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Abstract of the Dissertation

Energy Management in Microgrids: Algorithms and

System

by

Wenbo Shi

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2015

Professor Rajit Gadh, Chair

Microgrids, as one of the key components to enable the future smart grid, refer to low-

voltage power distribution systems integrated with distributed energy resources (DERs) and

controllable loads, which can operate either with or without the grid (i.e., grid-connected

or islanded mode). The integration of DERs and controllable loads brings tremendous op-

portunities to increase power system efficiency, sustainability, and reliability. However, the

intermittency and variability of renewable DERs and limited supply especially when the

microgrid is operating in islanded mode introduce significant challenges to maintain the fun-

damental supply-demand balance for system stability. Therefore, the goal of this dissertation

is to solve the supply-demand balancing problem in microgrids using optimization-based en-

ergy management.

Most of the existing energy management algorithms in the literature consider the ag-

gregate supply-demand balance as an abstract mathematical function while omitting the

underlying power distribution network and the associated power flow and system opera-

tional constraints. Consequently, such approaches may result in control decisions that vio-

late the real-world constraints. Therefore, in the first part of this dissertation, we study the

supply-demand balancing problem in microgrids under more realistic conditions and pro-

pose algorithms for microgrid energy management that take into account the power flow and

system operational constraints on a distribution network. By incorporating the distribution

ii



network in the modeling, we present the relationship between the physical structure of a

microgrid and the energy management on the network.

Another major challenge in microgrid energy management is to design a two-way commu-

nication system in order to implement the algorithms. A variety of heterogeneous devices in

a microgrid need to be managed by such a system using the energy management algorithms.

Unfortunately, most of those devices still use proprietary protocols and cannot interoperate

with each other. Furthermore, many devices managed by the system reside on the customer

side requiring autonomy and local intelligence. Therefore, in the second part of this dis-

sertation, we focus on the design and implementation of a system architecture that enables

interoperability and autonomy for microgrid energy management. We present the design of a

unified communication interface that is protocol and technology agnostic for interoperability

and a decentralized system architecture for autonomy on the customer side.
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CHAPTER 1

Introduction

In this chapter, we introduce the research backgrounds and summarize the contributions of

this dissertation.

1.1 Research Backgrounds

This section introduces the backgrounds of the research in the dissertation including smart

grid, microgrid, residential demand response (DR), distributed energy management, real-

time energy management, and energy management system.

1.1.1 Smart Grid

A smart grid, as the next-generation power grid, is a combination of the legacy power sys-

tem and the latest information and communications technologies to incorporate renewable

energy sources, increase system efficiency and reliability, and allow for more customer partic-

ipation [1]. New technologies are transforming the conventional power grid towards a smart,

responsive, and user-friendly grid from every aspect - generation, transmission, distribution,

and utilization as illustrated in Fig. 1.1.

On the generation side of a smart grid, more renewables such as solar and wind will

be used in addition to the conventional bulk power generation. Grid-level energy storage

can buffer the power flow, serving as generation when discharging and load when charging.

On the transmission side, massive advanced phasor measurement units will be installed to

monitor wide-area real-time system states for reliability. On the distribution side, microgrids

which can be considered as a small-scale grid will play an important role for integrating

1



Figure 1.1: A smart grid.

distributed energy resources (DERs) and smart meters will be installed to establish two-way

real-time communications between utilities and customers. Lastly, on the utilization side,

smart appliances with the ability to be controlled over a network and emerging electrical

vehicles (EVs) are expected to change the way how customers interact with the grid. Based

on the infrastructure of a smart grid, various new applications and services such as the

concepts of smart home, smart building, microgrid, and automated DR are emerging.

1.1.2 Microgrid

A microgrid refers to a power distribution system integrated with DERs and controllable

loads, which can either operate with the main grid (i.e., grid-connected mode) or use the

DERs to supply the loads without the main grid (i.e., islanded mode) [2]. It can be viewed

2



Figure 1.2: A microgrid example.

as small-scale grid and it is widely considered as one of the key components to integrate

renewable DERs and save transmission losses for effiency [1].

In a conventional power system, the power flow is single directional from bulk generation,

e.g., a power plant, to loads via a transmission and distribution system. As more DERs such

as roof-top photovoltaics (PVs), small wind turbines (WTs), battery systems (e.g., Tesla

Powerwall1) are becoming available on the distribution side, bi-directional power flow is now

possible and it makes a conventional power distribution system into a microgrid which can

use only the DERs as the power supply without the main grid (i.e., islanded mode) or even

sell back its surplus power to the main grid. The size of a microgrid may vary depending

on the application. For example, the concept of microgrid can be implemented as a smart

home, a smart building, or a smart campus. Fig. 1.2 shows a microgrid example consisting of

PVs, WTs, diesel generators, batteries, and loads. Two-way communications are available

1http://www.teslamotors.com/powerwall
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between the local controllers (LCs) and the microgrid central controller (MGCC). There

are a few on-going projects focusing on building the microgrid infrastructure such as the

smart power infrastructure demonstration for energy reliability and security (SPIDERS)

from Sandia National Labs [3] and the UCSD microgrid project [4].

In a microgrid, it is essential to maintain the power supply-demand balance for stability

because the intermittent DERs such as PVs and WTs are hard to predict and their generation

may fluctuate significantly depending on the availability of the primary sources (e.g., solar

and wind). The supply-demand balancing problem becomes even more challenging when the

microgrid is operating in islanded mode where only limited supply is available to balance the

demand. To solve this problem, energy management is needed to manage the operations of

the DERs and loads in order to maintain the supply-demand balance in a microgrid. In the

following, we will introduce the backgrounds of three optimization-based energy manage-

ment algorithms followed by microgrid energy management system (EMS) that provides the

communication infrastructure required to implement the energy management algorithms.

1.1.3 Residential Demand Response

DR is a mechanism to enable customers to participate in the electricity market in order to

improve power system efficiency and integrate renewable generation [5]. Most of the existing

DR programs in the United States are for commercial and industrial customers and they have

been well studied. Very few DR programs are in use for residential customers [6]. However,

as smart grid technologies such as smart metering, smart appliances, and home area network

technologies developed significantly over the past years, residential DR becomes increasingly

attractive due to its great potential [7].

Residential DR requires the coordination of a large number of households in order to

improve the overall power system efficiency and reliability. Such coordination is usually

implemented via pricing signals, assuming that customers are price responsive. Extensive

algorithms [7–12] have been proposed in the literature to determine the prices and customers’

responses to the prices. Most of these studies consider the supply-demand matching in DR
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Figure 1.3: An energy management strategy.

in an abstract way where the aggregate demand is simply equal to the supply. However,

households are not isolated with each other, but they are connected by a power distribution

network with the associated power flow constraints (e.g. Kirchhoff’s laws) and system oper-

ational constraints (e.g. voltage tolerances). As a result, the schemes proposed by previous

studies may end up with electricity consumption/shedding decisions that violate those con-

straints and thus are not feasible. There are few studies which consider DR in direct current

(DC) distribution networks [13]. However, they cannot be applied to the most widely-used

alternating current (AC) distribution networks.

1.1.4 Distributed Energy Management

Sound operation of a microgrid requires an energy management strategy (EMS)2 which

controls the power flows in the microgrid by adjusting the power imported/exported from/to

the main grid, the dispatchable DERs, and the controllable loads based on the present and

forecasted information of the market, the generations, and the loads in order to meet certain

2In this dissertation, we use EMS interchangeably for energy management system or energy management
strategy depending on the context.
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operational objectives (e.g., minimizing costs) [2].

Energy management in microgrids is typically formulated as a non-linear optimization

problem. Various centralized methods have been proposed to solve it in the literature, includ-

ing mixed integer programming [14], sequential quadratic programming [15], particle swarm

optimization [16], neural networks [17], etc. The centralized approaches [14–17] require high

computational capabilities at the MGCC, which is neither efficient nor scalable. Moreover,

a centralized EMS requires the MGCC to gather information of the DERs (e.g., production

costs, constraints, etc.) and the loads (e.g., customer preferences, constraints, etc.) as the

inputs for optimization. However, different DERs may belong to different entities and they

may keep their information private [18]. Customers may also be unwilling to expose their

information due to privacy [19].

Several distributed algorithms have been proposed for the operation of microgrids in the

literature. In [18], a distributed algorithm based on the classical symmetrical assignment

problem is proposed. Energy management is formulated as a resource allocation problem

in [20] and distributed algorithms are proposed for distributed allocation. A convex problem

formulation can be found in [21] and dual decomposition is used to develop a distributed

EMS to maintain the supply-demand balance in microgrids. A privacy-preserving energy

scheduling algorithm in microgrids is proposed in [19], where the privacy constraints are

integrated with the linear programming model and distributed algorithms are developed.

In [22], the additive-increase/multiplicative-decrease algorithm is adopted to optimize DER

operations in a distributed fashion.

The problem with the existing distributed approaches [18–22] is that they consider the

supply-demand matching in an abstract way where the aggregate demand is simply equal to

the supply. They assume that all generations and loads are connected to one bus and ignore

the underlying power distribution network and the associated power flow (e.g., Kirchhoff’s

law) and system operational constraints (e.g., voltage tolerances). Consequently, the sched-

ules produced by those algorithms may violate those constraints and thus are not feasible

in practice. It is worth noting that distribution networks have been taken into account in

a few recent DR studies [23]. However, the idea of integrating distribution networks with
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distributed energy management in microgrids, where both supply side and demand side

management are considered, has not been explored.

1.1.5 Real-Time Energy Management

Energy management in microgrids is typically formulated as an offline optimization problem

for day-ahead scheduling by previous studies [15, 24–27]. Most of these offline approaches

assume perfect forecasting of the renewables, the demands, and the market, which is difficult

to achieve in practice due to the intermittency and variability of renewables, the spatial and

temporal uncertainty in controllable loads (e.g., EVs), and the randomness in real-time

pricing. To tackle this problem, efforts have been made to capture the uncertainties in

day-ahead scheduling through modeling different scenarios [21, 28–32]. These approaches

typically use stochastic programming to formulate energy management as a deterministic

problem based on the scenarios that are usually generated by Monte Carlo simulations. The

number of these scenarios may be large and thus it can be computationally expensive to

use these methods. Although these approaches consider the uncertainties, they still require

certain forecasting and usually do not adapt to real-time changes in the environment. Other

studies [16, 17] consider the energy management problem at each time independently and

focus on how to efficiently solve the optimization problem in real time.

Recently, there have been attempts to develop online algorithms for real-time energy

management in microgrids to optimize the long-term cost, which take into account the un-

certainties of the renewables, the demands, and the market [33–35]. These approaches do

not require any a priori statistical knowledge of the underlying stochastic processes and can

adapt to the time-varying environment. However, these existing online approaches consider

the aggregate supply-demand balance while omitting the underlying power distribution net-

work, the associated power flow (e.g., Kirchhoffs laws), and system operational constraints

(e.g., voltage tolerances). Consequently, such approaches may result in control decisions that

violate the real-world constraints.

7



Forecast

Microgrid EMS

In
te

rfa
ce

In
te

rf
a

ce

Customer side

PV

WT

CHP

Diesel

Battery

EV

......

Grid side

Utility

3
rd

 party 

service 

provider

Weather 

forcast

.....

Optimization

HMIData analysis

Figure 1.4: An energy management system.

1.1.6 Energy Management System

An EMS monitors, controls, and optimizes the operation of a microgrid to achieve certain

operational objectives (e.g., minimize costs). It is essential to implement any energy man-

agement algorithms. Due to the integration of distributed generation (DG), distributed

storage (DS), and controllable loads, the operation and management of a microgrid is more

complicated than a conventional distribution system, which is implemented by an EMS.

A microgrid EMS can be significantly different from the EMS used in conventional power

systems due to these challenges [36].

To understand the challenges, Su and Wang [36] discussed the role of EMS in micro-

grid operations and listed four essential functionalities that a microgrid EMS must support:

forecast, optimization, data analysis, and human-machine interface (HMI) as shown in Fig.

1.4. Due to the importance of EMS in power systems, many EMS frameworks [37–40] have

been investigated in the literature. While these previous studies focused on different issues

in EMS, they commonly suffer from engineering challenges that must be taken into account

when designing an implementable microgrid EMS.

First of all, intermittency and variability of DERs (e.g., PVs and WTs) and spatiotem-

poral uncertainty in controllable loads complicate the microgrid management, which the

EMS must be able to cope with. Next, a microgrid triggers a number of new applications
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(e.g., DR, coordinated EV charging, vehicle-to-grid (V2G), etc.) and innovative control al-

gorithms [1, 23, 41]. The EMS must be able to interface with them seamlessly. Moreover,

since many devices managed by the EMS reside on the customer side, they require certain

level of autonomy and local intelligence that the EMS must be able to provide. Last but

not least, a microgrid instruments a number of energy components. But, most of them still

use proprietary protocols and cannot interoperate with each other [37]. The EMS must han-

dle the heterogeneity and achieve interoperation. A microgrid EMS can be implemented to

perform efficient management and control only when overcoming the engineering challenges

and satisfying aforementioned functional requirements. Unfortunately, few previous EMS

studies have accomplished both of them.

1.2 Structure and Contributions

This section presents the structure of the dissertation and summarizes the contributions as

below.

The goal of this dissertation is to solve the supply-demand balancing problem in micro-

grids using optimization-based energy management. We propose three energy management

algorithms under different context in Chapters 2-4. We then propose a system architecture

that enables interoperability and autonomy for microgrid energy management that can be

used to implement those algorithms in Chapter 5.

Chapter 2 focuses on the design of a residential DR scheme that can coordinate a large

number of household appliances to achieve DR. Most previous studies on DR consider the

supply-demand matching in an abstract way without taking into account the underlying

power distribution network and the associated power flow and system operational constraints.

As a result, the schemes proposed by those studies may end up with electricity consump-

tion/shedding decisions that violate those constraints and thus are not feasible in practice.

In Chapter 2, we study residential DR with consideration of the power distribution network

and the associated constraints and formulate it as an optimal power flow problem (OPF)

and propose a distributed scheme where the load serving entity (LSE) and the households
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interactively communicate to compute an optimal demand schedule. To complement our

theoretical results, we also simulate an IEEE test distribution system. The simulation re-

sults demonstrate two interesting effects of DR. One is the location effect, meaning that the

households far away from the feeder tend to reduce more demands in DR. The other is the

rebound effect, meaning that DR may create a new peak after the DR event ends if the DR

parameters are not chosen carefully. The two effects suggest certain rules we should follow

when designing a DR program. Chapter 2 is based on the work published in [23].

Chapter 3 focuses on the design of a distributed EMS for the optimal operation of micro-

grids. Energy management in microgrids is typically formulated as a non-linear optimiza-

tion problem. Solving it in a centralized manner does not only require high computational

capabilities at the MGCC but may also infringe customer privacy. Existing distributed ap-

proaches, on the other hand, assume that all generations and loads are connected to one bus

and ignore the underlying power distribution network and the associated power flow and

system operational constraints. Consequently, the schedules produced by those algorithms

may violate those constraints and thus are not feasible in practice. Therefore, in Chapter 3,

we develop a distributed EMS for the optimal operation of microgrids with consideration of

the distribution network and the associated constraints. Specifically, we formulate microgrid

energy management as an OPF and propose a distributed EMS where the MGCC and the

local controllers jointly compute an optimal schedule. We also provide an implementation of

the proposed distributed EMS based on the IEC 61850 standard [42]. As one demonstration,

we apply the proposed distributed EMS to a real microgrid in Guangdong Province, China,

consisting of PVs, WTs, diesel generators, and a battery energy storage system (BESS).

The simulation results demonstrate the effectiveness and fast convergence of the proposed

distributed EMS. Chapter 3 is based on the work published in [27].

Chapter 4 focuses on developing an online EMS for real-time operation of microgrids

to deal with the uncertainties in the energy management problem. Energy management in

microgrids is typically formulated as an offline optimization problem for day-ahead schedul-

ing by previous studies. Most of these offline approaches assume perfect forecasting of the

renewables, the demands, and the market, which is difficult to achieve in practice. Existing
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online algorithms, on the other hand, oversimplify the microgrid model by only considering

the aggregate supply-demand balance while omitting the underlying power distribution net-

work and the associated power flow and system operational constraints. Consequently, such

approaches may result in control decisions that violate the real-world constraints. Therefore,

in Chapter 4, we develop an online EMS for real-time operation of microgrids that takes into

account the power flow and system operational constraints on a distribution network. We

model the online energy management as a stochastic optimal power flow (SOPF) problem

and propose an online EMS based on Lyapunov optimization. The proposed online EMS is

subsequently applied to a real microgrid system. The simulation results demonstrate that

the performance of the proposed EMS exceeds a greedy algorithm and is close to an opti-

mal offline algorithm. Lastly, the effect of the underlying network structure on the energy

management is observed and analyzed. Chapter 4 is based on the work to be published

in [43].

Chapter 5 focuses on the design and implementation of a system architecture that enables

interoperability and autonomy on the customer side for microgrid energy management. In

a microgrid, there are a variety of heterogeneous DERs and loads that need to be managed

by an EMS. Unfortunately, most of those devices still use proprietary protocols and cannot

interoperate with each other. Furthermore, many devices managed by the system reside on

the customer side requiring autonomy and local intelligence. Therefore, in Chapter 5, we

design a system architecture for microgrid energy management that enables interoperability

and autonomy on the customer side. We design a unified communication interface that is

protocol and technology agnostic for the system to interoperate with heterogeneous devices

in a microgrid. We then propose a decentralized system architecture, in which the system

components are highly decoupled and independent to enable autonomy on the customer

side. Moreover, we deploy a prototype of the proposed system architecture and conduct

experiments to evaluate microgrid management and control in real-world settings in two

microgrid testbeds. Our experimental results demonstrate that the system is able to manage

various DERs and loads in the testbeds using different industrial standards and protocols,

interact with external systems, and perform efficient energy management using different
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algorithms. A part of Chapter 5 is based on the work published in [44].

The conclusions and future work are given in Chapter 6.
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CHAPTER 2

Optimal Residential Demand Response in Distribution

Networks

DR enables customers to adjust their electricity usage to balance supply and demand. Most

previous studies on DR consider the supply-demand matching in an abstract way without

taking into account the underlying power distribution network and the associated power flow

and system operational constraints. As a result, the schemes proposed by those studies may

end up with electricity consumption/shedding decisions that violate those constraints and

thus are not feasible in practice. In this chapter, we study residential DR with consideration

of the power distribution network and the associated constraints. We formulate residential

DR as an OPF problem and propose a distributed scheme where the LSE and the households

interactively communicate to compute an optimal demand schedule. To complement our

theoretical results, we also simulate an IEEE test distribution system. The simulation results

demonstrate two interesting effects of DR. One is the location effect, meaning that the

households far away from the feeder tend to reduce more demands in DR. The other is the

rebound effect, meaning that DR may create a new peak after the DR event ends if the DR

parameters are not chosen carefully. The two effects suggest certain rules we should follow

when designing a DR program.

2.1 Introduction

DR is a mechanism to enable customers to participate in the electricity market in order to

improve power system efficiency and integrate renewable generation [5]. Most of the existing

DR programs in the United States are for commercial and industrial customers and they have
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been well studied. Very few DR programs are in use for residential customers [6]. However,

as smart grid technologies such as smart metering, smart appliances, and home area network

technologies developed significantly over the past years, residential DR becomes increasingly

attractive due to its great potential [7].

Residential DR requires the coordination of a large number of households in order to

improve the overall power system efficiency and reliability. Such coordination is usually

implemented via pricing signals, assuming that customers are price responsive. Extensive

algorithms [7–12] have been proposed in the literature to determine the prices and customers’

responses to the prices. Most of those studies consider the supply-demand matching in DR

in an abstract way where the aggregate demand is simply equal to the supply. However,

households are not isolated with each other, but they are connected by a power distribu-

tion network with the associated power flow constraints (e.g., Kirchhoff’s laws) and system

operational constraints (e.g., voltage tolerances). As a result, the schemes proposed by

previous studies may end up with electricity consumption/shedding decisions that violate

those constraints and thus are not feasible. There are few studies which consider DR in DC

distribution networks [13]. However, they cannot be applied to the most widely-used AC

distribution networks.

This chapter focuses on the design of a DR scheme for a large number of residential

households with consideration of the AC power distribution network and the associated con-

straints in a smart grid where two-way communications between the LSE and the households

are available. More specifically, we consider a direct residential DR program where customers

who participate in it sign a contract with the LSE in advance to let the LSE control some of

their appliances for a certain period of time. The HEMs in the participating households can

receive DR control signals from the LSE to coordinate their appliance operations in order

to meet the DR objective in a DR event. The objective of the DR is to manage the appli-

ances for each household such that (i) the social welfare (i.e., the customer utilities minus

the power losses) is maximized, (ii) the system demand is below a certain limit during peak

hours, and (iii) the appliance operational constraints, the power flow constraints, and the

system operational constraints are satisfied.
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Specifically, we formulate residential DR as an OPF using a branch flow model [45].

The OPF problem is non-convex due to the power flow constraints and thus is difficult to

solve. We relax the problem to be a convex problem. The convex relaxation is not exact

in general (i.e., the solution to the relaxed problem is not the same as the solution to the

original problem). Recent studies [46–48] have derived sufficient conditions under which the

relaxation is exact for radial networks. Roughly speaking, if the bus voltage is kept around

the nominal value and the power injection at each bus is not too large, then the relaxation is

exact. For detailed conditions, please refer to [46]. More sufficient conditions can be found

in [47,48]. Those conditions can be checked a priori and hold for a variety of IEEE standard

distribution networks and real-world networks. Therefore, we focus on solving the relaxed

OPF problem (OPF-r) in this chapter. The OPF-r problem is a centralized optimization

problem. To solve it in a distributed manner, we propose a DR scheme where the LSE and

the HEMs in the households jointly compute an optimal demand schedule. In our proposed

DR scheme, the HEM in each household keeps the private information locally (i.e., utility

functions and appliance operational constraints) and the LSE has the system information

(i.e., network topology, line impedances, power losses, etc.). Therefore, customer privacy

(i.e., detailed appliance-level information) is protected in the DR process.

To complement our theoretical model, we apply the proposed DR scheme to an IEEE

test radial distribution system [49]. The simulation results demonstrate the effectiveness of

our proposed DR scheme and show two interesting effects of DR. One is the location effect

meaning that the households far away from the feeder tend to reduce more demands in DR.

The other is the rebound effect meaning that DR may create a new peak after the DR event

ends if the DR parameters are not chosen carefully. The two effects suggest certain rules we

should follow when designing a DR program.

The rest of this chapter is organized as follows. We introduce the system model in Section

2.2 and propose the DR scheme in Section 2.3. The simulation results and discussions on

the location effect and the rebound effect are provided in Section 2.4. The summary is given

in Section 2.5.
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2.2 System Model

This section describes the system model of the proposed distributed residential DR scheme.

We give an overview of the system followed by the appliance model, the customer preference

model, the distribution network model, and the DR model. Those models will be used for

designing the DR scheme in the following section.

2.2.1 System Overview

We consider a residential DR over a distribution network, which is operated by one LSE. In

the network, each load bus is connected with a set of households and there are a total of H

households H := {h1, h2, . . . , hH} in the system. In each household h ∈ H, there is a HEM

system managing a set of appliances Ah := {ah,1, ah,2, . . . , ah,A} such as air conditioners

(ACs), electric vehicles (EVs), dryers, etc. The HEM is also connected with the LSE’s

communications network via a smart meter so that there is a two-way communication link

between the LSE and the household [50]. Since most distribution networks are radial, we

focus on only radial distribution networks in this chapter. The overall system architecture

is shown in Fig. 2.1 and 2.2.

We use a discrete-time model with a finite horizon in this chapter. We consider a time

period or namely a scheduling horizon which is divided into T equal intervals ∆t, denoted

by T . For each appliance a ∈ Ah, let ph,a(t) and qh,a(t) be the real power and reactive power

it draws at time t ∈ T . The complex power of the appliance can be denoted by sh,a(t) :=

ph,a(t)+iqh,a(t). The HEM system in each household is able to gather the power consumption

information of the appliances {sh,a(t)}a∈Ah
and adjust the electricity usage to achieve certain

energy efficiency for the customer. If the customer is enrolled in a DR program, the HEM

system can receive DR events issued by the LSE. A DR event would request the participants

to shed or reschedule their demands in exchange for some incentives. Although it is possible

that customers can change their demands manually, a fully-automated system which can

respond to DR events automatically is more favorable for residential customers [51]. To

implement such an auto DR system, an intelligent control algorithm is needed for the HEM
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Figure 2.1: An LSE’s distribution network of H households.

to manage the operations of the appliances in order to meet the DR objective.

2.2.2 Appliance Model

Household appliances can be classified into three types in the context of DR: critical, inter-

ruptible, and deferrable loads [10]. Critical loads such as refrigerators, cooking, and critical

lighting should not be shifted or shed at any time. Interruptible loads such as ACs and

optional lighting can be shed during DR. Deferrable loads such as washers, dryers, and EVs

can be shifted during DR but they are required to consume a certain minimum energy be-

fore deadlines to finish their tasks. Since critical loads cannot participate in DR, we do not

consider them here.

For a given appliance a ∈ Ah, the relationship between the real power and the reactive
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Figure 2.2: HEM system in each household.

power is given by the power factor ηh,a(t):

ηh,a(t) =
ph,a(t)

|sh,a(t)|
,∀t ∈ T . (2.1)

And we characterize an appliance by a set of constraints on its demand vector ph,a :=

(ph,a(t), t ∈ T ).

Now we introduce the appliance operational constraints [11].

• For each appliance, the demand is constrained by a minimum and a maximum power

denoted by pmin
h,a (t) and pmax

h,a (t), respectively:

pmin
h,a (t) ≤ ph,a(t) ≤ pmax

h,a (t), ∀t ∈ T . (2.2)

Note that pmin
h,a (t) and pmax

h,a (t) can be also used to set the available working time for the

appliance. For example, if the appliance cannot run at time t, then we set pmax
h,a (t) =

pmin
h,a (t) = 0.
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• For thermostatically controlled appliances such as ACs and heaters, the constraint

(2.2) alone is not enough. To model this kind of appliances, we need to find the

relationship between the indoor temperature T in
h (t) and the demand vector ph,a (refer

to [11] or Section 2.4 for details). We assume that the customer sets a most comfortable

temperature T comf
h (t) and there is a range of temperature that the customer can bear,

denoted by [T comf,min
h , T comf,max

h ]. In addition to (2.2), a thermostatically controlled

appliance can be modeled as:

T comf,min
h ≤ T in

h (t) ≤ T comf,max
h ,∀t ∈ T . (2.3)

• For deferrable loads, the cumulative energy consumption of the appliances must exceed

a certain threshold in order to finish their tasks before deadlines. Let Emin
h,a and Emax

h,a

denote the minimum and maximum total energy that the appliance is required to

consume, respectively. The constraint on the total energy consumed by a deferrable

load is given by:

Emin
h,a ≤

∑
t∈T

ph,a(t)∆t ≤ Emax
h,a . (2.4)

2.2.3 Customer Preference Model

We model customer preference in the DR using the concept of utility function from eco-

nomics. The utility function Uh,a(ph,a) quantifies a customer’s benefit or comfort obtained

by running an appliance a ∈ Ah using its demand vector ph,a. Depending on the type of the

appliance, the utility function may take different forms [11].

• For interruptible loads, the utility is dependent on the power it draws at time t and

may be time variant if the operation is time sensitive. For example, the utility function

for interruptible loads can be defined as:

Uh,a(ph,a) :=
∑
t∈T

Uh,a (ph,a(t), t) . (2.5)

• For thermostatically controlled appliances, the utility is related to the temperature

T in
h (t) and the most comfort temperature T comf

h (t). Therefore, the utility function can
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Table 2.1: Notations

Vi(t), vi(t)
complex voltage on bus i with

vi(t) = |Vi(t)|2

si(t) = pi(t) + iqi(t) complex load on bus i

Iij(t), `ij(t)
complex current from buses i to j with

`ij(t) = |Iij(t)|2

Sij(t) = Pij(t) + iQij(t) complex power from buses i to j

zij = rij + ixij impedance on line (i, j)

be defined in the form of:

Uh,a(ph,a) :=
∑
t∈T

Uh,a
(
T in
h (t), T comf

h (t)
)
. (2.6)

• For deferrable loads, since a customer mainly concerns if the task can be finished before

deadline, we define the utility as a function of the total energy consumption:

Uh,a(ph,a) := Uh,a

(∑
t∈T

ph,a(t)∆t

)
. (2.7)

For the rest of this chapter, we assume that the utility function Uh,a(ph,a) is a continuously

differentiable concave function for all h ∈ H, a ∈ Ah.

2.2.4 Distribution Network Model

A power distribution network can be modeled as a connected graph G = (N , E), where each

node i ∈ N represents a bus and each link in E represents a branch (line or transformer).

The graph G is a tree for radial distribution networks. We denote a branch by (i, j) ∈ E .

We index the buses in N by i = 0, 1, . . . , n, and bus 0 denotes the feeder which has a

fixed voltage and flexible power injection. Table 2.1 summarizes the key notations used in

modeling distribution networks for the ease of reference.

For each branch (i, j) ∈ E , let zij := rij + ixi,j denote the complex impedance of the

branch, Iij(t) denote the complex current from buses i to j, and Sij(t) := Pij(t) + iQij(t)

denote the complex power flowing from buses i to j.
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For each bus i ∈ N , let Vi(t) denote the complex voltage at bus i and si(t) := pi(t)+iqi(t)

denote the complex bus load. Specifically, the feeder voltage V0 is fixed and given. s0(t) is

the power injected to the distribution system. Each load bus i ∈ N \ {0} supplies a set of

households which are connected to the bus denoted by Hi ⊂ H. The aggregate load at each

bus satisfies:

si(t) =
∑
h∈Hi

∑
a∈Ah

sh,a(t),∀i ∈ N \ {0},∀t ∈ T . (2.8)

Given the radial distribution network, the feeder voltage, and the impedances, then the

other variables including the power flows, the voltages, the currents, and the bus loads satisfy

the following physical laws for all branches (i, j) ∈ E and all t ∈ T .

• Ohm’s law:

Vi(t)− Vj(t) = zijIij(t); (2.9)

• Power flow definition:

Sij(t) = Vi(t)I
∗
ij(t); (2.10)

• Power balance:

Sij(t)− zij|Iij(t)|2 −
∑

k:(j,k)∈E

Sjk(t) = sj(t). (2.11)

Using equations (2.9)–(2.11) and in terms of real variables, we have [52]: ∀(i, j) ∈ E ,∀t ∈

T ,

pj(t) = Pij(t)− rij`ij(t)−
∑

k:(j,k)∈E

Pjk(t), (2.12)

qj(t) = Qij(t)− xij`ij(t)−
∑

k:(j,k)∈E

Qjk(t), (2.13)

vj(t) = vi(t)− 2 (rijPij(t) + xijQij(t)) + (r2
ij + x2

ij)`ij(t), (2.14)

`ij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
, (2.15)

where `ij(t) := |Iij(t)|2 and vi(t) := |Vi(t)|2.

Equations (2.12)–(2.15) define a system of equations in the variables (P(t),Q(t),v(t), l(t),

s(t)), where P(t) := (Pij(t), (i, j) ∈ E), Q(t) := (Qij(t), (i, j) ∈ E), v(t) := (vi(t), i ∈
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N \ {0}), l(t) := (`ij(t), (i, j) ∈ E), and s(t) := (si(t), i ∈ N \ {0}). The phase angles of the

voltages and the currents are not included. But they can be uniquely determined for radial

distribution networks [45].

2.2.5 DR Model

The objective of the LSE is to deliver reliable and high-quality power to the customers

through the distribution network. However, during peak hours, the system demand may

exceed the capacity or the LSE may need to use expensive generations to guarantee reliability.

The voltages may also deviate significantly from their nominal values, which reduces power

quality. Thus, in this chapter, we study DR aiming at keeping the system demand under a

certain limit while meeting the voltage tolerance constraints during peak hours.

A DR event can be defined by a schedule and a demand limit (Td, smax), where Td ⊆ T is

the schedule which specifies the start time and the end time of the DR event and smax is the

demand limit imposed by either the system capacity or the LSE according to the supply.

Given the DR event, the system demand constraint can be modeled as:

|s0(t)| ≤ smax,∀t ∈ Td, (2.16)

where s0(t) is the total complex power injected to the distribution system and it is given by:

s0(t) =
∑

j:(0,j)∈E

S0j(t),∀t ∈ T . (2.17)

We also consider the voltage tolerance constraints in the distribution network which keep

the magnitudes of the voltage at each load bus within a certain range during a DR event:

V min
i ≤ |Vi(t)| ≤ V max

i , ∀i ∈ N \ {0},∀t ∈ Td. (2.18)

The allowed voltage range for different distribution systems can be found in the standard [53].

The objective of the proposed DR scheme is to find a set of optimal demand vectors to

maximize the aggregate utilities of the appliances in the households and minimize the power

losses in the distribution network subject to the appliance operational constraints, the power
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flow constraints, the system demand constraint, and the system operational constraints

(voltage tolerances).

We define P := (P(t), t ∈ T ), Q := (Q(t), t ∈ T ), v := (v(t), t ∈ T ), l := (l(t), t ∈ T ),

sh,a := (sh,a(t), t ∈ T ), and s := (sh,a, h ∈ H, a ∈ Ah). The residential DR can be formulated

as an OPF problem.

OPF

max
P,Q,v,l,s

∑
h∈H

∑
a∈Ah

Uh,a(ph,a)− κ
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (2.1)− (2.4), (2.8), (2.12)− (2.18),

where Uh,a(ph,a) is defined by (2.5)–(2.7); (2.1)–(2.4) are the appliance operational con-

straints; (2.8), (2.12)–(2.15) are the power flow constraints; (2.16) and (2.17) are the system

demand constraints; (2.18) is the voltage tolerance constraint; and κ is a parameter to trade

off between customer utility maximization and power loss minimization. A large κ means

that the LSE is more self-interested in minimizing the power losses rather than maximizing

the customer utilities.

2.3 Distributed DR Scheme

In this chapter, we focus on developing a scalable distributed DR scheme rather than a

centralized scheme due to the large number of appliances that need to be managed by the

scheme. Moreover, the proposed DR scheme also needs to protect the privacy for the residen-

tial customers. To design such a distributed DR scheme, we relax the previous OPF problem

to be a convex problem and propose a distributed algorithm to solve it. The convexity of

the relaxed OPF problem guarantees the convergence of the distributed algorithm.

2.3.1 Introduction to PCPM

In this chapter, we develop a distributed DR scheme using the predictor corrector proximal

multiplier (PCPM) algorithm [54]. PCPM is a decomposition method for solving convex
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optimization problem. At each iteration, it computes two proximal steps in the dual variables

and one proximal step in the primal variables. We give a very brief description of the PCPM

algorithm below.

Consider a convex optimization problem with separable structure of the form:

min
x∈X ,y∈Y

f(x) + g(y) (2.19)

s.t. Ax +By = c. (2.20)

Let z be the Lagrangian variable for the constraint (2.20).

The steps of the PCPM algorithm to solve the problem are given as follows:

1. Initially set k ← 0 and choose the initial (x0,y0, z0) randomly.

2. For each k ≥ 0, update a virtual variable ẑk := zk + γ(Axk +Byk − c) where γ > 0 is

a constant step size.

3. Solve

xk+1 = arg min
x∈X
{f(x) + (ẑk)TAx +

1

2γ
||x− xk||2},

yk+1 = arg min
y∈Y
{g(y) + (ẑk)TBy +

1

2γ
||y − yk||2}.

4. Update zk+1 := zk + γ(Axk+1 +Byk+1 − c).

5. k ← k + 1, and go to step 2 until convergence.

Steps 2 and 4 can be seen as a predictor step and a corrector step to the Lagrange

multiplier, respectively. It has been shown in [54] that the above algorithm will converge to

a primal-dual optimal solution (x∗,y∗, z∗) for a sufficient small positive step size γ as long

as strong duality holds for the convex problem (2.19).
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2.3.2 Convexification of OPF

The previous OPF problem is non-convex due to the quadratic equality constraint in (2.15)

and thus is difficult to solve. Moreover, most decentralized algorithms require convexity to

ensure convergence [55]. We therefore relax them to inequalities:

`ij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, ∀(i, j) ∈ E ,∀t ∈ T . (2.21)

Now we consider the following convex relaxation of OPF.

OPF-r

max
P,Q,v,l,s

∑
h∈H

∑
a∈Ah

Uh,a(ph,a)− κ
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (2.1)− (2.4), (2.8), (2.12)− (2.14), (2.16)− (2.21).

OPF-r provides an upper bound to OPF. For an optimal solution of OPF-r, if the equality

in (2.21) is attained at the solution, then it is also an optimal solution of OPF. We call OPF-r

an exact relaxation of OPF if every solution to OPF-r is also a solution of OPF, and vice

versa.

The sufficient conditions under which OPF-r is an exact relaxation of OPF for radial

distribution networks have been derived in previous studies [46–48]. Roughly speaking, if

the bus voltage is kept around the nominal value and the power injection at each bus is not

too large, then the relaxation is exact. For detailed conditions, please refer to [46]. More

sufficient conditions can be found in [47,48]. Those conditions are verified to hold for many

IEEE standard distribution networks and real-world networks. When OPF-r is an exact

relaxation of OPF, we can focus on solving the convex optimization problem OPF-r. In

this chapter, we assume that the conditions for exact relaxation of OPF to OPF-r specified

in [46–48] hold for the radial distribution network and therefore OPF-r is an exact relaxation

of OPF and strong duality holds for OPF-r.
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2.3.3 Distributed Algorithm

To solve OPF-r in a centralized way, it requires not only the distribution network information

but also the private information of the appliances (i.e., utility functions and schedules). In

order to protect customer privacy and make the DR scalable, we propose a distributed DR

scheme to solve the OPF-r problem using the PCPM algorithm (refer to [54] or Section 2.3.1

for details).

Initially set k ← 0. The HEM in each household h ∈ H sets the initial demand schedule

skh,a for each appliance a ∈ Ah according to its preferable demand schedule. The HEM then

communicates its aggregate demand schedule skh :=
∑

a∈Ah
skh,a to the LSE. In the meantime,

the LSE randomly chooses the initial ski (t) := pki (t) + iqki (t) and two virtual control signals

{µki (t)}t∈T , {λki (t)}t∈T for each bus i ∈ N \ {0}.

At the beginning of the k-th step, the LSE sends two DR control signals µ̂ki (t) := µki (t) +

γ(
∑

h∈Hi
pkh(t)−pki (t)) and λ̂ki (t) := λki (t)+γ(

∑
h∈Hi

qkh(t)−qki (t)) to the HEMs in households

h ∈ Hi for all t ∈ T , where γ is a positive constant. Then,

• The HEM in each household h ∈ Hi solves the following problem for each appliance

a ∈ Ah.

DR-household

max
sh,a

Uh,a(ph,a)− (µ̂k
i )
Tph,a − (λ̂ki )

Tqh,a −
1

2γ
||ph,a − pkh,a||2

− 1

2γ
||qh,a − qkh,a||2

s.t. (2.1)− (2.4),

where µ̂k
i := (µ̂ki (t), t ∈ T ) and λ̂ki := (λ̂ki (t), t ∈ T ). The optimal s∗h,a is set as sk+1

h,a .

• The LSE solves the following problem for each time t ∈ T .

26



Algorithm 1 - The Proposed Distributed DR Scheme.

1: initialization k ← 0. The HEM sets the initial skh,a and returns the aggregate demand schedule

skh to the LSE. The LSE sets the initial µki (t), λ
k
i (t) and the initial ski (t) randomly.

2: repeat

3: The LSE updates µ̂ki (t) and λ̂ki (t) and sends the DR control signals µ̂ki and λ̂ki to the HEMs

in the households h ∈ Hi.

4: The HEM in each household calculates a new demand schedule sk+1
h,a for each appliance

a ∈ Ah by solving the DR-household problem.

5: The LSE computes a new sk+1(t) for each time t ∈ T by solving the DR-LSE problem.

6: The HEM communicates the aggregate demand schedule sk+1
h to the LSE.

7: The LSE updates µk+1
i (t) and λk+1

i (t).

8: k ← k + 1.

9: until convergence

DR-LSE

max
P(t),Q(t),
v(t),l(t),s(t)

(µ̂k(t))Tp(t) + (λ̂k(t))Tq(t)− κ
∑

(i,j)∈E

rij`ij(t)

− 1

2γ
||p(t)− pk(t)||2 − 1

2γ
||q(t)− qk(t)||2

s.t. (2.12)− (2.14), (2.16)− (2.21),

where µ̂k(t) := (µ̂ki (t), i ∈ N \ {0}) and λ̂k(t) := (λ̂ki (t), i ∈ N \ {0}). The optimal

s∗(t) is set as sk+1(t).

At the end of the k-th step, the HEM in household h communicates its aggregate de-

mand schedule sk+1
h :=

∑
a∈Ah

sk+1
h,a to the LSE and the LSE updates µk+1

i (t) := µki (t) +

γ(
∑

h∈Hi
pk+1
h (t)−pk+1

i (t)) and λk+1
i (t) := λki (t)+γ(

∑
h∈Hi

qk+1
h (t)−qk+1

i (t)) for all i ∈ N\{0}

and all t ∈ T . Set k ← k + 1, and repeat the process until convergence.

A complete description of the proposed DR scheme can be found in Algorithm 1. When

γ is small enough, the above algorithm will converge to the optimal solution of OPF-r which

is also the optimal solution of OPF if the relaxation is exact, and (
∑

h∈Hi
pkh(t)− pki (t)) and

(
∑

h∈Hi
qkh(t)−qki (t)) will converge to zero [54]. As we can see, the LSE and the HEMs in the
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households interactively communicate to compute the optimal demand schedule. Therefore,

the two-way communications network in the distribution system is crucial to implement the

proposed DR scheme. Notice that after the LSE and the customers jointly compute the

optimal demand schedule over t ∈ T , the LSE only controls the demands during the DR

period according to the optimal schedule over t ∈ Td. The customers may or may not follow

the optimal demand schedule exactly for the rest of the time T \ Td.

In the proposed DR scheme, the private information of the customer including the util-

ity functions Uh,a(ph,a) and the appliance operational constraints (2.1)–(2.4) appears only

in the DR-household problem which is solved by the HEM owned by the customer. The

LSE solves the DR-LSE problem using the system information including the power flow

constraints (2.12)–(2.14) and (2.21), the system demand constraints (2.16) and (2.17), the

voltage tolerance constraints (2.18), and the power losses
∑

(i,j)∈E rij`ij(t). Therefore, there

is no appliance-level information gathered by the LSE and customer privacy can be protected

in the DR process.

2.4 Performance Evaluation

In this section, we demonstrate the proposed DR scheme by applying it to an IEEE standard

distribution system. We first describe the distribution system used in the simulation and

give the parameters of the scheme. Then we present the simulation results of the proposed

DR scheme and discuss the interesting effects that we observe from the simulation.

2.4.1 Simulation Setup

We use the IEEE 13-node test feeder [49] as the power distribution system which is shown

in Fig. 2.3.1 We assume that there are 10 households connected to each load bus. In the

1In order to exemplify the effect of DR on both the households and the distribution network, we made
several changes to the standard IEEE 13-node test feeder: the inline transformer between node 633 and
node 634 is omitted, the switch between node 671 and node 692 is closed, and the line lengths are increased
by 5 times. The feeder has a nominal voltage of 4.16kV. Since our focus is on residential customers, we
assume that there is a secondary distribution transformer at each load bus which scales the voltage down to
120/240V to serve multiple households.
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Figure 2.3: Modified IEEE standard distribution system.

simulation, a day starts from 8 am. The time interval ∆t in the model is one hour and we

denote a day by TD := {8, 9, . . . , 24, 1, . . . , 7} where each t ∈ TD denotes the hour of [t, t+1].

The scheduling horizon T used by the LSE to calculate the optimal DR strategy is chosen

to be T := {ts, ts + 1, . . . , 7} ⊆ TD, where ts is the time that the DR event starts.

A total of 6 different appliances including ACs, EVs, washers, dryers, lighting, and plug

loads are considered in the simulation. The power factor of each appliance ηh,a(t) is assumed

to be constant and its value is selected randomly from [0.8, 0.9]. We further assume that

there is a preferable demand schedule (i.e., the baseline power consumption without any DR

incentives) for each appliance denoted by ppref
h,a := (ppref

h,a (t), t ∈ T ). Detailed descriptions for

the appliances are given as follows.
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Figure 2.4: Outside temperature of a day.

2.4.1.1 ACs

An AC is a thermostatically controlled appliance. Let T out
h (t) denote the outside tempera-

ture. We assume that the indoor temperature evolves according to [11]:

T in
h (t) = T in

h (t− 1) + α
(
T out
h (t)− T in

h (t− 1)
)

+ βph,a(t), (2.22)

where α and β are the thermal parameters of the environment and the appliance, respectively.

α is a positive constant and β is positive if the AC is running in the heating mode or negative

in the cooling mode. Using (2.22), we define the utility of an AC as Uh,a
(
T in
h (t), T comf

h (t)
)

:=

ch,a − bh,a
(
T in
h (t)− T comf

h (t)
)2

, where bh,a and ch,a are positive constants.

In the simulation, we choose the thermal parameters as α = 0.9 and β is chosen randomly

from [−0.008,−0.005]. The outside temperature of the day is given in Fig. 2.4 which is a

typical summer day in Southern California. For each household, we assume the comfortable

temperature range to be [70F, 79F] and the most comfortable temperature T comf
h (t) is chosen

randomly from [73F, 76F]. The maximum and minimum power are pmax
h,a = 4kW and pmin

h,a =

0kW, respectively.
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2.4.1.2 EVs

An EV is a deferrable load. We assume that the EV arriving time th,e is randomly chosen

from [17, 19]. It starts charging immediately after arriving and must finish charging before

t = 6. The maximum and minimum charging rates are pmax
h,a = 3kW and pmin

h,a = 0kW, respec-

tively. The maximum charging requirement Emax
h,a is chosen randomly from [20kWh, 24kWh]

and Emin
h,a is chosen randomly from [15kWh, 18kWh]. The utility function is in the form of

Uh,a(ph,a) := bh,a
(∑

t∈T ph,a(t)
)
−
∑

t∈T t|ph,a(t)− p
pref
h,a (t)|+ ch,a.

2.4.1.3 Washers

A washer is a deferrable load. Its starting time th,w is chosen randomly from [th,e, 20]. It

must finish its job within 2 hours. The maximum and minimum power are pmax
h,a = 700W and

pmin
h,a = 0W, respectively. The maximum energy requirement Emax

h,a is chosen randomly from

[900Wh, 1200Wh] and Emin
h,a is chosen randomly from [600Wh, 800Wh]. The utility function

takes the same form as that of an EV.

2.4.1.4 Dryers

A dryer is a deferrable load. It starts working at th,w + 2 and must finish before t = 1.

The maximum and minimum power are pmax
h,a = 5kW and pmin

h,a = 0kW, respectively. The

maximum energy requirement Emax
h,a is chosen randomly from [7.5kWh, 10kWh] and Emin

h,a is

chosen randomly from [4kWh, 5kWh]. The utility function takes the same form as that of

an EV.

2.4.1.5 Lighting

Lighting is an interruptible load. Its working time is [19, 24] ∪ [1, 7]. The maximum and

minimum power are pmax
h,a = 1.0kW and pmin

h,a = 0.5kW, respectively. The utility function

takes the form of Uh,a (ph,a(t), t) := ch,a − bh,a(ph,a(t)− ppref
h,a (t))2.
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Figure 2.5: Load profile of the feeder |s0(t)| without and with DR.

2.4.1.6 Plug Loads

Plug loads include other common household appliances such as TVs, home theaters, PCs, etc.

They belong to interruptible loads. The maximum and minimum power are pmax
h,a = 500W

and pmin
h,a = 0W, respectively. The utility function takes the same form as that of lighting.

2.4.2 Case Study

We simulate our proposed DR scheme in the modified IEEE standard distribution system.

The voltage at the feeder V0 is assumed to be fixed at 4.16kV and there are no voltage

regulators or capacitors on the distribution lines. The minimum allowed voltage at each

load bus V min
i is set to be 4.05kV [53]. The parameters in our proposed DR scheme are

chosen as κ := 0.01 and γ := 0.25.

We use the preferable schedules of the appliances as the baseline in the simulation. More
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Figure 2.6: Minimum bus voltage profile without and with DR.

specifically, the AC keeps the indoor temperature to the most comfortable temperature

T comf
h (t) all day. The EV, the washer, and the dryer run at their maximum power pmax

h,a (t)

until the maximum energy requirement Emax
h,a is met. Lighting and the plug loads use the

power as they request.

The load profile of the feeder |s0(t)| without DR is shown by the dashed line in Fig. 2.5.

It can be seen that the system demand is low for most of the day. The peak starts at t = 19

and lasts until t = 23. The dashed line in Fig. 2.6 shows the minimum bus voltage in the

distribution network over time. It can be seen that the minimum bus voltage is below the

voltage rating during the peak hours. By comparing Fig. 2.5 with Fig. 2.6, we can find that

there is a significant correlation between the load level and the voltage drop. The higher the

demand is, the more significant the voltage drop is.

To simulate a DR event, we need to choose the DR parameters including the demand

limit smax and the schedule Td. In our simulation, we assume that the LSE imposes a demand

33



8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time

D
e
m

a
n
d
 (

k
W

)
W/O DR

AC

EV

Washer

Dryer

Lighting

Plug loads

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time

D
e
m

a
n
d
 (

k
W

)

With DR

AC

EV

Washer

Dryer

Lighting

Plug loads

Figure 2.7: Load profile of the appliances in one of the households without and with DR.

limit of smax = 0.6MVA during the time period [19, 24]. The DR period is chosen in a way

to prevent the rebound effect which will be discussed later.

The simulated load profile of the feeder |s0(t)| with DR is shown by the solid line in Fig.

2.5. Note that the LSE only controls the demands during the peak hours (shown by red).

The load profile after the DR ends is based on the optimal demand schedules produced by our

proposed DR scheme. The customers may or may not follow the optimal demand schedules.

From Fig. 2.5, it can be seen that our proposed DR scheme can effectively manage the

appliances of the households in the distribution network to keep the system demand under

the demand limit during the DR event. The solid line in Fig. 2.6 shows the minimum bus
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Figure 2.8: Dynamics of DR-household: the aggregate real power at bus 8.

voltage profile with DR. We can see that in addition to keep the system demand below the

limit, our proposed DR scheme is also able to maintain the bus voltage levels within the

allowed range during the DR event.

Fig. 2.7 shows the load profile of the appliances in one of the households without and

with DR. Both load shifting and load shedding can be found in the figure: the deferrable

loads (the EV and the dryer) are shifted and the total energy that the dryer consumes is

reduced. If we compare the daily system demand without and with DR, we can find a

demand reduction of 0.05MVA which is about 3% of the daily system demand.

Fig. 2.8 and Fig. 2.9 show the dynamics of the proposed distributed DR scheme. As we

can see from the figures, both DR-household and DR-LSE converge fast in the simulation.

For all the simulations, we also verify that the solution to the centralized OPF-r problem

is the same as the solution to the distributed algorithm using the CVX package [56]. We

further verify that the equality in (2.21) is attained in the optimal solution to OPF-r, i.e.,

OPF-r is an exact relaxation of OPF.
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Figure 2.9: Dynamics of DR-LSE: the real power injected to the system p0.

2.4.3 Discussions

2.4.3.1 Location Effect

Fig. 2.10 and Fig. 2.11 show the aggregate load profile of the households at each load bus

|si(t)| without and with DR, respectively. By comparing the two figures, it can be found

that the loads at the buses far away from the feeder (buses 5–10) contribute more than the

loads at the buses close to the feeder (buses 1–4) to the demand reduction in the DR event.

The shifted demands from on-peak hours to off-peak hours are largely from the buses far

away from the feeder.

The reason for this location effect is due to both the power loss minimization and the

voltage regulation in DR. The power loss and voltage drop along the distribution line are

related to not only the load level but also the length of the line. As the length of the

distribution line increases, the impedance of the line increases, leading to a higher power

loss and voltage drop. Therefore, in order to decrease the total power injection into the
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Figure 2.10: Aggregate load profile of the households at each bus without DR.

distribution system, which includes both the total power consumption and the power losses,

and also to meet the voltage tolerance constraints, the households at the buses far away

from the feeder must shed or shift more demands than the households at the buses close to

the feeder. This location effect implies a potential fairness issue in DR since the impacts

of DR on the households are not the same. The LSE may need to set the DR incentives

given to the households differently based on their locations in the network. Mechanisms to

compensate such location discrimination can be developed in the future.

2.4.3.2 Rebound Effect

In the previous simulation, we use the DR schedule [19, 24]. An interesting rebound effect

of DR can be observed if we reduce the DR period by one hour. The simulation result using

the new schedule [19, 23] is shown in Fig. 2.12. It can be seen from the figure that although

our proposed DR scheme is effective to keep the system demand below the demand limit

during the DR period [19, 23], it creates a rebound peak about 0.8MVA at t = 24 right after
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Figure 2.11: Aggregate load profile of the households at each bus with DR.

the DR event ends. The rebound effect is not desirable because the new peak brings the

same problems to the system as the old peak.

The reason for this rebound effect is that when the DR shifts the peak demands to

off-peak periods, it may create another peak. The rebound effect shown in our simulation

suggests that the LSE should choose the DR parameters (i.e., the demand limit and the DR

schedule) carefully when designing a DR event. Since the demand limit is usually determined

by the system capacity and the power supply, the freedom of the design lies mainly in the

DR schedule. Both the load profile and the voltage profile need to be considered when

determining the DR schedule because the time needed for the demand reduction and the

voltage regulation may not be the same. A protection time period may also be needed in

the DR schedule to prevent the rebound effect. In our pervious simulation, the protection

period is one hour. Heuristic methods can be developed for the LSE to set the length of the

protection period in the future.
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Figure 2.12: Rebound effect of DR.

2.5 Summary

In this chapter, we study residential DR with consideration of the underlying AC power

distribution network and the associated power flow and system operational constraints. This

residential DR is modeled as an OPF problem. We then relax the non-convex OPF problem

to be a convex problem and propose a distributed DR scheme for the LSE and the households

to jointly compute an optimal demand schedule. Using an IEEE test distribution system as

an illustrative example, we demonstrate two interesting effects of DR. One is the location

effect, meaning that the households far away from the feeder tend to reduce more demands

in DR. The other is the rebound effect, meaning that DR may create a new peak after

the DR event ends if the DR parameters are not chosen carefully. The two effects suggest

certain rules we should follow when designing a DR program. Future work includes designing

compensation mechanisms for the location discrimination and heuristic methods to deal with
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the rebound effect.
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CHAPTER 3

Distributed Optimal Energy Management in

Microgrids

Energy management in microgrids is typically formulated as a non-linear optimization prob-

lem. Solving it in a centralized manner does not only require high computational capabilities

at the MGCC but may also infringe customer privacy. Existing distributed approaches, on

the other hand, assume that all generations and loads are connected to one bus and ignore

the underlying power distribution network and the associated power flow and system oper-

ational constraints. Consequently, the schedules produced by those algorithms may violate

those constraints and thus are not feasible in practice. Therefore, the focus of this chapter

is on the design of a distributed EMS for the optimal operation of microgrids with consider-

ation of the distribution network and the associated constraints. Specifically, we formulate

microgrid energy management as an OPF problem and propose a distributed EMS where

the MGCC and the LCs jointly compute an optimal schedule. We also provide an imple-

mentation of the proposed distributed EMS based on IEC 61850. As one demonstration,

we apply the proposed distributed EMS to a real microgrid in Guangdong Province, China,

consisting of PVs, WTs, diesel generators, and a BESS. The simulation results demonstrate

the effectiveness and fast convergence of the proposed distributed EMS.

3.1 Introduction

Microgrids are low-voltage distribution systems consisting of DERs and controllable loads,

which can operate in either islanded or grid-connected mode [2]. DERs include a variety

of DG units such as PVs and WTs and DS units such as batteries. Sound operation of a
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microgrid requires an EMS which controls the power flows in the microgrid by adjusting the

power imported/exported from/to the main grid, the dispatchable DERs, and the control-

lable loads based on the present and forecasted information of the market, the generations,

and the loads in order to meet certain operational objectives (e.g., minimizing costs) [2].

Energy management in microgrids is typically formulated as a non-linear optimization

problem. Various centralized methods have been proposed to solve it in the literature, includ-

ing mixed integer programming [14], sequential quadratic programming [15], particle swarm

optimization [16], neural networks [17], etc. The centralized approaches [14–17] require high

computational capabilities at the MGCC, which is neither efficient nor scalable. Moreover,

a centralized EMS requires the MGCC to gather information of the DERs (e.g., production

costs, constraints, etc.) and the loads (e.g., customer preferences, constraints, etc.) as the

inputs for optimization. However, different DERs may belong to different entities and they

may keep their information private [18]. Customers may also be unwilling to expose their

information due to privacy [19]. Therefore, in this chapter, we are interested in developing

a distributed EMS which is efficient, scalable, and privacy preserving.

Several distributed algorithms have been proposed for the operation of microgrids in the

literature. In [18], a distributed algorithm based on the classical symmetrical assignment

problem is proposed. Energy management is formulated as a resource allocation problem

in [20] and distributed algorithms are proposed for distributed allocation. A convex problem

formulation can be found in [21] and dual decomposition is used to develop a distributed

EMS to maintain the supply-demand balance in microgrids. A privacy-preserving energy

scheduling algorithm in microgrids is proposed in [19], where the privacy constraints are

integrated with the linear programming model and distributed algorithms are developed.

In [22], the additive-increase/multiplicative-decrease algorithm is adopted to optimize DER

operations in a distributed fashion.

The problem with the existing distributed approaches [18–22] is that they consider the

supply-demand matching in an abstract way where the aggregate demand is simply equal to

the supply. They assume that all generations and loads are connected to one bus and ignore

the underlying power distribution network and the associated power flow (e.g., Kirchhoff’s

42



law) and system operational constraints (e.g., voltage tolerances). Consequently, the sched-

ules produced by those algorithms may violate those constraints and thus are not feasible

in practice. It is worth noting that distribution networks have been taken into account in

a few recent DR studies [23]. However, the idea of integrating distribution networks with

distributed energy management in microgrids, where both supply-side and demand-side man-

agement are considered, has not been explored.

The focus of this chapter is on the design of a distributed EMS for the optimal operation

of microgrids with consideration of the underlying power distribution network and the associ-

ated constraints. More specifically, we consider a microgrid consisting of multiple DERs and

controllable loads. The objective of the EMS is to control the power flows in the microgrid in

order to i) minimize the cost of generation, the cost of energy storage, and the cost of energy

purchase from the main grid, ii) minimize the dissatisfactions of customers in the demand

side management, and iii) minimize the power losses subject to the DER constraints, the

load constraints, the power flow constraints, and the system operational constraints.

Specifically, we formulate energy management in microgrids as an OPF problem. The

OPF problem is difficult to solve due to the non-convex power flow constraints. We convexify

the OPF problem by relaxing the power flow constraints (See [57,58] for a tutorial on convex

relaxation of OPF). Sufficient conditions for the exactness of the relaxation have been derived

in recent works [46–48,59], which hold for a variety of IEEE test systems and real distribution

systems. Therefore, we focus on solving the OPF-r in this chapter. Note that most of

the convex relaxations of OPF [46–48, 59] assume a single-phase or balanced three-phase

distribution network. See [60] for convex relaxation of OPF in multi-phase networks. The

OPF-r problem is a centralized convex optimization problem. To solve it in a distributed

manner, we propose a distributed EMS where the MGCC and the LCs jointly compute an

optimal schedule.

In order to illustrate the feasibility of the proposed EMS in real systems, we provide

an implementation based on the IEC 61850 standard which provides standardized commu-

nication and control interfaces for all DER devices. As one demonstration, we apply the

proposed EMS to a real microgrid in Guangdong Province, China, consisting of PVs, WTs,
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diesel generators, and a BESS. The simulation results demonstrate the effectiveness and fast

convergence of the proposed EMS. We show that the proposed EMS is able to manage the op-

erations in the microgrid to achieve the objective while maintaining the bus voltages within

the allowed range. Furthermore, we discuss the location effect, the load shedding/shifting,

the ramping constraint, and the trade-offs in the objective.

The rest of this chapter is organized as follows. We introduce the system model in Section

3.2 and propose the EMS in Section 3.3. The simulation results are provided in Section 3.5.

The summary is given in Section 3.6.

3.2 System Model

In this section, we describe the system model for developing the proposed distributed EMS.

We first give an overview of the system followed by the DG model, the DS model, and the

load model. We then model the power distribution network using a branch flow model and

formulate microgrid energy management as an OPF problem.

3.2.1 System Overview

A low-voltage power distribution network generally has a radial structure [23]. Thus, we

consider a radial microgrid consisting of a set of DG units denoted by G , {g1, g2, . . . , gG}, DS

units denoted by B , {b1, b2, . . . , bB}, and controllable loads denoted by L , {l1, l2, . . . , lL}.

In the microgrid, there is a MGCC which coordinates the operations of the DERs and the

controllable loads. At each DER and load, there is a LC which is able to coordinate with the

MGCC to compute its schedule locally via a two-way communication infrastructure. Fig.

3.1 shows the system architecture.

In this chapter, we use a discrete-time model with a finite horizon. We consider a time

period or namely a scheduling horizon which is divided into T equal intervals ∆t, denoted

by T , {0, 1, . . . , T − 1}.
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Figure 3.1: System architecture.

3.2.2 DG Model

We consider both renewable and conventional DGs in the microgrid. Renewable DGs such

as PVs and WTs are non-dispatchable and conventional DGs such as diesel are dispatchable.

For each DG g ∈ G, we denote its complex output power by sg(t) , pg(t) + iqg(t), where

pg(t) is the active power and qg(t) is the reactive power.

3.2.2.1 Renewable DG

A renewable DG unit such as PV or WT is not dispatchable and its output power is dependent

on the availability of the primary sources (i.e., sun irradiance or wind). Therefore, forecast

is required in order to consider them in the energy management optimization. Methods for

PV forecasting [61] and WT forecasting [62] can be utilized. In our model, we assume that

the complex power of a renewable DG unit over the scheduling horizon is given and there is
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no generation cost for renewable DGs.

3.2.2.2 Conventional DG

A conventional DG unit such as diesel is a dispatchable source, its output power is a variable

with the following constraints:

0 ≤ pg(t) ≤ p̄g, ∀t ∈ T , (3.1)

|pg(t)− pg(t− 1)| ≤ rgp̄g, ∀t ∈ T , (3.2)

where p̄g is the maximum output power and rg ∈ (0, 1] is the ramping parameter.

For a given conventional DG unit, its reactive power generated at the inverter is bounded

by:

pg(t)
2 + qg(t)

2 ≤ s2
g, ∀t ∈ T , (3.3)

where sg is the capacity of the inverter.

We model the conventional DG generation cost at each time t ∈ T using a quadratic

model [21]:

Cg(pg(t)) , αg (pg(t)∆t)
2 + βgpg(t)∆t+ cg, (3.4)

where αg, βg, and cg are constants.

3.2.3 DS Model

We consider batteries as the DS units in the microgrid. For a given battery b ∈ B, we denote

its complex power by sb(t) , pb(t) + iqb(t), where pb(t) is the active power (positive when

charging and negative when discharging) and qb(t) is the reactive power. Let Eb(t) denote

the energy stored in the battery at time t. A given battery can be modeled by the following
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constraints:

¯
pb ≤ pb(t) ≤ p̄b, ∀t ∈ T , (3.5)

pb(t)
2 + qb(t)

2 ≤ s2
b , ∀t ∈ T , (3.6)

Eb(t+ 1) = ηbEb(t) + pb(t)∆t, ∀t ∈ T , (3.7)

¯
Eb ≤ Eb(t) ≤ Ēb, ∀t ∈ T , (3.8)

Eb(T ) ≥ Ee
b , (3.9)

where p̄b is the maximum charging rate, −
¯
pb is the maximum discharging rate, sb is the

capacity of the inverter, ηb ∈ (0, 1] captures the battery efficiency,
¯
Eb and Ēb are the minimum

and maximum allowed energy stored in the battery, respectively, and Ee
b is the minimum

energy that the battery should maintain at the end of the scheduling horizon.

We use a cost function to capture the damages to the battery by the charging and

discharging operations. Three types of damages are considered: fast charging, frequent

switches between charging and discharging, and deep discharging. We model the battery

cost as [11]:

Cb(pb) , αb
∑
t∈T

pb(t)
2 − βb

T−2∑
t=0

pb(t+ 1)pb(t) + γb
∑
t∈T

(
min(Eb(t)− δbĒb, 0)

)2
, (3.10)

where pb , (pb(t), t ∈ T ) is the charging/discharging vector, αb, βb, γb, and δb are positive

constants. αb, βb, and γb trade off among fast charging, switches between charging and

discharging, and deep discharging. The above function is convex when αb > βb. We choose

δb = 0.2, meaning that the cost function penalizes deep charging when the energy stored in

the battery Eb(t) is less than 20% of the battery capacity Ēb.

3.2.4 Load Model

We consider two types of controllable loads in the microgrid: interruptible and deferrable

loads. An interruptible load can be shed and a deferrable load can be shifted in time but

need to consume a certain amount of energy before a deadline.

For each load l ∈ L, we denote its complex power by sl(t) , pl(t) + iql(t) and it is
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bounded by:

¯
pl(t) ≤ pl(t) ≤ p̄l(t), ∀t ∈ T , (3.11)

¯
ql(t) ≤ ql(t) ≤ q̄l(t), ∀t ∈ T , (3.12)

where
¯
pl(t) and p̄l(t) are the minimum and maximum active power, respectively, and

¯
ql(t)

and q̄l(t) are the minimum and maximum reactive power, respectively.

For a deferrable load, we assume that its consumed energy is bounded by:

¯
El ≤

∑
t∈T

pl(t)∆t ≤ Ēl, (3.13)

where
¯
El and Ēl are the energy lower and upper bound, respectively.

For each load, we define a demand vector denoted by pl , (pl(t), t ∈ T ) and a cost

function Cl(pl) which measures the dissatisfaction of the customer using the demand schedule

pl.

The cost function of an interruptible load is dependent on the shed load and can be

defined as:

Cl(pl) ,
∑
t∈T

αl(min(pl(t)− pfl (t), 0))2, (3.14)

where pfl (t) is the forecasted load and αl is a positive constant. The above cost function is

non-zero only when there is load shedding, i.e., pl(t) < pfl (t).

The cost function of a deferrable load is dependent on the unfulfilled energy and can be

defined as:

Cl(pl) , αl(Ēl −
∑
t∈T

pl(t)∆t), (3.15)

where αl is a positive constant.

3.2.5 Distribution Network Model

A distribution network can be modeled as a connected graph (N , E), where each node i ∈ N

represents a bus and each link in E represents a branch (line or transformer). We denote a

link by (i, j) ∈ E . Power distribution networks are typically radial and the graph becomes a
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tree for radial distribution systems. We index the buses in N by i = 0, 1, . . . , n, and bus 0

denotes the feeder which has a fixed voltage and flexible power injection.

For each link (i, j) ∈ E , let zij , rij + ixi,j be the complex impedance of the branch,

Iij(t) be the complex current from buses i to j, and Sij(t) , Pij(t) + iQij(t) be the complex

power flowing from buses i to j.

For each bus i ∈ N , let Vi(t) be the complex voltage at bus i and si(t) , pi(t) + iqi(t)

be the net load which is the load minus the generation at bus i. Each bus i ∈ N \ {0} is

connected to a subset of DG units Gi, DS units Bi, and loads Li. The net load at each bus

i satisfies:

si(t) = sli(t) + sbi(t)− sgi(t), ∀i ∈ N \ {0},∀t ∈ T , (3.16)

where sli(t) ,
∑

l∈Li sl(t), sbi(t) ,
∑

b∈Bi sb(t), and sgi ,
∑

g∈Gi sg(t).

Given the radial distribution network (N , E), the feeder voltage V0, and the impedances

{zij}(i,j)∈E , then the other variables including the power flows, the voltages, the currents,

and the bus loads satisfy the following physical laws for all branches (i, j) ∈ E and all t ∈ T .

• Ohm’s law:

Vi(t)− Vj(t) = zijIij(t); (3.17)

• Power flow definition:

Sij(t) = Vi(t)I
∗
ij(t); (3.18)

• Power balance:

Sij(t)− zij|Iij(t)|2 −
∑

k:(j,k)∈E

Sjk(t) = sj(t). (3.19)

Using equations (3.17)–(3.19) and in terms of real variables, we can model the steady-
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state power flows in a given distribution network G as [57]: ∀(i, j) ∈ E ,∀t ∈ T ,

pj(t) = Pij(t)− rij`ij(t)−
∑

k:(j,k)∈E

Pjk(t), (3.20)

qj(t) = Qij(t)− xij`ij(t)−
∑

k:(j,k)∈E

Qjk(t), (3.21)

vj(t) = vi(t)− 2 (rijPij(t) + xijQij(t)) + (r2
ij + x2

ij)`ij(t), (3.22)

`ij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
, (3.23)

where `ij(t) , |Iij(t)|2 and vi(t) , |Vi(t)|2.

Equations (3.20)–(3.23) define a system of equations in the variables (P(t),Q(t),v(t), l(t),

s(t)), where P(t) , (Pij(t), (i, j) ∈ E), Q(t) , (Qij(t), (i, j) ∈ E), v(t) , (vi(t), i ∈ N \{0}),

l(t) , (`ij(t), (i, j) ∈ E), and s(t) , (si(t), i ∈ N \{0}). The phase angles of the voltages and

the currents are not included. But they can be uniquely determined for radial systems [58].

3.2.6 Energy Management

The objective of the microgrid operator is to minimize its operational cost, while delivering

reliable and high-quality power to the loads. However, the introduction of DERs makes it

challenging to balance the supply and demand in a microgrid, especially in islanded mode

where only DERs are used as the supply. The integration of DERs may also increase the

voltage significantly, which reduces the quality of the voltage received by other users in

the distribution network. Thus in this chapter, we study microgrid energy management

aiming at achieving the operational objective of the microgrid operator, while meeting the

supply-demand balance and the voltage tolerance constraints.

We consider the following voltage tolerance constraints in the microgrid:

¯
Vi ≤ |Vi(t)| ≤ V̄i, ∀i ∈ N \ {0},∀t ∈ T , (3.24)

where
¯
Vi and V̄i correspond to the minimum and maximum allowed voltage according to the

specification, respectively.
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The net power injected to the microgrid from the main grid is given by:

s0(t) =
∑

j:(0,j)∈E

s0j(t), ∀t ∈ T . (3.25)

If the microgrid is operated in islanded mode, then s0(t) = 0. If the microgrid is operated

in grid-connected mode, then s0(t) is is the net complex power traded between the microgrid

and the main grid.

We model the cost of energy purchase from the main grid at each time t ∈ T as:

C0(t, p0(t)) , ρ(t)p0(t)∆t, (3.26)

where ρ(t) is the market energy price. Note that p0(t) can be negative, meaning that the

microgrid can sell its surplus power to the main grid.

The objective of the energy management in the microgrid is to (i) minimize the cost of

generation, the cost of energy storage, and the cost of energy purchase from the main grid,

and (ii) minimize the dissatisfactions of customers in the demand side management, and (iii)

minimize the power losses subject to the DER constraints, the load constraints, the power

flow constraints, and the system operational constraints (voltage tolerances).

We define P , (P(t), t ∈ T ), Q , (Q(t), t ∈ T ), v , (v(t), t ∈ T ), l , (l(t), t ∈ T ),

sg , (sg(t), t ∈ T ), sb , (sb(t), t ∈ T ), sl , (sl(t), t ∈ T ), s , (sg, sb, sl, g ∈ G, b ∈ B, l ∈ L),

and Cg(pg) ,
∑

t∈T Cg(pg(t)). Microgrid energy management can be formulated as an OPF

problem:

OPF

min
P,Q,v,l,s

ξg
∑
g∈G

Cg(pg) + ξb
∑
b∈B

Cb(pb) + ξl
∑
l∈L

Cl(pl) + ξ0

∑
t∈T

C0(t, p0(t))

+ξp
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (3.1)− (3.3), (3.5)− (3.9), (3.11)− (3.13), (3.16),

(3.20)− (3.25),

where ξg, ξb, ξl, ξ0, and ξp are the parameters to trade off among the cost minimizations and

the power loss minimization.
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3.3 Distributed EMS

The previous OPF problem is non-convex due to the quadratic equality constraint in (3.23)

and is NP-hard to solve in general [57]. We therefore relax them to inequalities:

`ij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, ∀(i, j) ∈ E ,∀t ∈ T . (3.27)

We then consider the following convex relaxation of OPF:

OPF-r

min
P,Q,v,l,s

ξg
∑
g∈G

Cg(pg) + ξb
∑
b∈B

Cb(pb) + ξl
∑
l∈L

Cl(pl) + ξ0

∑
t∈T

C0(t, p0(t))

+ξp
∑
t∈T

∑
(i,j)∈E

rij`ij(t)

s.t. (3.1)− (3.3), (3.5)− (3.9), (3.11)− (3.13), (3.16),

(3.20)− (3.22), (3.24), (3.25), (3.27).

If the equality in (3.27) is attained in the solution to OPF-r, then it is also an optimal

solution to OPF. The sufficient conditions under which the relaxation is exact have been

exploited in previous works [46–48,59]. Roughly speaking, if the bus voltage is kept around

the nominal value and the power injection at each bus is not too large, then the relaxation

is exact. Detailed conditions when the voltage upper bound is not important can be found

in [46, 47]. See [48, 59] on how to deal with the voltage upper bound. In this chapter, we

assume that the sufficient conditions specified in [59] hold for the microgrid and thus we

focus on solving the OPF-r problem.

The above OPF-r problem is a centralized optimization problem. In order to design an

efficient, scalable, and privacy-preserving EMS, we propose a distributed algorithm to solve

the OPF-r problem using the PCPM algorithm (refer to [54] or Section 2.3.1 for details). Note

that we use PCPM to develop the proposed distributed algorithm here. Other distributed

algorithms such as the alternating direction method of multipliers (ADMM) algorithm [63]

may also apply to solve the OPF-r problem in a distributed manner.

Initially set k ← 0. The LCs of the DERs and the loads set their initial schedules

randomly and communicate them to the MGCC. In the meantime, the MGCC randomly
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chooses the initial ski (t) , pki (t)+iqki (t) and two virtual control signals {µki (t)}t∈T , {λki (t)}t∈T

for each bus i ∈ N \ {0}. µi(t) and λi(t) are the Lagrangian multipliers associated with the

active and reactive power at bus i, respectively.

At the beginning of the k-th step, the MGCC sends two control signals µ̂ki (t) , µki (t) +

γ(pkli(t) + pkbi(t) − pkgi(t) − pki (t)) and λ̂ki (t) , λki (t) + γ(qkli(t) + qkbi(t)−qkgi(t) − qki (t)) to the

LCs of the DERs and the loads connected to bus i, where γ is a positive constant. Then,

• The LC of each conventional DG unit solves the following problem:

EMS-LC(DG)

min
sg

ξgCg(pg)− (µ̂k
i )
Tpg − (λ̂ki )

Tqg +
1

2γ
||pg − pkg ||2 +

1

2γ
||qg − qkg ||2

s.t. (3.1)− (3.3),

where µ̂k
i , (µ̂ki (t), t ∈ T ) and λ̂ki , (λ̂ki (t), t ∈ T ). The optimal s∗g is set as sk+1

g .

• The LC of each DS unit solves the following problem:

EMS-LC(DS)

min
sb

ξbCb(pb) + (µ̂k
i )
Tpb + (λ̂ki )

Tqb +
1

2γ
||pb − pkb ||2 +

1

2γ
||qb − qkb ||2

s.t. (3.5)− (3.9).

The optimal s∗b is set as sk+1
b .

• The LC of each load solves the following problem:

EMS-LC(Load)

min
sl

ξlCl(pl) + (µ̂k
i )
Tpl + (λ̂ki )

Tql +
1

2γ
||pl − pkl ||2 +

1

2γ
||ql − qkl ||2

s.t. (3.11)− (3.13).

The optimal s∗l is set as sk+1
l .

• The MGCC solves the following problem for each time t ∈ T :
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Algorithm 2 - The Proposed Distributed EMS.
1: initialization k ← 0. The LCs set the initial schedules randomly and return them to the

MGCC. The MGCC sets the initial µki (t), λ
k
i (t) and the initial ski (t) randomly.

2: repeat

3: The MGCC updates µ̂ki (t) and λ̂ki (t) and sends two control signals µ̂ki and λ̂ki to the LCs

connected to bus i.

4: The LC at each DER and each load calculates a new schedule by solving the corresponding

EMS-LC problem.

5: The MGCC computes a new sk+1(t) for each time t ∈ T by solving the EMS-MGCC problem.

6: The LC communicates the new schedule to the MGCC.

7: The MGCC updates µk+1
i (t) and λk+1

i (t).

8: k ← k + 1.

9: until convergence

EMS-MGCC

min
P(t),Q(t),
v(t),l(t),s(t)

ξ0C0(t, p0(t)) + ξp
∑

(i,j)∈E

rij`ij(t)− (µ̂k(t))Tp(t)− (λ̂k(t))Tq(t)

+
1

2γ
||p(t)− pk(t)||2 +

1

2γ
||q(t)− qk(t)||2

s.t. (3.20)− (3.22), (3.24), (3.25), (3.27),

where µ̂k(t) , (µ̂ki (t), i ∈ N \ {0}) and λ̂k(t) , (λ̂ki (t), i ∈ N \ {0}). The optimal s∗(t)

is set as sk+1(t).

At the end of the k-th step, the LCs communicate their new schedules sk+1
l , sk+1

g , and sk+1
b

to the MGCC and the MGCC updates µk+1
i (t) , µki (t)+γ(pk+1

li (t)+pk+1
bi (t)−pk+1

gi (t)−pk+1
i (t))

and λk+1
i (t) , λki (t)+γ(qk+1

li (t)+ qk+1
bi (t)−qk+1

gi (t)− qk+1
i (t)) for all i ∈ N \{0} and all t ∈ T .

Set k ← k + 1, and repeat the process until convergence.

A complete description of the proposed distributed EMS can be found in Algorithm 2.

When γ is small enough, the above algorithm will converge to the optimal solution to OPF-r

which is also the optimal solution to OPF if the relaxation is exact and (pkli(t) + pkbi(t) −

pkgi(t) − pki (t)) and (qkli(t) + qkbi(t) − qkgi(t) − qki (t)) will converge to zero [54]. As we can see,
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the MGCC and the LCs jointly compute the optimal schedule.

In the proposed distributed EMS, the private information of the DERs and the loads is

stored at the LC where the EMS-LC problem is solved locally. The MGCC solves the EMS-

MGCC problem using the system information, including the topology, the power losses, the

market energy price, etc. The information exchanged between the MGCC and the LCs

include only the control signals and the schedules. Therefore, the privacy of the DERs (i.e.,

production costs and constraints) and the loads (i.e., customer preferences and constraints)

are both preserved by the proposed EMS.

3.4 IEC 61850 Implementation

IEC 61850 is a set of international standards designed originally for communications within

substation automation systems [64]. More recently, IEC 61850 draws attention to researchers

in the area of microgrids as it provides standardized communication and control interfaces

for all DER devices to achieve interoperability in microgrids. Due to its essential role in

microgrid systems, it is important that the microgrid EMS is compatible with IEC 61850.

To this end, we provide an implementation of the proposed distributed EMS based on the

IEC 61850 standard.

In IEC 61850, each DER unit is modelled as a logical device (LD). The LD is composed

of the relevant logical nodes (LNs) which are pre-defined groupings of data objects that serve

specific functions. Refer to [42] for detailed definitions of LNs for DER devices. The LN

named DER energy and ancillary services schedule (DSCH) can be used to implement the

proposed EMS. In a DSCH LN, an array of the timestamps and values can be read or written

using the IEC 61850 ACSI services (e.g., GetDataValues and SetDataValues) and multiple

schedules can be defined in parallel.

In order to implement the proposed EMS, we use four DSCH LNs: active power, reactive

power, price for active power, and price for reactive power. The active power and reactive

schedules are the results from solving the EMS-LC problem. The control signals sent by

the MGCC µ̂k
i and λ̂ki can be viewed as the price for active power and reactive power,
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Figure 3.2: IEC 61850 implementation.

respectively. Fig. 3.2 illustrates the proposed IEC 61850 implementation.

Algorithm 2 needs a few updates to support the proposed IEC 61850 implementation.

In step 3, the MGCC sends the control signals by writing to the DSCH LNs of the price

for active and reactive power. In step 4, after the LC solves the EMS-LC problem using

the control signals read from the DSCH LNs of the prices, the new schedules are written

to the corresponding DSCH LNs. In step 6, the LC sends the new schedules to the MGCC

using the IEC 61850 report control block (RCB) mechanism. At convergence, the optimal

schedules will be stored in the DSCH LNs and used to control the DER device.

3.5 Performance Evaluation

In this section, we demonstrate the proposed distributed EMS by applying it to a real

microgrid. We first describe the microgrid system and the simulation setup. We then present
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Figure 3.3: Topology of the microgrid.

the simulation results in islanded and grid-connected mode followed by the discussions on

the location effect, the load shedding/shifting, the ramping constraint, and the trade-offs in

the objective.

3.5.1 Simulation Setup

Fig. 3.3 shows the configuration of a real microgrid in Guangdong Province, China. The

numbers under the DERs and the loads in the figure correspond to the maximum power.

We use this microgrid to demonstrate the proposed distributed EMS. In the simulation, a

day starts from 12 am. The time interval ∆t in the model is one hour and we denote a day
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by T , {0, 1, . . . , 23}, where each t ∈ T denotes the hour of [t, t+ 1].

We set the cost function of diesel generation as Cg(pg(t)) , 10(pg(t)∆t)
2 + 70(pg(t)∆t).

The generation ramping parameter rg is chosen to be 0.3. The capacity of the BESS Ēb

is 3 MWh and
¯
Eb is chosen to be 0.1 MWh. We set Eb(0) = 1.5 MWh, Ee

b = 1.0 MWh,

and ηb = 0.95. The parameters in the cost function of the battery are chosen as αb = 1,

βb = 0.75, and γb = 0.5. We choose αl = 103 and αl = 102 in the cost function of the

interruptible and deferrable loads, respectively. We assume that bus 5 is a deferrable load

and the rest of the loads are all interruptible. For the interruptible loads, the maximum

load shedding percentage is chosen randomly from the range [20%, 50%]. For the deferable

load, the start time is chosen randomly from [10, 13] and the deadline is chosen randomly

from [20, 23]. The minimum energy requirement
¯
El is chosen randomly from [3p̄l, 5p̄l] and

the energy upper bound is set to be Ēl =
¯
El + 2p̄l, where p̄l is the maximum power of load

l. Perfect forecasting of the PV, the WT, and the loads is assumed. For the forecasting of

the deferrable load, we assume that the load consumes power at the maximum rate from

the start time until the consumed energy reaches the energy upper bound. We use the real

day-ahead energy price from CAISO in the simulation as shown in Fig. 3.4.

3.5.2 Case Study

We apply the proposed EMS to the microgrid using the setup described above. The voltage

tolerances are set to be [0.95 p.u., 1.05 p.u.]. The parameters in the algorithm are chosen as

ξg = 1, ξb = 1, ξl = 1, ξ0 = 1, ξp = 1, and γ = 0.75.

The day-ahead schedules produced by the proposed EMS in islanded mode is shown in

Fig. 3.5. In islanded mode, the microgrid can utilize only the DERs to serve the loads.

Since the non-dispatchable renewable generations (i.e., PV and WT) in the microgrid only

serve for a small proportion of the loads, diesel is the main power source. From the figure,

we can see that the total diesel generation changes in the same trend as the total load. We

can also observe the charging/discharging cycles of the battery from the figure. The battery

is charged when the renewable generation is high and discharged when it is low, serving as
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Figure 3.4: Day-ahead price from CAISO.

the storage for the renewables in the microgrid.

Fig. 3.6 shows the results in grid-connected mode. Compared with Fig. 3.5, the total

diesel generation is decreased significantly in grid-connected mode. Diesel generation is no

longer the main power source in grid-connected mode as the microgrid is able to import

power from the main grid. The battery in grid-connected mode is the storage for not only

the renewables but also the cheap power from the main grid. It is also charged when the

energy price is low and discharged when the energy price is high, making profits for the

microgrid.

The net power injected to the microgrid in grid-connected mode is shown in Fig. 3.7. It

can be seen from the figure that the microgrid imports power when the energy price is low

and exports power when the price is high (t ∈ [16, 18]). If we compare the total operational

cost of the microgrid (i.e., the value of the objective function) in the two modes, we can find

that grid-connected mode decreases the operational cost by $6491−$5484
$6491

= 15.5%.
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Figure 3.5: Output schedules in islanded mode.

Fig. 3.8 shows the dynamics of EMS-MGCC and EMS-LC in grid-connected mode. We

can see that our proposed distributed algorithm converges fast. For the simulations, we also

verify that the solution to the centralized OPF-r problem is the same as the solution to the

distributed algorithm. We further verify that the equality in (3.27) is attained in the optimal

solution to OPF-r, i.e., OPF-r is an exact relaxation of OPF.

3.5.3 Discussions

3.5.3.1 Location effect

In order to exemplify the effect on voltage tolerances, we increase the line lengths by 5 times.

Fig. 3.9 shows the maximum and the minimum bus voltage in the microgrid over time. It can

be seen from the figure that the bus voltages in the microgrid are well maintained within the

allowed range. The maximum voltage reaches the upper bound when the non-dispatchable

renewable generation is high and the minimum voltage reaches the lower bound when the
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Figure 3.6: Output schedules in grid-connected mode.

load is high. This is because the generation injects power to the distribution network and

hence increases the voltage, while the load consumes power and thus decreases the voltage.

In order to understand how voltage tolerances are maintained by the proposed EMS, we

look into the demand reduction of each load as shown in Fig. 3.10. From the figure, it can

be easily seen that the demand reduction of buses 2 and 3 is significantly larger than the

other buses. This is because both buses 2 and 3 are far from the generation or the feeder

and thus the voltage drop along the line is significant. Therefore, more demand reduction

is required at bus 2 and 3 in order to maintain the bus voltage above the minimum allowed

voltage. Similarly, those loads close to the non-dispatchable renewable generation (buses 11

and 12) need to consume more in order to reduce the high voltage due to the generation,

leading to less demand reduction. The results show the location effect that a demand side

management scheme may discriminate the loads based on their locations [23].
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Figure 3.7: Net power injected to the microgrid.

3.5.3.2 Load shedding/shifting

Fig. 3.10 also illustrates how loads are shed in grid-connected mode. As can be expected, the

loads are shed in response to the price: more loads are shed when the price is high in order

to save cost. In islanded mode, load shedding is mainly used to balance the local supply.

If we compare the total amount of shed loads in the two modes, we can find that islanded

mode (8.91 WM) makes more load shedding than grid-connected mode (6.21 MW).

Fig. 3.11 shows the load shifting in grid-connected mode. As can be seen from the figure,

the load is shifted from the time when the energy price is high (t ∈ [14, 17]) to the time when

the price is low (t ∈ [19, 21]). The total consumed energy with load shifting is the same as

without load shifting.
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Figure 3.8: Dynamics of EMS-MGCC and EMS-LC.

3.5.3.3 Ramping constraint

Fig. 3.12 illustrates the effect of the ramping constraint on the objective. As can be seen

from the figure, the total cost is non-increasing with the ramping parameter rg in both

islanded and grid-connected mode. This is because the stricter the ramping constraint is,

the less available power the diesel generation can provide. It can be also seen from the figure

that the marginal cost decreases in both modes as rg increases. In particular, the cost does

not decrease much when rg ≥ 0.3, showing that the diesel generation supply is relatively

sufficient in that region of rg. Furthermore, the marginal cost in islanded mode decreases

much faster than in grid-connected mode when rg is small. This is easy to understand as

diesel is the main power supply in islanded mode and a strict ramping constraint on it would

cause more load shedding/shifting that leads to a higher cost.

3.5.3.4 Trad-offs in the objective

In the objective function of the optimization, there are several parameters (ξg, ξb, ξl, ξ0, ξp).

Each ξ is associated with one cost minimization in the optimization. To evaluate their effects
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Figure 3.9: Maximum and minimum bus voltage in the microgrid.

on the proposed EMS, we conduct simulations using different ξ. We choose the baseline as

the set of parameters used in our previous simulation. We then change the parameter ξ one

at a time and compare the individual costs as shown in Table 3.1.

As can be seen from the table, the parameter ξ affects the trade-offs among different

cost minimizations. A large ξ would decrease the corresponding cost in the optimization.

The choice of ξ depends on the importance of the corresponding cost minimization in energy

management. For example, if the microgrid operator is more interested in minimizing the

generation cost, ξg can be increased and the resulting generation cost would be decreased.

3.6 Summary

In this chapter, we propose a distributed EMS for the optimal operation of microgrids. Com-

pared with the existing distributed approaches, our proposed EMS considers the underlying
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Figure 3.10: Demand reduction of the loads.

power distribution network and the associated constraints. Specifically, we formulate mi-

crogrid energy management as an OPF problem and propose a distributed EMS where the

MGCC and the LCs jointly compute an optimal schedule. We also provide an implemen-

tation of the proposed EMS based on the IEC 61850 standard. As one demonstration, we

apply the proposed EMS to a real microgrid in Guangdong Province, China. The simulation

results demonstrate that the proposed EMS is effective in both islanded and grid-connected

mode. It is shown that the proposed distributed algorithm converges fast. A comprehensive

analysis of its performance is given. Future work includes implementing the proposed EMS

in a real system and analyzing its performance.
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Table 3.1: Cost comparison under different ξ

Diesel Battery Load Purchase Loss

Baseline 2053.14 3.20 259.37 3167.49 0.43

ξg = 10 0.00 3.19 260.21 5743.28 0.49

ξb = 102 2053.23 0.27 259.45 3239.15 0.43

ξl = 10 2054.93 3.20 2.60 3632.65 0.44

ξ0 = 10 19408.20 3.93 12999.53 −9245.71 0.39

ξp = 104 2871.53 3.45 476.58 2402.79 0.34
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CHAPTER 4

Real-Time Energy Management in Microgrids

Energy management in microgrids is typically formulated as an offline optimization problem

for day-ahead scheduling by previous studies. Most of these offline approaches assume perfect

forecasting of the renewables, the demands, and the market, which is difficult to achieve in

practice. Existing online algorithms, on the other hand, oversimplify the microgrid model

by only considering the aggregate supply-demand balance while omitting the underlying

power distribution network and the associated power flow and system operational constraints.

Consequently, such approaches may result in control decisions that violate the real-world

constraints. This chapter focuses on developing an online EMS for real-time operation of

microgrids that takes into account the power flow and system operational constraints on

a distribution network. We model the online energy management as an SOPF problem

and propose an online EMS based on Lyapunov optimization. The proposed online EMS

is subsequently applied to a real microgrid system. The simulation results demonstrate

that the performance of the proposed EMS exceeds a greedy algorithm and is close to an

optimal offline algorithm. Lastly, the effect of the underlying network structure on the energy

management is observed and analyzed.

4.1 Introduction

A microgrid is a low-voltage power distribution system integrated with DERs and control-

lable loads, which can operate with or without the main grid. [2]. DERs include a variety

of distributed DG units such as PVs and WTs and DS units such as batteries. Control-

lable loads such as HVAC systems and EVs can be shed or shifted to balance supply and
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demand in a microgrid. An EMS is required in a microgrid to control power flows in or-

der to meet certain operational objectives (e.g., minimizing costs) by adjusting the power

imported/exported from/to the main grid, the dispatchable DERs, and the controllable

loads [2].

Energy management in microgrids is typically formulated as an offline optimization prob-

lem for day-ahead scheduling by previous studies [15,24–27]. Most of these offline approaches

assume perfect forecasting of the renewables, the demands, and the market, which is difficult

to achieve in practice due to the intermittency and variability of renewables, the spatial and

temporal uncertainty in controllable loads (e.g., EVs), and the randomness in real-time pric-

ing. To tackle this problem, efforts have been made to capture the uncertainties in day-ahead

scheduling through modeling different scenarios [21, 28–32]. These approaches typically use

stochastic programming to formulate energy management as a deterministic problem based

on the scenarios that are usually generated by Monte Carlo simulations. The number of these

scenarios may be large and thus it can be computationally expensive to use these methods.

Although these approaches consider the uncertainties, they still require certain forecasting

and usually do not adapt to real-time changes in the environment. Other studies [16, 17]

consider the energy management problem at each time independently and focus on how to

efficiently solve the optimization problem in real time.

Recently, there have been attempts to develop online algorithms for real-time energy

management in microgrids to optimize the long-term cost, which take into account the un-

certainties of the renewables, the demands, and the market [33–35]. These approaches do

not require any a priori statistical knowledge of the underlying stochastic processes and can

adapt to the time-varying environment. However, these existing online approaches consider

the aggregate supply-demand balance while omitting the underlying power distribution net-

work, the associated power flow (e.g., Kirchhoffs laws), and system operational constraints

(e.g., voltage tolerances). Consequently, such approaches may result in control decisions that

violate the real-world constraints.

Therefore, this chapter focuses on developing an online EMS for real-time operation of

microgrids that takes into account the power flow and system operational constraints on a
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distribution network. The objective of the EMS is to control power flows in the microgrid

using only the current system state information at each time in order to (i) minimize the

long-term operational cost, including the cost of generation, the cost of energy storage, the

cost of load shedding, and the cost of energy purchase from the main grid, (ii) guarantee

the quality-of-service for customers, and (iii) minimize the long-term power losses subject

to the DER constraints, the load constraints, the power flow constraints, and the system

operational constraints (e.g., voltage tolerances).

Specifically, we formulate the online energy management in microgrids as an SOPF prob-

lem. Although dynamic programming (DP) techniques could be applied to solve the stochas-

tic optimization problem, they would result in complex solutions that are time-consuming to

compute, thus preventing them to be suitable for real-time applications1. Moreover, because

DP methods usually require assumptions of the underlying stochastic processes, it is diffi-

cult for them to adapt to any changing probabilities or any un-modelled uncertainties in the

actual processes [65]. Therefore, we adopt Lyapunov optimization [66] to design an online

EMS that simply uses the current system state to achieve real-time energy management

without any a priori statistical knowledge of the underlying stochastic processes. Lyapunov

optimization is a technique for optimizing time averages in stochastic networks. It has been

recently applied to various aspects of smart grid, e.g., home energy management [65, 67],

DR [68], EV charging and V2G control [69,70], energy storage management [71–73], and mi-

crogrid energy management [33–35]. Most of the studies on Lyapunov optimization consider

an infinite-time horizon, which may cause issues under certain circumstances [73]. See [73]

on how to optimize over a finite-time horizon under the Lyapunov framework.

To solve the SOPF problem, we first use the concept of virtual queues from Lyapunov

optimization to obtain a relaxed SOPF problem (SOPF-r) to deal with the time-coupled

constraints. We then reformulate SOPF-r as an OPF to be solved at each time using the drift-

plus-penalty algorithm from Lyapunov optimization. OPF is NP-hard to solve in general

due to the quadratic power flow constraints [57]. We therefore relax the constraints and

1DP techniques generally suffer from the “curse-of-dimensionality” [65] which makes them difficult to
apply to large systems due to the real-time computational requirement.
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obtain a convex optimization problem for real-time computing (See [57, 58] for a tutorial

on convex relaxation of OPF). Sufficient conditions for the exactness of the relaxation have

been derived in recent studies [46,59,74], which hold for a variety of IEEE test systems and

real-world distribution systems. Our proposed online EMS uses only the current system state

information to solve a convex OPF problem and thus is simple and efficient to implement in

real time.

As one demonstration, we apply the proposed online EMS to a real microgrid system in

Guangdong Province, China. We evaluate the performance of the proposed online EMS with

two benchmarks: an optimal offline algorithm that solves the optimization problem over the

entire time horizon assuming that all system states over time are known a priori and a greedy

algorithm that optimizes the cost at each time independently. The simulation results show

that the proposed online EMS outperforms the greedy algorithm and its performance is close

to the optimal offline algorithm. Regarding real-time computing, the computational time of

our proposed online EMS at each time step is on average 1.13 seconds showing that it can

be implemented in real time.

In order to compare with previous online approaches [33–35], we also solve the micro-

grid energy management problem without considering the underlying network constraints

and then compute the power flows based on the obtained control decisions. Our simulation

results demonstrate that those online approaches can lead to bus voltages that violate the

tolerance constraints significantly. In contrast, our proposed online EMS is able to achieve

the long-term objective while maintaining the voltages within the tolerance. The simulation

results also show the network effect that the loads behave differently based on their loca-

tions. Therefore, by incorporating the distribution network in the modeling, this chapter

presents the relationship between the physical structure of a microgrid and the online energy

management on the network.

The rest of this chapter is organized as follows. We introduce the system model in Section

4.2 and propose the online EMS in Section 4.3. The simulation results are provided in Section

4.4. The summary is given in Section 4.5.
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4.2 System Model

In this section, we describe the system model for developing the proposed online EMS. We

first give an overview of the system followed by the DG model, the DS model, and the

load model. We then model the power distribution network using a branch flow model and

formulate real-time microgrid energy management as a SOPF problem.

4.2.1 System Overview

Consider a microgrid with a set of DG units denoted by G , {g1, g2, . . . , gG}, DS units

denoted by B , {b1, b2, . . . , bB}, and controllable loads denoted by L , {l1, l2, . . . , lL}. We

assume the structure of the microgrid to be radial as most of the power distribution networks

are radial [75]. All DER units and loads are connected by a two-way real-time communication

infrastructure linking the MGCC and the LCs. The MGCC is able to gather real-time

information from the LCs, perform energy management, and send control commands to the

LCs. Fig. 4.1 shows the overall system architecture. In this chapter, we use a discrete-time

model, assuming that the system operates in discrete time with t ∈ {0, 1, 2, . . .} and time

interval ∆t.

4.2.2 DG Model

We consider two types of DG units in the microgrid: non-dispatchable renewable DG units

denoted by g ∈ Gr such as PVs and WTs and dispatchable conventional DG units denoted

by g ∈ Gc such as diesel. For each DG g ∈ G, we denote its complex output power by

sg(t) , pg(t) + iqg(t), where pg(t) is the active power and qg(t) is the reactive power.

4.2.2.1 Renewable DG

A renewable DG unit such as PV or WT is not dispatchable and its output power is dependent

on the availability of the primary sources (i.e., sun irradiance or wind). Therefore, we assume

pg(t) and qg(t) are both random variables due to the stochastic nature of renewable DGs
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Figure 4.1: System architecture.

and there is no generation cost. Note that we consider the renewable DG unit with an

on-site battery storage system as two separate units. Such a system can be modeled as a

non-dispatchable DG unit and a DS unit at the same bus.

4.2.2.2 Conventional DG

A conventional DG unit such as diesel is a dispatchable source, its output power is a variable

with the following constraints: ∀g ∈ Gc, t,

0 ≤ pg(t) ≤ p̄g, (4.1)

|pg(t)− pg(t− 1)| ≤ rgp̄g, (4.2)

where p̄g is the maximum output power and rg ∈ (0, 1] is the ramping parameter.

The reactive power generated at the inverter is bounded by:

pg(t)
2 + qg(t)

2 ≤ s2
g, ∀g ∈ Gc, t, (4.3)
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where sg is the capacity of the inverter.

We model the conventional DG generation cost at each time t using a quadratic model

[21]:

Cg(pg(t)) , αg (pg(t)∆t)
2 + βgpg(t)∆t+ cg, (4.4)

where αg, βg, and cg are constants.

4.2.3 DS Model

We consider batteries as the DS units in the microgrid. For a given battery b ∈ B, we denote

its complex power by sb(t) , pb(t) + iqb(t), where pb(t) is the active power (positive when

charging and negative when discharging) and qb(t) is the reactive power. Let Eb(t) denote

the energy stored in the battery at time t. A given battery b ∈ B can be modeled by the

following constraints: ∀t,

¯
pb ≤ pb(t) ≤ p̄b, (4.5)

pb(t)
2 + qb(t)

2 ≤ s2
b , (4.6)

Eb(t+ 1) = Eb(t) + pb(t)∆t, (4.7)

¯
Eb ≤ Eb(t) ≤ Ēb, (4.8)

where p̄b is the maximum charging rate, −
¯
pb is the maximum discharging rate, sb is the

capacity of the inverter, and
¯
Eb and Ēb are the minimum and maximum allowed energy

stored in the battery, respectively.

We model the cost of operating a given battery b at each time t as [35]:

Cb(pb(t)) , αbpb(t)
2 + cb, (4.9)

where αb and cb are constants. The cost function penalizes fast (dis)charging which is harmful

to battery life.
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4.2.4 Load Model

We consider a demand side management in the microgrid, where flexible loads such as HVAC,

EVs, and smart appliances can be shed in response to supply conditions. For each load l ∈ L,

we denote its complex power by sl(t) , pl(t) + iql(t) and it is bounded by: ∀t,

¯
pl(t) ≤ pl(t) ≤ p̄l(t), (4.10)

¯
ql(t) ≤ ql(t) ≤ q̄l(t), (4.11)

where
¯
pl(t) is the minimum power required by the load that cannot be shed, p̄l(t) is the

maximum power requested by the load, and
¯
ql(t) and q̄l(t) are the minimum and maximum

reactive power.
¯
pl(t), p̄l(t),

¯
ql(t), and q̄l(t) are the demand request generated by customers

based on the physical constraints and their willingness to participate in the demand side

management. If a customer refuses load shedding, the requested maximum and minimum

power will be the same giving no flexility for the EMS. On the EMS side, the demand requests

are assumed to stochastic and unknown, and they are provided by the customers at each

time. Customers may use an intelligent algorithm to generate their requests. One direction

for future work is to design such an algorithm on the customer side.

In order to control the quality-of-service [34] for customers in the microgrid, we impose

an upper bound on the time average load shedding percentage [35]:

lim
T→∞

1

T

T−1∑
t=0

E
[
p̄l(t)− pl(t)
p̄l(t)−

¯
pl(t)

]
≤ αl, ∀l, (4.12)

where p̄l(t) −
¯
pl(t) is the total demand that can be shed, p̄l(t) − pl(t) is the shed demand,

and αl is a positive constant to control the quality-of-service. A small αl means tighter

quality-of-service control.

We use a cost function to capture the cost of load shedding:

Cl(t, pl(t)) , βl(p̄l(t)∆t− pl(t)∆t)2, (4.13)

where βl is a positive constant. αl and βl reflect the customer’s tolerance and sensitivity to

load shedding and they are assumed to be generated on the customer side.
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Note that although both (4.12) and (4.13) can limit load shedding to some extent, they

have different meanings in the model. While (4.13) captures the economic loss of load

shedding in the objective of the EMS, (4.12) is a constraint to guarantee the quality-of-

service in a time-average sense that can be seen as a “soft” limit on load shedding.

4.2.5 Distribution Network Model

A distribution network is composed of lines and buses. It can be modeled as a connected

graph (N , E), where each node i ∈ N represents a bus and each link (i, j) ∈ E represents a

branch (line or transformer). A power distribution network typically has a radial structure

and the graph becomes a tree. The root of the tree is the feeder with a fixed voltage and

flexible power injection, denoted by bus 0. We index the other buses in N by i = 1, . . . , n.

For each link (i, j) ∈ E , let zij , rij + ixi,j be the complex impedance of the branch,

Iij(t) be the complex current from buses i to j, and Sij(t) , Pij(t) + iQij(t) be the complex

power flowing from buses i to j.

For each bus i ∈ N , let Vi(t) be the complex voltage at bus i and si(t) , pi(t) + iqi(t)

be the net load which is the load minus the generation at bus i. Each bus i ∈ N \ {0} is

connected to a subset of DG units Gi, DS units Bi, and loads Li. The net load at each bus

i satisfies:

si(t) = sli(t) + sbi(t)− sgi(t), ∀i ∈ N \ {0}, t, (4.14)

where sli(t) ,
∑

l∈Li sl(t), sbi(t) ,
∑

b∈Bi sb(t), and sgi ,
∑

g∈Gi sg(t).

The steady-state power flows in a given distribution network (N , E) can be modeled using

the branch flow model [57]: ∀(i, j) ∈ E , t,

pj(t) = Pij(t)− rij`ij(t)−
∑

k:(j,k)∈E

Pjk(t), (4.15)

qj(t) = Qij(t)− xij`ij(t)−
∑

k:(j,k)∈E

Qjk(t), (4.16)

vj(t) = vi(t)− 2 (rijPij(t) + xijQij(t)) + (r2
ij + x2

ij)`ij(t), (4.17)

`ij(t) =
Pij(t)

2 +Qij(t)
2

vi(t)
, (4.18)
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where `ij(t) , |Iij(t)|2 and vi(t) , |Vi(t)|2.

Equations (4.15)–(4.18) define a system of equations in the variables (P(t),Q(t),v(t), l(t),

s(t)), where P(t) , (Pij(t), (i, j) ∈ E), Q(t) , (Qij(t), (i, j) ∈ E), v(t) , (vi(t), i ∈ N \{0}),

l(t) , (`ij(t), (i, j) ∈ E), and s(t) , (si(t), i ∈ N \{0}). The phase angles of the voltages and

the currents are not included. But they can be uniquely determined for radial systems [58].

4.2.6 Real-Time Energy Management

The objective of the microgrid operator is to minimize its long-term operational cost, while

delivering reliable and high-quality power to the customers. However, the introduction of

DERs brings uncertainties to the energy management problem, which makes it challenging

to balance supply and demand in real time. The voltages in the microgrid may also deviate

significantly from the nominal values. Thus in this chapter, we study microgrid energy man-

agement aiming at achieving the long-term operational objective of the microgrid operator,

while meeting the supply-demand balance and the voltage tolerance constraints in real time.

We consider the following voltage tolerance constraints in the microgrid:

¯
Vi ≤ |Vi(t)| ≤ V̄i, ∀i ∈ N \ {0}, t, (4.19)

where
¯
Vi and V̄i correspond to the minimum and maximum allowed voltages, respectively.

The net power injected to the microgrid from the main grid is given by:

s0(t) =
∑

j:(0,j)∈E

s0j(t), ∀t. (4.20)

If the microgrid is operated in islanded mode, then s0(t) = 0. If the microgrid is operated

in grid-connected mode, then s0(t) is the net complex power traded between the microgrid

and the main grid. We model the cost of energy purchase from the main grid at each time

t as:

C0 (t, p0(t)) , ρ(t)p0(t)∆t, (4.21)

where ρ(t) is the market energy price. Note that p0(t) can be negative, meaning that the

microgrid can sell its surplus power to the main grid.
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We define the system state vector at time t using the renewable generations, the demand

requests, and the energy price:

x(t) , (r(t),d(t), ρ(t)), (4.22)

where r(t) , (sg(t), g ∈ Gr) is the vector of renewable generations and d(t) , (
¯
pl(t), p̄l(t),

¯
ql(t), q̄l(t), l ∈ L) is the vector of demand requests. We assume the system state to be

stochastic and make no assumptions about the statistics of the underlying stochastic pro-

cesses.

We define the control vector at time t as:

u(t) , (P(t),Q(t),v(t), l(t), s(t),g(t),b(t),y(t)), (4.23)

where g(t) , (sg(t), g ∈ Gc), b(t) , (sb(t), b ∈ B), and y(t) , (sl(t), l ∈ L). u(t) controls

power flows in the microgrid.

The objective of the real-time energy management in the microgrid is to make control

decision u(t) at each time in order to (i) minimize the long-term operational cost, including

the cost of generation, the cost of energy storage, the cost of load shedding, and the cost of

energy purchase from the main grid, (ii) guarantee the quality-of-service for customers, and

(iii) minimize the long-term power losses subject to the DER constraints, the load constraints,

the power flow constraints, and the system operational constraints (voltage tolerances).

We define the objective function of the optimization as:

C(t) ,ξg
∑
g∈Gc

Cg(pg(t)) + ξb
∑
b∈B

Cb(pb(t)) + ξl
∑
l∈L

Cl(t, pl(t))

+ ξ0C0(t, p0(t)) + ξp
∑

(i,j)∈E

rij`ij(t), (4.24)

where ξg, ξb, ξl, ξ0, and ξp are the parameters to trade off among different costs and power

losses in the optimization.

The real-time energy management in the microgrid can be formulated as an SOPF prob-

lem:
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SOPF

min
{u(t)}

lim
T→∞

1

T

T−1∑
t=0

E [C(t)]

s.t. (4.1)− (4.3), (4.5)− (4.8), (4.10)− (4.12), (4.14)− (4.20).

where the randomness of the system state x(t) and the possibly random control decision

u(t) at each time are taken into account in the expectations in the objective and constraint

(4.12).

4.3 Online EMS

Solving the previous SOPF problem is challenging mainly due to the objective and constraints

(4.8) and (4.12). We first use the concept of virtual queues from Lyapunov optimization (see

Section 4.4 in [66]) to deal with these constraints and obtain a relaxed SOPF problem

(SOPF-r). Following the Lyapunov optimization framework (see Section 4.3.1 for a brief

introduction or Chapter 4 in [66] for details), we reformulate SOPF-r as a real-time problem

(SOPF-l). Since we relax the constraints, the solution to SOPF-l may be infeasible to the

original SOPF problem. Therefore, we restore the constraints and obtain a standard OPF

problem to be solved at each time. The OPF problem is non-convex due to the quadratic

equality constraints in (4.18) and thus is NP-hard to solve in general [57]. We therefore relax

the constraints and obtain a convex optimization problem (OPF-r) for real-time computing.

Fig. 4.2 summarizes the scheme used in the problem formulation.

4.3.1 Introduction to Lyapunov Optimization

In this chapter, we develop an online EMS using Lyapunov optimization [66] which is a

technique to optimize time averages in stochastic systems. We give a very brief description

of it below.

Consider a stochastic system that operates in discrete time with time slots t ∈ {0, 1, 2,

. . .}. In every time slot, a random system state ω(t) is observed and a control action α(t)

is taken. The control action α(t) is determined within a set Aω(t) that may depend on
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Figure 4.2: Problem formulation scheme.

ω(t). There are a collection of real-valued attributes that are depended on the system state

and the control action, denoted by y := (y0(t), y1(t), . . . , yL(t)), e := (e1(t), . . . , eM(t)). Let

ȳl := limT→∞
1
T

∑T−1
t=0 yl(t) and ēm := limT→∞

1
T

∑T−1
t=0 em(t) be the time average of yl(t) and

em(t) under a particular control. The objective is to design an algorithm that solves the

following problem.

min
{α(t)∈Aω(t)}

ȳ0 (4.25)

s.t. ȳl ≤ 0, l = 1, . . . , L, (4.26)

ēm = 0, m = 1, . . . ,M. (4.27)

The theory of Lyapunov optimization can be used to devise a drift-plus-penalty algorithm

to solve the above problem in a simple and elegant way. The steps to use it are given briefly

as follows.

1. Construct virtual queues in the way described in Section 4.4 in [66] for ensuring that

the time average constraints (4.26) and (4.27) are satisfied.

2. Define the Lyapunov function L(t) as the sum of the squares of the backlogs of all the

virtual queues. L(t) is a scalar measurement of the queues’ size.

3. Define the Lyapunov drift ∆(t) = L(t + 1) − L(t) as the difference of the Lyapunov

function in two consecutive time slots. It is shown in [66] that greedily minimizing the

Lyapunov drift can stabilize the queues, which ensures the time average constraints

are met.
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4. In each time slot t, take actions to greedily minimize the drift-plus-penalty function

defined as ∆(t) + V × penalty(t), where V is a non-negative control parameter and

penalty(t) is a function mapped from the objective function.

The above drift-plus-penalty algorithm has been shown to produce a time average ob-

jective that deviates by at most O(1/V ) from the optimality with a O(V ) trade-off in time

average queue backlog [66].

4.3.2 Virtual Queue Design

To deal with constraints (4.8) and (4.12), we use the concept of virtual queues (see Section

4.4 in [66]) to help satisfy the constraints.

4.3.2.1 Battery Queue

We define a virtual queue Jb(t) for each b ∈ B that accumulates the charging/discharging

energy. Define Jb(0) = 0 and it updates as follows:

Jb(t+ 1) = Jb(t) + pb(t)∆t, ∀t, b. (4.28)

We define J(t) , (Jb(t), b ∈ B).

Jb(t) is in fact a shifted version of the energy stored in the battery Eb(t). Instead of

requiring that Eb(t) is always bounded by (4.8), we relax it to keep the battery queue Jb(t)

mean rate stable:

lim
t→∞

E [|Jb(t)|]
t

= 0, ∀b. (4.29)

4.3.2.2 Load Queue

We define a virtual queue Hl(t) for each load l ∈ L to tackle the time average constraint in

(4.12). Define Hl(0) = 0 and its backlog evolves as follows [66]:

Hl(t+ 1) = max{Hl(t)− αl, 0}+
p̄l(t)− pl(t)
p̄l(t)−

¯
pl(t)

, ∀t, l. (4.30)
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We define H(t) , (Hl(t), l ∈ L).

The arrival rate of the load queue Ht(t) is the shedding percentage at time t and the

departure rate is αl. If the queue Hl(t) is stable, the time average load shedding percentage

must be less than or equal to αl. Therefore, constraint (4.12) can be transformed to the

following queue stability constraint [66]:

lim
t→∞

E [|Hl(t)|]
t

= 0, ∀l. (4.31)

Now we consider a relaxed SOPF problem that fits the Lyapunov optimization framework.

SOPF-r

min
{u(t)}

lim
T→∞

1

T

T−1∑
t=0

E [C(t)]

s.t. (4.1), (4.3), (4.5)− (4.7), (4.10), (4.11), (4.14)− (4.20), (4.28)− (4.31).

Note the time-coupled generation ramping constraint (4.2) is also relaxed here. SOPF-r

provides a lower bound on SOPF. If the optimal solution to SOPF-r is feasible to SOPF,

then it is also an optimal solution to SOPF.

4.3.3 Lyapunov Optimization

It is still difficult to solve SOPF-r because of the objective function and constraints (4.29)

and (4.31). To address these challenges, we follow the Lyapunov optimization framework

(see Section 4.3.1 for a brief introduction or Chapter 4 in [66] for details) to solve the above

SOPF-r problem.

Define Θ(t) , (J(t),H(t)) and the Lyapnuov function as a scalar measure of Θ(t):

L(Θ(t)) ,
1

2
β
∑
b∈B

Jb(t)
2 +

1

2

∑
l∈L

Hl(t)
2, (4.32)

where β is a weight to treat the battery virtual queue differently from the load virtual queue.

We define the conditional 1-slot Lyapunov drift as follows:

∆(Θ(t)) , E [L(Θ(t+ 1))− L(Θ(t))|Θ(t)] . (4.33)
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The Lyapunov drift measures the expected queue size growth given the current state Θ(t).

Minimizing the Lyapunov drift would push the queues towards a less congested state, but

it may incur a high cost. Therefore, we minimize a weighted sum of the drift and cost, which

is defined as a drift-plus-penalty function ∆(Θ(t)) + V E [C(t)|Θ(t)], where V is a positive

parameter to trade off between stabilizing queues and minimizing cost.

For any possible control policies, the defined drift-plus-penalty function is upper bounded

at each time t:

∆(Θ(t)) + V E [C(t)|Θ(t)] ≤ B + β
∑
b∈B

Jb(t)E [pb(t)∆t|Θ(t)]

+
∑
l∈L

Hl(t)E
[
p̄l(t)− pl(t)
p̄l(t)−

¯
pl(t)

− αl|Θ(t)

]
+ V E [C(t)|Θ(t)] (4.34)

where B , 1
2

∑
l∈L(1 + α2

l ) + 1
2
β
∑

b∈Bmax{
¯
p2
b , p̄

2
b}∆t2.

Proof: According to the definition of L(Θ(t)) in (4.32), we have

L(Θ(t+ 1))− L(Θ(t)) =
1

2
β
∑
b∈B

[
Jb(t+ 1)2 − Jb(t)2

]
+

1

2

∑
l∈L

[
Hl(t+ 1)2 −Hl(t)

2
]
. (4.35)

Based on the queue update of Jb(t) in (4.28), the term Jb(t+ 1)2−Jb(t)2 can upper bounded

by

Jb(t+ 1)2 − Jb(t)2 ≤ 2Jb(t)pb(t)∆t+ max{
¯
p2
b , p̄

2
b}∆t2. (4.36)

Based on the queue update of Hl(t) in (4.30), the term Hl(t+1)2−Hl(t)
2 can upper bounded

by

Hl(t+ 1)2 −Hl(t)
2 ≤ 2Hl(t)

(
p̄l(t)− pl(t)
p̄l(t)−

¯
pl(t)

− αl
)

+ 1 + α2
l . (4.37)

Applying (4.36) and (4.37) to (4.35), adding the term V E [C(t)], and taking the condi-

tional expectation given Θ(t) yields the upper bound in (4.34).

Instead of minimizing the drift-plus-penalty function directly, we minimize the upper

bound in (4.34) via the framework of opportunistically minimizing an expectation (see Sec-

tion 1.8 in [66]). The resulting algorithm can be described as follows. At each time t, observe
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the system state x(t) and the virtual queue states Θ(t), and determine the control decision

u(t) by solving the following optimization problem:

SOPF-l

min
u(t)

β
∑
b∈B

Jb(t)pb(t)∆t−
∑
l∈L

Hl(t)

p̄l(t)−
¯
pl(t)

pl(t) + V C(t)

s.t. (4.1), (4.3), (4.5)− (4.7), (4.10), (4.11), (4.14)− (4.20), (4.28), (4.30).

The above algorithm does not require any information of the probabilities associated with

the system state x(t). The queue states Θ(t) carry sufficient statistical information needed

to determine the control decision at the next time step.

Since we relax the generation ramping constraint (4.2) and the battery energy constraint

(4.8) in SOPF-l, the optimal solution to SOPF-l may violate these constraints and thus may

be infeasible to the original SOPF problem. Therefore, we add constraints (4.2) and (4.8)

back. The problem we consider now is indeed a standard OPF problem to be solved at each

time t:

OPF

min
u(t)

β
∑
b∈B

Jb(t)pb(t)∆t−
∑
l∈L

Hl(t)

p̄l(t)−
¯
pl(t)

pl(t) + V C(t)

s.t. (4.1)− (4.3), (4.5)− (4.8), (4.10), (4.11), (4.14)− (4.20), (4.28), (4.30).

The solution to OPF is always feasible to SOPF.

4.3.4 Convexification of OPF

The previous OPF problem is non-convex due to the quadratic equality constraint in (4.18)

and is NP-hard to solve in general [57]. We therefore relax them to inequalities:

`ij(t) ≥
Pij(t)

2 +Qij(t)
2

vi(t)
, ∀(i, j) ∈ E , t. (4.38)

We then consider the following convex relaxation of OPF:
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OPF-r

min
u(t)

β
∑
b∈B

Jb(t)pb(t)∆t−
∑
l∈L

Hl(t)

p̄l(t)−
¯
pl(t)

pl(t) + V C(t)

s.t. (4.1)− (4.3), (4.5)− (4.8), (4.10), (4.11), (4.14)− (4.17),

(4.19)− (4.20), (4.28), (4.30), (4.38).

The above relaxation is exact if the solution to OPF-r is also an optimal solution to OPF,

i.e., the equality in (4.38) is attained. In general, such a relaxation is not exact. It has been

shown recently [46, 59, 74] that the convex relaxation of OPF is exact under certain mild

conditions that can be checked a priori. Such conditions are verified to hold in a variety of

IEEE test distribution systems and real-world distribution systems. Roughly speaking, the

relaxation is exact if the power injection at each bus is not too large and the voltages are kept

around their nominal values [23]. In this chapter, we assume that the sufficient conditions

specified in [59] hold for the microgrid and thus we focus on solving the OPF-r problem. The

exactness of the relaxation is also verified numerically in the simulation. OPF-r is a convex

optimization problem and therefore can be solved efficiently for real-time computation.

4.3.5 Performance Gaps in the Optimizations

From the Lyapunov optimization theory, it can be proved that the optimal time average cost

of SOPF-l is within O(1/V ) of the optimal time average cost of SOPF-r, i.e., SOPF-l* ≤

SOPF-r*+B/V , with a corresponding O(V ) trade-off in the average queue size with i.i.d.

system state (see Theorem 4.8 in [66]), and the algorithm is robust to non-i.i.d., non-ergodic

situations (see Theorem 4.13 in [66]). Since SOPF-r provides a lower bound on SOPF, i.e.,

SOPF-r*≤ SOPF*, we obtain a deterministic performance bound on SOPF-l as SOPF-l*

≤ SOPF*+B/V . The choice of the control parameter V affects the performance of the

optimization. A large V can decrease optimality gap but also increase the average queue

size. On the other hand, a small V makes it easier to keep the queues stable but at the

sacrifice of a larger optimality gap.

If the solution to OPF is the same as the solution to SOPF-l, the performance of the

85



proposed online EMS can be guaranteed using the above performance bound. However, as

we restore the constraints in OPF, it is possible that these constraints are effective in the

optimal solution and thus affect the optimality. The previous studies [33–35] deal with this

issue by carefully designing the control parameters to force the time-coupled constraints to

be always satisfied in the solution to the Lyapunov optimization. Unfortunately, the same

method cannot be applied here due to the difficulty in characterizing the solution brought

up by the introduction of the power flow and system operational constraints. We therefore

validate the performance of the proposed online EMS via simulations. Our simulation results

in the next section will demonstrate that the performance of the proposed EMS is desirable.

4.4 Performance Evaluation

In this section, we demonstrate the proposed online EMS by applying it to a real microgrid

system. We first describe the microgrid system and the simulation setup. We then describe

two benchmarks and compare the proposed online EMS with them. Finally, we discuss the

battery queue and the load queue behaviors, the voltages in the microgrid, and the network

effect observed in the simulations.

4.4.1 Simulation Setup

Fig. 4.3 shows the configuration of a real microgrid system [27] in Guangdong Province,

China, consisting of PVs, WTs, diesel generators, and a BESS. The numbers under the

DERs and the loads in the figure correspond to the maximum power. We use this microgrid

to demonstrate the proposed online EMS. In the simulation, we run the proposed online

EMS for 4 days denoted by T , {0, 1, . . . , T − 1}. The time interval ∆t in the model is 5

minutes and there are T = 1152 time intervals in total.

Fig. 4.4 shows the renewable generation profiles, the load profile, and the market prices

used in the simulation. We use the real solar and wind data from national renewable energy

laboratory (NREL) [76] to generate the renewable generation profiles. For each load, we

generate the maximum power request p̄l(t) based on different types of load using a Gaussian
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Figure 4.3: Topology of the microgrid.

random variable with hourly mean values from [27] and choose the percentage of load that

can be shed
p̄l(t)−

¯
pl(t)

p̄l(t)
randomly from [30%, 50%]. The reactive power requests q̄l(t) and

¯
ql(t)

are generated based on the active power requests p̄l(t) and
¯
pl(t) using a power factor chosen

randomly from [0.8, 0.9]. The parameters αl and βl are chosen to be 0.5 and 500, respectively

for each load. We use the 5-minute real-time pricing data from CAISO [77] in the simulation.

We set the cost function of diesel generation as Cg(pg(t)) , 40(pg(t)∆t)
2 + 60(pg(t)∆t) and

the ramping parameter as rg = 0.3. The capacity of the BESS Ēb is 3 MWh and
¯
Eb is

chosen to be 0.1 MWh. The initial battery energy level is set to be Eb(0) = 1.5 MWh. The

parameters in the battery cost function are chosen as αb = 1 and cb = 0.
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Figure 4.4: Renewable generation profiles, load profile, and real-time price.

4.4.2 Benchmarks

In order to evaluate the performance of the proposed online EMS, we use two benchmarks:

one is an optimal offline algorithm that optimizes the objective over the entire time horizon

T and the other is a greedy algorithm that optimizes the cost at each time independently.

The offline algorithm solves the following optimization problem over the entire time

horizon T :
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Offline

min
{u(t)}

1

T

T−1∑
t=0

C(t)

s.t. (4.1)− (4.3), (4.5)− (4.8), (4.10), (4.11), (4.14)− (4.20),

1

T

T−1∑
t=0

p̄l(t)− pl(t)
p̄l(t)−

¯
pl(t)

≤ αl, ∀l.

The offline algorithm provides a lower bound on any online algorithms, assuming that

all system states over time (i.e., the output power of the renewables, the demand requests,

and the energy prices) are known a priori, which is difficult to achieve in practice due to

the stochastic nature of the problem. Although the optimal solution to the offline problem

is not achievable in practice, it gives us the best performance to compare with any online

algorithms.

Another benchmark we consider is a greedy algorithm that aims to minimize the cost at

each time t ∈ T independently:

Greedy

min
u(t)

C(t)

s.t. (4.1)− (4.3), (4.5)− (4.8), (4.10), (4.11), (4.14)− (4.20),

p̄l(t)− pl(t)
p̄l(t)−

¯
pl(t)

≤ αl, ∀l.

The greedy algorithm is shortsighted as it optimizes the cost at each time without taking

the future into account.

4.4.3 Case Study

We apply the proposed online EMS to the microgrid using the setup described above. The

voltage tolerances are set to be [0.95 p.u., 1.05 p.u.]. The parameters in the algorithm are

chosen as β = 1300, V = 20, ξg = 1, ξb = 1, ξl = 1, ξ0 = 1, and ξp = 1. The optimization

problem is solved using the CVX package [56] in MATLAB on an Intel CORE i7 3.4 GHz

machine with 12 GB RAM.
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Figure 4.5: Real-time cost.

Fig. 4.5 shows the real-time cost by using the proposed EMS. It can be seen from

the figure there are some significant cost drops, and negative costs exist, showing that the

microgrid gains money by selling surplus power to the main grid at that time. If we compare

Fig. 4.5 with Fig. 4.4, we can easily find that the cost drops coincide with the spikes of

energy price. When the price is high, the cost of using DERs is relatively low. Therefore, it

is beneficial for the microgrid not only to use DERs to supply its local demand but also to

sell back surplus power to gain profit.

Next, we compare the performance of the proposed online EMS with the two benchmarks

as shown by the time accumulated cost over time in Fig. 4.6. As shown in the figure, the

shortsighted greedy algorithm performs the worst. The online EMS performs the best at

first but it is surpassed by the optimal offline algorithm as time goes on. This is because

the offline algorithm is optimized over the entire time horizon. It is able to make some

performance sacrifices at the beginning but achieve better overall performance in the end.
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Figure 4.6: Time accumulated cost comparison. Time average cost: $15.34 (greedy), $13.68

(online), $11.37 (offline).

Although the offline algorithm gives us the best performance, it requires a priori system state

information, which is not applicable in practice.

Regarding real-time computing, the computational time of our proposed online EMS at

each time step is on average 1.13 seconds showing that it can be implemented in real time.

The total computational time of the four-day time period (1152 time steps) is 21.65 minutes,

compared with 3.84 hours of the offline approach specified in Section 4.4.2. Both the online

and offline problems are solved using the interior-point optimizer SDPT3 [78] from CVX.

Our proposed online EMS can save the computational time significantly.

For the simulations, we also verify numerically that the equality in (4.38) is attained in

the optimal solution to OPF-r, i.e., OPF-r is an exact relaxation of OPF.
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Figure 4.7: Battery charging/discharging profile with different β.

4.4.4 Discussions

4.4.4.1 Battery Queue

We first look at the effect of β on the charging/discharing profile of the BESS as shown in Fig.

4.7. As can be seen from the figure, a large β results in more charging/discharging cycles.

This is because β is the weight of the battery queue stability in the optimization. A large β

would push the battery queue to a less congested state and therefore cause a smaller average

queue backlog. Since the battery queue backlog is the aggregate charging/discharging energy

by definition, a smaller average queue backlog leads to more switches between charging

(positive power) and discharging (negative power).

To investigate the effect of β on the time average cost, we run the online algorithm with

different β. The result is shown in Fig. 4.8. The cost first drops significantly as β increases

but later starts to increase once β is greater than a certain threshold. The reason for the
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Figure 4.8: Time average cost with different β.

cost drop is that the battery energy constraint is more likely to be effective when β is small

and thus affects the optimality of Lyapunov optimization. After β reaches the threshold

where the battery energy level can be always bounded within the required range, the time

average cost increases due to the stability-and-performance tradeoff in the drift-plus-penalty

function.

4.4.4.2 Load Queue

Fig. 4.9 shows the time average load shedding percentage at bus 2 with different V . From

the figure, we can see that although the time average load shedding percentage may exceed

the quality-of-service requirement at the beginning, it quickly converges to a point where

the time average constraint (4.12) is satisfied as the time goes on. The figure also shows

the effect of V on load shedding behaviors. As V controls the trade-off between stabilizing

queues and minimizing costs, a large V would cause the load queue to be more unstable as
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Figure 4.9: Load shedding percentage at bus 2 with different V .

can be seen from Fig. 4.9 but incur less cost as shown in Fig. 4.10.

4.4.4.3 Voltage

In order to demonstrate the effect of the online EMS on the bus voltages of the distribution

network, we conduct simulations using homogeneous loads (1.0 MW) for all load buses and

increasing the line lengths by 4 times.

One main advantage of our proposed online EMS is that voltages in the microgrid are kept

within the allowed tolerance which guarantees the power quality in the microgrid. In order

to compare our proposed online EMS with the previous online algorithms [33–35], we also

solve the microgrid energy management problem without considering the underlying network

constraints and then compute the power flows in the microgrid based on the obtained control

decisions. The simulated bus voltages are shown in Fig. 4.11. As seen from the figure, the

voltages deviate significantly away from the allowed tolerance when ignoring the network
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Figure 4.10: Time average cost with different V .

constraints, which may cause serious power quality issues in the microgrid. On the contrary,

our proposed online EMS can achieve the long-term objective while maintaining the voltages

within the tolerance.

4.4.4.4 Network Effect

Another major advantage of incorporating the distribution network in the modeling is that

we can now understand how the underlying network structure interacts with the online

energy management. Since the loads are homogeneous, they would behave in the same

way if the network constraints are not considered in the energy management as in [33–35].

However, the underlying network constraints have an effect on the control decisions, making

the location of the bus matter in the microgrid energy management.

In order to investigate this effect, we look into the load shedding behaviors at each bus
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Figure 4.11: Comparison of the maximum and minimum bus voltages without and with

considering the network constraints (Red lines indicate the allowed tolerance).

to see how they differ from each other in the online energy management. Fig. 4.12 shows

the hourly demand reduction at each bus in day 3. It can be clearly seen from the figure

that the loads at different locations behave very differently. The buses far away from the

feeder and close to the DERs (e.g., buses 5, 11, and 12) are more likely to be different from

the others. These buses need to shed more loads to maintain the voltage level at peak hours

(e.g., hours 12-16, 18-20) because the voltage drop along the distribution line is significant.

Their demand reduction is less than the others’ when the renewable generation is high (e.g.,

hours 11, 21-24) because they are easier to be influenced by the injected power from the

DERs. The farther the bus is away from the feeder and the closer it is to the DERs, the

stronger the effect is. For example, bus 12 is influenced more than bus 11 that is more than

bus 5.
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Figure 4.12: Hourly shed demands at each load bus in day 3.

4.5 Summary

An online EMS is proposed for real-time operation of microgrids in this chapter. Compared

with the existing online algorithms, the proposed online EMS takes into account the underly-

ing power distribution network and the associated constraints. Specifically, we formulate the

online energy management as an SOPF problem and adopt Lyapunov optimization to devise

an online algorithm to solve it in real time. As one demonstration, we apply the proposed

online EMS to a real microgrid system. The simulation results show that the performance

of the proposed online EMS exceeds a greedy algorithm and is close to an optimal offline

algorithm. A comprehensive analysis of the proposed online EMS is given. Through this

study, we observe and analyze the effect of the underlying network structure on the energy

management that cannot be captured by previous online studies. One direction for future

work is to develop an intelligent algorithm on the customer side to generate the demand
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requests.
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CHAPTER 5

Design and Implementation of a System Architecture

for Microgrid Energy Management

A microgrid is a low-voltage power distribution system integrated with DERs and control-

lable loads that can operate with or without the main grid [2]. Such integration brings

unique challenges to microgrid management and control that can be significantly different

from conventional power systems [36]. In a microgrid, there are a variety of heterogeneous

DERs and loads that need to be managed by an EMS. Unfortunately, most of those devices

still use proprietary protocols and cannot interoperate with each other [37]. Furthermore,

many devices managed by the system reside on the customer side requiring autonomy and

local intelligence. In this chapter, we propose a system architecture for microgrid energy

management that enables interoperability and autonomy on the customer side. We design

a unified communication interface that is protocol and technology agnostic for the system

to interoperate with heterogeneous devices in a microgrid. We then propose a decentralized

system architecture, in which the system components are highly decoupled and independent

to enable autonomy on the customer side. Moreover, we implement and deploy a prototype

of the proposed system architecture and conduct experiments to evaluate microgrid manage-

ment and control in real-world settings in two microgrid testbeds. Our experimental results

demonstrate that the system is able to manage various DERs and loads in the testbeds us-

ing different industrial standards and protocols, interact with external systems, and perform

efficient energy management using different algorithms.
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5.1 Introduction

A microgrid is a low-voltage distribution network consisting of a variety of energy components

including DERs and controllable loads1 [2]. With these components, a microgrid can either

be connected to the grid (i.e., grid-connected mode) or use the DERs to supply the loads

without the grid (i.e., islanded mode). Integrating DERs and controllable loads within the

distribution network introduces unique challenges to the microgrid management and control

which are implemented by an EMS. A microgrid EMS can be significantly different from the

EMS used in conventional power systems due to these challenges.

To understand the challenges, Su and Wang [36] discussed the role of EMS in microgrid

operations and listed four essential functionalities that a microgrid EMS must support: fore-

cast, optimization, data analysis, and HMI. Due to the importance of EMS in power systems,

many EMS frameworks [37–40] have been investigated in the literature. While these previous

studies focused on different issues in EMS, they commonly suffer from engineering challenges

that must be taken into account when designing an implementable microgrid EMS.

First of all, intermittency and variability of DERs (e.g., PVs and WTs) and spatiotempo-

ral uncertainty in controllable loads complicate the microgrid management, which the EMS

must be able to cope with. Next, a microgrid triggers a number of new applications (e.g.,

DR, coordinated EV charging, V2G, etc.) and innovative control algorithms [1,23,41,79,80].

The EMS must be able to interface with them seamlessly. Last but not least, a micro-

grid instruments a number of energy components. But, most of them still use proprietary

protocols and cannot interoperate with each other [37]. The EMS must handle the het-

erogeneity and achieve interoperation. A microgrid EMS can be implemented to perform

efficient management and control only when overcoming the engineering challenges and sat-

isfying aforementioned functional requirements. Unfortunately, few previous studies have

accomplished both of them.

To address the essential functions and overcome the engineering challenges in a micro-

1Examples of DERs include PVs, WTs, fuel cells, combined heat and power (CHP), and energy storage
systems. Examples of controllable loads include heating, ventilation, and air conditioning (HVAC) systems
and EVs.
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grid EMS, we propose a system architecture that enables interoperability and autonomy on

the customer side in this chapter. For interoperability, we design a unified communication

interface for the system to interoperate with heterogeneous devices in a microgrid. For au-

tonomy, we propose a decentralized system structure where the system components that are

highly-decoupled and independent to enable autonomy on the customer side. The decentral-

ized architecture protects customer privacy by ensuring customer ownership of the data and

control over the datas exposure. Furthermore, we implement and deploy a prototype of the

proposed system architecture and conduct experiments in real-world settings at the UCLA

Smart Grid Energy Research Center (UCLA SMERC) and the Korea Institute of Energy

Research (KIER). Our experimental results demonstrate that the system is able to manage

various devices in the testbeds, interact with external systems, and perform efficient energy

management.

The rest of this chapter is organized as follows. We review the functionalities of a mi-

crogrid EMS and address the design issues in Section 5.2. The system architecture is imple-

mented and illustrated in Section 5.3. We install the system prototype at UCLA SMERC

and KIER, and conduct experiments on optimal energy scheduling and DR in Section 5.4.

The summary is given in Section 5.5.

5.2 Design of a Microgrid EMS

This section discusses the design issues of an EMS for emerging microgrids - both functional

requirements and engineering challenges. A microgrid EMS monitors and controls the DERs

and the loads for the optimal operation. It interacts with various DERs and loads as well

as external systems for utility information and weather forecast. Fig. 5.1 shows the role of

a microgrid EMS. We refer to [36] for details.
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Figure 5.1: An illustration of a microgrid EMS.

5.2.1 Functional Requirements

5.2.1.1 Forecast

The EMS uses the historical data and other inputs (e.g., weather) to forecast the DERs, the

loads, and the market. The forecast is preformed on different time scales (e.g., day-ahead,

hour-ahead, etc.). The forecast data is used as the input for the optimization. Therefore,

the accuracy of the forecast is crucial for the EMS to balance supply and demand in the

microgrid. Forecast is challenging in a microgrid setting due to the inherent intermittency

and variability of DERs (e.g., PVs and WTs) and the spatial and temporal uncertainty in

controllable loads (e.g., EVs). Various forecast methods [61, 81, 82] have been proposed in

the literature.

5.2.1.2 Optimization

The EMS must be able to make control decisions to optimize the power flows in the mi-

crogrid by adjusting the dispatchable DERs, the controllable loads, and the power im-

ported/exported from/to the grid. Different optimizations are performed for different appli-

cations (e.g. energy/power management, DR, coordinated EV charging, V2G, etc.). Those

applications are typically formulated as non-linear optimization problems with different ob-
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jectives. Extensive algorithms have been proposed for energy/power management, DR, co-

ordinated EV charging, and V2G in microgrids [1, 23,41,79,80].

5.2.1.3 Data Analysis

The EMS collects a huge amount of data from the DERs, the loads, and the market. The

data collection is analyzed, providing insights to better understand the characteristics of

energy resources. This can be further used to improve the performance of the forecast and

the optimization models [83,84].

5.2.1.4 HMI

The EMS must provide a HMI for real-time monitor and control of the microgrid. The

HMI is also the interface for the microgrid operator to interact with other modules in the

EMS. Useful information rather than raw data should be provided [85] by means of data

visualization, archiving, etc. It should also allow more customer interactions [36].

5.2.2 Unified Communication Interface

A microgrid is a distributed system consisting of heterogeneous types of energy resources [37],

in which the EMS is responsible for interacting with the resources in an interoperable manner.

The microgrid EMS is also responsible for communicating with external systems outside

the microgrid - the EMS translates the information delivered from the external systems to

internal semantics and protocols. The communication interfaces in the microgrid EMS must

be extensible, indicating that it can be easily extended to support emerging functionalities.

New applications such as coordinated EV charging and innovative algorithms such as various

forecasts and optimizations have been introduced to cope with the challenges brought by the

introduction of DERs and controllable loads. Thus, it is critical that the EMS is able to

adopt such new applications and algorithms without affecting the existing functionalities.

Therefore, a unified communication interface for managing the devices that is protocol and

technology agnostic is required to achieve the aforementioned needs.
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Figure 5.2: A unified communication interface for devices.

To design such a unified communication interface, we abstract the common functionali-

ties for managing devices based on the characteristics of a variety of common devices in a

microgrid and provide a compact unified interface that is not dependent on the specific pro-

tocol or the communications technology used by the device. Fig. 5.2 shows the design of the

communication interface. There are mainly two types of interfaces - connection management

and device management. The connection interface manages the connection with a device

or a gateway. It is typically used when a long connection is required to be established be-

fore any device specific communications. The device interface manages the communications

with a device. There are four types of device interfaces that must be implemented - status,

measurement, control, and history. The status interface provides the current status informa-

tion associated with the device such as system status, mode, state-of-charge, inverter status,

etc. The measurement interface provides the current values measured by the device such as

active/reactive power, frequency, voltage, power factor, etc. The control interface accepted

control commands to issue control signals to the device such as turning on/off, setting values,

etc. The history interface provides the historical data of the device that may be needed for
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analysis. Underneath the interface is the communication with the real devices using the pro-

tocol and technology supported by the devices. Some commonly-used industrial protocols

and standards include IEC 61850 for DER devices [42], device language message specification

(DLMS) [86] for smart meters, digital addressable lighting interface (DALI) [87] for lighting,

building automation and control network (BACnet) [88] for HVAC control, oBix [89] for

building automation, and other proprietary protocols by different vendors. By using the

unified communication interface that is protocol and technology agnostic, the system can

manage the devices without knowing the underlying protocols and technologies used by the

devices and thus achieve interoperability and extensibility.

5.3 Implementation

In this section, we introduce the implementation of a microgrid EMS architecture with con-

sideration of the design issues discussed in the previous section. We describe the decentralized

system architecture, the microgrid testbeds, and the microgrid controls.

5.3.1 Decentralized System Architecture

In this chapter, we propose a microgrid EMS architecture, taking into account the require-

ments discussed in the previous section. We implement it in a resource-oriented architecture

(ROA) style [90] that abstracts energy components in a microgrid in the form of resources.

Resources have well-defined interfaces, which enables the system to support plug-and-play

of DERs, loads, and functionalities. The ROA provides advantages over a service-oriented

architecture (SOA) in previous studies [37–40]: (i) best fit for “linking and referring” to

energy resources, thus maximizing the interactivity efficiency in the system and (ii) more

lightweight without complicated interface description.

More technically, the system fulfills the interoperability via energy service interfaces

(ESIs) [50] to interact with DERs, loads, and external systems. In the ESI, energy data

is represented in open building information exchange (oBIX) [89] or IEC 61850 [42]. It is

then exchanged using the web service model in the representational state transfer (REST)
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Figure 5.3: An illustration of the overall EMS architecture.

style [90]. The resource centric security (RCSec) [91] is carried out on action levels (i.e., read,

write, and invoke). An illustration of the overall system architecture is shown in Fig.5.3.

Fig. 5.4 shows the proposed decentralized system architecture. Each box in the figure

represents an independent system component that is implemented as a server-hosted web

application. Communication among the components is implemented as REST web services.

Due to this web-based communication scheme, the system components are highly decoupled,

allowing deployment at different locations. For example, the ESIs can reside on the customers

premises to give customers full autonomy to manage their own devices, the coordinator and

control director can be deployed in the cloud, and the control center can be in the control

room of the microgrid operator.

As can be seen from Fig. 5.4, the proposed system architecture is composed of the

following components: ESIs which reside on the customer side, coordinator, control director,

and control center, all of which are on the operator side. The system can also interact with

external systems such as a demand response automated server (DRAS) from the utility for

demand response functionality. In the following, we describe each of the system components
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Figure 5.4: An illustration of the decentralized system architecture.

in detail.

The ESI sits between the system and the end devices. It acts as the gateway that

translates various protocols used by different devices into standardized interfaces to enable

interoperation of the system using our proposed unified communication interface. The ESI

implements one or multiple protocol specifications that the end devices use. Each ESI

supports at least one protocol and it is able to connect multiple devices using their protocols.

Common protocols in microgrids include IEC 61850 [42], DLMS [86], DALI [87], BACnet [88]

for HVAC control, oBix [89], and other proprietary protocols by different vendors. The ESI

can be organized based on the protocol it supports or its location. For example, each ESI

in the system can support one protocol to connect with the devices that use the protocol

as shown in Fig. Or an ESI can be placed in a specific location to connect only the devices

at that location (e.g., one ESI in each room). In reality, the ESI is owned by the customer,
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giving full autonomy to the customer who can use the ESI to manage their own devices. The

customer can also choose what data and how the data is exposed through the ESI. In this

way, customer privacy can be fully protected.

The coordinator in the system connects with multiple ESIs in order to provide the inter-

faces for the system operator to manage the various devices in the microgrid. The coordinator

maintains a list of devices that are managed by the system in the database and allows reg-

istration of new devices and deletion of existing ones. The coordinator exploits Web Service

over HTTP binding in REST style in order to provide energy services to the control director

and the control center.

The control director optimizes the operations in the microgrid using algorithms to control

subsets of the registered devices in the coordinator. Each device can be controlled by only

one algorithm and if a device is not associated with any algorithm, it is assumed to be

manually controlled. The control algorithm manages the operations of the associated devices

by obtaining information from the devices and sending control commands using the defined

algorithm via the coordinator. Multiple algorithms can be registered at the control director,

which supports plug-and-play of new control algorithms, for different applications (e.g., DR,

EV charging, V2G, etc.). Each algorithm in the system defines a set of rules for how to

control the associated devices based on inputs (e.g., energy prices, customer preferences,

etc.). Once the algorithm starts, it will automatically control the associated devices in order

to achieve the desired objectives.

The control center in the system is a web interface for real-time monitoring and control

of the microgrid, as well as for the user to interact with the system; Fig. displays a sample

web interface showing overall system information. Real-time monitoring and control are

realized via the real-time data and control services provided by the coordinator that reads

real-time measurements and sends control commands to the DERs and loads. The web

interface provides different forms of data visualization (i.e., tables and interactive graphs)

that show data from the real-time/forecast/historical data of the DERs, the loads, and the

market; for instance, Fig. 5.5 displays the user interface showing market pricing information.

The control center also provides an interface for the control director to register/unregister
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Figure 5.5: A screenshot of the control center showing the market pricing information.

devices and algorithms, manage the device-algorithm mapping, and manage the algorithms.

5.3.2 Microgrid Testbeds

We have two microgrid testbeds-UCLA SMERC and KIER. There are a number of DERs

and loads in each testbed and several grid services are also implemented for experiments.

5.3.2.1 UCLA SMERC Testbed

The DERs and loads in the testbed at UCLA SMERC include smart submeters, smart

appliances, EVs, PVs, and batteries as shown in Fig. 5.6.

Smart submeters provide fine-grained measurement and control of energy usage. We use

two types of smart submeters: smart plugs and smart power strips in the testbed to monitor

and control (i.e., on/off) the plug loads in the lab including computers, laptops, desk lamps,

and network switches. The submeters communicate with the system using ZigBee.
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Figure 5.6: Some of the devices in the UCLA SMERC testbed.

We also deploy smart appliances which provide interfaces to control the operations in-

cluding LED lights, a cloth dryer and a refrigerator. We have dimmable LED lights which

can change brightness and color. The LEDs use ZigBee to communicate with the system.

For the scalability test, we additionally simulate 200 LEDs which operate exactly the same

as the real device (brightness, temperature, and power consumption). The system connects

with the dryer and the refrigerator using Ethernet. The dryer provides interfaces to change

the operation mode (high heat, low heat, or no heat) and turn on/off. The refrigerator can

adjust the operating cycles of the compressor, the defrost, and the fan. Both the dryer and

the refrigerator have submeters to measure the power consumption.

The UCLA SMERC is developing a smart EV charging infrastructure2 on campus which

supports charging rate control and serving multiple EVs by power multiplexing using J1772

connectors. The charging stations are connected with a control center which monitors and

controls the EV charging using 3G technologies. The system communicates with the EVs

via the control center. Due to the low penetration of EVs, we simulate two EV charging

2http://smartgrid.ucla.edu/projects evgrid.html
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Figure 5.7: Some of the devices in the KIER testbed.

stations (level 1 and level 2) based on the real data in the system for experiments.

The system is also connected to a PV panel and a BESS in our lab. We are currently

installing a 50kW PV system on the roof and a 25kWh BESS in the lab. This version

of the testbed implements the PV and the BESS using the simulated data that follows the

specifications of the real devices. The simulated PV and BESS communicate with the system

using the IEC 61850 standard [42]. The details of the simulators can be found in [64].

The system provides two data interfaces for the DERs and the loads in the microgrid.

They are (i) historical energy data (e.g., active/reactive power, voltage, current, frequency,

etc.) for a given period of time; and (ii) forecast data which are the outputs of the corre-

sponding forecast methods. The historical data and the forecast data can be further analyzed

using data visualization in the web interface.

111



5.3.2.2 KIER Testbed

The DERs and loads in the testbed at KIER include PVs, WTs, a diesel generator, EVs,

energy storage systems (ESSes), smart meters, LEDs, smart submeters, and a HVAC unit

as shown in Fig. 5.7

The KIER testbed uses real-time power hardware-in-the-loop simulation systems for PVs,

WTs, ESSes, and diesel, and real-hardware slow/quick EV charging systems. The hardware-

in-the-loop simulators in the testbed provide real-time power system simulation, which can

be used to verify the operation of the microgrid. The testbed adopts IEC 61850 [42] as

the communication and control interface. The PVs, WTs, diesel generator, EVs, and ESSes

are connected to two IEC 61850 gateways. The system communicates with the IEC 61850

gateways using the manufacturing message specification (MMS).

The smart meters at the the KIER testbed are Itron ACE SL7000. The system commu-

nicates with the smart meters using DLMS [86]. The smart submeters and some of the LEDs

are the same as the ones used in the UCLA SMERC testbed. There are 8 LEDs that use

the DALI protocol [87]. The DALI LED system used at KIER is the Helvar system which

consists of multiple DALI LEDs and a DALI router that provides Ethernet connection to

the system. The HVAC unit used in the testbed is a LG HVAC system that includes a LG

BACnet gateway to provide the BACnet interface [88] to communicate with the system.

5.3.2.3 Grid Services

Several services on the grid side are implemented and utilized in our testbed including ADR,

market information (i.e., day-ahead pricing, hour-ahead pricing, and real-time pricing).

We implement and deploy an DRAS that provides the ADR service to the system using

the OpenADR standard [92]. The market information is provided by a server which fetches

the data from the California Independent System Operator (CAISO) [77]. The server obtains

three types of retail market prices from CAISO: day-ahead pricing which gives the day-ahead

price of every hour, hour-ahead pricing which gives the hour-ahead price of every 15 minutes,

and real-time pricing which gives the 10-minute-ahead price of every 5 minutes.
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5.3.3 Microgrid Controls

The system implements two algorithms for the optimal operation of the microgrid: an energy

scheduling algorithm and a DR algorithm. The system provides forecast services of the DERs

and loads for optimization. Specifically, it uses a persistence model for load forecasting, an

auto regressive moving average (ARMA) model for PV forecasting [93], and a machine

learning model for EV forecasting [81]. The market forecast services are implemented using

the forecast data from the CAISO.

Now we present the system model of the microgrid and formulate the energy scheduling

and DR as optimization problems.

Consider a microgrid consisting of a set of DG units denoted by G := {g1, g2, . . . , gG},

DS units denoted by B := {b1, b2, . . . , bB} and loads denoted by L := {l1, l2, . . . , lL}. We

use a discrete time model with a finite horizon in this chapter. We consider a time period

or namely a scheduling horizon which is divided into T equal intervals ∆t, denoted by

T := {0, 1, . . . , T − 1}, where t0 is the start time.

DG Model: For each DG unit g ∈ G, we assume that there is an upper bound and a

lower bound on its power:

pmin
g (t) ≤ pg(t) ≤ pmax

g (t),∀t ∈ T , (5.1)

where pmin
g (t) and pmax

g (t) are the minimum and maximum output power, respectively. If the

DG unit is dispatchable (e.g., diesel), the output power pg(t) is a variable. If the DG unit

is non-dispatchable (e.g., PVs and WTs), the output power pg(t) cannot vary and its value

is equal to the forecasted value (i.e., pmin
g (t) = pmax

g (t) = pfg (t) where pfg (t) is the forecasted

power at time t).

We denote the generation cost of a DG unit g ∈ G by Cg(pg(t)). We assume that the cost

function is strictly convex. For renewable DG units such as PVs and WTs, the generation

cost is zero.

DS Model: We consider batteries as the DS units in the microgrid. Given a battery b ∈ B,

we assume its output power pb(t) is positive when charging and negative when discharging.
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Let Eb(t) denote the energy stored in the battery at time t. The battery can be modeled by

the following constraints:

pmin
b ≤ pb(t) ≤ pmax

b ,∀t ∈ T , (5.2)

Eb(t+ 1) = Eb(t) + pb(t)∆t,∀t ∈ T , (5.3)

Emin
b ≤ Eb(t) ≤ Emax

b ,∀t ∈ T , (5.4)

Eb(T ) ≥ Ee
b , (5.5)

where pmax
b is the maximum charging rate, −pmin

b is the maximum discharging rate, Emin
b and

Emax
b are the minimum and maximum allowed energy stored in the battery, respectively, and

Ee
b is the minimum energy that the battery should maintain at the end of the scheduling

horizon.

We model the cost of operating a given battery b as:

Cb(pb) , αb
∑
t∈T

pb(t)
2 − βb

T−2∑
t=0

pb(t+ 1)pb(t) + γb
∑
t∈T

(min(Eb(t)− δbEmax
b , 0))2 , (5.6)

where pb is the charging/discharging vector pb , (pb(t), t ∈ T ) , αb, βb, γb, and δb are positive

constants.

The above function is convex when αb > βb. This cost function captures the damages

to the battery by the charging and discharging operations. The three terms in the func-

tion penalize the fast charging, the charging/discharging cycles, and the deep discharging,

respectively. We choose δb = 0.2.

Load Model: For each load, the demand is constrained by a minimum and a maximum

power denoted by pmin
l (t) and pmax

l (t), respectively:

pmin
l (t) ≤ pl(t) ≤ pmax

l (t),∀t ∈ T . (5.7)

For deferrable loads such as EVs, the cumulative energy consumption of the loads must

exceed a certain threshold in order to finish their tasks before deadlines. Let Emin
l and

Emax
l denote the minimum and maximum total energy that the load is required to consume,

respectively. The constraint on the total energy consumed by a deferrable load is given by:

Emin
l ≤

∑
t∈T

pl(t)∆t ≤ Emax
l . (5.8)
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We use a cost function to capture customer loss of comfort in the scheduling. The cost

function Cl(pl) quantifies a customer’s loss or discomfort obtained by the load l ∈ L using

the demand vector pl , (pl(t), t ∈ T ). We assume the cost function is a convex function.

Supply-demand Matching: The net demand of the microgrid is equal to the total demand

minus the total generation:

P (t) =
∑
l∈L

pl(t) +
∑
b∈B

pb(t)−
∑
g∈G

pg(t),∀t ∈ T . (5.9)

If the microgrid is operated in islanded mode, then P (t) = 0. If the microgrid is operated

in grid-connected mode, then P (t) is the power traded between the microgrid and the main

grid. We model the cost of energy purchase from the main grid as C0(t, P (t)) , ρ(t)P (t)∆t,

where ρ(t) is the market energy price. Note that P (t) can be negative meaning that the

microgrid can sell its surplus power to the main grid.

5.3.3.1 Energy Scheduling

The objective of the energy scheduling is to schedule the day-ahead operation of the DERs

and the loads such that (i) the total costs of generation, energy storage, load, and energy

purchase are minimized, and (ii) the DER constraints, the load constraints, and the supply-

demand matching constraint are satisfied. The scheduling horizon T in this problem is one

day.

We define pg , (pg(t), t ∈ T ), pb , (pb(t), t ∈ T ), pl , (pl(t), t ∈ T ), and Cg(pg) ,∑
t∈T Cg(pg(t)). The energy scheduling in the microgrid can be formulated as a convex

optimization problem [94]:

min
pg ,pb,pl

ξg
∑
g∈G

Cg(pg) + ξb
∑
b∈B

Cb(pb) + ξl
∑
l∈L

Cl(pl) + ξ0

∑
t∈T

C0(t, P (t))

s.t. (5.1)− (5.9),

where ξl, ξg, ξb, and ξ0 are the parameters to trade off among the utility maximization and

the cost minimizations.

Solving the above optimization problem gives the optimal schedules including the gener-

ation schedules pg, the battery schedules pb, and the load schedules pl.
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5.3.3.2 DR

The system can receive DR events issued by the utility and it must be able to coordinate

the operation of the devices in the microgrid in order to respond properly.

A DR event can be characterized by a time schedule T which specifies the start time

and the end time and a demand limit Pmax(t) which can be determined from the event

information. The DR constraint on the net demand of the microgrid is given by:

P (t) ≤ Pmax(t),∀t ∈ T . (5.10)

Similar to the day-ahead scheduling problem, the DR problem can be formulated as a

convex optimization problem:

min
pg ,pb,pl

ξg
∑
g∈G

Cg(pg) + ξb
∑
b∈B

Cb(pb) + ξl
∑
l∈L

Ul(pl)

s.t. (5.1)− (5.10).

In the above problems, the control variables are assumed to be all continuous. However,

some of them may be discrete in reality (e.g., on/off). A two-stage approach [15] can be used

to solve this issue. In the first stage, a solution is obtained assuming that all the control

variables are continuous. Then, the discrete variables are rounded to the nearest discrete

levels and treated as constants in the second-stage solution.

5.4 Experiments

To test the effectiveness of the system, we conduct various experiments to evaluate the

microgrid management and control in the testbeds. We present the results of the optimal

energy scheduling and DR in this section. Refer to [50] for our previous results.

5.4.1 Energy Scheduling

We run the energy scheduling algorithms in both testbeds to schedule the day-ahead opera-

tion of the devices.

116



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

14

16

Time

P
ri
c
e

Figure 5.8: Day-ahead energy price for the UCLA SMERC testbed.

5.4.1.1 UCLA SMERC Testbed

We consider the day-ahead scheduling of the PV panel, the battery, the plugloads (including

the refrigerator), the dimmable LEDs, and the EVs in the UCLA SMERC testbed. The PV is

a 5kW simulator using the model in [64] and data from the solar resources and meteorological

assessment project (SOLARMAP)3. The maximum energy allowed to be stored in the battery

Emax
b is 20kWh and we set Emin

b = 5kWh. The maximum battery charging/discharging rate

is 3kW. We set Eb(t0) = Ee
b = 5kWh. The parameters in the battery cost function are

chosen to be αb = 1, βb = 0.75, and γb = 0.5. We choose Ul(pl(t)) ,
∑

t∈T −ηl(pl(t)−p
f
l (t))

2

for the plugloads and the LEDs and Ul(pl(t)) , ηl(
∑

t∈T pl(t)∆t) for the EVs, where pfl (t)

is the forecasted load and ηl is the priority of the load given by the customer. The higher

the priority is, the more important the load is to the customer. The maximum charging rate

is 1.4kW for level 1 EV charging and 2.9kW for level 2 EV charging. In our experiment,

we assume that the plugloads cannot be shed, the LEDs can be shed, and the EVs can

be shifted. Perfect forecasting of the DERs and loads is assumed. We use the day-ahead

market price from the CAISO in the experiment. The parameters are chosen as ξl = 1,

ξg = 1, ξb = 0.01, and ξ0 = 1.

3http://www.nrel.gov/midc
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Figure 5.9: Forecast and day-ahead schedule for the UCLA SMERC testbed.

We conduct the energy scheduling experiment for March 27th, 2014. Fig. 5.8 shows the

day-ahead price. Fig. 5.9 shows the comparison of the forecasts and the day-ahead schedules.

From the figures, we can see the battery charging/discharging cycles: the battery is charged

when the energy price is low and discharged when the price is high. We can also observe

load shedding and load shifting from the results: the LEDs are shed and the EVs are shifted

to the time periods when the price is low. The total operational costs of the testbed using

the schedules are ¢ 367.62 compared with ¢ 564.07 without scheduling, saving the costs by

564.07−367.62
564.07

= 34.83%.
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Figure 5.10: Time-of-use price for the KIER testbed.

5.4.1.2 KIER Testbed

The devices in the KIER testbed considered in the energy scheduling include a 16kW PV,

a 5kW ESS, a 16kW quick charging EV system, two 2.5kW slow charging EV systems,

and two hundred 63W dimmable LEDs. The maximum energy allowed to be stored in

the battery Emax
b is 50kWh and we set Emin

b = 5kWh. We set Eb(0) = Ee
b = 12.5kWh.

The parameters in the battery cost function are chosen to be αb = 1, βb = 0.75, and

γb = 0.5. We choose Cl(pl(t)) :=
∑

t∈T ηl(pl(t) − pfl (t))
2 for the LEDs and Cl(pl(t)) :=

ηl(
∑

t∈T pl(t)∆t−
∑

t∈T p
f
l (t)∆t) for the EVs, where pfl (t) is the forecasted load and ηl is the

priority of the load given by the customer. The higher the priority is, the more important

the load is to the customer. In our experiment, we assume that the LEDs can be shed

and the EVs can be shifted. The maximum shedding percentage of the LEDs
Emax

l −Emin
l

Emax
l

is

assumed to be 30%. The energy upper bound of the EVs Emax
l is chosen randomly from

[18kWh, 23kWh] and the energy lower bound of the EVs Emin
l is chosen randomly from

[13kWh, 18kWh]. Perfect forecasting of the DERs and loads is assumed. We use the Korean

time-of-use (TOU) price in the experiment as shown in Fig. 5.10. The parameters in the

algorithm are chosen as ξl = 1, ξg = 1, ξb = 0.01, and ξ0 = 1.
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Figure 5.11: Forecast for the KIER testbed.
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Figure 5.12: Simulated day-ahead schedule for the KIER testbed.
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Fig. 5.11 shows the forecast of the devices, serving as the baseline consumption. We then

run the algorithm in Matlab to produce the optimized day-ahead schedules as shown in Fig.

5.12. Comparing Fig. 5.12 with Fig. 5.11, we can observe the battery charging/discharging

cycles: the battery is charged when the energy price is low and discharged when the price is

high. We can also observe load shedding and load shifting from the results: the LEDs are

shed, the EVs are shifted to the time when the price is low, and the total charging energy

of the EVs is also reduced. The total operational cost of the testbed using the optimized

schedule is 12, 424 KRW, compared with 7, 899 KRW without scheduling, saving the cost by

12,424−7,899
12,424

= 36.43%.

Next, we use the schedule produced by the algorithm to control the hardware-in-the-loop

simulators in the testbed in order to validate the simulation in real-hardware settings. The

experimental result is presented in Fig. 5.13. Compared with the simulation result in Fig.

5.12, the result of using the real-time hardware simulators roughly follows the optimized

schedule obtained from the simulation. The main cause of the differences between them lies

in the resolution of the inputs for the hardware simulators. The hardware simulators are

not able to accept inputs of any precision. The effect of communication delay can be also

observed in the LEDs control: the total power of the LEDs changes linearly in time. This

is because we have 200 LEDs and it takes time to control all of them and wait for them to

respond to the control signals. Both the input resolution and the communication delay need

to be considered for optimal energy scheduling in a real microgrid system.

5.4.2 DR

We consider a DR where the system changes the demand in the microgrid in response to

the real-time energy prices. We conduct DR experiments in both testbeds. In the UCLA

SMERC testbed, we use only LEDs in DR. In the KIER testbed, we use four different types

of devices to respond to the real-time prices.
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Figure 5.13: Real-time hardware-in-the-loop result in the KIER testbed.
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5.4.2.1 UCLA SMERC Testbed

In order to focus on the DR effect, we pick only the dimmable LEDs to participate in the DR

in the UCLA SMERC testbed. The DR optimization can then be simplified as a problem to

be solved at each time t:

min
pl(t)

∑
l∈L

ηl(pl(t)− pfl (t))
2

s.t. pmin
l (t) ≤ pl(t) ≤ pmax

l (t),∀l ∈ L∑
l∈L

pl(t) ≤ Pmax(t),

where L includes only the LEDs and pfl (t) corresponds to the brightness preferred by the

customer. In our DR experiment, Pmax(t) is defined as a linear piecewise function which

translates the real-time price ρ(t) from the CAISO to the maximum allowed total power:

Pmax(t) =



∑
l∈L p

f
l (t), ρ(t) < 6 ¢/kWh

0.8
∑

l∈L p
f
l (t), 6 ¢/kWh ≤ ρ(t) ≤ 10 ¢/kWh

0.7
∑

l∈L p
f
l (t), 10 ¢/kWh < ρ(t) ≤ 14 ¢/kWh

0.6
∑

l∈L p
f
l (t), otherwise

(5.11)

The LEDs are assumed to be equally deployed in four offices with different priorities

(ηl = 5, 10, 15, 20). The brightness of the LED can be dimmed within the range [0, 100]. The

minimum, maximum, and preferred brightness are set to 20, 100, and 80, respectively. The

DR algorithm is implemented as a web service using JOptimizer 4. It is able to accept DR

signals from the DRAS and sends out control signals to the LEDs via the system.

We conduct the DR experiment on March 27th, 2014. The real-time price, the total power

consumption, and the power consumption by each priority group are shown in Fig. 5.14.

From the figure, we can see that the system is able to reduce the total power consumption

in response to the price changes. The demand reduction is based on priorities where the

devices with lower priorities reduce more than those with higher priorities.

4http://www.joptimizer.com/
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Figure 5.14: Result of the DR experiment in the UCLA SMERC testbed.

5.4.2.2 KIER Testbed

We use four different types of devices in the DR experiment in the KIER testbed. The

devices selected to participate in the DR include eight DALI LEDs, one BACnet HVAC

unit, one smart plug (SP) that is connected with a lamp, and one smart submeter (SM)

that is connected with a set of LEDs. Among these devices, only the DALI LEDs can be

controlled continuously (brightness 0-100) and all the others are on/off devices.

We define the DR control strategy based on the energy price. Four price ranges are used

for DR controls:

• Range 1: ρ(t) < 6 ¢/kWh (low price)

• Range 2: 5.5 ¢/kWh ≤ ρ(t) ≤ 8 ¢/kWh (medium price)

• Range 3: 8 ¢/kWh < ρ(t) ≤ 10.5 ¢/kWh (high price)

• Range 4: 10.5 ¢/kWh < ρ(t)(ultra-high price)

125



The corresponding control strategy is defined as follows:

• Range 1: The DALI LEDs are set to be the maximum brightness and the HVAC unit,

SP, and SM are turned on.

• Range 2: The total energy consumption of the DALI LEDs is cut by 20% based on the

priorities using the algorithm defined in Section 5.4.2.1, SP is turned off, HVAC and

SM are turned on.

• Range 3: The total energy consumption of the DALI LEDs is cut by 50% based on

the priorities using the algorithm defined in Section 5.4.2.1, SP and SM are turned off,

HVAC is turned on.

• Range 4: The total energy consumption of the DALI LEDs is cut by 80% based on

the priorities using the algorithm defined in Section 5.4.2.1, SP, HVAC, and SM are

turned off.

We conduct the DR experiment in the KIER testbed using the following sequence of

prices generated by a OpenADR 2.0 DRAS: 4.0 ¢/kWh–6.5 ¢/kWh–9.0 ¢/kWh–11.5 ¢/kWh–

9.0 ¢/kWh–6.5 ¢/kWh–4.0 ¢/kWh. Once the new price is received by a DRAS client in the

system, the system will send out the corresponding control signals to the devices using the

above DR strategy. At the same time, the system also reads the power consumption of all

the devices every one second and plots the real-time consumption data in the control center.

We present the results when the price changes from 6.5 ¢/kWh to 9.0 ¢/kWh in Fig. 5.15

and when the price changes from 9.0 ¢/kWh to 6.5 ¢/kWh in Fig. 5.16. As can be seen from

the figures, the devices behave as defined in the DR strategy. From the figures, we can also

see the delays of the DR controls. It may take a few seconds for the actual control of the

device to take effect after the price change. Such delay is due to multiple reasons including

the computational time of the DR algorithm, the communication time between the system

and the device, the response time of the hardware once it receives a control command, and

the response time that the power change can be correctly measured. In our experiment, we

found that the delay of the HVAC unit is mostly due to the hardware response time. The
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Figure 5.15: Result of the DR experiment in the KIER testbed when the price changes from

range 2 to range 3.

delay of the DALI LEDs is mostly due to the communications as there are eight LEDs to

control. The delays of the SM and SP are due to the hardware response time and the response

time that the power can be correctly measured. It happened sometimes that although the

hardware status changed, the power consumption cannot be correctly read, which is believed

to be a stability issue of the commercial gateway that connects the SM and SP.

5.5 Summary

In this chapter, we design and implement a system architecture for microgrid energy manage-

ment, taking into account both the functional requirements and the engineering challenges.

We design a unified communication interface that is protocol and technology agnostic for

the system to interoperate with heterogeneous devices in a microgrid and propose a novel
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Figure 5.16: Result of the DR experiment in the KIER testbed when the price changes from

range 3 to range 2.

decentralized system architecture to enable autonomy on the customer side. We develop

and deploy the prototype system in two microgrid testbeds in UCLA SMERC and KIER,

and conduct experiments to evaluate the microgrid management and control in real-world

settings. Our experimental results demonstrate that the system is able to manage various

DERs and loads in the testbeds, interact with external systems, and perform optimal energy

scheduling and DR.
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CHAPTER 6

Conclusions

A microgrid is a low-voltage power distribution system integrated with DERs and control-

lable loads that can operate with or without the main grid. The integration of DERs and

controllable loads brings significant challenges in managing the DERs and loads to maintain

the fundamental supply-demand balance in a microgrid due to the intermittency and vari-

ability of DERs and limited supply especially when the microgrid is operating in islanded

mode. In this dissertation, we solve the supply-demand balancing problem in microgrids by

proposing novel optimization-based algorithms under more realistic conditions and a system

architecture for microgrid energy management that enables interoperability and autonomy

on the customer side. We give the conclusions of this dissertation and discuss the directions

for future work in the following.

In Chapter 2, we study the residential DR problem with consideration of the underlying

power distribution network and the associated power flow and system operational constraints.

The residential DR is formulated as an OPF problem that is typically non-convex and thus

is difficult to solve. We then relax the non-convex OPF problem to be a convex problem

and propose a distributed DR scheme where the LSE and the households jointly compute an

optimal demand schedule. Using an IEEE test distribution system as an illustrative example,

we demonstrate two interesting effects of DR. One is the location effect, meaning that the

households far away from the feeder tend to reduce more demands in DR. The other is the

rebound effect, meaning that DR may create a new peak after the DR event ends if the DR

parameters are not chosen carefully. The two effects suggest certain rules we should follow

when designing a DR program. Future work includes designing compensation mechanisms

for the location discrimination and heuristic methods to deal with the rebound effect.
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In Chapter 3, we study the distributed energy management problem in microgrids where

both supply side and demand side management are considered. Most existing distributed

energy management algorithms typically assume that all generations and loads are connected

to one bus and ignore the underlying power distribution network and the associated power

flow and system operational constraints. Consequently, the schedules produced by these

algorithms may violate those constraints and thus are not feasible in practice. Therefore,

we propose a distributed EMS for the optimal operation of microgrids with consideration of

the distribution network and the associated constraints. Specifically, we formulate microgrid

energy management as an OPF problem and propose a distributed EMS where the MGCC

and the LCs jointly compute an optimal schedule. We also provide an implementation of

the proposed EMS based on the IEC 61850 standard. As one demonstration, we apply the

proposed EMS to a real microgrid in Guangdong Province, China. The simulation results

demonstrate that the proposed EMS is effective in both islanded and grid-connected mode.

It is shown that the proposed distributed algorithm converges fast. We also provide a

comprehensive analysis of the proposed algorithm. Future work includes implementing the

proposed EMS in a real system and analyzing its performance.

In Chapter 4, we study the real-time energy management problem that uses only real-time

information to make control decisions without any a priori statistical knowledge. Compared

with the existing online algorithms, the proposed online EMS takes into account the under-

lying power distribution network and the associated constraints. More specifically, we model

the online energy management as an SOPF problem and adopt Lyapunov optimization to

devise an online algorithm to solve it in real time. The proposed online EMS is subsequently

applied to a real microgrid system. The simulation results demonstrate that the performance

of the proposed EMS exceeds a greedy algorithm and is close to an optimal offline algorithm.

Through this study, we observe and analyze the effect of the underlying network structure on

the energy management that cannot be captured by previous online studies. One direction

for future work is to develop an intelligent algorithm on the customer side to generate the

demand requests.

In Chapter 5, we focus on the design and implementation of a system architecture that
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enables interoperability and autonomy on the customer side for microgrid energy manage-

ment. We design a unified communication interface that is protocol and technology agnostic

for the system to interoperate with heterogeneous devices in a microgrid and propose a

novel decentralized system architecture to enable autonomy on the customer side. We fur-

ther implement a prototype of the proposed system architecture and deploy the system in

two microgrid testbeds in UCLA SMERC and KIER. We conduct various experiments in

the testbeds to test the system in real-world settings. Our experimental results demonstrate

that the system is able to manage various DERs and loads using different standards and pro-

tocols, interact with external systems such as a DRAS from the utility, and perform efficient

energy management using different algorithms. In our experiments, we observe some delays

in controlling some of the hardware which may have an impact on microgrid management.

More detailed investigations into the delay issue in order to minimize or compensate the

delays can be one direction for future work. Another direction is to further optimize system

reliability and stability.
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