reside in how to efficiently and accurately capture the key 

underlying processes to include in the model structure, while at the same time avoiding 

overparameterization and unnecessary complexity. In this chapter, a novel, steady state 1-

D mechanistic model (MC-BIOFILT) was developed to adequately predict microcystin (MC) 

removal in biofiltration systems. This model considers the growth limiting substrate (MC) 

and MC-degrading bacterial cells, both in aqueous (suspended) and solid biofilm forms, as 

the three primary state variables affecting MC transformation. MC transport and removal 

was modelled by incorporating physico-chemical adsorption, advection, dispersion, as well 

as biodegradation by the aqueous and immobilized MC degrading populations. MC-

degrading bacterial cell transformation was governed by growth (following Monod 

kinetics), attachment of aqueous cells to immobilized media, detachment of biofilm to 

aqueous cells, and decay (in addition to advective and dispserive transport). This model 

also captures bioclogging as a potential mechanism affecting physical transport of cells and 

MC substrate.  A series of numerical verification experiments ascertained that the 

numerical solver is both accurate and stable, agreeing with all analytical solutions tested 

against. In addition, preliminary laboratory experiments have effectively calibrated the 

adsorptive and dispersive characteristics of MC transport. Future study will aim to expand 
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MC-BIOFILT to two dimensions and further paramterize the transport and transformation 

of MC-degrading bacterial cells, both in aqueous and solid biofilm forms. Moreover, a series 

of model validation experiments will be performed to ensure that the structure and 

calibrated parameters of MC-BIOFILT can adequately reproduce the real-world 

performance of biofiltration systems targeting MC removal.   

1. Introduction and Background  
 

 Mechanistic models describing the full scope of underlying physical, chemical, and 

biological processes taking place during biological filtration of drinking water are critical to 

accurately and precisely predict the removal of toxic and noxious water quality 

constituents, including algal biotoxins (Rittmann and McCarty 1980, Zhang and Huck 1996, 

Hozalski and Bouwer 2001a, Rittmann and Stilwell 2002, Qiongqiong et al. 2008). 

Developing mechanistic models of these treatment systems can expand our current 

understanding of the governing theory describing these underlying processes, leading to 

improvements in full scale design and operation. Ultimately, models describing biological 

treatment processes may further both the operator’s and engineer’s comprehension of the 

performance of these systems under a variety of environmental, operational, and hydraulic 

conditions expected in practice (Rittmann et al. 2002).  

 Of all the advantages complex computer simulations can bring, often the most 

difficult question is how to efficiently structure the model based on scientific theory to 

produce accurate and repeatable representations of reality, within a certain level of 

acceptable statistical confidence. Biological treatment systems are notoriously some of the 

most complex systems to model, as these processes are highly variable in space and time 

and depend on countless physical and metabolic interactions among existing microbial 
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populations, many of which cannot be detected or monitored (i.e., in real time) using 

advanced bio-molecular techniques (Kirk et al. 2015, Azeloglu and Iyengar 2015, Rittmann 

et al. 2002). The environmental variables driving these microbiological treatment systems 

(such as pH, water temperature, nutrient concentrations) are also dynamic, wide-ranging, 

and difficult to monitor (Kirk et al. 2015, Azeloglu and Iyengar 2015, Rittmann et al. 2002). 

Moreover, the scientific theory governing the fate, distribution, and subsistence of these 

microorganisms and nutrients sustaining the growth of these microorganisms is a 

combination of several disciplines, where uncertainty may arise from multiple assumptions 

or conventions tailored by each. Finally, there are issues with scale up of the numerical 

simulations of these systems, where the behavior of one system on the laboratory scale is 

often not in agreement with the behavior of the system on a larger scale (Hozalski and 

Bouwer 2001b).  

 Despite the challenges identified above, the advancement in computing power over 

the last decade has enabled the development of new mechanistic biological models (i.e., in 

systems biology) that can mathematically account for the high complexity of these systems 

(Faust and Raes 2012, Song et al. 2014). However, many of the mechanistic, systems 

biology models that have been developed to describe microbial growth and community 

(i.e., metabolic) interactions may suffer from over-parameterization and inclusion of 

unnecessary complexity (Banga and Balsa-Canto 2008, Chis et al. 2011b, Villaverde and 

Banga 2014). Overparameterization refers to the fact that any mathematical model, no 

matter how far away from the true representation of reality, can fit the experimental data, 

given that the number of parameters in the model structure is sufficient to fit the data (Chis 

et al. 2011b, Villaverde and Banga 2014). But, are the parameters in the model realistic or 
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even physically relevant? Can each parameter be measured independently of the system at 

hand? Is all the complexity included in the model structure absolutely necessary to 

reproduce the experimental data?  After considering these key questions, it is apparent that 

a model structure that minimizes the number of physically relevant parameters (all of 

which can be measured independently), avoids unnecessary complexity, and ensures 

computational efficiency is advantageous in the long run.  

 As of current, little research has been conducted regarding the development of 

numerical simulations to predict algal toxin removal in biological filters. However, a 

significant amount of modelling work has been conducted regarding the removal of organic 

compounds (more specifically biodegradable dissolved organic carbon or assimilable 

organic carbon) in these filtration systems (Rittmann and McCarty 1980, Billen et al. 1992, 

Laurent et al. 1999, Zhang and Huck 1996, Hozalski and Bouwer 2001a, 2001b, Rittmann et 

al. 2002, Rittmann and Stilwell 2002, Qiongqiong et al. 2008). Rittmann and McCarty 

(1980) was one of the pioneering studies to model biofilm processes and apply the same 

principles in drinking water treatment filtration applications. The model developed in their 

study assumed that a steady state biofilm could exist in porous media, where a thickness of 

biofilm could be predicted from a general bulk substrate concentration existing in the 

interstitial pore space. Standardization of this model for drinking water treatment 

applications was presented in Rittmann (1990) that developed operational principles and 

guidelines for drinking water treatment biological filtration systems based on four model 

parameters and normalized loading curves. Details of the actual model parameters, 

theoretical approach, and loading curves developed were presented in the background 

section for reference. 
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 Billen et al. (1992) developed the CHARBROL model for simulation of biodegradable 

dissolved organic matter (BDOC) in the granular biological activated carbon process during 

drinking water treatment. The CHARBROL model took into consideration three different 

fractions of biodegradable organic carbon with different assimilation capacities (i.e., 

rapid/slow degradation) and showed that BDOC removal was directly proportional to the 

influent BDOC concentration at specific empty bed contact times (EBCTS) (Billen et al. 

1992). 

Zhang and Huck (1996) introduced another steady state biofilm model for analyzing 

the removal of assimilable organic carbon (AOC) in plug flow biological reactors, which was 

similar to that proposed by Rittmann and McCarty (1980). This study determined that the 

dimensionless empty bed contact time, which is a function of the actual empty bed contact 

time, specific surface area of the medium, and the ease of biodegradation/diffusion in the 

biofilm, is an effective predictor for effluent AOC concentrations, which appropriately 

described the linear experimental relationship observed between influent AOC 

concentration and effluent AOC concentration. 

Hozalski and Bouwer (2001a, 2001b) presented the first transient biofilm model 

that was applied and validated to predict biodegradable organic matter (BOM) removal in 

drinking water treatment practice. The Hozalski and Bouwer model incorporated substrate 

(BOM) transport, aqueous cell transport/growth, as well as biofilm thickness growth/loss 

mechanisms. An innovative feature in the model developed by Hozalski and Bouwer 

(2001a, 2001b) was the introduction of an instantaneous biofilm loss term from the 

backwashing process. 



126 
 

More recently, a comprehensive biofiltration model based on similar principles to 

Rittmann and McCarty (1980) was developed by Rittman et al. (2002) to predict the 

removal of multiple species of water quality constituents as mediated by several types of 

bacteria within a biofilm community (heterotrophs, autotrophs, etc.). This model, called the 

Transient State Multiple Species (TSMS) took into account the dynamics of biofilms during 

drinking water treatment by considering four different bacteria types (heterotrophs, 

ammonia oxidizers, nitrite oxidizers, inert biomass), seven chemical species 

(biodegradable organic matter, ammonium nitrogen, nitrite/nitrate nitrogen, soluble 

microbial products, dissolved oxygen), eight distinct chemical reactions to describe the 

utilization of these species in the biofilm, substrate transport of species in the 

biofilm/porous media, growth, decay, lysis of biomass, and biofilm detachment processes. 

Qiongqiong et al. (2008) developed a relatively simple steady state, analytically 

based simulation of biological filtration of natural organic matter (NOM) to Hozalski et al. 

(2001a,2001b) for drinking water treatment applications without considering diffusion of 

substrate within the biofilm or mass transfer limitations of substrate transport from the 

bulk liquid to the surface of the biofilm (which was fundamental to most previous models 

proposed by Rittmann et al.). The model introduced by Qiongqiong et al. (2008) considered 

the transport of natural organic matter (NOM), aqueous cells (attachment only), and 

growth/detachment of solid biomass cells (and no effects such as backwashing). 

The main drawback to these previously developed models is the fact that they 

attempt to integrate microscopic (pore scale) approaches into a macroscopic (continuum 

based) model structure. The microscopic approaches that are included are generally focused 

on substrate mass transport to the biofilm surface as well as diffusive transport of substrate 
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throughout the biofilm. The parameters associated with the microscopic transport, including 

the molecular diffusion coefficient in liquid and in the biofilm for most water quality 

constituents, are generally difficult to constrain and measure independently. Moreover, the 

significance of these parameters, from an operational or design standpoint is rather limited 

outside the realm of research. Thus, it may be more beneficial to “back out” and consider 

only the macroscopic level of processes occurring within the porous media of a biological 

filter, to not only simplify the processes occurring, but to provide a realistic framework for 

design, operation, and monitoring.  

Importantly, all of the currently published biological filtration models do not consider 

important feedback processes between the microorganism growth and the hydraulic 

conductivity or porosity of the media. This mechanism, also referred to as “bioclogging,” is a 

critical process affecting the development of the flow field throughout the course of the filter 

operation (Thullner et al. 2002a, 2002b). The study of bioclogging has been introduced in 

the groundwater field and is especially relevant for bioremediation processes, as it produces 

heterogeneity in the availability of electron donors (i.e., organic carbon) and acceptors (i.e., 

oxygen) over time. In effect, the formation of a biofilm on immobilized media from 

microorganisms within the influent water will block the pore space over time and result in a 

channeling or the development of preferential flow paths. This biological-physical feedback 

process affects the dynamic availability of substrate within a biological filter, which 

ultimately influences the stability of these biofilm communities. Including this bioclogging 

feedback process will also provide valuable information on the development of head loss 

across the filter over time for optimal hydraulic performance.  
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A more pertinent aspect that has not yet been introduced in these previous 

simulations is the advent of modelling the change in community structure of the 

microorganisms over time that are actually present and performing the degradation. A 

critical assumption that each of these previous studies has made is that all microorganisms 

are capable of degrading any given substrate at any given time, which may be far from the 

case in the dynamic environment of a biofilter. Although Rittmann et al. (2002), Rittmann 

and Stilwell (2002) has considered the fluctuation in abundance and distribution of 

different communities (autotrophs, heterotrophs, inert biomass) these studies do not 

attempt to define what populations within these communities are actually performing the 

task at hand. This assumption may drastically overestimate the actual treatment efficiency 

of the system, given that the presence of certain bacteria to perform the degradation are 

transient in nature, and may change due to different environmental stimuli (nutrients) or 

hydraulic conditions (fluctuations in the HLR). Including this change in the bacterial 

community structure may also better reflect the removal of algal toxins in biological 

filtration systems, as the removal efficiencies of toxins greatly depends on the presence of 

microorganisms that are specific to the degrading process (Ho et al. 2012a).   

 Therefore, considering the previous limitations in mechanistic biofiltration models 

presented in the scientific literature, the focus of this chapter will be to develop and 

validate an efficient and reliable one- and two-dimensional numerical model that can 

simulate the biodegradation of microcystin within a biological filter. The numerical 

simulations will be verified using developed analytical solutions and parameters calibrated 

using a sequence of experimental, laboratory-based investigations. Ultimately, the primary 

objective after developing this model will be to achieve an improved predictive 
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understanding of the most important biological treatment mechanisms and to identify key 

operational and design parameters that improve the reliability and efficiency of algal 

biotoxin removal in biofiltration systems.   

2. Experimental and Mechanistic Modelling Approach  

2.1 Overview of the Mechanistic Model 
 

The mechanistic model developed in this research to predict biological filtration of 

microcystin toxins integrated theory and principles from contaminant fate and transport, 

colloid/deep bed filtration, and bioclogging. A macroscopic approach was adopted to model 

each of the unique processes occurring during biological filtration. The core conceptual 

structure of the mechanistic model accounts for water flow through saturated porous 

media, microcystin transport and degradation, aqueous biomass transport and 

transformation (attachment, growth), as well as solid biomass transformation (decay, 

growth, detachment) (Figure 18). The governing equations for all the representative 

processes are first assumed to be at steady state, as the time scale for biomass growth is 

considerably longer than the time scales associated with water flow, and 

microcystin/aqueous cell transport. However, since the time scales of both microcystin and 

aqueous biomass transport are equivalent, the numerical solutions predicting the 

fate/transformation of these species were coupled. The specific structure of the numerical 

solution strategy will be further discussed after a brief review of the governing ordinary 

and partial differential equations for fluid flow, microcystin/aqueous biomass transport, 

and solid biomass transformation processes. 



130 
 

 

Figure 18. The main conceptual structure of the mechanistic model developed in this study. 

Saturated water flow was accounted for in the computational model by solving the 

steady state groundwater flow equation (for confined flow, change in storage is negligible, 

Equations 1 and 2), assuming that the media was isotropic and homogenous. This 

assumption was valid as biofilter media has a high uniformity coefficient, and typically 

consists of medium-coarse silica sand (Evans et al. 2013a, 2013b). Equation 1 is often 

referred to as the 1D Laplace equation, where Txx refers to the transmissivity of the porous 

media (m2/day), h the head (m), and Ss the specific storage of the media (unitless). It is 

important to note that the x-direction signifies water flow in the vertical direction, which is 

assumed to be from the top to the bottom of the biofilter. 
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The steady state fate and transport of microcystin-LR substrate concentration (C), 

aqueous bacteria cells (Xa), and solid biomass (Xs) were taken into account from existing 
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contaminant transport theory (Kildsgaard and Engesgaard 2001, Bear and Cheng 2010, 

Bear 2013). The three fundamental equations describing the steady state (left hand size is 

equivalent to zero) transport of these species throughout porous media were defined 

below in Equations 3-5 (in 1D, units are given in length (L), time (T), and mass (M)). The 

equation for microcystin transport (3) was modified assuming linear sorption 

characteristics of the porous media. We also considered nonlinear Monod kinetics (as 

described in the upcoming section) for microbial growth, attachment of suspended 

biomass, detachment of solid biomass, and decay of suspended and attached biomass. 

                        𝑅
𝜕𝐶

𝜕𝑡 
= 𝐷

𝜕2𝐶

𝜕𝑥2 −  𝑣
𝜕𝐶

𝜕𝑥
− 

𝜇𝑚𝑎𝑥

𝑌

𝐶

𝐾𝑠+𝐶
𝜎𝑎𝑋𝑎 −

𝜇𝑚𝑎𝑥

𝑌

𝐶

𝐾𝑠+𝐶
𝜎𝑠𝑋𝑠𝐼𝑏𝑖𝑜 

𝜌𝐵𝑢𝑙𝑘

𝑛
  (3) 

 

                  
𝜕𝑋𝑎

𝜕𝑡 
= 𝐷

𝜕2𝑋𝑎

𝜕𝑥2 −  𝑣
𝜕𝑋𝑎

𝜕𝑥
+ 𝜇𝑚𝑎𝑥

𝐶

𝐾𝑠+𝐶
𝜎𝑎𝑋𝑎 − 𝑘𝑑𝑋𝑎 +

𝜌𝐵𝑢𝑙𝑘

𝑛
𝑘𝑑𝑒𝑡𝑋𝑠 − 𝑘𝑎𝑡𝑡𝑋𝑎  (4) 

 

                             
𝑑𝑋𝑠

𝑑𝑡 
= 𝜇𝑚𝑎𝑥

𝐶

𝐾𝑠+𝐶
𝜎𝑠𝑋𝑠𝐼𝑏𝑖𝑜 − 𝑘𝑑𝑋𝑠 − 𝑘𝑑𝑒𝑡𝑋𝑠 +

𝑛

𝜌𝐵𝑢𝑙𝑘
𝑘𝑎𝑡𝑡𝑋𝑎  (5) 

 

Where C is the concentration of microcystin-LR (M/L3), t is the time (T), x is the filter depth 

(L), Xa is the concentration of bacterial aqueous species (M/L3), Xs is the concentration of 

solid biomass (M/M), D is the longitudinal dispersion coefficient (L2/T), v is the interstitial 

pore water velocity (L/T), µmax is the maximum specific growth rate (1/T), Y is the yield 

coefficient, Ks is the half saturation constant (M/L3), kd is the first order decay coefficient 

(1/T), kdet is the first order detachment coefficient (1/T), katt is the first order attachment 

coefficient (1/T), ρbulk is the bulk density (M/L3), n is the porosity (unitless), R is the 

retardation coefficient (unitless), and 𝜎𝑎 and 𝜎𝑎  represent the fraction of the total 

bacterial populations that are active microcystin degraders (explained in section 2.2).  

The Ibio term was included from bioclogging theory to represent the maximum 

available space for biomass to grow given some initial clean bed porosity (Kildsgaard and 
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Engesgaard 2001) (Equations 6 and 7). In Equations 6 and 7, Xmax represents the maximum 

theoretical biofilm mass that can fit in the available pore space, which is a function of the 

clean bed porosity (n, unitless), the bulk density of the porous media (𝜌𝑏𝑢𝑙𝑘, M/L3) and the 

density of the solid biofilm (𝜌𝑥,𝑠, M/L3). The Ibio term should theoretically be included to 

account for the subdued transport of nutrients to the solid biomass only as a result of 

clogging of the available pore space. The three equations presented in the following section 

were used to estimate the corresponding change in hydraulic conductivity from a given 

change in solid biomass (Xs). 

                                                                       𝐼𝑏𝑖𝑜 = 
𝑋𝑚𝑎𝑥−(𝑋𝑠)

𝑋𝑚𝑎𝑥           (6) 

 

                                                                       𝑋𝑚𝑎𝑥 = 𝑛
𝜌𝑥,𝑠

𝜌𝑏𝑢𝑙𝑘
   (7) 

 

2.2 Describing Bacterial Growth, Decay, Biofilm Attachment, and Biofilm Detachment  
 

As compared to first order kinetics, the Monod model is a more realistic expression 

of microbial growth and is based from experimental observations expressing the bacterial 

growth rate (dX/dt) as a hyperbolic function of the limiting primary substrate 

concentration (S or C) (Figure 19). At low initial substrate concentrations, the relationship 

between microbial growth rate and substrate concentration is linear, whereas the 

relationship between microbial growth rate and substrate concentration at much higher 

substrate concentrations is not concentration dependent (and asymptotic). Two model 

parameters are required to make this prediction between bacterial growth rate and 

primary substrate concentration, including the maximum growth rate (µmax) and the half 

saturation constant (Ks, the substrate concentration corresponding to half of the maximum 

growth rate). In addition, the yield coefficient (Y) is required in the substrate utilization 
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kinetics, which relates the amount of biomass produced for each mass unit of substrate 

consumed (Shuler and Kargi 2002, Kargi 2009). 

 

Figure 19. The Monod model of bacterial growth and substrate utilization. 

The bacterial growth and substrate utilization rates can be expressed 

mathematically by Equations 8 and 9 below, where each ODE is coupled and dependent on 

the maximum growth rate, microorganism concentration (X), the half saturation constant, 

and the current substrate concentration (C).  

                                                                 
𝑑𝑋

𝑑𝑡 
= 𝜇𝑚𝑎𝑥𝑋𝑎,𝑠 (

𝐶

𝐾𝑠+𝐶
)      (8) 

                                                               
𝑑𝐶

𝑑𝑡 
= −

𝜇𝑚𝑎𝑥

𝑌
𝑋𝑎,𝑠 (

𝐶

𝐾𝑠+𝐶
)  (9) 

It is important to note that the biokinetic parameters (µmax, Ks, and Y) will vary with 

the type of microbial biomass considered (i.e., solid versus aqueous biomass), and the 

model was constructed to explicitly account for this difference. Again, one of the main 

differences between the aqueous and solid biomass fractions of degrading bacteria was 

that the solid biomass (Xs) represents the weight of biomass normalized by the weight of 

solids (i.e., sand grains).  

An innovative concept proposed in the structure of this mechanistic model is 

explicitly accounting for the presence of bacteria within the biofilm community that can 
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actually perform the specialized function of microcystin (MC) degradation. As it is expected 

that the MC-degrader population may change significantly over time and when exposed to 

different environmental and hydraulic conditions, it will be important to account for the 

fraction of the total bacteria population that can readily metabolize MC. A new model 

parameter, σa,s, will relate the fraction of microcystin degrading population to the total 

bacterial population for both aqueous and suspended biomass. As observed in Equations 

10 and 11 (where aqueous biomass is portrayed), this parameter will be added to the 

Monod model describing growth and MC degradation to scale both the active solid and 

aqueous bacterial biomass that is actually growing on the microcystin (i.e., Xa,d or Xs,d) to the 

total bacterial population (Xa  or Xs) within the transport equations introduced above.   

                                          𝜎𝑎 = 
𝑋𝑎,𝑑

𝑋𝑎
   (10) 

                                  
𝑑𝑋𝑎

𝑑𝑡 
 =  𝜇𝑚𝑎𝑥

𝐶

𝐾𝑠+𝐶
𝜎𝑎𝑋𝑎  (11) 

The predictive model proposed in this research will consider the transport of 

aqueous bacteria as an integral component to the development of biofilms (solid biomass) 

that mediate degradation of microcystin toxins. The first and foremost mechanism in which 

biofilms form and proliferate is related to bacterial attachment. As mentioned in detail 

throughout the background chapter of this dissertation, many electrochemical forces and 

interactions between the bacterial particles and the sand grain (collector) surfaces, as well 

as hydrodynamic forces, influence the extent (reversibility) of attachment and frequency of 

contact with the grain surface.  

In this study, we consider the attachment of bacteria as a linear first order process, 

similar to models presented for a variety of porous media, deep bed filtration, and colloid 
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filtration studies (Kildsgaard and Engesgaard 2001, Brovelli et al. 2009). The first order 

attachment coefficient can be calculated according to existing theoretical relationships 

developed throughout deep bed and colloid filtration theories and depends on two main 

parameters, the collision efficiency ∝ and collector efficiency η (Equation 2) (Rajagopalan 

and Tien 1976, Ren et al. 2000, Schiebe et al. 2007). The collector efficiency represents the 

probability of bacterial contact with a given grain surfaces, whereas the collision efficiency 

represents the lumped probability of bacterial attachment upon contact with the grain 

surface (due to chemical adsorption and all other lumped forces or means).    

                                                              𝑘𝑎𝑡𝑡 = 
3(1−𝜃)𝑣𝑝∝𝜂

2𝑑𝑔
   (12) 

Where 𝜃 is the porosity, 𝑣𝑝 is the pore water velocity, 𝑑𝑔 is the representative grain 

diameter (d10), ∝ is the collision efficiency, and 𝜂 is the grain collector efficiency. 

The grain collector efficiency (𝜂) can be estimated using the following theoretical 

relationship developed from deep bed filtration theory (Equation 13, Rajagopalan and Tien 

1976): 

  𝜂 = 4𝐴𝑠
1/3

𝑁𝑃𝑒
−2/3

+ 𝐴𝑠𝑁𝐿𝑜
1/8

𝑁𝑅
15/8

+ 0.00338𝐴𝑠𝑁𝐺
1.2𝑁𝑅

−0.4  (13) 

 

The As, NPe, NLo, NR, NG dimensionless numbers above can be defined in the following 

equations. 

1) As is a dimensionless number that quantifies the effects of nearby particles on contact 

efficiency (Equation 14): 

                                          𝐴𝑠 = 
2(1−𝛾5)

2−3𝛾+3𝛾5−2𝛾6   (14) 

 

Where 𝛾 is the porosity constant defined below (Equation 15): 
 
                                                            𝛾 = (1 − 𝜃)1/3   (15) 
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2) NPe is a dimensionless number that quantifies effect of diffusion on particle grain 

interactions (Equation 16): 

                                                                            𝑁𝑃𝑒 =  
3𝜇𝜋𝑣𝑝𝑑𝑔𝑑𝑝

𝑘𝑇
                                                                         (16) 

 

Where 𝜇 is the viscosity of water, vp is the pore water velocity, dg is the 

representative grain diameter, dp is the diameter of the bacterial particle, k is the 

Boltzmann constant, and T is the fluid temperature.   

3) NLo is a dimensionless number that quantifies London-Van der Waals attraction for 

bacterial adhesion on grain surfaces (Equation 17): 

                                                                       𝑁𝐿𝑜 = 
4𝐻

9𝜋𝜇𝑑𝑝
2𝑣𝑝

                                                (17) 

 
Where 𝐻 is the Haymaker constant, vp is the pore water velocity, 𝜇 is the viscosity of 

water, and dp is the diameter of the bacterial particle. 

4) NR is a dimensionless number that quantifies the interception of bacteria for 

grain/particle collisions (Equation 18): 

                                                                                         𝑁𝑅 =  
𝑑𝑝

𝑑𝑔
  (18) 

Where dp is the diameter of the bacterial particle and dg is the representative grain 

diameter (d10). 

 

5) NG is a dimensionless number that quantifies amount of sedimentation of bacteria 

on the grain surface (Equation 19): 

                                                                            𝑁𝐺 =  
𝑔(𝜌𝑝−𝜌𝑓)𝑑𝑝

2

18𝜇𝑣𝑝
     (19) 
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Where 𝜌
𝑝
 is the density of bacterial particles, 𝜌

𝑓
 is the density of the water, vp is the pore 

water velocity, 𝜇 is the viscosity of water, g is the gravitational acceleration 

constant, and dp is the diameter of the bacterial particle. 

 

6) The collision efficiency (∝) can be estimated either in the laboratory or fitted 

empirically from experimental data.   

 Bacterial transport is further affected by potential decay (cell lysis or death) and 

release of bacterial cultures from sand grain surfaces that may occur due to reversible 

detachment mechanisms (Rittmann et al. 1982b, Engesgard et al. 2002, Brovelli et al. 

2009). Reversible detachment mechanisms may include release of bacteria due to 

hydrodynamic conditions within the porous media and fluid shear. Therefore, we extend 

the aqueous bacterial transport model to include bacterial detachment and decay 

mechanisms and assume a linear, first order coefficient for each, similar to the attachment 

mechanism proposed. 

 Rittman et al. (1982b) developed an empirical relationship to estimate the first 

order detachment coefficient as a function of fluid shear, which was later adopted by 

Brovelli et al. (2009). This quantitative estimate of the reversible biomass loss is also 

adopted in this proposed research to predict the bacterial detachment properties of the 

porous media (Equation 20).   

                                                                     𝑘𝑑𝑒𝑡 = 𝐶𝑑 [
µ(1−𝜃)3𝑣𝑝

𝜃3𝑑𝑔
2𝑀

]  (20) 
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Where Cd is a unitless, empirical parameter (2.29E-06), µ is the viscosity of water, 𝜃 is the 

porosity, vp is the pore water velocity, M is the specific surface area of the porous media, 

and dg is the representative grain diameter (d10).  

2.3 Accounting for Bioclogging of Biofilter Media 
 

Bioclogging of a porous medium can be defined as a reduction in pore space due to 

the growth of microorganisms which has a direct effect on the available volume for fluid 

flow (Thullner et al. 2002a, 2002b, Thullner 2010). Bioclogging is considered in this study 

as a critical mechanism that affects the volumetric throughput of water in a given biological 

filtration unit due to the growth of biofilms on immobilized porous media. Several 

theoretical models have been developed to predict the mechanisms associated with 

bioclogging in porous media and differ according to the scale studied (i.e., macroscopic vs. 

microscopic). Microscopic models generally consider the distribution of biomass growing 

on a particular surface, which have been proposed to range from continuous biofilms, 

discrete micro-colony structures, and plugs near pore throats (Clement et al. 1996, 

Thullner 2010). The biofilm approach assumes continuous and uniform biomass growth on 

porous media, whereas the micro-colony approach assumes discrete (patchy), 

heterogeneous colony communities that contribute to pore clogging (Taylor and Jaffé 1990, 

Vandevivere and Baveve 1992). Other microscopic models assume that porous media can 

be defined as a bundle of parallel pores (capillary tubes) and biomass grows on the inside 

lining of the tubes, contributing to plug formations (Vandevivere 1995). Macroscopic 

models do not address this initial distribution of biomass or propose any specific growth 

patterns of biomass and take a spatially averaged approach to measuring biomass (Clement 

et al. 1996). Clement et al. (1996) argued that macroscopic models were theoretically more 
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sound as discrepancies for microscopic models in combining representative elementary 

volume (REV) scale models with continuum-based models of fluid flow (Darcy flow) may 

arise.  

This study will integrate the classic macroscopic approach analytically derived by 

Clement et al. (1996) to predict the effects of bioclogging on biofilter operation. This model 

was also adopted by other more current studies for 2D analysis of the effects of bioclogging 

on fluid flow through porous media (Kildsgaard and Engesgaard 2001, Brovelli et al. 2009, 

and Seifert and Engesgaard 2012). This macroscopic approach first assumes that biofilm 

growth in the porous media simply affects the initial porosity, regardless of the colony 

distribution. Therefore, the total volume of the pore space occupied by biomass (nX,s) can be 

approximated by the following expression (Equation 21): 

                                                                     𝑛𝑋,𝑠 = 
𝑋𝑠𝜌𝑏𝑢𝑙𝑘

𝜌𝑋,𝑠
  (21) 

 

Where Xs is the concentration of solid biomass (kg biomass/kg soil), 𝜌𝑏𝑢𝑙𝑘 is the bulk 

density of the soil (kg soil/m3 total volume), and 𝜌𝑋,𝑠 is the density of biomass (kg 

biomass/m3 biomass).  

The biomass affected porosity (n) can then be derived assuming some initial clean 

bed porosity (nclean) (Equation 22): 

                                                                 𝑛 =  𝑛𝑐𝑙𝑒𝑎𝑛 − 𝑛𝑋,𝑠   (22) 

The relation between permeability (k, hydraulic conductivity) and porosity can then 

be derived from either the Van Genuchten or Brooks-Corey soil-water retention functions 

(Clement et al. 1996). This resulting mathematical relationship relating hydraulic 

conductivity change and porosity change is presented in Equation 23 for reference. The 
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advantage of this analytical relationship is that no model fitting parameters are required, as 

the biomass density and solid biomass concentrations can be determined experimentally.  

                                             
𝑘

𝑘𝑐𝑙𝑒𝑎𝑛
= (1 −

𝑛𝑋,𝑠

𝑛𝑐𝑙𝑒𝑎𝑛
)
19/6

= (1 − 𝑎𝑋𝑠)
19/6     (23) 

 

Where a is a scaling factor, 𝑎 =  
𝜌𝑏𝑢𝑙𝑘

𝑛𝑐𝑙𝑒𝑎𝑛(𝜌𝑋,𝑠)
, and k is the hydraulic conductivity. 

2.4 Numerical Implementation of the Mechanistic Biofiltration Model (MC-BIOFILT) 
 
               The numerical solution of the steady state groundwater equation involved a finite 

volume discretization technique (centered difference for dispersive term) and explicit 

matrix solution. Similarly, the two coupled transport equations (microcystin/aqueous 

cells) were solved numerically using a cell centered, finite volume-based discretization 

technique. A centered difference approximation was used to approximate the dispersion 

term and a first order upwind scheme was applied to approximate the advective term. 

Since the transport equations included a non-linear term (Monod Kinetics), a Picard 

iteration was introduced to iteratively solve for the correct numerical solutions. In 

addition, the microcystin and suspended biomass transport equations were coupled and 

solved simultaneously using an explicit matrix solution. Finally, the solid biomass growth 

was solved using a 4th order Runga Kutta scheme over the defined time step.    

The numerical solutions were primarily developed for an infinite step pulse type 

boundary condition at the filter inlet obeying the following criteria. Future experimental 

methods will incorporate a time limited step pulse type boundary condition at the inlet of 

the column for comparison (Equations 24 and 25). 

                                                                       𝐶(𝑥 = 0, 𝑡) = 𝐶0  (24) 

                                                                       𝐶(𝑥, 𝑡 = 0) = 0  (25) 
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The boundary condition at the outlet of the column was determined as follows (Equation 
26):  
 

                                                                        𝐶(𝑥 = 𝐿, 𝑡) =
𝜕𝐶

𝜕𝑋
  (26) 

The specific structure of the numerical model solution can be more clearly explained 

graphically (Figure 19). The user first specifies all of the necessary input to run the model, 

including the physical characteristics of the filter (length/width/number of computational 

points), the operational characteristics of the filter (hydraulic loading rate (HLR)), 

temporal dimensions (run time, T, number of time steps), microbial associated parameters 

(specific growth rate, yield coefficient, initial microorganism concentrations), media 

characteristics (bulk density, dispersion coefficient, d10), influent water characteristics 

(viscosity, initial concentration of MCLR, density), and other physical parameters. Although 

the user specifies the number of time points/filter run time, the time step is automatically 

updated during the model evaluation (solid biomass solver) to correspond to a maximum 

increase in 0.05% of the initial biomass concentration. This prevents unnecessary large 

jumps in solid biomass concentration.  

The first step in the model evaluation process is to solve for the steady state head 

and velocity field across the filter. After the steady state velocity field is determined, the 

steady state transport of microcystin and aqueous cells is solved simultaneously. Next, the 

solid biomass is solved for using the initial time step as a guess. If the resulting change in 

biomass is too large (> 0.05% of initial), the time step is reduced, and a new biomass is 

solved for, where the time step value is updated (as indicated above). With the new 

biomass concentration, one of three relationships between solid biomass/porosity and 

hydraulic conductivity is used to update the hydraulic conductivity field, which further 
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changes the steady state head field in the next model evaluation. Once the filter run time is 

reached, the model outputs the concentration, aqueous biomass, hydraulic conductivity 

and solid biomass fields.  

The main assumptions introduced with this model include the following: 1) the 

water quality does not change during operation (i.e., temperature/influent microcystin 

concentration/biomass composition is stationary); 2) microcystin is the limiting substrate 

available for growth (nitrogen and phosphorus are available to sustain growth, organic 

carbon does not affect growth); 3) substrate is readily available in the pore space and to 

microorganisms in the biofilm matrix (no mass transfer resistance or diffusion limitations 

in the biofilm) 4) electron acceptor concentration (oxygen for heterotrophic bacteria) is 

never limiting and no mass transfer limitations or diffusive transport within the pore 

space/biofilm; 4) dispersion coefficients are constant in time (do not update with velocity 

field); 5) no immobile zones exist within the porous media (OK for homogenous/isotropic 

media); 6) Monod kinetics can adequately approximate growth and substrate utilization 

kinetics (no lag phases); 7) only MC-degraders can degrade microcystin (growth rates are 

not identical in suspension and in immobilized biofilms). These assumptions allow the 

model to capture the breadth of fundamental processes occurring within the biological 

filter (bacterial attachment, growth, decay, detachment, and transport) without adding too 

much complexity and avoiding over parameterization.  



143 
 

 

Figure 20. Detailed structure of the MC-BIOFILT model evaluation procedure. 

3. Preliminary Results and Discussion 

3.1 1-D Model Verification Studies 
 

A series of detailed model verification studies were carried out to compare the 

numerical solutions developed in MATLAB (Mathworks, Inc., r2015b) to analytical solutions 

that had been previously derived. These verification studies encompassed comparisons of 

the numerical output to: a) first order reaction, analytical models, b) non-linear reaction, 

analytical models, and c) coupled reaction, analytical models. By considering this full range 

in model verification studies, it was expected that the behavior of the numerical model (i.e., 

the stability and accuracy) would be adequately characterized.  

3.1.1 First Order Reaction Models: Analytical Verification Study #1 
 

In the initial model verification study, a set of steady state, first order analytical 

solutions were applied for preliminary comparison with numerical model simulations. For 
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the initial model verification procedure, we only included first order biodegradation, no 

dispersion, and advection transport and reaction processes (Equations 27 and 28). 

 0 = −𝑣
𝜕𝐶

𝜕𝑥
− 𝐾1(𝐶) − 𝐾2(𝐶)  (27) 

 

                                                                   𝐶(𝑥) = 𝐶0𝑒
(
−𝐾1−𝐾2

𝑣
)𝑥

  (28) 

 
Where K1 and K2 correspond to the following (Equations 29 and 30): 
 

                                                                    𝐾1 =
𝜇𝑚𝑎𝑥

𝑌
∗  𝑋𝑎  (29) 

 

                                                        𝐾2 =
𝜇𝑚𝑎𝑥

𝑌
∗  

𝜌𝑏𝑢𝑙𝑘

∅
∗ 𝐼𝑏𝑖𝑜 ∗ 𝑋𝑠  (30) 

In Equations 29 and 30, Xa and Xs are vectors (in the vertical direction of the filter) 

and are specified by some important initial conditions. For simplicity, we assumed that Xs 

was uniformly distributed with depth (x) and Xa was constant at the inlet, with no initial 

presence throughout the depth of the biofilter.  

Table 6 summarizes the distribution of model parameters incorporated in this initial 

round of model verification study. The hydraulic loading rates (HLRs) considered represent 

the full range of HLRs encountered in practice (min, median, and max) (Evans et al. 2013a, 

2013b). Microbial growth associated parameters were also selected from median reported 

values from studies examining the microbial growth characteristics of biofilm communities 

degrading organic carbon substrates in laboratory scale filtration units (Rittmann et al. 

1986). Similarly, media characteristics were chosen based on the similarity to those 

expected in full scale practice (Evans et al. 2013a, 2013b). The comparisons between 

numerical and analytical models were made at three different Courant (𝐶𝑟 =  
𝑣∆𝑡

∆𝑥
 , where v 

is the interstitial pore water velocity, ∆𝑡 the time step, and ∆𝑥 the grid size) numbers to 

assess the degree of numerical dispersion of the analytical solution for different hydraulic 
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loading rates. Peclet numbers (𝑃𝑒 =  
𝑣∆𝑥

𝐷
, where ∆𝑥 is the grid size, v the interstitial pore 

water velocity, and D is the dispersion coefficient) were not listed here given that the initial 

comparisons did not include the effects of dispersion. 

Table 6- Summary of Values used in the Initial Numerical/Analytical Solution Comparisons 

Variable Name Symbol Nominal Value Units 

Filter length x 1 m 

Number x 

computational 

points 

nxpoints 100 unitless 

Initial concentration C0 10 µg/L 

Aqueous biomass 

concentration 
Xa 6E-05 Kg cells/m3 

Solid biomass 

concentration 
Xs 8E-06 Kg cells/Kg grains 

Cell Maximum 

Growth Rate 
𝜇𝑚𝑎𝑥 8.3E-03 1/second 

Half Saturation 

Constant 
Ks 1.2E-03 Kg MCLR/m3 

Yield coefficient 𝑌 0.2 Kg cells/Kg MCLR 

Bulk density of sand 
𝜌𝑏𝑢𝑙𝑘 

 
1.6E03 Kg/m3 

Porosity of sand ∅ 0.3291 m3 voids/m3 total 

Hydraulic 

Conductivity of Sand 
K 4.69 m/hr 

HLR q 0.0061,6.10,50.10 m/hr 

Interstitial velocity 

of fluid 
𝑣 0.01 m/sec 

Courant Number Cr 0.3710,370.7, 3,448 unitless 

Peclet Number Pe N/A unitless 

 

Overall, for first order degradation scenarios, the numerical approximation to the 

analytical solution were valid for all three Cr number scenarios with corresponding sum of 

squared residuals (SSRs) (L2 norm) ranging on the order of magnitude from 1E-15 to 1E-

18 (Figure 21). Simulations with the lowest flow rate and Cr number demonstrated the 

highest SSR (worst accuracy), whereas simulations with the highest flow rate were 
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improved (best accuracy) (Figure 21). Generally, higher Cr numbers resulted in a higher 

magnitude of numerical dispersion due to the fact that the upwind differencing scheme was 

only first order accurate. However, since the Cr number was changing in magnitude with 

the increase or decrease in velocity (not grid spacing), the poor accuracy of the numerical 

model was likely affected by the high magnitude of first order degradation for simulations 

with low interstitial pore water velocities. 

The magnitude of the microbial growth rates was then altered to investigate to what 

extent the above observation was true, in that higher maximum growth rates result in 

higher discrepancies between the numerical approximation and the analytical solution. The 

magnitude of the maximum growth rates was changed from 8.3E-05, to 8.3E-03, to 8.3E-01 

per second, while all other growth conditions were kept constant (i.e., half saturation 

constant and yield coefficient). In general, the numerical approximations to the analytical 

solutions were valid for all cases, with SSRs ranging from E-20 to E-13 (Figure 22). 

However, higher growth rates (8.3E-01) resulted in higher discrepancies between the 

numerical approximation and analytical solution (under-prediction of the exponential 

decay). Therefore, the accuracy of the numerical solution seems to be directly proportional 

to the magnitude of the growth rate and indirectly proportional to the hydraulic loading 

rates, where the most discrepancy can be expected at low interstitial velocities and high 

microbial growth rates. 
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Figure 21. Numerical approximation (red line) to analytical solution (blue *) comparisons 
and SSR for different hydraulic loading rates, a) Cr = 0.3707 b) Cr = 370.7 and c) Cr = 3,448. 

 

Figure 22. Numerical approximation (red line) to analytical solution (blue *) comparisons 
and SSR for different microbial growth rates, a) μmax = 8.3E-05 b) μmax= 8.3E-03 c) μmax = 

8.3E-01. 

An analytical solution was then obtained for the steady state dispersion, advection, 

and first order reaction equation (Equations 31 and 32). This particular analytical solution 

was derived assuming that the form of the second order ordinary differential equation can 

be reduced to a quadratic equation in which the roots can be solved for analytically 

(Yudianto and Yuebo 2010). The full derivation can be referenced in Yudianto and Yuebo 
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(2010), where the resulting analytical solution is presented below (Equation 32). Here Knet 

refers to the combination of K1 and K2, representing the contributions from both aqueous 

and solid biomass to the overall first order biodegradation rate. 

                                                      0 =  𝐷
𝜕2𝐶

𝜕𝑥2 − 𝑣
𝜕𝐶

𝜕𝑥
− 𝐾1(𝐶) − 𝐾2(𝐶)  (31) 

                                                           𝐶(𝑥) =  𝐶0𝑒
𝑣

2𝐷
𝑥(1−√1+

4𝐾𝑛𝑒𝑡𝐷

𝑣2 )
  (32) 

 
             The agreement between numerical approximations of the steady state ADRE and the 

analytical solution derived above (Equation 32) will now be reviewed for different 

combinations of the Cr and Pe numbers. When varying the Cr numbers, the hydraulic 

loading rates were changed with a constant dispersivity value (α = 0.0103 m). Contrarily, 

when varying the Pe numbers, the magnitude of the dispersivity (αmin = 2.7E-04 m, αmed 

= 2.11E-03 m αmax = 0.2 m) was changed while holding the hydraulic loading rate constant 

(HLR = 6.10 m/hr). The values of the min, median, and maximum dispersivities were 

summarized from the literature for clean bed, uniform sand column experiments with 

length scales at or below 3 m (determined using a conservative tracer). These dispersivity 

values were considered most relevant for the expected laboratory and field conditions for 

validating the model output. The corresponding Pe numbers from the dispersivity values 

and constant HLR were 3,704, 474, and 5 for the verification study. Under both of these 

schemes (i.e., varying Cr or Pe), the effect of increasing and decreasing the maximum 

growth rates will be discussed. Identical conditions for the model input for the previous 

verification study were adopted in this analysis (Table 6). 

                 Changing the Cr numbers with dispersion included (at a realistic Peclet number) 

had little effect on the resulting microcystin transport across the filter compared to without 

dispersion (Figures 21 and 23). The distribution of microcystin-LR across the filter and the 



149 
 

agreement of the numerical simulation and the analytical solution for simulations with 

dispersion included are very similar to results without dispersion at a realistic Pe number 

to full scale biofiltration systems (Pe = 370.70). Changing the maximum growth rate at the 

different Cr numbers with dispersivity fixed also has little effect on the resulting 

distribution of microcystin-LR across the filter and the agreement of the numerical and the 

analytical solutions as compared to the results with no dispersion included.  

               Increasing the dispersivity values (low Pe number, ~5) had a noticeable effect on 

the transport of microcystin across the simulated filter compared to without dispersion 

(Figures 21 and Figure 24). Including dispersion with the first order reaction term 

increased the removal efficiency across the filter as opposed to without dispersion. This 

result was in agreement with what was expected conceptually as dispersion increases the 

mixing potential and availability of microcystin substrate for the degrading bacterial 

community. The overall agreement of the numerical and analytical solutions was excellent, 

with a very low SSR observed for all Pe numbers and either advection or dispersion 

dominated systems (Figure 24).  

                 Some discrepancies were observed between the numerical and analytical 

solutions at much lower Pe numbers that are unrealistic for the system under this study 

(Pe < 0.01, corresponding dispersivity values > 1 m). These discrepancies between the 

numerical approximation and analytical solutions were most likely due to the handling of 

the boundary condition at the filter effluent. For the numerical simulations, the solution 

assumes that the gradient at the previous grid block is equivalent to the gradient at the 

boundary, which may result in an under prediction of the effluent concentration, especially 

at steep gradients near the boundary (brought on by dispersion). This under prediction at 
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the boundary affects the resulting distribution of predicted microcystin concentration 

across the filter, resulting in a slightly altered numerical approximation. 

 

Figure 23. Numerical approximation (red line) to analytical solution (blue *) comparisons 
and SSR for different hydraulic loading rates holding dispersivity constant, a) Cr = 0.3707 b) 

Cr = 370.7 and c) Cr = 3,448. 

 

Figure 24. Numerical approximation (red line) to analytical solution (blue *) comparisons 
and SSR for different dispersion coefficients holding HLR constant, a) Pe = 3,704 b) Pe = 474 

and c) Pe = 5. 

3.1.2 Non-Linear Reaction Kinetics: Analytical Verification Study #2 
 

Following the verification of the first order reaction analytical solutions, non-linear 

reaction kinetics were considered to approximate both microbial growth and substrate 

utilization (of microcystin) according to the Monod model. We first begin the derivation of 

the steady state analytical solution using the transport equation for microcystin (including 
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advection and dispersion), considering growth of both aqueous and solid biomass as 

reaction components, where Monod’s nonlinear mathematical relationship between 

substrate and bacterial growth rate is considered (Equation 33). 

                        0 =  𝐷
𝜕2𝐶

𝜕𝑥2 − 𝑣
𝜕𝐶

𝜕𝑥
−

𝜇𝑚𝑎𝑥

𝑌
𝑋𝑎 (

𝐶

𝐾𝑠+𝐶
) −

𝜇𝑚𝑎𝑥

𝑌

𝜌𝑏𝑢𝑙𝑘

∅
𝐼𝑏𝑖𝑜𝑋𝑠 (

𝐶

𝐾𝑠+𝐶
)      (33) 

To develop useful analytical solutions to the nonlinear terms in Equation 33, we first 

considered the maximum and minimum ranges of the hyperbolic function describing 

bacterial growth rate as a function of substrate concentration. In addition, we considered 

situations in which dispersion was neglected, since most current biofiltration units are 

moderately advectively dominated systems (Pe = 97.10). Finally, the concentration of 

degrading microorganisms remained constant for the development of the first analytical 

solution and the growth of aqueous biomass in the filter was only considered (solid 

biomass was neglected). 

At low substrate concentrations (C<<Ks), the relation between bacterial growth rate 

and substrate concentration was linear and first order. This resulted in a first order 

approximation for the nonlinear reaction terms in Equation 33 (Equation 34). However, at 

high substrate concentrations (C>>Ks), the bacterial growth rates were constant and not 

related to substrate concentration (zero order). The resulting expression for the nonlinear 

reaction terms is now zero order at high substrate concentrations (Equation 35). 

                                                                         
𝑑𝐶

𝑑𝑡 
= 

−𝑣𝑚

𝐾𝑠
(𝐶)  (34) 

                                                                          
𝑑𝐶

𝑑𝑡 
= −𝑣𝑚   (35) 

Where, 𝑣𝑚 =
𝜇𝑚𝑎𝑥

𝑌
𝑋𝑎.  

 
Modifying Equation 33 with Equations 34 or 35 (and neglecting solid biomass and 

dispersion terms) and then integrating the resulting equations results in the following 
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analytical solutions (Equations 36 and 37) for low and high substrate (microcystin) 

concentrations, respectively. 

 

                                                                           𝐶 =  𝐶0𝑒
−𝑘1𝑥    (36) 

                                                                           𝐶 =  𝐶0 − 𝑘0𝑥  (37) 

Where, 𝑘0 =
𝑣𝑚

𝑣
  and 𝑘1 =

𝑣𝑚

𝑣∗𝐾𝑠
. 

 
Another analytical solution was applied for intermediate ranges in substrate 

concentration where the Monod kinetic model is more non-linear than at either extreme 

low or high substrate concentrations. Parlange et al. (1984) detailed an analytical solution 

to Equation 33 at steady state (neglecting dispersion and solid biomass growth) that 

includes nonlinear reaction kinetics for a constant concentration inlet boundary condition 

(Equation 38). Both Bekins et al. (1998) and Goudar and Strevett (2000) further described 

a Lambert W solution to iteratively solve for S as a function of vm (µmax), Ks, S0 (initial 

susbtrate concentration), and distance (x) (Equation 38). 

                                       𝐶 =  𝐾𝑠 ∗ 𝑊 {
𝐶0

𝐾𝑠
exp (

𝐶0−𝑣𝑚𝑥

𝐾𝑠
)}  (38) 

Unlike the preliminary first order degradation verification studies above, the non-

linear comparison studies required a more detailed investigation of the expected range in 

growth characteristics of microcystin degrading bacteria. Thus, microbial growth 

parameters relevant to bacteria native to surface waters were first compiled and used in 

the absence of data for growth parameters of microcystin-degrading bacteria. The 

minimum, median, and maximum ranges for each of these growth parameters are 

presented and were varied in this verification study, ranging from a difference of three to 

five orders of magnitude (Table 7). Lastly, the biomass concentration (using dry weight) of 

the aqueous bacteria entering the filter was determined from median values of carbon 
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contents of bacteria cells presented in the literature as well as an average influent cell 

concentration of 1E09 cells/mL (Table 7).    

Table 7- Summary of Microbial Growth Parameters Used in Verification Studies for Non-
Linear Monod Kinetics 

Variable Name Symbol Units Nominal Value 

Cell Maximum Growth 

Rate 
𝜇𝑚𝑎𝑥 1/second 

1.74E-06 

3.89E-05 

3.83E-04 

Half Saturation Constant Ks Kg MCLR/m3 

5.0E-07 

1.68E-03 

1.21E-01 

Yield coefficient 𝑌 Kg cells/Kg MCLR 

0.13 

0.371 

0.545 

Inlet Aq. Biomass 

Concentration 
Xa Kg cells/m3 0.01 

 

The rate of substrate utilization by a fixed concentration of microorganisms 

(𝑣𝑚 (
𝐶

𝐾𝑠+𝐶
)) was plotted as a function of substrate concentration (C) to determine the 

appropriate ranges in substrate concentrations where the above analytical solutions 

(Equations 36, 37 and 38) would be valid for the min, med, and max ranges in growth 

parameters (Figure 25). The resulting solutions demonstrated relatively limited ranges 

where the above analytical solutions would be valid for both first and zero order 

approximations of the nonlinear substrate utilization kinetics (for all ranges in the growth 

parameters, min, med, and max) (Figure 25B and 25C). From inspection of both subfigures, 

it is evident that the first order approximation threshold is well below 50 µg/L of 

microcystin, somewhere in the range between 0-5 µg/L, whereas the zero-order 

approximation threshold is approximately 0.5E07-1E07 µg/L of microcystin. The initial 

concentration ranges for first, non-linear, and zero order approximations were determined 
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to be 0.01, 100, and 1,000-10,000,000 for all ranges in growth parameters based on the 

trends observed in Figure 25. The initial concentration ranges were varied for the high 

concentration of substrate due to the distinct differences in substrate locations where the 

zero-order approximation was valid (Figure 25C). 
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Figure 25. Dimensionless Monod curves for a) substrate utilization rate as a function of 
microcystin concentration, b) determining the first order approximation threshold (red 

dotted lines are linear approximations), and c) determining the zero-order approximation 
threshold. 

The analytical and nonlinear numerical solutions were first compared at low 

substrate concentrations (C << Ks) using the analytical solution described in Equation 36 at 

A

) 

B

) 

C

) 
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a singular Courant (Cr) number reflecting a minimum operational HLR of a full scale 

biofiltration system (HLRmin = 0.3 m/hr) (Figure 26). At low substrate concentrations, the 

highest removal efficiency of microcystin was achieved for the lowest magnitude bacterial 

growth parameter combinations followed by the median and maximum value combinations 

(Figure 26). Agreement between the analytical solutions and the numerical approximations 

was excellent for each case (SSRs above E-18). The removal of microcystin was generally 

faster at lower magnitude combinations of growth parameters since the rate of bacterial 

growth (at low substrate concentrations) was directly proportional to the µmax/Ks ratio, 

where this ratio was largest for the parameter combinations that were the smallest in 

magnitude (Table 7).  

 

Figure 26. Comparison of analytical and nonlinear numerical solutions for a) minimum, b) 
median, and c), maximum bacterial growth parameters at a minimum HLR (0.3 m/hr) and 

low substrate concentration (C<<Ks). 

 

At high substrate concentrations (C >> Ks), a reduction in the removal efficiency of 

microcystin was observed as compared to at lower substrate concentrations (Figure 27). 

This result was due to the fact that at higher concentrations, the substrate utilization 

kinetics are not dependent on the concentration of substrate, rather the maximum growth 
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rate. Therefore, as the substrate concentration increases, the rate of utilization will not 

increase (as maximum growth rate is fixed), which will result in less removal at higher and 

higher concentrations above the “high” concentration threshold (where C >> Ks).  

The best removal efficiency at high concentrations of microcystin was demonstrated 

by the simulation with the lowest maximum growth rate (Figure 27).  This result was due 

to the fact that the initial substrate concentration was much less for this simulation than 

the simulation with the highest maximum growth rate (on the order of 1,000 compared to 

10,000,000). Comparably, at lower HLRs, the removal efficiency increased as there was an 

increase in contact time for degradation to occur across the filter between the substrate 

and suspended microorganisms. The relatively good agreement between all numerical 

approximations and analytical solutions also indicated that the nonlinear approximation of 

the growth kinetics was valid. The relatively high values of the SSR compared to previous 

experiments (on the order of 1E-05 vs. 1E-18) were due to differences in the scales of the 

substrate concentrations that were under comparison (g/L vs. µg/L) as opposed to actual 

discrepancies between the numerical model simulations and the analytical solutions. 
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Figure 27. Comparison of analytical and nonlinear numerical solutions for a) minimum, b) 
median, and c), maximum bacterial growth parameters at a minimum HLR (0.3 m/hr) and 
high substrate concentration (C>>Ks). Initial substrate concentrations were varied between 

1000, 100,000, and 10,000,000 µg/L, respectively. 

The numerical approximation of the Monod equation at intermediate values of 

substrate concentration (100 µg/L) was very similar to the analytical solution using the 

Lambert W method (Figure 28). These results indicated that the numerical approximation 

using the Picard iteration was robust enough to successfully approximate even the most 

nonlinear portions of the Monod hyperbolic equation. The resulting microcystin removal 

efficiencies across the filters were almost equivalent to the removal efficiencies at low 

microcystin concentrations, but were slightly lower in magnitude (Figure 28). This result 

suggests that the concentration tested for moderate and maximum growth conditions (100 

µg/L) may not have been in the distinct nonlinear portion of the Monod model, and may be 

closer to the linear approximation threshold. Nonetheless, the good agreement with the 

Lambert W solution demonstrated that the numerical solution to the nonlinear model was 

still accurate, with low SSR values observed for each simulation at moderate/high growth 

conditions (Figure 28). 
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Figure 28. Comparison of analytical and nonlinear numerical solutions for a) minimum, b) 
median, and c), maximum bacterial growth parameters at a minimum HLR (0.3 m/hr) and 

moderate substrate concentrations (C~Ks). 

3.1.3 Coupled Non-Linear Reaction Kinetics: Analytical Verification Study #3 
 

The development of the coupled numerical solver was based on a verification study 

of the coupled rate expressions for microbial growth and substrate depletion following 

Monod kinetics. The simple rate expression for microbial growth in the presence of a 

certain growth limiting nutrient is presented in Equation 39 (Shuler and Kargi 2002, Kargi 

2009). The amount of the cellular products and biomass depends on the amount of 

microorganisms present as well as the concentration of growth limiting substrate at any 

given time, t (or position, x) (Kargi 2009). The expression is autocatalytic in that more 

biomass (X) is produced in the reaction as well as certain extracellular products (P). 

                                                                       𝐶 + 𝑋 → 𝑃 + 𝑛𝑋  (39) 

 

The rates of cell biomass formation and substrate utilization are based on Monod 

kinetic rate expressions (Equations 40 and 41) and are coupled by the yield coefficient 

(Equation 45). The analytical solutions of the coupled rate expressions presented were 

achieved by integrating the kinetic expressions below (Equations 42 and 43). The full 
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derivation of the analytical solutions is omitted in this chapter but is presented in Shuler 

and Kargi (2002) and Kargi (2009) for reference. 

                                                         
𝑑𝑋

𝑑𝑡 
= 𝑓(𝐶, 𝑋) =  

𝜇𝑚𝑎𝑥∗𝐶

𝐾𝑠+𝐶
𝑋        (40) 

                          −
𝑑𝐶

𝑑𝑡 
= 𝑔(𝐶, 𝑋) = −

1

𝑌𝑋/𝑆

𝑑𝑋

𝑑𝑡
= −

𝜇𝑚𝑎𝑥∗𝐶

𝑌𝑋/𝑆(𝐾𝑠+𝐶)
𝑋       (41) 

After integration of Equation 40, the following analytical solution is reached for 

determining biomass concentration X as a function of several parameters, with time (t) 

replaced by the position (x) normalized by the interstitial pore water velocity (v). 

(𝐾𝑠𝑌𝑋/𝑆+𝐶0𝑌𝑋/𝑆+𝑋0)

(𝑌𝑋/𝑆𝐶0+𝑋0)
𝑙𝑛 (

𝑋

𝑋0
) −

(𝐾𝑠𝑌𝑋/𝑆)

(𝑌𝑋/𝑆𝐶0+𝑋0)
𝑙𝑛 {

(𝑌𝑋/𝑆𝐶0+𝑋0−𝑋)

(𝑌𝑋/𝑆𝐶0)
} − 𝜇𝑚𝑎𝑥

𝑥

𝑣
=  0     (42) 

 

Where Ks is the half saturation constant (µg/L), YX/S is the yield coefficient (unitless), 𝜇𝑚𝑎𝑥 

is the maximum specific growth rate of the bacteria (1/sec), C0 is the initial substrate 

concentration (µg/L), X0 is the initial microorganism concentration (kg/m3), x is the depth 

along the filter (m), and v is the interstitial pore water velocity (m/sec). 

Similar integration of Equation 41 results in the analytical solution for determining 

substrate concentration C, as a function of several parameters (Equation 43). Again, time 

(t) replaced by the position (x) normalized by the interstitial pore water velocity (v) for 

comparison purposes. 

                  
(𝐾𝑠𝑌𝑋/𝑆+𝐶0𝑌𝑋/𝑆+𝑋0)

(𝑌𝑋/𝑆𝐶0+𝑋0)
𝑙𝑛 {

(𝑌𝑋/𝑆(𝐶0−𝐶)+𝑋0)

(𝑋0)
} −

(𝐾𝑠𝑌𝑋/𝑆)

(𝑌𝑋/𝑆𝐶0+𝑋0)
𝑙𝑛 (

𝐶

𝐶0
) − 𝜇𝑚𝑎𝑥

𝑥

𝑣
=  0      (43) 

Where Ks is the half saturation constant (µg/L), YX/S is the yield coefficient (unitless), μmax is 

the maximum specific growth rate of the bacteria (1/sec), C0 is the initial substrate 

concentration (µg/L), X0 is the initial microorganism concentration (kg/m3), x is the depth 

along the filter (m), and v is the interstitial pore water velocity (m/sec). 
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The analytical solutions to Equations 40 and 41 require a constraint on the 

maximum growth of the microorganisms (Xmax) given some initial microorganism 

concentration (X0), substrate concentration (C0), and yield coefficient (Y) to be valid. This 

constraint is also coupled with the fact that the substrate concentration can realistically 

never be less than 0 (Equation 44). 

                                                                𝑋𝑚𝑎𝑥 = (𝑌 ∗ 𝐶0) + 𝑋0  (44) 

 

Plotting the normalized results for the substrate and microorganism concentration 

as a function of position and interstitial pore water velocity results in two s-shaped 

profiles, one increasing (biomass concentration) to the maximum theoretical limit and the 

other decreasing (substrate concentration) to zero (Figure 29). The parameters used to 

generate the plot of the coupled analytical solutions are similar to Table 6 above, although 

the pore water velocity is much lower to show the characteristic nonlinear S-shape of the 

solutions. These analytical solutions and initial conditions will be used as the basis for 

comparison with the coupled numerical solver. 

 

Figure 29. Example of coupled analytical solution for substrate utilization and bacterial 
growth kinetics. 
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For the model-analytical coupled solution testing, the initial conditions were kept 

identical to those presented in Table 6, except for the initial concentration of microcystin, 

which was maintained at 1,000 µg/L. The testing was conducted at one operational HLR 

(0.3 m/hr, which was often the limiting case), similar to the previous sections, for the range 

of bacterial growth conditions reported (low, moderate, and high) (Figures 30-32). At the 

low HLR used in this comparison, the behavior of the coupled numerical solution was 

erratic at times. Using coarse grid spacing (number of xpoints ~ 100) generally resulted in 

negative results for the 1D concentration field. The negative concentrations were due to the 

inability of the numerical solution to capture the nonlinearity of the analytical solution 

close to the x-axis. Since these results were unrealistic, the grid spacing was refined 

(decreased significantly) to solve this issue. 

The main tactic to refine the grid spacing involved first determining a theoretical 

maximum time tmax and corresponding length scale (Lmax) for a given set of microbial 

growth conditions (which was mainly dependent on the magnitude of Y, C0, and X0) where 

substrate concentrations approached zero. The Lmax value was determined a priori to 

running the numerical model simulations and was based on an iterative solution given that 

the functions in Equations 40 and 41 never truly converge (and approach infinity). The Lmax 

values were then related to the number of computational points required (to prevent 

negative numbers) for each bacterial growth condition (low, moderate, high) (Table 8). It 

seemed that Lmax values below the specified depth of the computational domain (1 m) 

resulted in much lower grid spacing requirements for accurate numerical approximations. 

The difference in required grid spacing is only slightly different for moderate and low 

growth conditions as well, where 10,000 computational points appears to be the limit 
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MATLAB can handle in order to produce a computationally efficient numerical solution. 

Future work will consider a parameter space based on C0, X0, and Y in which different Lmax 

values will result. This procedure will help to define specific ranges where higher grid 

spacing will be necessary to ensure optimal numerical approximations for a wide range in 

bacterial growth conditions. 

Table 8- Summary of theoretical Lmax values and corresponding grid spacing for different 
bacterial growth conditions 

Growth Condition 
Lmax 

(m) 

Computational Points 

(Nxpoints) 

Grid Spacing 

(dx) 

Low 0.1904 10,000 1.904E-05 

Moderate 0.6357 10,000 6.36E-05 

High 6.73 100 0.01 

 

Refining the grid spacing solved the issue of negative concentrations observed for 

substrate utilization, where good numerical approximations of the analytical solutions 

resulted for all of the bacterial growth conditions simulated (Figures 30-32). Low growth 

conditions (lowest values of Ks, µmax, and Y) indicated the quickest removal of substrate 

across the filter as compared to high growth conditions (largest values of µmax, Ks, and Y). In 

addition, moderate growth conditions demonstrated the characteristic asymptotic trend, 

where bacteria growth leveled off as substrate concentrations were exhausted. These 

results indicated that the coupled numerical solver developed in this research could 

efficiently and accurately replicate the derived coupled, analytical solutions when the grid 

spacing was automatically defined by the user. Future model efforts will develop user 

independent grid spacing refinement based on specified ranges in Lmax that correlate with 

different grid spacing for improved numerical model performance. Moreover, results 

demonstrated that the magnitude of bacterial specific growth rate alone does not 
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determine the treatment efficiency of a given biological filtration system, where a specific 

combination of growth-related parameters may increase treatment efficacy. Proper 

analytical solutions will additionally be developed to ensure functioning of the 2D 

numerical implementation of this mechanistic model. Similar approaches to those 

developed herein will be adapted to develop these future 2D comparisons. 

 

Figure 30. Comparison of coupled numerical and analytical solutions for low bacterial 
growth conditions and low operational HLR (0.3 m/hr): a) substrate utilization and b) 

bacterial growth kinetics (blue asterisks are analytical solutions; red lines are numerical 
approximations). 

 

Figure 31. Comparison of coupled numerical and analytical solutions for moderate bacterial 
growth conditions and low operational HLR (0.3 m/hr): a) substrate utilization and b) 

bacterial growth kinetics (blue asterisks are analytical solutions; red lines are numerical 
approximations). 
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Figure 32. Comparison of coupled numerical and analytical solutions for high bacterial 
growth conditions and low operational HLR (0.3 m/hr): a) substrate utilization and b) 

bacterial growth kinetics (blue asterisks are analytical solutions; red lines are numerical 
approximations). 

3.2 Calibration of Mechanistic Model Parameters 
 
 As the mechanistic model developed in this research was purely theoretical, it was 

necessary to parameterize the model using a series of laboratory-based experiments. The 

experiments that were actually conducted were primarily geared toward understanding 

the fate and transport of microcystin, where future experiments will be directed toward 

exploring the model parameters governing the fate and transport of MC degrading bacterial 

cells. Here, we briefly review the results of physico-chemical adsorption experiments and 

flow through, one-dimensional column tests designed to calibrate and understand the 

adsorption and dispersive characteristics of MC when transported through sandy, porous 

media.  

3.2.1 Physico-Chemical Adsorption of MC-LR 
 

The focus of this section of the results was to ascertain the physico-chemical 

adsorption potential of purified microcystin-LR onto cleaned silica sand filter media of the 
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same characteristics used in practice. The specific characteristics of silica sand grains 

chosen shared common traits such as the effective grain diameter (D10), uniformity 

coefficient (UC), and porosity/hydraulic conductivity to sands used in biofiltration practice.  

Batch equilibrium experiments were performed to test whether the assumption of 

first order microcystin adsorption kinetics can be sustained in the proposed model. The 

batch equilibrium experiments consisted of adding a specified amount of sand with a 

certain initial concentration of microcystin-LR (~ 200 µg/L of LR standard) and measuring 

the amount of remaining microcystin after a 24 hour “equilibrium” time period has passed 

(OECD 2000).  

Results from preliminary batch adsorption experiments confirmed the reduced 

adsorption potential of microcystin-LR onto cleaned silica sand (Figure 33). The batch 

adsorption kinetics were also linear, as indicated by the higher correlation between 

microcystin initial concentration in the water (Cw) and that adsorbed to the media surface 

(Cs). These results were similar to Grützmacher et al. (2010) who also observed a relatively 

insignificant adsorption potential and linear adsorption kinetics of microcystin-LR onto 

clean quartz sand. 

It was also realized that the pre-cleaning procedure (sand preparation) may have 

produced an undesirable effect on the adsorption characteristics due to unforeseen 

changes in the surface properties of the sand. Previous procedures involved acid washing 

the sand with diluted hydrochloric acid (20%), washing with milli-Q water until pH was in 

a desired range, incubating at 500 °C (to remove excess organics), followed by autoclaving. 

Two of the procedures (incubation at 500 °C) and autoclaving were researched to 

significantly change the properties of the sand surface (including potential electrostatic 
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properties and surface morphology). Therefore, future experiments will include a revised 

sand pre-conditioning procedure with reduced incubation temperatures (to 60 °C 

overnight) and elimination of the autoclaving step. 

 

Figure 33. Experimental adsorption potential of microcystin-LR onto cleaned silica sand. 

3.2.2 Dispersion of MC-LR in 1-D Column Experiments 
 

In this section, the physical transport of microcystin-LR through sandy, porous 

media was studied through application of a series of 1-D flow through column experiments. 

The objective of these experiments was to calibrate the dispersive characteristics of MC 

when transported through sandy media that is used in biofiltration practice to assist in 

parameterizing the mechanistic model. Flow through laboratory scale column experiments 

were conducted with microcystin-LR and fully saturated columns packed with pre-

conditioned (using identical procedures described above) sand media. The initial 

experiments used hydraulic empty bed contact times (EBCT) that were similar to the 

median value of those used in full scale practice (15 minutes) (Evans et al. 2013a, 2013b). 
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This EBCT (for a media length, L of 15 cm) corresponded to a hydraulic loading rate (flow 

rate of water applied normalized by the superficial area) of approximately 9 mL/minute.  

Sodium chloride (NaCl) breakthrough curves were first evaluated, before the 

column was inoculated with MC, to study the dispersive characteristics of the media at the 

applied flow rate. A sodium chloride solution of 500 mg/L concentration was pulsed 

through the column at 9 mL/min for a six-minute time period and effluent conductivities 

were measured for twenty second intervals using a previously calibrated conductivity 

probe-flow cell device. In addition, flow rates were monitored at the effluent of the column 

for the duration of the experiment. Before tracer tests were run, careful attention was 

taken to first de-air the column (by flowing several pore volumes of de-aired, deionized 

water through the column) and that all fittings/tubing were cleared of any air bubbles 

prior to analysis (including the flow cell device).  

The experimental data acquired was then fitted to an analytical solution of the one 

dimensional advection-dispersion equation (ADE) for a time limited pulse boundary 

conditions (assuming R = 1 for a conservative tracer such as salt) using a differential 

evolution (DE) algorithm previously developed to estimate the dispersivity (α) of the 

media (Equation, Van Genuchten and Alves (1982), Bear (2013)). It was assumed that the 

molecular diffusion term was negligible at the high interstitial velocities employed in these 

experiments, leading to a dispersion coefficient that was solely dependent on the 

dispersivity of the media. The L2 norm (sum of square residuals) was used as the basis for 

the objective function (OF) for the fitting procedure, and the evolutionary algorithm was 

chosen for its simplicity and efficiency to locate the true minimum of the proposed OF. Two 
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parameters were chosen for the fitting process including the interstitial pore water velocity 

(v) and the dispersivity of the media (𝛼). 

1) For elapsed time t ≤ t0, 

 

                                   𝐶(𝑥, 𝑡) =  
1

2
 𝑒𝑟𝑓𝑐 (

𝑅𝑥−𝑣𝑡

√4𝐷𝑅𝑡
) +

1

2
exp (

𝑣𝑥

𝐷
)  𝑒𝑟𝑓𝑐 (

𝑅𝑥+𝑣𝑡

√4𝐷𝑅𝑡
)  (45) 

 
Where t is the elapsed time (seconds), x is the spatial distance (15 cm), R is the retardation 

factor defined below (assuming linear sorption), v is the interstitial pore water velocity 

(m/sec), D is the dispersion coefficient (defined in Equation 46 below) (m2/sec), 𝛼 is the 

dispersivity of the media (cm) and erfc is the complimentary error function.  

                                                                             𝐷 =  𝛼𝑣  (46) 
 
Where the pore water velocity (v) is equivalent to the Darcy velocity (HLR) normalized by 

the porosity of the media (Equation 47): 

                                                                             𝑣 =
𝑞

𝜃
  (47) 

2) For elapsed time t>t0, 
 
                                                       𝐶(𝑥, 𝑡) = 𝐶(𝑥, 𝑡) − 𝐶(𝑥, 𝑡 − 𝑡0)  (48) 
 
Where the retardation factor can be defined as follows and C(x, t) is the same function 

derived in Equation 45) above: 

                                                                   𝑅 = 1 + 
𝜌𝑏𝑢𝑙𝑘

𝜃
𝐾𝑑   (49) 

 
Where 𝜌𝑏𝑢𝑙𝑘  is the bulk density of the soil (kg/m3), 𝜃 is the porosity of the soil (unitless), 

and 𝐾𝑑  is the first order sorption term (m3/kg).  

The results of the salt tracer break through curve indicated that the silica sand 

media was not very dispersive, as the time limited pulse seemed to retain its theoretical 

rectangular shape and the height of the pulse was not attenuated to a significant degree 

(Figure 34). This observation was confirmed quantitatively, as the average fitted 
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dispersivity α-value was 0.00361 meters, with an average SSR of 0.2590 achieved by the 

fitting process. This value of dispersivity was determined to be acceptable through 

comparison of many published studies of similar sand characteristics, column attributes 

(length), and experimental conditions (pore water velocity) (i.e., Padilla et al. 1999, 

Avnimelech et al. 2001, Grützmacher et al. 2002, 2010, Chorus and Bartel 2006). The 

compilation of these studies determined that the maximum dispersivity value was 0.19 m 

and the median value was 0.00211 m; therefore, the magnitude of the value obtained from 

this study was in the appropriate range expected for a sand media with relatively high 

hydraulic conductivity and porosity.  

Moreover, the fitted pore water velocity (v) value obtained (6.475E-08 m/sec) was 

similar to the average velocity determined experimentally (6.0 E-08 m/sec) over the course 

of the entire experiment. The breakthrough curve was further integrated to determine 

whether the mass that was dosed to the column was conserved. Results indicated that the 

mass measured (30.59 mg) was relatively equivalent to the magnitude of theoretical mass 

dosed to the column (26.92 mg), although a slight discrepancy was observed. Although the 

analytical model seemed to overshoot the top portion of the experimentally determined 

breakthrough curve, the low OF observed indicated that there was a reasonably good fit to 

the experimental data. Future predictions will take into account the 95% confidence 

intervals of the analytical model to further survey whether the model predictions 

completely capture the experimental data achieved.     
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Figure 34. Model-data fitting results for NaCl conservative tracer. 

After full analysis of the conservative tracer BTC, the fate and transport of a pure 

microcystin-LR standard was experimentally determined. Equivalent experimental 

conditions applied in the conservative tracer column study were applied in the 

microcystin-LR non-conservative tracer study (9 mL/min hydraulic loading rate, 6-minute 

injection time, 15 cm media length) to be as consistent as possible. The concentration of the 

pulse of microcystin was set at 125 µg/L, where a higher value was used (as compared to 

field dissolved concentrations expected) to ensure that the toxin was detected by the ELISA 

analysis. Samples were collected at the outlet of the column, however, for every two-

minute intervals, as opposed to 20 seconds, as the ELISA tests for microcystin-LR 

concentration are quite lengthy and complex.  

As observed in the resulting BTC, the temporal resolution selected was sufficient 

enough to calibrate the experimental data to the analytical model (Figure 35). In these 

initial experiments, the R value was still set to 1 in the analytical model, even though the 

tracer was assumed to be non-conservative. The experimental R value was then 
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determined by comparing the ratio of the magnitude of fitted pore water velocities (i.e., 

vMCLR/vNaCl) instead of using another parameter to fit the model. This procedure was 

undertaken to avoid possible overfitting to the experimental data and to be as consistent as 

possible for comparison purposes with the experimental data obtained from the 

conservative tracer breakthrough curve. 

The results of the MC-LR breakthrough curve indicated that the arrival time of the 

MC-LR pulse was almost identical to the salt tracer at the outlet of the column (Figure 35). 

The fitted average pore water velocities were relatively the same magnitude between the 

chloride and microcystin-LR tracers, as the mean experimental retardation factor was 

determined to be 1.075. Assuming that the bulk density of the sand was approximately 

1.60E3 kg/m3 and that the experimentally determined porosity (0.3777) was appropriate, 

the back-calculated Kd value was determined to be 1.77E-05 m3/kg. The magnitude of this 

value is approximately one order of magnitude lower than that observed experimentally 

under batch conditions (6.88E-04 m3/kg). These results may suggest that a fraction of the 

microcystin-LR pulse may travel much more efficiently through the column, whereas other 

fractions may become trapped or diffuse into immobile zones of the media. This 

supposition is confirmed when considering that the microcystin-LR tracer was subject to a 

higher residence time in the column, as indicated by a small tail in the BTC between 1000 

to 1500 seconds (Figure 35). Thus, the attenuation of the height of the breakthrough curve 

was presumed to be a result of the dispersive effects within the column over adsorptive 

effects, as the retardation factor was relatively small and the fitted average dispersivity 

values were two orders of magnitude higher for the microcystin-LR tracer (0.0157 m) as 

compared to the salt tracer (0.00361 m). Similarly, the slight tail in the BTC data further 
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indicated that dispersion (perhaps molecular diffusion) may play a more noticeable than 

anticipated role in microcystin-LR fate and transport along with advection at similar EBCTs 

employed to those in the field.  

 

Figure 35. Model-data fitting results for microcystin-LR non-conservative tracer. 

4. Conclusions and Future Directions 
 

 This chapter presented preliminary results detailing the development of a 

mechanistic model that can accurately and reliably predict microcystin removal in 

biological filters. The structure of this mechanistic model accounted for both substrate 

(microcystin) and bacterial cell transport throughout the filter depth. Substrate 

(microcystin) transport was assumed to be effectively predicted by considering first order, 

linear physico-chemical sorption, advection, dispersion, and biodegradation by aqueous 

(suspended) cells and solid biofilm growing on the biofilter media. Bacterial cells were also 

assumed to be affected by advective and dispersive transport, and attachment and 

detachment of cells to the filter media was described using a combination of existing deep 

bed filtration theory and empirical models. Importantly, this model can distinguish 
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between different growth rates of aqueous versus immobilized (solid biofilm) cells and 

accounts for the growth of bacterial populations that can actually perform MC 

biodegradation. The unique feedback mechanism of bioclogging was also captured in this 

model, where the hydraulic conductivity of the biofilter media declined as the solid biofilm 

grew in the available pore space.  

 The primary results of this chapter focused on the development and testing of a 1-D 

version of the mechanistic model on a series of analytical test functions to verify that the 

numerical solver was in fact stable and accurate. For the most part, the numerical solutions 

were in excellent agreement with the analytical solutions tested for various initial 

conditions and biofilter hydraulics. Although there were some instabilities observed in the 

coupled numerical solver, these issues were fixed through introducing a new discretization 

scheme that was shown to drastically improve the stability and accuracy of the numerical 

simulations.  

 Calibration of the adsorptive and dispersive behavior of MC when transported 

through saturated, sandy filter media were also summarized in this chapter as an initial 

attempt to parameterize the physical-chemical transport characteristics of the mechanistic 

model. Minimal adsorption of MC-LR was observed during batch biodegradation 

experiments, and the adsorption isotherm obtained was linear in nature (supporting initial 

assumptions made in the derivation of the mechanistic model). Conservative tracer 

experiments performed in 1-D flow through column experiments indicated that the sandy 

media was not very mechanically dispersive for non-reacting solutes and similar to 

measurements presented in the scientific literature. However, non-conservative flow 

through experiments using MC-LR showed that dispersion was not negligible and more 
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influential than adsorption, where contributions from molecular diffusion of MC-LR in 

addition to the dispersivity of the media may be important to consider when modelling MC 

transport through sandy, porous media.    

 Even though a steadfast attempt was made to develop, verify, and calibrate the 1-D 

mechanistic model in this chapter, the model was determined to be not parameterized well 

enough to make accurate and reliable predictions of MC removal. Regarding the bacterial 

transport throughout the filter, there was very high uncertainty surrounding the 

parameters governing the transport, attachment, detachment, growth, and decay of these 

MC degrading bacterial populations. Future experimental efforts will be directed to 

effectively isolate and independently study these processes and to obtain more accurate 

and defined parameter estimates compared to those presented in the literature. For 

example, the bacterial density (ρp), the bacterial diameter (dp), the collision efficiency (∝), 

as well as the first order decay coefficient (Kd) are all important model parameters 

describing bacterial attachment and decay. In addition, it will be important to parameterize 

the growth kinetics of both aqueous and immobilized biofilms degrading MC through 

application of unstructured models, such as the Monod model, and to determine the 

fraction of MC degraders existing within the total population through use of biomolecular 

techniques.  

 Another inherent limitation to this study was the inability to describe lateral fluid 

flow within the biofilter, which is important to consider if bioclogging is included within 

the scope of this mechanistic model. The 1D model should be expanded to at least 2 

dimensions to ascertain the effects of bioclogging on biofilter performance, including the 

stability of the degrading biofilm communities. An interesting research question to address 
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would be the effect of preferential flow path formation due to bioclogging of the porous 

media, and how changes to the hydraulics affects treatment performance over long time 

periods of filter operations (i.e., days to weeks). For example, 2D numerical simulations 

could investigate whether there is a way to promote more torturous, “fingerlike” 

preferential flow paths (which increase residence time and lateral flow) as opposed to 

straight “channeling” of water throughout the filter. Simulations could assess how the 

initial distribution of biomass, both laterally and vertically, as well as the hydraulics affect 

the development of these different types of flow paths within the biofilter.  

 Lastly, after expanding the model to multiple dimensions and performing necessary 

calibration-based experiments to parameterize this mechanistic model, it will be critical to 

validate the numerical simulations against real world, laboratory scale experiments. These 

experiments could involve the application of 2D flow cells where biofilm attachment, 

growth and detachment could be carefully monitored and even quantified through novel, 

optical, in-situ techniques. In addition, biomolecular techniques, such as high throughput 

16S rRNA sequencing could be performed to determine the key differences between the 

aqueous versus the solid biofilm MC degrading bacterial communities, which could provide 

insight as to why these communities are kinetically distinct. Ultimately, these final 

validation experiments will enable this mechanistic model to provide an improved 

predictive understanding of the most important biological treatment mechanisms and to 

identify key operational and design parameters affecting the reliability and efficiency of 

algal biotoxin removal in biofiltration systems.  
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Chapter 4: Application of Unstructured Kinetic Models to Predict 
Microcystin Biodegradation: Towards A Practical Approach for Drinking 
Water Treatment 
 
Abstract: Biological drinking water treatment technologies offer a cost-effective and 

sustainable approach to mitigate microcystin (MC) toxins from harmful algal blooms. To 

effectively engineer these systems, an improved predictive understanding of the bacteria 

degrading these toxins is required. This study reports an initial comparison of several 

unstructured kinetic models to describe MC microbial metabolism by isolated degrading 

populations. Experimental data was acquired from the literature describing both MC 

removal and cell growth kinetics when MC was utilized as the primary carbon and energy 

source. A novel model-data calibration approach melding global single-objective, multi-

objective, and Bayesian optimization in addition to a fully Bayesian approach to model 

selection and hypothesis testing were applied to identify and compare parameter and 

predictive uncertainties associated with each model structure. The results indicated that 

models incorporating mechanisms of enzyme-MC saturation, affinity, and cooperative 

binding interactions of a theoretical single, rate limiting reaction accurately and reliably 

predicted MC degradation and bacterial growth kinetics. Diverse growth characteristics 

were observed among MC degraders, including moderate to high maximum specific growth 

rates, very low to substantial affinities for MC, high yield of new biomass, and varying 

degrees of cooperative enzyme-MC binding. Model predictions suggest that low specific 

growth rates and MC removal rates of degraders are expected in practice, as MC 

concentrations in the environment are well below saturating levels for optimal growth. 

Overall, this study represents an initial step towards the development of a practical and 

comprehensive kinetic model to describe MC biodegradation in the environment. 
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1. Introduction 

The quality of freshwater resources has become progressively challenged by the 

increasing frequency and severity of harmful cyanobacterial blooms (Paerl and Huismann 

2009, Paerl and Paul 2012, O’Neil et al. 2012). Bloom events associated with toxic species 

of the Microcystis, Anabaena, Planktothrix, and Nostoc genera result in the release of 

biotoxins into receiving reservoirs or lake ecosystems (Huismann et al. 2006, Merel et al. 

2013, Schmidt et al. 2014). The microcystin (MC) class of cyanobacterial toxins, composed 

of seven amino acids in a cyclical structure, are the most common and toxic in the 

environment. Over one hundred structural congeners of MC have been identified to date 

(Huismann et al. 2006, Puddick et al. 2014). MCs are both hepatotoxic and known human 

carcinogens, prompting the World Health Organization (WHO) and US EPA to develop 

guidelines for total MCs in drinking water of 1 µg/L (US EPA 2015a).  

Of the broad class of MC toxins produced during cyanobacterial blooms, MC-LR (L 

and R standing for Leucine and Arginine, respectively, for two of the variable amino acids 

in the cyclical structure) is the most common and toxic (Edwards and Lawton 2009, 

Cheung et al. 2013). The high stability of the cyclical structure of MCs leads to their 

persistence in the environment and poses a human health threat through exposure to 

recreational and drinking water. Although conventional drinking water treatment 

technologies, such as coagulation, flocculation, and sedimentation can effectively remove 

intracellular MCs from source water, the extracellular fraction is sparingly removed 

(Westrick 2008, Westrick et al. 2010).  Advanced treatment technologies to remove total 

MCs from drinking water, such as granular activated carbon (GAC) or ozonation are 



179 
 

effective, yet energy intensive, costly, and subject to some treatment variability (Westrick 

et al. 2010, Ho et al. 2012a).  

Bioremediation strategies, such as biological filtration (biofiltration), which 

specifically target the removal of MCs from drinking water, have advanced as a viable 

alternative (Li et al. 2011c, Li et al. 2011b, Li et al. 2015a, Ho et al. 2007b, Ho et al. 2012a). 

Bio-based treatment strategies rely on the metabolism of MCs as auxiliary or sole carbon, 

energy, and nutrient (nitrogen) sources by microbial communities indigenous to the source 

water (Li et al. 2011c, Ho et al. 2012a, Li et al. 2017). However, high variability in 

indigenous bacteria composition, temperature, pH, and the presence of exogenous 

nutrients pose formidable barriers to consistent removal of MC in these systems (Li et al. 

2017). 

To overcome these limitations and progress toward “engineered” bio-based MC 

remediation systems, an improved predictive understanding of MC biodegradation is 

required. A practical approach is to model MC biodegradation using existing theory from 

the fields of biochemical engineering, bioremediation, and wastewater treatment (Esener 

et al. 1983, Kovárová-Kovar and Egli 1998, Alexander 1999, Shuler and Kargi 2002, 

Tchobanoglous et al. 2003, Okpokwasili and Neweke 2006). Unstructured kinetic models 

(i.e., the Monod kinetic equation) to describe biodegradation in field and laboratory 

settings, have gained wide acceptance in applications ranging from the prediction of 

microbial degradation of contaminants in the environment to treatment system design 

(Simkins and Alexander 1984, Rittmann et al. 1986, Suarez and Rifai 1999, Al-Khalid and 

El-Naas 2012, El-Naas et al. 2014). The popularity of unstructured kinetic models in these 



180 
 

engineering applications stems from the avoidance of unnecessary complexity and 

computational burden associated with many structured models (Esener et al. 1983). 

Despite the practicality of unstructured kinetic models, the great number of models 

available describing different growth mechanisms, uncertainty associated with parameter 

estimates, and difficulties arising from non-linear regression during model calibration 

often limit their use in an environmental context (Koch et al. 1982, Robinson 1985, Grady 

et al. 1996, Kovárová-Kovar and Egli 1998, Knightes and Peters 2000). Of the number of 

challenges, identifying the mechanisms to include (i.e., the appropriate model) and arriving 

at accurate and reliable parameter estimates are primary issues undermining the 

predictive utility of unstructured kinetic models. For example, a broad range of 

unstructured model frameworks, from theoretical single, rate limiting enzyme catalyzed 

reactions (i.e., Monod 1949) to those that account for transport and uptake of substrate 

(i.e., Powell 1967), have been developed to describe microbial growth. In addition, reaching 

uncorrelated estimates of the maximum specific growth rate (µmax) and half saturation 

constant (Ks) parameter values of many unstructured kinetic models has remained a well-

known challenge over the years (Nihtilä and Virkkunen 1977, Holmberg 1982, Robinson 

and Tiejde 1983, Liu and Zachara 2001).  

In this study, we address the following questions as a preliminary step toward the 

development of a practical and comprehensive MC biodegradation model in natural or 

engineered treatment systems. Importantly, we anticipate that the unstructured kinetic 

modelling framework reviewed herein will serve as a foundation for future modelling 

efforts focused on integrating more complex mechanisms to better reflect MC 

biodegradation in environmental settings:  
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1) What underlying mechanisms in existing unstructured kinetic growth model 

frameworks most reliably describe MC biodegradation kinetics?  

2) What range in parameters (i.e., µmax, Ks) are associated with these MC degrading 

organisms and how do they compare to other xenobiotic, micropollutant, or other 

organic chemical degrading organisms?  

3) What is the relative level of confidence and certainty in the model predictions and 

estimated parameters?  

4) Which parameters of these models are most sensitive, and can we identify any 

parameters that are non-influential? 

In addressing these questions, we seek to compare the predictive performance of, 

and obtain reliable parameter estimates for, several unstructured kinetic models 

describing MC biodegradation. To this end, experimental data was mined from the 

literature describing growth and MC metabolism of various isolated degrading bacterial 

populations using MC as the sole carbon and energy source. An optimization framework 

merging global, single-objective, multi-objective, and Bayesian methods was developed and 

applied to these datasets to quantify the predictive and parameter uncertainty associated 

with each model.  A combination of Bayes information criteria as well as a Bayesian 

approach to hypothesis testing and parameter correlation allowed for an objective 

approach to model selection, model predictive accuracy quantification, and an assessment 

of the strength of dependencies between calibrated parameters.  Finally, a variance-based 

approach to global sensitivity, explicitly accounting for dependencies between estimated 

parameters, was employed to assess the influence of model parameters on model 

predictions describing cellular growth and MC metabolism.    
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2. Materials and Methods 
 

A roadmap is presented to first illustrate the workflow of the Materials and Methods 

section (Figure 35). First (Section 2.1), we present a brief overview of the unstructured 

kinetic modelling framework as well as a complete description of the experimental data 

collection effort. Section 2.2 introduces the primary components of the model-data fitting 

approach, which is thoroughly detailed in a companion paper (Manheim and Detwiler 

2018). Bayes information criteria, that were used to objectively compare and select the 

appropriate model describing MC biodegradation, are reviewed in Section 2.3. 

Furthermore, the Bayesian approach to hypothesis testing and correlation analysis, which 

quantified differences in model predictive accuracy and the strength of dependencies 

between calibrated parameters, is presented in Section 2.4. Lastly, the variance-based 

approach to global sensitivity analysis (GSA), quantifying the influence of input parameters 

on the model output variance, is introduced in Section 2.5.    
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Figure 36. A roadmap of the primary methods used in this research starting from the model 
selection and experimental data collection effort (Section 2.1) to the calibration (Section 2.2), 

model comparison and selection methods (Section 2.3), moving to the Bayesian hypothesis 
testing (Section 2.4), and ending in a GSA (Section 2.5). 

2.1 Summary of Selected Unstructured Kinetic Models and Data Collection Effort  
 

A total of eight unstructured kinetic models were reviewed in this study to predict 

MC biodegradation. The main assumption of these unstructured kinetic models is that 

bacterial growth is limited by a single substrate (i.e., MC). Coupled substrate depletion and 

bacterial growth kinetics for these models are described by two ordinary differential 

equations (ODEs) (Eq. 1 and 2), where the endogenous decay of bacterial cells during 

growth is explicitly considered (Rittmann et al. 2002, Bodegom 2007): 
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𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋   (1) 

                                                                    
𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝑘𝑑𝑋  (2) 

Where C is the limiting substrate concentration (mg/L), X is the biomass concentration 

(mg/L), µ is the specific growth rate of bacterial cells (1/hr), Y is the cell yield coefficient 

(unitless), and kd is the endogenous decay coefficient (1/hr). Importantly, X = b*S, where b 

is a linear scaling factor used to convert optical density or cell concentration data (S) into 

biomass concentrations (X).  

Table 9 contrasts the unstructured kinetic models surveyed in this study to define 

the nonlinear relationship between limiting substrate concentration (C) and specific 

growth rate (µ). Here, we briefly compare the differences in mathematical structure and 

mechanisms accounted for by each model:  

• The classical model of Monod (Monod 1949), analogous to the Michaelis Menten 

enzyme kinetic model, defines the specific growth rate (µ) as a hyperbolic function 

of substrate concentration (C) with three main parameters: the maximum specific 

growth rate, half saturation constant, and the yield coefficient (µmax, Ks, and Y) 

(Table 9);  

• The Tessier model (Tessier 1942) describes the specific growth rate as an 

exponential function of the substrate concentration, µmax, and Ks (Table 9);  

• The Contois model (Contois 1959) accounts for changes in population density that 

affect the net specific growth rate through inclusion of the biomass concentration, X, 

into the existing Monod framework (Table 9);  
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• The Blackman model (Blackman 1905) defines a first-order relationship between 

specific growth rate (µ) and substrate concentration at low substrate concentrations 

and a zero-order relationship at higher substrate concentrations (above a threshold 

concentration, 2*Ks) (Table 9);  

• The Moser (1958) model accounts for potential interactions between binding sites 

on the enzyme molecule by integrating a tunable parameter n into the Monod 

framework (analogous to Hill’s enzyme kinetic equation, Panikov and Pirt 1978). 

• Powell (1967) considered the effect of passive diffusion of a given substrate as the 

main rate limiting step affecting bacterial growth, deriving the equation in Table 9; 

• Dabes et al. (1973) derived a “three-parameter” model describing bacterial growth 

on a single limiting substrate by considering that only two of the long series of 

catalyzed, reversible enzyme-substrate reactions involved in substrate metabolism 

had slow reaction rates (Table 9); 

• By simplifying cellular processes to a coupled system of anabolic and catabolic 

reactions, Heijnen and Romein (1995) developed a universal microbial growth and 

substrate uptake model (Table 9). 

Table 9- Summary of unstructured kinetic models implemented in this study 

Model # Reference Model Structure 
Main 

Parameters 

1 
Monod 
(1949) 

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
 𝜇𝑚𝑎𝑥, 𝐾𝑠 

2 
Tessier 
(1942) 

  𝜇 =  𝜇𝑚𝑎𝑥[1 − exp (
−𝑆

𝐾𝑠
)]   𝜇𝑚𝑎𝑥, 𝐾𝑠 

3 
Contois 
(1959) 

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠𝑋+𝑆
  𝜇𝑚𝑎𝑥, 𝐾𝑠 

4 
Blackman 

(1905) 

𝜇 =  𝜇𝑚𝑎𝑥 if S >= 2Ks 

𝜇 =  
𝜇𝑚𝑎𝑥

2𝐾𝑠
𝑆 if S < 2Ks 𝜇𝑚𝑎𝑥, 𝐾𝑠 
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5 
Dabes et al., 

(1973) 
𝜇 =  𝜇𝑚𝑎𝑥

1+
𝑆

𝐾𝑠
+∝

4∝
[1 − {1 −

8∝
𝑆

𝐾𝑠

(1+
𝑠

𝐾𝑠
+∝)2

}

1/2

]                                                              𝜇𝑚𝑎𝑥, 𝐾𝑠, ∝ 

6 
Powell 
(1967) 

𝜇 =  𝜇𝑚𝑎𝑥

1+
𝑆

𝐾𝑠
+∝

2∝
[1 − {1 −

4∝
𝑆

𝐾𝑠

(1+
𝑠

𝐾𝑠
+∝)2

}

1/2

]                                                              𝜇𝑚𝑎𝑥, 𝐾𝑠, ∝ 

7 
Moser 
(1958) 

𝜇 =
𝜇𝑚𝑎𝑥𝑆𝑛

𝐾𝑠+𝑆𝑛                                                                                                                     𝜇𝑚𝑎𝑥, 𝐾𝑠, 𝑛 

8 
Heijnen and 

Romein 
(1995) 

      𝜇 = 𝜇𝑚𝑎𝑥 [

𝑆
𝐾𝑠

𝑆
𝐾𝑠

− 1 + 21/𝑛
]

𝑛

 𝜇𝑚𝑎𝑥, 𝐾𝑠, 𝑛 

 

Experimental data were obtained from four studies quantifying MC biodegradation 

kinetics of isolated bacterial populations (Table 10) (Valeria et al. 2006, Wang et al. 2010, 

Xiao et al. 2011, Zhang et al. 2015b). These studies isolated bacterial populations from the 

Sphingomonas, Sphingopyxis, and Bacillus genera, which are representative of the main 

populations involved in MC degradation via the well-known mlr pathway (Bourne et al. 

1996, Bourne et al. 2001, Li et al. 2017). The few studies that cultured isolated bacteria 

using MC as the sole carbon and energy source were selected because they agreed with the 

main model assumption described above.  

Each study performed batch degradation experiments, where the initial bacterial 

inoculum and MC concentrations were controlled (200 µg/L-42 mg/L) (Table 10). These 

studies promoted aerobic biodegradation of MC (i.e., through shaking) and were 

temperature controlled (23-30 °C) (Table 10). Very few studies were observed in the 

literature that reported bacterial growth in conjunction with MC degradation, where those 

that did only reported optical density (Wang et al. 2010, Xiao et al. 2011, Zhang et al. 

2015b) or cell count measurements (Valeria et al. 2006). As the units of cell concentration 

in Equation 2 are defined in mass per volume (mg/L), optical density and cell 
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concentration measurements were converted to cell biomass concentrations during model 

fitting.  

Table 10 - Summary of experimental conditions in each study selected 

Study 
# 

Reference 
Taxonomic 

Identity 
Culture 

Conditions 

MC 
Variant 
(Media) 

Initial MC 
Conc. 

(mg/L) 

Initial 
Bacterium 

Conc. 

1 
Zhang et 
al., 2015 

Bacillus 
nanhaiencis 

strain 
JZ-2013 

Batch 
growth, 

shaken at 
30 °C 

LR (M9) 15 
 

OD (600 nm) 
~0.514 

2 
Wang et 
al., 2010 

Sphingopyxis 
sp. 

USTB-05 

Batch 
growth, 

shaken at 
200 rpm, 

30°C 

RR 
(Modified 

MSM) 
42.3 

 
OD (600 nm) 

~0.004 

3 
Valeria et 
al., 2006 

Sphingomonas 
sp. CBA4 

Batch 
growth, 

shaken at 
23±2 °C 

RR (MSM) 0.200 
1.20E06 
CFU/mL 

4 
Xiao et al., 

2011 

Sphingopyxis 
sp. 

USTB-05 

Batch 
growth, 

shaken at 
200 rpm, 

30°C 

LR 
(Modified 

MSM) 
28.8 

 
OD (600 nm) 

~0.019 

2.2 Model-Data Fitting Approach 
 

Bivariate experimental datasets subject to model calibration in this study described 

time varying concentrations in MC and biomass. Both the sparse and noisy data as well as 

the highly non-linear nature of the models presented a complex optimization problem 

(Manheim and Detwiler 2018).  We applied a combination of single objective (SO) global 

optimization, multi-objective (MO) global optimization, and strictly Bayesian based 

evolutionary algorithms to determine an accurate and defined range in model parameters 

(Figure 37, refer to Chapter 5 of this dissertation).  

A SO algorithm (AMALGAM-SO, Vrugt et al. 2009) was first applied to ascertain the 

location of the global minimum and the best fits for extremely biased solutions (i.e., fitting 
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one variable and not the other). An MO optimization approach (using the NSGA-III 

algorithm) was applied to both confirm the SO results and to define an optimal region in 

the search space where the corresponding solutions were unbiased (i.e., the “compromise” 

solution space) (Wohling et al. 2008, Deb and Jain 2014) (Figure 37). Finally, an 

Approximate Bayesian Computation (ABC) approach (using the DREAM-ZS algorithm, 

Laloy and Vrugt 2013) was adopted to quantify the uncertainty associated with the 

parameter estimates and the model predictions (Sadegh and Vrugt 2014) (Figure 37). 

Optimization results using this method are summarized in a supplementary dataset for 

reference (see Supplementary Material in online version). In addition, a range in model 

parameters (i.e., µmax, Ks, Y) was compiled from relevant biodegradation literature to 

confine the search space to a realistic range in values (Appendix C, section 1). 

 

Figure 37. The primary optimization methods, goals, and algorithms used in this study for 
parameter estimation. 

2.3 Bayesian Model Comparisons and Selection 
 

A Bayesian framework for model predictive accuracy was applied to compare and 

select the best performing models (Gelman et al. 2014). Two popular approaches have 

been detailed in Gelman et al. (2014) and Christensen et al (2011). The first approach 

calculates several information criteria (i.e., AIC, BIC, DIC, WAIC, which are defined in 
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Appendix C, Section 2) that have been developed to assess model predictive accuracy. 

Smaller values of each information criterion indicate better model performance. The 

second approach is to define the log pseudo marginal likelihood (LPML) of selecting a 

certain model given the data (Geisser and Eddy 1979). Higher values of the LPML criterion 

indicate better model performance. Details concerning the calculations involved, an 

overview of the ranking method, and summary of the results are presented in Section 2 of 

Appendix C. 

2.4 Bayesian Significance Testing and Correlation Analysis 
 

A quantitative framework for Bayesian hypothesis testing, termed Bayesian 

Estimation Supersedes the T-test (BEST) was adopted in this study to compare the 

predictive accuracy of the best and next best performing models (Kruschke 2011, Kruschke 

2013). Using the BEST framework, we tested the hypothesis that the predictive accuracy of 

both models was equivalent. The BEST method relies on a Bayesian approach to fit a t-

probability distribution to the distribution in log-likelihoods obtained from the calibration 

procedure of both models (using the DREAM-ZS algorithm, Appendix C, section 3). Next, 

three probability distributions are derived from the difference in posterior distributions of 

central tendencies (means), variabilities (standard deviations), and effect sizes (see 

Appendix C, section 3). The effect size is a statistical parameter used to quantify the size of 

the difference between two different populations and is calculated using a combination of 

the means/standard deviations between both distributions (
µ1 − µ2

√𝜎12+ 𝜎22

2

) (Coe 2002). Based 

on the degree of overlap between the distribution in each of these differences (using a 95% 

highest density interval) with a defined region of practical equivalence (ROPE, -0.1 to 0.1 
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for all distributions) around the null value (0), the initial hypothesis can be accepted or 

rejected (Kruschke 2011, Kruschke 2013).  

The correlation among different model input parameters was assessed using a 

Bayesian counterpart to Pearson’s linear correlation model. A bivariate normal distribution 

was used as the main model framework to estimate several probability distributions in 

Pearson’s correlation coefficient (ρ) between different model input parameters. The 

DREAM-ZS algorithm was used to fit the bivariate distribution model to the posterior 

distributions in model parameters achieved from the optimization procedure (using two 

parameter values at a time) (Appendix C, section 4).  

2.5 Global Sensitivity Analysis (GSA) 
 

GSA has progressed into one of the most powerful and robust approaches to 

investigate the influence of different model input parameters on output predictions (Saltelli 

et al. 2008, Razavi and Gupta 2015, Razavi and Gupta 2016a, Razavi and Gupta 2016b, 

Gupta and Razavi 2017). GSA investigates the model response when varying each input 

parameter across its entire uncertainty range, thereby allowing a comprehensive outlook 

on parameter sensitivity (see Saltelli et al. 2008 for more complete details).  

A variance based global sensitivity analysis (VBGSA) accounting for dependent 

model input parameters was applied in this study to analyze the effects of different model 

input parameters on predicted responses (Mara et al. 2015). This method allows the GSA to 

be conducted unobstructed from the correlations that may be present between input 

parameters, allowing unique sensitivity indices to be derived. Sobol’s first and total order 

effect indices can be reliably calculated to rank the influence of different model parameters 

on resulting predictions. The “first” order effect index (Si) represents the independent 
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contribution of an individual parameter to the total model output variance, while the 

“total” order effect index (STi) denotes the combined interactive contributions of an 

individual parameter with all other parameters to the total model output variance (Saltelli 

et al. 2008). The specifications and calculations of the sensitivity estimation procedure are 

summarized in Appendix C (section 5). 

3. Results 

3.1 Bayesian Model Comparison and Selection 
 

The top three best performing models, based on a ranking system using all 

summarized criteria (AIC-LPML), varied across each study (Figure 38, Tables C4-C7). The 

results highlighted the consistent and accurate performance of the Moser model for three 

of the four datasets investigated, as the AIC-WAIC criteria and LPML values were 

consistently lowest and highest for this model (Figure 38, Table C4-C7). Results for Study 4 

indicated the only exception to this trend, where the Heijnen model performed the best 

(i.e., lowest DIC-WAIC and highest LPML, Figure 38). The Contois model performed 

reasonably well for Studies 1 and 2 (lower AIC-WAIC and higher LPML), and the 

performance of the Blackman kinetic model was worth considering based on results 

presented for Studies 3 and 4 (i.e., lower overall AIC-WAIC and higher LPML, Figure 38). 

However, the Monod model demonstrated poor predictive performance across all studies 

(i.e., higher overall AIC-WAIC and lower LPML Figure 38, Tables C4-C7).  
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Figure 38. Comparison of unstructured kinetic model predictive accuracy using Bayesian 
information criteria (AIC-WAIC) and Log Pseudo Marginal Likelihood (LPML) values 

calculated for each study and model. Lower values of AIC, BIC, DIC, and WAIC or higher values 
of LPML are associated with improved model predictive accuracy. According to all AIC/BIC, 
and LPML as well as most DIC/WAIC calculations, the Moser and Heijnen model predictions 

outperform all other models for Studies 1-3 and 4, respectively. 

The quantitative strength of evidence in favor of the Moser or Heijnen models for 

predicting MC biodegradation was assessed using the BEST approach (Kruschke 2011, 

Kruschke 2013). Through Bayesian fitting of a t-distribution to the log likelihood values 

obtained from the initial calibration procedure, a posterior distribution in means and 

standard deviations was reached for both competing models. The difference in this 

posterior distribution of means (µ1 - µ2), standard deviations (σ1 - σ2), and effect sizes 
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(
µ1 − µ2

√𝜎12+ 𝜎22

2

) between the best and next best performing model provides quantitative 

evidence of the magnitude of the difference in predictive accuracies between the competing 

models. 

Figure 39 details the probability densities of the difference in means, standard 

deviations, and effect sizes between the best and next best performing models for each 

study. For Studies 1-4, the best and second-best performing models were as follows: Moser 

and Contois; Moser and Contois; Moser and Heijnen; as well as Heijnen and Moser. The 

results demonstrated that the predictive accuracies of the best and next best performing 

model were significantly different for each study, which is supported by the following 

evidence: 1) the distributions of the difference in means and standard deviations between 

the competing models were centered well away from zero; 2) the 95% highest density 

intervals (HDI) of the differences in means/standard deviations did not overlap the “null 

value” (0); 3) the magnitude of the differences in effect size was large; and 4) the 95% HDI 

of the effect sizes were well outside the range of the ROPE [-0.1, 0.1] interval (Figure 39, 

Kruschke 2011; Kruschke 2013). These results confirm that: 1) there is statistically 

significant evidence in favor of the Moser or Heijnen models and 2) that model selection 

(and associated growth mechanisms included) greatly influences predictive performance of 

MC biodegradation.    
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Figure 39. Statistical differences in densities of model predictive accuracies (log likelihoods) 
associated with the best performing vs. the next best performing kinetic models for Studies 1-
4. Using the BEST approach, the distribution in predictive accuracies (log-likelihoods) for the 

best and next best performing models is fitted to a t-distribution, returning a posterior 
distribution in means, standard deviations, and effect sizes. The difference in the posterior 
distributions of fitted means (column “µ1-µ2”), standard deviations (column “σ1-σ2”), and 

effect sizes (column “Effect Size”) between the best and next best performing model forms a 
final distribution that determines the quantitative strength of evidence in favor of the best 

performing model. Both the 95% highest density intervals (in red) and the modes (black) of 
each final distribution are indicated on each figure. 

3.2 Model-Data Fits and Parameter Distributions 
 

Both the Moser (Studies 1-3) and Heijnen (Study 4) models were able to accurately 

reproduce MC biodegradation and biomass growth for each of the four studies reviewed, as 

the experimental data fell within the 95% total predictive uncertainty intervals (Figure 40). 

The accuracy of, and certainty in, model predictions were highest for Study 1 (Bacillus 

nanhaiencis strain) and lowest for Study 2 (Sphingopyxis sp. strain), as noted by the width of 

the uncertainty intervals, the proximity of the best fitting prediction to the experimental 

data, as well as the RMSE and minimum objective function values (Figure 40, Table C8).  

Parameter uncertainty was in all cases higher for the biomass growth data as 

compared to the substrate consumption data, as demonstrated by the wide 95% uncertainty 
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intervals (Figure 40). This result can be explained by both the high parameter uncertainty 

associated with the yield coefficient (Y) and endogenous decay rate (kd) parameters (Table 

11) and moderate to high sensitivity of the predicted cell concentrations to these model 

parameters (Figure 43). When an input parameter to a given model is both highly uncertain 

and influential, the total predictive uncertainty of this model will be higher, resulting in a 

wide range of predictions in biomass growth (Figure 40).   

 

Figure 40. Kinetic model-experimental data fitting results of the best performing model for 
Studies 1-4 portraying MC removal (first column) and corresponding biomass growth (second 

column). Studies 1-3 were fit using the Moser model, whereas Study 4 was fit using the 
Heijnen model. The red line indicates the best fitting model prediction, while the blue dots 

represent the experimental data points (along with the standard deviation of replicate 
experiments). The light grey shading indicates the 95% predictive uncertainty interval and 

the dark grey shading represents the 95% uncertainty interval associated with the parameter 
estimation. Narrower total and parameter uncertainty intervals are indicative of improved 

model predictive accuracy. All experimental data points were observed to fall within the 
uncertainty intervals, indicating that the predictions afforded by either model can reproduce 

the experimental data with great certainty.   

 

The posterior distributions in best performing model parameters were fairly 

normally distributed for µmax, kd, b, and n model parameters, indicating that they were well 
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identified during model-data calibration (Figure 41). This result was further supported by 

the small 95% credible interval widths and COV values obtained for these model 

parameters (Table 11). The half-saturation constant (Ks) could not be uniquely identified 

for Studies 1 and 4; however, Ks was well distinguishable given the experimental data from 

Studies 2 and 3 (supported by the small 95% credible intervals and COVs), although the 

distributions were very right-skewed (Figure 41).  The yield coefficient values (Y) could not 

be uniquely identified for all studies investigated, as all parameter values approached the 

upper realistic boundary (Figure 41). The best performing parameter values were present 

close to the peak of each posterior distribution, further verifying that the distributions 

converged around the best compromise solution (Figure 41).  

 

Figure 41. Posterior distributions in best performing model parameters for Studies 1-4 
obtained from the DREAMZS_ABC algorithm. Studies 1-3 were fit using the Moser model, 

whereas Study 4 was fit using the Heijnen model structure. Distributions that appear 
normally distributed indicate uniquely identifiable parameters, whereas flat or left/right 

skewed distributions indicate issues with unique identification (and possible correlation with 
other parameters). The red ‘x’ indicates the best fitting model parameter (MAP) value for 

each study. In most cases, the MAP falls on the location with the highest probability density. 
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Diverse kinetic and physical growth characteristics were evidenced for each MC 

degrading bacterium included in this study, especially when comparing maximum specific 

growth rate and half-saturation constant model parameters (Table 11). Maximum specific growth 

rates on MC were not necessarily proportional to MC affinities (i.e., Ks).  For example, the 

Sphingopyxis sp. USTB-05 (Study 2) strain was characterized by a relatively low affinity for MC 

(moderate-high Ks), but had the highest maximum specific growth rate of the studies 

investigated. Comparably, the Sphingomonas sp. evidenced a very high affinity for MC as a 

substrate but had the lowest maximum specific growth rate of the studies investigated (Table 11). 

Great differences in the magnitude of conversion constants (b) implicated highly varying cell 

densities and physiologies for each MC degrading bacterium. Across all studies, the magnitude 

of the yield coefficient (Y), endogenous decay rate (kd), and n values were relatively comparable 

(Table 11).  

Table 11- Summary of best performing model parameter values including the mean (µ), 
standard deviation (σ), coefficient of variation (COV), and 95% credible intervals. 

Parameter µmax (1/day) 

Study 1 2 3 4 

µ 1.48 6.11 1.43 3.31 

σ 0.799 0.290 0.177 0.392 

COV 54 5 12 12 

95% Credible Interval [0.659, 3.80] [5.53, 6.59] [1.11,1.78] [2.64,4.02] 

Parameter Ks (mg/L) 

Study 1 2 3 4 

µ 188 3.93 0.000194 30.1 

σ 26.2 3.52 9.37E-05 47.4 

COV 14 90 48 157 

95% Credible Interval [127, 219] [0.159,12.3] [0.00010,0.00043] [1.54,196] 

Parameter Y (mg biomass/mg substrate) 

Study 1 2 3 4 

µ 2.43 2.42 2.47 2.36 

σ 0.859 0.860 0.836 0.906 

COV 35 36 34 38 
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95% Credible Interval [0.525, 3.48] [0.536,3.48] [0.588,3.48] [0.433,3.48] 

Parameter kd (1/day) 

Study 1 2 3 4 

µ 0.140 0.739 0.172 0.406 

σ 0.0584 0.1908 0.1191 0.258 

COV 42 26 69 64 

95% Credible Interval [0.0318, 0.245] [0.329,0.991] [0.014,0.450] [0.0278,0.925] 

Parameter b ((g DW/L) / OD or (g DW/L) / (CFU/mL)) 

Study 1 2 3 4 

µ 0.0094 0.0620 9.6E-11 0.389 

σ 0.0044 0.0257 3.85E-11 0.176 

COV 47 41 40 45 

95% Credible Interval [0.00173, 0.0191] [0.012,0.109] [2.01E-11, 1.72E-10] [0.0621,0.751] 

Parameter n (unitless) 

Study 1 2 3 4 

µ 2.00 6.82 2.17 1.96 

σ 0.289 1.573 0.090 0.042 

COV 14 23 4 2 

95% Credible Interval [1.49, 2.57] [4.37,9.73] [1.98, 2.31] [1.84, 2.00] 

3.3 Parameter Correlation Analysis 
 

The parameter correlation analysis indicated that for all studies (1-4), there was a 

strong, positive, linear correlation between µmax and kd as well as between b and Y model 

parameters (Figure 42), where distributions in Pearson’s correlation coefficient varied 

between 0.53 to 0.92 (for µmax and kd) as well as between 0.80 to 0.90 (b and Y). Study 1 

demonstrated a strong, negative, and non-linear correlation between µmax and n model 

parameters. Studies 2-4 indicated a moderate, negative, and linear correlation between µmax 

and b model parameters. Studies 2-3 observed a strong, negative, and slightly non-linear 

correlation between n and Ks values (Figure 42). Across all studies, the mostly negative 

correlations between parameters n and Ks/µmax were non-linear given that the n value 

parameters were used as exponents in the original model structures (for Moser and 

Heijnen). The presence of multiple strong positive and negative linear and nonlinear 
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correlations was a factor that likely prohibited the unique identification of all six model 

parameters given the experimental data from all studies.  

 

Figure 42. Bayesian analysis of the strongest (i.e., ρ > 0.40, ρ < -0.40) linear correlations 
between best performing model parameters for Studies 1-4. The 99%, 95%, 75%, and 50% 

highest density ellipses are overlaid on the scatter plots in red, yellow, cyan, and green, 
respectively. The inlet plots depict the distribution in Pearson’s correlation coefficient 

obtained from the Bayesian correlation analysis. Although the pairwise combinations of 
strongest linear correlations were not always equivalent across all studies, strong positive 

correlations (higher values of Pearson’s ρ) were generally evidenced for µmax vs. kd and Y vs. b, 
whereas negative correlations were generally observed for µmax vs. b. Some nonlinearity in the 
correlations were also evidenced for model parameters that involved exponents in the original 

model structure (i.e., n) 
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3.4 Global Sensitivity Analysis 
 

The results of the VBGSA indicated a diverse range in input parameter sensitivities 

across all studies using Sobol’s first and total order effect indices as the primary means of 

comparison (Figure 43). It is important to note that Sobol’s first order effect indices closer 

to 1 indicated that the model output was more sensitive to the corresponding input 

parameter, whereas indices closer to 0 indicated little to no sensitivity. Comparably, values 

of Sobol’s total order effect index closer to or higher than 1 were indicative of a parameter 

that was highly interacting with other model parameters (and not interacting when values 

approached 0).  

Based on a unique ranking system (described in Appendix C, section 5.3), the 

general parameter rankings across studies (using either first- or total-effect indices), from 

most to least influential, depended primarily on the variable of interest (i.e., substrate or 

cell biomass concentrations) (Figure 43). Using the first-order indices (Si) as ranking 

criteria, predicted substrate concentrations were generally most influenced (in descending 

order) by kd (1), b (2), and µmax (3), with less influence observed from Y (4), Ks (5), and n (6) 

(Figure 43I). Predicted cell biomass concentrations were most influenced (in descending 

order) by parameter values of kd (1), µmax (2), and Ks (3), with less influence observed from 

Y (4), b (5), and n (6) (Figure 43II). Using the total order effect indices (STi) as ranking 

criteria, interactive effects on substrate concentration predictions were higher for kd (1), Ks 

(2), Y (3) and less significant for n (4), µmax (5), and b (6) model parameters (Figure 43I).  

Comparably, interactive effects on cell biomass concentration predictions were higher for 

kd (1), µmax (2), Ks (3) and less significant for Y (4), b (5), and n (6) model parameters 

(Figure 43II). 
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Figure 43. VBGSA results summarized for Studies 1-4, presenting Sobol’s first and total order 
effect indices. Here, “first” order represents the independent contribution of an individual 
parameter to the total model output variance, while “total” order denotes the combined 

interactive contributions of an individual parameter with all other parameters to the total 
model output variance. We note that by implementing the method of Mara et al. (2015), the 

sensitivity indices are determined free of any correlations present between input parameters. 
Values of the first order effect closer to 0 or 1 indicate that the model output is barely or 

highly sensitive to the corresponding input parameter, respectively. Values of the total order 
effect closer to 0 or 1 (or above) indicate that the parameter is hardly or highly interactive 
with all other model parameters, respectively.  The boxplots represent the distribution in 

sensitivity indices across all simulated time points. Colors correspond to individual parameter 
values. Panel column I presents the sensitivity results for model predictions involving 

substrate concentration, whereas Panel column II presents results for model predictions 
involving cell biomass. 
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4.0 Discussion 

4.1 Study Contribution 
 

This is the first study, to the best of our knowledge, to apply and compare several 

unstructured kinetic growth models to describe MC biodegradation. Coupled bacterial 

growth and MC removal kinetics were both accounted for in all unstructured models, which 

is a significant step forward from previous simplistic zero- and first-order kinetic models to 

describe MC biodegradation. Each unstructured model was successfully calibrated to 

existing experimental data through a novel optimization approach to determine an 

accurate and defined range in bio-kinetic parameters. These parameters can eventually, 

through further refinement, model complexity, and experimentation, be applied to the 

design of biological water treatment systems and prediction of the fate and persistence of 

MC in the environment.  

The results from this study represent a preliminary step toward the development of 

a practical and comprehensive unstructured kinetic model that can predict the 

environmental behavior of these microorganisms. Clearly, accounting for different 

environmental factors in the model structure, such as temperature, pH, or the presence of 

other carbon substrates (as discussed in Section 4.5) will better capture the environmental 

variability expected in practice.  As the complexity of these models is expected to increase 

in future studies to account for various environmental factors, we argue that issues 

associated with model selection, uncertainty estimation, nonlinear regression, and 

parameter identification will likely intensify. The approach presented herein for model 

selection and calibration provides a robust foundation for developing MC biodegradation 

models for increasingly complex environmental conditions.    
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4.2 The Physical Case for Moser Kinetics 
 

The statistical results presented in this study have demonstrated that the Moser 

model provided superior MC biodegradation predictions compared to other common 

unstructured kinetic models. However, we have not emphasized the physical relevance 

underpinning the structure of the Moser model. As initially proposed by Blackman (1905), 

many studies have advocated that the Monod model is a theoretical extension of the 

“bottleneck concept,” postulating that a single rate limiting “master” reaction controls the 

kinetics of metabolism of any substrate (Monod 1949, Dabes et al. 1973, Panikov 1995). In 

the simplified case of Monod kinetics, the maximum forward rate of one reaction in the cell 

is order of magnitudes smaller than the maximum forward rate of any other enzyme 

catalyzed reactions involved in transport and/or metabolism. This concept simplifies the 

description of bacterial growth into a Michaelis Menten (or Hill) type rate equation, 

depending on one enzyme and reaction of interest (Dabes et al. 1973, Panikov 1995).  

We have shown statistically that accounting for the mechanisms of saturation, 

binding affinity, and binding interactions between this hypothetical enzyme and MC 

substrate complex can accurately and reliably predict MC biodegradation. A “master” rate-

limiting reaction dictating MC biodegradation kinetics is further supported by the fact that 

the model comparison process did not select for a more complex, multiple reaction type 

derivation as provided by Dabes et al. (1973). Importantly, the mechanism of “saturation” 

involves binding of substrate molecules to the active sites on the enzyme to capacity; 

“binding affinity”, the relative strength of attraction or attachment between an enzyme and 

substrate molecule; and “interactions”, the degree of inhibition or facilitation between 

binding sites on a given enzyme (Panikov and Pirt 1978, Cohlberg 1979, Panikov 1995).  
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Given this theoretical justification to the Moser model, it is interesting to explore 

which “master” reaction may be the most well justified rate limiting step in the MC 

biodegradation pathway. MC biodegradation involves four primary genes/enzymes, 

including mlrA, mlrB, mlrC, and mlrD (production of the enzyme microcystinase (MlrA), 

enzyme MlrB, enzyme MlrC, and enzyme MlrD) (Bourne et al. 1996, Bourne et al. 2001). 

mlrA is responsible for the initial linearization of cyclical MC, mlrB and mlrC for further 

breaking down linearized MC into smaller peptide and amino acid products, and mlrD for 

actively transporting MC into the cell (Bourne et al. 1996, Bourne et al. 2001).   

It is probable that the linearization of cyclical MC may be the rate limiting step in 

this pathway, given that the cyclical structure is highly resistant to degradation and may 

require a large cellular energy input to synthesize adequate quantities of microcystinase 

(Dziga et al. 2012). Experimental evidence of the enzymatic activity of microcystinase has 

indicated that Hill kinetics best describe the linearization reaction as compared to 

Michaelis-Menten enzyme kinetics. Dziga and co-workers (2012) results align with the 

statistical results observed from this study, which advocated the Moser model over the 

Monod model. In addition, the kinetic parameters measured for microcystinase (Vmax = 95 

day-1, Ks = 158 mg/L, n = 1.57) were on the same order of magnitude of those observed for 

various MC degrading bacteria in this study, further strengthening our initial presumption.  

4.3 Physical Significance of Model Parameter Estimates 
 

The physical significance of the Moser model parameters is also important to 

review. The results demonstrated that all MC degrading bacteria possessed similar ranges 

in maximum specific growth rates (1-7 per day), which are comparable to the lower range 

in maximum specific growth rates reported for fast growing, heterotrophic 
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microorganisms in activated sludge systems (Kovárová-Kovar and Egli 1998, 

Tchobanoglous et al. 2003). These results imply that these MC degrading organisms may 

grow relatively quickly in the environment if MC is readily available.  

Very significant differences in Ks values were estimated between MC degrading 

bacteria in this study. Since the inverse of the half saturation constant can be defined 

physically as an enzyme’s relative binding affinity for a substrate (Kovárová-Kovar and Egli 

1998), there are possibly marked preferences in MC as a substrate among various MC 

degrading bacteria. Across all MC bacteria reviewed, the Sphingomonas species had the 

lowest reported half saturation constant, which resulted in much higher specific growth 

rates at lower substrate concentrations. Smaller Ks values for MC substrates may signify a 

high specificity of microcystinase enzymes for MC as a substrate, or differences in enzyme 

regulation at the molecular level (i.e., induction vs. constitutive production), among many 

factors. A high affinity for a given substrate may be a physiological adaptation to improve 

an organism’s capability to scavenge for several carbon sources under low nutrient 

conditions present in many oligotrophic environments (Noel and Narang 2009, Egli 2010). 

Yield coefficient (Y) parameter estimates were very high among all MC degrading 

bacteria. It is important to note that the yield coefficients estimated in this study are 

“observed” or “apparent” values, not entirely corrected for the presence of maintenance 

costs (Esener et al. 1983, Bodegom 2007). For perspective, estimated yield coefficients 

from the literature for the biodegradation of organic and synthetic pollutants were 

observed to rarely exceed 1 (i.e., 100% conversion of substrate to biomass) (Doran 1995, 

Suarez and Rifai 1999, Shuler and Kargi 2002). Higher values of the yield coefficient 
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estimated in this study may suggest that MC is a superior carbon source for the creation of 

raw cellular material as compared to the supply of the MC degrading cell’s other functions.  

The n parameter values for both the Moser and Heijnen models were typically greater than 

1 for most studies. For the Moser model structure, this result signifies that the interactions 

between binding sites for MC degrading enzymes are cooperative in nature. Analogous to 

the Hill model for enzyme kinetics, cooperative interactions imply that the binding 

potential of MC substrate molecules to the enzymes involved increases as the number of 

previously bound substrate molecules increase (Panikov and Pirt 1978).  

The endogenous first-order decay coefficient (kd) represents the amount of energy 

diverted to a cell’s maintenance requirements in the absence of substrate from the 

environment, and usually involves oxidation of a cell’s internal reserves (Rittmann et al. 

2002, Bodegom 2007). Results from this study indicated that first order decay parameter 

estimates are relatively high for MC degrading populations (0.1 to 0.7 per day), on the same 

order of magnitude of those estimated for mixed bacterial populations in activated sludge 

(Tchobanoglous et al. 2003). These results imply that in the absence of MC or other 

carbonaceous substrates, a swift decline in populations may ensue in the environment.  

4.4 Initial Kinetic Model Predictions 
 

A significant implication from initial predictions using the Moser model is that most 

bacterial growth rates are far from saturated in the environment if MC is used as a sole 

carbon and energy source (Figure 44), as at least two of the bacterial strains (Bacillus 

nanhaiencis, Sphingopyxis sp. USTB-05) will be growing at very low specific growth rates 

(6E-04 to 0.2 per day). Since specific growth rate is directly proportional to substrate 

removal rate, we would expect slow biological removal of MC in the environment. However, 



207 
 

when MC is supplied at much higher concentrations, as has been typically conducted in a 

laboratory setting (i.e., in the mg/L range), the removal rates of MC would be expected to 

drastically increase (1-4 orders of magnitude). Therefore, biological drinking water 

treatment strategies for MC removal will have to consider the disparity in specific growth 

rates of these organisms when faced with low concentrations of MC generally observed in 

the environment. A promising solution to ensure high specific growth rates of degrading 

bacteria and quick elimination of MC in bio-based drinking water treatment systems is 

through bio-stimulatory practices, like the addition of nutrients (i.e., nitrogen or 

phosphorus), which can perhaps maintain a stable and productive, year-round community 

of MC-degrading and non-degrading microorganisms (Tyagi et al. 2010, Lauderdale et al. 

2012, McKie et al. 2015, Li et al. 2017).  

 

 

Figure 44. Predicted specific growth rates of several MC degrading bacteria in the 
environment as a function of substrate concentration using the Moser (1-3) and Heijnen (4) 

models. The black dashed lines in indicate the minimum/maximum concentrations of MC 
expected in the environment. The grey region and colored lines indicate the predictions 
associated with the lowest/highest 95% credible interval and the mean of the posterior 

distribution of parameter values.   
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4.5 Unstructured Kinetic Model Limitations 
 

Even though the unstructured kinetic models were shown to accurately characterize 

MC biodegradation in an ideal setting, we recognize multiple limitations to the simplifying 

assumptions used. First, MC may not be the primary growth limiting substrate metabolized 

by these degrading bacteria, since it is often present in low background concentrations 

(ng/L to µg/L) and not secreted until bloom senescence or collapse (Merel et al. 2013, 

Francy et al. 2015). In most freshwater environments, the presence of other bioavailable 

dissolved organic carbon represents the primary carbon and energy source for these 

bacteria (Egli 1995, Eleuterio and Batista 2010, Egli 2010). All unstructured kinetic models 

can be aptly modified to account for other inhibiting or stimulating substrates these 

bacteria may encounter in the environment (Yoon et al. 1977, Reardon et al. 2000, Reardon 

et al. 2002). Future studies should consider the application of competitive multi-substrate 

models to better describe MC biodegradation in the environment.  

Clearly, the temperature (23-30 ºC) and pH (~7) employed in the batch 

biodegradation experiments examined in this study are ideal cases of what would be 

encountered in the environment. As MC degrading bacterial growth rate is highly sensitive 

to water temperature (25-30 ºC optimal, Li et al., 2017), the predictions afforded by the 

current unstructured models would likely overestimate the rates of MC biodegradation in 

the environment. Unstructured kinetic models have been successfully tailored to account 

for temperature (Heitzer et al. 1991, Rosso et al. 1993, Kovárová-Kovar et al. 1996), pH, or 

both (Rosso et al. 1995) by either considering cardinal pH and temperature properties of 

bacteria (mostly E. coli strains) or deviations of the Arrhenius equation (Alagappan and 

Cowan 2004). Future studies should consider integrating these previous concepts into 
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existing unstructured kinetic model frameworks to account for the effects of temperature 

and pH. 

Another limiting factor to address is the fact that these unstructured kinetic models 

only consider the growth of isolated MC degrading populations. In the environment, these 

populations are part of a much more complex and interactive network of mixed 

microorganisms. Single organism derived unstructured model parameters are frequently 

applied to wastewater treatment design and engineering to characterize the behavior of 

complex microbial communities (Tchobanoglous et al. 2003). However, more complex 

mixed population models can be applied based on these single population parameter 

estimates and theorized interactions among certain populations, including, for example, 

Lotka-Volterra competition models (Faust and Raes 2012, Song et al., 2014).  

The scaling factor (b) required to convert either cell concentration or OD to biomass 

was identified as another limitation of the kinetic models reviewed. In this study, we 

assumed that there was a direct, linear relationship between OD or cell counts and dry 

weight biomass, which is generally the case for pure microbial cultures in practice (Kim et 

al. 2012, Myers et al. 2013). This assumption resulted in biomass concentrations of MC 

degraders ranging from 1 to 180 mg/L at stationary phase of growth. Typical dry weight 

biomass for activated sludge systems range from 3000 to 6000 mg/L, whereas the biomass 

concentrations ranged from 8 to 50 mg/L for species of bacteria degrading mixtures of 

BTEX compounds and PAHs (Tchobanoglous et al. 2003, Reardon et al. 2000, Reardon et al. 

2002, Knightes and Peters 2000, Knightes and Peters 2003). Thus, since the ranges in 

biomass predicted for this study are of similar order of magnitude to bacteria degrading 
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petroleum hydrocarbons and far from activated sludge biomass concentrations, the use of a 

linear relation between OD or cell counts and biomass is well justified.   

Yet another limitation of unstructured kinetic models is the assumption that the cell 

composition (and physiological state) remains constant during growth (i.e., “balanced 

growth”) (Bailey and Ollis 1976). In the environment, growth of MC degrading organisms is 

expected to be “non-balanced,” where cellular composition is transient with respect to 

fluctuations in environmental conditions (Ramkrishna et al., 1967, Fredrickson et al. 1971). 

Structured kinetic models can account for changes in physiological state and more 

comprehensively describe bacterial growth in the environment but may suffer from issues 

such as high complexity and computational burden (Ramkrishna et al. 1967, Fredrickson et 

al. 1971, Panikov 1995).  

4.6 Improving Parameter Identifiability: The C0/X0 ratio  
 

A complete set of unique parameter estimates was not obtained for most studies. 

This result indicates there were more limitations in the quality of the experimental data 

collected, which resulted from inadequacies in the experimental design. Many studies have 

stressed the importance of the initial substrate to biomass (C0/X0) ratio when designing 

experiments (Dang et al. 1989, Chudoba et al. 1992, Grady et al. 1996). These studies have 

determined that the C0/X0 ratio has a drastic effect on the growth behavior and extent of 

physical adaptation an organism may undergo (Grady et al. 1996). In general, low C0/X0 

ratios (< 0.025 on a COD basis) were reflective of the original environmental behavior of 

the bacterial population (“extant” behavior), while larger C0/X0 ratios (> 20 on a COD basis) 

resembled the “intrinsic” characteristics of the population under study (Dang et al. 1989, 

Grady et al. 1996).   
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Applying these criteria to our results (see Supplementary Information, section 8), 

the experimental conditions in Studies 1, and 3-4 resembled more “extant” behavior (C0/X0 

ratios ranged between 1-3), whereas the experimental conditions for Study 2 were more 

“intrinsic” (C0/X0 were above 20).  This concept helps explain why there were drastically 

different kinetic parameter estimates for two experiments conducted for the same species 

of Sphingopyxis degrading a different MC congener (RR vs. LR), as different C0/X0 ratios 

were used (Study 2 vs. Study 4). Maintaining this C0/X0 parameter at a low value is more 

useful for identifying parameters that will be used to predict MC removal in an 

environmental setting, whereas high values are more useful in an engineered setting to 

observe the full kinetic degradation potential of a certain MC degrading population.  

The C0/X0 ratio also affects the parameter identifiability for a given experiment 

(Grady et al. 1996). Classically, there has been much controversy over how to best design a 

batch biodegradation experiment to obtain independent estimates of µmax, Ks, and Y model 

parameters (Nihtilä and Virkkunen 1977, Holmberg 1982, Robinson and Tiejde 1983, Liu 

and Zachara 2001). For example, Robinson and Tiejde (1983) found that uncorrelated 

estimates of µmax and Ks could be reached when performing the batch experiment in the 

mixed order region of the specific growth rate vs. substrate theoretical curve (at C0/X0 > 

20).  

Good separation of µmax and Ks was observed for our results, and these parameters 

could be uniquely estimated for Studies 2 and 3. The experimental conditions for Studies 2 

and 3 were reflective of very high C0/X0 ratios (Study 2 ~150 and Study 3 ~1000) (Table 

C9), confirming the importance of this ratio on improving parameter identifiability. 

However, a significant number of correlations were observed between the scaling 
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parameter (b) and (Y) across all studies, resulting in non-unique estimates of Y. This result 

was concerning as the sensitivity analysis indicated that Y is an interactive and relatively 

influential parameter when predicting both substrate and biomass concentrations. Future 

MC biodegradation experiments should eliminate the use of this scaling parameter by 

directly measuring the biomass concentration, through dry or wet weight, protein content, 

or even ATP-based methods (Velten et al. 2007, 2011) to avoid unnecessary correlations 

developed between the scaling parameter and all other remaining parameters observed in 

this study. 

5.0 Conclusions 
 

 Engineered biological treatment systems targeting the removal of MCs rely on an in-

depth predictive understanding of bacterial growth. We must admit that unstructured 

kinetic models are not in any way comprehensive representations of the true complexity of 

most biological processes.  However, the models reviewed in this study provided an 

accurate and practical approach to characterize MC biodegradation kinetics. Based on this 

rigorous comparison of a broad range in unstructured kinetic models, the following main 

conclusions were drawn from this study: 

1) The underlying kinetic model structure (and associated growth mechanisms 

accounted for) has a statistically strong effect on model predictive accuracy and 

precision for MC biodegradation. In this study, the Moser model and Heijnen and 

Romein model were the most reliable and consistent out of all models reviewed.  

2) Unique parameter estimates for MC biodegradation depend on the quality of 

experimental data, which is highly influenced by the experimental design (i.e., C0/X0 
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ratio). Using a new, global optimization approach, unique parameter estimates were 

obtained for at least three (and up to five) parameters using different experimental 

datasets.  

3) Model predictions were generally most sensitive to the parameter values of kd, µmax, 

Ks, and b in the absence of correlations. Model predictions were also affected by 

interactions between multiple parameters. Values of kd, µmax, Ks, and Y demonstrated 

moderate to high levels of interactions with other parameters. These results 

prioritize the proper identification of kd and Y in future studies, which were not 

identifiable for certain studies reviewed herein.  

4) Well below saturating concentrations of MC in the environment result in minimal to 

no growth of MC degrading bacteria, where sub-optimal MC removal kinetics are 

expected in treatment practice. 

 We envision the results from this study as a stepping stone toward the development 

of a practical and comprehensive unstructured kinetic model that can reliably predict MC 

biodegradation in the environment. The MC-degrading bacterial populations reviewed in 

this study are likely underrepresented members of a more complex and dynamic 

community, where the clear majority of community members are less inclined to (or 

cannot) utilize MC as a primary carbon and energy source.  However, we stress that the 

predictive knowledge of the isolated kinetic behavior of these bacteria metabolizing MC as 

a sole organic carbon source can be integrated into more complex unstructured kinetic 

modelling frameworks that consider multiple interacting substrates and population 

members as well as different environmental conditions (i.e., temperature, pH). We expect 

that future studies will adopt a similar model surveying and calibration approach to 
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identify the necessary mechanisms to describe more complex environmental behavior of 

bacteria involved in MC biodegradation.      
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Chapter 5: Accurate and Reliable Estimation of Kinetic Parameters for 
Environmental Engineering Applications: A Global, Multi Objective, 
Bayesian Optimization Approach 
 

Abstract: Accurate and precise predictions of bacterial growth and metabolism from 

unstructured kinetic models are critical to the proper operation and design of engineered 

biological treatment and remediation systems. As such, parameter estimation has 

progressed into a routine challenge in the field of Environmental Engineering. Among the 

main issues identified with parameter estimation, the model-data calibration approach is 

extremely crucial, yet an often overlooked and difficult optimization problem. Here, a novel 

and rigorous global, multi objective, and fully Bayesian optimization approach that 

overcomes challenges associated with multi-variate, sparse and noisy data, as well as 

highly non-linear model structures commonly encountered in Environmental Engineering 

practice is presented. This optimization approach allows an improved definition and 

targeting of the compromise solution space for all multivariate problems, allowing efficient 

convergence, and a Bayesian component to thoroughly explore parameter and model 

prediction uncertainty. This global optimization approach well outperforms, in terms of 

parameter accuracy and precision, standard, local non-linear regression routines and 

overcomes issues associated with premature convergence and overfitting of different 

variables in the calibration process. 
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1. Introduction and Background 
 

Unstructured kinetic models, such as the well-known Monod model, have become 

widespread in the field of Environmental Engineering, ranging from air pollution control, 

water and wastewater treatment, and bioremediation to effectively describe and 

parameterize bacterial growth in engineered systems (Bailey and Ollis 1976, Kovárová-

Kovar and Egli 1998, Alexander 1999, Tchobanoglous et al. 2003). These models provide a 

relatively simplistic, practical, and unified basis to predict microbial metabolism or 

transformation of nutrients, toxic chemicals, or production and synthesis of biochemicals 

throughout different media ranging from air, soil, and water (Alexander 1999, Simkins and 

Alexander 1984). Often, these models do not have a firm theoretical basis (as most were 

initially empirically derived) and holistically portray the cell, through various biokinetic 

parameters (i.e., the maximum specific growth rate, half saturation constant), as an enzyme 

“unit” that functions similar to the behavior described by different enzyme-kinetic models 

such as the Michaelis-Menten (Monod) or Hill (Moser) equations (Bailey and Ollis 1976, 

Esener et al. 1983, Shuler and Kargi 2002). Despite these over-simplifications, unstructured 

kinetic models have reliably and accurately reproduced experimental data from all fields 

mentioned above and form the foundation for design and operational practice of biological 

based treatment and remediation systems (Tchobanoglous et al. 2003). 

Although these unstructured kinetic models are popular from a practical viewpoint, 

the uncertainty associated with parameter estimates and model predictions and difficulties 

arising from non-linear regression for model calibration often limit the use of these kinetic 

models in an environmental context, which is the focus of this developed method 

(Kovárová-Kovar and Egli 1998, Koch 1982, Robinson 1985, Grady et al. 1996, Knightes 
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and Peters 2000). Bayesian statistical techniques can offer insight into the uncertainty 

associated with model parameters and with the model structure itself (i.e., epistemic 

errors). Of the number of challenges identified, arriving at unique, accurate, and precise 

parameter estimates is a primary issue that often undermines the predictive utility of 

unstructured kinetic models. For example, reaching uncorrelated estimates of the 

maximum specific growth rate and half saturation constant of many unstructured kinetic 

models has remained a well-known challenge over the years (Nihtilä and Virkkunen 1977, 

Holmberg 1982, Robinson and Tiedje 1983, Liu and Zachara 2001). 

Issues previously encountered with parameter estimation in bioremediation 

practice result from inadequacies in the experimental design, quality of experimental data 

collected, and the model-data calibration procedure (Baltes et al. 1994, Banga et al. 2004, 

Dette et al. 2005, Strigul et al. 2009). The model-data calibration procedure is extremely 

critical to obtain reliable parameter estimates and is often an overlooked, challenging non-

convex optimization problem (Knightes and Peters 2000, Banga et al. 2004). Generally, 

difficulties arise during model-data calibration as: 1) the experimental datasets analyzing 

biodegradation of pollutants are often multivariate, sparse, and noisy in nature; and 2) the 

unstructured kinetic models used to describe these datasets are highly non-linear 

(Knightes and Peters 2000, Banga et al. 2004, Marsili-Libelli 1992, Vanrolleghem and 

Keesman 1996, Motulsky and Christopoulos 2004). Here, we emphasize that multi-variate 

datasets present more challenges, such as overfitting, where one variable may be given 

more weight during the calibration process.  

It is concerning that many past biodegradation studies (e.g., Simkins and Alexander 

1994, Knightes and Peters 2000, Knightes and Peters 2003) have relied on deterministic, 
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local nonlinear regression techniques for parameter estimation, as techniques based on 

gradient descent (like FMINCON provided by MATLAB’s optimization toolbox) suffer from 

a lack of exploration of the search space and become trapped in local solutions. To 

overcome these exploration and convergence issues, stochastic, global optimization 

methods, including evolutionary algorithms (i.e., differential evolution), can be applied as 

robust solutions to this parameter estimation problem. Evolutionary algorithms (i.e., 

differential evolution), that are built on randomly evolving a population of individuals 

based on their fitness, are well known in the optimization field as effective and reliable 

global minimization approaches (Back 1996, Deb 2001). Although the application of these 

approaches in the field of bioremediation is still rather limited, several recent studies have 

applied variants of evolutionary algorithms, such as particle swarm, to investigate kinetic 

parameters describing the biodegradation of BTEX compounds (Trigueros et al. 2010).  

In this research method, we describe a novel and rigorous approach to accurately 

and reliably estimate parameters in unstructured kinetic models given multi-variate 

experimental datasets based on a global, multi objective and fully Bayesian optimization 

procedure. In the following section (2), we give an overview of the workflow behind our 

approach, introduce key elements of the unstructured kinetic models and datasets used for 

model-data fitting comparison, and provide an in-depth description of the methods 

involved for improved parameter estimation. Finally, in Section 3, we demonstrate the 

utility of this research method by comparing the performance of the algorithms used in this 

optimization approach to local, non-linear regression methods.  
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2. A Global, Multi Objective, and Bayesian Optimization Approach to Parameter 
Estimation 
 

The main workflow for this research method is detailed in Figure 37, which portrays 

a sequential three step approach to improved parameter estimation. These steps are 

reversible in the sense that the current step should be verified or rely on information from 

a previous step of the workflow (Figure 37). The most critical improvement this workflow 

brings is a) an improved definition and targeting of the compromise solution space for 

multi-variate calibration problems to avoid overfitting of different variables and b) a 

Bayesian component to explore parameter and model prediction uncertainty. Here, the 

compromise solution space is designated as the set of solutions (that are centered around 

the global optimum or the best compromise solution) that represent the optimized 

tradeoffs between different objective functions (Figure 45). The global optimum is 

equivalent to the best compromise solution of the compromise solution space, located at 

the solution (in the objective function space) closest to the nadir or apex of a curve formed 

between the set of compromise solutions (Figure 45). The extreme solutions, contrarily, are 

found when one variable, such as cell or substrate concentration, is fitted at a time as 

opposed to simultaneously (Figure 45A and C). The extreme solutions exist at the 

beginning and end of the curve that passes through the compromise solution set (Figure 

45). 
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Figure 45. Graphical representation of the extreme solutions (A and C) as well as the 
compromise solutions (B) terminology referred to in this research method. The dark blue line 

in the righthand figure represents the compromise solution space. 

In the first step of the workflow, a single objective, stochastic optimization 

algorithm is used to both locate the global optimum (i.e., the best compromise solution) 

and the “extreme” solutions. In the following step, a multi-objective, stochastic 

optimization algorithm is used to target the best compromise solution, in which results 

from the previous, single objective step are used to verify proper convergence of the multi-

objective approach (Figure 37). Although initially three SO and MO algorithms were 

applied in this approach, we recommend that only the best performing algorithms listed in 

Figure 2 are necessary for proper convergence and parameter estimation. Finally, an 

Approximate Bayesian Computational (DREAM-ABC) approach is applied to develop a 

posterior distribution in parameters using the verified “best” compromise solution to 

target the correct compromise solution space around the global minimum.   
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2.1 Overview of Unstructured Kinetic Models and Datasets for Model-Data Fitting 
Comparisons 
 

In this study, parameter estimation was performed for a variety of unstructured 

kinetic growth models describing microcystin (MC, a cyanobacterial toxin present in 

drinking water) biodegradation by isolated, homogenous bacterial populations (Manheim 

et al. 2019). Each of these models describes the specific growth rate of degrading bacterial 

cells (µ) as a non-linear, positively increasing function of substrate concentration (C) 

(where interested readers are referred to Manheim et al. 2019 (or previous chapter) for a 

complete description of the mathematical formulations and parameters included). As an 

example, the well-known Monod model describes the specific growth rate of bacterial cells 

as a hyperbolic function of the substrate concentration (Equation 1). The maximum specific 

growth rate, half saturation constant, and the yield coefficient (µmax, Ks, and Y) describe the 

maximal growth rate of a bacterial population when the substrate is non-limiting, the 

bacterial population’s relative affinity for a specific substrate, and the yield of new bacterial 

biomass per substrate consumed (Monod 1949). Other unstructured kinetic models, such 

as the Moser model, possess a similar mathematical framework to the Monod model, but 

incorporate additional parameters (such as Cn, where n is an additional model parameter) 

to describe other important underlying physical processes (Panikov and Pirt 1978). 

                                                                       𝜇 =
𝜇𝑚𝑎𝑥𝐶

𝐾𝑠+𝐶
   (1) 

 
During a batch biodegradation experiment (i.e., where MC is the sole limiting carbon 

source, aerobic, temperature/pH controlled), the time dependent change in substrate 

concentration (C) and bacterial degrading biomass (X) can be described by the following 
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coupled set of ordinary differential equations (Equations 2 and 3), where the endogenous 

decay of  bacterial cells is explicitly considered (Rittmann et al. 2002, Bodegom 2007): 

                                                                        
𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋   (2) 

                                                                     
𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝑘𝑑𝑋  (3) 

 

where C is the limiting substrate concentration (mg/L), X is the biomass concentration 

(mg/L), µ is the specific growth rate of bacterial cells (1/hr), Y is the cell yield coefficient 

(unitless), and kd is the endogenous decay coefficient (1/hr). Importantly, X = b*S, where b 

is a linear scaling factor used to convert optical density or cell concentration data (S) into 

biomass concentrations (X). 

Experimental datasets for model-data fitting comparisons performed in this study 

were acquired from four different studies evaluating MC biodegradation of isolated, 

homogenous bacterial populations (Valeria et al. 2006, Wang et al. 2010, Xiao et al. 2011, 

Zhang et al. 2015b). These studies isolated bacterial populations from the Sphingomonas 

(designated Study 3, Valeria et al. 2006), Sphingopyxis (designated Studies 2 and 4, Wang et 

al. 2010 and Xiao et al. 2011), and Bacillus genera (designated Study 1, Zhang et al. 2015b), 

which are representative of the main populations involved in MC degradation (Bourne et al. 

1996, 2001, Li et al. 2017). In accordance with the assumptions introduced above for 

Equations 2 and 3, each of these studies performed batch degradation experiments, where 

the initial bacterial inoculum, MC concentrations, temperature, pH, and the availability of 

oxygen and nutrients were tightly controlled (see Manheim et al. 2019 for a complete 

description and comparison). Across all experiments, both the substrate (MC) and bacterial 

biomass concentrations were quantified daily for a 1.3-10-day time period using HPLC (for 
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MC) and optical density (OD 600 nm) or plate counts (for biomass) as general 

quantification methods.  

As an example, Figure 40 highlights the experimental results obtained from each 

study overlaid with the best fitting unstructured kinetic models determined from a 

Bayesian model comparison and selection process (Manheim et al. 2019). Studies 1-3 were 

fit using the Moser model, whereas Study 4 was fit using the Heijnen model (Heijnen and 

Romein 1995). As observed in Figure 40, all experimental data points were observed to fall 

within the uncertainty intervals, indicating that the predictions afforded by either model 

can reproduce the experimental data with great certainty. Overall, the relatively few time 

points for data collection and some data points with moderate variability (i.e., Study 2) 

were reflective of the general sparse and noisy nature of many datasets associated with 

batch biodegradation experiments.  

2.2 Global, Single Objective Optimization (GSO) Approach 
 

The GSO approach involved the application of an extensively tested series of SO 

evolutionary optimization algorithms, including Self-Adaptive Differential Evolution (saDE) 

(Qin and Suganthan 2005, Qin et al. 2009b), the multi-algorithm evolutionary based 

AMALGAM-SO optimizer (Vrugt et al. 2009), and an advanced variant of the LSHADE 

(cnEpSin) series of algorithms (Awad et al. 2016). The saDE algorithm was directly coded 

in MATLAB (Mathworks, Inc., r2015b) based on the description presented in Qin et al. 

(2009b), whereas MATLAB production codes were acquired for the AMALGAM-SO and 

LSHADE-cnEpSin algorithms. Exact details of the mechanism used behind each 

optimization algorithm are presented elsewhere (see Qin et al. 2009b, Vrugt et al. 2009, or 

Awad et al. 2016 for specific information). Although only one algorithm is generally 



224 
 

sufficient for use in future optimization problems, we observed some utility in 

benchmarking at least three different stochastic approaches to ensure that the global 

minimum was in fact reached. If the user is considering selecting only one of these 

algorithms, we recommend running multiple independent repetitions (changing the initial 

random seed), to ensure that the optimizer consistently reaches the global minimum 

solution.  

Prior to applying each algorithm to the experimental datasets acquired, fifteen of 

the CEC 2005 benchmark functions were used to rigorously test and compare the 

optimization performance of each GSO. From this initial testing period, the AMALGAM-SO 

algorithm demonstrated the most reliable performance, followed by the LSHADE (cnEpSin) 

and saDE algorithms, respectively (Appendix D, Section 1). In addition, optimal run 

conditions and control settings for each algorithm were identified based on this prior 

testing and were kept consistent when applied to the experimental data acquired herein. 

The formal Gaussian Log-Likelihood function was used as the primary objective 

function for GSO and GMO optimization approaches, similar to the approach presented by 

Knightes and Peters (2000, 2003). In this study, we assumed that the error residuals for 

each variable were independent, normally distributed (with zero mean), and exhibited 

constant variance (homoscedastic). A formal check of these three main assumptions is 

presented in Appendix D, Section 2 of this dissertation for reference. In addition, we 

assumed that the covariance between the variables (i.e., cell and substrate concentration) 

was negligible given that the number of experimental data points was limited for each 

study (ranging from 5-10 for each dependent variable) (Motulsky and Christopoulos 2004). 

This assumption not only simplified the objective function calculation but proved to 
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provide more reliable parameter estimates compared to using a form of the objective 

function that considers covariance between the dependent variables (data not shown). The 

Gaussian Log-Likelihood objective function (OF1) to minimize thus reduces to a function of 

the sum of square residuals (SSR1 and SSR2) and the overall standard deviation for each 

variable (σY1 and σY2) after making these necessary simplifying assumptions (Equation 4) 

(Knightes and Peters 2000, Bard 1974).  

                                                    𝑂𝐹1 =
1

𝜎𝑌1
2
 (𝑆𝑆𝑅1) + 

1

𝜎𝑌2
2
 (𝑆𝑆𝑅2)            (4) 

 

Although standard deviations were given in each dataset for each observation, we 

decided to fit each model using the average of replicate experiments, given that the number 

of repetitions was low for each study (three or less) (Motulsky and Christopoulos 2004). 

This assumption also eliminated the requirement for including the overall standard 

deviations for each variable as weight in Equation 4 above. To reduce bias related to the 

magnitude of the model predictions, the logarithm (base 10) of model predictions was used 

in calculation of the objective function values (Knightes and Peters 2000, 2003). 

2.2.1 GSO Run Conditions and Control Settings 
 

Standard run conditions were set for each SO algorithm to ensure fair performance 

for each model-dataset calibration. These run conditions included a fixed number of 

function evaluations (500,000) and equivalent termination criteria. The termination 

criteria for saDE and LSHADE- cnEpSin were dependent on three criteria: a) exceeding the 

maximum function evaluations; b) meeting the following tolerance: if the range of the 

objective function values of the population members was less than 1E-08; c) or meeting the 

following tolerance: if the range of the parameter values of all population members was 

less than 1E-02. Termination and restart criteria for AMALGAM-SO was identical to that 
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described in (Vrugt et al. 2009). However, global termination criteria were introduced so 

that if successive runs resulted in similar objective function values meeting a predefined 

tolerance, the search was stopped. Specifications of the exact run conditions and control 

settings used in each of these algorithms are specified in Appendix D, section 1.1.    

2.3 Global, Multiple Objective (GMO) Optimization Approach 
 

The GMO approach involved the use of three different evolutionary algorithms 

including the improved NSGA-III genetic based algorithm (Deb and Jain 2014), the multi-

algorithm, multi objective AMALGAM optimizer (Vrugt and Robinson 2007), and the RVEA 

algorithm (RVEA) (Cheng et al. 2016). These MO algorithms were selected based on a 

formal comparison of at least ten different MO algorithms benchmarked on a suite of well-

known MO test functions (Appendix D, Section 3). The PLATEMO test platform was 

incorporated in this MO test comparison as a useful tool for benchmarking different 

algorithms (Tian et al. 2017). Results of a formal benchmarking on standard, MO test 

functions indicated that the NSGA-III algorithm performed the best of the initial algorithms 

screened using a range of selection criteria (i.e., accuracy and convergence, diversity, and 

number of non-dominated solutions), followed by the AMALGAM-MO and RVEA algorithms 

(Appendix D, Section 3). Similar to the SO approach, optimal run conditions and control 

settings for each MO algorithm were identified and kept consistent when applied to the 

experimental data acquired herein. 

2.3.1 GMO Run Conditions and Control Settings 
 

Standard run conditions were set for each MO algorithm to ensure fair performance 

for each model-dataset calibration. These run conditions included a fixed number of 

generations (20,000) to run each MO algorithm, which was determined by successively 
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running an increasing number of generations until the change in the non-dominated 

solution sets was deemed negligible (after 5 independent repetitions) (data not shown). In 

addition, the population size was fixed to N = 100 for each algorithm. The AMALGAM-MO, 

NSGA-III and RVEA algorithms were run with identical control settings as specified in 

Appendix D, Section 3.1. It is important to note that the NSGA-III and RVEA algorithms 

were run using the MATLAB code developed by the PLATEMO user interface (Tian et al. 

2017).  

2.4 Bayesian Optimization Approach 
 

A posterior distribution in parameter estimates was reached through the DREAM-ZS 

(Differential Evolution Adaptive Metropolis, sampling from past states) (v3.0) software 

package (Laloy and Vrugt 2012). Unlike the previous approaches, we chose a likelihood 

free method using Approximate Bayesian Computation (ABC) to specifically target and 

facilitate convergence to the compromise region of the search space (Sadegh and Vrugt 

2014). The specific objective function (OF2) incorporated in this study to maximize was 

similar to that presented by Sagdeh and Vrugt (2014), which is based on the distance 

between the observed and predicted summary statistics (m) and some predefined 

tolerance, 𝜀𝑗  (Equation 5). Importantly, the sum of squared residuals (for both cell and 

substrate data) from the compromise solution obtained by the best performing GMO were 

chosen as the observed summary statistics (Sj, Equation 5) to guide the ABC method. In this 

approach, the sum of squared residuals (L2 norm) obtained during the ABC optimization 

procedure (for fitting both cells and substrate) represented the simulated summary 

statistics (𝑆�̂�).  
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                                                         𝑂𝐹2 = min𝑗=1:𝑚 {𝜀𝑗 − 𝜌(𝑆𝑗 , 𝑆�̂�)}             (5) 

 

Where 𝜌(𝑆𝑗 , 𝑆�̂�) simply represents the distance between the observed and simulated 

summary statistics: abs(𝑆𝑗 − 𝑆�̂�). The specific DREAM-ZS run conditions and control 

settings applied for the ABC algorithm are summarized in Table D10 for reference 

(Appendix D, section 4).  

The overall convergence statistic of Rubin and Gelman (1992) was summarized for 

each study (1-4 identified in Section 2.1) to verify that the DREAM-ZS -ABC algorithm was 

running through enough generations to reach a stable estimate of the posterior distribution 

in parameters (Figure 46). Convergence was assessed over a wide range in model 

structures to obtain insight into the performance of the ABC algorithm against various non-

linearities, including (1-8) the Monod kinetic model (Monod 1949), Tessier kinetic model 

(Tessier 1942), Contois kinetic model (Contois 1959), Blackman kinetic model (Blackman 

1906), Dabes kinetic model (Dabes et al. 1973), Powell kinetic model (Powell 1967), Moser 

kinetic model (Moser 1958), and the Heijnen and Romein kinetic model (Heijnen and 

Romen 1995). 

For all studies and models investigated (a-d, 1-8), convergence was generally 

reached after 150,000 generations (corresponding to 900K overall for 6 chains), where the 

R-statistics converge to a stable value below the 1.2 threshold for each model structure 

reviewed (Figure 46). Across all studies, the Contois model demonstrated the largest 

number of necessary generations until convergence was reached, due to the more complex 

non-linear structure of the model (Figure 46). In some cases (Study 4), the Dabes kinetic 

model also demonstrated poor convergence using the ABC method. These results indicated 
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that reliable posterior distributions in parameters have been achieved after approximately 

150,000 to 200,000 generations.  

 

Figure 46. Evolution of the overall Gelman and Rubin R-statistic for the DREAM-ZS (ABC) 
algorithm when applied to models 1-8 for each corresponding dataset. The letters a-d 
correspond to Studies 1-4 and numbers 1-8 correspond to the Monod, Tessier, Contois, 

Blackman, Dabes, Powell, Moser, and Heijnen model structures. The dashed line indicates the 
convergence threshold of 1.2. 

3. The Case for Global Optimization: Research Method Validation 
 

Finally, we highlight the importance of global optimization techniques to provide 

accurate and robust parameter estimates for all nonlinear regression problems as 

compared to standard, localized optimization methods. We expect that the global 

optimization approaches adopted in this study can handle the difficulty of fitting 

multivariate, sparse, and noisy data by avoiding local optima solutions and locating 

compromise solutions that avoid overfitting one variable in a multivariate dataset. Here, 

the results of the FMINCON constrained nonlinear optimization tool provided by MATLAB 

(and commonly used for parameter estimation in past studies) are compared to the best 
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performing global optimization algorithms used in this study. We limit this comparison of 

the optimization algorithms to parameter estimation of the Moser model structure, a 

common unstructured kinetic growth model, for experimental data detailing MC 

biodegradation and cell growth from a variety of laboratory studies introduced in section 

2.1 (Valeria et al. 2006, Wang et al. 2010, Xiao et al. 2011, Zhang et al. 2015b). The Moser 

model structure contains six parameters to be calibrated, including the maximum specific 

growth rate (µmax), the half saturation constant (Ks), the yield coefficient (Y), the first order 

endogenous decay rate (Kd), a linear cell concentration to biomass conversion parameter 

(b), and the exponent parameter (n) in the Moser model (Equations 2, 3, 6). For each 

approach and Study (defined as 1-4, as indicated in Section 2.1), five independent 

repetitions were used to evaluate the mean and variance in the parameter estimates and 

objective function values.  

                                                                          𝜇 =
𝜇𝑚𝑎𝑥𝑆𝑛

𝐾𝑠+𝑆𝑛   (6) 

 

The run and control settings for the FMINCON method in MATLAB were kept as 

equivalent to those used for the global optimization algorithms to ensure impartiality. For 

all studies, identical bounds used in the global optimization algorithms were applied to the 

FMINCON approach for constraining the feasible parameter space, where all other 

constraints were set to null values. Furthermore, the FMINCON approach used identical 

experimental datasets to those used for the global optimization routines, and the search 

was commenced using randomly initialized (uniformly distributed) starting points within 

the feasible parameter space.  As recommended by MATHWORKS, the “interior-point” 

optimization approach was implemented in FMINCON as this algorithm has demonstrated 
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success on both large, sparse problems as well as small, dense optimization problems 

(Byrd et al. 1999). To provide some insight into the performance of other available 

algorithms, the “active set” optimization setting was also selected in this comparison 

(Powell 1978). All the run settings for each algorithm (i.e., interior-point or active set) were 

kept at default values except for the stopping criteria. The stopping criteria were defined as 

follows: stop if a) the number of function evaluations was exceeded (500,000); b) the 

number of iterations was exceeded (500); c) the function tolerance (value of the objective 

function) was reached (1E-20); d) the step tolerance was reached (1E-20); or e) the 

constraint tolerance was reached (1E-20). It is important to note that the number of 

iterations (comparable to generations for the global optimization algorithms) was set to 

500, which is considerably lower than the number stipulated for most global approaches, 

as most FMINCON searches stagnated within this window and performing additional 

iterations was deemed unnecessary. Moreover, the magnitude of the tolerances was set to 

very low values to ensure that the FMINCON search avoided premature convergence.  

As demonstrated in Table 12, considerably different parameter estimates were 

obtained between the FMINCON and best performing SO, global optimization algorithms. 

The FMINCON approaches resulted in significantly larger variation in parameter estimates 

as compared to the global optimization approaches (Table 12). The high variation in 

estimates is most likely due to the nonlinear solver in FMINCON becoming stuck in local 

optimal solutions and prematurely converging. In most cases using the FMINCON 

algorithms, the search was terminated due to the step size tolerance, indicating that these 

methods have difficulty thoroughly exploring and exploiting the search space. These local 

optimization methods were also extremely sensitive to the initial values the parameters 
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were set to, where some repetitions demonstrated considerable improvement over others. 

However, the global optimization algorithms consistently reached the same global 

optimum, as confirmed by the low standard deviation of all parameter estimates (Table 

12). These results imply that the global optimization methods, despite their stochasticity, 

are the most robust nonlinear regression techniques investigated, where reliable 

parameter estimates can usually be achieved with high probability.  

Table 12- Parameter estimates for FMINCON and best performing global, single objective 
optimization algorithms. The mean and standard deviation are presented for each parameter 

and approach. 

Study Approach µmax Ks Y Kd b n 

1 

FMINCON- 

Active Fit 

15.8 155 3.08 1.16E-01 1.79E-01 9.89 

13.9 52.3 4.71E-01 1.81E-01 3.57E-01 
2.11 

E-01 

FMINCON- 

Interior Point 

18.60 152 2.52 4.44E-02 2.89E-02 9.84 

7.0 76.2 5.65E-01 2.02E-02 2.62E-02 
1.38 

E-01 

AMALGAM-SO 
1.08 220 2.15 1.28E-01 8.06E-03 2.19 

6.53E-03 1.05E-02 1.39 8.00E-04 5.23E-03 6.40E-03 

2 

FMINCON- 

Active Fit 

13.38 71.0 2.93 4.23E-01 8.61E-02 6.28 

9.6 47.9 1.07 4.81E-01 7.70E-02 2.96 

FMINCON- 

Interior Point 

8.30 104 2.12 4.68E-01 7.65E-02 5.41 

4.28 65.1 5.13E-01 2.33E-01 2.40E-02 1.41 

AMALGAM-SO 
6.23 1.21E-01 2.49 8.09E-01 5.98E-02 9.61 

1.80E-01 5.07E-02 1.44 1.23E-01 3.62E-02 5.92E-01 

3 

FMINCON- 

Active Fit 

19.9 120 0.86 1.00E-02 2.68E-08 2.47 

16.0 63.8 1.42 5.16E-05 4.13E-08 3.02 

FMINCON- 

Interior Point 

11.9 40.9 2.16 1.00E-02 4.15E-08 9.09E-01 

12.3 52.8 1.80 4.72E-07 5.34E-08 1.29E-01 

saDE 
2.06 4.78E-02 2.90 3.38E-02 1.31E-10 1.59 

9.32E-01 6.38E-02 4.08E-01 3.81E-02 2.38E-11 5.39E-01 

4 

FMINCON- 

Active Fit 

16.4 48.2 1.45 2.28E-01 5.82E-01 3.37 

20.8 83.9 1.38 3.05E-01 8.17E-01 3.76 

FMINCON- 

Interior Point 

13.0 64.3 1.90 2.60E-01 7.56E-01 5.88 

19.9 75.6 1.16 2.40E-01 7.10E-01 3.43 

AMALGAM-SO 2.89 1.80E-04 2.69 9.35E-02 5.09E-01 2.59 
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1.68E-01 2.23E-04 1.37 1.22E-01 2.65E-01 1.12E-01 

In terms of predictive accuracy, the global optimization methods demonstrated 

superior performance (Table 13). Out of all approaches, the best performing global 

optimization methods returned the smallest mean objective function (total sum of squared 

residuals) values and largest log-likelihood values (data not shown), with small standard 

deviations observed in general. The FMINCON optimization methods, contrarily, suffer 

from poor predictive accuracy, as mean values were significantly larger than those 

obtained by the global optimization approaches.  

The ability of the SO algorithms to reach the best compromise solution was further 

compared using the percent contribution of substrate and cell concentration fitting error to 

the overall fitting error (% Subs or % Cells) (Table 13). This analysis is simply dissecting 

Equation 4 presented above (without standard deviations of the measurements included, 

σY1 and σY2) into a contribution to the overall objective function (OF1) from fitting either 

the cell concentration or MC substrate experimental data.  Here, we benchmark the SO 

algorithms with the solution obtained using the MO approach. The MO global optimization 

results indicated the following percent contribution (% Subs/Cells) for the best 

compromise solution for each study (1-4): 87.5/12.5; 15.4/84.6; 82.9/17.1; 90.3/9.7. It is 

important to note that the best compromise solutions do not result in a proportional 

tradeoff (i.e., 50/50%) between fitting the cell and substrate concentration data. Instead, 

for most studies (1,3,4) the compromise solutions showed a better fit to the cell 

concentration as compared to the substrate concentration data, as the cell data indicated a 

higher contribution to the overall objective function.  
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The results demonstrated that for Studies 2 and 3, the compromise solutions 

reached were far different than the compromise solutions defined above for the FMINCON 

algorithms. However, although the accuracy was not high, the relative tradeoff between 

fitting the substrate vs. cell concentration data was similar to that obtained by the multi 

objective approach for studies 1 and 4 using the FMINCON algorithms (Table 13). As 

expected, the SO global optimization approaches always provided comparable compromise 

solutions to those obtained by the multi objective optimization approaches.  

Table 13- Objective function estimates for FMINCON and best performing global, single 
objective optimization algorithms. The mean and standard deviation are presented for each 

parameter and approach. 

Study Approach MinOF Subs % Cells % 

1 

FMINCON-Active Fit 
7.61 88 12 
4.17 12 12 

FMINCON- 
Interior Point 

8.61 96 4 
8.86E-01 1 1 

AMALGAM-SO 
3.29E-02 88 12 
1.96E-05 0 0 

2 

FMINCON- 
Active Fit 

5.12 73 27 
3.78 29 29 

FMINCON- 
Interior Point 

1.88 58 42 
1.87 35 35 

AMALGAM-SO 
5.97E-01 16 84 
1.04E-03 0 0 

3 

FMINCON- 
Active Fit 

3.01 46 54 
2.74 23 23 

FMINCON- 
Interior Point 

1.53 29 71 
4.74E-02 3 3 

saDE 
2.17E-01 88 12 
1.26E-01 5 5 

4 

FMINCON- 
Active Fit 

6.14 85 15 
11.2 14 14 

FMINCON- 
Interior Point 

15.2 86 14 
13.8 15 15 

AMALGAM-SO 
4.12E-02 88 12 
8.12E-03 6 6 
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Since a strong dependence of the local optimization methods on the initialization 

location in the search space was observed, we investigated whether the performance 

would be enhanced if the initialization was set very close to the global optimum solution. 

For this run of experiments, we narrowed the search space of the local optimization 

methods to an arbitrarily small hypercube (i.e., six-dimensional space) around the global 

optimum solution (see Appendix D, Section 5). The parameters were still randomly 

initialized in this smaller subspace using uniform random sampling and each local 

optimization method was run using identical settings as described above. Again, for each 

approach and Study (1-4), five independent repetitions were used to evaluate the mean 

and variance in the parameter estimates and objective function values.  

Even within a very close vicinity to the global optimum solution, the results showed 

that the local search methods prematurely converged to a local solution located around the 

global optimum (Table 14). This result is evident as the magnitude of most parameter 

values are not the same when comparing the best performing global optimization and the 

FMINCON optimization results for each study (Table 14). Although the local optimization 

results of the constrained test cases still indicated that the global solution was not reached, 

the performance of the FMINCON algorithms was far superior to the case where the search 

boundaries were less constrained (Table 12 vs. Table 14).  

In addition, there was a noticeable difference in performance between the two 

variants of the FMINCON algorithms, when comparing the mean absolute error calculated 

between the optimal parameter set (out of five repetitions) from the best performing global 

and local optimization parameter estimates and the standard deviation of parameter 

estimates. In general, the performance (benchmarked using the mean absolute error) using 
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the FMINCON Interior Point method was improved over the Active Set method for Studies 1 

and 2, whereas the Active Fit method was better than the Interior Point method for Studies 

3 and 4 (data not shown). Moreover, the Interior Point method demonstrated a less 

variable performance compared to the Active Fit method, as the standard deviation of most 

parameters using the Interior Point method were lower than those obtained using the 

Active Fit method (Table 14). These results confirm that even when the search is 

constrained further, local optimization methods are still not equipped with the adequate 

tools to thoroughly explore the feasible search space as compared to global optimization 

methods. Similarly, the performance of local search routines was observed to be highly 

sensitive to the gradient descent method selected as well as the control settings specified 

for optimization.  

Table 14- Parameter estimates for FMINCON and best performing global, single objective 
optimization algorithms when the search space was constrained. The mean and standard 

deviation are presented for each parameter and local optimization method. The best 
parameter set achieved for the global optimization methods after 5 repetitions are presented 

for reference. 

Study Approach µmax Ks Y Kd b n 

1 

FMINCON- 
Active Fit 

1.0776 219.511 2.740 0.12884 0.0102 2.189 

2.05E-03 3.64E-01 4.02E-02 6.80E-04 1.34E-04 6.44E-04 

FMINCON- 
Interior Point 

1.0720 219.578 2.723 0.12461 0.0103 2.183 

5.48E-05 5.00E-03 8.67E-04 4.72E-05 2.87E-06 2.31E-04 

AMALGAM-SO 1.0784 220.000 2.796 0.12852 0.0104 2.189 

2 

FMINCON- 
Active Fit 

6.301 0.0896 3.304 0.8611 0.0767 9.551 

1.01E-01 9.93E-04 2.17E-01 5.19E-02 1.95E-03 2.69E-01 

FMINCON- 
Interior Point 

6.370 0.0810 3.453 0.8657 0.0760 9.630 

8.40E-02 7.94E-04 1.73E-01 9.21E-03 1.80E-03 1.89E-01 

AMALGAM-SO 6.357 0.0822 3.451 0.8981 0.0780 10.000 

3 

FMINCON- 
Active Fit 

1.235 0.000100 1.777 0.0125 7.80E-11 2.268 

1.55E-02 0 2.82E-02 3.39E-03 2.74E-12 1.48E-03 

FMINCON- 
Interior Point 

1.227 0.000100 1.782 0.0100 7.90E-11 2.268 

3.42E-03 1.39E-15 4.06E-02 2.54E-06 2.24E-12 1.45E-04 

saDE 1.231 0.000100 1.740 0.0100 7.66E-11 2.268 
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4 

FMINCON- 
Active Fit 

2.771 0.000101 3.341 0.0240 0.6440 2.615 

4.12E-02 2.97E-06 4.28E-02 5.26E-03 3.92E-02 8.67E-03 

FMINCON- 
Interior Point 

2.756 0.000104 3.353 0.0241 0.6618 2.614 

3.23E-02 4.73E-06 2.70E-02 3.88E-03 3.36E-02 4.74E-03 

AMALGAM-SO 2.789 0.000100 3.351 0.0295 0.6380 2.617 

 

Another significant improvement achieved from this research method workflow 

resulted from the integration of likelihood free Bayesian optimization approaches (i.e., 

Approximate Bayesian Computation) as a final step, which allowed an enhanced targeting 

of the compromise solution space as compared to formal Gaussian Likelihood approaches. 

To demonstrate the benefits of likelihood free approaches, we briefly compared the 

convergence and parameter identifiability of the Bayesian optimization methods using 

both likelihood free and formal Gaussian likelihood methods. The simplest form of the 

Gaussian Log-Likelihood function was used (similar to Equation 4) and corresponded to 

option # 11 presented in Table 2 of the DREAM software package theory and 

implementation (Vrugt (2016)). The Moser model structure was used to compare both 

methods, as previous results (Figure 46) demonstrated that a higher number of 

generations were required to reach convergence when calibrating this model structure 

using the ABC approach (for most studies). All the control settings for both approaches 

were kept identical as described in Table D10. Similar to previous testing, five independent 

repetitions were used for each study/model combination to assess the variability in 

performance between the two Bayesian optimization approaches. 

Although the formal convergence efficiency (using the overall R statistic of Gelman 

and Rubin 1992) was not significantly improved using the DREAM-ABC approach (Figure 

D5), the parameter identifiability was drastically enhanced for all studies (Figure 47).  As 
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observed in Figure 47, which presents the mean of all parameter values across each 

Markov chain at each generation, the DREAM-ABC algorithm gradually converged to a 

stable posterior parameter distribution after approximately 50,000 generations, while the 

posterior parameter distribution obtained using the Gaussian Likelihood method was 

highly variable (Figure 47). This enhanced performance may be partly attributed to the 

inability of the DREAM approach to account for multiple objective functions using the built-

in objective functions available. Although the user is free to create a custom objective 

function, there is no way to explicitly optimize two or more objective functions 

simultaneously. Similar improvements in parameter identifiability using the DREAM-ABC 

approach were observed using the experimental data from all other Studies (Appendix D, 

Section 7). Thus, despite the greater computational effort required to define the 

compromise solution space using this new approach (i.e., Steps 1-2 of this workflow), 

ultimately, more reliable as well as meaningful parameter and model prediction 

uncertainty estimates can be achieved.  
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Figure 47. Evolution of the mean (across all Markov chains) parameter values for both the 1) 
DREAM-ZS (Gaussian Likelihood) and 2) the DREAM-ZS (ABC) algorithms when calibrated 

against the Moser model using the fourth experimental dataset. The results of five 
independent repetitions are presented, as differentiated by the color scale of the legend. 

4. Conclusions 
 

Given the observed differences in parameter precision, accuracy and bias observed 

between both approaches (i.e., local vs. global), the choice of optimization method is 

imperative to arrive at reliable parameter estimates for unstructured kinetic models 

describing biodegradation. In this study, we have proved global optimization approaches to 

be far superior to nonlinear regression routines provided by MATLAB’s optimization 

toolbox. Additional advantages of this optimization method workflow include the ability to 

handle multi-variate datasets, which often present problems with overfitting of certain 

variables. As evidenced above, global optimization approaches arrived at the best 

compromise solutions with higher probability than local methods. This method workflow 

also allowed a thorough review of both parameter and model prediction uncertainty 

through integration of an ABC approach. Ultimately, the Bayesian component of this 
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method was found to be a powerful diagnostic tool for model comparison and selection 

purposes commonly encountered in the Environmental Engineering field. 
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Chapter 6: A Reliable and Efficient Semi-Parametric Approach to 
Moment Independent Global Sensitivity Analysis Based on Copulas 
 

Abstract: As models used to describe environmental systems have become increasingly 

complex following advances in computing power, the need for accurate and reliable 

methods to quantify the sensitivity of parameters underlying these models has never been 

greater. Sensitivity analysis can improve model predictive certainty by identifying key 

parameters that highly influence the model output, whereby focused experimental efforts 

for parameter identification can then be realized. This study presents a novel moment 

independent approach to global sensitivity analysis based on the application of parametric 

copula models to describe the joint probability distribution function between model 

input(s) and output(s) required for estimation of the sensitivity indices.  Application of this 

method to a range in analytical functions demonstrated great improvements in accuracy 

compared to existing, fully non-parametric methods. Further application of this method to 

an environmental model confirmed that this method could model high nonlinearity, weak 

dependency, and non-monotonicity between model input(s) and output(s) alike.      
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1. Introduction  

 

At the onset of the 21st century, the growing surge in computing power has fueled a 

rapid rise in the complexity associated with many mechanistic models used to describe 

environmental processes. As the structures of these models have become more 

parameterized and intricate, advanced approaches are necessary to assess the uncertainty 

associated with model predictions, parameters, and inputs alike (Tarantola et al. 2002, 

Mattot et al. 2009). Ultimately, environmental model predictions influence decision making 

processes, which require a rigorous assessment of associated uncertainties to ensure 

confidence in the resulting decisions (Refsgaard et al. 2007, Ascough et al. 2008, Mattot et 

al. 2009, Warmink et al. 2010).   

Of the wide range in available uncertainty analyses, global sensitivity analysis (GSA), 

which is aimed at evaluating the sensitivity of model outputs to the full range of inputs (i.e., 

parameters or state variables), has evolved into a necessary step in the development and 

application of mechanistic models describing a wide range in environmental processes 

(Baroni and Tarantola 2014, Song et al. 2015, Pianosi and Wagener 2015, Pianosi et al. 

2016, Manheim et al. 2019). GSA can identify and quantify, for example, how influential a 

given model parameter is when predicting a certain response and can even describe the 

degree of interactions between various parameters (Saltelli et al. 2008, Wei et al. 2015, 

Gupta and Razavi 2017). Quantifying the sensitivity of model parameters is crucial to 

assessing whether a model is overparameterized, and, if not, which parameters have the 

largest impact on overall model predictive uncertainty (Saltelli et al. 2008, Iooss and 

Lemaître 2015, Borgonovo and Plischke 2016).  
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In response to the increasing attention to quantify the sensitivity associated with 

model inputs, a broad number of classes to perform GSA have been advanced in the 

scientific literature, including derivative based, variance based, moment independent, and 

more recently, response surface methodologies (Wei et al. 2015, Razavi and Gupta 2015). 

Perhaps the most common and well-recognized class of GSA approaches (i.e., the method of 

Sobol) are those based on evaluating how a given parameter influences the output variance 

of a model, termed “variance-based” indices (Sobol 2001, Saltelli et al. 2010). However, 

despite their popularity, it has been repeatedly argued that the variance of the model 

output should not be the sole metric of uncertainty (Borgonovo 2007, Borgonovo et al. 

2012, Pianosi and Wagener 2015). It has been further argued that variance-based methods 

do not consider the entire probability distribution function (PDF) of the model output, and 

do not consider highly skewed or even multi-modal nature of the outputs of many 

environmental models (Borgonovo and Plischke 2016). Thus, the moment independent 

(MI) class of GSA methods, which considers how a given shift in a parameter affects the full 

probability distribution of the model output, provides a more comprehensive outlook on 

model parameter uncertainty and sensitivity.  

Borgonovo (2007) was the first to establish a reliable and computationally tractable 

moment independent sensitivity index termed the delta-sensitivity index (δi). Although 

several other MI indices have been promulgated by other authors (Liu & Homma 2009, Wei 

et al. 2013b, Zhai et al. 2014, Pianosi and Wagener 2015), Borgonovo’s delta index remains 

the most applicable and intuitive index, despite the higher computational cost and difficulty 

in estimation associated with its calculation (Borgonovo 2007, Plischke et al. 2013). Given a 

model (y = f(x)) and its input parameters x = (x1, x2, x3, xi), the delta sensitivity index 
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corresponding to the ith input parameter, (δi), is estimated by measuring the average shift 

(S(xi)) between the unconditional probability density of the model output, 𝑓𝑦(𝑦), (when all 

model parameters are varied simultaneously) with that of the conditional probability 

density achieved when holding one of the parameters constant and varying the remaining 

model parameters, 𝑓𝑦|𝑥𝑖
(𝑦) (Equation 1). The average shift between both densities is 

represented mathematically by the expectation (E) of the uni-dimensional integral (where 

the dimensions are equivalent to the number of parameters or the dimensions of a 

problem, d), that can be generally approximated using quasi Monte Carlo methods 

(Castaings et al. 2012, Wei et al. 2013a) (Equations 1 and 2, where i ranges from 1 to d).  

                                                          𝑆(𝑥𝑖) =  ∫|𝑓𝑦(𝑦) − 𝑓𝑦|𝑥𝑖
(𝑦)| 𝑑𝑦   (1) 

                                                                       𝛿𝑖 = 
1

2
𝐸𝑥𝑖

[𝑆(𝑥𝑖)]   (2) 

Although the MI class of GSA approaches has been viewed as a reliable and intuitive 

GSA methodology, MI methods are still notoriously difficult and computationally expensive 

to estimate for more involved applications, such as optimal experimental design (Chu and 

Hahn 2010, Yun et al. 2018, Feng et al. 2018). The MI method of Borgonovo (2007) as 

introduced above, for example, requires an estimate of both the unconditional and 

conditional probability densities of the model output, with a resulting computational 

complexity of (dn2+1)n1, where d is the problem dimension, n1 and n2 are the number of 

samples required for the outer and inner loop calculations, respectively (Borgonovo 2007). 

Clearly, this “double loop” method suffers from the “curse of dimensionality,” as the 

complexity is dependent on the number of dimensions of the problem, d.  

To reduce the computational burden inherent with this method, several studies 

have focused on avoiding the calculation of the conditional probability densities entirely, 
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thereby avoiding a “double loop” approach to estimation (Wei et al. 2013a). These studies 

have derived an equation to calculate 𝛿𝑖 based on the mathematical relationship between 

the conditional probability distribution as well as the marginal and joint probability 

densities of the model input parameter and model output. The application of the resulting 

equation was then reduced to a “single loop” approach, eliminating the “curse of 

dimensionality,” and reducing the computational burden to n1, hereafter referred to as n 

(Equation 3).     

                                                     𝑆(𝑥𝑖) =  ∫ |
𝑓𝑦(𝑦)𝑓𝑥𝑖

(𝑥𝑖)

𝑓𝑥,𝑦(𝑦,𝑥𝑖)
− 1| 𝑑𝑦   (3) 

The primary challenges faced by these improved MI approaches, however, were 

identified as accurately approximating either: the probability distribution function (PDF) of 

a given model output (fy(y)); or 2) the joint probability distribution of a given model input 

and the model output (fx,y(y,xi)) (Equation 3) (Wei et al. 2013a, Wei et al. 2014). Previously, 

these probability distributions (of the marginal and joint PDFs) were estimated non-

parametrically, using fast and relatively reliable implementations of either 1D or 2D kernel 

density methods (KDE) (Botev et al. 2010, Wei et al. 2013a, Wei et al. 2014). The accuracy 

of these methods could be improved if a semi-fully parametric and easily generalizable MI 

method can be achieved to approximate both the marginal and joint PDFs. More recent 

approaches to this end, ranging from the Edgeworth series expansion (Yun et al. 2018), to 

fractional moments combined with maximum entropy methods (Zhang et al. 2014, Zhang 

et al. 2015c), for estimating the PDF of the model output fy(y) have been conceived. Despite 

the advent of these improved approaches, a semi-fully parametric and reliable approach to 

estimate the joint PDF required in Equation 3 for use in MI sensitivity analysis has not yet 

been reached.  
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The advent of copulas to describe the joint PDFs formed by the model output and 

input parameters has previously been introduced as a reliable and efficient method for MI 

sensitivity analysis (Wei et al. 2014). The main advantage of using copulas are that they can 

easily decompose the joint PDF into that based on the marginal PDFs of both the model 

output predictions and input parameters as well as the correlation structure inherent 

between both input and output distributions (Joe 1997, Nelsen 2007). In the previous 

approach developed by Wei et al. (2014), a nonparametric method (using a 2D-kernel 

density estimation) was implemented to estimate the copula density describing the 

dependency between the input parameters and output model predictions. Although this 

fully non-parametric approach was deemed satisfactory for estimating the dependence 

structure between model input and outputs, similar to what was proposed above, the 

reliability (in terms of accuracy and precision) of this method could be improved by 

progressing toward a more parametric and defined estimate of the copula.  

In this study, we present a novel, semi-parametric method for calculating the 

Borgonovo delta-indices in MI sensitivity analysis based on the use of parametric copulas. 

This method approximates the joint PDF between the model inputs and output using a 

parametric copula model, while still approximating the marginal PDFs using a stable 1-D 

KDE method (which is non-parametric, hence we refer to this method as “semi-

parametric”). The use of a parametric copula model to describe the joint PDF between 

model input/output is expected to provide several key advantages (i.e., easily formulated, 

parameterized, and sampled), the most important of which is an increase in accuracy, as 

parametric Copula models provide a direct means to predict the joint PDF as a function of 

the input marginal cumulative densities of each variable. Since parametric models rely on 
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proper training and calibration of model parameters to predict future states, we also expect 

that a small fraction of initial samples will be required to reliably calibrate and predict the 

dependency structure between variables, thereby greatly reducing the computational 

burden required for analysis (Villarini et al. 2008). Of course, one of the main limitations 

inherent to parametric copula methods is the ability to generalize and model many 

different dependency structures (Chen and Huang 2007). Thus, we introduce a 

monotonization, variable transformation technique (Mohseni Ahooyi et al. 2014) to allow 

greater flexibility and improved accuracy of parametric copula methods to describe a wide 

range in dependencies existing between model inputs/outputs required for MI sensitivity 

analysis.    

We compare this newly developed, semi-parametric approach to the existing non-

parametric copula (Wei et al. 2014), single loop (Wei et al. 2013a), and improved non-

parametric importance sampling single loop methods (Derennes et al. 2018) on a series of 

test functions ranging from a model with strictly linear inputs/output relations, to a model 

with highly nonlinear input/output relations, as well as a model exhibiting highly 

nonlinear, nonmonotonic input/output relationships. We demonstrate how explicitly 

defining the correlation structure using a parametric copula can lead to improvements in 

both accuracy and efficiency over methods that solely rely on non-parametric estimates of 

the dependency structure. The use of this semi-parametric method will also detect and 

describe nonmonotonic and complex dependencies between model outputs and inputs that 

non-parametric methods may not be able to effectively describe.  
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2. Materials and Methods 
 

In Section 2.1 of the Materials and Methods, we first describe the background 

behind our semi-parametric, copula-based method, including the theory behind the 

variable monotonization (Rolling Pin) methods. Section 2.2 then describes the full 

numerical implementation of this approach, giving a step by step tutorial on how we 

calculated the delta sensitivity measures using this method. In Section 2.3, we introduce the 

test problems and run conditions for each of the MI methods compared in this study. 

Section 2.4 reviews the main approach taken to quantify the goodness of fit of each copula 

model reviewed. Section 2.5 presents the primary method to evaluate the tail 

concentration functions of each parametric copula model to assess the abilities of each 

model to handle the tail dependencies formed between model inputs and outputs. Section 

2.6 addresses the methods used to evaluate copula symmetry and the technique applied to 

asymmetrize the Frank copula. Section 2.7 describes the approach to compare the semi-

parametric method developed in this study to existing, fully non-parametric approaches. 

Finally, Section 2.8 presents the framework for applying this new method to an 

unstructured kinetic model describing microcystin biodegradation (i.e., the Moser model).  

2.1 Description of the Semi-Parametric Copula Method 

2.1.1 The Rolling Pin Method 
 

The semi-parametric copula method for MI sensitivity analysis presented in this 

study can be described in seven principal steps (Figure 48). The first step in the workflow 

of the algorithm involves monotonization of the dependence structure between the model 

input parameters and the model output response (Figure 48). Integration of the Rolling Pin 

method, which “rolls out” the dependencies between model input parameters and output 
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predictions, offers the following advantages: 1) it can resolve issues with nonmonotonicity 

by always ensuring some optimal degree of linearity among the transformed variables; 2) it 

can allow the user to flexibly model unknown dependence structures with a known 

structure and may alleviate issues with selecting the correct parametric model; as well as, 

3) it can capture highly nonlinear dependencies between different variables (Mohseni 

Ahooyi et al. 2014, 2015).  

The heart of the Rolling Pin method relies on the monotonization of the model 

outputs to develop a strictly positive, linear and monotonic relationship to ensue between 

the model input parameters and output predictions (Equation 4).  

                                                          𝑍𝑖 = (1 − 𝛼𝑖)𝑌 + 𝛼𝑖𝑋𝑖   (4) 

Where Y is the model output,  𝛼𝑖 is the ith monotonization parameter (for i = 1 to d input 

parameters), Xi is the ith “reference variable”, in this case the model input parameter in 

standard normal space, and Zi is the ith transformed (monotonized) value of the model 

output. Different values of Zi were obtained by changing the value of the reference variable 

(Xi), depending on which dependence structure was being analyzed (i.e., Y vs X1, Y vs. X2, Y 

vs. Xi). It is important to note that the model inputs (Xi) were not monotonized (with 

corresponding α values of 0) and only the corresponding model output (Y).  

Mohseni Ahooyi et al. (2014, 2015) specified that the variables that will be 

monotonized (in this case the model output, Y) should be normalized to avoid scaling 

issues. Importantly, we found that performing this normalization of the model output led to 

incorrect approximations of the Borgonovo MI sensitivity indices (data not shown). Thus, 

no conversions or transformations of the model output were performed in this algorithm.  

However, the model input parameter values were transformed from uniform space to 
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standard normal space before monotonization. Since the model inputs were uniformly and 

randomly distributed, this initial conversion consisted of finding the uniform CDF values 

(UCDF, using a QMC sequence generator), then performing a standard normal inversion to 

calculate the transformed values (𝜑−1(𝑈𝐶𝐷𝐹)). In this study, we found that using Sobol’s 

low discrepancy QMC sequences for training/fitting the parametric Copula worked very 

well. 

The efficacy of the Rolling Pin method was found to be extremely dependent on the 

correct choice of the monotonization parameter(s), 𝛼𝑖 . Mohseni Ahooyi et al. (2014) 

specified several methods to determine or optimize values of this parameter, including a 

maximum log-likelihood (ML) approach. We found that the ML approach was most reliable 

compared to the other methods presented in Mohseni Ahooyi et al. (2014, 2015) and was 

adopted herein. The LSHADE-EpSin algorithm (without local search) developed by (Awad 

et al. 2016) was used for global optimization of the monotonization parameters required 

by the Rolling Pin method.  Details behind the ML optimization method, LSHADE-EpSin 

control settings, as well as the objective function constructed for running the ML 

optimization are presented in Appendix E, section 1 for reference. 

2.1.2 KDE Estimation of PDF/CDFs of Transformed Variables 
 

After optimizing the monotonization parameters using the ML approach, the model 

output was transformed according to Equation 4. The PDF and CDF of the transformed 

model output was then estimated using the standard KDE approach provided in the 

statistics toolbox of MATLAB (Mathworks, r2015a). Nonparametric estimation of the 

cumulative, 𝐹(𝑥), and probability, 𝑓(𝑥), densities using this approach depends on proper 

selection of the smoothing function (K()) as well as the bandwidth (h) (Equations 5 and 6). 
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Here, xi defines the centers of each kernel used to estimate the probability or cumulative 

densities and the bandwidth specifies the relative influence (or weight) of each kernel. A 

Gaussian kernel smoothing function and the rule of thumb bandwidth selection method 

were used in this study for stable estimation of the CDFs/PDFs of the transformed 

variables. 

                                                                  𝑓(𝑥) =  
1

𝑛ℎ
 ∑ 𝐾(

𝑥−𝑥𝑖

ℎ

𝑛
𝑖=1 )    (5) 

                                                                    𝐹(𝑥) =  ∫ 𝐾(𝑡) 𝑑𝑡
𝑥

−∞
    (6) 

 

Figure 48. Workflow and representative illustrations of the semi-parametric method based 
on Copulas for MI sensitivity analysis. 
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2.1.3 Training and Fitting of the Parametric Copula Models 
 

The next step of this algorithm was to construct multiple bi-variate parametric 

Copula models to estimate the joint PDFs between the model inputs and output variable 

(Step 3, Figure 48). In this method, we surveyed several parametric Copula models (Table 

15), including the elliptical (i.e., Gaussian, t-distributions) and the one-parameter family of 

Archimedean Copulas (i.e., Frank, Clayton, Gumbel) (Joe 1997, Nelsen 2007). The 

parametric Copulas surveyed differ according to their mathematical formulation and can 

flexibly model different ranges in linear to nonlinear dependencies between variables 

(Table 15). In addition, it is important to note the strict ranges in model parameters that 

can be used to calibrate each parametric Copula model (Table 15).  

Other than the mathematical formulation, the models reviewed also differed in their 

ability to model correlations present among extreme values, otherwise known as the tail 

dependencies, which can be assessed through comparison of the tail dependence 

coefficients (Table 15). For example, the t-distribution is more likely to capture extreme 

value correlations (albeit placing equal weight on both tails) as compared to the Gaussian 

Copula (Table 15). Unlike other Archimedean Copulas, the Frank Copula can model both 

positive and negative dependence structures existing between variables (if the number of 

dimensions ≤ 3) but is characterized by weak tail dependence (Table 15) (Joe 1997, Nelsen 

2007). Both the Clayton and Gumbel copulas can capture lower or upper tail dependencies, 

respectively, where the strength of this dependency is dependent on the magnitude of the 

model parameter θ, defined in the equations presented in Table 15.   

 

 



253 
 

Table 15- Summary of bivariate parametric Copulas surveyed in this study, including the 
mathematical formulation, parameter ranges, and tail dependencies of each. 

Copula 
Model 

Mathematical Description 
Parameter 

Range 

Tail Dependence 
Coefficients 

λL, λU 

Gaussian ∫ ∫
1

2𝜋√1 − 𝜃2

∅−1(𝑣)

−∞

∅−1(𝑢)

−∞

𝑒
(
2𝜃𝑥𝑦−𝑥2−𝑦2

2(1−𝜃2)
)
𝑑𝑥𝑑𝑦 𝜃 ∈ [−1, 1] 0 0 

t-distribution ∫ ∫
𝛤(

𝜃2 + 2
2

)

𝛤(
𝜃2

2
)𝜋𝜃2√1 − 𝜃2

𝑡𝜃2
−1(𝑣)

−∞

𝑡𝜃2
−1(𝑢)

−∞

𝑒
(1+

𝑥2−2𝜃1𝑥𝑦+𝑦2

𝜃2
)

(𝜃2+2)
2

𝑑𝑥𝑑𝑦 
𝜃1  ∈ [−1, 1] 
𝜃2  ∈ (0,∞) 2𝑡𝜈+1 (

√𝜈 + 1√1 − 𝜃

√1 + 𝜃
) 

Frank 
−1

𝜃
𝑙𝑛 [1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
] 𝜃 ∈  R\0 0 0 

Clayton max (𝑢−𝜃 − 𝑣−𝜃 − 1,0)
−1
𝜃  𝜃 ∈ [−1,∞)\0 2

−1
𝜃  0 

Gumbel 𝑒−[(− ln(𝑢))𝜃+(− ln(𝑣))𝜃]
1
𝜃

 𝜃 ∈ [1,∞) 0 2 − 2
1
𝜃 

 

A critical aspect of the semi-parametric method developed in this study was the 

potential to substitute different parametric Copula models to better reflect the dependency 

structures existing within the problem of interest.  Ultimately, for each test problem, a 

unique parametric Copula model was selected over other candidate models using the 

goodness of fit as the main metric for comparison. The steps taken to evaluate the best 

performing Copula model are explained in detail in (Section 6) and the results of the initial 

model calibrations are reviewed in Section 3.1. A canonical maximum likelihood estimation 

(CMLE) method, which is provided as a routine in MATLAB’s statistics toolbox (r2015b), 

was ultimately used for fitting each parametric copula model to the QMC training points 

originally selected in Step 1 (see Appendix E, section 2 for full details).  

2.1.4 Sampling from the Parametric Copula Models 
 

The elliptical Copulas (i.e., Gaussian and t distributions) were sampled using the 

inverse CDF method, whereas the conditional distribution method (CDM, Joe 1997, Nelsen 

2007) was primarily used for sampling from the constructed parametric Archimedean 

Copulas. The inverse CDF method is explained in detail in Appendix E, section 3. The CDM 
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algorithm, which is also conveniently built into MATLAB’s statistics toolbox, relies on a 

closed form of the inverse conditional CDF of each parametric Copula. Details of how this 

algorithm was implemented are also available in Appendix E, section 3.  

Three variants of this sampling scheme were also investigated and compared in 

Section 3.3 of the Results to improve the accuracy and precision of the semi-parametric 

method developed in this study (see Appendix E, section 4). Here, we have focused on the 

use of two classes of sampling schemes, those that sample directly from the Copula model, 

as well as those that re-sample from the samples previously obtained from the Copula 

model. The sampling scheme variants included the following: 1) using QMC sequences with 

the CDM method introduced above; 2) using QMC sequences with the Marshall-Olkin 

sampling algorithm (if the selected Copula was Archimedean) (Marshall and Olkin 1988, 

1997, Hofert 2008); or 3) implementing a density-based re-sampling (Kurowicka and 

Cooke 2006) technique after initially sampling from the parametric copula (Appendix E, 

section 3). Importantly, for all test problems, the number of samples taken from the copula 

was equivalent to the number of QMC samples used to train/construct the parametric 

copula. The effect of each sampling scheme was compared across three test functions using 

a range in QMC sample numbers (n = 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 

65536, 131072) to construct and the same number to sample each copula. Ten 

independent realizations were conducted to assess statistical precision of all sampling 

schemes.  

2.1.5 Inversion of Sampled Variables and Inverse Rolling Pin Method 
 

After sampling from each parametric Copula, it was necessary to transform the 

sampled CDF values back to values of the monotonized model outputs. This inversion was 
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accomplished using the KDE estimates determined in Step 2 (Figure 48), employing the 

inverse CDF option built into MATLAB’s statistics toolbox. In addition to this inversion, a 

second round of KDE estimation was required to determine the PDF values of the 

monotonized, newly sampled model outputs. This step was necessary to offset the 

instability observed from the previous KDE inversion. Again, for the input parameters, the 

inversion was accomplished using a standard normal inverse CDF and the PDF values were 

determined using the standard normal PDF evaluated at the initial sampling points.  

Lastly (Steps 5 and 6, Figure 48), the joint PDF values were de-monotonized using 

the equation developed in Mohseni Ahooyi et al. (2014) (Equation 7), where again c() 

represents the Copula PDF taking as input the CDF values (FX/FY) of both the model input 

parameters (Xi,k) and monotonized model outputs (Zi,k); fx/fz signify the marginal PDF 

values of both the model input parameters and monotonized model outputs; and 𝛼2 

represents the monotonization parameter optimized using the global optimization 

approach described in Step 1 (𝛼1 = 0, Figure 48).  

           𝑓𝑥,𝑦(𝑌1, 𝑋1) =  𝑐 (𝐹𝑍,𝑖(𝑍𝑖,𝑘), 𝐹𝑋,𝑖(𝑋𝑖,𝑘)) ∗ 𝑓𝑧,𝑖(𝑍𝑖,𝑘)(1 − 𝛼2) ∗ 𝑓𝑥,𝑖(𝑋𝑖,𝑘)(1 − 𝛼1)     (7) 

2.1.6 Calculation of the MI Borgonovo Delta Sensitivity Indices 
 

As described in Step 7, Figure 48, the final step was to calculate the Borgonovo delta 

moment independent indices. Similar to Equation 3, the Monte Carlo estimate can be 

obtained given that the number of samples is sufficiently large to converge to a stable 

solution. Equation 8 presents the final calculation involved to estimate the delta MI 

sensitivity measures from the marginal densities of the model input parameters and de-

monotonized outputs as well as the joint PDF estimated in Steps 1-4 above. It is important 

to note that fy represents the marginal PDF of the de-monotonized model outputs, which 
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was achieved using the inverse of Equation 4 above. An additional KDE estimate (using the 

same approach outlined in Section 2.1.2) was necessary to determine the PDF values of the 

de-monotonized model outputs for use in Equation 8.  

                                                   𝛿𝑖 =
1

2𝑁
 ∑ |

𝑓𝑦(𝑌𝑖,𝑘)𝑓𝑥𝑖
(𝑋𝑖,𝑘)

𝑓𝑥,𝑦(𝑌𝑖,𝑘,𝑋𝑖,𝑘)
− 1|𝑁

𝑘=1    (8) 

2.2 Numerical Implementation of the Semi-Parametric Copula Method 
 

We now present an example numerical implementation of the semi-parametric 

copula method, focusing on a step by step tutorial on how the delta indices were estimated. 

This is not meant to be a comprehensive explanation of the steps involved (see Section 2.1), 

but rather as a guide to how best implement this method numerically. The numerical 

implementation steps follow the structure presented in Figure 48 and include sub-steps to 

provide sufficient details on optimal implementation approaches. We provide a general 

framework so that effectively any parametric Copula can be integrated into this MI 

sensitivity method.  

Step 1: Generate a MC sampling scheme, run the model and obtain the model output, and 

carry out the Rolling Pin method.  

Step 1A: Generate a uniform, random quasi Monte Carlo sampling matrix (A) using Sobol’s 

low discrepancy sequences as follows (Equation 9):  

 A = 

[
 
 
 
 
 
𝑥1

(1)

𝑥1
(2)

𝑥1
(3)

⋮
𝑥1

(𝑛)

𝑥2
(1)

𝑥2
(2)

𝑥2
(3)

⋮
𝑥2

(𝑛)

𝑥3
(1)

𝑥3
(2)

𝑥3
(3)

⋮
𝑥3

(𝑛)

⋯
⋯
⋯
⋯
⋯

𝑥𝑑
(1)

𝑥𝑑
(2)

𝑥𝑑
(3)

⋮
𝑥𝑑

(𝑛)]
 
 
 
 
 

  (9) 

The sampling matrix should be n number of samples long by d (number of input 

parameter) samples wide.  
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Step 1B: Obtain the vector of model outputs (Y) by running the model multiple times using 

the A matrix generated in Step 1.  

 𝑌 =  

[
 
 
 
 
 
𝑦(1)

𝑦(2)

𝑦(3)

⋮
𝑦(𝑛)]

 
 
 
 
 

 (10) 

Note: the model output vector should be n number of samples long by 1 samples wide if it 

is a scalar model output (Equation 13). After running the model, be sure to transform the 

initial uniform, random model input parameters into standard normal space for use in the 

Rolling Pin Method.  

Step 1C: For each input parameter Xi, use the Rolling Pin method and MLE optimization 

approach (Section 2.1.1) to monotonize the model input parameter and output dependence 

structure (obtaining Zi monotonized model outputs).  

Step 2: Use MATLAB’s built in KDE toolbox to estimate the CDFs and PDFs for each 

monotonized model output, Zi. Make sure to store these KDE estimates.  

Step 3: Using the CDF estimates of the input parameters and monotonized model outputs, 

train and construct the parametric copula by applying the CMLE approach (Section 2.1.3) 

available in MATLAB’s statistical toolbox. This step should be repeated a total of d times, 

resulting in d different parametric Copula models (and d different 𝜃𝑜𝑝𝑡 parameter values). 

Please note that any parametric Copula can be tailored to the problem of interest.  

Step 4: Sample from the parametric Copula n number of times using the CDM algorithm 

(Section 2.1.4) that is also built into MATLAB’s statistical toolbox. Note that this sampling 

requires the corresponding 𝜃𝑜𝑝𝑡 used in the previous step.  
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Step 5A: Invert the samples obtained in Step 4 back to the monotonized model output 

space using the inverse CDF estimated in Step 2.  

Step 5B: Use MATLAB’s built in KDE toolbox to estimate the PDFs for each monotonized, 

newly sampled model output, Zi. Obtain estimates of the PDF of the input parameters using 

the standard normal distribution.  

Step 6A: Invert the monotonized model outputs back to the original model output space 

using the inverse of Equation 4 and run a final KDE (using MATLAB’s statistics toolbox) on 

this output to obtain the PDF values of the de-monotonized model outputs.  

Step 6B: Calculate the joint PDF of the de-monotonized input/outputs using Equation 7, 

making sure that the correct monotonization parameter values, marginal PDF, and copula 

PDF calculations are used. 

Step 7: Calculate the delta sensitivity indices using Equation 8 above incorporating the 

joint PDF and marginal PDFs of the model input parameters and de-monotonized outputs.  

2.3 Investigation of Three Analytical Test Problems  
 

The semi-parametric copula approach to MI GSA developed in this study and several 

competing algorithms were benchmarked on a series of analytical test functions including: 

a linear, strictly non-linear and non-linear, nonmonotonic test problem (Table 16). 

Analytical test case 1 is a simple additive combination of six standard normal distributions, 

resulting in a linear dependence structure between model input parameters and output. 

For this problem, the model input factor ranking is as follows: X6 >X5>X4>X3>X2>X1 (Table 

16).  

Analytical test case 2, with high non-linearity, is considerably more difficult to solve 

than test case 1. In this problem, the model inputs are uniform randomly distributed [0,1], 
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and the dependency between model inputs and output is generally positive, monotonic 

(exponential). The importance of the input variables can be controlled by the parameter bi, 

where in this case the following factor ranking results: X1 >X2>X3>X4>X5>X6 (Table 16).  

The well-known Ishigami function, which serves as analytical test case 3, is a very 

challenging non-linear and non-monotonic problem consistently used in the field of GSA to 

benchmark various approaches. Here, the dependence between the first input variable and 

the output is non-linear and positive, monotonic; however, the dependence between the 

second or third input variables and the output are nonlinear, but non-monotonic. The input 

distribution of the model inputs to this function are uniform random [-π, π], with similar 

parameters (a, b) implemented in this study to define the degree of interactions between 

input parameters (Table 16). The sensitivity ranking for this function using MI sensitivity 

methods generally indicated the following input ranking: X2>X1>X3.  

Table 16- Summary of analytical test functions for comparison of various MI sensitivity 
approaches used in this study 

Test 
Case 

Test 
Function 

Mathematical Description 
Input 

Distributions 
Parameter  
Definitions 

Ref. 

1 Linear 
𝑌 = 1.5𝑋1 + 1.6𝑋2 + 1.7𝑋3 + 1.8𝑋4

+ 1.9𝑋5 + 2𝑋6 
𝑋𝑖 ~𝑁(0,1)  None 

Borgonovo 
et al. 2011 

2 
Non-

Linear 

𝑌

= exp (∑ 𝑏𝑖𝑋𝑖) − ∏[
exp(𝑏𝑖) − 1

𝑏𝑖

]

6

𝑖=1

6

𝑖=1

 
𝑋𝑖 ~𝑈(0,1) 

bi = [1.5,0.9, 
0.7,0.5,0.3,0.1] 

Helton and 
Davis 
2002 

3 

Non-
Linear, 
Non-

monotonic 
(Ishigami) 

𝑌 = sin(𝑋1) + 𝑎𝑠𝑖𝑛2(𝑋2)
+ 𝑏𝑋3

4sin (𝑋1) 
𝑋𝑖 ~𝑈(−𝜋, 𝜋) a = 5, b = 0.1 

Ishigami, 
and 

Homma 
1991 

 

Approximate analytical solutions to the three test cases described above were 

achieved in this study using a QMC approach to MI GSA. In this approach, we incorporated 

Botev and co-workers (2010) method to accurately estimate the PDF values of both the 
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model output and conditional distributions. The delta sensitivity indices were then 

estimated using the double integration approach and PDF solutions identified above 

(Equation 14) as originally proposed in Borgonovo (2007) for a sufficiently large number 

of QMC samples. A summary of the approximate analytical solutions derived in this study is 

presented in Table E2 for reference.   

                                                  𝛿𝑖 = ∫𝑓𝑥𝑖
(𝑥𝑖) ∫|𝑓𝑦(𝑦) − 𝑓𝑦|𝑥𝑖

(𝑦)| 𝑑𝑦 𝑑𝑥 (11) 

2.4 Parametric Copula Goodness of Fit (GOF) Testing  
 

Differences in the underlying mathematical structure of each parametric copula 

model reviewed in this study to describe a variety of dependence relationships 

encountered in environmental models further affects the estimation of reliable MI 

sensitivity indices. Thus, the overall abilities of different copula models to fit a range in 

dependence structures was compared through application of a goodness of fit (GOF) 

approach initially developed by Genest and Rivest (1993) (see Appendix E, section 6). This 

approach was based on calculating the Cramér-von Mises distance (hereafter referred to as 

CM statistic) between an empirical Kendall Distribution Function (KDF) and the parametric 

copula KDF, in which smaller values of this metric are indicative of a better performing 

parametric Copula model. We also compared the GOF achieved from the parametric Copula 

models surveyed in this study to a non-parametric Copula method, similar to that 

developed in Wei et al. (2014). Results of the Copula GOF testing were compared across the 

test functions described above using a range in initial QMC sampling numbers (n = 256, 

4096, and 16384) to construct each Copula and ten independent realizations were 

conducted to assess statistical precision of all methods. 
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2.5 Parametric Copula Tail Dependency Testing 
 

In addition to overall GOF, the tail dependence was critical to review, as the 

correlation among certain variables in some environmental models may increase or 

decrease heading toward the upper or lower tails of the copula distributions. The ability of 

each parametric (and non-parametric) copula model to fit the tails of each dependency 

structure was assessed through application of the tail concentration function (TCF) (see 

Appendix E, section 7). In general, the TCF conveys the probability of selecting a Copula 

pair (C(u, u)) as a function of the distance from the lower or upper tails (u) (Patton 2013, 

Durante et al. 2015). The tail fitting performance was again evaluated using a modified 

Cramér-von Mises distance (hereafter referred to as CMTCF) calculated between the 

empirical TCF and the parametric TCF (Durante et al. 2015), where lower values are 

indicative of an improved tail GOF. Similar to the Copula GOF testing, results of the Copula 

tail dependency testing were compared across three test functions using a range in QMC 

sample numbers (n = 256, 4096, and 16384) to construct each Copula and ten independent 

realizations were conducted to assess statistical precision of the tail fits for all parametric 

copula models. 

2.6 Evaluation of Copula Symmetry  
 

Copula symmetry is an important prerequisite to check before modelling any 

dependence structure since most parametric Copula model derivations are based on the 

assumption of symmetry (Joe 1997, Nelsen 2007). Symmetry is often defined by 

mathematically reviewing the concept of exchangeability, where variables are deemed 

exchangeable if the order of the dependency structure has little effect on the Copula 

cumulative density evaluation (i.e., C(u, v) = C(v,u)) (Liebscher 2008, Durante 2009, Genest 
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et al. 2012). Often, the degree of exchangeability can be estimated through application of a 

modified Cramér-von Mises metric (Sn) calculated between the empirical Copulas formed 

for Cn(u, v) and Cn(v,u), where smaller values are indicative of a more symmetric 

dependency structure (Appendix E, section 8). In this study, statistical significance of the Sn 

metric was reviewed for test functions 2 and 3 only (as the linear additive case was always 

symmetrical) using a modified Monte Carlo resampling approach (evaluated at n = 256, 

1024, and 4096 across ten independent realizations) presented in Genest et al. (2012) (see 

Appendix E, section 8).  

In the case of asymmetric dependency structures existing between model inputs 

and output, Archimedean copulas can be modified to explicitly account for any degree of 

asymmetry using several transformation approaches. Here, we relied on the Khoudraji 

transformation (Genest et al. 1998, Vandenberghe et al. 2010), which is applied by 

multiplicatively combining two different copula model structures, in this case, the 

independence and Frank copula models (see Appendix E, section 8 for complete 

derivation). MI sensitivity indices were calculated using samples obtained from the 

asymmetrized Frank Copula as part of a modified semi-parametric approach. Complete 

details on how the asymmetrized Frank copula was implemented numerically are 

presented in Appendix E, section 8. The asymmetric Frank copula approach to MI 

sensitivity index estimation was compared to the symmetric Frank copula approach for 

Test Cases 2 and 3, where a range in QMC sample numbers (n = 256, 512, 1024, 2048, 4096, 

8192, 16384, 32768, 65536, 131072) were used to construct and sample each copula 

across ten independent realizations to compare statistical precision of both methods. 
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2.7 Comparison of the Semi-Parametric Method to Existing Algorithms 
 

The semi-parametric copula method presented in this study was thoroughly 

compared against three previous fully non-parametric approaches to MI sensitivity 

analysis, including: Wei and coworkers (2014) copula-based approach, Wei and coworkers 

(2013a) single loop approach, as well as a more recent approach to the single loop method 

using non-parametric importance sampling (NPIS) (Derennes et al. 2018). These methods 

were carefully coded in MATLAB (r2015b) based on the descriptions presented in each 

study and are available as Supplementary Materials to this study.  

Each method was run for the following range of Sobol QMC samples (using the same 

sequence starting point): 28, 29,210,211,212,213,214,215,216, and 217 in which 10 independent 

runs were performed for each method to assess the statistical precision. The accuracy of 

each approach was benchmarked using the absolute error (ABE), calculated between the 

approximate analytical solution (𝛿𝑖,𝐴) and the solution obtained after each run (𝛿𝑖,𝐸) 

(Equation 12). The precision of each approach was assessed using the standard deviation 

of all delta indices acquired across runs (Equation 13). In this study, we describe 

“convergence efficiency” as the number of model evaluations required to reach the 

following level of precision: the width of the empirical 95% confidence intervals across 

runs should be less than 0.05 (Sarrazin et al. 2016).  

 𝐴𝐵𝐸 = ∑ |𝛿𝑖,𝐸 − 𝛿𝑖,𝐴|𝑁
𝑖=1  (12) 

 𝑆𝐷 = √
1

𝑁
∑ (𝛿𝑘 − 𝛿̅)

2𝑁
𝑘=1  (13) 
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2.8 Application to an Environmental Model 
 

To demonstrate the advantages of and elucidate the main mechanisms behind this 

newly developed approach, the semi-parametric approach was applied to a common 

unstructured kinetic model applied in the field of biodegradation: the Moser model. The 

Moser model describes the dynamics of bacterial growth (X) and substrate (contaminant) 

utilization (C) in the environment and was successfully applied to predict the 

biodegradation of microcystin, a toxin produced by freshwater cyanobacteria, by isolated 

bacterial populations (Equations 14-16) (Manheim et al. 2019).  

                                                                             
𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋                             (14)  

                                                                         
𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝑘𝑑𝑋  (15) 

                                                                                             𝜇 =
𝜇𝑚𝑎𝑥𝐶𝑛

𝐾𝑠+𝐶𝑛                                                                              (16) 

The Moser model defines the specific growth rate of bacterial cells (µ) growing on a 

defined substrate as a hyperbolic function of substrate concentration (C) with four main 

model parameters: the maximum specific growth rate (µmax), half saturation constant (Ks), 

the cell yield coefficient (Y), and a parameter to theoretically account for potential 

interactions between binding sites on the degrading enzyme molecule (n) (Moser 1958). In 

addition, the endogenous decay of bacterial cells during growth is explicitly considered (kd) 

(Rittmann et al. 2002, Bodegom 2007). 

The MI sensitivity indices were estimated for this environmental model using the 

detailed simulation framework described in Appendix E, section 9. The semi-parametric 

method was run using identical Steps as presented in Section 2.2, over a wide range in 
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initial QMC samples (n = 28, 29,210,211,212,213) using ten independent realizations to assess 

the variability of the estimated MI sensitivity indices.  

3. Results 

3.1 Selection of an Appropriate Parametric Copula through GOF testing 
 

The overall GOF results demonstrated that as the number of QMC samples used to 

construct each copula was increased, the resulting error generally increased, indicating 

that the GOF declined (Figure 49). In addition, the best performing parametric copula 

varied according to each test function. For the linear, additive test function, Test Case 1, the 

Gaussian copula demonstrated the best overall GOF (especially for greater QMC samples), 

followed by the t-distribution, Frank, Clayton, and Gumbel Archimedean copulas (Figure 

49). Regardless of the input variable-model output dependency investigated, however, the 

Frank Copula generally outperformed all other copulas for the first test function when the 

number of QMC samples was small (n = 256) (Figure 49).   

The Frank Copula demonstrated superior overall GOF on both the non-linear test 

function, Test Case 2, as well as the non-linear, non-monotonic test function, Test Case 3 

(Figure 49). For these test functions, lower values of the CM statistic were generally 

observed for the Frank Copula for most of the input variables and QMC samples (excluding 

input variables 2 and 3, for example). The Gaussian Copula also performed reasonably well 

for Test Cases 2 and 3 when comparing the resulting CM statistics (Figure 49).  

The GOF for the Gumbel and Clayton Copulas, which are equipped to explicitly 

model tail dependence, was generally poor across all test functions (Figure 49). However, 

for test function 2, the Clayton Copula GOF was more reliable, especially for the 1st and 6th 

model input variables (Figure 49). In addition, the performance of the non-parametric 
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method was noteworthy, especially for the third test problem, where it even outperformed 

some of the parametric copula methods (input variable 1, Figure 49).   

Across all test functions, the variability of the GOF over ten independent 

realizations, as conveyed by the standard deviation (plotted as error bars on each bar plot), 

was generally lower for the Archimedean copulas (Gumbel, Clayton, Frank) as compared to 

the elliptical copulas (Gaussian, t-distribution). The primary reason for this difference in 

statistical precision was that the elliptical Copulas were randomly sampled to develop the 

parametric KDF, as compared to the Archimedean Copulas, where an explicit expression 

was available to calculate the parametric KDF.  

Furthermore, as the number of QMC samples used to construct each copula 

increased, the variability was observed to decrease (Figure 49). This result was as expected 

given that if more information concerning the dependency structure is available to 

construct each Copula, the resulting predictions from each copula model should be more 

precise. It is also important to note that although the GOF was generally high, the 

variability of the non-parametric copula method was comparable to or even slightly larger 

than that of the elliptical Copulas across all test functions (Figure 49). Thus, the Frank 

Archimedean copulas benefitted from both high accuracy and statistical precision as 

compared to the non-parametric Copula method.     
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Figure 49. Comparison of overall GOF of several parametric (and one non-parametric) 
Copula models. The bar charts indicate the mean of the Cramér-von Mises distance statistic 

after ten independent realizations were performed, and the error bars represent the standard 
deviation of these realizations. Results are presented row-wise for Test Functions 1, 2, and 3, 

where the number of samples used to construct each Copula was varied from n = 256, 4096, to 
16384. The columns depict the results for different model input variables (i.e., comparing 

input 1 vs. model output). The legend coloring further depicts which copula model was used. 
The y-axis is plotted on a log10 scale to better differentiate between the results.   
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3.2 Comparison of Tail Dependencies  
 

The TCF results demonstrated that as the number of QMC samples used to construct 

each copula was increased, the resulting error generally decreased, indicating that the tail 

GOF increased (Figure 50). Again, when analyzing the results of the most influential model 

parameters, the tail GOF of each copula varied across each test function, with the Gaussian, 

Frank, and the t-distribution performing the best for Test Case 1, 2, and 3, respectively 

(Figure 50). The non-parametric copula method struggled with providing good TOF 

metrics for Test Cases 1 and 2; however, tail GOF results greatly improved for Test Case 3 

(Figure 50). These results analyzing the tail GOF are somewhat aligned with those obtained 

for the overall GOF for each copula, except results presented for Test Case 3.  

Across all test functions, the t-distribution elliptical copula, which places equal 

emphasis on both the upper and lower tails, was able to more closely replicate the unique 

tail dependencies as compared to all remaining parametric copulas. The improved 

performance of the t-distribution copula can be attributed to the underlying mathematical 

structure, which allows adaptation to differences in the strength of the dependencies that 

may exist at the upper and lower ends of the bivariate probability distribution. However, 

the ability of the t-distribution to improve the tail GOF was limited in some test cases in 

which asymmetry in the dependencies may have been present between the upper and 

lower tails. For example, for Test Case 2, the strength of dependency in the lower tail may 

have been greater than the upper tail, as the Clayton copula (which places more emphasis 

on the lower tails) performed very well. In addition, for Test Case 3, the strength of 

dependency may have been somewhat greater in the upper tail as compared to the lower 

tail given that the Gumbel copula performed well. Overall, the relative asymmetry between 
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upper and lower tail dependence was relatively weak as both the Frank and t-distributions 

(which place none to equal emphasis on both tails) outperformed both the Clayton and 

Gumbel copulas (Figure 50).  

The variability of the CMTCF metrics, as defined by the inter-quartile range of the 

boxplots (and the extent of the whiskers) was observed to decline significantly as the 

number of QMC samples used to construct each copula increased (Figure 50). This result 

was in concordance with the reduction in variability observed for the overall GOF 

presented in the previous section and makes sense intuitively, since more information is 

provided during the calibration process. The magnitude of the CMTCF metric variability was 

equivalent to the tail fitting performance of each copula and varied according to each test 

function. For example, the variability of the Clayton function was relatively high for the first 

and third test cases, where tail GOF performance was poor; however, as tail GOF increased, 

as in Test Case 2, the variability was reduced significantly (Figure 50). This trend was 

similar for the other copula models, including the non-parametric method (Figure 50).    
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Figure 50. Boxplot distributions of the tail fits for several parametric (and one non-

parametric) copula models. The diamond symbols indicate the mean of the modified Cramér-
von Mises distance statistic after ten independent realizations were performed, and the black 

line represents the median of these realizations. Results are presented row-wise for Test 
Functions 1, 2, and 3, where the number of samples used to construct each copula was varied 
from n = 256, 4096, to 16384. Results are also presented for the most influential model input 

variable (i.e., input variable X1, X1, and X2 for test functions 1,2, and 3, respectively). The 
legend coloring identifies the different copula models.   
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3.3 The Effect of Alternative Sampling Schemes  
 

Figure 51 plots the evolution of the mean absolute error as a function of the number 

of samples used to construct and sample the copula models and shows that the choice of 

sampling scheme noticeably affected the accuracy of the estimated MI sensitivity indices. 

For Test Cases 1 and 2, the application of QMC-CDM sampling methods significantly 

improved the accuracy of the semi-parametric method developed in this study. This result 

agrees with previous studies finding optimal results with QMC copula sampling-based 

methods over those based on pseudo random number generators (Cambou et al. 2017). 

Comparably, the use of the density resampling approach on Test Cases 1 and 2 resulted in 

poor approximation of the MI sensitivity indices (Figure 51).  

In general, the density-based sampling approach performed much better for Test 

Case 3 compared to the other CDM sampling methods (Figure 51). Although the 

approximation error was lower using this resampling method, this approach produced 

importance rankings that were not entirely in line with those obtained from the analytical 

solution (data not shown). For example, the importance rankings obtained from the density 

resampling method indicated that the third variable was second most influential to the 

model output, whereas the analytical solution indicated that the first variable was the 

second most influential to the model output. This result may be due to similarities in the 

copula probability density estimates between both the first and third input variables, 

which results in relatively equal selection probability during the resampling step. 

The QMC-MO algorithm generally demonstrated similar, if not more variable results 

for Test Case 2 as compared to the QMC-CDM algorithm (Figure 51). The slightly worse 

performance and higher variability observed for the QMC-MO algorithm over the QMC-
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CDM algorithm may be due to the approximation of the inverse Laplace-Stieljes transform 

using a logarithmic, discrete probability density function. This approximation was 

observed to be highly variable when the strength of the dependency between the input 

variable/model output (as determined by Kendall’s tau) was greater than 0.95 (and θ 

values for the Frank copula were large ~50 or higher). The use of the MO algorithm was 

especially problematic for the third test function (where no results were obtained), in 

which the resulting dependency between model inputs and output after monotonization 

was higher than the empirically determined threshold of 0.95 above. Ultimately, these 

results confirm the use of the CDM algorithm with QMC samples in order to ensure stable 

and accurate estimation of MI sensitivity indices.  



273 
 

 

Figure 51. Comparison of the accuracy (mean absolute error between analytical MI 
sensitivity indices and experimentally determined indices) of each sampling scheme as a 

function of the number of QMC samples used to construct/sample each copula model. Results 
are presented for Test Cases 1)-3), where the best performing parametric copula model (i.e., 
Gaussian copula for Test Case 1 and Frank copula for Test Case 2 and 3) was used. The error 
bars denote the standard deviation of the absolute error over ten independent realizations of 

each sampling scheme. The different sampling schemes investigated are differentiated by 
color, as indicated in the legend above. The standard sampling scheme used as a basis for 

comparison against all alternative sampling schemes was the CDM method. 
 

3.4 Evaluation of Copula Symmetry  
 

Comparison of the modified Cramér-von Mises test statistics (Sn), which provide a 

quantitative indication as to the degree of diagonal symmetry between model input/output 
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dependencies, indicated that as the number of QMC samples increased, the asymmetry of 

the dependencies increased for all input variables and for both of the analyzed asymmetric 

test functions (Figure 52). The magnitude of the diagonal asymmetry (as revealed by the 

higher Sn values) was greatest for input variables in test function 2 as compared to test 

function 3 (Figure 52). Results for Test Case 2 demonstrated that the second input variable 

had the most asymmetric dependence structure, followed by the fifth or fourth input 

variable, whereas input variables 1 and 3 were marked by the most asymmetric 

dependence structures for test function 3 (Figure 52). The variability of the Sn test 

statistics, as summarized by the standard deviation and coefficient of variation (COV), 

generally decreased as the QMC sample size increased (Tables E4 and E5), indicating that 

the degree of asymmetry became more uniform as more samples were included in the 

analysis.  

Using the modified Monte Carlo method presented in Genest et al. (2012), p-values 

were calculated to assess the statistical significance of the diagonal symmetry between the 

dependence structure(s) of the model input variables and output. A p-value less than 0.05 

rejected the null hypothesis that the dependence structure was symmetrical. P-value 

calculations for Test Case 2 indicated that the dependence structure along the diagonal was 

indeed asymmetrical for all input variables excluding variable 1 as the number of QMC 

samples increased to 4096. Statistical significance was not reached, however, for the 

dependencies existing in test function 3, signifying that the dependencies remained 

symmetric, despite an increase in sample size and magnitude of the Sn statistic (Figure 52).   
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Figure 52. Calculated Sn statistics and p-values as a function of QMC samples (256-4096) for 
evaluation of Copula asymmetry. Results are presented for test problems 2 (A) and 3 (B), 

where the input variables for each test function are denoted by a certain color indicated in the 
legend.  The error bars indicate the standard deviation of the Sn and p-values over ten 

independent realizations of the asymmetry testing. The dashed black line on the plots in the 
second column indicate the statistical significance threshold of 0.05.  

The performance of the asymmetrical version of the Frank copula when estimating 

the MI sensitivity indices for Test Cases 2 and 3 was generally poor compared to the 

symmetrical Frank copula, in terms of both accuracy and precision (Figure 53). For all QMC 

construction and sampling numbers, the asymmetrical Frank copula maintained both a 

high average absolute error and standard deviation across replicate experiments, 

especially for Test Case 2 (Figure 53A). Overall, the MI sensitivity index estimation 

performance was generally better for the asymmetric Frank copula for Test Case 3 as 

compared to Test Case 2 (Figure 53).   
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Although Figure 52, Table E4, and Table E5 originally indicated that asymmetry was 

present for some model input and output dependencies for both test functions (along with 

statistical significance to validate this asymmetry), the asymmetric copula model fits may 

not have been adequate for some realizations using the optimization scheme and 

parameter bounds presented. For example, the optimization scheme was more complex for 

Test Case 2 as compared to Test Case 3, where 18 parameters required optimization (2 for 

each input variable/output dependency). Even though convergence was generally reached 

within the allotted number of function evaluations using the global, evolutionary approach 

(LSHADE-EpSin), some θ parameters, which describe the strength of the dependency 

between model input/output for the Frank Archimedean copula, were approaching the 

lower or upper bounds (-100, 100). For reference, the corresponding magnitude of values 

for θ were on the order of -0.961 to 0.961 in terms of Kendall’s tau. Thus, since the 

parameter values were restricted during optimization, the accuracy and precision of the 

asymmetric Frank copula method generally suffered. These challenges observed during 

optimization were magnified for Test Case 2, in which the asymmetric dependency 

structure modelled between input variable 5 and the model output was suboptimal (data 

not shown).    
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Figure 53. Comparison of the accuracy (mean absolute error between analytical MI 

sensitivity indices and experimentally determined indices) between the Frank (blue) and 
asymmetrical Frank copula models as a function of the number of QMC samples used to 

construct/sample each copula model. Results are presented for test functions 2) (A) and 3) 
(B). The error bars denote the standard deviation of the absolute error over ten independent 

realizations of each copula model method. 

3.5 Comparison of Semi-Parametric MI Algorithm Performance 
 

The semi-parametric method developed in this study outperformed existing MI 

algorithms across the linear, nonlinear, and non-linear/nonmonotonic set of test functions 

investigated (Figure 54, Panel 1 and 2). For Test Case 1, the average absolute error across 

ten independent realizations was lowest for the semi-parametric method after 

approximately 2048 QMC samples, where the average error remained the lowest of all 

algorithms tested until the highest number of QMC samples was reached (n = 131072). 

Comparably, for Test Case 2, the average absolute error was lowest for the semi-parametric 

method across all QMC sample sizes surveyed (Figure 54). The results for Test Case 3 were 
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more variable than previous test functions, in which the semi-parametric method was the 

second-best performing algorithm behind the NPIS single loop approach. Across all test 

functions, the single loop and non-parametric copula methods were more precise, but 

significantly less accurate, whereas the semi-parametric method and the NPIS method 

were more accurate, but less precise, especially at small QMC sample numbers (Figure 54).  

The convergence efficiency was assessed for each MI sensitivity algorithm across all 

analytical test functions through calculation of the 95% confidence interval widths of the 

absolute errors estimated between the experimental and analytical solutions. Formal 

convergence was reached when the width of the 95% confidence intervals describing the 

variation of the absolute error dropped below 0.05 (Sarrazin et al. 2016). As observed in 

Figure 54, the convergence efficiencies of each algorithm were relatively similar for Test 

Case 1 but diverged for Test Cases 2 and 3. For Test Case 1, after approximately 2048 to 

4096 QMC samples, all algorithms appeared to formally converge. However, for Test Case 

2, approximately 8192 to 16384 samples were required for each algorithm to formally 

converge except for the NPIS method, which did not formally converge, even after the 

application of 131072 QMC samples. Finally, the results for Test Case 3 indicated that 

approximately 32768 to 65536 QMC samples were required for each algorithm to formally 

converge, with the semi-parametric method demonstrating the highest variability (Figure 

54).  

Analysis of the convergence behavior of each input variable was quite different 

between the semi-parametric, NPIS, and non-parametric copula/single loop MC estimators 

for the more complex test functions (2 and 3). Figures E4 and E5 qualitatively portray the 

convergence behavior and factor rankings according to each input variable for Test Cases 2 
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and 3. Focusing on the semi-parametric method (Figure E4), from the smallest number of 

QMC samples (n = 256) and onward, the medians of the boxplots depicting the distribution 

in MI sensitivity indices across ten realizations were close to the analytical solutions for 

each input variable. However, the medians of the distributions of estimated sensitivity 

indices for the remaining algorithms were very far away from the analytical solutions, even 

after the largest number of QMC samples were applied (Figure E4).  

Similar convergence behavior was observed for the non-linear, non-monotonic test 

function 3 (Figure E5), in which the non-parametric copula and single loop methods could 

not adequately resolve the analytical solutions. For these two methods, the ranking of the 

most sensitive input variables was also relatively skewed (with the ranking of variable 3 

often greater than variable 1), which was most likely an artefact of the non-monotonic, yet 

highly non-linear dependency observed between the first/third model input variables and 

the corresponding model output. Although the semi-parametric method demonstrated 

some trouble with approximating the analytical solutions of the final test function, the 

factor ranking order was always preserved. This result was attributed to the integration of 

the Rolling Pin method into the approach developed in this study, which always ensured 

that the dependency structure between each input variable and model output was strictly 

positive and monotonic. It is important to note that the non-parametric method also 

demonstrated a significantly improved convergence performance for Test Case 3 as 

compared to Test Case 2 (Figure E4 vs. Figure E5).  
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Figure 54. Comparison of the I. accuracy/precision (mean absolute error between analytical 
MI sensitivity indices and experimentally determined indices) and II. convergence efficiencies 

(width of the 95% confidence intervals of the absolute error) between the different MI 
Borgonovo sensitivity methods as a function of the number of QMC samples. Results are 

presented for test functions 1-3. The error bars denote the standard deviation of the absolute 
error over ten independent realizations of each method. The dashed black line on the plots in 

the second column indicate the convergence threshold of 0.05.  
 

3.6 Application of the Semi-Parametric Method to an Environmental Model  
 

The semi-parametric method developed in this study was applied to a well-known 

unstructured kinetic model describing microcystin biodegradation by isolated bacterial 

populations. As observed in Tables E6 and E7, the strength of correlation between many 

input parameters (aside from µmax for substrate concentrations and Y for cell 

concentrations) was generally weak (|Kendall’s tau| <  0.30) and many dependencies 

existing between model input parameters and output variables were non-monotonic (or 
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decreasing) in nature. These aspects describing the dependency between model input-

output relationships, as indicated from the analytical test function results in the previous 

section, challenged current fully non-parametric techniques for estimating accurate and 

reliable MI sensitivity indices. The semi-parametric method developed in this study, 

however, was equipped with the capability to monotonize the dependencies existing 

between certain input-output relationships and, in most cases, could reliably discern acute 

differences in MI sensitivity indices among different input variables and simulated 

timepoints for this environmental model.  

Results presented in Tables E8 and E9 highlight that the optimal monotonization 

parameters obtained for this study were relatively small (<0.15, on a scale from 0 to 1, 

where 0 indicates no monotonization should be performed), indicating that variable 

monotonization was generally not required to model the dependency between input 

parameters and output variables for this environmental model. In addition, the estimated 

MI sensitivity indices were observed to converge around n = 16384 QMC samples for both 

model output variables, where the width of the 95% confidence intervals over ten 

realizations dropped below the previously specified threshold of 0.05 (Figures E6 and E7) 

(Sarrazin et al. 2016).   

Figure 55 depicts the MI sensitivity indices, as a function of simulation time, 

calculated for both model outputs by applying the semi-parametric method developed in 

this study. Over all simulated time points, the semi-parametric method determined the 

following factor ranking, from the most to least influential model parameters affecting 

substrate concentration predictions: 1) µmax, 2) n, 3) Y, 4) Ks, 5) kd (Figure 55A). 

Comparably, the factor rankings obtained for cell concentration predictions were as 
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follows, again from the most to least influential model parameters:  1) Y, 2) µmax, 3) kd, 4) n, 

5) Ks. In general, the dynamic trends in calculated MI sensitivity indices were contradictory 

when comparing both substrate and cell concentration predictions (Figure 55). For 

example, as simulated time progressed, µmax was observed to increase in influence when 

predicting substrate concentrations and became significantly less influential when 

describing cell concentrations (Figure 55). Similar trends were observed for Ks and n model 

parameters (Figure 55). Moreover, some model parameters, such as Y (Figure 55B) and n 

(Figure 55A) increased in influence at moderate time points (around 5-6 days) across the 

simulated time period.  

 

Figure 55. MI Borgonovo (δ) sensitivity indices calculated using the semi-parametric method 
developed in this study (n = 16384) as a function of the simulation time (1-9 days) and the 
model input parameters. The colors in the legend correspond to different simulation times, 

and panels A and B correspond to either the predicted substrate or cell concentrations, 
respectively. Standard deviations of the calculated δ indices (over 10 realizations) are 

presented as error bars in the Figure.    
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To further demonstrate the efficacy of the semi-parametric method, the copula 

density predictions afforded from the Frank model were qualitatively compared to the 

empirical copula densities of the QMC samples (Figure 56). The empirical results were 

generally in agreement with the parametric model predictions, as the density of the 

empirical estimates clustered in similar locations where the model predictions indicated 

higher densities should exist (Figure 56). Stronger dependencies between model input 

parameters and output variables, such as those observed between µmax and cell or 

substrate concentration predictions, corresponded with more influential model parameters 

identified in Figure 55, as expected intuitively. Similar to the results portrayed in Figure 55, 

the direction of the dependence (positive or negative) was, at times, completely reversed 

when comparing the two model outputs (i.e., as observed for µmax and Y) (Figure 56).  

The GOF results for this model application were also qualitatively and quantitatively 

checked using comparisons of the empirical and parametric lambda functions (similar to 

the Kendall distribution functions examined above). Qualitatively, it appeared that the 

bivariate dependency between the most sensitive parameter (µmax) and substrate 

concentration predictions agreed, whereas the input/output relationship between the most 

sensitive parameter (Y) and predicted cell concentrations were somewhat different (Figure 

E8). These results were confirmed quantitively, in which average values of the Cramér-von 

Mises distance statistic (across ten realizations) were an order of magnitude larger for the 

Y input and cell concentration dependence as compared to the µmax input and substrate 

concentration dependence structures (i.e., 684 vs. 3,857). Upon more careful inspection of 

Figure 56, there was also a divergence between the empirical and modelled densities for 

the Y input and cell concentration dependence structure, as the empirical densities 
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appeared more homogenous and evenly dispersed across the copula variable space. 

Therefore, for this model application, some non-linearities existed between the model 

inputs and outputs in which the Frank copula could not fully resolve.  

 

Figure 56. Empirical copula densities (plotted as black dots) overlaid with the predicted 
Frank copula densities (contour lines) using the results from the Moser model (t = 1 day, n = 

4096 QMC sampling points, transformed variables only). The copula density results are 
categorized according to the input parameter (columns) and the model output variable, 

substrate (A), or cells (B). The color bar corresponds to the magnitude of the predicted copula 
density values, where darker colors (i.e., red) are indicative of higher predicted copula 
densities. Copula variable u corresponds to the model output variable, whereas copula 

variable v corresponds to the model input parameter. 
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4. Discussion 

4.1 Study Contribution, Advantages, and Limitations of the Semi-Parametric Method 
 

This is the first study, to the best of our knowledge, to successfully integrate 

parametric copula models into a MI global sensitivity analysis framework. Compared to 

previous non-parametric MI methods, including those based on copulas (Wei et al. 2014), 

this method greatly improved the overall accuracy of the MI sensitivity indices when 

applied to a range in suitable analytical test functions (i.e., linear, non-linear, non-linear 

and non-monotonic). The improvements in accuracy gained through the application of 

parametric copula models to estimate MI sensitivity indices can be attributed to the 

enhanced definition of the dependency structures formed between model inputs and 

output(s) over existing non-parametric methods. Simply put, the dependency structure (or 

correlation) can be directly modelled as a function of the input marginal cumulative 

probability densities of both variables, which is a significant advantage over non-

parametric methods. In addition, the model structure of many parametric copulas provides 

greater flexibility over non-parametric methods, as the dependency structure can be easily 

decomposed into different sub-regions, for example, the lower tail, diagonal, and upper 

tails, in which the dependencies within these sub-regions of a given multivariate 

distribution can be modelled explicitly.   

As non-parametric copula methods mainly rely on density to model dependency, 

they cannot resolve the complete underlying structure of the dependence between model 

inputs and outputs, even with a sufficiently large number of QMC samples. For example, the 

non-parametric copula method repeatedly encountered trouble reproducing the empirical 

TCFs of the analytical test functions, which suggests that different sub-regions of the 
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dependency structure formed between model inputs and output (i.e., around the tail 

regions) are not accurately modelled using non-parametric methods (Figure E2).  

Parametric copula models, however, can resolve tail dependencies quite well (as 

demonstrated in Figure E2), and models such as the Clayton and Gumbel families can 

account for differences in correlation strength between the upper and lower tails of a given 

bivariate (or even multivariate) distribution.      

Even though significant improvements were made in accuracy over existing non-

parametric methods, the convergence efficiency and precision of the semi-parametric 

approach was similar to, if not worse than (i.e., Test Case 3 results), previous fully non-

parametric methods. Issues with the precision and convergence efficiency are directly 

related to the number of QMC samples used to construct as well as sample each parametric 

copula prior to calculation of the MI sensitivity indices. To be impartial in our comparison 

against previous non-parametric methods, we kept the number of QMC samples used to 

construct the copula equivalent to the number of samples drawn from the copula. To 

improve the precision and convergence efficiency, it would be advantageous to draw 

significantly more samples than initially used to construct the copula to provide greater 

coverage of the joint PDF between model input(s) and output(s). However, to some extent, 

the number and design of QMC samples (i.e., Sobol sets, Latin Hypercube Sampling) used to 

construct the initial parametric copula is an important factor that can also be addressed to 

improve convergence efficiency and precision of the semi-parametric method developed 

herein.  

An important limitation of the semi-parametric method developed in this study is 

that it can only address the sensitivity of single model parameter or input on the resulting 
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model predictions. Ultimately, previous non-parametric methods that can compute MI 

Borgonovo delta sensitivity indices are able to resolve the interactive effects of combined 

groups of input parameters on the model output (i.e., Wei et al. 2013a). These calculations 

are important, as the full sensitivity of the model inputs on model output predictions 

cannot be realized unless all potential groupings of input parameters are considered in the 

analysis. However, we argue that the semi-parametric method developed in this study can 

readily accommodate the effect of groups of input parameters on the model output through 

application of multivariate parametric copula models to describe the joint PDF between a 

specific group of input parameters and the model output response. Hierarchal or nested 

Archimedean parametric copula classes have been found to be more computationally 

attractive to handle multivariate copula distributions (Hofert 2011, Okhrin et al. 2013). 

Thus, Equation 8 would be modified to include the marginal PDFs of all input parameters in 

a specific grouping in addition to the joint PDF between the group of input parameters and 

the model output response. Although most parametric copula models can accommodate 

higher dimensions, both the application of the Rolling Pin method and the fitting of a 

multivariate parametric copula model will surely increase the complexity and the 

computational burden of the semi-parametric method developed herein. 

Another limitation to consider is whether the current semi-parametric copula 

method explicitly accounts for the effect of correlated input parameters on the MI 

sensitivity analysis. Some previous methods, including the single loop and NPIS single loop 

methods can explicitly account for the effect of correlated inputs on the estimated MI 

sensitivity indices (Wei et al. 2013a, Derennes et al. 2018). Since the framework of the 

semi-parametric method is based off that presented in Wei et al. (2013a) and Derennes et 
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al. (2018), we can offer a tentative conclusion that even if parameter inputs are correlated, 

there will be no significant effect on the estimation of singular Borgonovo delta sensitivity 

indices (i.e., without considering grouping of model input parameters). The main reasoning 

that supports this conclusion is the fact that the copula model can dissect and isolate the 

joint PDF as a function of the marginals of the input parameters only and in the calculation 

presented in Equation 8, input parameter correlation should have a negligible effect on the 

calculated sensitivity indices. However, this reasoning may not be valid when calculating 

delta indices for groupings of input variables. Future studies involving this semi-parametric 

method should provide a focused investigation into the effect of input parameter 

correlation on the calculation of accurate and reliable MI Borgonovo delta sensitivity 

indices.   

Compared to the previous non-parametric methods, the semi-parametric method 

developed in this study presents some challenges to computational efficiency (i.e., CPU 

time). The first challenge affecting computational efficiency is related to the optimization 

procedure to determine the monotonization parameters. Depending on the problem of 

interest (i.e., the number of dimensions) and number of QMC samples used, the 

computational efficiency may become a burden when applied to real world problems. 

Importantly, in the problems investigated in this study, the number of dimensions was 

limited to six input parameters or less and the range in QMC samples from n = 256 to 

131072. For the optimization procedure, the CPU time and memory requirements were 

adequate on a standard three core, 64-bit Intel processor up to n = 16384-32768 QMC 

samples, the standard number of QMC samples required to reach convergence. However, 

we relied on the high-performance computing system available at the University of 
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California, Irvine (UCI) for handling QMC samples beyond 32768. It is important to note 

that the code developed for this method was vectorized and took advantage of parallel 

computation.  

The second challenge affecting computational efficiency was running the KDE 

routines provided by the MATLAB program, especially for a high number of QMC samples. 

The MATLAB KDE routine was ultimately chosen in this study due to the greater stability it 

afforded when calculating the MI sensitivity indices compared to alternative KDE methods. 

The algorithm developed in this study relies on three calls to the KDE routine, an initial call 

to find the KDE of the monotonized samples used to construct the copula, a second call to 

find the KDE of the sampled estimates from the copula, and a third call to estimate the KDE 

of the transformed samples that were originally sampled from the copula. Given the 

significant reliance on the KDE routine provided by MATLAB, the semi-parametric method 

was observed to significantly slow at n = 65536 QMC samples and beyond. To circumvent 

these issues, an alternative calculation can be used (Equation 20, where c(u, v) is the copula 

density) that avoids the cost of computing the marginal KDE density estimates of the model 

input parameters and solely relies on accurate estimation of the copula density, reducing 

the number of KDE calls to 2 (Wei et al. 2014). Alternative KDE tools can also be considered 

to improve computational efficiency, including the method of Botev et al. (2010). However, 

the application of these alternative KDE estimators may compromise the stability of the 

semi-parametric method, as these methods, although more computationally efficient than 

the MATLAB routine, cannot adequately resolve the probability density estimates (for both 

the PDF and CDF) at or close to the tails of the KDE distributions.     

                                                                     𝛿𝑖 =
1

2𝑁
 ∑ |1 −

1

𝑐(𝑢,𝑣)𝑘
|𝑁

𝑘=1    (17) 
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A final limitation of the parametric copula model developed in this study is the 

inability of the model to practically address non-scalar model outputs. This is an important 

issue to address, as most environmental models are temporally, or spatially varying and 

sensitivity methods developed for these applications must consider this aspect. Although 

the example model application we have included in this study was dynamic in nature, with 

multiple model outputs corresponding to different simulation times, the computational 

burden imposed by non-scalar model outputs was found to be impractical. In our 

application, we were required to run this method sequentially, once for each time point, 

which required t different optimization calls (t representing the number of simulated time 

points). Clearly, this number of optimizations is impractical, especially for models with 

much higher resolution and finer grid spacing. Thus, time varying parametric copula 

models, which can model either how the copula function or model parameters change with 

respect to time, can be implemented as a practical solution to address the issue of non-

scalar model outputs from many environmental models (Manner and Reznikova 2012).  

4.2 General Guidelines for Practical Implementation of the Semi-Parametric Method  
 

Even though we have offered a detailed overview of the numerical implementation 

of this developed method, since this method relies on the use of parametric methods, the 

practical application of this method still will require some formal tailoring to a given 

problem of interest. To achieve gains in accuracy for MI sensitivity indices, we stress in the 

development of this method that this is not a simple drop in, one-size fit all replacement to 

MI sensitivity analysis that fully non-parametric methods offer. In this section, we present 

some insight as to how to most efficiently apply this method to improve MI sensitivity 

index accuracy for any problem of interest. We give a detailed overview of several 
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necessary steps required to avoid problems previously observed during the development 

of this method. Using these steps as a general guideline, this method can be adapted to any 

problem of interest. 

The selection of an appropriate parametric copula to describe the dependency 

structure between model inputs and outputs is the first necessary pre-requisite to practical 

implementation of this method. We found that the range in copula models presented in the 

MATLAB statistics toolbox were an adequate starting point for determining the most 

appropriate copula model. If access to the MATLAB copula routines is an issue, we refer the 

reader to a recently developed, comprehensive and convenient copula toolbox that can be 

applied to model any multivariate dependency structure (Sadegh et al. 2017). This toolbox 

contains at least 26 different parametric copula models (spanning a wide range in copula 

families) that can be fit using Bayesian regression. Importantly, this program can 

determine a posterior distribution in copula parameter estimates and can easily compare 

and rank the performance of each competing parametric copula model (Sadegh et al. 2017). 

Overall, we determined that the Frank Archimedean copula family provided a robust 

approximation of most of the dependence structures encountered in the analytical test 

functions and should be considered as a basis of comparison for any initial copula model 

screening. In addition, the choice of copula model did not have to be altered to describe the 

dependencies between other model inputs or outputs for a given test function. This is 

important as the complexity of this method was greatly reduced for not having to choose 

several different parametric copula models for describing different model input and output 

relationships for a given model. As part of this initial screening (if not using the toolbox 
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above), we also recommend the use of a quantitative metric, such as the Cramér-von Mises 

distance to compare the overall GOF of each of the copula models reviewed. 

Following review of the appropriate parametric copula model/family, an additional 

check of the copula fit to the tail regions is recommended. This step can be achieved by 

computing and comparing the empirical and parametric TCFs as defined in Appendix E, 

section 7. This step will both reinforce whether the selection of the copula model above is 

appropriate and determine whether another copula model family should be investigated 

that explicitly models the tail regions of the multivariate copula distribution (i.e., the 

Gumbel or Clayton Copula families). Again, we recommend the use of a quantitative metric 

to assess the tail fits among the copulas compared. 

Other than overall and tail GOF, the sampling strategy and symmetry of a given 

dependency structure should be evaluated as third and fourth final steps to tailor the semi-

parametric method to a certain problem of interest. In this study, we observed that QMC 

sampling designs (over pseudo-random numbers) improved the accuracy and convergence 

efficiencies of the estimated MI sensitivity indices. Moreover, the CDM method was 

observed to be the most suitable sampling scheme for both the Elliptical and Archimedean 

classes of parametric copulas. Symmetry along the diagonal of the copula is also an 

important criterium to review to improve the accuracy and convergence efficiency of this 

method. Transforming a certain parametric copula model to account for asymmetric 

dependence along the diagonal may be more complex but could offer great advancements 

in the accuracy of MI sensitivity indices. Although some asymmetry was observed in the 

test functions reviewed in this study, it was not significant enough to warrant the use of 

more complex copula models that explicitly account for asymmetry along the diagonal. 
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Helpful quantitative metrics, like the Sn metric, and statistical hypothesis testing, like the 

method adopted in this study, are available to assist in the evaluation of symmetry for a 

given dependence structure (Genest et al. 2012).  

As a final suggestion, we urge that the preliminary step of determining the 

appropriate copula model through comparison of the overall GOF should be conducted as 

the primary means to improve accuracy for any given test problem. We highlight that this 

step within this method allows great flexibility to model many different types of 

multivariate dependence structures necessary for the computation of MI sensitivity indices. 

The following steps (2-4), although potentially helpful for understanding the complexity 

behind modelling the dependence structure, are auxiliary tools that can be applied as other 

options to improve the accuracy and reliability of this method. Additional technical 

improvements to this algorithm and workflow will be discussed in the subsequent section 

to further the applicability of this method to many different problems of interest.     

4.3 Possible Improvements to the Semi-Parametric Copula Method 
 

Results from both the analytical test function 3 (Ishigami function) and the 

environmental model application indicated that there was still ample room for technical 

improvement of the semi-parametric copula model presented in this study. Most of these 

issues regarding the accuracy of this method were attributed to the inability of the 

parametric copula model to account for the high non-linearities present within the 

dependence structures formed from the model inputs and outputs. Here, we give an 

overview of several technical improvements that can be considered to improve the 

accuracy and precision of this method, focusing on improvements to the sampling scheme, 
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modelling non-linearities, and improving the estimation of the marginal probability 

distributions.  

Importance sampling (a class of variance reduction techniques) of parametric 

copulas has recently emerged as a powerful tool to improve convergence efficiency of 

Monte Carlo based estimators like those relied upon in MI sensitivity analysis (Arbenz et al. 

2014, Arbenz et al. 2018). The main theory behind importance-based sampling regarding 

parametric copulas presented by these authors is to oversample sub regions of the copula 

distribution that contribute more to improving the overall precision of the approximation. 

This technique has been previously applied to Elliptical copulas, and a new importance 

sampling framework was recently introduced for the Archimedean copula class (Arbenz et 

al. 2018). Future study of this semi-parametric copula approach will consider technical 

improvements through integration of innovative sampling schemes that serve to improve 

the convergence efficiency and precision.  

Although asymmetrical transformations were shown to have a negligible impact on 

the accuracy of this developed method, polynomial transformations using the lambda 

function, λ(t), (a function of the Kendall distribution function presented herein) are yet 

another integral tool to improve the accuracy of copula models to describe the dependence 

between model inputs and outputs in MI sensitivity analysis (Michiels et al. 2011, Michiels 

and De Schepper 2012). Polynomial transformations of the Archimedean class of 

parametric copulas have been shown to greatly improve the overall GOF for some copula 

families, and to handle distinct non-linearities between variables, including the Frank 

family (Michiels et al. 2011, Michiels and De Schepper 2012). Michiels and De Schepper 

(2012) introduced a concordance invariant and tail preserving family of polynomial 
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transformations, where this terminology signifies that even with the integration of a 

polynomial function into the copula model structure, the strength and nature of the 

dependence (including the tail dependence) will be similar to the original structure 

afforded by the non-transformed model. In this same study, polynomials as high as order 6 

(with three shape parameters) were introduced that offered statistically significant 

improvements to the accuracy of the copula model fits. A similar framework, that provides 

for a concordance invariant and tail-preserving polynomial transform of Archimedean 

copula models, should be investigated in future studies to improve the accuracy of the 

semi-parametric method developed herein.  

A final potential area to improve the accuracy of this semi-parametric method 

would be to advance the non-parametric estimation of the marginal probability 

distributions for the model output variables. The method used in this study, which is based 

on a rule of thumb for determining optimal bin widths for KDE, is relatively naïve and in 

some cases, cannot handle modelling extremely skewed or multi modal empirical 

probability distributions. Maximum entropy methods focus on approximating a PDF or CDF 

of a distribution using the statistical integer (i.e., the mean, standard deviation, skewness, 

or kurtosis) or fractional moments of a given distribution (Zhang et al. 2014, 2015c). In this 

way, maximum entropy methods rely on approximating a PDF through maximization of 

Shannon’s entropy principle, in which the optimization can be constrained through use of 

the statistical moments. Rajan et al. (2018) presented an improved moment constrained, 

maximal entropy approach that can account for the use of multiple moments (greater than 

4) when constructing the approximation of the PDF, which allows the method to fit 

distributions that may be highly skewed or multi-modal. Although computationally more 
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intensive, this moment constrained maximum entropy method could greatly improve the 

approximation of the PDFs and CDFs required for accurate estimation of the Borgonovo 

delta sensitivity indices using the semi-parametric method developed in this study. 

5. Conclusions 
 

A novel semi-parametric method based on copulas was developed in this study to 

estimate MI Borgonovo delta sensitivity indices. Comparison of this developed method 

against previously existing non-parametric methods over a range of analytical test 

functions (ranging from linear, to non-linear, to highly non-linear and nonmonotonic) 

indicated improved accuracy for most of the test functions reviewed. However, the overall 

convergence efficiency and precision of this method was comparable to existing non-

parametric methods across all test functions reviewed. Application of this method to an 

environmental model further highlighted the ability of this method to reliably distinguish 

the sensitivities among certain input parameters in which the strength of the input and 

output dependency was weak and, in some cases, non-monotonic or highly non-linear. The 

integration of a monotonization technique (i.e., the Rolling Pin method) as a major 

framework in this method not only allowed non-monotonic dependence to be modelled, 

but also any parametric copula model could be easily assimilated and compared, leading to 

great flexibility and improvements in overall accuracy of the MI sensitivity indices 

calculated.  

Potential challenges with the generalization of the semi-parametric method to other 

specific problems of interest were thoroughly discussed, including the observation that 

much of the inaccuracy stemmed from the inability of one parameter copula models (i.e., 
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the Frank copula) to model the high-nonlinearities present for some dependence structures 

reviewed. Other potential challenges investigated in this study included the ability of each 

parametric copula to model tail dependence, the effect of certain sampling schemes (i.e., 

the CDM method vs. the MO algorithm), and explicitly accounting for the presence of 

asymmetry in some of the bivariate dependencies modelled. Based on the results, 

addressing most of these challenges identified above were concluded to be more auxiliary 

as compared to the importance of selecting an appropriate parametric copula model to 

properly predict the dependency structure between model inputs and outputs. To improve 

the accuracy and precision of this semi-parametric method, importance sampling schemes, 

concordance invariant and tail preserving polynomial transformations focused on the 

lambda function, as well as the integration of maximum entropy methods for reliable 

estimation of marginal densities can be considered for future study. Overall, this study 

provides the first attempt to integrate complex parametric models to predict the 

multivariate joint PDFs required in MI Borgonovo sensitivity analysis calculations.  

6. List of Abbreviations  
 

Abbreviation Meaning 

MI Moment Independent 

GSA Global Sensitivity Analysis 

ABE Absolute Error 

PDF Probability Distribution Function 

CDF Cumulative Distribution Function 

CDM Conditional Distribution Method 

MO Marshall-Olkin 
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QMC Quasi Monte Carlo 

KDE Kernel Density Estimation 

KDF Kendall Distribution Function 

TCF Tail Concentration Function 

GOF Goodness of Fit 

NPIS Non-Parametric Importance Sampling 

MC Monte Carlo 

ML Maximum Likelihood 

CMLE Canonical Maximum Likelihood Estimation 

CM Cramér-von Mises Overall Goodness of Fit Statistic 

CMTCF Cramér-von Mises Tail Goodness of Fit Statistic 
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Chapter 7: Optimal Design of Experiments for Identification of 
Unstructured Kinetic Model Parameters Describing Microcystin 
Biodegradation 
 

Abstract: Unstructured kinetic models have been recently found to provide practical and 

reliable predictions of microcystin (MC) removal and bacterial growth in drinking water 

biological treatment applications. However, the main challenge to improve the overall 

statistical certainty of kinetic model predictions lies in how to improve model parameter 

identification, which depends on both the model structure and quality of the experimental 

data collected. In this study, a structural and practical identifiability analysis was 

conducted to determine whether parameters of the Moser kinetic model could be uniquely 

estimated and to what extent optimally designed experiments could lead to datasets with 

maximal information content and parameter decorrelation for improved parameter 

estimation. The results demonstrated that parameters of the Moser model were locally, 

structurally identifiable, signifying that a global, unique parameter set describing MC 

biodegradation was not mathematically achievable. The practical identifiability analysis, 

through reliance on global, optimal experimental design, indicated that the statistical 

confidence of the parameter estimates can be significantly improved if a fed batch reactor 

experimental configuration with an optimal dynamic feed rate profile is applied to study 

MC biodegradation as compared to uninformed batch experiments. Overall, it was found 

that model-based design of experiments are a valuable tool to arrive at experimental 

datasets with maximal information content and minimal parameter correlation for optimal 

parameter identification of unstructured kinetic models.   
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1. Introduction and Background 
 

The rapid advance of global climate change, fueled by ongoing anthropogenic 

activities and the combustion of fossil fuels, has posed both great challenges and unique 

opportunities to augment the supply and quality of drinking water resources. Across 

drought prone and temperate regions worldwide, many municipalities and governments 

are stressing to address the dwindling supply and deteriorating quality of freshwater 

resources to sustain the growing population (Postel 1996, Postel 2014). Of the many issues 

challenging the quality of drinking water resources on a local to global scale, harmful 

cyanobacterial blooms (HCBs) have emerged as a formidable issue confronting humanity at 

large (Paerl and Huisman 2009, Pearl and Paul 2012, O’Neill et al. 2012).    

Over the past decade, warming global temperatures, intense storm events, and 

prolonged drought periods, along with non-point source nutrient pollution originating 

from intensive commercial agricultural practices, have led to an increase in the frequency, 

severity, and persistence, as well as the geographical spatiotemporal dominance of 

freshwater HCB events (Paerl and Huisman 2009, Pearl and Paul 2012, O’Neill et al. 2012). 

During and following HCB events, various species of toxic cyanobacteria (i.e., Microcystis, 

Anabaena, Planktothrix, Cylindrospermopsis) produce and excrete a suite of biotoxins into 

receiving water bodies (Huisman et al. 2006, Cheung et al. 2013, Pearl and Otten 2013). 

The impact of these toxic bloom events is far-reaching; ranging from transformations to 

aquatic, even surrounding terrestrial, biodiversity and primary production on the micro to 

macro scales, to diminishing recreational opportunities and contamination of drinking 

water resources (Cheung et al. 2013, Otten and Paerl 2015).  
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Of the extremely wide variety of biotoxins excreted by these microalgae, microcystin 

(MC), produced primarily by toxic species of Microcystis, Anabaena, Planktothrix, and 

Nostoc, has been detected most frequently and abundantly in the environment (Harke et al. 

2016, Pelaez et al. 2010). MC is termed a cyclical heptapeptide, in which seven amino acids, 

two of which are variable across different congeners, form a ring-like molecular structure 

(Huisman et al. 2006, Edwards and Lawton 2009). Ultimately, this uniquely crafted 

molecular structure of MC renders it highly resistant to both physical and chemical 

deterioration in the environment (Westrick et al. 2010). To date, over 100 structural 

congeners of MC have been identified and detected in the environment, where MC-LR (L 

and R standing for Leucine and Arginine as the two conserved amino acids, respectively) 

has been confirmed as the most common and toxic (Huisman et al. 2006, Puddicke et al. 

2014). Given that most MCs, such as MC-LR, are both hepatotoxic and known human 

carcinogens, the World Health Organization (WHO) and US EPA have developed guidelines 

for total MCs in drinking water set at 1 µg/L (US EPA 2015a). 

During these bloom events, MC toxins have been recognized to accumulate to lethal 

concentrations (for human exposure) in water bodies routinely relied on for drinking 

water provision. Past examples ranging from the Lake Taihu and Toledo water crises, have 

demonstrated that “mega” blooms of toxic Microcystis and perhaps other genera can 

overwhelm, even shut down, local drinking water treatment facility operations, leaving 

millions stranded without potable water for time periods varying from days to months (Qin 

et al. 2009a, Ho and Michalak 2015). Although conventional drinking water treatment 

technologies (such as coagulation, flocculation, sedimentation) can effectively remove the 

cellular portion of biotoxins from the water, the dissolved (or extracellular) portions are 
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sparingly removed (Westrick 2008, Westrick et al. 2010). Advanced treatment 

technologies, such as ozonation, UV treatment, or granular activated carbon, have been 

developed to supplement conventional technologies and reliably remove total cyanotoxins 

from drinking water. However, these advanced technologies are energy-intensive, cost-

ineffective, subject to some inherent treatment variability, and are difficult to maintain and 

operate (Westrick et al. 2010, Ho et al. 2012a).  

The immediate and omnipresent threat of toxic cyanobacterial blooms has 

prompted the development of unique and sustainable solutions to effectively treat MC 

toxins in drinking water. Biological treatment options, such as biological filtration, have 

received a great amount of interest and recent research attention, as MCs have been found 

to already be naturally metabolized as a carbon (perhaps nitrogen) and energy source by a 

diverse range in native bacterial populations endemic to drinking water sources (Ho et al. 

2006, Bourne et al. 2006, Ho et al. 2012a, Li et al. 2017). Even though biodegradation of 

MCs is naturally mediated, variability in treatment kinetics and efficiencies attributed to a 

wide array of environmental factors (i.e., temperature, pH, the presence of exogenous 

nutrients, bacterial community composition) have limited the full-scale application of 

bioremediation-based treatment technologies (Ho et al. 2012a, Li et al. 2017). The main 

challenge to the advent of bio-based treatment technologies, thus, lies in offsetting these 

environmental factors to truly harness, stabilize, and augment this natural treatment 

ability in a systematic and “engineered” manner (Lauderdale et al. 2012).  

Effectively “engineering” these biologically based MC treatment systems relies on a 

practical, predictive understanding of the microbial growth kinetics associated with MC 

metabolism. Drawing from the founding principles of biochemical engineering, 
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unstructured kinetic growth models, such as the well-known Monod model, can guide 

researchers and practitioners alike as to the optimal behavior of these MC degrading 

populations in settings ranging from engineered reactors to the environment (Esener et al. 

1983, Kovárová-Kovar and Egli 1998, Alexander 1999, Shuler and Kargi 2002, 

Tchobanoglous et al. 2003, Okpokwasili and Neweke 2006). However, as past research has 

indicated with biological wastewater treatment design and operation of activated sludge or 

anaerobic digestion systems, predictions from these simplified models can often be 

misleading (Koch et al. 1982, Robinson 1985, Grady et al. 1996, Kovárová-Kovar and Egli 

1998, Knightes and Peters 2000). The utility of unstructured kinetic models can ultimately 

be diminished if, for example: 1) the underlying mechanisms of the model structure 

describing MC metabolism are not sufficient; 2) the parameters associated with these 

model structures are improperly calibrated or estimated without quantitative estimates of 

certainty; or 3) the parameters are not structurally nor practically identifiable given the 

quality of the experimental data.  

In a previous study, we addressed issue 1) identified above as to what extent and 

which model structures better predicted MC metabolism and growth kinetics of isolated 

degrading populations (Manheim et al. 2019), concluding that the Moser model well 

outperformed existing unstructured kinetic models. Regarding issue 2) identified above, 

we further developed a reliable, global, and fully Bayesian parameter estimation protocol 

to arrive at stable posterior distributions in parameter estimates (Manheim et al. 2019). It 

was clear from this study that unstructured kinetic models (i.e., the Moser model structure) 

could accurately and precisely predict MC removal and growth kinetics; however, reliable 

parameter estimates could not always be achieved - even with a well devised parameter 



304 
 

estimation protocol. We attributed this lack of parameter definition to the quality of the 

experimental data, which was insufficient to uniquely estimate all model parameters (5 out 

of 6 at best). As the quality of the experimental data is directly associated with the 

experimental design, we focus our attention in this study on how to best devise an 

experiment to achieve maximal information content for parameter identification of 

unstructured kinetic models describing MC biodegradation.  

 To achieve this end, computational techniques such as optimal experimental design 

(OED) can be implemented to obtain experiments that, through careful parameter 

estimation procedures, result in reliable and uniquely identifiable estimates of model 

parameters (Rodriguez-Fernandez et al. 2007, Chu and Hahn 2010, 2013, Banga and Canto 

2008, Balsa-Canto et al. 2008, 2016). OED relies on optimizing the experimental conditions 

(i.e., experimental method, initial state conditions, sampling time or frequency) for 

maximal information content using some summary criterion (or multiple criteria) of the 

Fisher Information Matrix (i.e., A-D optimality criteria), constructed using sensitivity index 

estimates of the simulated model output to changes in the model input parameters (Dette 

et al. 2003, 2005, Franceschini and Macchietto 2008, McLean and McAuley 2012). 

Experimental designs that maximize (or minimize) these criteria ultimately lead to 

improved practical identifiability of model parameters. Therefore, in this study we applied 

a recently developed, computationally efficient, global OED approach to investigate the 

following pertinent research questions:  

1) Are the unstructured kinetic model structures first globally, structurally 

identifiable? By “globally, structurally” identifiable we mean that, a priori, given the 
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model structure (and noise free data), can we estimate unique (singular) values of 

each parameter? 

2) What experimental designs lead to improved practical identifiability of unstructured 

kinetic model parameters? By “experimental designs,” we specifically refer to what 

experimental approaches used (i.e., batch reactor, fed-batch reactor, continuously 

stirred tank reactor, CSTR), the initial state variable conditions employed (i.e., initial 

substrate/biomass concentrations, fed-batch feed profile, etc.).  

3) How much improvement in parameter definition can we expect (compared to 

existing, non-optimal experimental designs) if we apply the optimal experimental 

designs achieved above in practice?  

 In this study, two contrasting approaches were incorporated to address both 

structural and practical identifiability of kinetic parameters underlying the Moser model. 

First, a symbolic, generating series approach to structural identifiability of the model 

parameters was applied to investigate to what extent the model structure itself limits 

parameter identification. Next, a global approach to optimal experimental design, based on 

a derivative based global sensitivity measure, was employed using both single and multiple 

objective optimization frameworks to examine which experimental conditions lead to 

parameter decorrelation and maximum information content. This model-based design of 

experiments approach is expected to provide great insight as to which experimental 

method is most suitable for practically identifying parameters of the Moser model for 

describing microcystin biodegradation.    
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2. Materials and Methods 

2.1 Summary of Selected Unstructured Kinetic Model to Describe MC Biodegradation 
 

Unstructured kinetic models describing dynamic MC biodegradation (
𝑑𝐶

𝑑𝑡
) and 

corresponding bacterial cell growth (
𝑑𝑋

𝑑𝑡
) in a batch reactor setting consist of two coupled 

ordinary differential equations (ODEs), in which first order endogenous decay is explicitly 

incorporated (Equations 1 and 2).  Importantly, unstructured kinetic models are based on 

the governing assumption that there is a single substrate (i.e., MC) that is limiting bacterial 

growth. It is important to note that the form of Equations 1 (substrate balance) and 2 (cell 

balance) will change when considering different experimental approaches in the following 

section.  

 
𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋   (1) 

                                                                            
𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝑘𝑑𝑋  (2) 

Where C is the limiting substrate concentration (mg/L), X is the biomass concentration 

(mg/L), µ is the specific growth rate of bacterial cells (1/hr), Y is the cell yield coefficient 

(unitless) and kd is the endogenous decay coefficient (1/hr).  

As presented in Manheim et al. (2019), there are numerous mathematical 

relationships devised to describe the relationship between bacterial specific growth rate 

(µ) in Equations 1 and 2 and substrate concentration (C). Based on statistical evidence in 

favor of the Moser model structure and associated cellular growth mechanisms in a 

previous study, we chose to select this model structure as the basis for study hereafter 

(Moser 1958). The Moser model structure presents the specific growth rate of bacterial 

cells (µ) involved in biodegradation as a sigmoidal function of substrate concentration (C) 
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with three main parameters: the maximum specific growth rate, half saturation constant, 

the yield coefficient, and the interaction coefficient (µmax, Ks, Y, n) (Equation 3).  

                                                                               𝜇 = 𝜇𝑚𝑎𝑥𝐶𝑛

𝐾𝑠+𝐶𝑛    (3) 

The maximum specific growth rate (µmax) represents the maximum growth rate the 

bacterial cells achieve when the substrate is saturating (C >> Ks) (1/hr). The half saturation 

constant is defined as the substrate concentration (mg/L) existing at one half the maximum 

specific growth rate and is described as the relative affinity of the degrading organism for a 

limiting substrate. The yield coefficient (Y) is defined as the mass of bacterial cells 

produced per mass of substrate consumed (mg biomass/mg substrate). The interaction 

parameter n accounts for the interactions between binding sites on the enzyme molecule, 

analogous to Hill’s equation in enzymology. Values of n > 1 indicated cooperative 

interactive effects between binding sites, whereas values of n < 1 signified competitive 

(non-cooperative) interactive effects between binding sites (Panikov and Pirt 1978).  

2.2 Experimental Approaches for Optimal Parameter Estimation 
 

In this study, we investigated and compared four different approaches for defining 

an experimental design for improved biokinetic parameter estimation of unstructured 

growth models describing MC biodegradation including a batch reactor, fed-batch reactor, 

chemostat, and continuously stirred tank reactor (CSTR) (Figure 57, Table 17). For all 

experimental approaches, the time rate of change of three primary state variables are 

considered including the substrate concentration (C), biomass concentration (X), and the 

liquid media volume (V).  During all experiments (which are assumed to be performed in 

the laboratory on a benchtop scale), a standard liquid medium (i.e., M9 mineral salts 

medium) supplied with MC as the sole carbon and energy source is assumed, where all 
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other nutrients (i.e., nitrogen, phosphorus, trace metals) are non-limiting. In addition, 

sterile air is supplied at a constant rate via a diffuser to ensure that oxygen is not limited 

inside each reactor configuration (Figure 57). Finally, all reactors are equipped with a 

mixer (programmed at a defined mixing intensity), sampling ports, and are fully insulated 

to ensure optimum temperature control. Moreover, during these idealized experiments, the 

pH, temperature, and dissolved oxygen are monitored, and air input and temperature can 

be adjusted accordingly as part of a preprogrammed, closed feedback loop (Figure 57). 

Across all experiments, time varying MC concentrations will be measured using a 

solid phase extraction assisted LC-MS/MS standard protocol for optimal accuracy, 

precision, and sensitivity (US EPA 2015b). This LC-MS/MS protocol for MC quantification 

has been well established in the scientific literature and has a detection limit of 1.2 ng/L 

(for MC-RR) (US EPA 2015b). However, achieving accurate, precise, and sensitive 

quantification of active MC-degrading biomass is expected to be challenging for these 

experiments. Based on previous research, ATP concentrations have provided the most 

accurate, stable and sensitive determinations of active biomass in drinking water treatment 

applications (Velten et al. 2007, 2011). This method developed assumes an adequate 

conversion from ATP to dry weight (in terms of cellular carbon) is available, where median 

values of this conversion factor can be used as suggested in (Graça et al. 2007). Although 

there may be some uncertainty in this conversion factor (i.e., variation across different 

bacterial populations), the ability of the ATP method to differentiate between active and 

decaying biomass and the sensitivity of this method is critical for the correct determination 

of viable MC-degrading cells.  
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Even though a detection limit was not specified in Velten et al. (2007, 2011), a 

theoretical detection limit was calculated assuming: a) the sensitivity of the fluorescence 

detector reported by a commercial microbial ATP kit (10E-18 mol ATP/50 µL sample, 

BioThema 2018); b) the molar mass of ATP (507.18 g/mol), the average ATP content per 

cell as reported in Velten et al. (2007) (6.7 E-17 g ATP/cell); and the theoretical weight of a 

microcystin degrading bacterial cell (6 fg/cell, Mou et al. 2013). Applying these conversions 

resulted in a theoretical detection limit of 0.0179 ng/L, which theoretically corresponds to 

the weight of 5 MC degrading bacterial cells per L of solution (BioThema 2018). Clearly, 

this protocol was considerably more sensitive than optical density, dry or wet weight, and 

colony count methods.  

A batch reactor, perhaps the simplest experimental approach, consists of a closed, 

fixed volume reactor apparatus (
𝑑𝑉

𝑑𝑡
 = 0), in which the dissolved oxygen, temperature, pH 

are tightly controlled (Figure 57, Table 17). The initial concentrations of substrate (C0) and 

MC-degrading microorganisms (X0) are the only experimental variables that can be used to 

effectively design an experiment for optimal parameter estimation (Table 17). After adding 

the initial MC and MC-degrading cells to the reactor, samples of both MC and MC-degrading 

biomass (i.e., a pre-determined volume) were assumed to be taken from the sampling ports 

at designated sampling times during each experiment.  
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Figure 57. Qualitative illustration of the laboratory, benchtop scale experimental 
configurations used to estimate biokinetic parameters for unstructured kinetic models 

describing MC biodegradation. Configurations are presented for A) a batch reactor, B) a fed-
batch reactor, C) a chemostat, and D) a continuously stirred tank reactor (CSTR). The symbols 
C0, X0 and V0 refer to the initial MC substrate concentration, MC-degrading cell concentration, 
and media volume (inside the reactor) used for each experiment. For the fed-batch reactor, F 
and Cf stand for the dynamically varying feed rate profile and feed substrate concentration, 

respectively. For both the chemostat and CSTR, D, Cf, an Xf refer to the dilution rate (constant), 
feed concentration of substrate, and feed concentration of MC-degrading cells, whereas C, and 

X refer to the concentration of MC and MC-degrading cells exiting the reactors. 

 

Comparably, a fed batch reactor is a partially open system, in that the substrate 

(sterile) is continuously fed according to a certain feed rate (F/V) profile into the batch 

reactor (Figure 57). In this approach, the volume of liquid media is not fixed within the 

reactor, but dynamic ( 
𝑑𝑉

𝑑𝑡
 = F) and there is some effect of cell dilution to account for (−

𝐹

𝑉
X). 

In addition, the fed-batch system explicitly accounts for the initial concentration of MC 

substrate and degrading cell biomass within the reactor (C0, X0) as well as the 

concentration of the feed entering the reactor (Cf) (Figure 57, Table 17). In this study, we 
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considered a dynamically varying feed rate profile for a fed-batch type reactor system and 

constrained the volume of the reactor to 1 L (maximum volume for bench top scale) during 

all optimization runs. Using a form of control vector parameterization (CVP), the feed rate 

profile was discretized into twenty uniform time intervals of approximately 14 hours each. 

Mathematically, the input feed rate profile was a continuous piecewise function, where 

during each time interval a constant feed rate was assumed (which could vary across all 14 

time intervals) (Chu and Hahn 2013).  

Chemostats and CSTRs are both fully open systems, as liquid media is configured to 

flow into and out of the reactor apparatus (Figure 57C and 57D). Since the volumetric flow 

rate (Q) is held constant, there is no accumulation of liquid within the reactor ( 
𝑑𝑉

𝑑𝑡
 = 0). 

Ultimately, the dilution rate (D = Q/V) controls the specific growth rate the organisms can 

grow at within these reactor configurations (Bailey and Ollis 1976, Shuler and Kargi 2002). 

The primary difference between the chemostat and CSTR is that the chemostat maintains a 

sterile feed, whereas the CSTR maintains cell inputs within the feed to avoid possible cell 

washout during operation due to any unforeseen circumstances such as abrupt shifts in 

feed conditions (Figure 57, Bailey and Ollis 1976, Shuler and Kargi 2002). The CSTR most 

closely resembles a controlled environmental system as compared to the other 

experimental reactor configurations.  
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Table 17 - Comparison of experimental approaches, associated structural equations for 
parameter estimation, and the corresponding design variables that can be optimized using 

OED. 

Experimental 
Method 

Substrate Balance Cell Balance 
Volume 
Balance 

Design 
Variables  

 Batch Reactor  
𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋 

𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝐾𝑑𝑋 

𝑑𝑉

𝑑𝑡
 = 0 C0, X0, 

Fed-Batch 
Reactor  

 

𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋 +

𝐹

𝑉
(𝐶0 − 𝐶) 

𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝐾𝑑𝑋 −

𝐹

𝑉
X 

𝑑𝑉

𝑑𝑡
 = F 

C0, X0, F(t), 
Cf 

Chemostat 
𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋 +

𝑄

𝑉
(𝐶0 − 𝐶) 

𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝐾𝑑𝑋 −

𝑄

𝑉
(𝑋) 

𝑑𝑉

𝑑𝑡
 = 0 C0, X0, D, Cf 

CSTR 
𝑑𝐶

𝑑𝑡
= −

1

𝑌
µ𝑋 +

𝑄

𝑉
(𝐶0 − 𝐶) 

𝑑𝑋

𝑑𝑡
= µ𝑋 − 𝐾𝑑𝑋 +

𝑄

𝑉
(𝑋0 − 𝑋) 

𝑑𝑉

𝑑𝑡
 = 0 

C0, X0, D, Cf, 
Xf 

 
2.3 Structural Identifiability Analysis 
 

GenSSI, a software toolbox for structural identifiability analysis of biological models 

(V. 2.0) was adopted in this study to assess whether the models investigated were globally, 

structurally identifiable (Chis et al. 2011a, 2011b, Ligon et al. 2017). By definition, global, 

structural identifiability means that there exists a unique solution, or a single parameter 

combination, that is optimal for a given experimental condition. In contrast, a model can 

also be classified as locally, structurally identifiable, which means that a certain finite 

number (or neighborhood) of unique parameter combinations may exist for a given 

experimental condition. Lastly, if there are many, non-unique parameter combinations that 

exist for a given experimental condition, the model is classified as structurally 

unidentifiable (Villaverde and Banga 2017).  

The GenSSI software approach is based on an analytical, generating series method 

coupled with identifiability tableaus for estimating structural identifiability of a given 

model (Chis et al. 2011a, 2011b, Ligon et al. 2017). The GenSSI method is based on 
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analytical computation of successive Lie derivatives of the model output function to 

generate a non-linear system of equations on the model parameters (Chis et al. 2011a, 

Villaverde and Bang 2017). If the solution of this non-linear system of equations is unique, 

then the model is concluded to be globally, structurally identifiable (Chis et al. 2011a). The 

degree of structurally identifiability of a given model can be qualitatively visualized 

through generation of identifiability tableaus, which illustrate the mathematical 

dependence of the Lie derivatives on each model parameter (where black areas are 

indicative of dependence). Ideally, if the model is globally, structurally identifiable, the 

tableau will visually appear like a staircase, in which each Lie derivative mathematically 

depends on only one model parameter at a time.  

In general, the GenSSI analysis depends on the number of lie derivatives used in the 

calculation as well as the initial conditions of the system. GenSSI (v 2.0) allows the use of 

both generic and numeric initial conditions, where structural identifiability can be assessed 

for multiple experimental conditions. In this study, we have evaluated structural 

identifiability of the Moser model using both a batch and fed-batch reactor experimental 

configuration as a contrasting example. The analysis was carried out for only generic 

experimental conditions, as the built-in multiple experiment option provided by the 

software cannot handle dynamic input controls. For all runs, the number of lie derivatives 

was set to 10, a number twice the number of model parameters, which is consistent with 

what was recommend by reference literature (Chis et al. 2011a, Ligon et al. 2017). With the 

number of lie derivatives fixed, the initial conditions were set to generic variable values for 

each experimental configuration (i.e., batch vs. fed-batch).    
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2.4 Practical Identifiability: Optimal Experimental Design Approach 

2.4.1 General Description of the OED-GSA Procedure 
 

An OED approach based on global sensitivity analysis (GSA) was adopted in this 

study to ascertain the best experimental conditions for parameter identifiability of 

unstructured kinetic models describing microcystin biodegradation (Rodriguez Fernandez 

et al. 2007, Chu and Hahn 2008, 2010). The application of GSA is advantageous over local 

sensitivity methods as it allows the full range in input parameter uncertainty to be 

incorporated into the design of experiments, as opposed to just nominal values of the 

parameters (Rodriguez Fernandez et al. 2007, Banga and Balsa-Canto 2008, Bandara et al. 

2009). This aspect of GSA is critical as in most cases, the optimal parameters describing the 

model are often unknown prior to conducting an experiment (Franceschini and Macchietto 

2008). Therefore, GSA has become a valuable tool in OED to limit the amount of 

experimentation required before model calibration takes place and to improve model 

parameter practical identifiability.  

Quantitative OED relies on accurate and precise calculation of the partial derivatives 

of the model response variables with respect to each input parameter (i.e., the local 

sensitivities, Equation 1, where f represents a model response variable and xi the ith model 

parameter). In this study, a Monte Carlo, derivative based approach to GSA (DBGS) was 

adopted, which considers the average and standard deviation of the local sensitivities of 

the model response variables with respect to each input parameter over the entire input 

parameter space (Equations 2-4, where k indicates the index of the n number of QMC 

samples, and i is the index for the d number of parameters, Kucherenko et al. 2009). In 

effect, the final DBGS indices (�̅�𝑖), which were used in the OED calculations, are normalized 
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so that the sum of all parameters for a given timepoint is equal to unity (Equation 7). 

Importantly, this approach can be modified for dynamic model outputs, where DBGS 

indices can be calculated for any number of simulated timepoints. As this is a MC approach, 

a certain number of QMC samples (using Sobol’s sequences) was required for the 

calculated DBGS indices to formally converge (Sarrazin et al. 2016). Based on a rigorous 

test of convergence, we found that approximately 8,192 QMC samples were needed for 

each model describing different experimental approaches to formally converge (see 

Appendix F, section 5).   

                                                                              𝐸𝑖 = 
𝜕𝑓

𝜕𝑥𝑖
  (4) 

                                                                       �̅�𝑖 = 
1

𝑛
 ∑ |𝐸𝑖,𝑘|

𝑛
𝑘=1   (5) 

                                                           𝛴𝑖 = √
1

𝑛−1
 ∑ (|𝐸𝑖,𝑘| − 𝑀𝑖

̅̅ ̅)
2𝑛

𝑘=1   (6) 

                                                                       �̅�𝑖 = 
�̅�𝑖

2
+ �̅�𝑖

2

∑ �̅�𝑖
2
+ �̅�𝑖

2𝑑
𝑖=1

     (7) 

The Fisher Information Matrix (FIM) has been routinely applied as an indicator for 

quantitatively comparing the quality of different experimental designs by summarizing the 

information content of a given experiment. The FIM summarizes both the uncertainty of 

the experimental measurements as well as the uncertainty of the estimated parameters 

expected from the model calibration process (and is dxd in dimension, where d represents 

the number of model parameters) (Dette et al. 2003, 2005, Franceschini and Macchietto 

2008, McLean and McAuley 2012). In general, experiments that maximize information 

content are optimal, and calculations to derive singular representations of the FIM are 

often conducted in OED (i.e., the determinant), as explained in the upcoming paragraphs. 
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To construct the FIM, the sensitivity matrix (S) and the weighting matrix (Q) must be 

specified a priori (Equation 8).  

                                                                          𝐹𝐼𝑀 = 𝑆𝑇𝑄𝑆  (8) 

The sensitivity matrix is typically formed from the partial derivatives of the model 

response variables with respect to each model parameter for each simulated time point for 

a dynamic model. It is important to note that in this study �̅�𝑖, which represents the global 

sensitivity of the model output response across the entire parameter uncertainty range, has 

replaced the local sensitivity calculations (Equation 9, where C and X indices refer to the 

sensitivity with respect to substrate or cell concentration state variables, N the total 

number of simulated time points, and d, the number of parameters to be estimated). In this 

study, the resulting sensitivity matrix (S) is twice the number of simulated time points long 

(2*N) by number of parameters (d) wide (Equation 9). However, for the fed-batch 

experimental designs, the sensitivity matrix was expanded to also account for the volume 

of liquid media within the reactor (V), resulting in a length of 3*N.  

                                            𝑆 =

[
 
 
 
 
 
 
 
 
�̅�𝐶,1(𝑡1) �̅�𝐶,2(𝑡1) … �̅�𝐶,𝑑(𝑡1)

�̅�𝐶,1(𝑡2) �̅�𝐶,2(𝑡2) … �̅�𝐶,2(𝑡2)
⋮ ⋮ ⋮ ⋮

�̅�𝐶,1(𝑡𝑁) �̅�𝐶,2(𝑡𝑁) … �̅�𝐶,𝑑(𝑡𝑁)

�̅�𝑋,1(𝑡1) �̅�𝑋,2(𝑡1) … �̅�𝑋,𝑑(𝑡1)

�̅�𝑋,1(𝑡2) �̅�𝑋,2(𝑡2) … �̅�𝑋,𝑑(𝑡2)

⋮ ⋮ ⋮ ⋮
�̅�𝑋,1(𝑡𝑁) �̅�𝑋,2(𝑡𝑁) … �̅�𝑋,𝑑(𝑡𝑁)]

 
 
 
 
 
 
 
 

   (9) 

The square weighting matrix, Q, represents the expected variance-covariance matrix 

of the measurement errors, and can be used to place more emphasis on the measurement 

uncertainty of certain variables (Dette et al. 2003, 2005, Franceschini and Macchietto 2008, 

McLean and McAuley 2012). In general, it is assumed that the covariance between 
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measured variables is negligible, measurement errors are homoscedastic, and that the 

measurement error can be simulated as a Gaussian distribution, with zero mean and unit 

variance (i.e., Gaussian white noise) (McLean and McAuley 2012, Li et al. 2018). Here, we 

adopt these same assumptions commonly used in OED, and, due to lack of experimental 

measurement knowledge, make the assumption that the measurement variability is of 

similar magnitude when measuring both substrate and cell concentrations as well as the 

volume of liquid within the reactor configuration.   

To perform quantitative OED, singular mathematical descriptions of the FIM are 

warranted for ease of optimization and interpretation. The alphabetical criteria (A-E), 

which describe different aspects of the FIM, have been presented as the most well-known 

indices applied for optimization. For example, the D criterion maximizes the determinant of 

the FIM (corresponding to minimizing the geometric mean of the parameter estimation 

error), whereas the A and E criteria minimize either the mean of the parameter estimation 

errors or the largest parameter error (disregarding all other parameters), respectively. 

Geometrically speaking, maximizing the D criterion is equivalent to minimizing the volume 

of the elliptical joint confidence region between the parameters, while minimizing the A 

criterion can be interpreted as minimizing the enclosing frame around the joint confidence 

region between the parameters. Furthermore, minimizing the E criterion is interpreted as 

reducing the length of the major axis of the elliptical joint confidence region between 

parameters. Modified criteria have also been introduced, including the modified E criterion, 

which minimizes the condition number of the FIM (Telen et al. 2012, Maheshwari et al. 

2013). Due to its widespread and successful application, we have chosen the D criterion as 
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a suitable metric for optimization in this study (where the objective function (OF1) is the 

maximization of the determinant of the FIM, Equation 10).  

                                                                   𝑂𝐹1 =  max (|𝐹𝐼𝑀|)  (10) 

Although many criteria have been introduced to decompose the FIM into a singular 

value, previous OED research has suggested that optimizing one of these metrics alone (i.e., 

only focusing on maximizing information content) will not always produce experimental 

designs that result in parameter decorrelation (Maheshwari et al. 2013). It is crucial to 

explicitly address parameter correlation during the OED process in the case of 

unstructured kinetic models, as previous practical identifiability experiments have 

characteristically identified correlation among certain parameters such as µmax and Ks 

(Nihtilä and Virkkunen 1977, Holmberg 1982, Robinson and Tiejde 1983, Liu and Zachara 

2001). Therefore, in addition to optimizing the information content of a certain experiment, 

we have adopted a decorrelation metric previously introduced by Maheshwari et al. (2013) 

and transformed the OED into a multi-objective optimization problem (Equation 11). Here, 

Corr refers to the matrix norm of the parameter correlation matrix, as defined by 

Maheshwari et al. (2013), which is achieved through inversion and transformation of the 

FIM. The OED is thus specified by designing the experiment as a tradeoff between 

maximizing information content and minimizing parameter correlation, where, in a multi-

objective optimization framework, the primary objective is to find an optimal Pareto front 

of non-dominated solutions. In addition to multi-objective optimization, we also performed 

single objective optimization, where each objective was optimized independently, as a 

means to benchmark the convergence of the Mo results.  

                                                                 𝑂𝐹2 =  min (𝐶𝑜𝑟𝑟)  (11) 
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2.4.2 General Numerical Procedure for Performing OED-GSA 
 

Figure 58 demonstrates the main workflow for numerical application of the single 

and multi-objective OED-GSA algorithms. Before the optimization algorithms were 

initiated, the first step of the workflow was to initialize the parameter ranges, obtain the 

parameter QMC samples, and define the feasible search space for the experimental design 

criteria (Figure 58). The overall posterior distribution in parameters obtained from 

Manheim et al. (2019), which calibrated the Moser model using several different MC 

biodegradation datasets, was incorporated in this study to bound the certainty range of the 

parameter estimates (Table F1 provides a summary of the parameter estimates for 

reference). Next, the parameter samples (n = 8192) were obtained using a Sobol sequence 

to acquire uniform, quasi-random draws from the constrained parameter space.  

As a continuation of Step 1, the feasible search space for experimental design 

criteria was initialized for application in the OED optimization and varied according to the 

reactor configuration (Appendix F, section 1, Table F2). For example, the initial substrate 

and MC-degrading cell concentrations were restricted to a range from 0 to 1000 (mg/L) for 

each configuration. For all practicality, this range was deemed reasonable since purified MC 

is currently very expensive and difficult to obtain or prepare in sufficient quantity. Given 

this accessibility issue, it may be challenging to grow a population of sufficient density (i.e., 

past 1 g/L) using MC as the sole carbon and energy source.   However, the feed 

concentration of MC-degrading cells was increased to 10 g/L for the CSTR configuration, as 

the optimization results continually attempted to breach the upper bound of 1 g/L. 

Similarly, the dilution rates were restricted from 0 to 6.59 (1/day), the upper bound on the 

maximum growth rate of the MC-degrading bacteria, as to avoid washout. Importantly, the 
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feed rate profile was constrained during optimization so that the theoretical volume added 

to the reactor throughout the course of the experiment would not exceed 1 L (a practical 

upper threshold on the volume of a bench scale, laboratory reactor system).    

 
Figure 58. Example workflow for numerical implementation of the OED-GSA algorithm 

applied in this study. 

Since the optimization problem for OED is notoriously difficult, noisy, and non-

convex, local, gradient based search methods, such as MATLAB’s fmincon suffer from 

premature convergence or may become trapped in local solutions (Banga et al. 2004). 

Therefore, we relied on stochastic, evolutionary algorithms with global search capabilities 

such as LSHADE-NLS and NSGA-III to perform both single and multi-objective optimization, 
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respectively (Awad et al. 2016, Deb and Jain 2014). Both LSHADE-NLS and NSGA-III are 

based on the theory of differential evolution or metaheuristics, in which a population of 

individuals (potential solutions to an optimization problem) are evolved based on their 

fitness and random probabilities of acceptance and or mutation (i.e., control parameters). 

The NSGA-III algorithm was slightly different as it relies on optimizing a Pareto front, or 

non-dominated solution set, as opposed to a population of individuals, as was the case in 

single objective optimization. Further details behind the LSHADE-NLS and NSGA-III control 

settings and run conditions are presented in Appendix F, section 2 for reference.    

OED-GSA depended on both rapid and accurate simulation of the representative 

ODEs and the corresponding local sensitivities used in the DBGS calculations. As part of 

Step 2 in the workflow (Figure 58), our experience with the ODE15s and related solvers in 

the MATLAB environment were that they were much to slow to be incorporated in an OED 

optimization framework. Therefore, we relied on a MATLAB wrapper developed by van 

Riel (2012) to efficiently apply the CVodes differential equation solver developed by LLNL 

for systems biology models. This wrapper further allowed the ODE function that was coded 

in MATLAB to be conveniently transformed to C code for rapid evaluation (van Riel 2012). 

Specifications of the solver tolerances and steps applied for the CVodes approach are 

presented in the SI for reference. These work arounds, in combination with code 

vectorization and maximal reliance on parallel computing (as facilitated by the UCI high 

performance computing system), allowed efficient and accurate simulation of the ODEs and 

calculation of the corresponding sensitivity indices from the MATLAB environment for use 

in OED.  
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After formulation of the FIM and calculation of the corresponding objective 

functions (Step 4), it was necessary to monitor convergence for both the single and multi-

objective optimizers (Step 5). Convergence of the single objective optimizers was 

monitored by comparing the range in the solution sets for all members of the population 

(threshold of 1E-10 was set), as commonly performed in differential evolution (Storn and 

Price 1997). However, monitoring the convergence of the MO algorithm was much more 

complicated and involved integrating a previously developed, specialized statistical 

approach (Trautman et al. 2009, Wagner et al. 2009). This online convergence monitoring 

approach for a multi-objective framework relied on four different indicator metrics that are 

commonly applied to assess the quality and accuracy of multi objective, non-dominated 

Pareto fronts including: hypervolume, epsilon, R2, and diversity metrics (Trautman et al. 

2009, Wagner et al. 2009). The description of each index, along with details concerning the 

statistical approach for monitoring convergence, and an example application of this 

approach are presented in Appendix F, section 3 for reference. Overall, if the single or multi 

objective optimization algorithms met the convergence criteria, or exceeded the number of 

allotted generations, the OED process was terminated, and an OED was achieved (Step 6, 

Figure 1).   

2.4.3 Application of the OED-GSA Numerical Method 
 

The OED-GSA numerical method was first applied to gauge differences in the 

experimental approaches between reactor configurations. This involved running the OED-

GSA method for three different repetitions (in which the Sobol QMC sequence was varied), 

to assess the reproducibility of the results, for both the single and multi-objective 

algorithms. For these initial sets of experiments, the sampling times were fixed to 1-day 
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intervals for a simulation period ranging from 0 to 11 days. For the fed batch experimental 

configuration, the dynamic feed rate profile was randomly initialized, making sure that the 

volume injected over the course of the experiment was always below 1 L prior to the start 

of the optimization procedure. Similarly, the initial conditions for each of the experimental 

designs for the remaining experimental configurations were taken as uniform, random 

draws within the uncertainty range of the experimental design criteria.   

2.5 Post-Processing of OED Results 
 

Many previous studies have successfully relied on comparison of experimental 

designs returned by the OED procedure using the FIM singular values (i.e., the A-E criteria) 

and confidence intervals of the parameters derived from the FIM using the Cramér-Rao 

inequality (Chu and Hahn 2010, 2013). Thus, to effectively evaluate to what extent the OED 

improved parameter identification in this study, we relied on the transformation of the 

optimal FIM obtained in the previous optimization procedures to obtain the variance-

covariance matrix (CM) of the parameter estimates, where 𝐶𝑀 = 𝐹𝐼𝑀−1 (Banga and Balsa 

Canto 2008). 

Once an estimate of the optimal CM was reached, the statistical certainty in the 

parameter estimates and the degree of parameter correlation were analyzed through 

application of confidence ellipses. Theoretically, the CM matrix represents a “cloud” of 

parameter values, or a hyper ellipsoid of d dimensions, that can be quantitatively analyzed 

through application of principal component analysis (PCA). This analysis is generally 

conducted for combinations of pairs of parameter values (i.e., θi, θj), in which the hyper 

ellipsoid achieved from the PCA analysis can be projected onto multiple 2D planes. Similar 

to what was proposed in Balsa-Canto et al. (2008), we have calculated several intuitive 
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metrics to facilitate the comparison of the quality of experimental designs returned by this 

OED procedure including: 

• The overall pseudo volume of the hyper ellipsoid, Θ, which is determined through 

multiplication of the semi-axes (radii of the semi-major axes) obtained from the 

PCA. Smaller values of the pseudo volume are indicative of an improved 

experimental design. 

• The maximum and mean eccentricity, ε and εa, which are simply the maximum or 

average ratios of all semi-major to semi-minor ellipse axes across every parameter 

combination. Again, values closer to 0 (i.e., more circular) are indicative of an 

improved experimental design.  

• The length of the 95% confidence intervals for each parameter, ηi, which describes 

the magnitude of the remaining uncertainty of each parameter value achieved for a 

given experimental design. Again, smaller interval lengths quantitatively indicate 

the parameter estimates are of higher certainty and correspond to improved 

experimental designs. 

3. Results 

3.1 Structural Identifiability of Kinetic Parameters 
 

The GenSSI analysis for both the batch and fed-batch experimental configurations 

determined that the Moser model was locally, structurally identifiable. This conclusion was the 

same, regardless of the experimental configuration used, as the GenSSI analysis could not 

account for a dynamic feed rate profile for the fed-batch reactor when conducting the Lie 

derivatives. Ultimately, if this analysis could account for a dynamic feed rate profile, then 

improved structural identifiability of the Moser model would be expected. The conclusion of 
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local, structural identification meant that, given the experimental configurations evaluated, all 

parameters (i.e., µmax, Ks, Y, kd, and n) were locally, structurally identifiable and had at least a 

finite number (non-unique) of valid solutions for a given experimental design.  

The reduced identifiability tableau returned by the GenSSI structural identifiability 

analysis indicated that all model parameters were very interdependent on one another (Figure 

59). For example, the third through fifth Lie Derivatives all mathematically depended on all the 

model parameters. If a given model was globally, structurally identifiable, there would be more 

white-shaded regions on the identifiability tableau, indicating good mathematical independence 

of each parameter. However, in the case of the Moser model, it appeared that all input 

parameters were inherently very structurally correlated, as most of Figure 2 is shaded in blue. 

Mathematical correlation seemed to be strongest among µmax, Ks, Y and n as well as µmax, Ks, kd, 

and n parameter groupings, as observed from the identifiability tableau for the first and second 

Lie derivatives (Figure 59).   

 

Figure 59. Reduced identifiability tableau returned by the GenSSI structural identifiability 
analysis program for both the batch and fed-batch experimental configurations. Shaded blue 

areas indicate that the Lie derivatives mathematically depend on the model parameters, 
whereas white shading indicates no mathematical dependence. 
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3.2 Practical Identifiability of Kinetic Parameters 
 

After reviewing the structural identifiability of the Moser model, we now illustrate 

the practical identifiability of the Moser model kinetic parameters through analysis of the 

OEDs obtained from both the single and multi-objective optimization frameworks. 

Importantly, the OED results are presented separately for both the single and multi-

objective optimization frameworks. For the single objective optimization framework, 

results pertaining to both the D-criterion and decorrelation criterion are presented 

independently to highlight differences in the optimization schemes. Finally, the best multi-

objective OED is compared to that of an uninformed experimental design to demonstrate 

the improvements in parameter identification and decorrelation achieved through 

application of OED principles.  

3.2.1 Single Objective OED Results: The D-criterion 
 

As recommended by Balsa-Canto et al. (2016), it is important to first identify the 

sensitivity rankings of the kinetic parameters of the Moser model to help elucidate which 

experimental designs are in fact practically optimal (as opposed to theoretically optimal). 

In any model based experimental design scenario, the OED process could return an 

acceptable overall alphabetical criterion value, but lead to poor identification of the most 

sensitive model parameters. This result is troublesome, as the highest priority in the model 

identification process should be to reduce the uncertainty of the most sensitive model 

parameters, as these parameters contribute more to the overall uncertainty of model 

predictions. In the case of the Moser model, µmax and kd were observed to be the most 

sensitive model parameters across all simulated timepoints (Figure F6); therefore, special 
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emphasis will be given to OED results that reduce the uncertainty of these model 

parameters in particular.  

Under the D-criterion, single objective framework, which seeks to minimize the 

volume of the hyper-ellipsoid of the parameter uncertainties (or maximize information 

content), there was a noticeable impact of the experimental configuration on the achieved 

results (Table 18). Overall, the fed-batch and batch systems resulted in experiments with 

the highest and lowest information content, respectively, as initially expected (Table 18). In 

addition, high information content was achieved from the chemostat experimental reactor 

configuration as compared to the CSTR configuration. Interestingly, the calculated pseudo-

volume of the 95% CI hyper ellipsoid was orders of magnitude higher for the batch system 

as compared to the fed-batch system (Table 18). Comparably, the confidence ellipses were 

significantly more eccentric for the batch design as compared to all other designs, with 

maximum and average eccentricity values approaching 1, signifying high degrees of 

parameter correlation (Table 18). For the batch experiment, parameter correlation was 

greatest between Ks and n model parameters, in which a significant negative correlation 

was observed (data not shown). The expected 95% confidence interval lengths for the 

batch experiment were also very high for µmax and n model parameters, demonstrating that 

this design was sub-optimal in terms of reducing the overall uncertainty of model 

predictions, as discussed above.  
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Table 18 - OED statistical results using the D-criterion for optimization. Results are 
summarized for the best repetition (out of 3 independent realizations) for each experimental 

configuration. 

Experimental 
Configuration 

D-
Criterion 

Θ ε εa 
η1 

(µmax) 

η2 
(Ks) 

η3 
(Y) 

η4 

(kd) 
η5 
(n) 

Batch 0.0171 
1.04 
E06 

1 0.934 13.10 5.48 10.1 2.00 31.3 

Fed-Batch 19.1 5.40 0.944 0.760 4.54 3.50 3.26 2.19 6.49 

Chemostat 12.6 38.1 0.987 0.862 9.90 2.99 5.16 1.58 3.46 

CSTR 1.32 
1.13 
E04 

1 0.920 4.97 8.18 5.00 1.52 16.6 

Table 19 summarizes the initial conditions and experimental design criteria 

obtained from the best experimental designs using the D-criterion for single objective 

optimization. Across all experimental design configurations, the initial concentration of 

substrate (MC) and degrading microorganisms were disproportionate in the sense that the 

substrate concentration was sometimes order of magnitudes higher than the bacterial cell 

concentrations (Table 19). This result was especially apparent for the batch reactor and 

chemostat experimental configurations. The optimal dilution rate for the chemostat 

experiment was also relatively high compared to the highest expected specific growth rate 

of MC degrading microorganisms (6.60 day-1), which was close to washout of the cells from 

the reactor. For both the CSTR and fed-batch reactors, the feed concentration of substrate 

was relatively high relative to the initial concentration of degrading cells inoculated in both 

reactors (Table 19).  

Table 19 - Initial conditions and experimental design criteria obtained using the D-criterion 
for optimization. Results are summarized for the best repetition (out of 3 independent 

realizations) for each experimental configuration. 

Experimental 
Configuration 

C0 

(mg/L) 
X0 

(mg/L) 
V0 

(L) 
D 

(1/day) 
Cf 

(mg/L) 
Xf 

(mg/L) 

Batch 1.60 9.94E-05 - - - - 

Fed-Batch 0.858 0.102 0.00041 - 104.7 - 

Chemostat 58.9 0.000251 - 5.06 0.00035 - 

CSTR 165.1 0.471 0.767 0.153 50.5 51.9 
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When applying the D-criterion for optimization, the best OED achieved for all 

experimental configurations (i.e., the fed-batch configuration) was simulated and 

presented qualitatively in Figure 60. As observed in Figure 60, the substrate (MC) and 

degrading cell concentration profiles are quite dynamic, demonstrating at least three to 

four regions of distinct fluctuation over the course of the simulated experiment. In addition, 

there was high variability in the predicted responses of both state variables when applying 

the GSA approach for different parameter combinations (as indicated by the extensive 

uncertainty regions, Figure 60). The high variability observed among different parameter 

combinations may be due to the wide a priori uncertainty in the parameter estimates of 

kinetic models describing MC biodegradation. Although the parameter uncertainty 

intervals were relatively constrained to realistic boundaries from previous model 

calibration efforts (i.e., Manheim et al. 2019), the high diversity in MC degrading bacterial 

kinetics may have contributed to this increased variability in simulations. The liquid 

volume predicted within the reactor, however, remained constant across different 

simulations, as the liquid volume was only affected by the feed rate profile, which was fixed 

for each simulation. Lastly, the optimal feed rate profile was not very dynamic, where there 

was a relatively gradual step in concentration of substrate from 5-7 days followed by a 

noticeable jump around 7-8 days of simulation (Figure 60). 
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Figure 60. Simulated optimal experimental design for the fed-batch reactor configuration 

using the D-criterion for single objective optimization. This figure displays the predicted MC 
concentration, degrading cell concentration, and liquid volume of the reactor system as a 
function of simulation time. The red, blue and green lines represent the mean predictions 

across 8192 different parameter combinations used in the GSA, while the grey region 
indicates the 95% CI achieved across all 8192 model predictions. Panel D portrays the optimal 

feed rate profile of the fed-batch reactor system. 

3.2.2 Single Objective OED Results: The Decorrelation Criterion 
 

OED statistical results using the parameter decorrelation criterion showed that the 

uncertainty in some of the parameter estimates was considerably higher compared to the 

use of the D-criterion (Table 18 vs. Table 20). In fact, the pseudo-volume (Θ) of the 

confidence hyper ellipsoid was orders of magnitude larger (i.e., E17-39) for the optimal 

experiments determined using the decorrelation criterion over the D-criterion (Table 18 

vs. Table 20). The length of the uncertainty intervals for Ks and n model parameters also 

severely increased when the decorrelation criterion was applied during single objective 
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optimization (Table 20). This increase in uncertainty observed for Ks and n model 

parameters was most likely at the expense of reducing the correlation existing between the 

most sensitive parameters (i.e., µmax and kd) and either Ks or n model parameters.  Although 

the orientation of the confidence ellipsoids was near perpendicular and parallel to the x-

axis (indicating little correlation, data not shown), the extremely high eccentricity values 

confirmed that there was high uncertainty in several model parameters that optimizing the 

decorrelation metric alone could not explicitly account for (Table 20).  

Table 20 - OED statistical results using the decorrelation criterion for optimization. Results 
are summarized for the best repetition (out of 3 independent realizations) for each 

experimental configuration. 

Experimental 
Configuration 

Decorrelation 
Criterion 

Θ ε εa 
η1 

(µmax) 

η2 
(Ks) 

η3 
(Y) 

η4 

(kd) 
η5 
(n) 

Batch 0.923 7.24E39 1 0.999 2.55 2.29E06 43.8 1.54 4855 

Fed-Batch 0.823 7.53E21 1 0.997 2.68 1.13E04 30.0 1.54 127 

Chemostat 0.976 2.01E18 1 0.994 3.31 1.86E03 25.0 1.54 79.7 

CSTR 0.878 2.86E17 1 0.994 2.45 3.58E03 9.65 1.56 42.6 

 

Similar to results presented in the previous section, the fed-batch reactor was able 

to decorrelate the model parameters to the greatest extent (Table 20). However, the 

difference in magnitude of the optimal decorrelation criteria reached was quite similar 

among the experimental configurations presented in Table 20. This result may suggest that 

the experimental configuration may have less of an effect on controlling correlation among 

parameters as compared to statistical certainty. In addition, the use of the chemostat was 

observed to reduce correlation among model parameters the least, which was 

contradictory to the results observed for the D-criterion optimization.  

As compared to the optimal experimental conditions obtained using the D-criterion, 

the use of the decorrelation criterion resulted in initial concentrations of substrate and 



332 
 

degrading cells that were considerably higher, especially for the batch and fed-batch 

configurations (Table 19 vs. Table 21). For both the batch and fed-batch configurations, the 

initial concentration of degrading cells was approaching the theoretical practical limit of 

1000 mg/L, where lower values of the decorrelation criterion may have been achieved if 

this limit was increased. In addition, the magnitude of the initial concentrations of 

substrate and degrading cells were quite similar for the optimization involving the 

decorrelation criterion as compared to the D-criterion (Table 21). Moreover, the optimal 

dilution rates obtained from the decorrelation criterion experiments were much smaller as 

compared to the previous experiments with the D-criterion (Table 21).  

Table 21 - Initial conditions and experimental design criteria obtained using the 
Decorrelation criterion for optimization. Results are summarized for the best repetition (out 

of 3 independent realizations) for each experimental configuration. 

Experimental 
Configuration 

C0 

(mg/L) 
X0 

(mg/L) 
V0 

(L) 
D 

(1/day) 
Cf 

(mg/L) 
Xf 

(mg/L) 

Batch 697 999.8 - - - - 

Fed-Batch 774 999.5 0.221 - 38.6 - 

Chemostat 456 233 - 0.505 1.47 - 

CSTR 203 0.536 - 0.0483 13.7 1224 

 

The efficacy of the decorrelation optimization scheme to reduce the correlation 

existing between model parameters can be observed visually in Figure 61 that depicts the 

correlation matrices for optimal fed-batch experiments using either optimization criteria. 

Correlations between parameters Y and n were significantly reduced when using the 

decorrelation criterion for single objective optimization (Figure 61). In addition, 

correlations between µmax and Y as well as µmax and kd were reduced to a noticeable extent 

when applying the decorrelation criterion as an objective function (Figure 61). However, 

there was a slight increase in the correlations existing between µmax and Ks as well as 
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between kd and n when optimizing using the decorrelation criterion instead of the D-

criterion (Figure 61).   

 

Figure 61. Comparison of the parameter correlation between optimal fed batch experiments 
achieved from single objective optimization using either A) the D-criterion or B) the 

decorrelation criterion as objective functions to maximize or minimize. The color scale (blue 
to red) reflects the magnitude of Spearman’s correlation coefficient (ranging from 0-1) 

between model parameters. 

Again, simulations of the optimal experimental design (for the fed batch reactor 

configuration) were visualized for all relevant parameter combinations used in the GSA analysis 

for the decorrelation criterion optimization scheme (Figure 62). Compared to Figure 60 (using 

the D-criterion), the simulations that attempted to decorrelate the model parameters appeared 

much less dynamic (Figure 62). In the previous D-criterion experiments, both substrate and cell 

concentrations were observed to increase for much of the experiment; however, both substrate 

and cell concentrations were observed to decline in the decorrelation run of experiments (Figure 

62). As noted by the large uncertainty regions, there was still some variability in the OED 

simulations when predicting cell concentrations across the different parameter combinations used 

for the GSA (Figure 62). In addition, the feed rate profile was observed to maintain several sharp 
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pulses (both at the onset, Day 1, and towards the duration of the experiment, Day 7), which was 

different than the series of step pulses observed for the D-criterion experiments around days 6-8 

of experimentation (Figure 62D). Lastly, the liquid volume of the reactor was observed to 

increase past the theoretical limit of 1 L, which was due to the higher magnitude of the feed rate 

pulses (up to 35 mL/hr) applied for the decorrelation criterion experiments over the D-criterion 

experiments.  

 
Figure 62. Simulated optimal experimental design for the fed-batch reactor configuration 
using the decorrelation-criterion for single objective optimization. This figure displays the 

predicted MC concentration, degrading cell concentration, and liquid volume of the reactor 
system as a function of simulation time. The red, blue and green lines represent the mean 
predictions across 8192 different parameter combinations used in the GSA, while the grey 

region indicates the 95% CI achieved across all 8192 model predictions. Panel D portrays the 
optimal feed rate profile of the fed-batch reactor system. 
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3.2.3 Multi-Objective OED Results 
 

The multi-objective OED results indicated that the fed-batch reactor configuration 

produced the best tradeoff between maximum information content and minimum 

correlation among input parameters as the pseudo volume of the hyper ellipsoid was 

lowest and the confidence interval lengths were, on average, smallest out of all 

experimental configurations tested (Table 22). Although the pseudo volumes of the 

confidence ellipsoids were reduced from the decorrelation, single objective optimization 

experiments, they were still very high compared to the D-criterion optimization 

experiments, indicating that the Pareto fronts were possibly more biased towards reducing 

parameter decorrelation over maximizing information content. This observation was 

supported by the fact that the diversity of solutions along the Pareto optimal front for each 

experimental reactor configuration was very unstable (and still did not converge after 

5000 generations for most runs) (Figures F7 and F8). 

Even though the fed-batch experimental configuration produced the best tradeoff 

OED, the eccentricity and parameter uncertainty concerning the Y parameter were still 

relatively concerning for the OED of the fed-batch reactor to be considered a valid Pareto 

tradeoff solution. This inconsistency was most likely due to the multi-objective 

optimization requiring a larger number of generations for the Pareto front to formally 

converge than what was conducted in this study (i.e., 5,000 or more required compared to 

only 1,000 conducted). This inconsistency was further confirmed when comparing the D-

criterion optimization results to the multi-objective results, in which the decorrelation 

criterion was lower for the single objective results (0.8659 compared to 1.10). On the other 
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hand, the optimal Pareto fronts for all other experimental configurations were observed to 

converge when monitoring the hypervolume, R2 and delta convergence indices (Figure F8).  

Table 22 - OED statistical results using multi-objective criteria for optimization. Results are 
summarized for the best repetition (out of 3 independent realizations) for each experimental 

configuration. 

Experimental 
Configuration 

D-
Criterion 

Decorr. 
Criterio

n 
Θ ε εa 

η1 
(µmax) 

η2 
(Ks) 

η3 
(Y) 

η4 

(kd) 
η5 

(n) 

Batch 
4.23 
E-07 

1.22 
5.30 
E20 

1 0.987 5.38 
1.65 
E04 

2.47 1.44 27.0 

Fed-Batch 1.82 1.10 7959 1 0.899 3.50 5.25 21.7 1.41 5.91 

Chemostat 0.295 1.01 27790 1 0.935 6.32 2.87 9.96 1.69 23.4 

CSTR 0.37 1.08 66477 1 0.922 7.01 2.40 7.33 1.77 34.2 

 

Table 23 summarizes the initial conditions and experimental design criteria 

obtained from the multi-objective optimization framework. These experimental design 

results appeared to be somewhat in line with those obtained for both the D-criterion and 

decorrelation criterion experiments. For example, the initial substrate to cell concentration 

ratios for the batch and fed batch configurations were approximately the same when 

comparing the decorrelation results to the multi-objective results, albeit the initial 

concentrations were somewhat smaller for the multi-objective optimization results (Table 

19 vs. 23). Initial conditions (concentrations of substrate and biomass) for the chemostat 

and CSTR were comparable to those obtained for the D-criterion optimization results (i.e., 

very low concentration of cell biomass compared to the concentration of substrate). 
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Table 23- Initial conditions and experimental design criteria obtained using the multi-
objective criteria for optimization. Results are summarized for the best repetition (out of 3 

independent realizations) for each experimental configuration. 

Experimental 
Configuration 

C0 

(mg/L) 
X0 

(mg/L) 
V0 

(L) 
D 

(1/day) 
Cf 

(mg/L) 
Xf 

(mg/L) 

Batch 165 539 - - - - 

Fed-Batch 75.4 137 0.0109 - 0.855 - 

Chemostat 357 0.000141 - 1.40 0.279 - 

CSTR 885 3.49E-06 - 2.06 0.268 0.0250 

 

The simulations of the OED achieved from the multi-objective optimization 

framework (for the fed batch reactor configuration) are depicted in Figure 63. Compared to 

the other experimental designs obtained from the single objective criteria, the simulations 

for the multi-objective results were the least dynamic, where the substrate concentration is 

observed to decline in a first order fashion, whereas the MC degrading cells grow slightly, 

then decay for the remaining duration of the experiment (Figure 63). The liquid volume 

within the reactor was observed to increase exponentially during the latter portion of the 

experiment and plateaus around 10 days at a volume well below the upper limit of the 

volume of the reactor (1 L was the upper limit). The magnitude of the feed rate was larger 

than that obtained for the D-criterion experiment (but similar in magnitude to the 

decorrelation experiment), where the feed rate profile demonstrated a 3-step pulse during 

days 8-10 of the experiment (Figure 63). 
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Figure 63. Simulated optimal experimental design for the fed-batch reactor configuration 
using the multi-objective for single objective optimization. This figure displays the predicted 
MC concentration, degrading cell concentration, and liquid volume of the reactor system as a 

function of simulation time. The red, blue and green lines represent the mean predictions 
across 8192 different parameter combinations used in the GSA, while the grey region 

indicates the 95% CI achieved across all 8192 model predictions. Panel D portrays the optimal 
feed rate profile of the fed-batch reactor system. 

 

3.2.4 Comparison of the OEDs to an Uninformed Experimental Design 
 

In this section, we compare the best overall OED returned by the fed-batch reactor 

experimental configuration to that of an uniformed batch reactor experiment to 

demonstrate the extent of improvement in model parameter statistical certainty. The 

uniformed experiment was modelled directly after Xiao and coworkers (2011) study, 

examining the batch degradation of MC-LR by an isolated Sphingopyxis sp. USTB-05.The 

experimental design of this particular study (C0 = 28.8, X0 = 7.39 mg/L) resulted in the 
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worst parameter identification for the Moser model (out of four studies) after a fully 

Bayesian model comparison and selection procedure was conducted.  

As observed in Figure 64, the parameter uncertainty was considerably reduced 

through implementation of the fed-batch OED achieved in this study. The confidence 

ellipses were observed to be orders of magnitude smaller for the informed experimental 

design as compared to the uninformed experimental designs, for all parameter 

combinations (Figure 64). This improvement was especially apparent for the µmax and n as 

well as the kd and Y model parameter combinations, where the uninformed experiments 

demonstrated a significant positive and negative correlation structure (Figure 64, subplot 3 

and 8). However, application of the optimal OED almost eliminated the parameter 

correlation and greatly reduced the area of the ellipse when projected onto the 2D plane. 

This result was promising as µmax and kd were both identified to be very influential 

parameters when predicting substrate removal and bacterial growth kinetics. However, as 

indicated in Figure 64, subplot 9, there was still some residual correlation between Y and n 

model parameters for the informed OED using the fed batch configuration. In addition, 

although the projected area of most of the confidence ellipses was reduced through the 

informed OED, some of the ellipses were marked by high eccentricity, signifying that the 

parameter certainty was not uniformly distributed among all of the model parameters 

(Figure 64, subplot 1, 5, and 6).    
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Figure 64. Comparison of 95% confidence ellipses returned for an uniformed batch 
experiment (blue) and a fed-batch configuration OED (blue). 

Table 24 quantitatively demonstrates that the informed experiment using the fed 

batch reactor leads to a substantial reduction in pseudo-volume of the 95% CI hyper ellipsoid 

of the parameter certainty, which varied by approximately 37 orders of magnitude. The 

length of the confidence intervals were considerably higher for Ks and n model parameters 

for the uninformed experiment as compared to the informed experiment. Moreover, critical 

differences in both FIM singular criteria were observed, where the D-criterion is 

approximately 16 orders of magnitude larger than the uninformed batch experiment. The 

results help solidify the notion that model based design of experiments can considerably 

improve the information content of experiments for improved parameter identification.  

Table 24 - Comparison of the OED statistical results between the informed (fed batch reactor) 
and uninformed (batch reactor) experimental designs. 

Experimental 
Configuration 

D-
Criterion 

Decorr. 
Criterion 

Θ ε εa 
η1 

(µmax) 

η2 
(Ks) 

η3 
(Y) 

η4 

(kd) 
η5 
(n) 

Batch 
(uninformed) 

9.30E-15 1.998 
1.22 
E37 

1 0.991 10.99 
5.17 
E06 

27.5 1.68 188 

Fed-Batch 
(informed) 

19.1 0.8596 5.40 0.944 0.760 4.54 3.50 3.26 2.19 6.49 
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4. Discussion 

4.1 Study Contribution 
 

This is the first study, to the best of our knowledge, to apply global optimal 

experimental design principles to improve the parameter identification of unstructured 

kinetic models describing microcystin biodegradation. Compared to uninformed 

experimental designs, the application of OED experiments can produce experimental 

datasets that drastically increase the information content, substantially reduce parameter 

correlation, and greatly improve overall parameter identification. The results 

demonstrated that through the best OED achieved, all parameters could be successfully 

identified, as the rank of the resulting FIM was equivalent to the number of model 

parameters. Overall, the resulting statistical variance of the estimated parameters was 

relatively uniform and low in magnitude, and the highest uncertainty for the best OED was 

observed for both µmax and n model parameters. Improvements could be made targeting 

the eccentricity of the confidence ellipses achieved from all OEDs, which could be resolved 

by minimizing, in a multi-objective framework, the modified E-criterion (i.e., the condition 

number of the FIM) along with the D-criterion and decorrelation criterion applied in this 

study. This framework would theoretically allow for improved uniformity in the confidence 

region obtained for all parameter estimates.  

More importantly, it was observed that accounting for different metrics during 

optimization, such as the information content or decorrelation criteria, produced considerably 

different estimates of the statistical parameter confidence region. This result is in agreement with 

other OED studies, in which OED experiments were observed to differ according to the objective 

function used during optimization (Telen et al. 2012, Maheshwari et al. 2013). Although 

explicitly accounting for both objective functions in a multi-objective framework showed to 
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provide some tradeoff between both criteria, the information content was still not as high as that 

achieved by the single objective experiments targeting the D-criterion during optimization. This 

result signified that the magnitude of the reduction in parameter decorrelation was generally not 

proportional to the information content gained from the OEDs returned by the tradeoff solutions 

from the multi-objective framework. Thus, in the case of the Moser model, it may be better to 

rely on one criterion in a single objective framework to obtain reliable experimental designs, as 

the relative degree of parameter correlation was observed to indirectly decrease when the 

information content of the experiments was maximized.   

4.2 Optimal Experimental Design: From Theory to Practice 
 

Even though the statistical results were promising, it is important to make clear that 

the fed batch experiments proposed in this study were not easy to carry out in practice 

(especially when working with MC) and are subject to some practical limitations 

(Cappuyns et al. 2007). To highlight the practical limitations identified with the 

experimental designs proposed, we will examine the initial conditions of the best OED for 

the fed-batch experimental configuration. Given the initial volume of 0.00041 L identified 

by this OED, the initial biomass that should be inoculated into the reactor concentrations is 

extremely low, on the order of 0.0418 µg of cells. In practice, it may be quite difficult to 

measure the biomass of MC degrading cells (using the ATP method) down to the sub µg 

level and with the desired precision. This would involve a complicated dilution procedure 

that may not be practically feasible. Similar difficulties would be expected for the initial MC 

concentration, where optimal initial conditions required inoculating 0.352 ug of MC into 

the reactor system.  
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The theoretical constraints of the experimental conditions that could be applied in 

practice was also relatively arbitrary in this study. As of current, no studies have actually 

measured the biomass of these degrading organisms when grown on MC as the sole carbon 

and energy source. We limited the upper bound of the initial biomass concentration in all 

experiments to 1 g/L, which seemed reasonable given that MC may not be a preferential 

carbon source in the environment for many of these organisms. In addition, a previous 

study by Manheim and coworkers (2018) demonstrated that biomass growth was 

relatively insignificant when a degrading community was supplied with 200 µg/L of 

microcystin, suggesting that this MC as a substrate may be suboptimal for rapid and 

intensive bacterial growth. When setting this theoretical upper bound on the initial 

experiment conditions, it will be important to consider what substrate (MC) concentration 

threshold actually results in saturation of bacterial growth for different degrader 

populations, as there is a theoretical biomass that can be derived assuming this limiting 

concentration.  

Similarly, due to the high adsorption potential of microcystin on most plastic 

materials, the experimental equipment will require either glass, stainless steel, or Teflon 

tubing and fittings (Hyenstrand et al. 2001a, 2001b). Investing in this type of hardware and 

finding the correct fittings could become expensive and difficult when considering the 

practical application of these experiments. Moreover, the price and availability of pure MC 

may limit the practical applicability of these experiments, as MC is notoriously difficult to 

isolate and extract from toxic cyanobacterial cultures (Ramanan et al. 2000, Lawton and 

Edwards 2001). However, if proper attention is not given to these small details, there could 

be substantial losses of MC due to adsorption alone. Lastly, it will be critical to keep the 
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feed lines sterile during the fed batch experiments. In practice, as the feed rate is varied 

over several orders of magnitude, there is a chance that bacteria can enter and contaminate 

the feed line from the batch reactor chamber, especially if the feed rate is kept below the 

optimal specific growth rate. To avoid potential contamination the inlet to the reactor can 

be fixed with a non-reactive filter of fixed pore size (with material that limits adsorption of 

MC and bacterial cells) that prohibits bacterial contamination but ensures the same feed 

rate profile as initially designed.  

Lastly, there are theoretical considerations concerning the OED of the feed rate 

profile that should be taken into consideration as to avoid violation of unstructured kinetic 

model assumptions. In this study, we found that the optimal feed rate profile was quite 

dynamic around 7-10 days of experimentation. The feed rate profile was observed to have 

a very high gradient for this part of the experiment, which may violate the assumption of 

balanced growth upheld by the Moser model. This assumption states that the 

environmental conditions are not changing too rapidly as to induce large variations in the 

physiological composition of a bacterial cell. Ultimately, if the feed rate profile is too 

dynamic, it may induce fast, non-physical dynamic physiological responses of the bacteria 

cells that are not described by unstructured kinetic models (Baltes et al. 1994, Versyck and 

Impe 1998, Cappuyns et al. 2007). It is unknown in this study to what extent the gradient 

presented for this experimental design obeys or disobeys the constraints of unstructured 

kinetic models, but it certainly is a valid topic for future study.   
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4.3 General Statistical Considerations of the Validity of the OED Performed in this 
Study 
 

The OED procedure performed in this study made several simplifying statistical 

assumptions that must be adequately recognized and discussed. First and foremost, due to 

lack of information concerning the variability of experimental measurements (for substrate 

and cell concentrations), we assumed that: 1) the measurement noise of both the substrate 

and cell concentration measurements in the derivation of the FIM were equal (i.e., standard 

normal distribution – 0 mean and unit variance); 2) measurement noise was 

homoscedastic; and 3) that there was no covariance among the measured variables. This 

may not be the case in practice, as it is expected that the measurement noise associated 

with cell biomass measurements should be greater in magnitude than substrate 

concentration measurements. For example, measurements of MC degrading cell density 

using colony counts (CFU/mL) or even optical density was quite noisy in practice (where 

replications are generally few and far between) (Valeria et al. 2006, Wang et al. 2010, Xiao 

et al. 2011). Although our simulated experiments assumed that cell biomass was 

determined using ATP measurements (which is considerably more accurate and marked by 

higher precision than the aforementioned methods) there is still uncertainty regarding the 

conversion from ATP content to cellular carbon (dry weight) content in which this series of 

OED experiments did not explicitly address. In this conversion, two metrics are needed, one 

to convert ATP concentrations to cell concentrations (ATP/cell), then another to convert 

from cell concentration to biomass (cell/biomass). A similar conversion factor, used to 

convert OD to dry weight, was shown to influence the uncertainty of model predictions in a 

previous study (Manheim et al. 2019), where correlations were observed between this 

conversion factor and other influential model parameters. Thus, future studies should 
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address to what extent these conversion factors contribute to the overall parameter and 

model predictive uncertainty of the Moser kinetic model.   

The assumption of homoscedasticity of the measurement error for both variables as 

well as covariance among state variables are also important factors to consider. From 

practical experience, it is expected that as the concentration of a species of interest 

increases, the measurement noise associated with the given measurement system or 

technique should also increase accordingly (Holmberg 1982). Thus, the measurement error 

should theoretically decrease over the simulated experiments for substrate concentrations 

(as substrate is removed from the system) and increase over the simulated experiments for 

biomass concentrations (as growth is expected). However, the assumption made in this 

study neglected this heteroscedasticity in measurement error over time. Furthermore, in 

future studies, it may be important to account for covariance among observed variables, as 

state variables in many experiments have been known to covary (where explicit 

assumptions have been made to account for this covariance during ML optimization, 

Knightes and Peters 2000, 20003). In our defense, making these statistical adjustments was 

deemed difficult and perhaps unnecessary without actually having performed an 

experiment using the measurement methods specified and acquiring practical expertise 

with the measurement systems relied upon.  We further highlight that these adjustments 

can be made by simply changing the specifications of the weighting matrix (W) during 

formulation of the FIM (i.e., 𝐹𝐼𝑀 =  𝑆’ ∗ 𝑊 ∗ 𝑆). 

4.4 Specific Considerations of the Validity of the OED Performed in this Study 
 

It is important to first highlight that the parameter uncertainty bounds for the global 

sensitivity analysis performed in this study were relatively wide compared to that expected 
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in practice. We specifically maintained the bounds of the parameter uncertainty to the 

feasible space determined for four different isolated bacterial populations degrading MC, as 

we were interested in a holistic understanding of the generalized experimental conditions 

that would result in improved parameter identification encompassing all potential 

degrader populations (Manheim et al. 2019). In experimental practice, the feasible 

parameter space will be much narrower than that applied herein (as the experiments will 

be conducted for an individual population of bacteria), especially if an initial, uninformed 

experiment is conducted, and a Bayesian posterior distribution in parameter estimates can 

be obtained prior to performing the optimal experimental design.  

Incorporating a wider parameter uncertainty interval was observed to produce 

some strange artefacts in the optimization process. For example, the dynamic sensitivity 

estimates were observed to change to some degree when different QMC samples were 

used, which resulted in somewhat different estimates of optimal experimental designs 

among the independent realizations performed (when the sample size was fixed at 8192). 

Even though a sufficient number of samples was chosen for each of these GSA sensitivity 

indices to converge, there were still differences in the time varying sensitivity estimates 

among different QMC samples. This result may be due to the wide range in parameter 

combinations obtained for each QMC sample set. In addition, the solver sometimes 

encountered parameter combinations that were mathematically infeasible to solve and 

produced results with complex number sets. These solutions were ultimately thrown out of 

the GSA when conducting the OED optimization and may have affected the results, to some 

degree.  
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It is more likely that differences in the OED experiments achieved from different 

QMC sample sets may be due to issues with the structural identifiability of the Moser 

model. Through application of the GenSSI generating series approach, it was clear that the 

Moser model was locally, structurally identifiable. This result signified that there were 

multiple parameter combinations that could have been optimal for a given experimental 

design, which was a result of the high dependency at play between model parameters. 

Therefore, this result shows that there was not a “global” OED solution across the objective 

space analyzed and that, potentially, there were multiple OEDs that produced similar 

improvements in parameter identification. This result helps to prove that faults with the 

model structure, as opposed to details of the practical identifiability analysis, led to the 

observed differences in OEDs achieved from independent realizations utilizing different 

QMC sample sets.  

In order to perform each of the OEDs in an acceptable time frame (3-4 day period), 

the absolute and relative tolerances of the CVodes solver had to be adjusted to find an 

optimal balance between accuracy and efficiency. In this study, we found that a relative 

tolerance of 1E-3 and an absolute tolerance of 1E-6 provided the best balance between 

accuracy and computational efficiency. Running with these tolerances on multiple cores 

and in parallel implementation (up to 32 cores) greatly improved the speed of these 

simulations. However, the tolerances used may have resulted in model predictions that 

were sub optimal for some parameter combinations, which may have also increased the 

uncertainty of the results obtained. Future studies should consider comparing OEDs 

returned when different tolerances are set by the user to ensure that little numerical 

discrepancies exist between resulting simulations.    
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Furthermore, it is important to note that the confidence ellipses were developed 

based on the Cramér-Rao bound, which may be unreliable in the case of highly non-linear 

models (such as the Moser model), as the FIM is derived from linearization of the least 

squares optimization of the parameter values (Balsa-Canto et al. 2008). Thus, to reliably 

evaluate to what extent the OED improved parameter identification in this study, a robust 

identifiability analysis (RIA) could be carried out (Balsa-Canto et al. 2008). The basis of this 

RIA analysis is to perform a Monte Carlo analysis, where many different experimental 

datasets are simulated using the optimal design criteria determined from the OED step and 

a randomly selected parameter combination. In addition, the experimental datasets are 

simulated assuming some theoretical measurement noise. The objective of this analysis is 

then to perform repeated model calibration efforts to arrive at an empirical parameter 

cloud that describes the joint confidence region of the parameter estimates. Although this 

analysis is more robust than the statistical analysis performed in this study, the main 

drawbacks are that it is very computationally intensive to perform a large number of model 

calibrations (> 10000) using a reliable global optimization scheme.   

Lastly, this study did not explicitly address improvements in the experimental 

design that could be reached through considering the sampling times and frequencies of 

each experiment. It is likely that the OED could have been further improved if the sampling 

times were optimized along with the sampling frequencies of each experiment. In this 

study, we assumed the sampling times were uniform and conducted on daily (24 hr) 

intervals. However, in practice, once an OED is reached, it may be necessary to further 

determine which sampling times and frequencies result in experiments with maximal 

information content and minimal parameter correlation. Importantly, this step can be 



350 
 

conducted independently of the initial OED to determine the initial conditions and relevant 

design parameters to ensure that the optimization process is as efficient as possible, as 

inclusion of sampling times/frequencies may significantly expand the dimensions of the 

feasible search space (i.e., optimizing 8 design variables is more efficient as opposed to 16 

variables).  

5.0 Conclusions 
 

This study has successfully applied both a structural identifiability and OED 

principles to improve parameter identification of the Moser model for describing MC 

biodegradation. The Moser model was determined to be structurally, locally identifiable, 

indicating that a finite number of optimal parameter solutions are possible when 

calibrating a given model for a certain experimental condition. The practical identifiability 

analysis determined that a fed batch experimental configuration with a dynamic feed rate 

profile was optimal over all other experimental configurations reviewed. The use of a 

multi-objective framework allowed the determination of an OED that resulted in a tradeoff 

between maximal information content and minimum correlation among model parameters. 

The application of this OED was demonstrated to significantly improve the parameter 

certainty of the Moser model as compared to a simple, uninformed batch reactor 

experiment. However, it is important to note that achievements in statistical certainty of 

the model parameters can only be realized if the practical constraints on running the OED 

can be overcome. The practical identifiability analysis of the Moser model was observed to 

be affected by the structural identification properties of the model, in which independent 

realizations of the same optimization problems utilizing different QMC sample sets 
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converged to multiple global minima. Overall, it is expected that the improved confidence 

in the parameter estimates will greatly improve the overall predictive certainty of the 

Moser model predictions.  
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MAIN CONCLUSIONS AND FUTURE DIRECTIONS 
 

 

Biological drinking water treatment strategies targeting the removal of algal 

biotoxins, such as biological filtration, offer the potential to provide safe drinking water 

during harmful algal bloom periods at a fraction of the cost of current advanced physico-

chemical methods and with the goal of sustaining the environment in mind. This 

dissertation has provided ample evidence that individual bacterial populations as well as 

more complex microbial communities isolated from natural lake or reservoir environments 

can effectively degrade microcystin, one of the most common and toxic algal biotoxins 

produced during these harmful bloom events. However, the kinetics of treatment (on the 

order of days) and variability in environmental conditions such as temperature, pH, 

availability of exogenous nutrients, and microbial community composition, have challenged 

the advent of biofiltration in full scale drinking water treatment practice.  

Ultimately, developing a more stable and robust bio-based drinking water treatment 

system relies on improving our predictive understanding of the microorganisms involved 

in microcystin biodegradation. If the eventual goal is to fully “engineer” these treatment 

systems and to target the complete removal of algal biotoxins from drinking water, we 

must be able to successfully model how these bacterial communities grow, interact with 

one another, and respond to the surrounding environmental conditions and the presence of 

other higher trophic order organisms (i.e., protozoa). The bottom line achieved from 

preliminary research was that the use of simple zero or first order kinetic models were not 

descriptive enough to further this predictive understanding of microcystin biodegradation 

and that more advanced models needed to be developed and applied. Clearly, as was 

demonstrated in this dissertation research, developing a comprehensive and practical 
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model describing any biological based treatment system is an extremely complex (perhaps 

lifelong) task and depends on first understanding many different factors, ranging from 

comprehension of the structural or practical identifiability of a given model to Bayesian 

model selection and optimal experimental design.  

Overall, there were four main modelling approaches applied in this dissertation that 

were geared towards improving the current predictive understanding of the 

microorganisms involved in microcystin biodegradation: a) a holistic, systems approach; b) 

a top down approach; c) a mechanistic approach; and D) a bottom up approach. Each of 

these models was developed or applied to answer some very specific questions ranging 

from microcystin biodegradation on a cellular level to the larger fate and transport of these 

biotoxins in drinking water treatment systems. In this section, we shed some light behind 

the main conclusions drawn from each study and offer some food for thought for future 

research direction. 

The holistic, system modelling approach, where a probabilistic materials flow 

analysis was conducted for a SWRO facility on a larger scale of analysis, was shown to be 

very useful to answer questions as to the fate and transport of these toxins within drinking 

water treatment facilities and the potential human health effects from ingesting treated 

drinking water during harmful algal blooms periods. The modelling results indicated that 

the treatment system configuration and operational practices considered had a statistically 

significant impact on the removal and fate of algal biotoxins within these facilities, where 

minimal acute human health effects were predicted due to the reliance on reverse osmosis 

membranes as a final treatment step. The uncertainty of this system model was perhaps 

the highest out of all the models developed or applied in this research, as many logical 
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assumptions were made concerning the removal efficiency of these toxins in various 

treatment systems as well as the algal toxin loadings (i.e., intracellular toxin content), and 

cell breakage experienced in these mechanized treatment systems.  

Future studies related to this system modelling approach should consider acquiring 

experimental data from these facilities (i.e., measuring biotoxin concentrations) at different 

steps of the treatment train to first corroborate model predictions presented in this study. 

Moreover, routine monitoring of the algal composition and toxin loadings to these facilities 

is a key factor to further reduce the uncertainty of the system model developed. In addition, 

this system modelling framework can be applied to freshwater drinking water treatment 

systems targeting cyanobacterial biotoxin removal. Since these facilities do not rely on RO 

treatment systems, it would be interesting to apply this probabilistic modelling approach to 

reevaluate the acute, and even chronic, human health effects from ingesting treated 

drinking water during HAB periods. What is more, predicting to what extent drinking 

water treatment operations must prepare themselves in the future to combat the harmful 

effects of climate change and the increasing frequency and intensity of these blooms is 

critical to address.  

   The “top-down” or community scale modelling approach refers to the 

metagenomic study of several microcystin degrading bacterial communities (Chapter 2), 

which focused on understanding the degradation kinetics and taxonomic identity of the 

community members. In this study, we isolated several natural bacterial communities that 

possessed the ability to degrade microcystin and exposed these communities to an 

alternative, readily bio-available organic carbon source (i.e., ethanol) to evaluate the 

relative stability of these communities to external environmental factors. The 16S rRNA 
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pyrosequencing analysis also provided insight as to how, taxonomically, the communities 

were changing under this environmental pressure. It was found that these communities 

were extremely sensitive to the presence of an alternative organic carbon source other 

than microcystin, in which the diversity and microcystin degradation kinetics declined to a 

statistically significant extent. The taxonomic composition of each community consisted of 

both microcystin degrading and non-degrading community members, where exact 

identification or differentiation of the presence or quantity of each population within these 

greater factions was lacking. An unstructured kinetic model was applied to model the 

degradation half-lives of microcystin mediated by the entire community. Although the 

kinetic model was able to reproduce the bi-phasic degradation of each community, it could 

not account for important mechanisms such as higher order community member 

interactions or substrate competition (i.e., between microcystin and ethanol) within 

microcystin degrading bacterial populations. 

   Future directions for this research should first aim at improving the isolation and 

culturing process of the microcystin degrading communities. The reliance on a batch 

culturing system and a chemically defined medium for cultivation of each community was 

considerably far removed from actual settings in the environment. Firstly, application of a 

batch system for culturing resulted in unintended shifts in the community composition, 

where, as the number of sub-cultures progresses, the more the community will select for 

more “fit” community members, which will eventually dominate over the natural 

population. The use of a continuous culture system (i.e., a chemostat) from the onset of 

isolation should allow a more refined and representative look into the taxonomic 

membership of microcystin degrading communities present in the environment. In this 
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study, there was little observable growth of each community on microcystin as the sole 

organic carbon source, which is again atypical of environmental settings. Therefore, the 

chemically defined medium could be replaced with filtered (sterile) lake water, that has 

key, albeit low levels, of organic carbon to help bolster the growth of these microorganisms 

to simulate natural conditions (i.e., Li and Pan 2014). Furthermore, in addition to 16S 

rRNA, the use of 16S shotgun sequencing should be pursued to identify the key metabolic 

fingerprints of each community. This analysis should be conducted in conjunction with the 

mlrA quantitative gene profiling of each community to gain further insight into what task 

each member is performing and how community members may be interacting. Finally, a 

more complex, or top down modelling approach based on dynamic flux balances of the 

bacterial populations (i.e., Song et al. 2014) within each community will help link 

experimental data with an improved, predictive understanding of each microcystin 

degrading community. 

 The development of a mechanistic model to describe biofiltration of microcystin 

toxins was, unlike the previous kinetic models, focused on the inclusion of all the important 

underlying mechanisms affecting the fate, transport, and degradation of microcystin within 

a theoretical biofilter. The steady state, numerical model developed in this research was 

focused on predicting the physical-chemical and biological removal of microcystin in the 

filter along with growth, decay, and transformation of aqueous and solid bacterial biofilms, 

both of which were comprised of microcystin degrading and non-degrading populations. 

Importantly, the growth kinetics of aqueous and solid biofilm components were 

differentiated in the model structure, and the model only accounted for growth, decay, and 

transformation of microcystin degrading populations out of the total bacterial populations 



357 
 

present. In addition, the physical-biological feedback mechanism of “bioclogging” was 

explicitly modelled to determine to what extent the formation of the biofilms was altering 

the hydraulic conductivity within a hypothetical biofiltration treatment system. A 1D 

version of this numerical model was developed and successfully verified against a series of 

analytical solutions. Initial experimental efforts were conducted to calibrate several 

physical transport parameters of the model, including parameters related to physical-

chemical adsorption and dispersion. However, initial model predictions could not be 

achieved since the remaining model parameters describing transport and growth of the 

degrading bacteria were unknown and subject to future calibration.  

In addition to experimental investigations targeting the calibration of the biokinetic 

parameters describing growth, decay, and transformation of aqueous cells and solid 

biofilms containing microcystin degrading populations, the numerical model should be 

expanded to include at least two dimensions. The drawback of the current model is that it 

cannot account for fluid transport in the lateral direction of the biofilter, which will be very 

important to consider when bioclogging prevents fluid flow vertically in some areas of the 

simulated filter. Of course, expanding the model to 2D will require an additional run of 

model verification experiments to ensure that all elements of the numerical solution are 

functioning as expected (in terms of accuracy and stability). Lastly, in order to make 

informed predictions of the removal of microcystin toxins within biofilters, the numerical 

model will be validated against a series of 2D, laboratory-based flow cell experiments, in 

which the bacterial growth can be visually monitored and quantified for comparison of the 

numerical simulation with experimental results. Ultimately, this model can be applied to 

investigate certain operational conditions and design elements of biofiltration systems that 
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are favorable for microcystin removal and may provide insight as to which of these 

strategies may progress biofiltration systems from passive to more fully engineered 

treatment systems.    

As a final attempt to improve the current predictive understanding of biological 

degradation of microcystin toxins, a bottom up modelling approach, commonly used in the 

fields of bioremediation and wastewater treatment (i.e., Alexander 1999, Tchobanoglous et 

al. 2003), was explored in this dissertation research. As compared to the top down 

modelling approach, the bottom up modelling approach focused on understanding how an 

individual bacterial population behaves within the greater community. This approach was 

found to be more advantageous and intuitive over the top-down approach since it allowed 

the model framework to start with the necessary complexity as a foundation and 

successively build upon this complexity to increase the practical utility. In this dissertation 

research, the ultimate goal was to develop a comprehensive and practical kinetic model to 

describe microcystin biodegradation by natural bacterial communities in the environment.  

To lay an effective foundation for a practical kinetic model describing microcystin 

biodegradation, it was first important to comprehend the bacterial growth kinetics of 

isolated microcystin degrading populations. The adoption of unstructured kinetic models 

over structured kinetic models to describe cellular growth and substrate consumption was 

clear, as unstructured kinetic models are associated with a limited number of parameters, 

avoided unnecessary complexity, and were well established in the fields of bioremediation 

and water/wastewater treatment. Of the wide range in kinetic models available, the main 

challenge was determining which model structure was most appropriate when predicting 

microcystin biodegradation as well as arriving at accurate and precise estimates of the 
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model parameters. Thus, a fully Bayesian model comparison and selection approach was 

applied to compare the predictive accuracy and certainty of several prominent 

unstructured models describing microcystin biodegradation. The Moser model well 

reproduced several experimental datasets obtained from the literature, and up to 5 out of 6 

model parameters were practically identifiable. Aside from model selection and parameter 

identification, the physical meaning of the model parameters was discussed, and the Moser 

model was presumed to be an important predictor of the rate-limiting enzymatic reaction 

involved in the first step of the linearization of the microcystin ring structure. This was an 

important observation, as unstructured kinetic models attempt to reconcile millions of 

potential enzymatic reactions that are catalyzed by the cell. This observation also provided 

a theoretical basis for the further investigation of more complex enzyme-kinetic models to 

describe the growth of microcystin degrading bacterial populations (Noel and Narang 

2009). Furthermore, some important and inherent limitations of the Moser model were 

addressed, including the ability of this model to incorporate other physical mechanisms 

such as substrate competition, temperature, pH, as well as model interactions between 

community members using Lotka-Volterra predator-prey relationships.  

Despite the progress made with model selection and parameter calibration, there 

were still lingering issues associated with parameter correlation and identification that 

needed to be resolved. In this way, the parameter sensitivity of the Moser model was 

explored in depth to ascertain techniques to improve parameter identification and to 

reduce parameter correlation. The development of a novel semi-parametric, global 

sensitivity analysis technique represented a preliminary attempt to improve the estimation 

of parameter sensitivities and to assess the overall predictive certainty of unstructured 
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kinetic models. The semi-parametric method was beneficial as it avoided the dependence 

of the sensitivity analysis on statistical moments of the output distribution and relied on a 

more direct and practical mathematical relationship between the model parameters and 

the model predictions. This method was shown to improve the overall accuracy and 

reliability afforded by existing, fully non-parametric approaches to moment independent, 

global sensitivity analysis. In addition, when applied to the Moser model, the resulting 

sensitivity indices were accurate and converged efficiently, where a small to moderate 

computational effort was required. Overall, this method refined the existing approach to 

model the joint probability distribution function of the model input parameters and the 

model predictions which is ultimately required for calculation of the moment independent 

sensitivity indices.  

Optimal experimental design, which was yet another avenue for improving 

parameter identification of the Moser model, was examined in the final chapter of this 

dissertation research. In this final study, the structural and practical identifiability of the 

Moser model were investigated in detail through application of an analytical, generating 

series approach, and a global OED procedure focused on optimization of either singular or 

multiple criteria of the Fisher information matrix.  This approach determined that the 

parameters of the Moser model were all locally, structurally identifiable meaning that non-

unique, yet finite, optimal parameter combinations existed when calibrating a model using 

a dataset generated from any array of experimental and initial conditions. The practical 

identifiability analysis determined that the fed batch experimental configuration resulted 

in experimental datasets with both maximal information content and minimum parameter 

correlation. The experiments identified by this practical identifiability analysis were 
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observed to significantly improve the a priori statistical certainty surrounding the 

parameter estimates as compared to a uniformed batch experiment. Although these 

experiments were identified as harder to practically carry out, the reward in terms of 

improvements in overall model predictive certainty are expected to be well worth the 

effort for going through the initial a priori practical identifiability analysis. Future 

experiments will be aimed at replicating these optimal experimental designs with isolated 

microcystin degrading populations to verify if the predictions made by this preliminary 

practical identifiability analysis are in fact achievable.  

Above all, transforming these bio-based treatment systems into truly engineered 

systems, where the treatment efficacy can be tightly controlled, relies on the notion of 

“reverse” engineering (Villaverde and Banga 2014). As a whole, this concept of reverse 

engineering is contrary to what is typically expected of Civil and Environmental Engineers, 

as we are not engineering a system to produce a given response but are “engineering” a 

response from the system of interest; more specifically, we are seeking to tightly control 

the environmental conditions as to improve microbial growth and metabolic activity 

directed towards the degradation of algal toxins. Thus, this notion of reverse engineering 

cannot be accomplished unless we fully understand how the system responds to a full 

range in environmental conditions, which can be facilitated by understanding how the 

building block of the system (the MC degrading bacterial cell) responds to an array of 

environmental stimuli. In this research, we have obtained some fundamental 

understanding of how the MC degrading bacterial cell will function in a controlled setting. 

However, expanding this knowledge to account for the plethora of environmental 
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conditions or microbial interactions affecting MC degrading bacteria in treatment practice 

still remains as the next piece of the puzzle to ascertain.  

Although the research results presented in this dissertation have demonstrated that 

there are optimal models describing microcystin biodegradation, parameter sets, and 

experiments to go about better identifying the model parameters for more informed model 

predictions, it is likely that there will still be some deviation from the behavior observed in 

real world experiments. The bulk of this dissertation has been focused on reducing 

uncertainty through statistical means and trying to quantify the expected degree of 

deviation from real world data; however, one aspect that was generally missing was an 

opportunity to verify and validate the results of these model simulations and algorithms 

designed to reduce uncertainty on real world experiments. In general, it was cost-

prohibitive to use microcystin for long term, steady state experiments and it was very 

difficult to extract and isolate enough microcystin toxin to use for these experiments. 

Unfortunately, this lack of microcystin for use in laboratory experiments halted many of the 

proposed experimental efforts, including complete calibration of the biokinetic parameters 

within the numerical biofiltration model. Thus, it is expected that future research on this 

subject will involve experimental efforts to help validate the theoretical results presented 

in this research and to provide a direct link to practical application in full scale drinking 

water treatment practice.    
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Appendix A: Investigation of Algal Biotoxin Removal during SWRO 
Desalination through a Materials Flow Analysis -  
Supplementary Materials 
 

I. Supplementary Methods 

1. Calculation of Process Flows 

1.1 GMF Process Flow Calculations 

Operational parameters for a single unit conventional GMF are listed in Table A1. 

For a 50 MGD plant, we estimated 10 GMF units considering the influent water flow rate is 

twice the permeate flow rate (8 units plus an additional two units to that are offline during 

backwashing). The maximum upper limit in water use for these eight operating units is 

thus 5,000 m3/day (1.32 MGD). Thus, the process flow calculations resulted in a total 

backwash water volumetric flow rate of approximately 38,400 m3/day (10.1 MGD) 

assuming 10 GMF units was sufficient for the 50 MGD facility. 

Table A1 - Summary of engineering operational parameters for a 50 MGD SWRO with conventional 
GMF pretreatment systems (Villacorte et al. 2015b, Voutchkov 2013) 

Design Parameter Practical Value 
Filtration Rate (HLR-m/hr) 10 

Areal Footprint of One Unit (m2) 192 
Number of Filters in Operation 8 

Filter Run Time (hrs) 24 
Ratio Backwash Rate: Filtration Rate 5 

Backwash Time (min) 30 
Filtered Volume (Q)/hr/unit (m3) 9,600 

Total Volume of Water Consumed during 
Backwash Operation (m3) 

38,400 

 

Similar process design calculations were conducted for pressurized GMF systems 

for a 50 MGD plant operating at a theoretical intake rate of 100 MGD (Table A2). 

Pressurized systems would be expected to operate at a HLR of 25 m/hr with a much 

smaller areal footprint than conventional GMF systems, leading to a higher number of 
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filters in operation (24 filters total, 2 for redundancy during backwashing). The required 

volume of water to backwash these units was calculated to be 12,441 m3/day (3.29 MGD), 

approximately three times less than conventional GMF systems (Table A2).  

Table A2 - Summary of engineering operational parameters for a 50 MGD SWRO with pressurized 
GMF pretreatment systems (Villacorte et al. 2015b, Voutchkov 2013) 

Design Parameter Practical Value 
Filtration Rate (HLR-m/hr) 25 

Areal Footprint of One Unit (m2) 28 
Number of Filters in Operation 22 

Filter Run Time (hrs) 24 
Ratio Backwash Rate: Filtration Rate 4 

Backwash Time (min) 30 
Filtered Volume (Q)/hr/unit (m3) 1,131 

Total Volume of Water Consumed during 
Backwash Operation (m3) 

12,441 

 

1.2 MF/UF Process Flow Calculations 

The estimated volume of water consumed per day for the pressurized UF system 

depended on the specifications of the manufacturer and reported practical experience from 

pilot testing of pressurized UF systems (Table A3) (Voutchkov 2013). This study used UF 

system parameters given by Norit (Pentair X-Flow) Seaguard SXL 225 systems, with hollow 

fiber PES membranes of 0.02 to 0.025 µm pore sizes and operating in an inside out 

configuration. These systems have 40 m2 surface area per membrane module. Each 

pressure vessel houses 4 membrane modules in a horizontal configuration and 48 vessels 

are configured per train. We considered that the Norit system would be operating at a 

median pressure of 1 bar and a design flux (from pilot testing) of 65 L/m2/hour and a filter 

run time of 75 minutes. To meet this design flux, 6 percent standby capacity was 

incorporated for one train to be offline for backwashing and another potentially offline for 

cleaning purposes. Incorporating this standby capacity resulted in an average flux of 64 

L/m2/hour. From the average flux, backwash rate, backwash time, and frequency, a total of 
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50,505 m3/day (13.3 MGD) of water was estimated to be used for UF backwashing 

purposes alone (Table A3).  

Table A3 - Summary of engineering operational parameters for a 50 MGD SWRO with pressurized 
SWRO UF pretreatment systems (Villacorte et al. 2015b, Voutchkov 2013) 

Design Parameter Practical Value 
Average Flux (L/m2/hr) 64.2 

Total Membrane Area Required (m2) 245,760 
Number of Modules Required 6,435 
Number of Vessels Required 1,609 

Number of Trains 34 
Filter Run Time (min)1 75 

Ratio Backwash Rate: Filtration Rate 10 
Backwash Time (min) 1 
Backwash cycles/day 2 19 

Total Volume of Water Consumed during 
Backwash Operation (m3) 

50,505 

Pressure Loss (TMP) (bar) 1 
1Taken as median value presented in Voutchkov 2013 
2Calculated based on a 24-hour period 
 

The vacuum driven submerged UF system was based off a design using GE Zenon ZeeWeed 

1000 V-3 model and practical experience of a pilot testing of this product (Voutchkov 2013). The 

Zenon ZeeWeed product is a hollow fiber membrane system operating with outside in 

configuration. The operating pressure of this system, 0.4 bar, was assumed to be much lower than 

the standard operating pressure for comparison purposes with the pressurized membrane systems. 

Voutchkov (2010) stated that operating submerged vacuum systems during algal bloom periods at 

0.4 bars resulted in half of the run time of normal systems. If we assume that the run time of the 

submerged systems were identical to pressurized systems, then the run time of this system would 

be 37.5 minutes, increasing the backwash frequency to 38 times per day (Table A4). From a design 

flux of 40 L/m2/hr, a total of 7,148 membrane modules are required along with 149 cassettes (48 

modules per cassette) and 30 tanks (assuming each tank houses 5 cassettes). The resulting water 

usage for backwash processes is approximately double the usage of pressurized systems at 101,010 

m3/day (26.7 MGD) (Table A4). 



421 
 

Table A4 - Summary of engineering operational parameters for a 50 MGD SWRO with submerged 
SWRO UF pretreatment systems (Villacorte et al. 2015b, Voutchkov 2013) 

Design Parameter Practical Value 
Average Flux (L/m2/hr) 40 

Total Membrane Area Required (m2) 394,571 
Number of Modules Required 7,148 
Number of Cassettes Required 149 

Number of Tanks 30 
Filter Run Time (min)1 37.5 

Ratio Backwash Rate: Filtration Rate 10 
Backwash Time (min) 1 
Backwash cycles/day 2 38 

Total Volume of Water Consumed during 
Backwash Operation (m3) 

101,010 

Pressure Loss (TMP) (bar) 0.4 
1Taken as median value presented in Voutchkov 2013 
2Calculated based on a 24-hour period 
 

2. Identification of algal blooms and total toxic algal cell concentrations in the 
desalination intake 

Field data collected and posted to the Southern California Ocean Observing System 

(SCOOS, http://www.sccoos.org/) database were used to identify the pattern and intensity 

of algal blooms. Specifically, we compiled chlorophyll-a, dissolved domoic acid, as well as 

algal cell concentrations for the following algae: Akashiwo sanguinea, Alexandrium sp., 

Prorocentrum sp., Dinophysis sp., Lingulodinium polyedrum, Pseudo-nitzschia delicatissima 

size class and Pseudo-nitzschia seriata size class from a three-year period (2012-2015).  

The monitoring data for chlorophyll-a was first used as a surrogate for identifying algal 

blooms, where prolonged periods with chlorophyll-a levels > 12 µg/L (the mean across the 

3-year period) were identified as blooms. From this analysis, eight distinct bloom periods 

of varying duration were observed at the Santa Monica Pier (Figure A1). We have noted 

that even if the chlorophyll concentration is elevated, it does not directly imply an elevation 

of toxin producing algae in water. Nontoxic blooms have been known to frequent the region 
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and are generally associated with non-toxic species of the genus Prorocentrum 

(Prorocentrum micans) (Caron et al. 2010).  

To identify the toxic blooms, domoic acid weekly concentrations reported by SCOOS 

were analyzed over the same three-year period to assess the blooms that were dominated 

by Pseudo nitzschia sp. (Figure A1). Several large spikes of DA were observed in late spring 

and early summer months and corresponded with some algal bloom periods identified by 

chlorophyll (more notably Bloom 4). Generally, DA concentrations were observed to peak 

right at the onset of some bloom periods. Correlation between the bloom period and the 

presence of DA suggests that these bloom periods (1 and 4) were dominated by Pseudo 

nitzschia species. 

 
Figure A1. A) Chlorophyll and B) Domoic acid concentrations over a three-year period at the Santa 

Monica Pier (2012-2015) 
The marine algal species and concentration at the Santa Monica location was then 

compiled over the course of three years for each distinct bloom period (Figure A2). Figure 
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A2 portrays the average logarithmic cell concentration for each of eight respective bloom 

periods. 

 
Figure A2.  Average cell concentration for all monitored algal species during eight identified algal 
blooms at the Santa Monica Pier between 2012 and 2015. The timing of the eight algal blooms is 

indicated in Figure A1. 
 

Of the different algal species reported, only some species of Alexandrium (producer 

of Saxitoxin, STX), Dinophysis (producer of Okadaic acid, OA), Lingolidinium polyedrum 

(producer of Yessotoxin, YTX), and Pseudo-nitzschia (producer of domoic acid, DA) are 

known to produce toxins (Lewitus et al. 2012). Therefore, only those toxic species and their 

associated toxins DA, STX, OA, and YTX were included in the pMFA. The toxic effects of each 

toxin are presented below and their health effects are summarized in Table A5. 

DA is an amino acid derivative of the kainoid class of compounds that is associated 

with amnesic shellfish poisoning (ASP) (Caron et al. 2010). The most common route of 

human exposure to DA is through ingestion of contaminated shellfish. The acute health 

effects include short term memory loss, gastroenteritis (vomiting, stomach pains, cramps), 

and neurological symptoms such as confusion, disorientation, seizures, and in some cases, 

death (Zabaglo et al. 2016). ASP is also a serious threat to marine wildlife as there have 
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been reports of more than one thousand deaths and/or intoxication episodes of marine 

mammals or sea birds, especially off the coast of California (Lefebvre et al. 1999, Lewitus et 

al. 2012).  

STX is one of the most powerful toxins comprising most marine algal blooms and 

possibly one of the most toxic poisons on earth other than some select venoms and 

bacterial toxins (Anderson 2012). STX is classified in the group of paralytic shellfish 

poisons (PSPs) in that consumption (either through food or drinking contaminated water) 

can lead to severe, acute health effects such as gastro-intestinal symptoms, paralysis, and in 

the worst cases, death (Caron et al. 2010, Amade et al. 2014). These toxins have also been 

associated with marine wildlife mortalities, affecting species of fish, marine mammal, and 

seabird populations (Shumway et al. 2003, Lefebvre et al. 2004, Lefebvre et al. 2008). 

However, no unusual animal mortality has been recorded from STX off the California coast 

(Jester et al. 2009b).  

OA is classified as a diarrhetic shellfish poison (DSP) due to the acute symptoms it 

causes in humans including gastrointestinal inflammation, abdominal pain, and diarrhea 

(Hallegraeff et al. 2003). OA has also been observed to be tumor forming, although there is 

no specification of whether OA is cancerous to humans as no chronic health effects have 

been studied or reported in the published literature (Dominguez et al. 2010, Valdiglesias et 

al. 2013). There have been no documented cases of DSP poisoning from OA on the West 

Coast, but analysis of shellfish tissue from established monitoring programs has indicated 

the presence of OA in shellfish found throughout the region (Caron et al. 2010).  

YTX has been commonly classified as a DSP since it was observed in the natural 

environment with other DSP toxins, but some studies have shown that it does not produce 
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these gastrointestinal effects in the human body (Paz et al. 2004, Paz et al. 2008). In fact, 

the human health effects of YTX, both acute and chronic, are not yet fully understood 

(Tubaro et al. 2010). Other studies have suggested that YTX is a potent cardiotoxin, while 

others have shown that YTX targets the lysosomes, immunes system, and the thymus of the 

human body (Aune et al. 2002, Malagoli et al. 2006). 

Table A5 - Summary of Human Health Effects of Various Algal Toxins Endemic to Southern California1  
Toxin Classification Exposure Route Acute Symptoms 

Domoic 
Acid 

Amnesiac Shellfish 
Poison (ASP) 

Contaminated 
Shellfish/Fish, Recreation, 
Desalinated Drinking Water 

Gastroenteritis (vomiting, stomach 
pains, cramps), memory loss, confusion, 
disorientation, seizures, and death 

Saxitoxin 
Paralytic Shellfish 
Poison (PSP) 

Contaminated 
Shellfish/Fish, Recreation, 
Desalinated Drinking Water 

Gastrointestinal symptoms, paralysis, 
death 

Okadaic 
Acid 

Diarrhetic Shellfish 
Poison (DSP) 

Contaminated 
Shellfish/Fish, Recreation, 
Desalinated Drinking Water 

Gastrointestinal inflammation, 
abdominal pain, and diarrhea 
(potentially carcinogenic) 

Yessotoxin 
Diarrhetic Shellfish 
Poison (DSP)2 

Contaminated 
Shellfish/Fish, Recreation 
Desalinated Drinking Water 

Not fully understood (studies report 
gastrointestinal symptoms and 
cardiotoxicity) 

1Information is summarized from following references: Caron et al. 2010, Zabaglo et al. 2016, 
Anderson 2012, Amade et al. 2014, Hallegraeff et al. 2003, Dominguez et al. 2010, Valdiglesias et al. 
2013, Tubaro et al. 2010, Aune et al. 2002, Malagoli et al. 2006  
2Some studies report that Yessotoxin is not toxic to humans Paz et al. 2004, Paz et al. 2008 

Cell concentration data as summarized in Figure A2 was used to derive a probability 

distribution as input to the pMFA. The visual inspection of the histograms of the cell 

concentrations (Figure A3) indicated that the cell distributions appeared to be 

nonparametric and not suitable to fit to any parametric statistical distribution (i.e., normal, 

gamma, beta, etc.). In addition, the number of observations for each species was relatively 

low over the three-year period, given that only bloom conditions were considered, further 

hindering the use of parametric probability distributions. Therefore, a nonparametric 

estimate of the empirical cumulative probability distribution (ECDF) was applied in this 

study. 
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Figure A3. Histograms of the cell distributions of each algal species over a three-year period. 

 

Nonparametric estimates of the CDF were achieved by linearly interpolating the 

stair step function of the ECDF through the breakpoints located at the midpoints of each 

characteristic jump (Figure A4). The ECDF was then inverted to obtain a plot of the ECDF 

output probability (x-axis) plotted against the logarithm of the cell concentration (y-axis). 

Thus, a uniform random number generator was used to select a number between 0 and 1, 

which was then applied in the inverse ECDF to randomly select a cell concentration, taking 

the full probability of the observations into account. As observed in Figure A4, algal species 

with fewer observations have a steeper inverse ECDF as compared to algal species with a 

larger amount of observations and the probability distribution is much narrower. 
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Figure A4. Inverse CDF Plots for all algal species. The red line is the stair step function of the ECDF, 

whereas the blue line is the piece wise linear interpolation of the ECDF. 
 

3. Estimation of dissolved marine toxin removal  

3.1 Physical and chemical properties of algal toxins 

Information on dissolved marine algal toxin removal through water treatment 

processes is sparse in comparison with the removal of algal cells containing the 

intracellular toxins for most conventional process (Villacorte et al. 2015b). To understand 

the removal efficiency of these toxins, the properties of marine toxins were compared with 

the cyanotoxin microcystin-LR (MC-LR), a well-studied algal toxin present during most 
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cyanobacterial harmful algal blooms (confined to fresh and some brackish waters). Figure 

A5 shows the molecular structure of the four marine toxins together with MC-LR.  

DA consists of a tricarboxylic amino acid parent group (three carboxyl groups) with 

one secondary amino group (Figure A5-A).  All four groups are charged at neutral pH 

(Figure A5-A). The secondary amino group is generally positively charged, whereas the 

carboxylic acid groups contribute to a net negative charge of the compound. Protonation as 

the pH increases yields five different protonated isomers of DA including isodomoic acid A-

H and the domoic acid 5’-distereomer (Jeffery et al. 2004).  

STX consists of a tricyclic core that is very rigid and stable in most environmental 

solutions, similar to the hepatotoxins common to the Microcystis genus (Figure A5-B). Two 

amino groups exist at either side of the cyclic structure, which impart a net positive charge 

at neutral pH of 7.7 (Shimizu et al. 1981).  

YTX is rather complex but consists of a series of cyclic polyether structures (11) that 

compose a ladder-like formation. YTX molecules are disulfated at one end of the structure, 

which counteracts the lipophilic nature of the ether structure, lending to an amphoteric 

behavior (Paz et al. 2008) (Figure A5-C).  

OA consists of a monocarboxylic group attached to a linear chain of polyether 

structure (hence it is a monocarboxylic acid, Figure A5-D).  OA can be observed in natural 

water samples in a polar and non-polar (esteric) form. At neutral pH, one can expect OA to 

be relatively water soluble due to the presence of a carboxylic acid (anionic charge) 

(Prassopoulou et al. 2009).  

MC-LR is a monocyclic heptapeptide in that it consists of seven amino acids in a 

ring-like structure, which impart a large stability in most environmental conditions 
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(Bourne et al. 2006). MC-LR is a structural variant of the group of MC toxins, which has a 

leucine (L) and arginine (R) amino acid in the second and fourth amino acid position of the 

ring structure (Figure A5-E). Two ionizable carboxylic acid groups on D-glutamate and D-

erthyro-β-methylaspartic acid as well as one ionizable amino on the arginine group 

contribute to MC-LR’s high water solubility (Teixeira and Rosa 2005). In addition, the 

ADDA group attached to MC-LR’s ring structure is relatively hydrophobic, which 

contributes to an appreciable solubility in organic solvents. 

 
Figure A5. Molecular structure of the common marine toxins a) Domoic acid, b) Saxitoxin, c) 

Yessotoxin, d) Okadaic acid, and e) Microcystin-LR 
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The comparison of molecular structures provided insights to the physical and 

chemical properties of each marine toxin in terms of the water solubility and adsorption 

characteristics. Information summarized in Table A6 revealed that all toxins are chemically 

stable and heat resistant at operational pH (7-9). MC-LR, STX, and DA are considered 

hydrophilic compounds, whereas OA and YTX are lipophilic. All of the compounds are 

polar, to varying degrees. The majority of the compounds possess net negative charges 

(MC-LR, DA, OA, YTX), which vary in strength due to the presence, protonation, and de-

protonation of certain functional groups (i.e., amino, carboxylic acid, etc.) as a function of 

pH and ionic strength (i.e., presence of sodium and chloride ions) of the water, as discussed 

in the previous section. Only the STX toxins are net positively charged at operating pH, due 

to the presence of two amino functional groups. 

To quantitatively assess both the water solubility and potential sorption 

characteristics of the marine toxins, the partition coefficient (LogKOw) and distribution 

coefficients (LogDOw) were compared to that of MC-LR (Table A6). In general, the LogDOw 

is more predictive than the LogKOw because it depends on the pH of the solution and 

considers the ionization potential of compounds in solution (Wells 2006). Species with 

LogDOw values < 1 are considered strongly lipophilic and are more likely dissolved in non-

polar solvents, absorbed in fatty tissues, or adsorbed onto organic matter present on soils 

(Wells and Yu 2000, Wells et al. 2006). A majority of the distribution coefficients presented 

in Table A6 were experimentally determined. As compared to predictions based on the 

molecular structure, a greater confidence was vested in the experimentally derived values 

(Fux 2008). The distribution coefficients also were presented for a pH range of 7-8.5 for all 

studies, which was similar to that expected during operation of a SWRO facility. Based on 
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the trends in the LogDOw, the water solubility for the toxins from highest water solubility 

to lowest water solubility was summarized as follows: STX> DA>MC-LR>OA>YTX. Although 

YTX appeared to be more polar than OA (based on chemical structure alone), experimental 

results suggested otherwise (Fux 2008).  

The more water-soluble compounds are expected to be removed sparingly from 

conventional treatment processes such as conventional coagulation, flocculation (C/F), and 

GMF (Drikas et al. 2001). This is due to the fact that the predominant negative charge of 

these molecules resists charge neutralization of traditional coagulants. Further, the small 

molecular size of dissolved toxins may hinder the formation or adherence to flocs of 

appreciable density to be removed by gravitational settling, especially at the low hydraulic 

retention times used in conventional practice. Moreover, the presence of natural organic 

matter (NOM) or algal organic matter will most likely consume most of the coagulant 

dosage, especially at practical operational doses (Ghernaout et al. 2010). Studies have 

shown that even at large coagulant additions to promote sweep flocculation, complete 

removal of the dissolved fraction of MC-LR was not achieved (Ghernaout et al. 2010). Thus, 

since large doses of coagulants (to promote sweep flocculation) are not practical from an 

operational and economical viewpoint, we can expect the removal of most marine toxins to 

be relatively small from conventional C/F processes alone. STX may prove to be an 

exception to this inference during certain conditions of C/F. For example, alkaline 

conditions and the presence of oxygen may favor the transformation of STX into less toxic 

components, and may, to some extent, be removed by conventional C/F processes (Amade 

et al. 2014).  
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The partition between octanol and water for MC-LR has been studied as a function 

of pH and is a significant factor controlling the fate and transport in soil (conventional 

GMF) and near surfaces/boundary layers of membranes (MF/UF) (de Maagd et al. 1999, 

Liu et al. 2008). The soil in most conventional granular media filtration systems will 

contain an appreciable amount of organic material and biomass on the surface that cannot 

be removed by backwashing, especially near the top layers of the filter media (Emelko et al. 

2006). Similarly, MF/UF practices create a cake layer due to compression of and breakage 

of algal cells as a result of high transmembrane pressures (Babel and Takizawa 2010, 

Castaing et al. 2011). When assuming the LogDOw as the main factor for sorption behavior 

on soils and/or hydrophobic membranes, then an approximate trend in the adsorption 

potential to soil (GMF) or hydrophobic membranes from highest to lowest can be 

summarized as follows: YTX>OA>MC-LR>DA> STX. 

Table A6 - Summary of Physico-Chemical Properties of Marine Algal Toxins 

Toxin 
MW a 

(g/mol) 

Water 
Solubility 

Other Observations 

Charge @ 
Operat. 
pH, Net 
Chargeb 

B. P. 
(ºC)c 

pKa LogKOw LogDOw 
Kd/Kf 
(L/g) 

STX 299 Soluble 
High oxidative degradation 
potential, unstable under 

alkaline pH 
Polar, + 693 

8.22, 
11.281 

-4.532 -5.4922 
6.9 

E-073 

DA 311.3 Soluble 
Crystalline, acidic at 

neutral pH 
Polar, - 321 

2.1,3.72, 
4.93,9.824 

-2.434 -2.394 2.635 

MC-
LR 

995.17 Soluble 
Cyclic structure, extremely 

stable 
Polar, - N/A 

2.09, 2.19, 
12.486 

0.2486 -1.556 0.01167 

OA 805 
Slightly 
soluble 

Lipophilic, potential to 
bioaccumulate 

Polar, 
slight - 

921.6 4.98 1.648 0.0368 N/A 

YTX 1187.3 
Slightly 
soluble 

Lipophilic, potential to 
bioaccumulate 

Polar, 
slight - 

N/A 6.98 4.578 3.268 N/A 

a,cAdapted from Boerlage and Nada 2015 

bOperational pH for seawater was assumed to range between 7 and 8.5, charge of dominant ionized 
species  
1Experimentally determined by Rogers and Rapoport 1980 

2Predicted by ACD/Labs from Molecular Structure, pH 7.4 
3Experimentally determined by Burns et al. 2009, Santa Barbara sediments, saltwater 

4Experimentally determined by Falk et al. 1991 
5Experimentally determined by Burns and Ferry 2007, Santa Barbara sediments, saltwater 
6Experimentally determined by de Maagd et al. 1999, extrapolated values at pH 8.46 
7Experimentally determined by Grützmacher et al. 2010 for slow sand filter material, freshwater 
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8Experimentally determined by Fux 2008, extrapolated values at pH 8.81 
N/A Not available in the literature 

3.2 Removal Coefficient for MC-LR as a Reference  

To set the reference removal coefficient, we determined the removal ranges of 

dissolved MC-LR from the literature for both GMF and MF/UF processes (Figure A6). Data 

mining results showed that MC-LR removal efficiencies varied over a wide range but were 

lower for GMF as compared to MF/UF processes. Since the reports did not clearly separate 

the processes with or without coagulation pretreatment, we assumed that the lower 

interquartile range corresponded to removal efficiencies without coagulation; and the 

upper interquartile ranges represent processes with coagulation (Figure A6). This 

assumption was justified by experimental reports on improvement of dissolved toxin 

removal with coagulation (Ghernaout et al. 2010, Meyerhofer et al. 2010, Campinas and 

Rosa 2010, Dixon et al. 2011). 

 
Figure A6. Summary of reported removal efficiencies of dissolved MCLR (Dixon et al. 2011, Lee and 

Walker 2006, Lee and Walker 2008, Hoeger et al. 2004, Hoeger et al. 2005, Schmidt et al. 2002, 
Schmidt et al. 2009, Jurczak et al. 2005, Drikas et al. 2001, Gijsbertsen-Abrahamse et al. 2006, Zhang et 

al. 2011a) 

W/COAG 

No COAG 

W/COAG 

No COAG 
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3.3 Dissolved Toxin Removal Coefficients by GMF Systems 

 The ranges in each dissolved marine algal toxin removal were developed from the 

relative similarity or differences in physical chemical properties to MC-LR and the expected 

removal mechanisms within the treatment system. Two main mechanisms: electrostatic 

interactions (chemical adsorption) and phase partitioning of the toxin (based on logDOw), 

contribute to the removal of dissolved toxins during GMF. We assumed that the physical 

mechanisms of retention, such as straining, interception, or impaction did not apply as the 

dissolved toxins have a very small molecular weight. Similarly, diffusive or dispersive 

processes were neglected due to the high operational interstitial velocities employed by 

most pretreatment filtration processes.  

Electrostatic interactions may occur between the charged functional groups of each 

toxin at operational pH (7.7-8) and the media surface. In most cases, the filter media will 

have organic matter previously attached to the surface and not completely removed by 

backwashing processes (Emelko et al. 2006).  This organic matter consists of weak organic 

acids that become deprotonated within the operational pH range and contribute to a net 

negative charge. Therefore, toxins with a net positive charge, such as STX, may chemically 

sorb to the media surface, whereas other toxins that are net negatively charged may 

become repelled. Other factors such as the strength of the net charge of functional groups 

may affect the sorption potential. Taking these factors into account, the relative ranking in 

potential removal by electrostatic interactions is as follows: STX>DA>MC-LR>YTX>OA.  

The above trend is confirmed by experimental studies that have reported the 

adsorption coefficients for the toxins of interest onto natural beach sediments or quartz 
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sands (Burns and Ferry 2007, Burns et al. 2009, Grützmacher et al. 2010).  A low relative 

adsorption potential of MC-LR was observed in both batch and column engineering 

filtration studies in the laboratory (Grützmacher et al. 2002, Grützmacher et al. 2010). 

However, STX demonstrated a much higher adsorption potential than both DA and MC-LR 

onto natural beach sediments (in artificial seawater, neutral pH), due to the increased 

electrostatic interactions between positively charged functional groups and either the 

sediments surface (negative charge) or the organic matter present on the surface (negative 

charge) (Figure A7) (Burns and Ferry 2007, Burns et al. 2009).   

 
Figure A7. Adsorption isotherms for different algal toxins onto natural sediments (graph is based on 

data reported in Burns and Ferry 2007 and Burns et al. 2009) 

 

Regarding phase partitioning, the relative ranking from most hydrophobic to most 

hydrophilic was determined as: YTX>OA>MC-LR>DA> STX. This ranking does not reflect 

electrostatic interactions, which may potentially outweigh the potential for phase 

partitioning. Longer chain, lipophilic toxins such as YTX and OA would be more affected by 

phase partitioning removal mechanisms, while the smaller and hydrophilic toxins, DA and 
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STX, would depend much more on electrostatic interactions (chemical adsorption) 

between the organic matter present in GMF systems and the charged functional groups. 

Therefore, the ultimate removal in GMF systems, weighted by physical chemical properties 

of the toxins and proposed mechanisms of removal, is as follows: STX>YTX>OA>MC-

LR>DA. STX exhibits the highest removal due to the relatively strong, net positive charge, 

whereas YTX and OA are likely to partition to organic matter on the filter media due to the 

high distribution coefficients at operational pH. DA is most likely repelled by the net 

negative charge of the organic matter, and due to its small molecular weight is the toxin 

rejected the most by GMF systems.   

The final dissolved marine toxin removal ranges in GMF processes follow the trend 

postulated above and in reference to MC-LR is shown in Table A7. As evidenced in the table, 

the lower and upper limit of the ranges in dissolved MC-LR removal were adjusted by an 

increment of 2% based on the trend in removal predicted.  A value of 2% was chosen as an 

increment as a conservative estimate of the change in the expected removal efficiency. 

Coagulation based processes have the potential to remove a greater extent of dissolved 

toxins and were given the highest range in removals for all treatment processes. Both 

pressurized and conventional GMF processes without coagulant addition had relatively 

similar ranges in dissolved toxin removal, although pressurized systems were slightly 

higher than conventional systems (Table A7). 

 

 

 

 



437 
 

Table A7. Summary of removal efficiencies for dissolved marine toxins in GMF treatment systems 

Treatment Process 
MC-LR 
(%) 

DA 
(%) 

OA 
(%) 

YTX 
(%) 

STX 
(%) 

No Coag 0.9-28 0-27.1 2.9-30 4.9-32 6.9-34 

Pressurized, No Coag 8.6-34 6.6-32 10.6-36 12.6-38 14.6-40 

W/Coag 28-44 26-42 30-46 32-48 34-50 

 

3.4 Dissolved Toxin Removal Coefficients by MF/UF Systems 

The main mechanisms for dissolved solutes removal during membrane filtration 

processes include size exclusion, electrostatic interactions, phase partitioning, and 

diffusion (Lee and Walker 2008). Although the major rejection mechanism of most 

dissolved solutes is through physical sieving or size exclusion alone, the molecular weight 

cutoff (MWCO) of all MF or UF membranes (0.1 to 0.02 µm) is considerably larger than the 

molecular weight of all marine algal toxins. Therefore, size exclusion should be ruled out as 

a major removal mechanism.  

During algal blooms, the accumulation of organic matter at the MF/UF membrane 

surface is inevitable due to the transmembrane pressures employed and associated cell 

breakage (Voutchkov 2010). The relative thickness and development of this organic fouling 

layer depends on the membrane surface properties such as hydrophobicity, roughness, and 

charge (Lee and Walker 2008). Thus, similar to the GMF process, the same two main 

mechanisms: electrostatic interactions and phase partitioning, are responsible for 

dissolved marine toxin removal in MF/UF. An equivalent trend in removal proposed for 

GMF systems is also applied to MF/UF systems: STX>YTX>OA>MCLR>DA.  

To be consistent with GMF systems, an increment of 2% was added or subtracted 

from the higher and lower boundaries of each range from the reference toxin MC-LR 
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removal range (Table A8). In general, MF/UF processes with coagulation were observed to 

have a much higher removal of extracellular toxins than processes without coagulation 

(Table A8). In this study, dissolved toxin removals were assumed to be comparable for 

MF/UF configurations (i.e., pressurized vs. submerged). 

 
Table A8 - Summary of removal efficiencies for dissolved marine toxins in MF/UF treatment systems 

Treatment 
Process 

MC-LR 
(%) 

DA  
(%) 

OA 
 (%) 

YTX  
(%) 

STX  
(%) 

No Coag 2.3-26.7 0.3-24.7 4.3-28.7 6.3-30.7 8.3-32.7 

W/Coag 26.7-70.7 24.7-68.7 28.7-72.7 30.7-74.7 32.7-76.7 

 

3.5 Dissolved Toxin Removal Coefficients by RO Systems  

Pore size exclusion was identified as the primary removal mechanism of RO 

membranes for most molecular compounds, although the relative hydrophobicity and 

membrane material may influence the formation of boundary layers/concentration 

polarization and biological fouling (Voutchkov 2013). The size exclusion range of most RO 

membranes is 0.6 to 0.7 nm and the molecular weight cutoff is generally 100-300 Daltons 

(Sasaki et al. 2013). Similar to MF/UF membranes, RO membranes can be either negatively 

charged (hydrophilic) or positively charged (hydrophobic).  

Complete removal of YTX (1000 Da) and OA (>800 Da) are expected based on the 

RO size exclusion mechanism alone (Boerlage and Nada 2015). These theoretical 

predictions were confirmed in a variety of laboratory and pilot scale studies, assessing the 

removal efficiency of OA in the feed and permeate water (Laycock et al. 2012, Seubert et al. 

2012) (Table A9). However, removal of YTX by RO membranes, to the best of our 

knowledge, has not been presented in the published literature. 
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Prediction of RO rejection for the smaller toxins, STX and DA (~300 Da), is much 

more complex and depends on several factors such as the condition of the membrane 

surface, as well as the ionic strength, and pH of the feed water (Boerlage and Nada 2015).  

Increased biological or organic membrane fouling may lead to increased DA rejection due 

to formation of chemical bounds with the carboxylic acid group on DA. Physical adsorption 

of STX may occur due to the hydrophilic properties of the membrane (negative charge), 

leading to increased rejection. Despite these complications in prediction ability during RO 

removal of the smaller toxins, laboratory and pilot scale studies have indicated that the 

removal of STX and DA ranges between 99.4->99.9 and 99.0 to >99.9 % removal for each 

toxin, respectively (Table A9). 

Table A9 - Summary of RO rejection of dissolved marine toxins 

 Scale 
Dissolved % Toxin Removal 

Reference 
STX PbTX DA OA YTX 

 Lab 99.4 99.9 99.0 99.7 N/A [50] 

 
Lab >99.9 >99.9 >99.9 >99.9 N/A 

[51] 
Pilot1 >99.9 >99.9 >99.9 >99.9 N/A 

 
Pilot1 >99.9 

[42] 
Pilot2 99.8 

N/A = Not reported, 1Proceeding UF treatment, 2Proceeding slow sand filter treatment 

 

3.6 Ranges in Algal Cell Breakage  

The percentage of cells that break during each pretreatment were estimated based 

on Voutchkov (2010), in which 0.4 bars was used as a pressure threshold of significant cell 

breakage. The transmembrane pressure (TMP, rather than shear) of each pretreatment 

process at general operational conditions was used to relate the percentage of cell 

breakage with pressure. With general assumptions of TMP >0.4 bar for pressurized MF/UF 

and GMF, 0.4 bar for submerged MF/UF and <<0.4 bar for conventional GMF processes, cell 
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breakage was estimated to range between 75-100%, 25-50% and 0-25%, respectively. 

Coagulation based processes were assumed to decrease the impact of cell breakage for 

each treatment process. 

4. Derivation of Acute Reference Doses for Algal Toxins in Drinking Water 

The acute RfDs for STX, DA, and OA were derived from LOAELs of human exposure 

events, whereas acute RfDs for YTX were established from NOAELs of animal testing (Table 

A10).  The uncertainty factors (UF1) of 3 as used by Paredes and co-workers (2011) were 

applied to extrapolate the LOAEL to NOAEL for STX, DA, and OA toxins (Table A10). To be 

conservative, an additional uncertainty factor for intra-species variation (UF2) of 3 was 

used for both STX and OA. The UF2 of 10 was applied to DA; and 3 and 100 (was used for 

YTX for extrapolation from animal to human data (Paredes et al. 2011). In all the RfD 

calculations, a body weight of 70 kg, instead of 60 kg, was used, which is more concurrent 

with US EPAs quantitative chemical risk assessment framework (Fowle and Dearfield 

2000). 

Table A10 - Summary of values and benchmarks used in risk assessments 
Toxin LOAEL 

(µg/kg) 
UF1 NOAEL 

(µg/kg) 
UF2 Acute RfD 

(µg/kg/d) 
Acceptable 

Level (µg/L) 
STX 1.71 3 0.571 3 0.19 3.32 
DA 900 3 300 10 30 525 
OA 0.714 3 0.238 3 0.08 1.4 

YTX - - 5000 3 &100 16.7 292 
 

 

 

 

 

 



441 
 

II. Supplementary Results 

5. Algal Toxin Concentrations in Difference Sources 

5.1 Inlet Toxin Concentration Distributions 

The inlet toxin concentration distributions (TCDs) entering the SWRO pretreatment 

systems varied dramatically by toxin type (Figure A8, STX, DA, OA, YTX). For all 

pretreatment train scenarios, DA and YTX concentration distributions were much higher 

(with a mean of 200 and 75 µg/L) than the STX and OA concentration distributions (with a 

mean of 0.5 and 3 µg/L) (Figure A8). The variability of the influent distributions of DA and 

YTX, with standard deviation of 11 and 9 µg/L, was also much higher than the influent 

distributions of STX and OA, with standard deviations of 0.061 and 0.3 µg/L, respectively. 

 
Figure A8. Influent toxin concentration distributions for a singular pretreatment train (GMF alone) 
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5.2 Toxin Concentration Factors in Backwash and Brine Reject 

Relative mean toxin concentration factors were calculated by normalizing the model 

output concentration in the backwash/brine water by the inlet toxin concentrations and 

compared among pretreatment train configurations (Figure A9).  The calculated toxin 

concentration factors for both backwash and RO rejects ranged from 2 to 10 times the inlet 

toxin concentrations for all pretreatment train scenarios (Figure A9). STX toxins 

demonstrated the largest magnitude in concentration factors among all toxin types in this 

study. Pressurized GMF processes generally produced the higher range in observed toxin 

concentration factors, whereas processes without coagulation resulted in much lower 

concentration factors. 

 
Figure A9. Mean toxin concentration factors for various algal toxins as a function of pretreatment 
configuration. T1-T10 refer to the same ten treatment train configurations evaluated in the pMFA. 
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5.3 Toxicity Fraction: Backwash Water vs. RO Reject 

The contribution of either the backwash or brine waters to the overall toxicity of the 

pretreatment system waste streams was assessed for all pretreatment processes (Figure 

A10). For all toxin types, the backwash water was observed to contribute the most to the 

overall toxicity of the concentrated waste stream, which varied from 50 to 85% of the total 

toxicity. However, treatment processes without coagulation had a much higher 

contribution from the RO concentrate to the overall toxicity as compared to the backwash 

waters. The magnitude of the contribution to overall toxicity from backwash waters 

originating from processes without coagulation were much higher for DA toxins than STX, 

OA, and YTX alike (ranging from 55 to 80% of the total toxicity). 

 
Figure A10. Relative fraction of toxicity of Backwash water and RO Concentrate for various algal 

toxins. T1-T10 refer to the same ten treatment train configurations evaluated in the pMFA. 
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6. Summary of p-values from ANOVA Testing 

The p-values generated from the Tukey post hoc analysis comparing individual 

treatment trains (T1-T10) using the toxin concentration distributions of the permeate and 

backwash/brine reject waters are tabulated in Table A15. The results are organized 

according to toxin type (i.e., STX, DA, OA, YTX), toxin concentration distribution (permeate 

or brine/backwash waters) and treatment train comparison (i.e., T1 vs. T2). The grey 

shading indicates comparisons that were not statistically significant (p value < 0.05), while 

the remaining (no-shading) cells represent statistically significant comparisons. In 

addition, box and whisker plots summarizing the p-value results of the grouped 

comparisons (i.e., No Coag. Vs. Coag.) for backwash/brine reject waters are presented in 

Figure A11. 

 
Figure A11. Box and whisker plots of p-values summarizing the Tukey post hoc comparison tests for 

the backwash/brine reject waters of each toxin (i.e., STX, DA, OA, YTX). The black dashed lines 
illustrate the significance level (0.05), while the red lines and black diamonds indicate the median and 

mean of p-values for each group, respectively. Circles represent outlying p-values from each 
comparison group. 
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Table A11. Tabulated p-values for the Tukey post hoc comparisons of T1-T10 treatment trains using 
permeate and backwash/brine water toxin concentration distributions. Grey shading indicates non-

significant (p-value < 0.05) comparisons. 

 
Permeate Water Backwash/Brine Water 

STX DA OA YTX STX DA OA YTX 

Overall 0 0 0 0 0 0 0 0 

T1 vs. T2 0.676 0.509 1 0.993 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T1 vs. T3 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.82E-06 1.27E-07 1.27E-07 

T1 vs. T4 0.999 0.999 0.999 1 0.00388 0.611 0.682 0.999 

T1 vs. T5 0.456 0.0928 1 1 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T1 vs. T6 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T1 vs. T7 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T1 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T1 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T1 vs. 
T10 

1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T2 vs. T3 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T2 vs. T4 0.178 0.771 1 0.998 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T2 vs. T5 1 0.998 1 1 0.0016 2.81E-05 0.992 1 

T2 vs. T6 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T2 vs. T7 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T2 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T2 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 0.996 1.60E-04 

T2 vs. 
T10 

1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T3 vs. T4 1.27E-07 1.27E-07 1.27E-07 1.27E-07 0.065 0.016 1.27E-07 1.27E-07 

T3 vs. T5 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T3 vs. T6 1 1 1 0.928 1.27E-07 1.27E-07 1 0.913 

T3 vs. T7 1.27E-07 1 1 1 1.27E-07 1 1 1 

T3 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T3 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T3 vs. 
T10 

1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T4 vs. T5 0.0808 0.235 1 1 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T4 vs. T6 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T4 vs. T7 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 0.016 1.27E-07 1.27E-07 

T4 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T4 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T4 vs. 
T10 

1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T5 vs. T6 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T5 vs. T7 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T5 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T5 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 2.02E-07 1.27E-07 0.654 0.0018 

T5 vs. 
T10 

1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T6 vs. T7 1.27E-07 1 1 0.928 1.27E-07 1.27E-07 1 0.913 
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T6 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T6 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T6 vs. 
T10 

1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T7 vs. T8 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T7 vs. T9 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T7 vs. 
T10 

1.30E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T8 vs. T9 1.55E-03 1.30E-07 0.994 1 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T8 vs. 
T10 

0.912 0.030 1 0.987 1.27E-07 1.27E-07 1.27E-07 1.27E-07 

T9 vs. 
T10 

1.26E-06 0.0501 0.999 0.967 1.27E-07 1.27E-07 1.27E-07 1.27E-07 
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Appendix B: The Effect of Organic Carbon Addition on the Community 
Structure and Kinetics of Microcystin-Degrading Bacterial Consortia -  
Supplementary Materials 
 

I. Supplementary Results and Methods 

1. ELISA and UPLC-MS/MS Results 

Figures B1 and B2 depict typical calibration curves used in both the ADDA-ELISA 

analysis and UPLC-MS/MS confirmations of microcystin (MC) concentration. Excellent 

agreement was observed between the standard concentrations and the response of either 

measurement technique for all replicate experiments (r2 approaching 1). These results 

ensured that each measurement of MC concentration was reproducible and subject to low 

variability.  

 

Figure B1. Sample calibration curve for ELISA tests for determination of MC concentration 
in batch degradation experiments. The correlation coefficient in this case was 0.99137, 

indicating good agreement between measured and standard concentrations. 
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Figure B2. Sample calibration curve for UPLC-MS/MS tests for comparison against ELISA 
tests. The correlation coefficient in this was 0.9997, indicating very good agreement between 

measured and standard concentrations. 

2. Flow Cytometry Results 
 
 For consortia cultured without the presence of ethanol, optical density was not 

sensitive enough to detect changes in the concentration of MC-degrading bacterial cells. 

Therefore, flow cytometry was used to qualify the changes in cell counts during additional 

batch biodegradation experiments or each consortium in the presence of MC-LR. In brief, a 

Novocyte Flow cytometer (ABEA Biosciences) equipped with a single 488 nm excitation 

laser was used for bacterial cell detection. The cells were diluted, fixed, and stained with 

fluorescent SYBR Gold dye following a similar procedure presented by Huang et al. (2016). 

Based on the SYBR Gold fluorescent properties, the forward scatter (FSC-H), side scatter 

(SSC-H), and main fluorescence intensity (FITC-H) channels were monitored during 

measurement. Flow cytometer settings were set to the following for each run: slow flow 

rate, 35 µL of sample injection, and FSC-H/FITC-H cutoffs at 150 and 500. respectively. 

These cutoffs were empirically determined to properly separate the bacterial signal from 

the smaller virus or debris particle signal.  
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Figure B3 illustrates the results of the 11B consortia degrading MC-LR at an initial 

concentration of 100 µg/L after three replicate experiments.  Other consortia (i.e., 10B and 

LSB) shared similar cell growth behavior of the 11B consortium (data not shown). MC-LR 

was rapidly degraded by 11B consortium 2-4 days after the initial inoculation. Cell growth 

was highly variable for this consortium after 27, 66, and 98 hours (1, 3, and 4 days) of the 

duration of the experiment. However, there was relatively low variability in measured MC 

concentrations throughout the course of the experiment, indicating that MC metabolism 

was similar across each replicate experiment. Differences in cell growth may be attributed 

to a wide range in factors, including the composition of the initial inoculum. Although the 

initial cell counts were relatively equivalent across replicates (as intended), it was difficult 

to control, for example, the ratio of the initial number of MC degrading organisms to non-

degrading organisms, which may have substantially influenced the cell growth profiles. 

Overall, the flow cytometry data was useful as it indicated that cell growth was occurring in 

each consortium using MC as the sole carbon and energy source and that the initial 

bacterial cell concentrations were relatively uniform across each experimental replicate.  
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Figure B3. MC-LR batch biodegradation experiment for the 11B consortia cultured without 
ethanol. Both the A) concentration of MC-LR (blue) measured using ELISA and B) cell counts 

(red) measured by flow cytometry are reported. Solid lines indicate the mean of three 
individual replicates, whereas grey shading indicates one standard deviation of the 

replicated measurements. The y-axis for cell count concentration is plotted on a log (base 
10)-scale. 

3. MC-LR Abiotic Degradation Experiments 

Control experiments (MC-LR without added consortia or ethanol) were run in 

triplicate to assess the effect of abiotic degradation potentially taking place during the batch 

biodegradation experiments (Figure B4). Experimental conditions for these experiments 

were kept identical to those described for batch biodegradation; however, monitoring was 

only performed for 4-days (shaken, room temperature, same volume and sterile tissue flasks 

used, 200 µg/L MC-LR initial concentration). As observed in Figure B4, there was a slight 

decline in MC-LR during experimentation, with some variation observed across replicates. 

The decline in MC concentrations may be attributed to sorption to the tissue flask rather than 



451 
 

abiotic degradation as the experiments were performed in the dark and under room 

temperature (ruling out photo or thermal degradation) and the stability of MC is very high 

compared to other chemicals or toxicants.  

 

Figure B4. Concentration of MC-LR as observed during the batch control experiments. 

4. Derivation of the Bi-Phasic Kinetic Model 

The derivation of the analytical solution for the bi-phasic kinetic model 

presented in Equation 1 is shown below and is similar to that presented by Ouiroga 

and co-workers (1999). 

𝑑𝐶

𝑑𝑡
=  −𝐾𝐶𝑋 (1) 

First, a substitution is made for the microorganism concentration (X) given that the 

substrate (MC concentration) is rate limiting by introducing the cell yield coefficient (Y), 

resulting in Equation 2. 

𝑌 =
𝑋 − 𝑋0

𝐶0 − 𝐶
 (2) 
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𝑋 = 𝑌(𝐶0 − 𝐶) + 𝑋0 (3) 

𝑑𝐶

𝑑𝑡
= −𝐾𝑌𝐶2 + 𝐶(𝐾𝑋0 + 𝐾𝑌𝐶0) (4) 

The proposed model also considers some fraction of the initial substrate (MC) to be 

non-biodegradable, which is realistic given that complete degradation of MC often is not 

performed by the degrader population (and depends on the non-degrader population 

present). 

𝐶𝑇 = 𝐶𝐵 + 𝐶𝑁𝐵  𝑎𝑛𝑑  𝐶𝑇0 = 𝐶𝐵0 + 𝐶𝑁𝐵 (5) 

where 𝐶𝑇 is the total substrate, 𝐶𝐵 is the biodegradeable substrate, and CNB is the non-

biodegradable substrate portion, 𝐶𝑇0 is the initial total susbtrate, 𝐶𝐵0 is the initial 

biodegradeable substrate, in which the non-biodegradeable substrate remains non-

transformed during degradation. 

Substituting the above relations for total substrate and grouping together like terms, 

three rate coefficients are observed, K0, K1, and K2. The mathematical meanings of each of 

these kinetic constants are described below (Equations 7-9). 

𝑑𝐶

𝑑𝑡
= 𝐾2𝐶

2 + 𝐾1𝐶 + 𝐾0   (6) 

𝐾2 = −𝐾𝑌 (7) 

𝐾1 = 𝐾𝑌 (
𝑋0

𝑌
+ (𝐶𝑇0 − 𝐶𝑁𝐵) + 2𝐶𝑁𝐵) (8) 

  𝐾0 = −𝐾𝑌 (
𝑋0

𝑌
𝐶𝑁𝐵 + (𝐶𝑇0 − 𝐶𝑁𝐵)𝐶𝑁𝐵 + 𝐶𝑁𝐵

2) (1) 

The physical meaning of each of these constants can be determined by factoring 

Equation 6 and defining a new set of model parameters, p, q, and h. It can be shown 

mathematically that h is one limiting solution of the quadratic equation and represents one 

solution where biodegradation rates are at a minimum (dc/dt = 0). In this way, h is termed 

the maximum amount of substrate available for biodegradation. On the other hand, q is 
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another limiting case from the quadratic equation where biodegradation rates reach a 

minimum. Thus, q signifies the non-biodegradable fraction of substrate remaining when 

the biodegradable substrate is exhausted. Finally, when substituting K1, K2, and K0 into 

Equation 10, it is evident that the p value represents the maximum specific growth rate of 

the microorganisms (
1

𝑋

𝑑𝑋

𝑑𝑡
). 

   𝑝 = √(𝐾1
2 − 4𝐾2𝐾0) (2) 

   𝑞 =
−𝐾1 + 𝑝

2𝐾2

 (3) 

ℎ =
−𝐾1 − 𝑝

2𝐾2

 (12) 

where h represents the maximum amount of substrate (MC-LR) available for 

biodegradation (µg/L), q represents the non-biodegradable portion of MC-LR (µg/L), and p 

represents the maximum growth rate of the microorganisms (1/day).  

5. Summary of Model-Data Fitting Procedure and Metrics 

 DREAMZS (v1.0), a variant of the well-known Bayesian, Differential Evolution 

Adaptive Metropolis (DREAM) algorithm, was used to estimate the posterior distribution of 

model parameters and associated half-lives. DREAMZS differs from DREAM in that it samples 

from the past states of each designated Markov chain exploring the specified parameter 

space and was selected for this study for the following advantages: a) a smaller number of 

chains is required to search the parameter space (reducing CPU time); b) the CPU time can 

be further reduced since each chain can run on a different processor (better parallel 

distribution); and c) outlier chains do not need as forceful of treatment as compared to 

DREAM (Vrugt 2016). Advantage c) was particularly important since the parameter space 

for this kinetic model was marked by a very large number of local minima.  
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The specific settings used to run the DREAMZS algorithm are described in Table B1. 

The choice of objective function was set to Gaussian likelihood without measurement error 

(with the assumption that the error residuals are normal, independent, and 

homoscedastic), as the sample size (n=3) was small. With a smaller number of replicates, 

the standard deviation will vary considerably by chance; therefore, weighting by the 

measurement error should, in most cases, always be avoided (Motulsky and Christopoulos 

2004).  

Table B1 – DREAM_ZS settings for Model-Data Fitting Procedure. 

Parameter Setting Nominal Value 

Objective Function 
Gaussian Likelihood: 

measurement error integrated out 
Number of Markov Chains (N) 6 

Number of Generations (T) 50,000 
Prior Distribution Uniform 

Boundary Handling Reflection 
Number of Crossover Values (nCR) 3 

Number of Chain Pairs for Proposal (δ) 3 
Random Error for Ergodicity (λ) 0.05 

Randomization (ζ) 0.05 
Probability of Jump Rate 1 

Adapt Selection Probability Crossover Yes 
Scaling Factor of Jump Rate (b0) 0.75 

 For all cases, a small number of chains (~6-15) and a high number of generations 

(50K-200K) resulted in convergence of the search algorithm for all datasets (Figure B5). 

The number of chains for low-dimensional problems (d<10) in DREAMZS was 

recommended to at least 3; therefore, between 6-15 were used to be as conservative as 

possible. For runs requiring greater than 6 chains to reach convergence, outlying chains 

(with poor progress to the global minimum solution) were removed so that the number of 

chains compared was always consistent between experiments (6). In addition, the number 

of posterior samples (n) used after each fitting procedure was set to 25,000 (discarding 
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half of samples for “burn in”). If the number of generations required to reach convergence 

was greater than 50,000, the last 25,000 samples were used to keep the number of 

posterior samples consistent between experiments. Convergence of the search algorithm to 

the target distribution was observed when the multivariate Rhat statistic, which compares 

the variance of the parameter distributions both within and between chains, reached a 

value below the threshold value of 1.2 (Vrugt 2016, Rubin and Gelman 1992) (Figure B5).  

The prior distribution was set to a uniform range between 195-205, 0-10, and 0-10 

for the three parameters h, q, and p due to lack of information provided in the literature 

concerning the typical range in these parameters. The scaling factor jump rate (b0) was 

another parameter that was changed from the default value, where it was reduced from 1 

to 0.75 to allow improved mixing and acceptance probabilities for each chain (Vrugt 2016). 

The remaining settings used in DREAMZS were all default values, as pre-specified by the 

algorithm.  

 

Figure B5. Evolution of the multivariate convergence statistic (Rhat) using the DREAM_ZS 
algorithm for a) consortia without and b) consortia with the presence of ethanol. 
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 A summary of the best performing parameter sets (maximum log-likelihood) and 

the mean/95% credible intervals for the parameter estimations is presented in Tables B2 

and B3. In addition, the marginal densities of the posterior parameter distributions are 

plotted in Figure B6. To reiterate the meaning of each model parameter, h represents the 

maximum amount of substrate (MC-LR) available for biodegradation (µg/L), q represents 

the non-biodegradable portion of MC-LR (µg/L), and p represents the maximum growth 

rate of the microorganisms (1/day). The credible intervals were generally widest (highest 

uncertainty) for the non-biodegradable fraction of MC (q), especially for 10B, 12B, and LSB 

without the presence of ethanol (Table B3). These results can be observed visually (Figure 

B6) as the spread of the distribution for some model-data fits for q appears uniform across 

the specified interval of the prior parameter distributions. This wide interval suggests that 

there was an array of potential local minimum solutions in the parameters search space, 

and possibly some correlation between parameters. The posterior distributions for the 

maximum specific growth rates (p) and the initial concentration of biodegradable substrate 

(h) were well defined for all model-data fitting procedures (with best performing 

parameters close to the peak of all distributions), with reasonable credible intervals 

observed (Table B3). The shape of the posterior parameter distributions for p appeared 

gaussian for most consortia, with and without ethanol, while the shape of the parameter 

distributions for h were negatively skewed, with many parameter values congregating 

close to the initial concentration of 200 µg/L. The posterior distribution of half-lives for MC 

biodegradation were well defined for most cases; however, some discontinuities in the 

distributions were observed for both the 11B with ethanol and LSB without ethanol cases 

(Figure B6).  
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Table B2 – Best Performing Parameter Sets and Associated Fitting Metrics. 

Consortia ID h (µg/L) q (µg/L) p (1/day) t1/2 (days) r2 RMSE 
LR-NE-10B 200.0003 1.82 6.80 1.98 1.00 0.4299 
LR-NE-11B 200.0001 1.63 6.69 2.12 1.00 0.4526 
LR-NE-12B 204.9624 0.098 1.27 2.94 0.745 39.10 
LR-NE-14A 204.9597 0.419 1.36 2.75 0.672 44.99 
LR-NE-LSB 200.0001 1.69 6.81 2.15 1.00 0.3141 
LR-WE-10B 200.0004 1.44 3.87 3.38 0.975 14.52 
LR-WE-11B 200.0000 2.43 8.05 2.27 1.00 0.1451 
LR-WE-12B 200.0000 0.169 4.58 3.43 0.995 6.943 
LR-WE-14A 200.0000 1.97 9.87 2.45 1.00 0.2539 
LR-WE-LSB 200.0016 0.710 2.64 4.43 0.975 12.63 

Table B3 – Summary of Posterior Parameter Distributions. 

Consortia 
ID 

h (µg/L) q (µg/L) p (1/day) t1/2 (days) 
µ 95% C.I. µ 95% C.I. µ 95%C.I. µ 95%C.I. 

LR-NE-10B 200.0025 [200.0003,200.0121] 1.78 [1.08,2.43] 5.97 [4.93,6.78] 1.976 [1.967,1.981] 
LR-NE-11B 200.001 [200.0002,200.0052] 1.57 [0.604,2.43] 6.03 [4.88,6.65] 2.14 [2.12,2.18] 
LR-NE-12B 202.4767 [199.9905,204.8917] 4.99 [0.238,9.74] 1.99 [1.05,6.28] 2.74 [0.733,4.01] 
LR-NE-14A 202.3028 [197.6178,204.8869] 5.10 [0.252,9.76] 2.71 [1.14,8.13] 2.14 [0.56,3.67] 
LR-NE-LSB 200.0004 [200.0000,200.0012] 1.61 [0.912,2.26] 6.47 [5.53,7.40] 2.16 [2.14,2.19] 
LR-WE-10B 201.353 [200.0012,204.706] 4.71 [0.219,9.69] 1.92 [1.08,3.59] 3.28 [2.55,3.96] 
LR-WE-11B 200.0000 [200.0000,200.0000] 2.34 [1.88,2.69] 7.59 [6.96,8.07] 2.30 [2.27,2.35] 
LR-WE-12B 201.0049 [200.0000,204.594] 4.64 [0.199,9.67] 2.22 [1.07,4.58] 3.37 [2.68,4.00] 
LR-WE-14A 200.0184 [200.0000,200.0042] 1.95 [0.135,6.43] 7.48 [4.36,9.72] 2.47 [2.38,2.56] 
LR-WE-LSB 201.269 [200.0020,204.643] 4.72 [0.204,9.72] 1.41 [0.806,2.64] 4.41 [3.82,5.12] 
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Figure B6. Marginal densities of parameters and half-lives developed from DREAM_ZS for each 

consortium without (red) and with (blue) the presence of ethanol. Green crosses (on the top of each 
plot) indicate the best performing parameters (and half-lives) associated with each distribution. 
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 A potential reason for the lack of definition of the posterior distribution of some 

parameters (most often the non-biodegradable fraction of MC, q) may be due to either 

structural issues of the model (structural identifiability) or the quality of the data collected 

(practical identifiability) (McLean and McAuley 2012).  Since the model structure used was 

relatively simplistic and previous studies have determined that the Monod kinetic model is 

globally identifiable, we can assume that the main problem is not due to structural 

identifiability, but rather parameter estimability (Holmberg 1982). In the case of 

estimability, we are concerned with whether we can estimate unique values of each 

parameter given the quality of the experimental data collected (McLean and McAuley 

2012). For many empirical models, such as the well-known Monod kinetic model, the initial 

conditions of the experiment (i.e., the initial biomass or substrate concentrations) have a 

drastic effect on whether unique parameters can be estimated (Holmberg 1982, Nihtilä, M., 

and Virkkunen 1977, Robinson and Tiedje 1983, Liu and Zachara 2001). In addition, a 

parameter may not be estimable if a) the model predictions are not sensitive to the 

parameter value or b) the effect of the parameter on model predictions is correlated with 

the effects of other parameters, where the latter is generally the case for unstructured 

bacterial growth models (McLean and McAuley 2012, Robinson and Tiedje 1983). 

Thus, the degree of linear correlation between parameter values was evaluated 

using Pearson’s correlation coefficients to assess whether parameter correlation was the 

main issue affecting estimability. This analysis indicated that there was a strong, significant 

negative correlation between the parameters h and p for all consortia, with and without 

ethanol (Table B4). For most cases, there was also a slight positive correlation between the 

parameters q and p, and a slight negative correlation between parameters h and q for all 
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consortia, with and without ethanol (Table B4). These results indicate that, due to some 

inherent correlations between parameter values, the parameter estimability was low for 

some experimental data. The presence of these correlations provides evidence as to why in 

some cases the distribution of the non-biodegradable fraction of microcystin, q, was ill-

defined.   

Table B4 – Summary of Pearson’s correlation and p-values for different model parameters. 

Consortia I.D. 
h vs. q h vs. p q vs. p 

rho p-value rho p-value rho p-value 
10B-NE -0.1510 0 -0.6810 0 0.1726 0 
10B-WE 0.0174 1.54E-11 -0.6776 0 9.85E-04 0.7026 
11B-NE -0.1649 0 -0.6198 0 0.2690 0 
11B-WE -0.3956 0 -0.7708 0 0.3797 0 
12B-NE -0.0146 1.55E-08 -0.4813 0 0.0457 3.70E-70 
12B-WE 0.0646 3.15E-138 -0.6766 0 -0.1002 0 
14A-NE -0.0389 3.06E-51 -0.5214 0 0.0533 1.17E-94 
14A-WE 0.1515 0 -0.3655 0 -0.2825 0 
LSB-NE -0.3259 0 -0.8949 0 0.3398 0 
LSB-WE 0.01 1.02E-04 -0.7529 0 -0.0118 4.78E-06 

 

6. Monte Carlo Simulations for Comparison of Alpha Diversity Metrics 

 Monte Carlo (MC) simulations were carried out to arrive at statistical distributions 

in true Alpha diversity metrics. The first step of this process was to develop an empirical 

relationship between mean relative abundance and the standard deviation expected among 

experimental replicates for corresponding taxa within a given community. By 

“experimental” replicates we refer to the combination of biological and technical replicate 

classes. Biological replicates can be defined as sampling multiple times at a given location 

and then performing identical 16S rRNA processing on the replicated samples (Knight et al. 

2012, Thomas et al. 2012). The 16S rRNA processing protocol includes everything from 

sample preparation and DNA extraction, to pyrosequencing and downstream analysis (i.e., 
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QIIME). Biological replication includes uncertainty related to the heterogeneity of the 

bacterial populations at the location of sampling as well as uncertainty related to the 

measurement/processing techniques. Technical replicates, however, are defined as 

processing a single sample from a location or treatment multiple times to solely assess the 

uncertainty in the measurement/processing technique (Knight et al. 2012, Thomas et al. 

2012). We focused our search to obtain relevant data from studies analyzing bacterial 

community structure, as opposed to other microbes (from environmental samples only). 

Both mean relative abundances and standard deviations of relative abundances were 

compiled from these studies (from at least 2 technical replicates) to develop the empirical 

model described above (Table B5).  

 A total of 10 metagenomic studies (Chaudhary et al. 2018, Landa et al. 2014, Lopes 

et al. 2014, Li et al. 2014a, Pereira et al. 2017, Pilloni et al. 2012, Sun et al. 2014, 

Romanowicz et al. 2016, Huang et al. 2015b, Zhou and Wu 2018) were ultimately used to 

develop the empirical relationship between taxon mean relative abundance and expected 

standard deviation among replicates (Table B5). The pooled data from all these studies 

provided a sufficient number of samples to develop the empirical model (N = 1,188). 

Ideally, studies that performed biological replicates were more desirable, as they included 

uncertainty corresponding to both the community composition at the sampling location 

and the potential measurement error. However, very few studies that conducted biological 

replicates were found in the literature that presented relative abundance data on the genus 

level of analysis. In this way, we supplemented studies that performed biological replicates 

(5) with those that only performed technical replicates to aid in the development of this 

empirical model (5).  
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As observed in Table B5, the studies selected sampled a diverse array of 

environmental media for conducting the bacterial community analyses, ranging from 

drinking water, wastewater, seawater, soil, and aquifer sediments. The studies selected 

were split evenly between sequencing platforms, where half used the 454-pyrosequencing 

technology (as in this study) and the other half relied on Illumina MiSeq technologies. A 

majority of studies targeted the V4 region of the 16S rRNA, which was close to the region 

targeted in this study. In addition, most of the studies incorporated the QIIME/Greengenes 

analysis pipeline and reference database, which was nearly identical to that selected in this 

study (Table B5). 

Table B5 – Summary of studies selected to develop the empirical model. 

Reference 
Source 

Location 
Environ. 

Media 
Seq. 

Platform 
16S 

Region 

Analysis 
Pipeline / 

Ref 
Database 

Tax. 
Level 

# 
Replicates 

Type of 
Replicate 

Chaudhary 
et al. 2018 

North Shore 
Channel, 

Chicago, USA 

Storm/ 
Wastewater 

Illumina 
MiSeq 

V1-V3 
QIIME/ 

Greengenes 
Genus 2 Biological 

Landa et al. 
2014 

Laboratory 
cultures, 

isolated from 
Mediterranean 

Sea 

Seawater 
454-FLX 
Titanium 

V2-V3 
QIIME/ 

Greengenes 
Genus 3 Technical 

Lopes et al. 
2014 

Farm in 
Portugal 

Soil 
454-FLX 
Titanium 

V3-V4 
QIIME/ 

Greengenes 
Genus 3 Biological 

Li et al. 
2014a 

Energy Farm, 
University of 
Illinois, USA 

Soil 
454-FLX 
Titanium 

V4-V5 
RDP 

Pipeline 
Genus 4 Biological 

Pereira et al. 
2017 

Helmholtz 
Centre for 
Infection 
Research, 
Germany 

Drinking 
Water 

Illumina 
MiSeq 

V3-V4 
SILVA 

Pipeline 
Genus 3 Technical 

Pilloni et al. 
2012 

Tar oil 
contaminated 

aquifer, 
Germany 

Aquifer 
Sediments 

454-FLX 
Titanium 

Unknown 
GS Run 

Processor/ 
Greengenes 

Genus 3 Biological 
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Sun et al. 
2014 

Orchard near 
Beijing, China 

Soil 
Illumina 

MiSeq 
V4 

QIIME/ 
Greengenes 

Genus 3 Technical 

Romanowicz 
et al. 2016 

Forest floor 
samples, 

Upper 
Michigan, USA 

Soil 
PacBio 

RS II 
Unknown 

MOTHUR 
Pipeline 

Order 4 Biological 

Huang et al. 
2015b 

Laboratory 
grown cultures 

Soil 
Illumina 

MiSeq 
V4 

QIIME/ 
Greengenes 

Genus 3 Technical 

Zhou and 
Wu 2018 

Experimental 
Station, 

Harbin, China 
Soil 

Illumina 
MiSeq 

V3-V4 
QIIME/ 

Greengenes 
Genus 3 Technical 

 

A non-linear, yet monotonic, relationship between taxon mean relative abundance 

and standard deviation of replicate measurements was observed from the compiled data. 

This monotonic relationship makes sense intuitively, as the abundance of a given taxon 

increases, the associated variability across replicate samples should also increase. The 

dependency structure between the mean relative abundance and standard deviation was 

deemed significant as the magnitude of Spearman’s rho was high (0.84). To be as objective 

as possible, a non-parametric regression model (LOESS) was used to describe the compiled 

data. LOESS stands for locally weighted polynomial regression and is a simple, but 

powerful tool to model unknown, empirical relationships between variables (Jacoby 2000). 

LOESS provides a smooth interpretation of the relationship between two variables through 

use of two main model parameters, the polynomial order (λ) and the spanning parameter 

(α). In general, the polynomial order dictates what shapes the curve can take, while the 

spanning parameter balances “overfitting” vs. “smoothing” of the data (Jacoby 2000). 

Larger values of α (close to 1) will provide a smoother curve at the cost of a poorer fit, 

while smaller values of α (close to 0) provide an optimal fit, but a very haphazard (and non-

generalizable) curve. In this study, we selected a polynomial of order two (λ = 2) and an 



464 
 

optimal spanning parameter of 0.85 based on the procedure outlined in (Jacoby 2000). A 

bootstrap re-sampling approach (using N = 10,000 samples) was used to estimate both the 

95% confidence and prediction intervals for the LOESS regression model. The algorithm 

presented by (Efron and Tibshirani 1994) was implemented in this study to develop the 

95% confidence and prediction intervals of the empirical model. 

Figure B7 portrays the results of the LOESS nonparametric regression and 

bootstrapping analysis. Given that the main underlying trend in the observed data is 

captured by the LOESS prediction, the regression model was concluded to satisfactorily 

predict the nonlinear relationship between mean relative abundance and standard 

deviation among experimental replicates. As observed in Figure B7, several data points fall 

outside the 95% prediction and confidence intervals and may be considered outliers in this 

analysis. In addition, most of the data points are clustered towards the origin of Figure B7 

(where corresponding certainty in the regression is higher). This result was expected given 

that, on the genus level of analysis, most of the identified taxa among studies had low 

relative abundances (<10%). The uncertainty in the model predictions rises substantially 

when the mean relative abundance increases to 30% and beyond (Figure B7). This result 

was a direct consequence of the small number of data points compiled from the literature 

that were above a mean relative abundance of 30%. Since this was a locally weighted 

regression analysis, higher confidence would be achieved if the density of points above this 

mean relative abundance threshold of 30% was greater. 
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Figure B7. Empirical relationship developed between mean relative abundance and expected 
standard deviation among experimental replicates using the LOESS regression approach. 

Dark and light grey shading indicate the 95% bootstrapped prediction and confidence 
intervals for the LOESS predictions. The blue dots and red line correspond to the observed 

data points and best fitting prediction of the LOESS regression. 

 With the main empirical relationship between taxon mean relative abundance and 

expected standard deviation established, the main approach behind the MC simulations to 

determine distributions in true Alpha diversity metrics will now be described. The 

objective of the MC simulations was to randomly and repeatedly generate a new bacterial 

community composition, given the known extrapolated uncertainty in the experimental 

measurements, and calculate Alpha diversity metrics for each of these re-sampled 

communities. Figure B8 describes the main workflow of the MC simulations from start to 

finish. First, the experimental data containing the identified genus (rows) vs. absolute 

abundances (columns) for a given community is loaded and transformed into relative 

abundances (on a scale from 0-1).  

 After entering the main Monte Carlo loop (which is performed for Nmax = 20,000 

times), the following two steps (2, 3) involve sampling the relative taxonomic abundances 
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for all genera within the community (Figure B8). We first assume that the measurement 

error (which includes uncertainty about the heterogeneity of each community within each 

location and the measurement methodology) is normally distributed. In addition, we center 

each normal distribution describing the uncertainty in taxonomic abundance from each 

location around the observed relative abundances obtained from the experimental results. 

Thus, given the mean relative abundance from step 1, step 2 involves randomly sampling 

the 95% prediction intervals of the LOESS regression to obtain the expected standard 

deviation across replicates. The 95% prediction intervals were approximated by a kernel 

density estimation (KDE) since the distribution of the predictions within each interval 

appeared to be non-parametric and multi-modal (data not shown). Using the obtained 

standard deviation, step 3 involves randomly sampling a relative abundance value from 

this normal distribution. Steps 2 and 3 are repeated until relative abundances have been 

sampled for all existing genera within the original community.  

 As the sampled standard deviations can vary, there is a possibility of selecting either 

a negative standard deviation or a negative relative abundance. To circumnavigate this 

issue, we only sample positive standard deviations from the empirical model. However, it is 

important to note the significance of a negative relative abundance draw. Instead of only 

sampling positive values (the right side of the normal distribution) for relative abundance, 

we assume that a negative relative abundance is indicative of several replicates (out of how 

many were conducted) that may have demonstrated relative abundance values of 0. Thus, 

when a negative relative abundance value is obtained, we assume that this draw was 

effectively 0 (and not a member of the simulated community). Importantly, this step allows 

the MC simulations the probability of not drawing relative abundances for genera that were 
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in fact experimentally observed, providing some measure of variability for richness-based 

measures of Alpha diversity for each community (true Alpha diversity measures of order 

0).  

 The final two steps within the MC loop involve the re-sampling (4) and calculation of 

true Alpha diversity metrics (5) (Figure B8). With the relative abundances of the simulated 

community now sampled, a weighted re-sampling of the original community is performed 

to obtain absolute abundances for each genus (using a weighted random sample with 

replacement). Step (4) is essentially the main bootstrapping component of this procedure. 

Finally, the true Alpha diversity metrics are calculated using the absolute abundances 

sampled during the previous weighted bootstrapping step. This series of sampling and 

calculations is effectively repeated (Nmax = 20,000 times) and a final distribution in true 

diversity metrics is obtained (Figures B9 and B10, Tables B6 and B7).  

 
Figure B8. The MC algorithm developed to simulate distributions in true Alpha diversity metrics 

Typically, in many MC applications, N = 10,000 MC samples are enough to arrive at a 

parametric and stable distribution (Gottschalk et al. 2010a). In this study, we found that 

20,000 samples were necessary to arrive at a series of stable distributions for each true 

diversity order, all of which qualitatively appeared distinctly normal (Figures B9 and B10, 

Tables B6 and B7). The lack of extreme outliers (low kurtosis values) and characteristic 

bell shape of the plotted histograms indicated satisfactory fits to a normal distribution for 
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most diversity orders describing each MC-degrading community. It is important to note 

that for some higher order diversity indices (q = 1-3) describing communities with the 

addition of ethanol, the resulting distributions were slightly right skewed, more notably for 

10B and 12B consortia. This skew was confirmed with the relatively higher coefficient of 

variations observed for 10B (with ethanol) for the higher order diversity metrics (1-3) 

(Table B7). Otherwise, variability in simulated metrics generally increased moving from 

the far-right side of both Tables B6 and B7 (q =3) to the far-left side (q = -1), as the 

magnitude of the indices increased. Both the 10B and 12B communities (in the presence of 

ethanol), contained genera that had higher relative abundances (>30%) than the other MC-

degrading communities analyzed. As the empirical model demonstrated higher uncertainty 

in predicting the standard deviations in replicated measurements for high relative 

abundances (>30%), deviation from a perfectly normal distribution was as expected. 

However, other, more complex parametric distributions were not applied in this study to 

account for the skew in these aforementioned probability distributions.   
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Figure B9. Resulting probability distributions in simulated true Alpha diversity metrics of 
orders -1,0,1,2,3 (column-wise) grouped by MC degrading community (row-wise) without the 
addition of ethanol. The solid red line indicates the normal probability distribution function 
fitted to the data, whereas the dashed red line indicates the 95% confidence interval for the 

distribution of each diversity order. The ‘x’ indicates the mean of each distribution. 

 

Figure B10. Resulting probability distributions in simulated true Alpha diversity metrics of 
orders -1,0,1,2,3 (column-wise) grouped by MC degrading community (row-wise) with the 

addition of ethanol. The solid red line indicates the normal probability distribution function 
fitted to the data, whereas the dashed red line indicates the 95% confidence interval for the 

distribution of each diversity order. The ‘x’ indicates the mean of each distribution. 



470 
 

Table B6 – Summary of normal distributions fitted to the MC simulation output in calculated 
Alpha diversity orders for consortia without ethanol addition. 

Consortia ID Metric 
True Alpha diversity order 

q = -1 q = 0 q = 1 q = 2 q = 3 

10B 
µ 149 28.6 6.76 3.79 3.01 
σ 22.1 1.50 0.241 0.152 0.119 

COV 14.8 5.2 3.6 4.0 4.0 

11B 
µ 115 18.3 2.89 1.85 1.64 
σ 13.9 1.70 0.125 0.0641 0.0493 

COV 12.1 9.3 4.3 3.5 3.0 

12B 
µ 143 25.7 5.28 3.18 2.64 
σ 20.1 1.49 0.182 0.110 0.0895 

COV 14.0 5.8 3.5 3.4 3.4 

14A 
µ 147 26.0 5.17 3.35 2.92 
σ 23.2 1.39 0.164 0.0872 0.0727 

COV 15.7 5.4 3.2 2.6 2.5 

LSB 
µ 122 22.4 5.36 3.29 2.75 
σ 22.6 1.28 0.175 0.102 0.0832 

COV 18.5 5.7 3.3 3.1 3.0 

Table B7 – Summary of normal distributions fitted to the MC simulation output in calculated 
Alpha diversity orders for consortia with ethanol addition. 

Consortia ID Metric 
True Alpha diversity order 

q = -1 q = 0 q = 1 q = 2 q = 3 

10B 
µ 524 138 8.95 2.73 2.16 
σ 29.1 4.19 1.57 0.597 0.394 

COV 5.6 3.0 17.5 21.9 18.3 

11B 
µ 83.6 15.4 3.21 1.89 1.64 
σ 15.0 1.24 0.140 0.0644 0.0459 

COV 18.0 8.1 4.4 3.4 2.8 

12B 
µ 478 114 18.78 9.88 8.05 
σ 29.8 4.01 1.13 0.502 0.355 

COV 6.2 3.5 6.0 5.1 4.4 

14A 
µ 102 17.8 6.32 4.77 4.09 
σ 15.4 1.21 0.180 0.155 0.147 

COV 15.1 6.8 2.8 3.2 3.6 

LSB 
µ 150 23.0 2.21 1.39 1.28 
σ 19.7 1.59 0.0896 0.0307 0.0216 

COV 13.1 6.9 4.1 2.2 1.7 

When comparing simulated diversity profiles of each MC-degrading community, 

with and without the addition of ethanol, there were distinct differences in trends across 

communities (Figure B11). For example, as diversity order increased, the dominance of 

certain genera (with higher relative abundance) increased for both the 10B and LSB 
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communities (Figure B11). An opposing trend was observed for the 12B and 14A species, 

where the addition of ethanol may have an evening effect on the more abundant genera, as 

the slope of the diversity profile (with ethanol) is not as steep as compared to without 

(Figure B11). In addition, the differences in the diversity profiles for 11B consortium 

appear to be insignificant to make any definitive conclusions. These results confirm that 

ethanol addition had a unique effect on both the abundance and presence of certain genera 

within each community, either increasing the evenness, increasing the dominance, or 

exerting a negligible effect as evidenced in Figure B11. 

 

Figure B11. True Alpha diversity profiles for MC-degrading communities cultured with and 
without ethanol addition. The bar charts signify the median and 95% confidence intervals for 
the distributions of the true Alpha diversity values as a function of diversity order. The y-axis 

is plotted on a Log10-scale to highlight the differences in diversity profiles between 
treatments. 

 We also present a summary of the “raw” Alpha diversity values as returned by 

the QIIME pipeline (Table B8). The “raw” indices include Shannon index, Simpson’s 

Dominance, and Equitability values. These values were included as reference to 
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existing studies that have reported similar “raw” indices for bacterial communities 

isolated from lakes of different trophic statuses. 

Table B8 - Summary of “raw” Alpha diversity metrics for MC-LR degrading bacterial 
consortia without (NE) and with (WE) ethanol addition. Individual values of each metric are 

calculated for each of the five consortia within a given treatment. 

Consortia ID Culture Condition Shannon Index Simpson Dominance Equitability 

10B 
NE 3.20 0.236 0.540 
WE 4.03 0.356 0.462 

11B 
NE 2.89 0.207 0.547 
WE 3.22 0.177 0.633 

12B 
NE 3.07 0.231 0.520 
WE 4.88 0.079 0.599 

14A 
NE 3.30 0.196 0.550 
WE 2.70 0.207 0.606 

LSB 
NE 3.82 0.104 0.666 
WE 3.18 0.208 0.545 

 

7. Quality Control of QIIME Analysis 

A total of 66,716 16S rRNA gene reads were qualified for further QIIME 

metagenomics analysis from ten individual consortia samples after initial de-multiplexing, 

denoising, chimera removal and quality checking. The average number of 16S rRNA gene 

reads per sample was 6,672, ranging from 2,212 to 13,659 across all samples (Table B9). 

The average length of individual reads was approximately 488 base pairs, in which a 

majority of reads ranged between 300 to 500 base pairs in length (data not shown). A high 

percent recovery (OTU assignment/filtering retrieval) was observed for the Usearch 

quality filtering, clustering, and OTU picking. An average of 96% of the total reads were 

assigned to 690 distinct operational taxonomic units (Table B9). 
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Table B9- Summary of the consortia samples analyzed and the general results of the 
QIIME/Usearch analysis pipelines. 

Consortia ID Number of Reads Qualified 
Number of Reads  

Retrieved 
% Reads  

Retrieved 
LR-NE-10B 6,790 6,527 96 
LR-NE-11B 2,212 2,180 99 
LR-NE-12B 5,758 5,390 94 
LR-NE-14A 8,011 7,834 98 
LR-NE-LSB 6,731 6,582 98 
LR-WE-10B 13,659 12,384 91 
LR-WE-11B 2,496 2,431 97 
LR-WE-12B 12,380 11,364 92 
LR-WE-14A 3,462 3,315 96 
LR-WE-LSB 5,217 4,949 95 

Total 66,716 62,956 961 
1This represents the average of the percentage of reads that were retrieved. 

8. Rarefaction Analysis 

The Shannon indices as a function of the number of sequences retrieved by the 

QIIME module were investigated in the rarefaction analysis. It is evident that the 

sequencing depth was adequate for all consortia, as the Shannon indices were observed to 

plateau (Figure B12). 

 

Figure B12. Rarefaction plots showing Shannon Diversity indices for microcystin-LR 
degrading consortia. 
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9. Taxonomic Summary of MC-Degrading Communities on the Genera Level of 
Analysis 

 Figures B13-B15 further dissect the taxonomic composition of each MC-LR 

degrading community in the absence of ethanol on the genera level of analysis and are 

grouped by each representative order (i.e., Rhizobiales, Burkholderiales, Xanthomonadales, 

or “Other”). These orders were selected for grouping each taxon since they represent a 

large proportion of taxa within each community. Figure B13, B14, and B15 depict the 

proportions of all detected genera within the Rhizobiales Burkholderiales, and 

Xanthomonadales orders. It is important to note that all of these genera were obtained by 

filtering out extremely underrepresented taxa from each consortium (relative abundance < 

0.001 %).  

As observed in each Figure below, there appears to be similar genera present (albeit 

in different proportions) within the sediment samples (10B-14A) as compared to the lake 

water sample (LSB). It is important to note that in Figure B16 the proportion of taxa on the 

genera level of analysis are portrayed from all remaining orders (i.e., the residuals not 

contained within Rhizobiales Burkholderiales, or Xanthomonadales). In addition, to better 

illustrate differences in composition, Figure B16 includes the taxonomic composition 

without the Pseudomonas (for 10B, 11B, 14A, LSB only) or Azospirillum (for 12B only) 

genera, as these taxa dominate the composition (>90%) of each community.  
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Figure B13. Pie charts depicting the taxonomic composition of MC-LR degrading 
communities (in the absence of ethanol) on the genera level of analysis within the 

Rhizobiales order. 

 

Figure B14. Pie charts depicting the taxonomic composition of MC-LR degrading 
communities (in the absence of ethanol) on the genera level of analysis within the 

Burkholderiales order. 

 

Figure B15. Pie charts depicting the taxonomic composition of MC-LR degrading 
communities (in the absence of ethanol) on the genera level of analysis within the 

Xanthomonadales order. 
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Figure B16. Pie charts depicting the taxonomic composition of MC-LR degrading 
communities (in the absence of ethanol) on the genera level of analysis within all remaining 

orders (other than Rhizobiales, Burkholderiales, or Xanthomonadales). It is important to 
note that the Pseudomonas genera (pictured here on the bottom row of pie charts) makes up 
71.6, 95.3, 98, and 89% of the genera for the “Other” orders grouping for 10B,11B,14A, and 

LSB, respectively. In addition, the Azospirillum genera comprises 96.8% of the “Other” orders 
grouping for the 12B consortia. Thus, the pie charts on the top row above depict the 

proportions of the other genera without Pseudomonas (for 10B,11B,14A, and LSB only) or 
Azosprillum (for 12B only) included to highlight differences in the less representative taxa. 

10. Summary of Affiliated MC-Degrading Genera With and Without Ethanol 
Addition 

Table B10 summarizes the bacterial genera present in different consortia that have 

been associated with species of MC-degrading bacteria. The bacterial genera identified 

within each consortium included the following:  Sphingopyxis, Sphingomonas, 

Acinetobacter, Aeromonas, Sphingomonas, Novosphingobium, Pseudomonas, 

Stenotrophomonas, Ochrobactrum, Rhodococcus, and Steroidobacter. Although 10 distinct 

genera were initially identified, not all genera were present in each consortium, as 
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indicated in the “Consortia Detected” column. Several genera are affiliated with species that 

degrade MC using the well-known mlr gene pathway; however, several degrading 

pathways are either unknown or have not been detected (Table B10).  

Table B10 – Bacterial genera identified within each consortium that have been previously 
affiliated with species of MC-degrading bacteria. 

Bacterial Genera 
Consortia 
Detected  

mlr pathway? Reference(s) 

Ochrobactrum 

14A-NE  
LSB-NE 
10B-WE 
14A-WE 

Unknown (Jing et al. 2014, Mu et al. 2009) 

Pseudomonas 

10B-NE 
11B-NE 
14A-NE 
LSB-NE 
10B-WE 
11B-WE 
14A-WE 
LSB-WE  

Unknown (Lemes et al. 2015, Li and Pan 2014) 

Steroidobacter 

10B-NE 
11B-NE 
12B-NE 
LSB-NE 
10B-WE 

Unknown (Gong et al. 2016) 

Stenotrophomonas 

10B-NE 
14A-NE 
10B-WE 
12B-WE 
14A-WE 

+ (Chen et al. 2010) 

Sphingomonas 
10B-NE 
14A-NE 
12B-NE 

+ 
(Jones et al. 1994b, Harada et al. 2004, Imanishi et 

al. 2005, Ishi et al. 2004, Maruyama et al. 2006, 
Park et al. 2001, Saitou et al. 2003, Somdee 2010) 

Sphingopyxis 

10B-NE 
11B-NE 
12B-NE 
14A-NE 
LSB-NE 
10B-WE 
12B-WE 

+ 
(Wang et al. 2010, Xiao et al. 2011, Xu et al. 2015, 

Okano et al. 2009, Maghsoudi et al. 2016) 

Rhodococcus 
12B-NE 
12B-WE 

- (Lawton et al. 2011, Manage et al. 2009) 

Novosphingobium 12B-WE + (Jiang et al. 2011) 

Acinetobacter 
10B-WE 
12B-WE 

Unknown (Li and Pan 2014) 

Aeromonas 
10B-WE 
12B-WE 

- (Mankiewicz-Boczek et al. 2015) 
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Aside from the Pseudomonas genera, the relative abundance of the potential known 

MC degrading bacteria within each community was found to be relatively small and 

sometimes quite variable across each consortium (below 0.5-1%) With the addition of 

ethanol, the proportion of sequences from genera affiliated with MC biodegradation was 

observed to change significantly (Figure B17). In general, the relative abundance of 

bacterial species associated with the Sphingopyxis genera was observed to significantly 

decline across all consortia, whereas the relative abundance of bacterial species associated 

with the Stenotrophomonas was observed to significantly increase in the presence of 

ethanol (Figure B17). In addition, in the presence of ethanol, the relative abundance was 

observed to generally increase for the following bacterial genera: Aeromonas, 

Acinetobacter, Novosphingobium, and Ochrobactrum across all consortia. Some of these 

increases in relative abundance were not statistically significant (Figure B17). Trends in 

relative abundance were less apparent for the remaining genera affiliated with MC 

degradation across all consortia. For example, the relative abundance of Steroidobacter 

increased for 10B consortia in the presence of ethanol but decreased for 11B and 12B 

consortia.  Similar mixed results were detected for the Pseudomonas genera with and 

without the addition of ethanol (Figure B17).  
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Figure B17. Differences in relative abundance of the phylogenetic genera previously 
affiliated with MC degradation that were identified within consortia treated with (WE) and 
without ethanol (NE). Statistically significant differences in relative abundance are marked 

with an asterisk (p-value < 0.05, Bonferroni corrected). 

11. Summary of Reported MC Biodegradation Half Lives 

A detailed review of studies examining MC biodegradation kinetics was conducted 

to compare the half-lives for isolated MC degrading bacterial populations against those 

reported for enriched MC degrading consortia. The reported half-lives were estimated by 

each study using three unique approaches a) simply interpolating the time until 50% of the 

initial substrate was degraded (Lawton et al. 2011); b) fitting a zero-order model to the 

kinetic data (Li et al. 2015a) (Equations 13-14); or c) fitting a first-order model to the 

kinetic data (Jones et al. 1994b) (Equations 15-16). If the study did not report a half-life 

value, we fitted a simple 0-order model to predict the MC biodegradation half-lives using 

the data provided in the study. A total of 50 (Lawton et al. 2011, Jones et al. 1994b, Alamri 

2010, Alamri 2012, Chen et al. 2010, Eleuterio and Batista 2010, Harada et al. 2004, Ho et 

al. 2007c, Ho et al. 2012b, Hu et al. 2009, Hu et al. 2012, Imanishi et al. 2005, Ishii et al. 
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2004, Jiang et al. 2011, Jing et al. 2014, Kansole and Lin 2016, Lemes et al. 2008, Lemes et 

al. 2015, Lezcano et al. 2016, Li et al. 2016, Li and Pan 2014, Maghsoudi et al. 2016, Manage 

et al. 2009, Mankiewicz-Boczek et al. 2015, Maruyama et al. 2006, Mu et al. 2009, Nybom et 

al. 2007, 2008a, 2008b, 2012, Park et al. 2001, Phujomjai and Somdee 2013, Phujomjai et 

al. 2016, Ramani et al. 2012, Rapala et al. 2005, Saitou et al. 2003, Somdee 2010, Takenaka 

and Watanabe 1997, Valeria et al. 2006, Wang et al. 2010, Xiao et al. 2011, Xu et al. 2015, 

Yang et al. 2014a, 2014b,  You et al. 2014, Zhang et al. 2015b, Zhang et al. 2011b, Zhou et al. 

2006, Zhou et al. 2008, Zhu et al. 2016) and 23 (Jones et al. 1994b, Bourne et al. 2006, Chen 

et al. 2008, Christoffersen et al. 2002, Cousins et al. 1996, Edwards et al. 2008, Edwards and 

Lawton 2009, Grützmacher et al. 2010, Ho et al. 2010, Ho et al. 2006, Hoefel et al. 2009, 

Hyenstrand et al. 2003, Jones et al. 1994a, Lam et al. 1995a, Lam et al. 1995b, Li et al. 

2011a, 2011b, 2011c, 2015, Rapala et al. 1994, Tsao et al. 2017, Wang et al. 2016,  Welker 

et al. 2001) studies were compiled for MC degrading isolates and consortia, respectively. 

Only studies that focused on aerobic (not anaerobic) MC biodegradation through bacterial 

activity were incorporated in this analysis. All half-lives were included from each study for 

each experimental condition tested, regardless of environmental condition studied (i.e., pH, 

temperature, initial MC concentration), giving rise to a higher number of half-lives reported 

over studies compiled (i.e., N=167 vs. 27 studies). Comparably, we did not make a 

distinction between aqueous and biofilm MC degrading bacterial communities when 

compiling the reported half-lives for isolated consortia.  

𝑡1/2,0 = 
𝐶0

2 ∗ 𝐾0
 (13) 

Where C0 is the initial concentration of MC (µg/L) and K0 is the zero-order rate constant 

(µg/L/day) determined using Eq. 2. 



481 
 

𝐾0 = 
(𝐶0 − 𝐶𝐹)

∆𝑡
 (4) 

Where CF is the final concentration of MC (µg/L, usually 0), and Δt is the total time elapsed 

until CF is reached.  

 

 (15) 

Where K1 (1/day) is the first order rate constant that is derived from fitting the 

experimental data to the first order kinetic equation. In the absence of non-linear curve 

fitting tools, K1 can be estimated from Equation 4 using the natural logarithm of MC 

concentration. 

𝐾1 = 
𝑙𝑛(𝐶0) − ln (𝐶𝐹)

∆𝑡
 (5) 

Where CF is the final concentration of MC (µg/L, usually 0), and Δt is the total time elapsed 

until CF is reached.  

In general, isolated degrading populations demonstrated faster biodegradation 

kinetics than the enriched consortia studied (Figure B18). The statistical results of a two-

tailed t-test with homoscedastic error variance (α = 0.05) indicated that the MC 

biodegradation half-lives for isolated degrading populations were significantly faster than 

those for enriched consortia (p = 2.45E-14). The distribution of reported biodegradation 

half-lives for isolated populations was also much narrower as compared to consortia (small 

interquartile range and whiskers), indicating that the biodegradation behavior was more 

consistent and less variable than isolated consortia. The range of half-lives predicted for 

consortia isolated in this study (without organic carbon) was within the 25-50% 

interquartile range for isolated consortia, signifying that the biodegradation kinetics were 

𝑡1/2,1 = 
ln (2)

𝐾1
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fast as compared to other kinetics reported in the literature for various consortia (Figure 

B18). However, the range of half-lives predicted for consortia isolated in this study 

(without organic carbon) was above the 50-75% interquartile range for isolated consortia, 

implying that the biodegradation kinetics for consortia may not be as rapid or comparable 

in efficiency to isolated degrading populations (Figure B18).  

 

Figure B18. Boxplot summary of reported MC biodegradation half-lives in the literature for 
studies involving both enriched consortia and isolated degradation populations. The green 

and magenta dashed/dot-dashed lines indicate the range (average value ± 1 standard 
deviation) in predicted half-lives determined in this study for consortia without and with 

ethanol, respectively. The number of reported half lives used to develop each distribution is 
indicated in the x-axis title (i.e., N value). Black diamonds indicate mean biodegradation half-

lives for each distribution. 

12. Monte Carlo Analysis to Assess the Effect of Sampling Frequency 

 In this section, we investigate to what extent the number of data points used in 

model calibration (which depends on the sampling frequency) will affect the main 

conclusions presented in Chapter 2 of this dissertation. This analysis was conducted out of 

our own mindfulness that the sampling frequency used in this study may not have been 

high enough to provide meaningful data. Ultimately, we argue that no matter how many 
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data points are acquired during experimentation that may “fill the missing gaps” between 

existing data points (serving as “partials”), the main conclusions presented in Chapter 2 

will not change significantly.  

 To prove our point, we have run a brief Monte Carlo (MCA) simulation using 

experimental results from the 11B consortium as an example. The 11B consortium was 

used since it demonstrated very similar MC-LR degradation kinetic profiles between the 

two treatments. We performed this MCA by simulating (or re-creating) our experimental 

dataset with a greater number of data points included (changing from N=7 to N=13) to 

represent the “what if” scenario of collecting more data points during experimentation. For 

example, using the original dataset as a foundation, three data points were simulated 

between Days 1 and 2 and three data points were simulated between Days 2 and 3, 

effectively doubling the number of datapoints in the dataset. Data points were added in the 

timeframe from Day 1 to Day 3 since this was the most dynamic portion of the experiment.  

 To run these MCA simulations, the simulated datapoints were taken as random, 

uniform draws using 0 and 200 (µg/L) as lower and upper boundaries of the selection 

interval. The selection of this interval for MCA sampling allows many different types of 

degradation behavior to be simulated during this time period. In addition, new selections 

were made from the existing data using normal, random draws (assuming the 

measurement error was normally distributed and using the mean and standard deviation 

obtained from the original measurements). Once the dataset was re-sampled, we 

performed non-linear, least squares regression to obtain a best-fitting parameter estimate 

and determined the half-lives from the best fitting prediction accordingly. This procedure 

was repeated for 50,000 unique simulations to arrive at a distribution in half-lives for 
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statistical comparison between each treatment. Significant differences in predicted half-

lives between both simulated datasets (between consortia with and without ethanol) were 

assessed using a two-sample t-test (two-sided, unequal variance). The effect size was also 

calculated to evaluate the magnitude of difference between both distributions (see 

Equation 4 in Chapter 2).  

The results of the MCA analysis indicated that the addition of new data points to the 

existing dataset did not change our initial conclusion presented in Chapter 2, as MC-LR 

biodegradation half-lives between treatments remained significantly different (Table B11, 

under “MCA” tab). However, the standard deviations of the distribution in half-lives 

increased an order of magnitude with the introduction of new data points in the MCA 

analysis (Table B11). In addition, the values of the effect sizes presented for the original 

dataset were larger than those observed for the MCA modified datasets, suggesting that 

MCA simulation created more variability in the simulated MC-LR removal kinetics (i.e., 

with/without ethanol) (Table B11). This result provides enough quantitative evidence that 

even if we increased the sampling intensity between the time periods that demonstrated 

the most change, the main conclusions reached would not be drastically different. 

Table B11 – Statistical comparison of simulated half-lives between treatments (with vs. 
without ethanol) for both original and MC analysis datasets. 

Criteria 
Original MCA 

11B-NE 11B-WE 11B-NE 11B-WE 
µ 2.14 2.30 2.05 2.16 
σ 0.017 0.016 0.314 0.293 

p-value <1E-08 <1E-08 
Effect Size 9.693 0.348 

Figure B19 visually demonstrates that the distribution in 50,000 simulated MC-LR 

degradation curves is relatively uniform (especially for panel B), despite the extremely 
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wide range in concentrations sampled from (i.e., 0-200 µg/L) for each of the three time 

points between Days 1-2 or 2-3 of analysis. The relatively narrow 25-75% confidence 

interval bands indicate that although the concentrations of MC-LR in the simulated datasets 

were drastically changing, the model response was relatively similar across different MCA 

simulations. This result is because, mechanistically, the model cannot account for the very 

dynamic (perhaps up and down) degradation behavior simulated in the MCA analysis. 

Similar results were observed for the 12B and 14A consortia (without ethanol) in Figure 14 

of Chapter 2, where the best fits of the model would pass through data points for Days 2 

and 3 of analysis. Therefore, we can conclude (after assessing statistical and qualitative 

data) that even if we sampled more data points between Days 1-2 and 2-3, our initial 

conclusions would not change significantly. This result is due to the fact that the model is 

not sophisticated enough to mechanistically account for very dynamic changes in MC-LR 

concentrations over time.     

 

Figure B19. Distribution in simulated MC-LR biodegradation kinetics obtained from the MC 
analysis for consortia treated A) without ethanol and B) with ethanol. The shading indicates 

the nonparametric confidence intervals (25, 50, 75, and 95%) estimated from the 
distribution of kinetic curves obtained from the MC analysis. The blue circles represent the 
experimental data, whereas the red line indicates the mean of the 50,000 simulated MC-LR 

removal curves. 
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Appendix C: Application of Unstructured Kinetic Models to Predict 
Microcystin Biodegradation: Towards A Practical Approach for Drinking 
Water Treatment –  
Supplementary Materials 
 

I. Supplementary Results and Methods 

1. Realistic Parameter Ranges for Model Data-Fitting Approach 
 

The realistic parameter ranges for all model parameters used in this study are 

summarized in Table C1, including the references used to develop the lower and upper 

bounds. Experimental parameters were taken from a wide array of sources including 

studies from the fields of bioprocess/biochemical engineering, wastewater treatment 

engineering, and bioremediation to be as comprehensive as possible. Two parameter 

ranges are given for the scaling parameters to account for differences in conversions 

between OD and CFU/mL cell concentrations (Table C1). We make the important 

distinction between units for the ∝1,2 and n parameter values that correspond to the Dabes 

et al. (1973), Powell (1967), and Moser (1949), and Heijnen-Romein (1995) kinetic model 

structures (Table C1). Since there were few studies that have estimated parameters for the 

Heijnen, Dabes, and Powell kinetic models, we used a similar range to that developed for 

the Moser (1958) model structure (i.e., 0.0001 to 10). These values of the lower and upper 

bounds encompass all the very few parameter values reported for the Heijnen, Dabes, and 

Powell kinetic models in the literature. Negative values were excluded for the n range in 

values (for both the Moser and Heijnen model structures) to avoid issues with complex 

numbers commonly observed from predictions involving negative exponents. 
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Table C1 – Summary of realistic parameter ranges developed for parameter estimation 

Parameter References Unit Lower Bound Upper Bound 

µmax 

Rittmann et al. 1986, 
Kovárová-Kovar and 
Egli 1998, Suarez and 

Rifai 1999, 
Tchobanoglous et al. 

2003, Okpokwasili and 
Nweke 2006, Al-Khalid 
and El-Naas 2012, El-

Naas et al. 2014 

Day-1 0.01 50 

Ks 

Kooij et al. 1982, Kooij 
and Hijnen 1984, 1985, 
Schmidt and Alexander 

1985, Rittmann et al. 
1986, Doran 1995, Suarez 

and Rifai 1999, 
Tchobanoglous et al. 

2003, Okpokwasili and 
Nweke 2006, Al-Khalid 
and El-Naas 2012, El-

Naas et al. 2014 

mg/L 0.0001 220 

Y 

Doran 1995, Shuler and 
Kargi 2002, 

Tchobanoglous et al. 
2003, Suarez and Rifai 

1999 

mg biomass/ 
mg substrate 

0.01 3.5 

n 

Annuar et al. 2008, 
Gokulakrishnan and 

Gummadi 2006, 
Ghovvati et al. 2015, 

Dutta et al. 2015, 
Enzweiler et al. 2014 

None 

0.0001 10 

∝1 Dabes et al. 1973 (mg*day)/L 

∝2 Powell 1967 1/day 

b1 Kim et al. 2012, Myers et 
al. 2013 

(g DW/L) / OD 1.00E-08 2 
b2 (g DW/L) / (CFU/mL) 1.00E-15 1.00E-07 

Kd 

Knightes and Peters 
2000, Lavallée et al. 

2002, Tchobanoglous et 
al. 2003 

Day-1 0.01 1 
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2. Bayesian Model Comparison and Selection Calculations 
 

The following information criteria were estimated using the posterior distribution 

in model parameters after the fitting process: Akaike Information Criterion (AIC), Bayes 

Information Criterion (BIC), Deviance Information Criterion (DIC), and Watanabe-Akaike 

Information Criterion (WAIC). AIC is the simplest criterion to compute, corrects for the bias 

induced by the number of parameters to fit the model, and is based on the posterior 

solution with the highest log-likelihood (𝜃𝑚𝑙𝑒) (Equation 1), where k is the number of 

effective parameters. 

                                                  𝐴𝐼𝐶 =  −2log (𝑝(𝑦|𝜃𝑚𝑙𝑒) − 2𝑘  (1) 

 

BIC considers both the number of effective parameters (k) and the size of the dataset used 

to fit the model (n) when correcting for bias (Equation 2). 

 

                                                𝐵𝐼𝐶 =  −2log (𝑝(𝑦|𝜃𝑚𝑙𝑒) + 𝑘𝑙𝑜𝑔(𝑛)  (2) 

 

DIC is a more Bayesian estimate of AIC, where the 𝜃𝑚𝑙𝑒  is replaced by the mean of the 

posterior parameter distribution (𝜃𝐵𝑎𝑦𝑒𝑠) and the calculation of the effective number of 

parameters is altered to 2𝑝𝐷𝐼𝐶  (where 𝑝𝐷𝐼𝐶 is defined in Gelman et al. 2014) (Equation 3). 

 

                                                     𝐷𝐼𝐶 =  −2log (𝑝(𝑦|𝜃𝐵𝑎𝑦𝑒𝑠) + 2𝑝𝐷𝐼𝐶  (3) 

 

WAIC is the “fullest” Bayesian information criterion and is calculated from the difference 

between the log posterior predictive density (LPPD) and the effective number of free 

parameters from the simulation (P), both of which are computed according to Gelman et al. 

2014 (Equation 4).   

 

                                                             𝑊𝐴𝐼𝐶 =  −2(LPPD − P)                                                          (4) 
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              For the second approach, the log pseudo marginal likelihood (LPML) was estimated 

using the posterior distribution in parameters (and corresponding simulations) as 

described first by Gelfand and Dey (1994) and summarized by Christensen et al. (2011). 

First, the inverse conditional predictive ordinate (CPOi) was calculated according to 

Equation 5, using the pointwise estimate for the likelihood after drawing a single set of 

parameters from the posterior distribution (and repeating N times, where N is the size of 

the posterior distribution, M is the model under consideration). The average of the CPO 

values was then used to derive the LPML for a given model.  

                                                          𝐶𝑃𝑂𝑖
−1 = 

1

𝑁
 ∑

1

𝑓𝑖(𝑦𝑖|𝜃
𝑘 , 𝑀)

𝑁
𝑘=1   (5) 

 
3. Bayesian Hypothesis Testing 
 

               As the basis for the BEST approach, DREAM_ZS (Laloy and Vrugt 2012) was used to 

fit the t-distributions to the posterior log-likelihood data for each study and model 

combination. Overall, the estimation of 5 parameters was required including the mean and 

standard deviations of the posterior log-likelihood values as well as ν, which describes the 

weight of the distribution tails (µ1, µ2, σ1, σ2, and ν) (Kruschke 2011, 2013). It is important 

to note that the ν value was shared between both distributions as specified in (Kruschke 

2011, 2013). We only present results for the t-test comparisons between the best and next 

best performing model observed for each study. 

The DREAM_ZS analysis was run using similar specifications as defined in the ABC 

parameter estimation procedure above, except that the number of generations was 

reduced to 20,000 and the prior distributions of model parameters consisted of the 

following: normal distribution for µ1 and µ2; uniform distribution for σ1 and σ2; and a 

shifted exponential distribution for ν (Kruschke 2011, 2013) (Table C2). The mean and 
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standard deviation of the prior distribution for µ1 and µ2 were set to the mean and 1000 

times the standard deviation of the posterior log-likelihood values for each study 

(Kruschke 2011, 2013). Upper and lower bounds for the uniform distribution for σ1 and σ2 

were set to 1/1000 and 1000 times the standard deviation of the posterior log-likelihood 

values (Kruschke 2011, 2013). Finally, λ, for the shifted exponential was set to 29, to 

balance the selection of nearly normal distributions (ν > 30) with heavy tailed distributions 

(ν < 30) (Kruschke 2011, 2013). For reference, all the settings for the DREAM-ZS analysis 

are summarized in Table C2.  

Table C2 – DREAM-ZS Parameter Settings for BEST Analysis 
Parameter Setting Nominal Value 

Number of Parameters (D) 5 
Objective Function Log-Likelihood (Option 2) 

Number of Markov Chains (N) 6 
Number of Generations (T) 20,000 

Prior Distribution 
Normal, Uniform, Normal, Uniform, Shifted 

Exponential 
Boundary Handling None 

Number of Crossover Values (nCR) 3 
Number of Chain Pairs for Proposal (δ) 3 

Random Error for Ergodicity (λE) 0.1 
Randomization (ζ) 10E-12 

Probability of Jump Rate 0.2 
Adapt Selection Probability Crossover Yes 

Scaling Factor of Jump Rate (b0) 1 

 

The overall convergence statistic of Rubin and Gelman (1992) was summarized for 

each study to verify that the DREAM-ZS algorithm was running through enough 

generations to reach a stable estimate of the posterior distribution in parameters for the 

BEST approach (Figure C1). For all studies (a-d), convergence appeared to be reached after 

20,000 generations (corresponding to 120K overall for 6 chains), where the R-statistics 

converge to a stable value below the 1.2 threshold for each parameter (Figure C1). These 

results indicate that the model-data fitting procedure was valid for applying the Bayesian 
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hypothesis testing approach described in Kruschke (2013), as reliable posterior 

distributions in parameters have been achieved. 

 
Figure C1. Evolution of the Rubin and Gelman R-statistic for the DREAM-ZS algorithm when applied 
to a t-test probability distribution model for use in the BEST hypothesis testing approach. The letters 

a-d correspond to Studies 1-4 and the parameters refer to the mean, standard deviation and nu values 
of the t-distribution fitted to the posterior distribution in log-likelihood values. The dashed line 

indicates the convergence threshold of 1.2. 
 

4. Bayesian, Linear Correlation Analysis 
 
                DREAM-ZS was used to fit Pearson’s linear correlation model to the posterior 

parameter distributions for each study and model combination. Overall, the estimation of 5 

parameters was required including the mean and standard deviations of the posterior 

parameter values being compared as well as the correlation coefficient (rho) parameter 

(µ1, µ2, σ1, σ2, and ρ) (Kruschke 2011, 2013). We only present the most significant 

correlations observed between posterior parameter distributions for the Moser model 

(Studies 1-3) and the Heijnen model (Study 4). 

The DREAM-ZS analysis was run using similar specifications as defined in the ABC 

and BEST parameter estimation procedures above, except that the number of generations 

was set to 50,000 and the prior distributions of model parameters consisted of the 

following: normal distribution for µ1 and µ2; uniform distribution for σ1 and σ2; and a 
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uniform distribution for ρ (Table C3). The mean and standard deviation of the prior 

distribution for µ1 and µ2 were set to the mean of the posterior distribution in parameter 

values and 1000, respectively, for each study. Upper and lower for σ1 and σ2 were set to 

vary uniformly between 0 and 1000. Finally, the rho parameter was set to vary uniformly 

between the feasible range of correlation coefficients (-1, 1). For reference, all the settings 

for the DREAM-ZS analysis are summarized in Table C3. 

Table C3 – DREAM-ZS Parameter Settings for Correlation Analysis 
Parameter Setting Nominal Value 

Number of Parameters (D) 5 
Objective Function Log-Likelihood (Option 2) 

Number of Markov Chains (N) 6 
Number of Generations (T) 50,000 

Prior Distribution Normal, Uniform, Normal, Uniform, Uniform  
Boundary Handling None 

Number of Crossover Values (nCR) 3 
Number of Chain Pairs for Proposal (δ) 3 

Random Error for Ergodicity (λE) 0.1 
Randomization (ζ) 10E-12 

Probability of Jump Rate 0.2 
Adapt Selection Probability Crossover Yes 

Scaling Factor of Jump Rate (b0) 1 

 

The convergence statistic of Rubin and Gelman (1992) was summarized for each 

study to verify that the DREAM-ZS algorithm was running through enough generations to 

reach a stable estimate of the posterior distribution in parameters for the linear correlation 

model (Figure C2). For all studies (a-d), convergence appeared to be reached after 50,000 

generations (corresponding to 300K overall for 6 chains), where the R-statistics converge 

to a stable value below the 1.2 threshold for each parameter (Figure C2). These results 

indicated that the model-data fitting procedure was valid, as reliable posterior 

distributions in parameters were achieved for Pearson’s linear correlation model 

application.  



493 
 

 
Figure C2.  Evolution of the Rubin and Gelman R-statistic for the DREAM-ZS algorithm when applied 
to Pearson’s linear correlation model for use in the correlation analysis. The letters a-d correspond to 

Studies 1-4 and the parameters refer to the mean, standard deviation and Pearson’s correlation 
coefficient values for the most significant correlations only. The dashed line indicates the convergence 

threshold of 1.2. 
 

5. Variance Based Global Sensitivity Analysis (VBGSA) Approach with Dependent 
Inputs 
 

VBGSA methods are based on analysis of changes in the model output variance 

when varying one or more input parameters across their full range in parameter 

uncertainty. These methods are based on decomposing the total “unconditional” model 

output variance (using ANOVA) by the average conditional variances obtained by fixing one 

parameter input and allowing the remaining inputs to vary across their full uncertainty 

ranges (termed the main effect) (Saltelli et al. 2008, 2010). Thus, parameters are deemed 

sensitive if the difference between the total unconditional output variance and average 

conditional variance is high (and insensitive if low). In addition, Homma and Saltelli (1996) 

determined that if multiple parameters are fixed at a time, higher order interactive effects 

can be assessed between parameters. From this analysis, two indices can be calculated to 

quantify the sensitivity fractions of each parameter: the first order sensitivity (Si) and total 
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order sensitivity (STi) (Equations 6 and 7). The first order sensitivity (Si) accounts for the 

“main effect” as described above (fixing one variable only), whereas the total order 

sensitivity (STi) reflects the influence of higher order interactions among parameter inputs.  

                                                                       𝑆𝑖 =
𝑉𝑋𝑖(𝐸𝑋~𝑖(𝑌|𝑋𝑖))

𝑉(𝑌)
                                                       (6) 

 

                                                              𝑆𝑇,𝑖𝑛𝑑 = 1 −
𝑉𝑋~𝑖(𝐸𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
                                  (7) 

 

Where Xi is the parameter value of interest, X~i represents every other parameter but Xi, Y is 

the model output corresponding to the set of input parameters X, VXi() and EXi() refer to the 

variance or mean (expectation) of the argument taken over Xi alone, and VX~i() and EX~i() 

refer to the variance or mean of the argument taken over all parameters but Xi.  

One of the main principles of Sobol’s method and corresponding VBGSA approaches 

is that to effectively decompose the variance, the parameter distributions must be 

independent of each other. To circumvent this issue, several recent VBGSA approaches 

have been developed that can dissect the main effect and total order sensitivity indices into 

full (correlated + uncorrelated), correlated, and independent (uncorrelated) indices only 

(Kucherenko et al. 2012, Mara et al. 2015). This allows the sensitivity analysis to be 

conducted unobstructed from the correlations that may be present between input 

variables, allowing two new unique indices to be derived (Equations 8, 9). The full first 

order effect (Si) and total order independent effect (ST,ind) are calculated using identical 

estimates as presented in Equations 6 and 7. However, the independent first order effect 

(Si, ind) and full total order effect (ST,i) can be estimated using the new equations developed 

by Mara et al. 2015 (where the overbar signifies a conditional distribution). Although we 
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calculate all four indices, it is important to note that this study is limited to the analysis of 

the independent (uncorrelated) first and total order effect indices (Equations 7 and 8) only.  

                                                    𝑆𝑖,𝑖𝑛𝑑 =
𝑉𝑋𝑖(𝐸𝑋~𝑖(𝑌|(𝑋�̅�|𝑋~𝑖)))

𝑉(𝑌)
                                                       (8) 

                                                𝑆𝑇,𝑖 = 1 −
𝑉𝑋~𝑖(𝐸𝑋𝑖(𝑌|(𝑋~𝑖

̅̅ ̅̅ |𝑋𝑖)))

𝑉(𝑌)
                                              (9) 

 

5.1 VBGSA Algorithm Specifications and Run Settings 

To estimate the four sensitivity indices presented in Mara et al. (2015) the algorithm 

was slightly modified to allow for individual indices to be calculated at different simulated 

time points. In Mara’s approach, QMC (using Sobol’s sequences) sampling was used to 

cover the entire parameter uncertainty range. Bootstrapped predictions were obtained to 

assess the stability in sensitivity estimates across simulated time points by resampling the 

results 100 times. The posterior distribution in model parameters achieved from the 

DREAM-ABC algorithm was used as the uncertainty range input. In addition, Mara’s method 

required the Spearman’s rank correlation matrix for each study to be provided as input. 

Formal convergence to stable parameter estimates was reached when the maximum 

widths of the 95% confidence intervals of each parameter summarized across all simulated 

time points was below 0.05 (Sarrazin et al. 2016). For both model structures, the number of 

model evaluations required to formally converge was approximately 1,572,864 for Studies 

1 and 3 and 12,582, 912 for Studies 2 and 4 (see section 5.2).  

 

5.2 Convergence Analysis of the VBGSA Approach 
 

The main objective of this section was to ascertain the number of samples (and 

corresponding model evaluations) required by the VBGSA method to converge to reliable 

sensitivity indices. Since the model output was bivariate (substrate and cell 
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concentrations) and dynamic in nature, we reviewed the variance of the indices returned 

for each time step as opposed to a composite sensitivity index. We assessed the sensitivity 

indices returned by each approach after a fixed number of samples (N ~ 64, 128, 256, 512, 

1024, 2048, 4096, 8192…) using either the Moser (Studies 1-3) or Heijnen and Romein 

(Study 4) kinetic models as the experimental test cases. In line with QMC sampling, N 

values had to be an exponent with base 2. In place of experimental repetitions, 

bootstrapping was used to evaluate the precision of each approach (using Nboot = 100 for 

this method). Importantly, the initial conditions (biomass and substrate concentrations) for 

each model were kept identical to the experimental conditions employed by each study. 

Convergence to a stable sensitivity estimate was judged quantitatively, using the following 

criteria: the maximum width of the 95% confidence intervals obtained from bootstrapping 

the sensitivity index for each input parameter should be below 0.05 (Sarrazin et al. 2016). 

The results indicated that convergence for the VBGSA method was reached for most studies 

at approximately 1,572,864 model evaluations or higher (Figure C3).  

 
Figure C3. Convergence of variance-based sensitivity indices accounting for correlation among input 
parameters (using the Moser model, Study 1 conditions, showing substrate only). Subplots A, B, C, and 
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D refer to the full first order, total order, uncorrelated first order (aka independent), and uncorrelated 
total order variance-based sensitivity indices. The sensitivity index corresponding to each input 

parameter is denoted by the color in the legend. The threshold maximum CI width for convergence is 
shown at 0.05 (black dashed lines).  

 
5.3 Ranking System of the VBGSA Approach 
 

Distributions of the parameter sensitivities were obtained by employing one hundred 

bootstrapped replicates for each simulated time point and then re-combining these results across 

all time points. Ranking of the sensitivity (both first and total order) for various input parameters 

can be facilitated by comparing statistics on three levels of analysis, including: the 1) medians, 2) 

lengths of the upper quartiles (i.e., 50-75%) of the boxplots, and 3) the upper whisker lengths. 

For example, parameter sensitivities can first be compared across studies using the median of the 

distributions; if comparing the medians alone results in equivalent rankings for several different 

parameters, the upper quartile lengths would serve as the second level of comparison, and so on. 

Given that the rankings varied noticeably across studies (with no clear trend after examining 

Figure 8), we obtained an “overall” parameter ranking (from most to least influential or 

interactive) based on the system proposed above. 

6. Bayesian Model Comparison and Selection 
 

The Bayesian model selection criteria for studies 1-4 are summarized in Tables C4-

C7. The color shading indicates the best rankings for each model, where red, green, and 

blue indicate 1st, 2nd, and 3rd place respectively (full rankings are given in a separate 

column). The ranking was based on a point scaling from 0-840, where points were 

weighted (i.e., increased) by more reliable Bayesian selection estimates (i.e., LPML (5) > 

WAIC (4) > DIC (3) > BIC (2) > AIC (1)). The first-place finishers received the full available 

points (56), where the next best and so on would be deducted 8 points. This point value 

would then be multiplied by the corresponding weighting factor identified above. This 
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point-based selection method allowed a fully objective ranking of the models compared in 

this study. For these selection criteria, lower numbers of AIC, BIC, DIC, and WAIC and 

higher values of LPML were desired (Table C4-C7).  

Table C4– Tabulated Bayesian Model Selection Criteria for Study 1 (Zhang et al. 2015)  

Model AIC BIC DIC WAIC LPML Ranking 

1 -30.5 -25.5 -35.4 -115 51.1 8 

2 -31.0 -26.1 -35.8 -121 51.2 5 

3 -45.4 -40.4 -64.5 -135 55.8 2 

4 -31.7 -26.8 -36.7 -117 50.9 7 

5 -35.0 -29.0 -65.3 -114 52.5 4 

6 -29.7 -23.7 -63.7 -119 51.0 6 

7 -55.5 -49.5 -68.9 -132 56.0 1 

8 -46.8 -40.8 -47.1 -130 54.6 3 

 
Table C5 – Tabulated Bayesian Model Selection Criteria for Study 2 (Wang et al. 2010)  

Model AIC BIC DIC WAIC LPML Ranking 

1 10.3 11.8 0.637 -35.9 16.6 4 

2 9.40 10.9 -0.201 -33.6 15.7 5 

3 8.66 10.2 -10.3 -37.8 15.6 2 

4 8.53 10.0 -1.06 -30.9 14.9 6 

5 9.12 10.9 -4.25 -30.1 14.2 7 

6 10.3 12.2 1.05 -29.5 12.6 8 

7 6.85 8.67 -4.51 -36.2 17.0 1 

8 7.77 9.6 -4.09 -33.3 15.2 3 

 

 
Table C6 – Tabulated Bayesian Model Selection Criteria for Study 3 (Valeria et al. 2006)  

Model AIC BIC DIC WAIC LPML Ranking 

1 0.401 1.91 -8.73 -33.4 15.0 7 

2 0.346 1.86 -8.72 -31.6 15.3 6 

3 0.512 2.03 -24.0 -31.9 15.1 5 

4 -0.704 0.809 -9.55 -40.6 16.9 3 

5 1.38 3.19 -9.67 -33.2 16.2 4 

6 1.91 3.72 -26.4 -31.5 15.1 8 

7 -13.5 -11.7 -21.6 -46.1 21.3 1 

8 -5.42 -3.60 -37.3 -43.7 19.1 2 

 

 

 

 

 



499 
 

Table C7 – Tabulated Bayesian Model Selection Criteria for Study 4 (Xiao et al. 2011)  

Model AIC BIC DIC WAIC LPML Ranking 

1 19.9 21.4 10.0 -20.6 10.0 8 

2 19.6 21.1 9.78 -22.9 10.6 4 

3 22.7 24.2 0.903 -21.9 10.6 6 

4 19.1 20.7 9.30 -27.1 11.7 3 

5 21.2 23.0 11.9 -24.3 9.23 7 

6 21.3 23.1 9.32 -22.8 11.1 5 

7 -21.1 -19.3 -1.69 -40.9 16.4 2 

8 -11.9 -10.1 -59.9 -49.9 21.2 1 

 

7. Summary of Best Performing Parameter Values 
 

Table C8 summarizes the best performing parameter values achieved for each study 

along with the associated minimum objective function, r2, and Root-Mean Square Error 

(RMSE) fitting metrics. For Studies 1-4, the best and second-best performing models were 

as follows: Moser and Contois; Moser and Contois; Moser and Heijnen; as well as Heijnen 

and Moser. 

Table C8 – Best Performing Parameter Values and Fitting Metrics for Studies 1-4 

Study 
µmax 

(1/day) 
Ks 

(mg/L) 
Y 

Kd 

(1/day) 
b n MinOF r2 RMSE 

1 1.04 218 2.39 0.135 0.00863 2.24 0.0342 0.979 0.0413 

2 6.08 0.100 2.68 0.715 0.0682 9.71 0.5997 0.932 0.245 

3 1.27 0.000108 2.68 0.0115 1.12E-10 2.25 0.0781 0.988 0.0883 

4 3.25 34.4 2.86 0.309 0.465 1.99 0.0923 0.998 0.0961 
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8.  Summary of C0/X0 ratio guideline values 
 

Table C9 summarizes the theoretical C0/X0 ratios calculated for each study. The 

conversions to COD were made using the following balanced chemical oxidation reactions 

(Eqautions 10 and 11) below. The first equation describes the oxidation of microcystin-LR, 

whereas the second equation describes the oxidation of cellular biomass. These equations 

result in the following conversion factors between MC and biomass concentrations and 

theoretical chemical oxygen demands (1.7386 g O2/g MCLR and 1.982 g O2/g biomass).  

𝐶49𝐻74𝑁10𝑂12 + 54𝑂2 →  22𝐻2𝑂 + 49𝐶𝑂2 + 10𝑁𝐻3  (10) 

 

𝐶5𝐻7𝑁𝑂2 + 7𝑂2 →  3𝐻2𝑂 + 5𝐶𝑂2 + 𝑁𝑂3
− + 𝐻+  (11) 

 
Table C9 – Calculated Theoretical S0/X0 Ratios for Studies 1-4 

Study 
C0 

(mg/L) 

X0  

(mg/L) 

Ks 

(mg/L) 

C0 

COD 

(mg/L) 

X0 

COD 

(mg/L) 

Ks 

COD 

(mg/L) 

C0/X0 

1 15 4.83 188 26.0 9.58 326 2.72 

2 42.3 0.248 3.93 73.4 0.492 6.82 149 

3 0.2 0.1152 0.0002 0.3472 0.228 0.0003 1.52 

4 28.8 7.39 30.1 50.0 14.6 52.3 3.41 
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Appendix D: Accurate and Reliable Estimation of Kinetic Parameters for 
Environmental Engineering Applications: A Global, Multi Objective, 
Bayesian Optimization Approach –  
Supplementary Materials 
 

I. Supplementary Results and Methods 

1. Formal Comparison of Single Objective Optimization Algorithms 

Several genetic, evolutionary algorithms were benchmarked against 15 standard 

test functions to evaluate and compare their inherent optimization performance. This 

comparison was deemed necessary before testing took place on actual data sets as some 

algorithms (saDE) were coded from scratch and the performance of AMALGAM-SO and 

LSHADE-cnEpSin was relatively unknown. The standard test functions for benchmarking 

included unimodal, multimodal, and hybrid composition functions clearly defined in 

Suganthan et al. (2005) and referred to by Vrugt and Robinson (2007). The following 

optimization algorithms were assessed in detail: classical differential evolution (DE) (Storn 

and Price 1997); self-adaptive differential evolution (saDE) (Qin and Suganthan 2005, Qin 

et al. 2009); AMALGAM-SO, a multi-method evolutionary single objective optimization 

algorithm (Vrugt et al. 2009); and LHSHADE-cnEpSin, an enhanced adaptive evolutionary 

algorithm (Tanabe and Fukunga 2013, 2014, Awad et al. 2016, Awad et al. 2017).  

1.1 Run Conditions and Control Settings for Single Objective Algorithms 
 

Specifications of the exact run conditions and control parameters used in each of 

these algorithms are specified below. AMALGAM-SO was run using the following three 

specified algorithms: CMA-ES, PSO, and GA, based on results presented in (Vrugt et al. 

2009). The control settings for each algorithm (i.e., PSO and GA) are identical to those 
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presented in Table 3 of Vrugt et al. (2009). Similarly, the number of population members in 

AMALGAM-SO was set to evolve from 10, 20, 40, 80, 160, 320.  

saDE was run using a learning period value of 20 generations and a median 

initialized cross-over value of 0.5 (with standard deviation of 0.1), which was the only 

parameter that was adapted, as specified by Qin et al. (2009). The following five mutation 

strategies were used in our version of saDE: DE/rand/1/bin; DE/rand2best/2/bin; 

DE/rand/2/bin; DE/current2rand/1; and original DE as defined in (Storn and Price 1997). 

Stochastic universal selection (SUS) sampling was used to select the mutation strategies 

and the control parameters lambda and Fde were selected from a normal random 

distribution (using a mean of 0.5 and standard deviation of 0.3) as specified by (Qin et al. 

2009). The number of population members per generation was fixed to 50 for each 

optimization run for the saDE algorithm. 

The LSHADE-cnEpSin algorithm was run using mostly identical settings to those 

specified in Awad et al. (2017). Initialized values of the adapted scaling parameter (Fde), 

crossover probability (CR), and the frequency of the sinusoidal search function were all set 

to 0.5. The memory size for adaptive storage and learning period, as specified in Awad et al. 

(2017) was set to 5 and 20, respectively. The mutation strategy for LSHADE-cnEpSin was 

set to current2pbest/1, as used in Awad et al. (2016, 2017). The probability of performing 

crossover using covariance matrix adaptation (pc) and the proportion of individuals used to 

generate the covariance matrix was set to 0.4 and 0.5, respectively, based on results 

presented in Awad et al. (2017). The initial size of the population and the minimum size of 

the population (after population size reduction) were set to 50 and 4, respectively. All 

other control settings were identical to those reviewed in Awad et al. (2017). 
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1.2 Testing Procedure for Single Objective Algorithms 
 

The testing procedure involved running the specified optimization algorithm on 

each individual test function for a total of 25 individual runs, where the random number 

generator was offset for each run to ensure that performance was varied for each run. All 

the problems were solved in D=10 dimensions, which was sufficient compared to the 

number of parameters used in realistic model simulations presented in this study. A 

predefined tolerance limit, as specified by Suganthan et al. (2005) was used to monitor the 

convergence of each run. The maximum number of function evaluations was set to 100,000, 

which was of similar order of magnitude to that previously specified (Suganthan et al. 

2005). The total number of function evaluations required to reach the specified tolerance 

was recorded along with the minimum function value for each run for adequate 

comparison between optimization algorithms. Similar parameters were calculated as 

specified in Vrugt and Robinson (2007) to quantitatively evaluate the performance of each 

algorithm, including the probability of success (Ps), SP1 value, as well as the average and 

standard deviation of successful runs.  

1.3 Results of the Formal Benchmarking for Single Objective Algorithms 
 

The results of the benchmark comparison indicated that the AMALGAM-SO 

optimization algorithm was, on average, superior to the saDE, LSHADE-cnEpSin, and DE 

algorithms for locating the global minimum for most test functions, which agrees with what 

was originally expected (Figure D1). This performance was especially apparent for the 

unimodal test functions, where AMALGAM-SO could quickly and efficiently locate the global 

minimum values (especially for function # 3, Figure D1). However, as indicated by the high 

spread of the standard deviation values, it was clear that the performance was quite 
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variable for each algorithm, due to the stochastic nature of each search algorithm. All the 

algorithms had difficulty solving the multimodal and expanded test functions 8, 13, and 14, 

which is similar to results presented for other evolutionary optimization algorithms (Vrugt 

and Robinson 2007, Qin et al. 2009). The self-adaptive variant of DE, which switches 

between mutation strategies based on a stored memory of performance outperformed the 

AMALGAM-SO algorithm for test function 9 (shifted Rastrigin’s function) as well as test 

function 15 (the 1st hybrid composition function) (Figure D1). However, the performance of 

saDE was relatively hindered on the rotated benchmark functions (3, 10, 11), where 

AMALGAM-SO generally performed well (Figure D1).  

The LSHADE-cnEpSin global, single objective optimization algorithm, which relies 

on a more complex approach to adapt the DE control parameters than saDE or DE (using an 

ensemble approach with sinusoidal increasing or decreasing adjustments), could 

outperform both the saDE and DE variants for a variety of the unimodal test problems (1-5, 

especially apparent for 3) (Figure D1). This algorithm can effectively balance the 

exploitation of already achieved “best” solutions along with exploration of non-visited 

regions of the search space and is better equipped to handle search spaces with correlated 

parameter values as compared to the saDE and DE versions (Awad et al. 2016). However, 

for multimodal functions 6 and 7, saDE performs slightly better than LSHADE (Figure D1). 

Notably, on average, LSHADE outperforms the AMALGAM-SO algorithm for test functions 9, 

13, and 15 (Figure D1).  
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Figure D1. Comparison of DE, saDE, AMALGAM-SO, and LSHADE-cnEpSin optimization algorithms 

tested on 15 benchmark functions 

 

The calculated values of optimization performance were in general agreement with 

trends illustrated in Figure D1, as demonstrated in Tables D1, D2, D3, and D4. As expected, 

SP1 values were generally lower for unimodal as compared to more complex multimodal 

test functions. The classical DE optimization algorithm was only able to solve test function 

#1 in the allotted number of function evaluations. All optimization algorithms were unable 

to solve (at least once) test functions 8, 13, and 14 (with SP1 values and function 

evaluations approaching 4000 and 100,000 respectively). These results were similar to 

those observed by Vrugt et al. (2009), where no combinations of algorithms of AMALGAM-

SO were able to solve these rather complex arrays of hybrid composition test functions. 

The AMALGAM-SO algorithm used in this benchmark approach performed differently than 

what was reported in Vrugt et al. (2009). For example, AMALGAM-SO (with CMAES-PSO-

GA) did not perform as well on test functions 9, 10, 11, and 15. The reason for these 

inconsistencies is relatively unknown. 
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AMALGAM-SO was able to solve the remaining test functions (1-7, 9-12, 15) with a 

relatively higher probability (Ps) than both the saDE and LSHADE-cnEpSin algorithms 

(Tables D2 and D3). Exceptions to this trend included test functions 9 and 15, which was 

similar to what was depicted qualitatively in Figure D1. In addition, AMALGAM-SO was 

reflected by lower standard deviation values over LSHADE-cnEpSin or saDE, suggesting 

that the search performance was more reproducible and less stochastic in nature (Tables 

D2 and D3). Compared to saDE, AMALGAM-SO generally took a much smaller number of 

function evaluations to reach the global minimum, most likely due to the higher search 

efficiency afforded by the combination of three premier evolutionary search algorithms. 

Finally, the average minimum objective function values (MinAVG) and associated standard 

deviations were generally smaller for the AMALGAM-SO algorithm over saDE or LSHADE-

cnEpSin (exceptions for problems 9 and 15). After comparing trends in tabulated Ps and 

MinSTDEV values, the LSHADE algorithm was slightly more variable in performance than 

the saDE algorithms, due in part to the adaptation procedure in LSAHDE-cnEpSin (Tables 

D2 and D4). Overall, AMALGAM-SO demonstrated a more reliable optimization 

performance than the LSHADE-cnEpSin, saDE and classical DE alone, where the following 

classification can be concluded: AMALGAM-SO>LSHADE-cnEpSin>saDE>DE.  
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Table D1 – Tabulated results of classical DE on 15 benchmark test functions 

Test Function Ps SP1 AVG STDEV MinAVG MinSTDEV 

1 1 3048 76192 6577 8.1046E-07 1.58211E-07 

2 0 4000 - - 1.23E-04 5.54096E-05 

3 0 4000 - - 2966 1195 

4 0 4000 - - 7.09E-03 3.86E-03 

5 0 4000 - - 1.43E-01 7.98E-02 

6 0 4000 - - 74 35.25 

7 0 4000 - - 6.37E-01 7.46E-02 

8 0 4000 - - 20 7.03E-02 

9 0 4000 - - 30 4.29 

10 0 4000 - - 39.54 5.05 

11 0 4000 - - 8.74 0.56 

12 0 4000 - - 3502 921 

13 0 4000 - - 3.26 4.70E-01 

14 0 4000 - - 3.72 1.50E-01 

15 0 4000 - - 326 36 

 
Table D2 – Tabulated results of saDE on 15 benchmark test functions 

Test Function Ps SP1 AVG STDEV Tolerance MinAVG MinSTDEV 

1 1 362 9042 296 1E-06 8.25E-07 1.72E-07 

2 1 712 17788 1657 1E-06 8.66E-07 1.05E-07 

3 0 4000 - - 1E-06 14019 14316 

4 1 708 17704 1993 1E-06 8.78E-07 8.706E-08 

5 1 1166 29146 870 1E-06 9.16E-07 7.39E-08 

6 1 3002 75042 15524 1E-06 3.32E-01 1.10 

7 0.52 3180 60581 22162 1E-02 2.94E-02 1.95E-02 

8 0 4000 - - 1E-02 20 5.90E-02 

9 1 908 22712 1550 1E-02 8.48E-03 1.04E-03 

10 0 4000 - - 1E-02 6.44 2.20 

11 0.04 3998 98900 - 1E-02 4.78 1.36 

12 0.68 2128 31176 17704 1E-02 71 338 

13 0 4000 - - 1E-02 6.75E-01 1.24E-01 

14 0 4000 - - 1E-02 3.03 3.24E-01 

15 0.36 2968 35644 9907 1E-02 101 141 
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Table D3 – Tabulated results of AMALGAM-SO on 15 benchmark test functions 

Test Function Ps SP1 AVG STDEV Tolerance MinAVG MinSTDEV 

1 1 69 1737 97 1E-06 7.82E-07 1.57E-07 

2 1 108 2688 132 1E-06 7.78E-07 1.87E-07 

3 1 326 8152 504 1E-06 7.92E-07 1.73E-07 

4 1 126 3160 376 1E-06 7.59E-07 1.67E-07 

5 1 280 6997 329 1E-06 8.71E-07 1.32E-07 

6 1 423 10568 9319 1E-06 8.98E-03 7.40E-04 

7 1 316 7908 6913 1E-02 8.54E-03 1.38E-03 

8 0 4000 - - 1E-02 20.368 0.064 

9 0.72 2348 42628 18906 1E-02 2.25E-01 6.50E-01 

10 0.52 3118 57615 18282 1E-02 5.61E-01 6.44E-01 

11 0.96 1264 28745 17857 1E-02 6.04E-02 2.56E-01 

12 1 894 22348 18753 1E-02 7.71E-03 1.63E-03 

13 0 4000 - - 1E-02 5.41E-01 1.99E-01 

14 0 4000 - - 1E-02 1.793 0.613 

15 0.08 3935 79420 15061 1E-02 143.200 136.926 

 

Table D4 – Tabulated results of LSHADE-cnEpSin on 15 benchmark test functions 

Test Function Ps SP1 AVG STDEV Tolerance MinAVG MinSTDEV 

1 1 223 5568 59 1E-06 6.61E-07 1.9E-07 

2 1 265 6634 0 1E-06 6.89E-07 1.38E-07 

3 0.8 3027 69608 32699 1E-06 3.95E-05 7.85E-05 

4 1 293 7313 72 1E-06 9.38E-07 5.4E-08 

5 1 390 9740 195 1E-06 7.54E-07 5.94E-08 

6 0.32 3129 31959 4839 1E-06 2.71E+00 1.89 

7 0.52 4000 100000 0 1E-02 1.21E+03 7.23E+01 

8 0 4000 - - 1E-02 20 8.73E-02 

9 1 644 16098 1594 1E-02 8.17E-03 1.77E-03 

10 0.04 3999 99530 - 1E-02 3.58 1.60 

11 0 4000 - - 1E-02 3.81 1.03 

12 0.52 2083 7838 2731 1E-02 97 336 

13 0 4000 - - 1E-02 2.20E-01 4.40E-02 

14 0 4000 - - 1E-02 2.24 6.05E-01 

15 0.44 2716 27057 13519 1E-02 161 189 
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2. Formal Testing of the Model Prediction Residuals  
 
 This section confirms the validity of several assumptions made when deriving the 

maximum likelihood function used for the GSO and GMO algorithms in this study. The four 

main assumptions made in this derivation were as follows: 

1. The error residuals are normally distributed with zero mean; 

2. The error residuals are independent; 

3. The error residuals are homoscedastic (constant variance).  

 Regarding the first assumption, quantile-quantile (QQ) plots of the best performing 

parameter sets for each study (using the Moser model for Studies 1-3 and Heijnen model 

for Study 4) indicated that the error residuals for both substrate and cell concentration 

predictions were normally distributed, as all residuals fell close to the QQ line plot (Figure 

D2) (Anderson and Darling 1954, Thode 2002). In addition, an Anderson-Darling (AD), 

one-sample Komolgorov-Smirnov (KS) test, and D’Agostino Pearson K2 test were 

performed to quantitatively assess if the error residuals were normally distributed (Thode 

2002, Wilcox 2005, Zar 2010). Both the AD and KS tests evaluate the significance of the 

departure of an empirical cumulative distribution function (CDF) created from the data 

from the CDF of a hypothetical normal distribution (where the KS significance test is 

nonparametric and the AD test places more emphasis on the tails of the empirical 

distribution), whereas the K2 test evaluates the normality based on measures of skewness 

and kurtosis of the data alone (Thode 2002, Wilcox 2005, Zar 2010).  

The results demonstrated that for most Studies (2-4), the null hypothesis that the 

distribution of error residuals was normal was not rejected, as the calculated p-values were 

mostly greater than 0.05 (Table D5). Although rejection of the null hypothesis was not 
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observed for the AD test for Study 1, the KS test indicated otherwise (Table D5). Similarly, 

the null hypothesis was rejected for the cell concentration residuals obtained from Study 2, 

indicating the distribution of residuals was not normal based on measures of skewness and 

kurtosis alone (Table D5). We also quantitatively checked if the mean of the residuals for 

each Study was significantly different from 0 using the F-test statistical approach presented 

in (Knightes and Peters 2000). The confidence level values calculated ranged from 61% to 

92%, indicating that there was generally high certainty (greater than 90% for Studies 1,2 

and 4) that the mean of the error residuals was 0; however, these results were generally 

not statistically significant using the 0.05 significance level.   

Table D5 – Results of the normality testing significance (p) values for residuals from predicted 
substrate and cell concentrations 

Study 
AD Test KS Test K2 Test 

p-value 
(Substrate) 

p-value  
(Cells) 

p-value 
(Substrate) 

p-value  
(Cells) 

p-value 
(Substrate) 

p-value 
(Cells) 

1 0.297 0.149 0.0148 0.0095 0.463 0.291 
2 0.527 0.092 0.264 0.276 0.691 0.0378 
3 0.869 0.257 0.228 0.131 0.858 0.158 
4 0.581 0.749 0.236 0.141 0.694 0.564 
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Figure D2. Quantile-quantile plots for the best fitting parameter sets obtained for studies 1-4, 

separated by residuals pertaining to A) substrate and B) cell concentration variables.  

 

To check if the error residuals were independent, several methods were 

investigated. Autocorrelation plots were first developed to qualitatively inspect whether 

the error residuals were independent and non-correlated (Figure D3) (Box 1994, Hamilton 

1994). As observed in Figure D2, most of the autocorrelation values were close to 0, 

especially for Studies 2-4, which demonstrates that there was little temporal similarity 

among error residuals. In addition, most of the autocorrelation estimates ranged within the 

95% standard error bounds, signifying that the autocorrelation response was relatively 

uniform across different lag time periods. For some initial lag periods (i.e., 1), the 

autocorrelation values were high, especially for Study 1; however, the values seemed to 

dampen as the number of lag periods progressed, which was indicative of independent 

residual distributions for both predicted substrate and cell concentrations.   

The Ljung Box Q, Runs test, and Turning point tests were used to quantitatively 

assess the independence of the residual errors for each study (Box 1994, Cromwell et al. 



512 
 

1994, Gibbons 1996, Yürekli̇ et al. 2005). The Ljung Box Q test investigates the null 

hypothesis that the residuals are not autocorrelated using a chi-squared statistical test 

(Box 1994). This test depends on the number of lags (L) incorporated, where we varied the 

number of lags from 1 to the number of observations and reported the minimum p-value 

from these estimates. Based on Table D6, a majority of the p-values were greater than 0.05, 

suggesting that the null hypothesis was not rejected and that the residuals are indeed not 

autocorrelated.  The only exception to these results was the error residuals obtained from 

the substrate concentration predictions in Study 1, which resulted in a rejection of the null 

hypothesis.  

The Runs test, on the other hand, tests the null hypothesis that the residuals come in 

random order, and can help support the hypothesis that they are independently distributed 

in time or space (Cromwell et al. 1994, Gibbons 1996, Yürekli̇ et al. 2005). For all studies, 

the p-value was greater than 0.05, signifying that the null hypothesis was not rejected, and 

that the error residuals were indeed in random, independent ordering (Table D6).  

Finally, the Turning test (based on the number of up or down turns) tests the null 

hypothesis that the set of residuals are independent and identically distributed, random 

values. If the value of the Nt statistic calculated from this test is greater than 1.96, then the 

null hypothesis is rejected, and the values do not come from an independent, identically 

distributed set of random numbers (Cromwell et al. 1994, Gibbons 1996, Yürekli̇ et al. 

2005). The results in Table D6 indicated that most of the residuals were indeed 

independent and identically distributed random numbers, except for the residuals obtained 

from the substrate predictions in Study 1, as the Nt statistic values were generally below 

the 1.96 critical threshold. 
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Table D6 – Results of the independence testing significance (p) values for residuals from predicted 
substrate and cell concentrations 

Study 
Ljung Box Q Test Runs Test Turning Test 

p-value 
(Substrate) 

p-value 
(Cells) 

p-value 
(Substrate) 

p-value 
(Cells) 

Nt-value 
(Substrate) 

Nt-value 
(Cells) 

1 0.0204 0.0931 0.095 0.167 2.98 0.916 
2 0.166 0.485 1 1 1.76 0 
3 0.0977 0.859 1 1 1.76 1.76 
4 0.139 0.899 1 1 0 1.76 

 
Figure D3. Autocorrelation plots for the best fitting parameter sets obtained for studies 1-4, separated 

by residuals pertaining to A) substrate and B) cell concentration variables.  
To check for homoscedasticity, Engle’s ARCH test (Engle et al. 1987), the Bresuch 

and Pagan (1979), and the White test (White 1980, Wooldridge 2015) methods were 

applied. Engle’s ARCH test tests the null hypothesis that a series of residuals exhibits no 

conditional heteroscedasticity by fitting an ARCH(L) model to the residuals, where L 

represents the number of lags included (Engle et al. 1987). Similar to the Ljung Box Q Test, 

we varied the number of lags included to fit/develop the ARCH model from 1 to the number 

of observations and reported the minimum p-value from these estimates. Based on this 

test, the null hypothesis was not rejected for any study, as the distribution of p-values 

never dropped below the 0.05 significance level (Table D7). Thus, we can conclude with 

high statistical certainty that there was no conditional heteroscedasticity to the residuals 

obtained from the predictions of substrate or cell concentrations for each study.  
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The Breusch-Pagan and White methods test whether the variance of the error 

residuals from a regression are dependent on the values of the independent “predictors,” 

indicating heteroscedasticity (Engle et al. 1987, Breusch and Pagan 1979, White 1980, 

Wooldridge 2015). Here, the “predictors” are the predicted substrate and cell 

concentrations from the nonlinear kinetic models. The Breusch-Pagan method differs from 

the White method as it considers a simple, additive linear regression between the squared 

residuals and the predictors, whereas the White method considers a more complex 

quadratic regression between the squared residuals and predictors. Both tests test the null 

hypothesis that the error residuals are homoscedastic using a chi-squared statistical 

significance test. Different results were observed between the two methods, as the White 

test generally did not reject the hypothesis that the error residuals were homoscedastic (as 

all p-values > 0.05), whereas the Breusch-Pagan test rejected the null hypothesis for the 

residuals obtained from substrate predictions for Studies 2-4 (Table D7). Clearly, if the 

datasets were not so sparse, and included higher resolution at more dynamic portions of 

the kinetic curves, the validity of these statistical tests would be greatly improved.  

However, despite this uncertainty in the experimental datasets acquired, it is generally safe 

to make a preliminary conclusion that in the majority of cases the error residuals were 

proven to be homoscedastic, as initially assumed.  

Table D7 – Results of the heteroscedasticity testing significance (p) values for residuals from 
predicted substrate and cell concentrations 

Study 
Engle’s ARCH Test Breusch-Pagan Test White Test 
p-value 

(Substrate) 
p-value 
(Cells) 

p-value 
(Substrate) 

p-value 
(Cells) 

p-value 
(Substrate) 

p-value 
(Cells) 

1 0.0643 0.255 0.132 0.551 0.246 0.475 
2 0.183 0.223 0.0275 0.667 0.0827 0.098 
3 0.165 0.223 0.0278 0.552 0.088 0.566 
4 0.0981 0.223 0.0284 0.271 0.087 0.532 
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3. Formal Comparison of Multi Objective Optimization Algorithms 
 

A total of 10 evolutionary, multi-objective optimization algorithms (EMOA) were 

formally benchmarked against 13 test functions. The EMOA algorithms selected for 

screening in this study were considered from the results presented in Tanabe et al. (2017) 

(for M = 2 objective functions, similar conditions to our problem herein), which 

benchmarked 21 recent and classical EMOA algorithms using the WFG suite of test 

functions. The 10 selected algorithms included: MO-CMA-ES (the multi-objective version of 

CMA-ES (Igel et al. 2007); NSGA-III (Deb and Jain 2014); MOEA/D (Zhang and Li 2007); 

MOEA/DD (Li et al. 2015b); SPEA2-SDEA (Li et al. 2014b); IBEA (Zitzler and Künzli 2004); 

RVEA (Cheng et al. 2016); MOEA/IGDNS (Tian et al. 2016); AMALGAM-MO (Vrugt and 

Robinson 2007); and A-NSGA-III (Jain and Deb 2014). For the MO benchmark tests, we 

selected test functions that were both non-convex (WFG 1-9) and convex (MaF3, MaF5, 

MaF11, MaF15), multi-modal, biased, separable, and non-separable to gain a full 

perspective of the performance of each algorithm. Importantly, the ratio of convex to 

concave problems was set at 1:1 to ensure that performance evaluations were equally split 

between these two specific categories of test problems (even though the MO problems in 

this study were convex). Each of these test algorithms and problems (except AMALGAM-

MO) were compiled by Tian et al. (2017) in a convenient platform for testing and 

comparison (PlatEMO v.3.0), which was utilized in this study.  

The metrics used to compare the EMOA algorithms differed significantly from the 

SO algorithms, as it is impossible to judge the performance of an EMOA using one singular 

criterium. Similar to criteria reviewed by Zitzler et al. (2000), the EMOA algorithms were 

compared using the final, non-dominated Pareto solution sets returned by each 
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optimization run (which was different than criteria presented by Tanabe et al. (2017)). The 

algorithms were judged based on three categories: accuracy and convergence (how close 

the solution sets were to the exact Pareto front), diversity (distribution of solutions and 

spread/coverage), and the number of nondominated solutions in the experimental solution 

set (Zitzler et al. 2000). Accuracy and convergence were evaluated based on five primary 

parameters: set coverage (C, higher number is better), final generational distance (GD, 

lower number), inverted generational distance (IGD, lower number), hypervolume (HV, 

higher number), and normalized hypervolume (NHV, higher number), described in detail 

elsewhere (Huband et al. 2006, Janssensand Pangilinan 2010, Riquelme et al. 2015, Yen and 

He 2014, Wang et al. 2017). It is important to note that C, IGD. HV, and NHV metrics also 

consider diversity/uniformity of solution sets in addition to accuracy and convergence. 

Diversity or uniformity of solution sets were judged using the following parameters: 

spacing (S), spread (Sp), and pure diversity (PD). The number of nondominated solutions 

in the experimental Pareto front was assessed using the RNI metric (ratio of nondominated 

solution sets) (Yen and He 2014). In addition, the CPU time was compared among 

algorithms, yet another factor to benchmark for each test function. 

To fairly assess the performance of each algorithm over the wide range in test 

problems, a scoring system was constructed for each metric (excluding coverage and RNI 

statistics). In this approach, a score on the scale of 1-10 (10 being ‘excellent’ and 1 being 

‘poor’) was delegated to each algorithm after sorting the calculated results for each metric 

(in either ascending or descending order, depending on the metric chosen). For this scoring 

method, a perfect performance would be equivalent to a score of 1040 (first place for each 

problem and metric), whereas a very poor performance would be equivalent to 0. The 
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coverage and RNI scores were excluded from this comparison as each algorithm reported 

many similar values for each of these metrics, making it difficult to find a rank for 

comparison.  

3.1 Run Conditions and Control Settings for Multi-Objective Algorithms 

The AMALGAM-MO run conditions and control settings used in this study are 

summarized in Table D8. Run conditions were kept identical to those developed for the 

other two MO algorithms (fixed population and generations). All the control settings 

required to run this algorithm were identical to the default values presented in Vrugt 

(2016), including all the recombination methods listed. Latin hypercube sampling was used 

for sampling from the initial prior distribution. Boundary handling was set to the reflect 

option, where mutated values outside the feasible range were reflected an equal distance 

back into the feasible parameter space. DE scaling factors (i.e., Fde) and PSO inertia factors 

were set to uniform distributions (U) using the ranges specified in Table D8.  

Table D8 – Run conditions and control settings for the AMALGAM-MO application 
Parameter Setting Nominal Value 

Number of Parameters (D) 6 
Population Size (N) 100 

Number of Generations (T) 20,000 
Number of Objective Functions (m) 2 

Prior Distribution Latin 
Boundary Handling Reflect 

Recombination Methods GA, PSO, AMS, DE 
NSGA Crossover Probability 0.9 
NSGA Mutation Probability  1/6 

NSGA Cross Distribution Index 10 
NSGA Mutation Distribution Index 50 

AMS Jump Rate 0.9440 
DE Scaling Factor – DE Variant 1 U[0.6,1] 
DE Scaling Factor – DE Variant 2 U[0.2,0.6] 

PSO Social Factor 1.5 
PSO Cognitive Factor 1.5 

PSO Inertia Factor U[0.5,1] 
Thinning Rate 1 

Minimum Selection Probability 0.05 
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EMOA run conditions were fixed for each test problem to settings that resembled 

the unique problems presented in this study including M=2 objective functions, d = 6 

“parameters”, N = 100 population members, and 50*104 function evaluations. The SBX 

crossover and polynomial mutation functions were selected for each run, as suggested by 

(Tian et al. 2017) and provided by the PlatEMO user interface. The user settings for the 

crossover and mutation functions were identical to those presented in Tanabe et al. (2017) 

(pc = 1, nc = 30, pm = 1/d, and nm = 20). Importantly, each algorithm was run for five 

individual replicates and an average metric was computed and recorded for each test 

problem to gain some statistical significance in the comparison evaluation.  

The results of the formal comparison demonstrated that the NSGA-III algorithm was 

the most robust multi objective optimizer to the wide range in test problems encountered, 

whereas the adaptive NSGA-III algorithm performed the worst (Table D9). Interestingly, 

although AMALGAM-MO combines several different algorithms (i.e., PSO, NSGA-II, DE) to 

improve MO performance, it was still outperformed by the NSGA-III algorithm. This result 

was unexpected; however, the relatively short run time (50,000 function evaluations) may 

have hindered the performance of the AMALGAM-MO algorithm. Future comparisons 

should be made between all algorithms at a higher number of function evaluations to 

clarify this point. The recently introduced MOEA/IGD-NS algorithm also showed a good 

overall performance across the 13 benchmark test functions (Table D9).  

In addition, the percent contribution of each metric to the total score is summarized 

in Table D9. For the top two performing algorithms, the contribution from each metric to 

the total score was relatively equivalent (ranging from 9-14%). NSGA-III was slightly more 

accurate (with higher contributions from HV/NHV metrics) as compared to AMALGAM-MO. 
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However, the distribution of solutions along the pareto front were perhaps more uniform 

(higher Spacing contribution) and diverse (higher PD contribution) for AMALGAM-MO over 

NSGAIII. The MOEA/IGD-NS algorithm suffered from a high CPU-time and accuracy (low 

CPU/GD contribution) but gained a competitive advantage in the distribution and diversity 

criteria (PD, Spacing, Spread) of the experimental solution sets generated. The remaining 

algorithms demonstrated a wider spread in the contribution from each metric to the total 

score as compared to the top three performing algorithms (from 6-37%), where higher 

contributions came from CPU time or diversity/distribution metrics as opposed to accuracy 

metrics.  

Table D9 – Comparison of the MO algorithms performance against 13 benchmark test functions 

Rank Algorithm 
Total 
Score 

CPU 
Time 
(%) 

GD 
(%) 

IGD 
(%) 

Spacing 
(%) 

Spread 
(%) 

HV 
(%) 

NHV 
(%) 

PD 
(%) 

1 NSGA-III 774 13 13 14 11 11 14 14 9 

2 
AMALGAM-

MO 
747 12 10 14 14 11 13 13 14 

3 MOEA/IGDNS 673 4 11 14 16 18 11 11 14 
4 RVEA 643 20 8 12 11 15 11 11 13 
5 SPEA2-SDE 574 7 15 13 11 10 17 17 11 
6 MOEA-DD 568 3 16 17 10 14 16 16 9 
7 IBEA 536 14 16 9 10 7 14 14 17 
8 MOEA-D 470 10 11 11 17 19 10 10 10 
9 MO-CMA 421 16 9 11 12 13 10 10 20 

10 A-NSGAIII 314 37 18 6 15 5 6 6 6 
 

Visual inspection of the performance of the best performing algorithm (NSGA-III) 

qualitatively confirms the high accuracy and precision of the NSGA-III MO algorithm 

(Figure D4). Average results from each independent run (from N=5 repetitions) showed 

that the experimental, non-dominated solutions from the NSGA-III algorithm well 

approximate the true Pareto front for many of the test functions, both concave and convex 

in nature. The largest error between the true Pareto front and the experimental front was 
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observed for the WFG-8 test function, which was similar to the performance among all 

other algorithms. In addition, the coverage of solutions for the WFG1 and 2 as well as 

MaF11 staircase functions is relatively sparse at lower values of objective function 1 

(higher values of objective function 2), where the lack of diversity in NSGA-III solutions for 

some test problems was similarly confirmed in Table 2 above (Figure D4). These results 

highlight NSGA-III as a reliable and consistent multi-objective optimization algorithm that 

will be used as a primary algorithm for model-data calibration in this study.  

 
Figure D4. NSGA-III MO performance when benchmarked against 13 test functions (for M=2 objective 

functions). The blue line indicates the true Pareto front, whereas the red circles indicate the 
experimental Pareto front as determined using the NSGAIII algorithm.  

 

4. DREAM-ZS Run Conditions: Approximate Bayesian Computation 

The DREAM-ZS run conditions for the Approximate Bayesian Computation 

algorithm are summarized in Table D10. To run the ABC component within DREAM-ZS, the 

ABC objective function had to be explicitly specified in the DREAM-ZS calling script. Of the 

two functions provided, the distance function was chosen with a threshold (𝜀𝑗) value set to 

0.025 as recommended in Sadegh and Vrugt (2014). Depending on the model structure and 

the experimental dataset applied, the number of generations was varied from 50,000 to 
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400,000 until convergence was formally reached (using the Gelman-Rubin convergence 

statistic threshold, Rubin and Gelman 1992). The prior distribution of model parameters 

was always set to a uniform distribution within the specified realistic uncertainty range. 

The remaining parameter values specified in Table D10 were found to be optimal to 

improve convergence speed and were primarily based on information presented in Vrugt 

(2016) and by trial and error approaches.  

Table D10 – DREAM-ZS Parameter Settings for the ABC Analysis 
Parameter Setting Nominal Value 

Number of Parameters (D) 6 
Objective Function ABC Distance Function (Option 22) 

Number of Markov Chains (N) 6 
Number of Generations (T) 50,000-400,000 

Prior Distribution Uniform 
Boundary Handling Reflect 

Number of Crossover Values (nCR) 3 
Number of Chain Pairs for Proposal (delta) 3 

Random Error for Ergodicity (lambda) 0.1 
Randomization (zeta) 10E-12 

Probability of Jump Rate 0.2 
Adapt Selection Probability Crossover Yes 

Scaling Factor of Jump Rate (b0) 1 
Epsilon Value 0.025 
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5. Constrained Boundaries for Improved FMINCON Search 

Lower and upper parameter boundaries for the improved FMINCON local search are 

presented in Table D11 for reference. The limits on each parameter were set very close to 

the optimal parameter sets determined by the global optimization algorithms to gauge the 

optimization performance of the local search methods around the global optimum.   

Table D11 – Summary of constrained lower (top row) and upper (bottom row) parameter boundaries 
for the improved FMINCON optimization tests 

Study µmax Ks Y Kd b n 

1 
1.06 219 2.60 0.12 0.01 2.17 
1.08 220 2.80 0.13 0.011 2.19 

2 
6 0.07 3 0.8 0.07 9 
7 0.09 4 0.9 0.08 10 

3 
1.2 0.0001 1.7 0.01 0.000000000075 2.2 
1.3 0.0002 1.8 0.02 0.00000000008 2.3 

4 
2.7 0.0001 3.3 0.02 0.6 2.6 
2.8 0.0002 3.4 0.03 0.7 2.7 

 
6. Formal Convergence of DREAM-ABC vs. DREAM-GL (Gaussian Likelihood) Bayesian 
Optimization Approaches 
 

In this section, the formal convergence efficiency of the Approximate Bayesian 

Computational (ABC) variant of the Bayesian optimization approach DREAM was compared 

to that of the standard DREAM variant incorporating a formal Gaussian Likelihood 

objective function. The results are specifically presented for the Moser model calibration. 

Both the mean and standard deviation from five independent realizations of the overall R 

statistic of [49] were used to compare the convergence efficiency and reliability for both 

approaches. For all studies (a-d), the DREAM-GL (Gaussian Likelihood) approach 

demonstrated improved formal convergence efficiency over the DREAM-ABC approach 

(Figure D5). Both approaches formally converged by at least 50,000 generations, except for 

Study 3, which clearly required a larger number of generations before convergence was 

feasible using both approaches (Figure D5). Apart from Study 3 results, the DREAM-ABC 
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approach was marked by a more consistent optimization performance as compared to the 

DREAM-GL approach, as reflected by the small standard deviation in the R-statistic across 

the repetitions performed (Figure D5).  

 
Figure D5. Evolution of the overall Gelman and Rubin R-statistic for both the DREAM-ZS (ABC) 

algorithm (red) and the DREAM-ZS (Gaussian Likelihood) algorithm when calibrated against the 
Moser model for each corresponding dataset (1-4). The letters a-d correspond to Studies 1-4. The solid 
lines and grey shaded areas indicate the mean value and one standard deviation from the mean value 

across five independent realizations. The dashed line indicates the convergence threshold of 1.2. 
 
7.0 Parameter Identifiability of DREAM-ABC vs. DREAM-GL (Gaussian Likelihood) 
Bayesian Optimization Approaches 
 

Figures D6-D8 summarize the experimental results comparing the parameter 

identifiability between the DREAM-ABC and DREAM-GL approaches for Studies 1-3, 

respectively. For all studies, the parameter identifiability and definition were drastically 

improved using the DREAM-ABC approach. It is apparent that the Bayesian optimization 

has not converged for Study 3, as the mean parameter values from the ABC approach were 

not homogenous, especially for µmax, Ks, and Y model parameters. In addition, some 

parameters were not identifiable, even when the DREAM-ABC approach was used, as 

observed for most Y values and some Kd values across all studies (Figures D6-D8).  
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Figure D6.  Evolution of the mean (across all Markov chains) parameter values for both the 1) 

DREAM-ZS (Gaussian Likelihood) and 2) the DREAM-ZS (ABC) algorithms when calibrated against the 
Moser model using the first experimental dataset. The results of five independent repetitions are 

presented, as differentiated by the color scale of the legend. 
 
 

 
Figure D7. Evolution of the mean (across all Markov chains) parameter values for both the 1) 

DREAM-ZS (Gaussian Likelihood) and 2) the DREAM-ZS (ABC) algorithms when calibrated against the 
Moser model using the second experimental dataset. The results of five independent repetitions are 

presented, as differentiated by the color scale of the legend. 
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Figure D8. Evolution of the mean (across all Markov chains) parameter values for both the 1) DREAM-

ZS (Gaussian Likelihood) and 2) the DREAM-ZS (ABC) algorithms when calibrated against the Moser 

model using the third experimental dataset. The results of five independent repetitions are presented, as 

differentiated by the color scale of the legend. 
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Appendix E: A Reliable and Efficient Semi-Parametric Approach to 
Moment Independent Global Sensitivity Analysis Based on Copulas –  
Supplementary Materials 
 

I. Supplementary Results and Methods 

1.  Rolling Pin Method: Maximum Likelihood Optimization  

In this section of the dissertation, we briefly describe the details behind the 

maximum likelihood (ML) optimization to learn the monotonization variables required by 

the Rolling Pin method. It is important to note that the learning of these parameters was 

particularly fast using any global optimization approach, with complexity O(d2) (where d is 

the dimension of the problem) (Mohseni Ahooyi et al. 2014). The ML method 

simultaneously optimizes the monotonization parameter for each transformed model 

output according to Equation 1, where c() represents the copula probability density 

function taking as input the CDF values (Fy/Fx) of model input and output and fy/fx signify 

the marginal PDF values of the output and inputs, respectively. In this example, α1 is being 

optimized (as α2 = 0 for the reference variable) for the pairwise dependency between Yi 

(model input) and Xi (model output) over k number of samples. Equation 1 is summed over 

i ranging from 1 to the number of dimensions (d) considered in the model to obtain the 

total log-likelihood, where different values of α1 are considered for each dimension.  

ln(𝐿(𝛼1)) =  ∑ ln (𝑐(𝐹𝑌,𝑖(𝑌𝑖,𝑘
𝑛
𝑘=1 ), 𝐹𝑋,𝑖(𝑋𝑖,𝑘))) + ∑ [ln (𝑓𝑦𝑖(𝑌𝑖,𝑘)) + ln (𝑓𝑥𝑖(𝑋𝑖,𝑘))]

𝑛
𝑘=1 +

𝑛[ln(1 − 𝛼1) + ln(1 − 𝛼2)]                                                                                                         (1) 

The LSHADE-EpSin algorithm, developed by Awad et al. (2016) was selected in this 

study to perform the ML optimization procedure. LSHADE-EpSin is based on the theory of 

differential evolution or metaheuristics, in which a population of individuals (potential 

solutions to an optimization problem) are evolved based on their fitness and random 
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probabilities of acceptance and or mutation (i.e., control parameters). The LSHADE 

algorithm exploits a novel adaptation of the control parameters by using two sinusoidal 

formulas, one fixed decreasing adjustment and an adaptive history based increasing 

adjustment to achieve quick convergence to the global optimum solution (Awad et al. 

2016). The algorithm was set to run for a maximum of 20,000 function evaluations with an 

initial population size of N = 50. Convergence was reached when either the maximum 

number of function evaluations was exceeded or the range of the fitness values for the 

entire population was less than 1E-06 (usually around 10-12K function evaluations). All 

other control parameters and algorithm settings were identical to those specified in Awad 

et al. (2016). 

The objective function for running the ML optimization approach required an 

approximation of the CDF and PDF of the model output and inputs (Fy(Y), Fx(X), fy(Y), 

fx(X)). The CDFs were used to fit a parametric copula to estimate a copula density, as 

required in Equation 8 (in Chapter 6). Fitting of the parametric copula was achieved using a 

modified maximum likelihood approach (described in Section 2.1.3).  The PDF estimates 

were used directly in Equation 8 (Chapter 6) for both model inputs and outputs, alike. Both 

CDFs and PDFs for the model outputs were estimated using a well-established, accurate, 

and computationally efficient kernel density estimation method (Botev et al. 2010). The 

method developed by Botev et al. (2010) is an improved KDE method that can account for 

distributions that may be highly skewed or multi-modal. It is important to note that the 

input variables followed a standard normal distribution; therefore, they did not require 

KDE using the method developed by Botev et al. (2010). 
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2. Fitting of the Parametric Copula Models: Canonical Maximum Likelihood Approach 

A canonical maximum likelihood estimation (CMLE) method, which is provided as a 

routine in MATLAB’s statistics toolbox (r2015b), was ultimately used for fitting each 

parametric copula model to the QMC training points originally selected in Step 1, Figure 48 

of Chapter 6. This method is termed “canonical” as it relies on CDF values from each variate 

that were estimated non-parametrically (using a KDE approach). The CMLE method relies 

on finding the optimal value of the parametric copula parameter (θopt) through 

maximization of the log-likelihood of the copula density function, 𝑐(𝑢1,𝑢2; 𝜃), where, the 

value of θ is limited to the ranges defined in Table 1 in the main manuscript (Equation 2). 

The copula density function for the Frank copula is presented in Equation 3 as an example 

(Charpentier et al. 2007). MATLAB’s built in fminbnd algorithm (using default tolerances, 

maximum function evaluations, and iterations), which relies on golden section search and 

parabolic interpolation (Forsythe et al. 1977, Brent 2013), was used to fit the parametric 

copula to the QMC training samples. This particular algorithm has proved very effective for 

maximum log likelihood optimization of nonlinear functions with a single parameter.    

                                             𝜃𝑜𝑝𝑡 = argmax𝜃∈𝛩 ∑ log [𝑐(𝑢1,𝑢2; 𝜃)]𝑛
𝑖=1              (2) 

                                            𝑐(𝑢1,𝑢2; 𝜃) =   
𝜃(1−𝑒−𝜃)𝑒−𝜃(𝑢1+𝑢2)

[(1−𝑒−𝜃)−(1−𝑒−𝜃𝑢1)(1−𝑒−𝜃𝑢2)]
2  (3) 

3. General Procedure for Sampling from the Parametric Copula Models 

The elliptical copulas (i.e., Gaussian and t distributions) were sampled using the 

inverse cumulative distribution function method. This procedure involved sampling from a 

multivariate normal or t-distribution, using the model parameters (correlation matrices (Σ) 

and degrees of freedom (ν)) obtained from the previous step. First, MATLAB’s multivariate 

normal (mvnrnd) or t random sampling functions (mvtrnd), which rely on the Cholesky 
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decomposition of the correlation matrix for sampling, were utilized for initially sampling 

from these distributions. Then, the inverse normal or t-distribution functions (norminv or 

tinv) were used to compute the copula CDF values, which were the targeted outputs of the 

sampling procedure.   

The conditional distribution method (CDM), which is available as a MATLAB routine, 

was implemented to sample from each parametric copula. The CDM algorithm, which is 

also conveniently built into MATLAB’s statistics toolbox, relies on a closed form of the 

inverse conditional CDF of each parametric copula (Equation 4). The three steps for 

implementing the CDM algorithm were as follows (Joe 1997, Nelsen 2007): 

1) Generate two independent, standard uniform variates u1 and t; 

2) Use the closed form, inverse of the conditional CDF derived (i.e., for the Frank 

copula) (Equation 4) to generate samples from the copula CDF: 𝑣 =  ∅−1(𝑢1, 𝑡); 

∅−1(𝑢1, 𝑡) =  −
1

𝜃
𝑙𝑜𝑔 [

 ((𝑒−𝜃𝑢1)(
1−𝑡

𝑡
)+𝑒−𝜃)

(1+𝑒−𝜃𝑢1(
1−𝑡

𝑡
))

]          (4) 

3) The pair (𝑢1, 𝑣) is now a sample from the parametric copula.  

4. Alternative Procedures for Sampling from the Parametric Copula Models 

Several alternative parametric copula sampling methods (other than the inverse 

conditional distribution method (CDM)) were compared in this study to improve the 

accuracy and convergence efficiency. The alternative methods investigated can be classified 

into approaches that sample directly from the copula as well as those that re-sample from 

the samples already obtained from the copula. For the Archimedean copulas, both classes 

of sampling methods were implemented. However, only the re-sampling class of alternative 



530 
 

methods were implemented for the elliptical copulas. In this section, we review the 

sampling algorithms for the alternative methods investigated in this study.  

Under the class of approaches sampling directly from the copula model, we 

reviewed two alternative sampling schemes, including: 1) the quasi Monte Carlo (QMC)-

CDM approach (as opposed to pseudo random sampling-CDM) and 2) the Marshall-Olkin 

approach. The QMC-CDM method was identical to the CDM method described in the main 

manuscript, instead QMC samples were selected instead of pseudo random samples. 

Importantly, the QMC sample range that was selected for constructing and training the 

copula model were ultimately used for sampling. The Marshall-Olkin (MO) approach 

defines a class of sampling algorithms that were expected to sample more efficiently from 

the Archimedean class of copulas as compared to the CDM approach (Joe 1997, Marshall 

and Olkin 1988, 1997, Hoefert 2008). The MO approach relies on the inverse Laplace-

Stieltjes transform (𝐿𝑆−1(𝜓)) of the Archimedean generator functions (𝜓(𝑡)) for the 

Clayton, Gumbel, and Frank copula families (Joe 1997; Marshall and Olkin 1988, 1997; 

Hoefert 2008). The following three steps demonstrate how the MO algorithm is 

implemented, which applies to each copula family (i.e., Clayton, Frank, Gumbel): 

1) Sample 𝑉~𝐹 = 𝐿𝑆−1(𝜓) 

2) Sample uniform, independently distributed numbers 𝑋𝑖 ~𝑈[0,1]  𝑖 ∈ {1, . . 𝑑} 

3) Return (U1, .., Ud) after evaluating 𝑈𝑖 =  𝜓 (−𝑙𝑜𝑔 (
𝑋𝑖

𝑉
))   𝑖 ∈ {1, . . 𝑑}  

The corresponding Archimedean generator functions (𝜓) as well as the inverse 

Laplace Stieltjes transform (𝐿𝑆−1) previously derived for each parametric copula family are 

presented in Table E1 for reference. In addition, the domain over which the MO algorithm 
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will work (i.e., acceptable θ values) are summarized in Table E1. For the Clayton family, V is 

a randomly generated sample from the Gamma probability distribution with shape factor 

of 
1

𝜃
 and a scale parameter equal to unity. For the Frank family, V is a randomly generated 

sample from the log series distribution (discrete), where the parameter of this distribution 

is as follows: (1 − 𝑒−𝜃). Lastly, for the Gumbel family, V is a randomly generated sample 

from the Stable probability distribution with α, β, γ, and δ equal to 
1

𝜃
, 1, cos (

𝜋

2𝜃
)
𝜃

, and 0, 

respectively. It is important to note that θ can only take on positive values (nonzero for the 

Gumbel family) for this sampling algorithm to be effective.  

Table E1 – Summary of inverse Laplace-Stieltjes transforms and generator functions for the 
Archimedean copula families investigated in this study. 

Family θ 𝝍(𝒕) F 

Clayton (0,∞) 
(1 + 𝑡)

−
1
𝜃 𝛤(

1

𝜃
, 1) 

Frank (0,∞) 
−

1

𝜃
log (𝑒−𝑡(𝑒−𝜃 − 1) + 1) 𝑦𝑘 = 

(1 − 𝑒−𝜃)𝑘

𝑘𝜃
 𝑘 ∈ ℵ 

Gumbel [1,∞) 
𝑒−𝑡

1
𝜃 𝑆(

1

𝜃
, 1, cos (

𝜋

2𝜃
)
𝜃

, 0) 

 

Under the class of re-sampling techniques, we investigated a density re-sampling 

approach initially presented by Kurowicka and Cooke (2006). After first sampling from the 

copula using the pseudo-random CDM approach, a new population is obtained from re-

sampling based on the probability density of the copula model. The following steps indicate 

how this algorithm is implemented: 

1) Obtain N samples from the copula model using the pseudo-random CDM approach 

(where N = 4*Nevalpts in our study) 

Note that the Nevalpts was the number of QMC samples originally used to construct 

the copula 
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2) Determine the probability density of the N samples using MATLAB’s copulapdf 

3) Calculate the weights for re-sampling using the Equation 5 below: 

                                                     𝑤𝑖 =
𝑐(𝑢𝑖,𝑣𝑖)

∑ 𝑐(𝑢𝑖,𝑣𝑖)
𝑁
𝑖=1

  (5) 

4) Use a weighted re-sampling approach without replacement and return Nevalpts 

samples (this can be accomplished using MATLAB’s built in datasample function). 

This approach is similar to importance sampling in that it is re-sampling from areas 

of the density that have higher associated probability. However, this sampling method may 

not fully consider the magnitude of variance reduction that may be achieved to ultimately 

improve the approximation accuracy and convergence efficiency of the Monte Carlo 

integration regarding the shifts in probability densities between the 

unconditional/conditional distributions.  

As presented in the Materials and Methods section of Chapter 6 (section 2), each 

sampling method was run for the following range of initial Sobol QMC samples (using the 

same sequence starting point): 28, 29,210,211,212,213,214,215,216, and 217 in which 10 

independent runs were performed for each method to assess the statistical precision. For 

each sampling method, the number of points sampled was equivalent to the range in initial 

Sobol QMC samples used to construct and train each parametric copula model. The 

accuracy of each approach was benchmarked using the absolute error (ABE), calculated 

between the approximate analytical solution (δi,A) and the solution obtained after each run 

(δi,E) (Equation 12, Chapter 6). The precision of each approach was assessed using the 

standard deviation of all delta indices acquired across runs (Equation 13, Chapter 6). 
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5. Summary of Approximate Analytical Solutions 

Table E2 – Summary of the approximate analytical solutions determined for each test function and 
corresponding input variable.  

Test 
Function 

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 

1 0.1192 0.1283 0.1377 0.1474 0.1574 0.1678 
2 0.4319 0.1547 0.0889 0.03368 0.02413 0.01705 
3 0.3169 0.4319 0.2872 - - - 

 

6. Comparison of Overall Parametric Copula Goodness of Fits 

The ability of 5 representative parametric copulas and 1 empirical copula to model 

the dependency structure between the original model input parameters and output (for all 

test functions) was compared through application of the well-known copula calibration 

approach developed by Genest and Rivest (1993). This approach compares the distance 

between an empirical Kendall distribution function (KDF) and that derived/estimated by 

the respective parametric copula method. The KDF describes the cumulative probability 

that a random selection from a given parametric copula function will be less than or equal 

to a given variable t (on the unit range, 0 to 1) (Genest and Rivest 1993).  

                                                            𝐾(𝑡) = 𝑃[𝐶(𝑈, 𝑉) ≤ 𝑡]  (6) 

Initially, this approach relies on construction of an empirical KDF for the model 

input-output dependency under consideration. As detailed in Genest and Rivest (1993), the 

empirical KDF is computationally derived as described in the following steps.   

• For i = 1 to n (number of samples), Zi was computed as the proportion of 

observations in the lower quadrant, with upper corner (Xi, Yi) (Equation 7).  

𝑍𝑖 = 
1

𝑛−1
∑ 1(𝑋𝑗𝑗 ≠𝑖 < 𝑋𝑖, 𝑌𝑗 < 𝑌𝑖)  (7) 
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• The upper corner, (Xi, Yi) was changed, n number of times and the empirical 

distribution function (MATLAB, r 2015b) was used to estimate the empirical KDF 

(KE(t)) using the Zi values as a basis of calculation.  

 Next, the parametric KDF (KV(t)) for the model input-output dependency was 

calculated for comparison against the empirical KDF (Equation 8). This calculation 

required knowledge of the lambda function for each parametric copula ( 𝜆(𝑡)), which is 

simply the Archimedean generator function normalized by the inverse of the Archimedean 

generator function (𝜆(𝑡) =  
𝜑(𝑡)

𝜑−1(𝑡)
). Genest and Rivest (1993) have presented several 

derivations of the lambda function (−𝜆(𝑡) ) for the Frank, Gumbel, and Clayton 

Archimedean copulas, which were applied in this study (Table E3).  

                                                         𝐾𝑉(𝑡) = 𝑡 − 𝜆(𝑡)       (8) 

To calculate the parametric KDF, first Kendall’s tau was estimated to describe the 

relative strength of correlation between the model input parameter(s) and model output. 

Then, the conversion presented in Table E3 was used to estimate the θ parameter 

corresponding to each parametric copula model. Finally, given a range in t values (0 to 1), 

the parametric estimate of the KDF (KV(t)) was reached using Equation (8) and the lambda 

functions previously derived in Table E3.  

For the elliptical copulas (Student’s t and Gaussian), no explicit generator or inverse 

generator function is known or presented in the literature (𝜑(𝑡)) (Table E3). Therefore, the 

“parametric” estimates of the KDFs for these particular copulas were determined using a 

sampling-based methodology. For the Gaussian copula, Kendall’s tau was first estimated to 

describe the dependency between model input parameter(s)/output and converted to 
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Pearson’s linear correlation coefficient for use in the sampling procedure. The Gaussian 

copula was then sampled, n number of times (in this case n = 256, 4096, 16384) by 

applying the multivariate normal random number generator (in this case bi-variate) 

available in MATLAB (r2015b) and calculating the normal CDF values of these estimates. A 

comparable sampling procedure was employed to estimate the parametric KDF for the 

Student’s t copula. Briefly, a Student’s t copula was fit (to estimate linear correlation 

coefficient, ρ and ν values) using the maximum likelihood approach described in the 

manuscript. Again, the Student’s t copula was then sampled, n number of times (n = 256, 

4096, 16384) by applying the multivariate t random number generator (bi-variate) 

available in MATLAB (r2015b) and calculating the t-distributed CDF values of these 

estimates. 

Table E3 – Summary of lambda functions and Kendall’s  
𝜏/𝜃/𝜌 relationships for the Archimedean copulas used in this study. 

Family −𝝀(𝒕) 𝝉 

Frank 
1 − 𝑒(−𝜃𝑡)

𝜃𝑒(−𝜃𝑡)
log [

1 − 𝑒(−𝜃)

1 − 𝑒(−𝜃𝑡)
] 1 + 4

{𝐷1(𝜃) − 1}

𝜃

∗

 

Gumbel 
−𝑡𝑙𝑜𝑔(𝑡)

(𝜃 + 1)
 

𝜃

(𝜃 + 1)
 

Clayton 
𝑡(1 − 𝑡𝜃)

𝜃
 

𝜃

(𝜃 + 2)
 

Student’s t N/A N/A 

Gaussian N/A 
2

𝜋
arcsin (𝜌) 

*D1 stands for the Debye function of order, 𝐷1(𝜃) =  ∫ {
𝑡

𝜃(𝑒𝑡−1)
}

𝜃

0
𝑑𝑡  

A non-parametric copula method was incorporated to further compare the ability of 

both parametric and non-parametric methods to model the dependencies between model 

input parameter(s) and output. Similar to the method presented in Wei et al. (2014), a 2D 

kernel density estimation (KDE), relying on the method of Botev et al. (2010) was used to 

empirically model the dependency structure. First, the CDF values were calculated for each 
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variate, and a 2D KDE was constructed. Next, the 2D KDE was sampled, n number of times 

(n = 256, 4096, 16384) using a 2D discrete probability distribution sampling approach, 

given that the returned estimates from Botev et al. (2010) were not continuous in nature 

(Ursell 2016). Lastly, a non-parametric KDF estimate (KE2(t)) was constructed from the 

samples obtained in the previous step using the computational method described above.    

Ultimately, the goodness of fit of each copula model was assessed through 

application of the Cramér-von Mises distance between the empirically estimated KDF and 

the parametric/non-parametric estimated KDFs (Equation 9) (Genest and Rivest 1993, 

Genest et al. 2009). In general, large values of the CM distance implicated poor overall 

copula fits, whereas small values of the CM distance indicated improved copula fits to the 

dependency structure. In this study, we compared the CM metrics obtained from each 

copula fit for the three preliminary test functions described in the manuscript. A total of ten 

independent realizations were used to assess the variability of the CM fitting metrics. In 

addition, three different sampling numbers (n = 256, 4096, 16384) were chosen to evaluate 

how these metrics changed with an increasing number of quasi Monte Carlo samples. 

Importantly, we ran the goodness of fit analyses using the transformed variables as a basis 

for comparison (using the Rolling Pin method). This required running the MLE 

optimization scheme described in the manuscript multiple times (10 times for each 

sampling number) to determine the optimal monotonization parameters for each of the 

different Parametric copula models. The optimized monotonization parameters were then 

applied to transform the variables before each Parametric copula was fit. It is important to 

note that the variables were not monotonized for the non-parametric copula model 

described above before testing the goodness of fit.     
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                                                      𝐶𝑀 =  ∫ [√𝑛 ∗ (𝐾𝑣(𝑡) − 𝐾𝐸(𝑡)]
21

0
  (9) 

 

 Qualitative results for this fitting procedure are presented in Figure E1 below, which 

compares the GOF for the Frank, Clayton, Gumbel, t-distribution, Gaussian, and non-

parametric copulas (for n = 4096, most sensitive model inputs). As observed in Figure E1, 

the Frank and t-distribution copulas produced excellent fitting results for the three test 

problems investigated. In addition, the non-parametric method demonstrated a similar 

performance to these parametric copulas. The Clayton and Gumbel copulas struggled to 

provide optimal fits for most of the test problems investigated, whereas the Gaussian 

copula demonstrated some inherent variability on the last test problem. It is also important 

to note that the variability associated with many of the parametric copulas was relatively 

insignificant, as the 95% confidence intervals were narrow for many of the test problems 

investigated. In addition, as the test functions progressed, the dependence of each copula 

on the monotonic transformation provided by the Rolling Pin method seemed to increase. 

In general, the KDF appeared more linear for test function 3 as compared to more 

nonlinear for test functions 1-2. This result is directly related to the magnitude of the 

monotonization parameters, which increased in magnitude from the initial to the final test 

problem.  
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Figure E1. Copula GOF test results portraying the qualitative fit of the parametric KDF (red lines) to 
the empirical KDF (green circles). Results are depicted for the most influential input variable (X1, X1, 

X2) model output combination for each of the three test problems reviewed. The number of QMC 
samples used to construct each plot was set to n = 4096. The columns depict the fitting results from the 

following copulas: a) Frank, b) Clayton, c) Gumbel, d) t-distribution, E) Gaussian, and F) the non-
parametric method.  
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7. Comparison of Parametric Copula Tail Dependence 

The tail concentration function is a suitable technique to compare how well each 

parametric copula can fit the tails of the bivariate dependency structure between the model 

input(s) and output. Joe (1990) was the first to suggest the use of a strong tail dependence 

index (𝜆) for evaluating the tail fits of parametric copulas, differentiating between both 

lower and upper tail dependence. For both the lower and upper tail fits, the definition of 

the tail dependence index varies, where C(u, u) is the copula CDF and C*(1-u,1-u) is the 

survival copula associated with the copula CDF (Equations 10 and 11).  

                                                                    𝜆𝐿 = lim𝑢→0
𝐶(𝑢,𝑢)

𝑢
  (10) 

                                                                  𝜆𝑈 = lim𝑢→0
𝐶∗(1−𝑢,1−𝑢)

1−𝑢
   (11) 

 

The empirical estimation of the λ tail concentration functions 

(𝑇𝐶𝐹𝐿,𝐸  𝑜𝑟 𝑇𝐶𝐹𝑈,𝐸) above provides the first basis for comparison of the tail fitting 

performance among the bivariate parametric copulas investigated in this study. Equations 

10 and 11 can be estimated empirically through use of the following sampling procedure. 

First, the empirical copulas were constructed from the transformed model input(s) (V) and 

output data (U) (where d empirical copulas are constructed). Next, Equations 12 and 13 

were used to estimate the empirical lower and upper tail concentration functions. Here, Zi 

is an incremental copula CDF value, ranging from 0 to 1. Ultimately, the tail concentration 

function is evaluated over n, uniformly spaced points (Zi) between 0 and 1 (in our study, n 

= 10,000). 

                                                                      𝑇𝐶𝐹𝐿,𝐸 = 
∑ 1[𝑈𝑖≤𝑍𝑖 & 𝑉𝑖≤𝑍𝑖] 

𝑛
𝑖=1

∑ 1[𝑈𝑖≤𝑍𝑖] 
𝑛
𝑖=1

  (12) 

                                                                 𝑇𝐶𝐹𝑈,𝐸 = 
∑ 1[𝑈𝑖≥1−𝑍𝑖 &𝑉𝑖≥1−𝑍𝑖] 

𝑛
𝑖=1

∑ 1[𝑈𝑖≥1−𝑍𝑖] 
𝑛
𝑖=1

  (13) 
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Parametric estimation of the λ tail concentration functions 𝑇𝐶𝐹𝐿,𝐴 𝑜𝑟 𝑇𝐶𝐹𝑈,𝐴)  was 

conducted in addition to the empirical method as a second step for evaluating the tail 

fitting performance. Similar to the Kendall distribution function estimation, Kendall’s tau 

was first estimated between the transformed model input(s) and output. This procedure 

then involved determination of the parametric copula parameter value(s) using the 

relationship between Kendall’s tau and Spearman’s rho (for Gaussian only), the previously 

fitted values of rho and nu (for the t copula only), or the unique relationship between 

Kendall’s tau and the parameter θ for all the Archimedean copulas investigated (Table E3). 

The parametric tail concentration functions were then evaluated for n number of 

equidistributed points between 0 and 1 (u) through application of Equations 14 and 15 

below. The equations describing the copula CDF (C(u, u)) for each parametric copula 

investigated in this study are presented in Table 15 in Chapter 6 for reference.  

                                                                              𝑇𝐶𝐹𝐿,𝐴 = 
𝐶(𝑢,𝑢)

𝑢
   (14) 

                                                               𝑇𝐶𝐹𝑈,𝐴 = 
1−2(1−𝑢)+𝐶(1−𝑢,1−𝑢)

(1−𝑢)
  (15) 

 

A non-parametric tail concentration function using techniques implemented by Wei 

et al. (2014) was further derived for comparison against the parametric methods. The non-

parametric tail concentration function was derived through application of a 2D KDE 

approximation method by Botev et al. (2010), which was also applied in Wei et al. (2014). 

However, since the 2D KDE approximation estimated the copula PDF (or density) of the 

dependency structure, it was numerically integrated (in two dimensions) using MATLAB’s 

cumtrapz function to arrive at a non-parametric estimate of the copula CDF (C(u, u)). The 

copula CDF was then estimated through interpolation (MATLAB’s interp2d, nearest 

neighbor setting), using the integration results as baseline points and the equidistributed u 
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or 1-u values as query points. Finally, the tail concentration functions were approximated 

using Equations 8 and 9 above. It is important to reiterate that for the non-parametric tail 

concentration function, the model output was not transformed, similar to that presented 

above for the non-parametric estimate of the Kendall distribution function.  

The overall tail fit (combining both the upper and lower tails) of each copula model 

was assessed through application of a modified Cramér-von Mises distance calculation, as 

initially presented in Durante et al. (2015) (Equation 16). Again, large values of the CMTCF 

distance implicated poor tail fits, whereas small values of the CMTCF distance indicated 

improved copula tail fits. Similar to section 1 above, we compared the CMTCF metrics obtained 

from each copula fit for the three preliminary test functions described in the manuscript. A 

total of ten independent realizations were used to assess the variability of the CMTCF fitting 

metrics. In addition, three different sampling numbers (n = 256, 4096, 16384) were chosen 

to evaluate how these metrics changed with an increasing number of quasi Monte Carlo 

samples. Importantly, we ran the tail fit analyses incorporating the transformed variables 

as a basis for comparison (using the Rolling Pin method) of the parametric copula models. 

We simply applied the results achieved previously for the monotonization parameters to 

development of the tail concentration functions described herein.  

                                                         𝐶𝑀𝑇𝐶𝐹 = ∫ [(𝜆𝐸 − 𝜆𝐴)]2
1

0
  (16) 

 

Qualitative results of the tail fitting procedure for all three test problems are 

presented in Figure E2 for reference. These plots portray the mean empirical TCF overlaid 

with the mean parametric TCF, along with the 95% confidence intervals achieved from ten 

independent realizations. As observed in Figure E2, the tail GOF (for both the lower, left 

side, and upper, right side) varied greatly across test functions. For Test Case 1, the Clayton 
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and Gumbel copulas overestimate the empirical TCF for the lower and upper tails of the 

dependency structure. In addition, the non-parametric copula method exhibited great 

difficulty when trying to replicate both the lower and upper tails of the dependency 

structure (for both Test Case 1 and 2); however, the non-parametric method greatly 

improved the tail GOF for Test Case 3, which caused the greatest difficulty in tail GOF for all 

copulas (i.e., wide 95% CI, Figure E2).  The results for Test Case 2 demonstrated that the 

Clayton copula was able to accurately reproduce the asymmetry existing in the lower tail, 

whereas the Gumbel copula reproduced the high tail dependencies in both the upper and 

lower tails for Test Case 3 (Figure E2). Both the t-distribution and Frank copulas were able 

to replicate the tail dependencies across a wide range in test functions (Figure E2).  
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Figure E2. Copula tail GOF test results portraying the qualitative fit of the parametric TCF (red lines) to the empirical TCF (green circles). 

Results are depicted for the most influential input variable (X1, X1, X2) model output combination for each of the three test problems reviewed. 
The number of QMC samples used to construct each plot was set to n = 4096. The rows depict the fitting results from the following copulas: a) 

Frank, b) Clayton, c) Gumbel, d) t-distribution, E) Gaussian, and F) the non-parametric method.  
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8. Evaluation of Parametric Copula Symmetry   

The symmetry of the dependency structure formed between the model input(s) and 

output was further examined as yet another potential opportunity to improve the 

parametric copula fits. In general, the parametric copula models (including the 

Archimedean and Elliptical families) assume that the dependency structure under review is 

symmetric in nature. Symmetry is often defined by mathematically reviewing the concept 

of exchangeability, where variables are deemed exchangeable if the order of the 

dependency structure has little effect on the copula cumulative density evaluation (i.e., C(u, 

v) = C(v, u)) (Liebscher 2008, Durante 2009, Genest et al. 2012). There are ample statistical 

techniques available in the literature to determine if the dependency between two 

variables are symmetric or not, including the method introduced by Genest et al. (2012). 

This method depends on comparing a modified Cramér-von Mises distance statistic, similar 

to the GOF and TCF testing introduced above. Briefly, a sample of size n is obtained from 

each parametric copula and the empirical copula is formed for Cn(u, v) and Cn(v, u). Next, 

the Sn value (which was chosen considering its strength as determined in Genest et al. 

2012) can be calculated according to Equation 17 below, which measures the degree of 

similarity between both empirical copula distributions (where smaller values are indictive 

of more symmetric dependencies between variables). In this case, 𝑆𝑛 represents a rank-

based analogue of the Cramér-von Mises statistic (Genest et al. 2012).  

                                         𝑆𝑛 = ∫ ∫ {𝐶𝑛(𝑢, 𝑣) − 𝐶𝑛(𝑣, 𝑢)}2
1

0

1

0
𝑑𝐶𝑛(𝑢, 𝑣)  (17) 

A novel Monte Carlo method introduced by Genest et al. (2012) was adopted in this 

study to assess the statistical significance of the modified Cramér-von Mises test statistic, Sn 

for each input variable-output combination (see Genest et al. 2012 for full details). This 
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method relies on an innovative bootstrap resampling approach to calculate Sn and returns a 

P-value to compare with any given statistical significance level. The null hypothesis 

assumed that the dependency between variables u and v was symmetric, where P-values 

below the 0.05 significance level were deemed statistically significant to conclude 

asymmetric dependence between both variables. The algorithm presented in Genest et al. 

(2012) was run for M = 1,000 bootstrapped resamples for test functions 2 and 3 only, 

which qualitatively showed some potential asymmetry, using the best performing Frank 

parametric copula. Importantly, the transformed model output-input dependency was used 

in this analysis of symmetry. To obtain some idea of how the symmetry may change when 

the sample size increases, we varied the number of samples (n = 256, 4096, and 16384) for 

all ten independent realizations and recorded the average Sn and P-values for comparison. 

Aside from evaluating the statistical significance of the symmetry between both 

model inputs and output, we compared the performance of an asymmetrized version of the 

Frank copula to the unmodified version when computing MI sensitivity indices. An 

asymmetrized version of the Frank copula was derived using the Khoudraji transformation 

as defined in Vandenberghe et al. (2010) and Genest et al. (1998). First, the asymmetric 

copula family of Durante (2009) was selected as the basis for this transformation, as shown 

in Equation 18 below. This asymmetric family is composed of a multiplicative combination 

of two copula functions, C1 and C2, where two additional tuning parameters are introduced 

(α and β). The Khoudraji transformation is applied by simply inserting the independence 

copula for C1 and the Frank copula for C2, forming Equation 19 below, where the generator 

function and inverse generator function correspond to that of the Frank copula. Equation 

19 contains a third parameter, θ, that describes the dependency between the two variables, 
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similar to the original θ parameter used in the Frank copula. The parameters α and β are 

restricted to the range [0,1], with the following condition: 𝛼 ≠ 0.5, 𝛽 ≠ 0.5, while the range 

for the θ parameter is the following: (−∞,∞).  

                                                   𝐶𝛼,𝛽(𝑢, 𝑣) = 𝐶1(𝑢
𝛼, 𝑣𝛽)𝐶2(𝑢

1−𝛼, 𝑣1−𝛽)  (18) 

                                             𝐶(𝑢, 𝑣) = 𝑢𝛼𝑣𝛽𝜑−1(𝜑(𝑢1−𝛼) + 𝜑(𝑣1−𝛽))  (19) 

Although the copula cumulative density is rather easy to derive analytically, the 

asymmetrized Frank copula density (which is used in the MI sensitivity calculation) was 

more challenging. To derive the copula density, we performed the mixed partial derivative 

with respect to model parameters u and v using Mathematica (𝑐(𝑢, 𝑣, 𝜃, 𝛼, 𝛽) =

 
𝜕2𝐶(𝑢,𝑣,𝜃,𝛼,𝛽)

𝜕𝑢𝜕𝑣
) (similar method to that proposed by Vanderberghe et al. 2010). Importantly, 

the equation that was obtained from Mathematica was double-checked to ensure that the 

copula density was correctly derived before we incorporated it into the MI sensitivity 

calculations.  

The asymmetrized copula was fit to the available data through application of a 

modified Canonical Maximum Likelihood approach. Instead of relying on the MATLAB 

optimization routine, we integrated the LSHADE-EpSin algorithm to determine the optimal 

parameters 𝜃, 𝛼, 𝛽. Of course, with a more sophisticated parametric copula approach, as the 

dimension of the problem (i.e., the number of input variables) increases, the number of 

parameters also will increase (in this case the number of parameters tripled with an 

increase in dimension size). Thus, to improve efficiency, we solved for all required 

parameters simultaneously through a combined maximum likelihood optimization routine. 

Importantly, this procedure was performed directly after the Rolling Pin method, which 

used the monotonization parameters determined for the symmetric parametric copulas. 
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After determining the optimal parameters using a modified Canonical Maximum 

Likelihood approach, the asymmetric copula was sampled, and sensitivity indices 

determined using identical steps as described in Section 2.1 in the main manuscript. 

To sample from the asymmetrized copula, the following algorithm, as recommended by 

Nelsen (2007), was adopted in this study. This algorithm is based on a “combination” 

approach by sampling each copula independently and then combining results using the 

maximum operator. 

1) Sample two uniform random distributions (on the interval 0 to 1), u1 and v1 (this 

is the same approach for sampling from the independence copula) 

2) Sample from the Frank copula using the dependency parameter theta derived 

during the fitting step to obtain u2 and v2 (here we used the CDM with pseudo 

random number generation) 

3) Form two matrices, g1 and g2 below, by combining u1, v1, u2, and v2: 

𝑔1 = [𝑢1

1

𝛼, 𝑢2

1

(1−𝛼)] 𝑔2 = [𝑣1

1

𝛽, 𝑣2

1

(1−𝛽)] 

4) Take the maximum value, row-wise, to end up with the final asymmetric copula 

samples, u and v. 

9. Application of the Semi-Parametric Method to an Environmental Model 

The MI sensitivity indices were estimated for the Moser model using the following 

simulation framework. First, the biodegradation simulations were performed assuming 

that microcystin was the main contaminant of interest (present at 25 mg/L), that isolated 

bacterial populations were available (present at 1 mg/L) and in sufficient physiological 

condition for biodegradation to commence, and that other environmental conditions, such 
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as optimal pH, temperature, as well as oxygen and nutrient availability were non-limiting. 

Next, the parameter ranges previously defined by Manheim et al. (2019) were used to 

restrict the feasible parameter space for µmax, Ks, Y, n, and kd model parameters. Lastly, the 

model simulations were run for a 10-day period (typical time period for complete 

biodegradation of MC to occur), where sampling for the determination of bacterial cell and 

substrate concentrations was conducted daily.  

The semi-parametric copula method developed in this study was applied 

sequentially for each simulated time point and run independently for each variable (i.e., 

substrate or cell concentrations). As the Frank parametric copula demonstrated the most 

well-rounded GOF performance on each analytical test function investigated, it was 

employed to model the dynamic bivariate dependency structure between each model input 

parameter and model output. 
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10. Summary of Statistical Testing for Copula Symmetry 

Table E4 – Summary of Sn statistics and p-values for the copula symmetry testing (test problem 2). The first row of the table heading indicates 
the number of QMC samples (i.e., 256, 1024, and 4096), while the second row of the table heading indicates the input variables (i.e., 1-6). The 

symbols µ, σ, and COV refer to the mean, standard deviation and coefficient of variation of each metric calculated for ten independent 
realizations of the symmetry testing. 

Test 

Statistic 

n = 256 n = 1024 n = 4096 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

Sn 

µ 0.009 0.034 0.019 0.022 0.021 0.017 0.104 0.211 0.138 0.155 0.153 0.138 0.437 0.859 0.573 0.616 0.637 0.58 

σ 0.002 0.006 0.005 0.008 0.004 0.005 0.012 0.021 0.011 0.026 0.020 0.022 0.022 0.025 0.026 0.046 0.034 
0.04

6 

COV 17 16 28 38 20 27 12 10 8 17 13 16 5 3 5 7 5 8 

p-

val. 

µ 1.000 0.953 0.997 0.991 0.998 0.999 0.525 0.240 0.422 0.404 0.398 0.456 0.063 0.007 0.033 0.030 0.029 0.04 

σ 
0.000

0 

0.026

5 

0.004

1 

0.019

4 

0.002

8 

0.003

4 

0.056

7 

0.032

2 

0.041

3 

0.066

6 

0.062

7 

0.069

3 

0.008

1 

0.002

9 

0.007

3 

0.007

1 

0.006

2 

0.00

97 

COV 0 3 0 2 0 0 11 13 10 16 16 15 13 42 22 24 22 23 
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Table E5 – Summary of Sn statistics and p-values for the copula symmetry testing (test problem 3). The first row of the table heading indicates 
the number of QMC samples (i.e., 256, 1024, and 4096), while the second row of the table heading indicates the input variables (i.e., 1-3). The 

symbols µ, σ, and COV refer to the mean, standard deviation and coefficient of variation of each metric calculated for ten independent 
realizations of the symmetry testing. 

Test 

Statistic 

n = 256 n = 1024 n = 4096 

1 2 3 1 2 3 1 2 3 

Sn 

µ 0.0518 0.0034 0.0365 0.3015 0.0206 0.1133 0.3076 0.0923 0.4021 

σ 0.0774 0.0016 0.0315 0.3804 0.0010 0.0224 0.0089 0.0019 0.0105 

COV 149 48 86 126 5 20 3 2 3 

p-

value 

µ 0.836 1.000 0.885 0.464 0.994 0.503 0.133 0.639 0.076 

σ 0.294 0.000 0.144 0.370 0.003 0.086 0.008 0.016 0.007 

COV 35 0 16 80 0 17 6 2 9 
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11. MI Sensitivity Index Convergence Plots: Analytical Test Functions 1-3 

 
Figure E3. MI Borgonovo sensitivity index convergence plots for analytical test function 1. Each 

subplot for a given input variable (i.e., 1-6) illustrates the distribution of each estimated sensitivity 
index (across ten realizations) as a function of the number of QMC samples used (boxplots are color 

coded to differentiate between QMC sample numbers, n = 256 to 131072). The rows depict the 
convergence results using the following methods: A) Semi-Parametric copula Method, B) NPIS Method, 
c) NP copula Method, and d) Single Loop Method. In all subplots, the analytical solutions for each input 

variable are indicated by the dashed black line. 
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Figure E4. MI Borgonovo sensitivity index convergence plots for analytical test function 2. 

Each subplot for a given input variable (i.e., 1-6) illustrates the distribution of each estimated 
sensitivity index (across ten realizations) as a function of the number of QMC samples used 

(boxplots are color coded to differentiate between QMC sample numbers, n = 256 to 131072). 
The rows depict the convergence results using the following methods: A) Semi-Parametric 
copula Method, B) NPIS Method, c) NP copula Method, and d) Single Loop Method. In all 

subplots, the analytical solutions for each input variable are indicated by the dashed black 
line. 
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Figure E5. MI Borgonovo sensitivity index convergence plots for analytical test function 3. Each 

subplot for a given input variable (i.e., 1-3) illustrates the distribution of each estimated sensitivity 
index (across ten realizations) as a function of the number of QMC samples used (boxplots are color 

coded to differentiate between QMC sample numbers, n = 256 to 131072). The rows depict the 
convergence results using the following methods: A) Semi-Parametric copula Method, B) NPIS Method, 
c) NP copula Method, and d) Single Loop Method. In all subplots, the analytical solutions for each input 

variable are indicated by the dashed black line. 
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12. Model Application: Supporting Results 

Table E6 – Summary of average Kendall’s tau estimates (across ten realizations) for quantitatively 
describing the strength of the model input-output relationships for model inputs (top row) and output 
(substrate concentration) variables. The number of QMC samples used for these calculations was set to 

4096. 

Time Point µmax Ks Y n kd 
1 -0.5297 0.0409 0.3528 -0.2414 0.0205 
2 -0.5687 0.0661 0.2320 -0.3088 0.0335 
3 -0.5741 0.0948 0.1804 -0.3254 0.0514 
4 -0.5839 0.1201 0.1527 -0.3115 0.0755 
5 -0.5957 0.1397 0.1343 -0.2839 0.1032 
6 -0.6051 0.1533 0.1204 -0.2522 0.1322 
7 -0.6104 0.1619 0.1092 -0.2208 0.1608 
8 -0.6112 0.1668 0.0999 -0.1921 0.1880 

9 -0.6084 0.1691 0.0922 -0.1668 0.2133 
 

Table E7 – Summary of average Kendall’s tau estimates (across ten realizations) for quantitatively 
describing the strength of the model input-output relationships for model inputs (top row) and output 
(cell concentration) variables. The number of QMC samples used for these calculations was set to 4096. 

Time Point µmax Ks Y n kd 
1 0.6465 -0.0459 0.1055 0.2693 -0.0541 

2 0.5018 -0.0428 0.3232 0.2197 -0.0691 
3 0.3636 -0.0361 0.4931 0.1602 -0.1059 
4 0.2499 -0.0281 0.5852 0.1120 -0.1534 
5 0.1586 -0.0210 0.6248 0.0755 -0.2036 
6 0.0869 -0.0153 0.6334 0.0476 -0.2520 
7 0.0321 -0.0104 0.6238 0.0252 -0.2964 
8 -0.0085 -0.0063 0.6042 0.0068 -0.3356 
9 -0.0378 -0.0029 0.5798 -0.0084 -0.3702 
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Table E8 – Summary of optimal monotonization parameter estimates acquired during the rolling pin 
method for model inputs (top row) and output (substrate concentration) variables. The results 

presented in each table were averaged across ten realizations. The number of QMC samples used for 
these calculations was set to 4096. 

Time Point µmax Ks Y n kd 
1 1.38E-01 2.97E-03 2.27E-04 3.54E-02 2.85E-03 
2 1.19E-01 1.05E-04 4.72E-05 9.62E-02 9.91E-04 
3 4.07E-02 8.94E-05 1.81E-04 3.48E-02 3.15E-04 
4 1.93E-02 5.99E-05 2.24E-04 2.97E-04 2.25E-04 
5 8.89E-03 4.70E-05 1.18E-04 1.20E-04 7.28E-05 
6 1.49E-03 5.02E-06 6.65E-04 4.15E-05 3.25E-05 

7 1.21E-03 4.82E-05 3.75E-04 3.37E-05 2.41E-05 
8 5.88E-04 7.35E-05 5.09E-04 1.19E-05 2.41E-05 
9 7.60E-04 1.87E-04 1.35E-03 7.23E-06 5.32E-05 

 
Table E9 – Summary of optimal monotonization parameter estimates acquired during the rolling pin 
method for model inputs (top row) and output (cell concentration) variables. The results presented in 

each table were averaged across ten realizations. The number of QMC samples used for these 
calculations was set to 4096. 

Time Point µmax Ks Y n kd 
1 5.78E-04 2.05E-02 9.54E-03 1.20E-03 8.57E-02 

2 5.17E-03 4.49E-02 3.37E-03 1.26E-03 1.69E-01 

3 5.18E-02 5.31E-02 2.67E-03 6.33E-03 2.32E-01 

4 1.15E-01 1.85E-02 2.12E-03 1.04E-02 2.14E-01 

5 1.19E-01 5.74E-02 2.72E-04 4.28E-02 2.12E-01 

6 8.66E-02 4.66E-02 1.98E-04 4.71E-02 1.76E-01 

7 6.71E-02 2.13E-02 7.00E-04 3.75E-02 1.22E-01 

8 2.98E-02 3.73E-02 7.65E-04 3.75E-02 8.17E-02 

9 2.85E-02 3.53E-02 4.72E-04 5.37E-02 8.94E-02 
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Figure E6. MI Borgonovo sensitivity index convergence plots for the Moser model application. All Borgonovo sensitivity indices are estimated 

for the substrate concentration model output variable. Each subplot for a given model input parameter illustrates the distribution of each 
estimated sensitivity index (across ten realizations) as a function of the number of QMC samples used (boxplots are color coded to 

differentiate between QMC sample numbers, n = 256 to 16384). The subplots, organized row-wise, depict the convergence results for time 
points simulated from 1 to 9 days. 
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Figure E7. MI Borgonovo sensitivity index convergence plots for the Moser model application. All Borgonovo sensitivity indices are estimated 
for the cell concentration model output variable. Each subplot for a given model input parameter illustrates the distribution of each estimated 
sensitivity index (across ten realizations) as a function of the number of QMC samples used (boxplots are color coded to differentiate between 
QMC sample numbers, n = 256 to 16384). The subplots, organized row-wise, depict the convergence results for time points simulated from 1 to 

9 days. 
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Figure E8. Comparison of empirical (green circles) and parametric (red lines) lambda 
functions for the Moser model application. Results are presented for the most sensitive 

parameter (µmax in panel A and Y in panel B) and simulated timepoint (timepoint 9 for panel 
A and 7 for panel B). The number of QMC samples used to construct each plot was set to n = 

4096. 
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Appendix F: Optimal Design of Experiments for Identification of 
Unstructured Kinetic Model Parameters Describing Microcystin 
Biodegradation –  
Supplementary Materials 
 

I. Supplementary Results and Methods 

1. Parameter Ranges and Feasible Search Space for Experimental Design Criteria 
Applied in OED Procedure  
 

Table F1 – Summary of parameter bounds applied in the OED procedure in this study 

Bound 
µmax 

(1/day) 
Ks 

(mg/L) 
Y 

(unitless) 
kd 

(1/day) 
N 

(unitless) 
Lower 0.659 0.0001 0.433 0.014 1.49 
Upper 6.59 219 3.48 0.991 9.73 

 
Table F2 – Summary of the feasible search space applied to constrain the experimental designs in the 

OED procedure in this study 
Experimental  
Configuration 

Bound C0 

(mg/L) 
X0 

(mg/L) 
F 

(L/day) 
D 

(1/day) 
Cf 

(mg/L) 
Xf 

(mg/L) 

Batch 
Lower 0 0 - - - - 
Upper 1000 1000 - - - - 

Fed-Batch 
Lower 0 0 sum(dt*F) 

< 1 
- 0 - 

Upper 1000 1000 - 1000 - 

Chemostat 
Lower 0 0 - 0 0 - 
Upper 1000 1000 - 6.59 1000 - 

CSTR 
Lower 0 0 - 0 0 0 
Upper 1000 1000 - 6.59 1000 10000 

 
2. Control Settings and Run Conditions for the Single and Multi-Objective OED 
Experiments 
 

When running the single objective OED experiments, the LSHADE-NLS (NLS stands 

for No Local Search) algorithm was run using mostly identical settings to those specified in 

Awad et al. (2016). Initialized values of the adapted scaling parameter (Fde), crossover 

probability (CR), and the frequency of the sinusoidal search function were all set to 0.5. The 

memory size for adaptive storage and learning period, as specified in Awad et al. (2016) 

was set to 5 and 20, respectively. The mutation strategy for LSHADE-cnEpSin was set to 



 

560 
 

current2pbest/1, as used in Awad et al. (2016). The probability of performing crossover 

using covariance matrix adaptation (pc) and the proportion of individuals used to generate 

the covariance matrix was set to 0.4 and 0.5, respectively, based on results presented in 

Awad et al. (2016). In addition, the linear population size reduction functionality available 

in the most current LSHADE-EpSin version was not included in this optimization 

framework. The initial size of the population was set to 20 and 10 for single objective 

experiments running with the decorrelation criterion or D-criterion, respectively. The 

population size was reduced for the D-criterion experiments as convergence was observed 

to improve when the population size declined. The single objective experiments were set to 

run for 5,000 generations for the batch, chemostat, and CSTR experiments and 1,000 

generations for the fed-batch experiments. Termination was reached when either the 

number of generations was exceeded, or the range in best and worst objective function 

values for the current generation were below a user specified threshold of 1E-10. All other 

control settings were identical to those reviewed in Awad et al. (2016). 

For the multi-objective optimization framework, the NSGA-III run conditions were 

fixed to M=2 objective functions, d = 2-24 parameters (depending on the experimental 

configuration), N = 20 population members, and 5,000 generations. Similar to the single 

objective framework, the number of generations was reduced to 1,000 for the fed batch 

experimental reactor configuration due to running time constraints on the high-
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performance computing cluster at UCI. SBX crossover and polynomial mutation function 

strategies were selected for each run, as suggested by Tanabe et al. (2017) and provided by 

the PlatEMO user interface. The user settings for the crossover and mutation functions 

were identical to those presented in Tanabe et al. (2017) (pc = 1, nc = 30, pm = 1/d, and nm 

= 20). Termination was reached when either the number of generations was exceeded, or 

the termination criteria described in the next section was met.  

3. Termination Criteria for Multi-Objective Evolutionary Algorithms (MOEA) 
 

Since the optimal design of experiments method required a multi-objective 

optimization approach, valid stopping criteria for the multi-objective algorithms needed to 

be developed and applied. The online convergence detection (OCD) approach (Trautman et 

al. 2009) was found to be the most reliable method available in the literature for properly 

stopping and detecting convergence of multi-objective algorithms and was formally applied 

in this study. The OCD approach focused on formal statistical testing on performance 

indicators calculated from the non-dominated pareto fronts from each generation during 

the MOEA search process. Convergence was reached when the statistical tests on each 

performance indicator were below a specified significance level (α = 0.05).  

Trautman et al. 2009 observed that three MOEA performance indicators including 

the hypervolume, additive epsilon, and R2 statistic were comprehensive enough to assess 

convergence of the MOEA to the true nondominated Pareto solution. We also found that 

including the delta spread performance indicator (Deb 2001) was necessary to ensure that 

each solution of the Pareto front also accounted for diversity on top of accuracy (i.e., 

convergence to the true solution). Either the variance of each of the performance indicators 
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or the linear regression coefficients obtained from regressing the performance indicators 

over a certain number of generations (nPreGen) were used as a proxy for statistical testing 

in the OCD method. Either convergence criteria relied on the use of a chi-squared or t-test 

to assess whether the differences were significant enough for convergence to be reached. 

For formal convergence to be reached, all of the above criteria had to be met for each 

performance indicators assessed. For the regression approach, we chose the option to 

compute a linear regression over all performance indicators (combined) to speed up the 

runtime of the optimization algorithm.  

Control settings for MOEA termination were kept identical to those recommended 

by Trautman et al. (2009) and Wagner et al. (2009). The number of previous generations 

(nPreGen) used for performing the statistical testing was set to 16. The significance level 

(α) was set to 0.05 for each of the statistical tests performed. Lastly, the square root of the 

variance limit was set to 1E-03 for all performance indicators.  

The OCD termination approach was first formally benchmarked against the ZDT 

class (1-4, 6) of test functions (which have two objective functions) to understand how the 

approach could be applied to the optimization of the Vt values for this study. For these 

initial tests, we kept the dimensionality of the test functions set to 1. The population size 

was set to 100 and the number of generations was limited to 200 (20,000 function 

evaluations). The NSGA-III algorithm was used over all other available MOEAs (in the 

PLATEMO suite) since it demonstrated superior performance over several other prominent 

MOEAs, including AMALGAM-MO and RVEA (see Manheim and Detwiler 2018). The NSGA-

III approach relies on SB crossover and polynomial mutation, with the following specified 

parameter settings: probability of crossover (1), probability of mutation (0.167), crossover 
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distribution index (30), and mutation distribution index (20). Ten independent realizations 

were performed to assess the variability in the termination results for each test function.  

The results of the OCD testing indicated that each performance metric (i.e., 

hypervolume, epsilon, R2) was approaching convergence as the number of generations 

before termination was reached (Figure F1, F2). Test problem number one (ZDT1), which 

is concave up in shape, took the largest number of generations for the NSGA-III algorithm 

to converge, where the median number of generations until termination was 

approximately 40 for the one-dimensional problem investigated (Figure F2). Test problem 

number 2 (ZDT2) was solved using the smallest number of generations (median number of 

generations until termination was approximately 22), which is convex in structure (Figure 

F2). In addition, all the solutions of the Pareto fronts achieved from the NSGA-III algorithm 

for each of the ten different realizations that were terminated using the OCD approach 

were very accurate and well distributed across the true Pareto fronts (Figure F1). The 

standard deviation of the Pareto front estimates across all ten realizations was also very 

small (on the order of 0.001) for all test problems investigated, demonstrating that the OCD 

method returned solutions that were both precise and accurate (data not shown). These 

results confirm that the termination criteria implemented in the OCD approach were 

consistently valid and reliable.  

In general, the linear regression termination criteria as opposed to the performance 

metric criteria dictated when the MOEA search was stopped, as 96% out of all 50 runs 

performed across each test function were terminated using the linear regression criterion. 

This result was most likely due to faster convergence of several performance metrics over 

the others. As observed in Figure F2, the hypervolume and R2 performance metrics were 
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less variable and approached convergence sooner than both the epsilon and delta spread 

indices. Generally, the epsilon metric was the most variable metric over the ten 

realizations, especially for test problems 1 and 2. Differing convergence results between 

performance indices may be directly related to the stability and complexity of the 

calculation involved for each index as well as the level of difficulty of the ZDT test functions 

evaluated.  

 
Figure F1. Accuracy and precision of the OCD termination method when benchmarked on the A) 

ZDT1, B) ZDT2, C) ZDT3, D) ZDT4, and E) ZDT6 test problems. The blue circles represent the mean of 
the Pareto fronts achieved from ten independent realizations, whereas the red line indicates the true 

Pareto front solution.  
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Figure F2. Convergence of MOEA performance metrics (hypervolume, epsilon, R2, and delta spread) 
for the A) ZDT1, B) ZDT2, C) ZDT3, D) ZDT4, and E) ZDT6 test problems using the OCD termination 

method. The colored lines and grey regions represent the median and 95% confidence regions for each 
performance metric and test problem over 10 independent realizations. The black and dashed lines 

represent the median and 95% confidence interval for the generation of MOEA search termination for 
each test problem.  
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4. Comparison of Derivative Based Global Sensitivity Analysis Methods 
 

In this study, two derivative based global sensitivity analysis (GSA) methods were 

compared as the basis for the optimal design of experiments investigation. The two GSA 

approaches belonging to the derivative based classes compared in this study were the 

elementary effects (Morris) method and the mean partial derivative method (DBGSM) 

(Kucherenko et al. 2009).  

As a first step, a formal comparison of GSA methods was conducted to ascertain the 

accuracy and precision of each approach using standard GSA test functions available in the 

literature. More importantly, since each method was based on a Monte Carlo, quasi Monte 

Carlo, we were also concerned with the convergence of each method and the number of 

samples (N) required to reach this convergence. Here we define the convergence criteria as 

the number of samples necessary for identification of “stable” sensitivity indices (Serrazin 

et al. 2016). For the derivative based class of GSA methods (Morris and DBGSM), we used 

the Mi* and Σi* indices as defined by Kucherenko et al. (2009) and Campolongo et al. (2011), 

as the corresponding analytical solutions of each index for each test function were 

conveniently provided by the references indicated above.  

To compare the convergence of all methods, we used both visual inspection of the 

mean and variation in absolute error (MAE) (a relative measure of accuracy and precision, 

Equation 1, 𝑆𝑇,�̂�(𝑗) represents the sensitivity index predicted by the GSA method and 𝑆𝑇,𝑗 is 

the analytically derived sensitivity index value and comparison of the widths of the 95% 

confidence intervals of the sensitivity indices for each input factor over 50 repetitions of 

each test function. If the maximum of the widths of the confidence intervals across all input 

factors were below a set threshold (0.05), the sensitivity approach was deemed to 
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converge. This method proved to be effective as the computational demand of each 

analytical test function was low as compared to actual real-world models, allowing for 

many repetitions to be run at various sample numbers (N).  

                                                  𝑀𝐴𝐸 =
1

50
∑ ∑ |𝑆𝑇,�̂�(𝑗) − 𝑆𝑇,𝑗|

𝑘
𝑖=1

50
𝑗=1   (1) 

Importantly, Kucherenko et al. (2011) classified three major types of analytical test 

functions (A, B, and C) based on the ratio of the first order effect to total order effect levels. 

Type A functions were defined as functions not having equally important variables (most 

commonly encountered in practice); Type B functions were classified as those with 

dominant low order terms; and Type C functions were defined as those with dominant high 

order interaction terms (Kucherenko et al. 2008). Therefore, the objective of this testing 

procedure was to choose a wide range in analytical test functions that covered all of the 

different classes defined by Kucherenko et al. 2009.  In this way, the analytical test 

functions selected were based off five common structures presented in the GSA literature: 

Sobol’s G function (can be a type A or B), the K-function (strictly type A), the B-function 

(strictly type B), the Ishigami function (type C), the Roos and Arnold Function (type C), the 

B1 factor function (type B), the C1 factor function (type C), and the Morris test function 

(Type A) (Table F3). 

To provide a wider platform of GSA test functions, we incorporated both the original 

and modified forms of Sobol’s G function (Table F3). Sobol’s G function was modified to 

include a curvature and shift factor as described by Saltelli et al. (2010) to avoid giving the 

tested design an “unfair” advantage. In the G function mathematical description, 𝛿𝑖 is the 

shift factor (random number generated ∈  [0, 1]), 𝛼𝑖 is the curvature parameter (𝛼𝑖 > 0), Xi 

is the ith input factor (out of k total model parameters), I[𝑋𝑖 + 𝛿𝑖] represents the integer 
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part of the input factor added to the shift factor, and ai represents the relative importance 

of each model parameter or input factor (lower values signify greater importance). For this 

particular test function, several test cases can be prepared. An “easy” test case would 

involve several ai values that are small (around 0), and all remaining values are large (ai  = 

9), as there are just two important input factors and a two way interaction. The most 

difficult test case, on the other hand, would involve all k input factors set to weights of 0 (ai 

= 0), where each factor is very important and subject to multiple higher order interactions 

with the other parameters.  

The K function is more self-explanatory than the other functions (Xj is the jth input 

factor) and is generally more difficult in the interactions that it presents as opposed to the 

importance between each sensitivity value (Table F3). The B function, however, places the 

difficulty on the importance over the interactions between sensitivity values. In this 

particular function, both Xi and 𝜔𝑖 represent draws from a normal distribution with fixed 

standard deviations that are prespecified by the user. The remaining functions 

(Ishigami/Roos and Arnold) were important to include as they were more similar to real 

world test cases (Ishigami) or presented more difficulty in the way of higher order 

interactions between parameter values, as demonstrated by the Roos and Arnold function 

(Type C). 
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Table F3 – Summary of analytical test functions used to compare each derivative based GSA approach 
Analytical Test 

Function 
Mathematical Description 

Sobol’s G 

𝐺 = ∏𝑔𝑖

𝑘

𝑖=1

 

𝑔𝑖 =
|4 ∗ 𝑋𝑖 − 2| + 𝑎𝑖

1 + 𝑎𝑖
 

 

Sobol’s G* 

𝐺∗ = ∏𝑔𝑖
∗

𝑘

𝑖=1

 

𝑔𝑖
∗ =

(1 + 𝛼𝑖) ∗ |2(𝑋𝑖 + 𝛿𝑖 − 𝐼[𝑋𝑖 + 𝛿𝑖]) − 1|𝛼𝑖 + 𝑎𝑖

1 + 𝑎𝑖
 

 

K 
∑(−1)𝑖

𝑘

𝑖=1

∏𝑋𝑗

𝑖

𝑗=1

 

 

B 
∑𝑋𝑖

𝑚

𝑖=1

∗ 𝜔𝑖 

 

Ishigami (I) 
sin(𝑋1) + 𝑎𝑠𝑖𝑛2(𝑋2) + 𝑏𝑋3

4sin (𝑋1) 
 

Roos & Arnold (R) 
∏|4𝑋𝑖 − 2|

𝑘

𝑖=1

 

 

B1 
∏

𝑛 − 𝑋𝑗

𝑛 − 0.5

𝑛

𝑖=1

 

 

C1 
2𝑛 ∏𝑋𝑖

𝑛

𝑖=1

 

 

Morris Test Function 
(M) 

∑𝛽𝑖

4

𝑖=1

𝜔𝑖 + ∑𝛽𝑖𝑗

4

𝑖≤𝑗

𝜔𝑖𝜔𝑗 + ∑ 𝛽𝑖𝑗𝑘

4

𝑖≤𝑗≤𝑘

𝜔𝑖𝜔𝑗𝜔𝑘 

 

 

Based on these analytical test functions, eleven individual test cases have been 

constructed to formally benchmark each derivative based GSA approach, respectively. The 

test cases selected are nearly identical to those presented by Saltelli et al. 2010, as well as 

Kucherenko et al. 2009 (Table F4). Each test case is presented for k = 10 dimensions 
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(except for the Ishigami function), similar to the order of the models tested in this study 

(number of parameters ranged from 5-6). For most test cases, we considered the prior 

distribution of each parameter to be uniformly distributed on the interval 0 to 1 (except for 

the Ishigami case, [-pi, pi], and the B-function case, [~N(0,SD)]). We also set the number of 

samples (N) for each approach to a fixed interval, ranging from 70 to 50,000. Importantly, 

for each GSA method using a quasi Monte Carlo approach, we vary the Sobol’s sequence for 

each iteration at each sampling level. Each test case was strategically constructed to 

evaluate each approach over a range of difficulties. For example, Sobol’s modified test cases 

range in difficulty from relatively easy (1-2) to very difficult (5-6) based on the magnitude 

of the curvature factor (𝑎𝑖) and the ai terms (i.e., test case 1 is slightly less difficult than 2). 

Similarly, the difficulty of the K test function is comparable to Sobol’s G* case number 6, 

whereas the difficulty of the B test function is comparable to Sobol’s G* case number 5.  

Table F4 – Collection of individual test cases used to compare each derivative based GSA 
approach 

Test Case # 
Analytical 

Test Function 
Parameter Settings 

1 

Sobol’s G 

ai = [0, 0, 9, 9, 9, 9, 9, 9, 9] 
2 ai = [0, 0.1, 0.2, 0.3, 0.4, 0.8, 1, 2, 3, 4] 
3 ai = [0, 0, 0, 0, 0, 0, 0,0, 0] 
4 ai = [0, 0, 6.52, 6.52, 6.52, 6.52, 6.52, 6.52, 6.52, 6.52] 
5 ai = [50, 50, 50, 50, 50, 50, 50, 50, 50] 
6 ai = [0, 0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4] 
7 K None to be specified 
8 R None to be specified 
9 B1 None to be specified 

10 C1 None to be specified 

11 M 
The 𝛽 matrices are identical to those specified in 

Kucherkenko et al. 2010 

 

The results of the derivative based GSA approaches demonstrated that the DBGSM 

was far superior to the Morris method in terms of both accuracy and precision (Figure F3). 

In most analytical test cases, the magnitude of the absolute error using the DBGSM method 
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is far below that obtained using the Morris method (especially for test cases 1-6, 8, and 11). 

This result was expected since the DBGSM method evaluates the partial derivative of the 

function using a refined numerical approach as opposed to a finite difference 

approximation in which the elementary effects of the Morris method represent. Although 

the Morris method suffered from inaccuracy for a majority of test cases, the performance 

was comparable to the DBGSM method for test cases 7, 9, and 10 (Figure F3). The precision 

of each method was generally high, as the error bars for 50 iterations were low (and cannot 

be observed on each plot), even for a low number of samples. This precision was confirmed 

quantitatively, where each method was observed to converge (maximum range in 95% ~ 

0) after 50K samples (Table F5). Again, for most cases, the DBGSM method appeared to 

converge before the Morris method (at around N = 10K samples). Based on these results, it 

is clear that the DBGSM method should be considered as the most reliable method among 

the derivative based GSA approaches investigated in this study. 

Table F5 – Maximum range in 95% confidence intervals after 50K samples and 50 iterations on each 
test function (sigma, Σi*).   

Test Function Morris DBGSM 
1 0.00805 0.0003018 
2 0.03401 0.01265 
3 0.2113 0.10971 
4 0.008762 0.0004722 
5 0.000244 5.76E-08 
6 0.08832 0.0553 
7 0.00019 0.000122 
8 0.2185 0.10971 
9 5.121E-06 2.801E-06 

10 0.07665 0.0578 
11 0.0188 0.00996 
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Figure F3. Mean absolute error (MAE) achieved after benchmarking the Morris (blue) and DBGSM 

(red) derivative based GSA methods on analytical test functions 1-11 (sigma, Σi*).   
 

5. Application of the DBGSM Approach to the Moser Model 
 

The DBGSM approach was initially applied to the Moser Model to ascertain the 

number of QMC samples required to reach formal convergence of the estimated sensitivity 

indices at each simulated time point. Again, formal convergence was defined as the number 

of QMC samples required to reduce the width of 95% empirical confidence intervals to less 

than a threshold value of 0.05 (Sarrazin et al. 2016). The determination of the number of 

QMC samples to reach convergence for each sensitivity index (describing each model 

parameter) at each simulated time point was critical, as it affected the number of model 

evaluations required during the optimal experimental design procedure. These initial runs 

were performed for all four experimental designs presented in the main manuscript (Batch, 

Fed-Batch, CSTR, and Chemostat). Importantly, for the Fed-Batch system, we only tested a 

random binary feed rate profile with a constant feed concentration. The initial 

experimental design variables were held constant for each of the experimental designs 

considered and are briefly reviewed here for reference (Table F6). For all experiments, an 
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initial substrate/cell concentration of 10/1 mg/L, which were relatively high 

concentrations to those employed in practice in order to make the simulations as dynamic 

and variable as possible. The feed and dilution rates were set to relatively slow rates, an 

order of magnitude smaller than those typically used for fast growing organisms (as the 

biokinetics for MC degrading bacteria are relatively slow compared to most heterotrophic 

organisms). Simulations were run for a total of 11 days and the DBGSM indices were 

calculated at the following number of QMC samples: n = 256, 512, 1024, 2048, 4096, 8192, 

16384. Ten independent realizations using different QMC sample sets were run to assess 

the variability and convergence of the DBGSM method when applied to the Moser model.  

Table F6 – Summary of fixed experimental variables used during the initial convergence testing 

Experimental 
Design 

Initial 
Substrate 

Concentration 
(mg/L) 

Initial Cell 
Concentration 

(mg/L) 

Feed 
Rate 

(1/day) 

Dilution 
Rate 

(1/day) 

Feed Substrate 
Concentration 

(mg/L) 

Feed Cell 
Concentration 

(mg/L) 

Batch Reactor 

10 1 

N/A 
N/A 

N/A 

N/A 
Fed-Batch 

Reactor 
0.5 

5 
Chemostat 

N/A 0.2 
CSTR 1 

 

The convergence results are presented in Figures F4 and F5, in which the precision 

(width of the 95% Cis across ten realizations) is plotted as a function of the number of QMC 

samples. Results are presented independently for both substrate (Figure F4) and cell 

(Figure F5) concentration predictions and were organized according to the experimental 

design (columns) as well as the model parameters (rows). The results indicated that the 

sensitivity indices related to substrate concentration predictions took longer to converge 

(n = 8192) as compared to the cell concentration predictions (n = 1024). For both the 

substrate and cell concentration predictions, µmax, kd, and n were the most variable, as 

indicated by the high precision values across all QMC sample numbers, which further 
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implied that these parameters were the most sensitive when predicting either substrate or 

cell concentrations. The DBGSM indices estimated for the parameters Y and Ks, however, 

were very precise, as indicated by the small precision values across all AMC sampling 

numbers, suggesting that these parameters may not have been very influential on the 

model output (Figures F4 and F5).  

 
Figure F4. Convergence plots for the derivative based global sensitivity analysis when applied to the 

Moser model. In this Figure, the precision of the DBGSM (as determined by the width of the 95% 
confidence intervals) is qualitatively compared as a function of the number of QMC samples. Results 

are presented detailing the sensitivity of the model parameters when predicting substrate 
concentration only. The columns of this Figure indicate the results of certain experimental designs 

(batch reactor, fed-batch, etc.), whereas the rows (1-5) correspond to the following model input 
parameters: µmax, Ks, Y, kd, and n. The colors of the lines in the legend correspond to different simulated 

time points for which the DBGSM indices were calculated (i.e., 1-11 days). The black dashed line 
indicates the threshold for formal convergence, whereas the dashed red line indicates the number of 

QMC samples required to reach convergence.  
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Figure F5. Convergence plots for the derivative based global sensitivity analysis when applied to the 

Moser model. In this Figure, the precision of the DBGSM (as determined by the width of the 95% 
confidence intervals) is qualitatively compared as a function of the number of QMC samples. Results 
are presented detailing the sensitivity of the model parameters when predicting cell concentrations 
only. The columns of this Figure indicate the results of certain experimental designs (batch reactor, 

fed-batch, etc.), whereas the rows (1-5) correspond to the following model input parameters: µmax, Ks, 
Y, kd, and n. The colors of the lines in the legend correspond to different simulated time points for 

which the DBGSM indices were calculated (i.e., 1-11 days). The black dashed line indicates the 
threshold for formal convergence, whereas the dashed red line indicates the number of QMC samples 

required to reach convergence. 
 

Using the initial conditions specified in Table F6, the calculated DBGSM indices were 

plotted as a function of the simulation time (Figure F6). For substrate concentration 

predictions, µmax was the most influential parameter at early simulation times, while kd was 

the most influential parameter at later times (Figure F6). Both n and Y were also relatively 

influential at early time points when predicting substrate concentrations (Figure F6). 

Regarding cell concentration predicitons, kd was the most influential parameter across all 

simulation times. The parameters Y, µmax, and n were also relatively influential at earlier 
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timepoints when predicting cell concentrations (Figure F6). These results confirm initial 

presumptions made above that more variable parameters were likely more sensitive model 

inputs.  

 
Figure F6. Differences in calculated DBGSM indices as a function of simulation time. Panel A) 

corresponds to substrate concentration predictions (at n = 8192), whereas Panel B) corresponds to cell 
concentration predictions (at n = 1024). The legend indicates which line corresponds to which model 

parameter.    
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6. Optimal Pareto Fronts of the Multi-Objective OEDs 
 

 
Figure F7. Pareto optimal fronts obtained for the MO optimization framework for the 1) Batch, 2) Fed 
Batch, 3) Chemostat, and 4) CSTR experimental configurations. The decorrelation criterion is plotted 

on the y-axis, whereas the D-criterion (in log scale) is presented on the x-axis.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

578 
 

7. Convergence Plots for the MO OEDs 
 

 
Figure F8. Convergence of MOEA performance metrics (hypervolume, epsilon, R2, and delta spread) for 

the 1) Batch, 2) Fed Batch, 3) Chemostat, 4) CSTR experimental configurations using the OCD 

termination method. The colored lines differentiate between difference performance metrics. 




