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ARTICLE

Ancestry-Dependent Enrichment
of Deleterious Homozygotes
in Runs of Homozygosity

Zachary A. Szpiech,1,2,* Angel C.Y. Mak,3 Marquitta J. White,3 Donglei Hu,3 Celeste Eng,3

Esteban G. Burchard,3 and Ryan D. Hernandez1,4,5,6,7,*

Runs of homozygosity (ROH) are important genomic features that manifest when an individual inherits two haplotypes that are iden-

tical by descent. Their length distributions are informative about population history, and their genomic locations are useful for mapping

recessive loci contributing to both Mendelian and complex disease risk. We have previously shown that ROH, and especially long ROH

that are likely the result of recent parental relatedness, are enriched for homozygous deleterious coding variation in a worldwide sample

of outbred individuals. However, the distribution of ROH in admixed populations and their relationship to deleterious homozygous ge-

notypes is understudied. Here we analyze whole-genome sequencing data from 1,441 unrelated individuals from self-identified African

American, Puerto Rican, andMexican American populations. These populations are three-way admixed between European, African, and

Native American ancestries and provide an opportunity to study the distribution of deleterious alleles partitioned by local ancestry and

ROH. We re-capitulate previous findings that long ROH are enriched for deleterious variation genome-wide. We then partition by local

ancestry and show that deleterious homozygotes arise at a higher rate when ROH overlap African ancestry segments than when they

overlap European or Native American ancestry segments of the genome. These results suggest that, while ROH on any haplotype back-

ground are associated with an inflation of deleterious homozygous variation, African haplotype backgrounds may play a particularly

important role in the genetic architecture of complex diseases for admixed individuals, highlighting the need for further study of these

populations.
Introduction

Runs of homozygosity (ROH) are long stretches of iden-

tical-by-descent (IBD) haplotypes that manifest in individ-

ual genomes as the result of recent parental relatedness.

Originally conceived to improve the accuracy of homozy-

gosity mapping of recessive Mendelian diseases, ROH

have formed the foundation of studies investigating the

contribution of recessive deleterious variants to the genetic

risk for complex diseases and to the determination of

complex traits.1 Moreover, they have provided unique in-

sights into the demographic and sociocultural processes1

that have shaped genomic variation patterns in contempo-

rary worldwide human populations,2–8 ancient homi-

nins,9–12 non-human primates,13,14 woolly mammoths,15

livestock,16–21 birds,22,23 felines,24 and canids.25–31 Recent

population bottlenecks, cultural preferences for endogamy

or consanguineous marriage, and natural selection can

create increased rates of ROH in individual genomes, sub-

stantially increasing overall homozygosity in such

populations.

Several studies of the distribution of ROH in ostensibly

outbred human populations have shown that ROH are

common and range in size from tens of kilobases to several

megabases in length.2–5 Furthermore, total length and

prevalence of ROH are correlated with distance from Af-
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rica,3–5 with more and longer ROH manifesting in individ-

uals from populations a longer distance away. These pat-

terns likely reflect increased IBD among haplotypes as a

result of the serial bottlenecking process that humans

experienced as they migrated out of Africa.

The prevalence of ROH in individual genomes has also

been an important factor for understanding the genetic ba-

sis of complex phenotypes.32–34 High levels of ROH have

been associated with heart disease,35,36 cancer,37–39 blood

pressure,40,41 LDL cholesterol,41 various mental disor-

ders,42–45 human height,46,47 and increased susceptibility

to infectious diseases.48 Indeed, these results are consistent

with the idea that many rare alleles of small effect may be

the cause of increased risk for complex diseases,49–51 espe-

cially if these mutations are recessive.2

We have previously shown that ROH, especially long

ROH, are enriched for deleterious homozygous varia-

tion.52,53 Whereas an overall increase in homozygotes is

expected with increasing genomic ROH, we have shown

that the rate at which deleterious homozygotes accumu-

late outpaces the rate at which benign homozygotes accu-

mulate52,53 in long ROH (ROH on the order of several meg-

abases). This is a consequence of young (long) haplotypes

containing low-frequency variants getting paired IBD.53 As

low-frequency variants are more likely to be deleterious

than common variants, the processes that create very
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long ROH can also generate unusually high numbers of

deleterious homozygotes within these regions.

Although a few studies describing the worldwide distri-

bution of ROH patterns have included a small number of

admixed populations,3–5 the number of individuals per ad-

mixed population has been fairly small. Even as the num-

ber of admixed individuals continues to grow in the

United States,54 they are still relatively understudied,

which translates to disparities in our understanding of

population-specific genetic factors that may influence

complex phenotypes.55 Indeed, admixed populations

have unique features compared to other populations, in

that genomes from these populations are recent combina-

tions of two or more ancestral populations.

This ancestral mosaicism has been exploited to make

inferences about the natural history of human popula-

tions56–63 and to search for ancestral haplotypes that in-

fluence complex phenotypes.64–68 Here we add to the

body of work on admixed populations by examining the

relationship between ROH, local ancestry, and the accu-

mulation of deleterious alleles. We use 1,441 recently

published69 whole-genome sequences distributed roughly

equally across three admixed populations in the Ameri-

cas: African American (n ¼ 475), Mexican American

(n ¼ 483), and Puerto Rican (n ¼ 483). Each of these pop-

ulations is three-way admixed, with distinct contribu-

tions from European, Native American, and African ances-

tral populations.

Among the ancestral populations that contributed

haplotypes to these admixed populations, it has been

shown that the distribution of deleterious heterozygotes

and deleterious homozygotes changes with distance from

Africa.70–73 With this in mind, we propose that accumula-

tion of deleterious homozygotes via increased genomic

ROH may also differ within admixed populations based

on differing ancestral haplotypes. Indeed, with high dele-

terious heterozygosity, we propose that African ancestral

haplotypes may be most susceptible to large increases in

deleterious homozygotes when subjected to harsh bottle-

necks or inbreeding, as these low-frequency deleterious al-

leles will be paired into homozygotes as a result of

increased genomic ROH.
Material and Methods

Sample Selection and Quality Control
We used 1,441 whole-genome sequences (dbGaP accession

numbers phs000920 and phs000921) from three different ad-

mixed populations: African American (n ¼ 475), Mexican Amer-

ican (n ¼ 483), and Puerto Rican (n ¼ 483). These data are an

unrelated (up to third-degree relative) set that were previously

published by Mak et al.,69 who previously identified and removed

third-degree (and closer) relatives and conducted all QC. These

genomes all had mean genome coverage >303 with >95% of

genome covered at >103 and were called with GATK Haploty-

peCaller. Site-level QC was conducted via GATK Variant Quality

Score Recalibration, filtering at the 99.8% tranche. Individual
748 The American Journal of Human Genetics 105, 747–762, Octobe
genotypes were filtered if they did not have a minimum read

depth of 10 and genotype quality of 20. Full details are available

in Mak et al.69
Calling Local Ancestry
We used 90 African (YRI) individuals and 90 European (CEU) indi-

viduals for ancestry references (genotypes obtained from the

Axiom Genotype Dataset, see Web Resources) and SNPs with less

than 95% call rate were removed. For Native American reference

genotypes, we used 71 Native American individuals previously

genotyped on the Axiom Genome-Wide LAT 1 array.74 These sam-

ples are unrelated and unadmixed individuals including 14

Zapotec, 2 Mixe, and 11 Mixtec from the southern Mexican state

of Oaxaca75 and 44 Nahua individuals from Central Mexico.76

Although these individuals are unlikely to exactly match the

Native components of all the individuals in our sample, they act

as a reasonable proxy for inferring those components, just as our

YRI and CEU reference populations act as a reasonable proxy for

inferring the African and European components, respectively.

We then subset our 1,441 whole-genome sequences correspond-

ing to sites found on the Axiom Genome-Wide LAT 1 array, leav-

ing 765,321markers.We thenmerge these data with our European

(CEU), African (YRI), and Native American (NAM) reference

panels, which overlapped at 434,145 markers. After filtering

multi-allelic SNPs and SNPs with >10%missing data, we obtained

a final merged dataset of 428,644 markers. We phased this com-

bined dataset using SHAPEIT277 and called local ancestry tracts

jointly with RFMix78 under a three-way admixture model based

on the African, European, and Native American reference geno-

types described above.
Calling Runs of Homozygosity
We called runs of homozygosity using the program GARLIC

v.1.1.4,79 which implements the ROH calling pipeline of Pember-

ton et al.4 for each population separately on the full whole-

genome call set, filtering only monomorphic sites. For the 475 Af-

rican American (AA) individuals, this left 39,517,679 segregating

sites; for the 483 Puerto Rican (PR) individuals, this left

31,961,900 segregating sites; and for the 483 Mexican American

(MX) individuals, this left 30,744,389 segregating sites. Instead

of asserting a single constant genotyping error rate (as in Pember-

ton et al.4), we used genotype quality scores provided with the

WGS data to give GARLIC a per-genotype estimation of error.

Using GARLIC’s rule of thumb parameter estimation, we chose

analysis window sizes of 290 SNPs, 250 SNPs, and 210 SNPs and

overlap fractions of 0.3688, 0.3553, and 0.3528 for the AA, PR,

and MX populations, respectively. GARLIC chose LOD score cut-

offs of �47.5169, �70.1977, and �60.9221 for the AA, PR, and

MX populations, respectively. Using a three-component Gaussian

mixture model, GARLIC determined three size classes: small class

A, medium class B, and long class C ROH. Class A/B and class B/C

size boundaries were inferred as 38,389 bps and 142,925 bps for

AA; as 50,618 bps and 230,079 bps for PR; and 46,979 bps and

217,054 bps for MX.
Computing Ancestry Enrichment in ROH
To determine whether the ROH covering a gene region is overrep-

resented for a particular ancestry, we first compute, for each gene

region, the quantities AR
i and NR, which represent the mean pro-

portion of ancestry i in ROH at gene region R and the ‘‘number’’

of ROH in each gene region, respectively. Note that if an ROH
r 3, 2019



only covers part of a gene region, then only that fraction is

counted, thus NR is continuous and not a whole number. We

also compute themean proportion of ancestry i in the population,

Ai. If we consider the fraction of ancestry type i in ROH (AR
i ) as a

random sample from the distribution of ancestry in the popula-

tion ðAiÞ, then we can model the ancestry-specific ROH sampling

process with a beta distribution. This is conceptually similar to a

binomial sampling process, where sampling ancestry i in an

ROH is considered a ‘‘success’’ but in continuous space. Here we

wish to compute the probability of sampling NRAR
i ROH regions

of ancestry i (or more) given that the population admixture frac-

tion of ancestry i is Ai and that we have NR ROH total. We can

do this by computing P½xRNRAR
i

�
�NR; Ai� ¼ IAi

ðNRAR
i þ 1; NR �

NRAR
i Þ, where Ipða; bÞ is the regularized incomplete beta function.
Calling Deleterious Alleles
Using the Whole Genome Sequencing Annotation (WGSA) pipe-

line80 to generate annotation data, we extracted PolyPhen 2,81

SIFT,82 Provean,83 and GERP84 scores for deleteriousness, as well

as high-confidence ancestral allele states (from Enredo-Pecan-Or-

theus alignments) and synonymous annotations and for all muta-

tions in coding regions (WGSA pre-computed annotations avail-

able online, see Web Resources).

PolyPhen 2 generates three deleteriousness categories: Probably

Damaging, Possibly Damaging, and Benign. If a mutation has

more than one PolyPhen2 classification (e.g., Benign and Probably

Damaging), it is reassigned to have only the most damaging cate-

gory of the group. All mutations that have a PolyPhen 2 prediction

or that are synonymous are then pooled into two separate cate-

gories: ‘‘damaging’’ and ‘‘benign.’’ All Probably Damaging or

Possibly Damaging mutations are pooled into the ‘‘damaging’’

category, and all Benign and synonymous mutations are pooled

into the ‘‘benign’’ category.

SIFT generates two deleteriousness categories, Intolerant and

Tolerant, which we relabel ‘‘damaging’’ and ‘‘benign.’’ If a muta-

tion has more than one SIFT classification, it is reassigned to

have only the most damaging category of the group.

Provean generates two deleteriousness categories, Deleterious

and Neutral, which we relabel ‘‘damaging’’ and ‘‘benign.’’ If a mu-

tation has more than one Provean classification, it is reassigned to

have only the most damaging category of the group.

GERP generates a numerical score at a given locus where a

higher score indicates more deleteriousness for a derived allele at

that locus. Here we focus on derived alleles that are very likely

to be deleterious and combine all derived mutations at sites with

GERP R 6 into the category ‘‘damaging.’’ We form our ‘‘benign’’

category with all derived mutations with GERP % 2.
Defining Gene Sets
We sought to define three sets of genes for further analysis based

on the probability of intolerance to loss of function (pLI) predicted

as part of the gnomAD project85 (Web Resources). This score

ranges from 0 to 1, with high scores suggesting an intolerance to

inactivation and low scores suggesting a tolerance for inactivation.

The distribution of these scores is bimodal, with most genes hav-

ing a pLI near 0 or 1. Of the 18,451 autosomal genes with a pLI

score, we create a ‘‘low-pLI’’ category consisting of 13,128 genes

with a pLI%0:2 and a ‘‘high-pLI’’ category consisting of 3,241

genes with a pLIR0:8. We finally create an ‘‘all’’ category consist-

ing of all 18,451 autosomal genes reported as part of the gnomAD

project.85
The America
Computing Minor Allele Frequencies
In order to determine minor allele frequency (MAF) category, we

use frequencies computed from all TOPMed86 Freeze 3 whole-

genome sequencing datasets (dbGaP accession numbers

phs000920, phs000921, phs001062, phs001032, phs000997,

phs000993, phs001189, phs001211, phs001040, phs001024,

phs000974, phs000956, phs000951, phs000946, phs000988,

phs000964, phs000972, phs000954, and phs001143) forming a

total sample size of n ¼ 18,581. We then categorize variants in

the dataset analyzed here as common (MAF R 0.05) and rare

(MAF < 0.05) based on these ‘‘global’’ allele frequencies.

Simulations
We perform simulations to examine how demographic history af-

fects the concentration of deleterious homozygotes in ROH. We

use the forward simulation program SLiM 387,88 to simulate dele-

terious mutations within a complex demography in conjunction

with the coalescent simulator msprime89 to simulate neutral mu-

tations conditional on the forward simulation genealogy. This al-

lows us to efficiently simulate very large genomic regions, which is

a requirement for analyzing the distribution of long ROH that

typically extend several megabases. We complete 500 replicates

of the following simulations.

We simulate a three-population demographic history after

Gravel et al.90 in SLiM 3, introducing recessive mildly deleterious

alleles with selection coefficients drawn from Gð� 0:03; 0:2Þ. We

simulate a 100 Mbps region, where deleterious alleles are allowed

to occur in designated ‘‘coding regions.’’ These regions are defined

based on the hg19 exon coordinates of all CCDS genes in the first

100 Mbps of human chromosome 1. Similarly, we simulate a var-

iable recombination rate based on the HapMap phase II91 inferred

map.We allow amutation rate based on the Gravel et al.90 inferred

mutation rate of 2.363 10�8, setting the deleteriousmutation rate

at one-tenth of this value. At the end of the forward simulation, a

list of segregating deleterious mutations and their genomic loca-

tions is output along with the full tree sequence88,89 of the entire

simulation. Neutral mutations are then added with msprime.89

To simulate neutral mutations conditional on the forward simu-

lation history, we load our population tree sequence with the py-

slim package,88 recapitate to ensure all lineages fully coalesce, and

then lay down neutral mutations at a rate of 90% of the Gravel-in-

ferred rate (so that the neutral plus deleterious mutation rate

equals the inferred rate). Finally, we sample 500 diploid individ-

uals from each population in the simulation for analysis.

Simulation code is available online (see Web Resources).
Results

Admixture

Using the subset of sites from our whole-genome

sequencing data that intersected with our African, Euro-

pean, and Native American reference panels, we called

3-way local ancestry tracts in all 1,441 samples (see Mate-

rial and Methods). We also estimated global ancestry pro-

portions by summing the length of all haplotypes inferred

to be from a given ancestry and dividing by the total

genome length. Figure 1 summarizes the global ancestry

proportions for all individuals from each population on a

ternary plot. The admixture proportions largely accord

with previous results in these populations, with Puerto
n Journal of Human Genetics 105, 747–762, October 3, 2019 749
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Figure 1. A Ternary Plot of Global Ancestry Proportions
Each point represents a single individual, with their global
ancestry proportions shown on each of the three axes (European,
EUR; African, AFR; and Native American, NAM). Individuals are
colored based on their reported ethnicity, with African Americans
(AA) colored gray, Puerto Ricans (PR) colored purple, and Mexican
Americans (MX) colored green.
Ricans having mostly African and European ancestry,

Mexican Americans having mostly European and Native

American ancestry, and African Americans having mostly

African and European ancestry to the near exclusion of

any Native American ancestry. However, although African

Americans are frequently treated as a 2-way admixed pop-

ulation between European and African sources, we show

that several AA individuals have non-trivial proportions

of Native American ancestry. This suggests that, in general,

a 2-way admixture model may not be uniformly appro-

priate for studying admixture patterns among self-identi-

fied African American individuals.

Runs of Homozygosity

We followed the ROH calling pipeline of Pemberton et al.4

as implemented in the software GARLIC79 to call ROH

from the full whole-genome sequencing data (see Material

and Methods). This method identifies three classes of ROH

based on the length distribution in each population. We

refer to these size classes as short, medium, and long. These

classes roughly correspond to ROH formed of IBD haplo-

types from different time periods from the population his-

tory. Short ROH are tens of kilobases in length and likely

reflect the homozygosity of old haplotypes; medium

ROH are hundreds of kilobases in length and likely reflect

background relatedness in the population; and long ROH

are hundreds of kilobases to several megabases in length

and are likely the result of recent parental relatedness. To-

tal length of ROH in the genome is correlated with distance
750 The American Journal of Human Genetics 105, 747–762, Octobe
from Africa.2,4 In the case of our admixed populations,

we therefore expect the total length of ROH to be corre-

lated with increased European and Native American

admixture fraction. Figure 2A illustrates this pattern,

with AA individuals having lowest total ROH, PR individ-

uals having intermediate total ROH, and MX individuals

having the highest total ROH (all pairwise Mann-Whitney

U tests p < 2.2 3 10�16). Indeed, if we do multiple regres-

sion of total ROH coverage (in Mbps) onto total European

and total Native American coverage (in Mbps), we find a

significant positive association with both ancestry back-

grounds in all three populations (Table S9). Breaking

down ROH by size class, we find that the total length of

short ROH is similar but still significantly higher in PR

than in MX individuals (p < 2.2 3 10�16; Figure 2B), but

the total length of both medium ROH (p < 2.2 3 10�16;

Figure 2C) and total long ROH (p < 2.2 3 10�16;

Figure 2D) is highest on average in MX individuals.

As it has been previously noted that ROH do not occur

uniformly across the genome,4,5 we also examined the pro-

portion of ROH coverage of each of 18,451 coding genes

from the gnomAD project85 across all individuals in each

population to discover whether certain genes or sets of

genes were enriched for ROH coverage. For each gene

region (exons plus introns), we compute the fraction of

basepairs that are covered by ROH in each individual and

take the mean of this fraction across individuals. Next,

we look at the top 0.1% of genes with the highest overall

ROH coverage across individuals in each population (Table

S8). This corresponds to genes with greater than 0.661,

0.891, and 0.971 ROH coverage across individuals in the

African American, Puerto Rican, andMexican populations,

respectively. Although none of these gene sets were en-

riched for any gene ontology terms, four gene regions

were found in all populations: CCDC189, PDCD7,

PHKG2, and TMEM139.

We also examine whether certain gene sets may have

more enrichment for ROH than others. In particular we

create two gene sets based on the gnomAD project’s85 pre-

dicted intolerance to loss of function (pLI) measurement

(see Material and Methods). The high-pLI gene set consists

of 3,241 genes predicted to be most intolerant to loss of

function in humans, and the low-pLI gene set consists of

13,128 genes predicted to be least intolerant to loss of func-

tion in humans.

Table 1 lists the means and ranges for ROH coverage

across individuals for both high-pLI and low-pLI gene

sets. Although the ranges tend to span most of the [0,1] in-

terval, we do observe a small but significant difference in

the mean ROH coverage between high-pLI and low-pLI

gene sets (as tested by a two-sided Mann-Whitney U test)

across all populations, with high-pLI genes having slightly

more ROH on average. This may be a result of high-pLI

genes experiencing stronger background selection, as

high-pLI genes are intolerant to loss of function in humans

and mutations in these genes may therefore be more

deleterious on average. This, in turn, may contribute a
r 3, 2019
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Figure 2. The Distribution of Summed ROH Lengths across Size Classes
Shown are (A) all ROH, (B) short ROH, (C) medium ROH, and (D) long ROH. AA, African American; PR, Puerto Rican; MX, Mexican
American.
non-trivial amount of homozygosity to the patterns of

ROH we observe.

We also tested whether ROH in certain gene regions are

overrepresented with one ancestry background relative to

the distribution of ancestries at that gene region popula-

tion-wide. We compute the probability of observing as

much or more of each ancestry among the set of ROH at

a gene region for all populations (see Material and

Methods) for each 18,451 gene regions from the gnomAD

project. Significance was determined via Bonferroni correc-

tion, and we find numerous genes in each population en-

riched for various ancestries (Tables S10, S11–S14, S15,

S16, and S17). Each population had at least one gene en-

riched for each ancestry, except African Americans, where

we found no genes enriched for Native American ancestry

(though the proportion of Native American ancestry in

this population is low, �2%, so power may be limited).

We conduct a gene ontology (GO) enrichment analysis

using PantherDB,92 as some of the enrichment lists were

large. We find among genes enriched for African ancestry

in Mexican Americans significant enrichment of GO terms

related to nucleosome assembly (FDR ¼ 2.13 3 10�5),

cellular response to unfolded protein (FDR ¼ 6.95 3 10�3

), and cellular response to heat (FDR ¼ 1.22 3 10�2).

Among genes enriched for Native American ancestry

in Mexican Americans we find significant enrichment

of GO terms related to spindle assembly (FDR ¼ 1.27 3

10�2) and detection of chemical stimulus involved in sen-

sory perception (FDR ¼ 3.59 3 10�3). Finally, we also find
The America
among genes enriched for African ancestry in Puerto Ri-

cans significant enrichment of GO terms related to cyto-

kine-mediated signaling pathways (FDR ¼ 2.27 3 10�2).

Deleterious Alleles

We used multiple approaches to predict the deleterious-

ness of all sites in the genome (see Material and Methods),

but focus on missense mutations classified as Probably

Damaging, Possibly Damaging, or Benign using PolyPhen

2.81 As in Szpiech et al.,52 we combine the Probably

Damaging and Possibly Damaging mutations into a single

‘‘damaging’’ class, and we combine all Benign mutations

with synonymous mutations into a single ‘‘benign’’ class.

For individual i across all sites, we denote by gd;ki and gb;ki

the total number of sites with k˛f0;1;2g alternate alleles

classified as damaging or benign, respectively. In

Figure 3A we plot the distribution of deleterious heterozy-

gotes per individual, gd;1i , split by population. Consistent

with previous work,70–73 we see an increased number of

deleterious heterozygotes in populations with more Afri-

can ancestry, with AA individuals having the most and

MX individuals having the fewest (patterns replicate with

other deleterious categories, see Figures S5–S10).

Conversely, we would expect an increase of deleterious ho-

mozygotes per individual in populations with more non-

African ancestry. Indeed, in Figure 3B we plot the distribu-

tion of deleterious homozygotes per individual, gd;2i , split

by population and observe AA individuals with the fewest

and MX individuals having the most (these patterns also
n Journal of Human Genetics 105, 747–762, October 3, 2019 751



Table 1. Range and Mean ROH Coverage of High-pLI and Low-pLI Gene Sets by Population

Population

High-pLI Genes Low-pLI Genes

Difference of Means (p value)Range Mean Range Mean

AA ½0:013;0:699� 0:195 ½0;0:818� 0:181 ***< 23 10�16

PR ½0:023;0:914� 0:346 ½0;0:974� 0:329 ***1:1963 10�9

MX ½0:019;0:977� 0:428 ½0;0:992� 0:414 ***1:5863 10�5

p value for difference of means computed by two-sided Mann-Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001.
replicate with other deleterious categories, see Figures S5–

S10). Figure 3C plots the total number of deleterious alleles

per individual (gd;1i þ 2gd;2i ). Contrary to other work,73 we

find a total deleterious load highest on average in AA indi-

viduals. Although this pattern replicates across several

other deleterious calling methods (Figures S5–S9), when

using GERP scores (as in Henn et al.73), the pattern reverses

(Figure S10) and is consistent with Henn et al.73

Deleterious Alleles across Local Ancestry

We next investigate whether there are any differences in

deleterious load by local ancestry. Although our local

ancestry calls provide us with phased local ancestry infer-

ences, we were limited to a small subset of sites for our

reference populations. Since the vast majority of our dele-

terious alleles come from our unphased whole-genome

data, we do not have phase information for the deleterious

alleles and cannot assign a specific ancestral haplotype in

regions of discordant ancestry. Therefore, we calculate total

load based on six different ancestry backgrounds. AFR,

EUR, and NAM ancestry regions represent regions that

are homozygous for African, European, and Native Amer-

ican ancestries, respectively, and AFEU, EUNA, and AFNA

ancestry regions represent regions that are called heterozy-

gous for African/European, European/Native American,

and African/Native American ancestries, respectively. We

then calculate for each population the number of delete-

rious alleles per basepair for each ancestry background.

Table 2 shows the number of deleterious alleles per base-

pair for each population and each ancestry background us-

ing PolyPhen 2 deleterious calls (results were qualitatively

similar across all other deleterious call sets). We perform

two types of tests for independence in order to determine

whether there are significant differences in the number

of deleterious alleles per basepair. First, we test for indepen-

dence of the count of deleterious alleles on an ancestry

background and the count of basepairs covered by that

ancestry across populations. We find that neither African

ancestry nor European ancestry have statistical differences

in the number of deleterious alleles per MB across popula-

tions. Further, while NAM, EUAF, and AFNA exhibit statis-

tically differences across populations, it appears to be

driven by one of the two populations (AA, MX, and PR,

respectively). Next, we test for independence of these

counts across ancestries within each population. Here we

find that all populations have statistically significant
752 The American Journal of Human Genetics 105, 747–762, Octobe
differences in the distribution of deleterious alleles

across ancestry backgrounds (AA p < 2.2 3 10�16; MX

p < 2.2 3 10�16; PR p < 2.2 3 10�16), with NAM ancestry

having the lowest rate in AA and PR individuals and EUR

having the lowest rate in MX individuals. However, we

note that the overall differences were very small (a differ-

ence of <0.1 deleterious alleles per Mbp).
Deleterious Alleles in ROH

Next, we turn to examining the distribution of deleterious

homozygotes within ROH. It was previously reported52,53

that there is a higher proportion of deleterious homozy-

gotes per unit increase of ROH than expected from the pro-

portion of benign homozygotes. Naturally, as the total

amount of genomic ROH increases, we expect more homo-

zygotes to fall within ROH. However, Szpiech et al.52 and

Pemberton and Szpiech53 found that the rate of increase

of the proportion of deleterious homozygotes was greater

than for benign homozygotes. This effect was strongest

for long ROH, which are likely the result of recent parental

relatedness.

For each individual i and for each ROH class

j˛fA;B;C;R;Ng (A, short ROH; B, medium ROH; C, long

ROH; R, all ROH; and N, outside ROH), we define the num-

ber of damaging or benign sites with k˛f0;1;2g alternate

alleles as gd;ki;j and gb;ki;j , respectively. Thus, we calculate the

proportion of damaging homozygotes in ROH class j as

f di;j ¼
gd;2i;j

gd;2i;R þ gd;2i;N

and the proportion of benign homozygotes in ROH as

f bi;j ¼
gb;2i;j

gb;2i;R þ gb;2i;N

;

respectively. We also compute, for each individual i and

each class j, the fraction of the genome covered in ROH as

Gi;j ¼ total length of ROH regions of class j in individual i

total genome length
:

We plot the proportions of ROH homozygotes versus

genomic fraction of ROH in Figure 4, which is analogous

to Figure 4 from Szpiech et al.52 In order to determine

whether there is a statistically significant difference in

the accumulation of deleterious homozygotes versus
r 3, 2019
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Figure 3. The Distribution of Deleterious Alleles across Populations
The number of (A) deleterious heterozygotes, (B) deleterious homozygotes, and (C) total deleterious alleles per individual using Poly-
Phen2 classifications. AA, African American; PR, Puerto Rican; MX, Mexican American.
benign homozygotes, we construct a linear regression

model (as in Szpiech et al.52 and Pemberton and

Szpiech53), f$;j ¼ b0 þ b1G$;j þ b2Dþ b3DG$;j þ ε, where f$;j
is a vector of length 2,882 containing the proportions of

both damaging and benign homozygotes in ROH class j

for all individuals, G$;j is a vector of genomic class j ROH

proportions, and D is an indicator variable taking a value

of 1 when the response represents damaging homozygotes

and 0 for benign homozygotes. In this framework, a statis-

tically significant b2 suggests an overall higher proportion

of damaging homozygotes in ROH compared to benign

homozygotes, e.g., b2 ¼ 0:1 means that an extra 10% of

genome-wide deleterious homozygotes fall in ROH

compared to the distribution of benign homozygotes. A

statistically significant b3 suggests a difference in the rate

of accumulation per unit increase of ROH, e.g., b3 ¼ 1:0

means that for a 10% increase in genomic ROH, 10%

more deleterious homozygotes fall in ROH compared to

benign homozygotes. Inferred coefficients for the four re-

gressions corresponding to each j˛fA;B;C;Rg are given

in Table S1.

Figure 4A plots these proportions versus total ROH for

all ROH classes combined. In agreement with Szpiech

et al.,52 we find that there is an overall greater proportion

of damaging homozygotes in ROH compared to benign

homozygotes (b2 ¼ 0:1799, p < 23 10�16), but in contrast

the overall rate of accumulation is not different (b3 ¼
1:8073 10�2, p ¼ 0.0671). When we partition ROH by

size class, the distribution of homozygotes in short ROH

(Figure 4B) also differs from Szpiech et al.52 Whereas previ-

ously there were no statistically significant differences in

b2 or b3, here we find a significant positive

b2 ¼ 4:810310�2 (p < 2 3 10�16) and a statistically signif-

icant negative b3 ¼ �0:428 (p < 1.10 3 10�8), suggesting

that ROH comprised of old haplotypes accumulate delete-

rious homozygotes at a slower rate that benign homozy-

gotes. As we expect short ROH to be comprised of old hap-

lotypes that have been segregating for a long time, it is

reasonable to think that only haplotypes with relatively

few deleterious alleles remain segregating in the popula-

tion. Our results for medium (Figure 4C) and long ROH

(Figure 4D) are consistent with previous work;52,53 in
The America
particular we find that the difference in rates of gain of

deleterious versus benign homozygotes is greatest in long

ROH (b3 ¼ 0:229; p < 2 3 10�16).

We also consider whether we can detect a difference in

concentration of deleterious homozygotes in our high-pLI

and low-pLI gene sets. For this analysis we only consider

predicted deleterious homozygotes, and we wish to

compare the genome-wide proportion of these genotypes

between high-pLI and low-pLI genes. To do this we

construct the following linear regression, f$;j ¼ b0 þ
b1G$;j þ b2H þ b3HG$;j þ ε, where f$;j and G$;jare as above

and H is an indicator variable taking a value of 1 or 0 if

the response comes from the high-pLI gene set or the

low-pLI gene set, respectively (Table S4). Here b3

represents the difference in rate of accumulation of delete-

rious homozygotes in high-pLI genes versus low-pLI

genes. We find a significant difference in the accumula-

tion of deleterious homozygotes in high-pLI genes

versus low-pLI genes for total ROH (b3 ¼ 7:2433 10�2,

p ¼ 0:0253) and short ROH (b3 ¼ 0:502, p ¼ 0:0359),

although not for long ROH (b3 ¼ 9:6393 10�2, p ¼
0:0960) or medium (b3 ¼ � 2:2623 10�2, p ¼ 0:774).

In this analysis we compare damaging alleles across two

gene sets (instead of comparing damaging to non-

damaging), where we might expect mutations in loss-of-

function intolerant genes (high-pLI) to be more delete-

rious compared to mutations in loss-of-function tolerant

genes (low-pLI). In this case, the effect size may be

much smaller, and by restricting our high-pLI gene set

to such a small number of genes we may lack power to

detect it. However, in aggregate these results suggest

that a higher proportion of genome-wide deleterious

homozygotes fall within high-pLI genes versus low-pLI

genes.

Deleterious Alleles in ROH Partitioned by Local Ancestry

Now we turn to analyzing the distribution of deleterious

homozygotes in ROH comprised of only one particular

ancestral haplotype. As shown in Figure 3A and in other

work,70–73 populations with more African ancestry tend

to have high numbers of deleterious heterozygotes

genome-wide. This contrasts with populations that have
n Journal of Human Genetics 105, 747–762, October 3, 2019 753



Table 2. The Number of Deleterious Alleles per Megabase Partitioned by Population and Local Ancestry Background

AFR
(p¼0.160)

EUR
(p¼0.452)

NAM***
(p¼3.314310�7)

EUAF**
(p1.131310�3)

EUNA
(p¼0.123)

AFNA**
(p¼4.392310�3)

AA***
(p< 23 10�16)

0:335 (1:6423 106) 0:284 (1:0093 105) 0:237 (8:6483 102) 0:311 (7:9433 105) 0:280 (2:4913 104) 0:315 (8:3643 104)

PR***
(p< 23 10�16)

0:337 (1:6033 105) 0:282 (1:0643 106) 0:275 (5:3953 104) 0:313 (7:5173 105) 0:286 (4:9123 105) 0:308 (1:7003 105)

MX***
(p< 23 10�16)

0:341 (7:6513 103) 0:282 (4:5853 105) 0:286 (8:2753 105) 0:317 (1:1543 105) 0:287 (1:1423 106) 0:314 (1:3933 105)

Total number of megabases, summed across all individuals, in parentheses. A significant difference (Pearson’s chi-square test, p value in parentheses) across pop-
ulations for a given ancestry background is denoted at the beginning of a column. A significant difference across ancestry backgrounds for a given population
(Pearson’s chi-square test, p value in parentheses) is denoted at the beginning of a row. Population codes: AA, African American; PR, Puerto Rican; MX, Mexican
American. Local ancestry codes: AFR, homozygous African; EUR, homozygous European; NAM, homozygous Native American; EUAF, heterozygous European/Af-
rican; EUNA, heterozygous European/Native American; AFNA, heterozygous African/Native American. *p < 0.05, **p < 0.01, ***p < 0.001.
more European and Native American ancestry, which tend

to have more genome-wide deleterious homozygotes

(Figure 3B) as a result of the serial bottlenecks they experi-

enced since migrating out of Africa.

We have already shown (Figure 4) that as total genomic

ROH increases the proportion of deleterious homozygotes

falling in ROH increases faster than the proportion of

benign homozygotes, but here we want to know whether

the ancestral background of the IBD haplotypes matters.

We propose that haplotypes sourced from ancestral popu-

lations with high deleterious heterozygosity have highest

rates of accumulation of deleterious homozygotes when

paired IBD to generate ROH.

To test this proposition, we first partition ROH based on

the ancestral background of the underlying IBD haplo-

types. Then we compute for each individual (i) the fraction

of all deleterious (d) and benign (b) homozygotes across the

genome that fall into each ROH class (j) as:

f di;jðAÞ¼
gd;2i;j ðAÞ

gd;2i;R þ gd;2i;N

and

f bi;jðAÞ¼
gb;2i;j ðAÞ

gb;2i;R þ gb;2i;N

;

where gd;2i;j ðAÞ and gb;2i;j ðAÞ are the number of deleterious and

benign homozygotes, respectively, in individual i in ROH

class j on ancestral haplotype background A˛fAFR; EUR;
NAMg. Similarly, f di;jðAÞ and f bi;jðAÞ are the genome-wide

fraction of deleterious and benign homozygotes, respec-

tively, in individual i in ROH class j that fall on haplotype

background A. Finally, we fit a linear model similar as

above, f$;jðAÞ ¼ b0 þ b1G$;jðAÞþ b2Dþ b3DG$;jðAÞþ ε, in or-

der to test for differences in the rate of accumulation ðb3Þ of
deleterious homozygotes compared to benign homozy-

gotes as a function of G$;jðAÞ, the genomic fraction of

ROH on ancestral background A. The results are plotted

in Figure 5 for total ROH (j ¼ N; Figures 5A–5C) and for

long ROH (j ¼ C; Figures 5D–5F), and the regression coef-

ficients are also summarized in Table S2.
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For total ROH, we find significant differences in the rate

of accumulation of deleterious homozygotes on all

ancestry backgrounds (Figures 5A–5C). Furthermore,

consistent with our expectations, we find that ROH on Af-

rican ancestral haplotypes have the highest rate difference

(b3 ¼ 1:214, p < 2 3 10�16; Figure 5C), whereas ROH on

European ancestral haplotypes have an intermediate rate

difference (b3 ¼ 0:648, p < 2 3 10�16; Figure 5B) and

ROH on Native American ancestral haplotypes have the

lowest rate difference (b3 ¼ 0:510, p < 2 3 10�16;

Figure 5A). This pattern is repeated when we consider

only long ROH comprised of young haplotypes (Figures

5D–5F) and also when we analyze smaller ROH (albeit

with weaker effects; Figure S1).

We also perform a variation of this analysis to compare

the rate of gain of deleterious homozygotes in high-pLI

versus low-pLI genes in ROH across different ancestral

backgrounds. We fit the regression f$;jðAÞ ¼ b0 þ
b1G$;jðAÞþ b2Dþ b3DG$;jðAÞþ ε, which is similar to above

except that H is an indicator variable taking a value of 1 or

0 if the response comes from the high-pLI gene set or the

low-pLI gene set, respectively (Table S5).

For all ROH combined, we find a significantly higher

rate of gain of deleterious homozygotes in high-pLI genes

versus low-pLI genes on Native American haplotypes

(b3 ¼ 0:0746, p ¼ 9:0303 10�3) but not for European

(b3 ¼ 0:0584, p ¼ 0:114) or African (b3 ¼ � 8:2463

10�3,p ¼ 0:852) haplotypes. Considering only long

ROH, there is a significant difference for Native American

(b3 ¼ 0:0973,p ¼ 1:5713 10�2) and European (b3 ¼
0:133,p ¼ 2:5203 10�2), but again not for African (b3 ¼
0:146,p ¼ 0:122). Since we have restricted our dataset by

gene set, ROH class, and ancestral background, we may

lack power to detect small effect sizes in this African case.

Alternatively, there may be more complicated dynamics

relating deleteriousness to demography and inbreeding.

We next directly compare the rate of increase of delete-

rious homozygotes across different ancestral haplotype

backgrounds. To do this we compute the following regres-

sion, f d$;jð $Þ ¼ b0 þ b1G$;jð $Þþ b2IðEURÞþ b3IðNAMÞþ
b4IðEURÞG$;jð $Þþ b5IðNAMÞG$;jð $Þþ ε, where f d$;jð $Þ is a
r 3, 2019
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Figure 4. Deleterious and Benign Homo-
zygotes in ROH Classes
The proportion of damaging (red) and
benign (blue) homozygotes falling in ROH
of different size classes: (A) all ROH, (B)
short ROH, (C) medium ROH, and (D)
long ROH. Data shown is across all popula-
tions. Gray line plots Y ¼ X.
vector representing the proportion of damaging homozy-

gotes in ROH class j on each local ancestry background

across all individuals. G$;jð $Þ represents the genome-wide

fraction ROH class j falling on each local ancestry back-

ground across all individuals, and IðAÞ is an indicator var-

iable which takes the value 1 if the associated response is

on ancestral background A˛fAFR;EUR;NAMg and takes

the value 0 otherwise. Here we analyze each ROH class:

all, long, medium, and short.

We plot the results for ‘‘all’’ and ‘‘long’’ in Figure 6 (‘‘me-

dium’’ and ‘‘short’’ in Figure S2) and summarize the in-

ferred regression coefficients for all classes in Table S3.

We focus on the regression coefficients b4 and b5, which

represent the difference in rate of gain of deleterious ho-

mozygotes in ROH on European or Native American hap-

lotypes compared to African haplotypes, respectively.

Graphically, in Figures 6 and S2, a significant b4 corre-

sponds to a significant difference in the slope of the or-

ange and blue line, and a significant b5 corresponds to a

significant difference in the slope of the orange and red

line. Since we expect that the rate of gain of deleterious

homozygotes to be lowest in ROH on European and

Native American haplotypes compared to ROH on African

ones, we expect significant negative values for both b4

and b5.

Consistent with our expectations, when analyzing

all ROH (Figure 6A) we find a significant negative b4 ¼ �
0:763 (p < 23 10�16) and b5 ¼ �0:852 (p < 23 10�16),

indicating that the gain rate of damaging homozygotes
The American Journal of Human Ge
in ROH on African ancestral haplo-

types outpaces that of ROH on the

other ancestral haplotypes. This

pattern continues when considering

only long ROH (b4 ¼ � 0:852,

p < 2310�16 ; b5 ¼ � 0:727, p < 23

10�16; Figure 6B) and smaller ROH

(Table S3 and Figure S2).

We repeat a similar analysis to

compare the rate of gain of delete-

rious homozygotes in high-pLI genes

directly across ancestry backgrounds.

In this case, although African ances-

tral backgrounds do not show a sig-

nificant difference in the accumula-

tion of deleterious homozygotes

between high- and low-pLI genes,

they show a clearly higher rate of

gain in high-pLI genes compared to
European and Native American ancestral backgrounds

(Table S6).

To check the robustness of these results, we reran these

analyses using several other deleterious classification

methods including SIFT,82,93 Provean,83 and GERP.84 Since

GERP scores sites and not mutations, we restricted the

GERP analysis to loci where the ancestral and derived states

were inferred to high confidence. As this ancestral polariza-

tion results in discarding a large number of loci with

ambiguous ancestral allele state, we also reran these ana-

lyses for PolyPhen 2,81 SIFT,82,93 and Provean83 restricted

only to loci for which we have ancestral/derived state in-

formation. Figure S3 plots the inferred b3for each of these

analyses for each ROH size class and demonstrates qualita-

tively similar patterns as shown above.

We further re-analyzed a subset of the ROH and deleteri-

ousness calls from Pemberton and Szpiech,53 which con-

tains data on six admixed populations from the 1000

Genomes Project94 and used CADD95 scores as a deleteri-

ousness prediction (Supplemental Material and Methods).

After extracting the data relating to the admixed individ-

uals from Pemberton and Szpiech53 and calling local ances-

tries, we again find qualitatively similar patterns as above

(Figure S4).

Since Pemberton and Szpiech53 showed that these

enrichment patterns appear to be driven by an abundance

of homozygotes in ROH comprised of low-frequency

alleles, we re-analyzed our data using categories of minor

allele frequency (MAF) instead of deleteriousness (see
netics 105, 747–762, October 3, 2019 755
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Figure 5. Deleterious and Benign Homozygotes in ROH Classes Separated by Ancestry
The proportion of damaging (red) and benign (blue) homozygotes falling in ROH comprised of different ancestral haplotypes and size
classes: (A) all NAM ROH, (B) all EUR ROH, (C) all AFR ROH, (D) long NAM ROH, (E) long EUR ROH, and (F) long AFR ROH. EUR, Eu-
ropean; AFR, African, and NAM, Native American. Gray line plots Y ¼ X.
Material and Methods for how we determined MAF cate-

gory). Using these allele frequencies, we categorize each

polymorphic locus in a gene region (exons plus introns)

into one of two categories: common (MAF R 0.05) and

rare (MAF < 0.05). We then fit the same models as above,

except that instead of comparing the proportion of delete-

rious alternate allele homozygotes to benign homozygotes

as a function of ROH coverage, we compare the number of

minor allele homozygotes in the rare class to the common

class.

We summarize the results of these analyses for each

ancestral background, each ROH size class, and each low-

frequency class in Figure 7. We find that ROH on African

haplotype backgrounds gain more low-frequency minor

allele homozygotes per unit increase of ROH (and espe-

cially long class C ROH) compared to commonminor allele

homozygotes. Since low-frequency alleles are enriched for

deleterious variants relative to high-frequency alleles, this

result accords with our previous analyses.

Simulating Deleterious Alleles in ROH

We have proposed that autozygosity of haplotypes with

recent ancestry from high-heterozygosity source popula-

tions concentrate deleterious homozygotes at a higher

rate per unit increase of ROH coverage (Figure 6). We

wish to test via simulations whether these differences in

ancestral demographic history can account for this

pattern. To this end, we simulate recessive deleterious al-

leles in a complex three population demographic his-

tory,90 corresponding roughly to African, European, and
756 The American Journal of Human Genetics 105, 747–762, Octobe
Asian human populations (see Material and Methods).

Although our other analyses considered haplotypes from

African, European, and Native American ancestral popula-

tions, this three-population demographic model has been

well studied and is readily available. As this three-popula-

tion model contains a high-heterozygosity source popula-

tion with two population splits undergoing multiple bot-

tlenecks, we feel this will provide a set of simulated data

with a qualitatively similar demographic history.

For each of 500 simulation replicates, we sample 500

diploid individuals from each population, call ROH, and

then compute the proportion of genome-wide deleterious

homozygotes falling within each ROH class. We then

compute a regression, similar to the previous section

where we analyzed the differences between deleterious

homozygotes in ROH on different ancestral backgrounds.

We compute, f d$;jð $Þ ¼ b0 þ b1G$;jð $Þþ b2IðEURÞþ
b3IðASNÞþ b4IðEURÞG$;jð $Þþ b5IðASNÞG$;jð $Þþ ε, where

f d$;jð $Þ is a vector representing the proportion of damaging

homozygotes in ROH class j in each population across

all individuals. G$;jð $Þ represents the genome-wide frac-

tion ROH class j in each population across all individuals,

and IðAÞ is an indicator variable which takes the value 1

if the associated individual is from population

A˛fAFR;EUR;ASNg and takes the value 0 otherwise.

Here AFR corresponds to the simulated African popula-

tion, EUR corresponds to the simulated European popula-

tion, and ASN corresponds to the simulated Asian

population. We analyze each ROH class: all, long, me-

dium, and short, and within each class we combine our
r 3, 2019
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regression coefficients across replicates with inverse-vari-

ance weighted meta-analysis.

In this formulation, the regression terms b4 and b5 repre-

sent the difference in rate of gain of deleterious homozy-

gotes in ROH on European or Asian haplotypes compared

to African haplotypes, respectively. For example, a b4 ¼ 1

would represent a scenario where an increase of 1% ROH

genome-wide in the simulated European population

concentrated 1% more genome-wide deleterious homozy-

gotes in those regions compared to the simulated African

population. Similarly, a b5 ¼ �1 would represent a scenario

where an increase of 1% ROH genome-wide in the simu-

lated Asian population concentrated 1% less genome-wide

deleterious homozygotes in those regions compared to

the simulated African population. Since we hypothesize

that the simulated African population will have the highest

rate of gain of deleterious homozygotes as a function of

genomic ROH coverage, we expect both of these terms to

be negative. Indeed, this is what we find across all ROH clas-

ses (Table S7). Considering all ROH together, we find b4 ¼�
0:409 (p< 23 10�16) and b5 ¼ �0:488 (p< 23 10�16), and

when analyzing only long ROH we find b4 ¼ �0:386 (p <

2 3 10�16) and b5 ¼ �0:446 (p < 2 3 10�16).
Discussion

The distribution of runs of homozygosity in individual ge-

nomes has provided insights into evolutionary, popula-

tion, and medical genetics.1 By examining their genomic

location and prevalence in a population, we can learn

about the history and adaptation of natural popula-

tions,2–30,96,97 and we can make discoveries about the

genetic basis of complex phenotypes.32–48 Given the

importance of demographic history and socio-cultural

practices in the generation of ROH in individual genomes,

and their relationship to complex phenotypes including

many genetic diseases, it naturally follows to study the

distribution of deleterious alleles and their relationship

to ROH.

Previous work has described the effect of demographic

history on the distribution of deleterious alleles,31,70–73,98
The American Journal of Human Ge
including a few specifically investi-

gating their relationship with runs of

homozygosity.17,29,31,52,53,99,100 How-

ever, little work has been done on

the relationship between deleterious
alleles and ROH in admixed populations (although see

Mooney et al.100). Since there is evidence of very recent

bottlenecks (which generate ROH) within admixed popu-

lations living in the Americas,63,100 the relationship be-

tween ROH and the accumulation of deleterious homozy-

gotes may provide valuable insights into the genetic basis

of complex phenotypes in these individuals.

Here we analyzed 1,441 individuals across three ad-

mixed populations: African American, Puerto Rican,

and Mexican American. We found that, consistent with

other studies, the proportion of deleterious homozygotes

found in ROH increases faster than the proportion of

benign homozygotes as a function of total genomic

ROH (Figure 4 and Table S1). We also found that the

genome-wide proportion of deleterious homozygotes in

ROH on African ancestral haplotypes increased faster

per unit ROH than on ether European or Native American

ancestral haplotypes (Figures 5, 6, and Tables S2 and S3).

These patterns are also consistent with population-spe-

cific worldwide patterns of deleterious homozygotes in

ROH,53 where three of the five African populations

analyzed had among the highest rates of enrichment in

long ROH.

To explain this observation, we propose that ancestral

haplotypes from populations with high deleterious hetero-

zygosity would exhibit even greater increases of delete-

rious homozygotes per unit ROH. We reason that, under

randommating, the larger number of low-frequency dele-

terious alleles in the population would largely segregate as

heterozygotes, whereas, when a harsh bottleneck or con-

sanguinity occurs, these mutations get paired IBD as ho-

mozygotes, concentrating more deleterious homozygotes

within ROH. Indeed, via simulation of a realistic human

demographic history, we found that the rate of gain of

deleterious homozygotes was significantly higher in

high heterozygosity source populations compared to

others (Table S7).

The idea that population bottlenecks and inbreeding

can concentrate more deleterious homozygotes on

haplotype backgrounds from a high heterozygosity

founder population has also been proposed as a reason

for the deterioration of the wolf population on Isle
netics 105, 747–762, October 3, 2019 757
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Royale, MI, USA.31 This population, numbering around

50 at its height, was founded by two to three animals

from a large and genetically diverse source population

on mainland Minnesota. The extreme bottleneck and

inbreeding have manifested numerous conspicuous

phenotypes among these wolves, and several extremely

long ROH have been identified in its members. This

can be contrasted with the historically small wolf

populations in Ethiopia, which have successfully avoided

the pitfalls of inbreeding depression. Robinson et al.31

further demonstrate through simulations that although

historically small populations tend to have a higher

burden of deleterious alleles, there are fewer strongly

deleterious alleles segregating compared to large

populations. Thus, in the event of a population size

crash or inbreeding, smaller populations have reduced

risk of severe fitness consequences compared to large

populations.

This suggests that ROH on haplotypes from high-hetero-

zygosity populations (e.g., African populations) may

generate more homozygotes of strong deleterious alleles

compared to other haplotype backgrounds. In the context

of human health, thismaymean that ROH on those haplo-

type backgrounds are relevant for understanding the ge-

netic basis of various diseases.

Whereas ROH on any haplotype background are associ-

ated with an increased rate of deleterious homozygotes,

we show that ROH on African haplotypes tend to have a

larger share of the genome-wide deleterious homozy-

gotes. Indeed, this accords with recent work that has

independently associated increased ROH47 and increased

African ancestry74 with reduced lung function. This
758 The American Journal of Human Genetics 105, 747–762, Octobe
suggests that these ROH on African haplotypes may

play a particularly important role in the genetic archi-

tecture of complex phenotypes in admixed individ-

uals, especially for populations with African ancestry

that have undergone very harsh bottlenecks in the recent

past.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.08.011.
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