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Abstract: Even with the widespread use of liquid chromatography mass spectrometry 
(LC/MS) based metabolomics, there are still a number of challenges facing this promising 
technique. Many, diverse experimental workflows exist; yet there is a lack of infrastructure 
and systems for tracking and sharing of information. Here, we describe the Metabolite Atlas 
framework and interface that provides highly-efficient, web-based access to raw mass 
spectrometry data in concert with assertions about chemicals detected to help address some 
of these challenges. This integration, by design, enables experimentalists to explore their raw 
data, specify and refine features annotations such that they can be leveraged for future 
experiments. Fast queries of the data through the web using SciDB, a parallelized database 
for high performance computing, make this process operate quickly. By using scripting 
containers, such as IPython or Jupyter, to analyze the data, scientists can utilize a wide variety 
of freely available graphing, statistics, and information management resources. In addition, the 
interfaces facilitate integration with systems biology tools to ultimately link metabolomics 
data with biological models. 

	
	

Keywords: SciDB; metabolite atlas; metabolomics; data analysis; IPython; Python; LC/MS; 
MS/MS; biology 

	
	
	
	
	
	
	
	
	
	

1



	

	

1. Introduction 
	

	
Data analysis is one of the grand challenges facing metabolomics research. There are many reasons 

for this, but most stem from the diverse physicochemical properties common to metabolites including 
solubility, ionization potential, and isomers. In comparison, detection of proteins, DNA, and RNA is 
much more straightforward. That is, where the latter are all biopolymers and can be directly identified 
based on well-defined fragmentation rules, each metabolite is largely its own puzzle [1]. Liquid 
chromatography coupled to electrospray ionization mass spectrometry (LC/MS) has become the most 
widely used metabolomics workflow as a result of its ability resolve complex mixtures of biomolecules [2]. 

The analysis of the LC/MS metabolomics often begins with defining metabolite features which are 
the combination of accurate mass and retention time. Unfortunately, both of these depend on many 
parameters that get defined as part of sample preparation and data acquisition. This dependence is 
because the chromatographic separation and elution is due to the choice of solvent and the biological 
matrix; in addition, desorption and ionization processes often generate artifacts and alter the types of 
ions detected. For example, a sugar that is detected as an ammonium ion adduct in one sample may be 
largely found as a protonated species in another sample. Similarly, the retention time for a given 
compound depends on the chromatography conditions. This high degree of dependence on the exact 
experimental conditions and samples is a major confounding factor in large-scale metabolomic 
experiments. Not only does this dependence on the parameters cause inconsistencies across experiments, it 
also must be communicated with the dataset it produced. 

The tight coupling between metabolomics observations, sample preparation, and experimental 
parameters has long been recognized as a critical challenge facing the metabolomics community, most 
notably in a series of publications on the metabolomics standards initiative [3–5]. While there is broad 
consensus regarding the need for standardization of workflows and data analysis, this need remains 
unmet. This is especially problematic for untargeted metabolomics experiment, the unbiased analysis of 
the data to identify changes in features prior to metabolite identification. For advancement of our 
understanding of biochemical networks, unbiased analysis is very appealing because it does not 
presuppose an understanding of the metabolism a priori. However, despite major efforts, unbiased 
profiling is much less popular than targeted workflows. We can speculate that the difficulty in data analysis 
is one of the reasons. While matrix effects can still bias these, the data analysis is more straightforward. 
Specifically targeted workflows use authentic standards to optimize specific extraction, chromatographic, 
and mass spectrometry methods to measure metabolites of interest. In comparison, identifying whether 
an observation in an untargeted workflow is real or an artifact due to ion-suppression, salt effects, or other 
confounding aspects is very difficult, often making what should be simple tasks into significant 
bottlenecks. There are several recently described workflow-tools and data processing tools that aim to 
achieve the primary analysis of untargeted metabolomics data [6–9]. 
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Several years ago we proposed the Metabolite Atlas concept as a mechanism for dealing with the 
unknown complexity associated with untargeted metabolomics experiments [10]. Recognizing that 
while a wide range of powerful algorithms exist for comparing and annotating features in mass 
spectrometry data [11,12]. This information isn’t often effectively leveraged for future experiments. 
By tracking feature annotations in method and sample specific Metabolite Atlases this information 
reused  it  for  experiments;  similar  to  the  SetupX  and  BinBase  system  which  is  widely  used  in 
gas-chromatography/mass spectrometry (GC/MS) based metabolomics [13]. This concept is very simple 
and essentially makes untargeted experiments behave more similarly to targeted experiments by 
leveraging the characteristics that describe compounds detected under the exact same experimental 
conditions that have been applied to similar samples. By being “method and sample-specific” Atlases 
developed based on observations for a specific sample and LC/MS method would be used primarily for 
new data acquired for a very similar sample and LC/MS method. However this requires the development 
computational infrastructure for accessing vast amounts of raw mass spectrometry data, tracking 
metadata about experimental descriptions, and specifications of metabolite feature annotations [14]. 

Here we present the computational infrastructure for Metabolite Atlases. This is based on the use of 
IPython and Jupyter notebooks as an interface for data analysis and construction of method and sample 
specific metabolite atlases using the online metabolite atlas database [15]. Similar to targeted analyses 
an Atlas is used to extract the metabolite features from experimental data files using specified constraints 
based on chromatographic and mass spectrometric parameters. Users are able to visualize metabolite 
features within the retention time windows defined in the Atlas and can adjust retention times as needed. 
Since all of the analysis is performed within the IPython and Jupyter notebooks, the extensive Python 
libraries available for scientific computing can be used to perform advanced analysis on the resulting 
data tables. 
	
2. Methods 

	

	
Metabolite Atlases are specific for a sample-type and a chromatography method and define the m/z 

and retention time bounds for specific compounds [10]. Once these are defined, the raw data can be 
processed using this information to extract peak areas for compounds of interest in each file within an 
experiment. This is a contrast to conventional untargeted metabolomics workflows that start with feature 
extraction and comparison and identification is only performed on a small, select set of features. 

Metabolite Atlas SciDB data layout. Due to the scale, complexity, and multidimensional nature of 
LC/MS data, high performance computing is necessary to quickly perform data access. High resolution 
mass spectrometers have full profile spectra that must be digitized into hundreds of millions of mass 
bins to properly preserve all the necessary data. However, vendors of these instruments are performing 
a two-step data reduction to compensate for the data size escalation. First, m/z values with low signal 
intensity are removed; and second, identified peaks are stored only as their m/z centroid and the intensity 
at that m/z. This is leading to a trend where file sizes are actually on a downward trend due to these 
advances in compression. The SciDB database service hosted at NERSC has been described previously 
and is used by Metabolite Atlas for raw data storage and access [16]. 

Multiple steps are required to load data into SciDB/Metabolite Atlas. First, it is necessary to convert 
raw LC/MS data from proprietary vendor supplied formats into the mzML open source format with the 3



	

	

	
	
msconvert application provided as part of the Proteowizard package [17,18]. When prompted by a user, 
the mzML files are parsed with pymzML and loaded into a SciDB array. 

Operations are written in SciDB to select data points based on the following parameters: m/z, 
retention time, intensity, ms-level, polarity, precursor ion m/z, precursor ion intensity, collision energy 
and file id. For selecting spectra and chromatograms, two operations are required. First, raw data points 
are sliced from the 9-dimensional array based on user-supplied ranges. Second, the data points are 
aggregated and put into a histogram on either a m/z or time axis. As shown previously, these operations 
can be performed quickly using the SciDB application [16]. 

Data Management. In Metabolite Atlas we need to handle two types of data: the raw data in mzML 
format, and the metadata. Each run in Metabolite Atlas corresponds one mzML file. Each mzML file is 
loaded into SciDB as a slice of a multi-dimensional array. Once loaded, the mzML files are backed up 
to tape storage. Metadata includes experimental descriptions, sample descriptions and Metabolite 
Atlases. Due to the unstructured nature of this data, MongoDB is used. 

Integrated  web  services.  Via  the  web,  simple  requests  enable  the  querying  of  LC/MS  data, 
sample metadata, experiment metadata, and descriptions of the compounds observed in an experiment. 
The Django Python package makes building web requests that integrated diverse data stores 
straightforward [19] The API defined in Django allows access to both of these resources. 

Web based application programming interface (API) description. The commands and their 
required parameters, shown below in Table 1, are used to get chromatograms, bounds for metabolite 
features, and update them. As is described above, in SciDB, collision energy is stored for ions of 
ms-level greater than one. For those ions, the precursor m/z, collision energy, and precursor ion intensity 
are stored. In the future, queries will be developed that utilize these parameters. 
	

Table 1. Integrated metabolite atlas API for simultaneously querying raw data along with 
compound specifications. 

	
Method URL Options Description 

{“L”:<level>, “P”:polarity, 

“arrayname”:<myArray>, 

“fileidlist”:<myList>, 

GET /run/ 
	
	
	
	
	
	

GET /api/dict/<dict_id>/ 

“max_mz”:<mzMax>, 

“min_mz”:<mzMin>, “min_rt”:<rtMin>, 

“max_rt”:<rtMax>, “nsteps”:<2000>, 

“queryType”:”XICofFile_mf”} JSON 

Gets chromatograms for a given mz and 
rt specification for one or more files. 

	
	
	
	
Gets details about a specified compound 

dictionary 

Completely replaces the compound 
PUT /api/dict/<dict_id>/ {“<field_name>”: <field_val> ...} JSON 

	
/api/compound/ 

GET 
<compound_id>/ 

	

dictionary fields with the JSON object 
	
Gets details about a specified compound 

	
	

PATCH 

	
/api/compound/ 

<compound_id>/ 

	

{“<field_name>”: <field_val> ..., 

“removed_fields”: [...list of removed field 

names...]} JSON 

	
Updates the compound fields with the 

specified values 
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PUT 
/api/compound/ 

<compound_id>/ 

	
{“<field_name>”: <field_val> ...} JSON 

Completely replaces the compound fields 

with the JSON object 
	

3. Results and Discussion 
	

	
LC/MS based metabolomics is a rapidly growing field that is being applied to an ever-increasing 

diversity of samples using an ever-increasing diversity of experimental workflows. Thus, interpretation 
of metabolomics data must be a multidisciplinary effort. As a result of this diversity there are many 
experimental workflows for acquiring information about the metabolome and there is a need for 
computational systems for sharing and tracking this information. This need was described long ago 
where the need to track and share metadata about a metabolomics experiment was recognized. 

We have developed a framework and interface for storing raw LC/MS and MS/MS data. This 
framework allows queries to operate on the raw data and return selections based on m/z and retention 
time for files of interest. In addition, this framework makes it transparent and straightforward to 
implement algorithms that operate on these selections of data. Most importantly, this framework 
provides unification of the data exploration and analysis with the chemical identifications. Often, it is a 
time consuming challenging process to identify significant number of metabolites in an untargeted 
metabolomics workflow. 

Shown in Figure 1 is the overall breakdown of components in the Metabolite Atlas framework and its 
associated interfaces. Raw mass spectrometry data is captured in a SciDB database running on several 
nodes of a cluster at NERSC. From a web-client or programmatic API, queries to this database make it 
possible to get spectra, chromatograms, or other subsections of the raw data that have been aggregated 
along a specific dimension. These selection operations are the most commonly used operations for 
exploring and analyzing mass spectrometry data. As described recently, by using a high-performance 
computing application like SciDB, these operations can be made in a timely manner [16]. Due to NERSC 
security policies public access for [20] is not available at the time of publication. However, potential 
users can request access to the system by obtaining a NERSC account. Users with activated accounts 
will be able to use the Metabolite Atlas framework including IPython notebooks, file conversion, file 
transfer, and analysis creating and sharing. Most users take a short online course from Code Academy 
or Coursera to learn the basics of Python programming to ease their transition into Metabolite Atlas. 

The speed of the operations makes it possible to make many considerations about the data in a short 
amount of time. At each moment, the experimental scientist can capture their annotations as structured 
“Metabolite Atlas” metadata. At the simplest implementation, the Atlas captures the assertion that 
“Adenine” is observed at “9.4” min with an “m/z” of 1234 in a particular file. The specification of this 
compound identification in a structured way facilitates propagation and sharing in ways that were 
difficult and not reproducible before. 

Selection of appropriate retention times is a critical and often time-consuming process. To facilitate 
this process Metabolite Atlas has a user interface enabling direct adjustment to retention time bounds as 
shown in Figure 2, for the example of nicotinamide. In this case, the retention time bounds for 
nicotinamide are observed to not precisely conform to the actual measured retention time characteristics of 
the measured chromatogram for nicotinamide. Based on this observation, the user updates their Atlas 
for nicotinamide and the results are automatically updated in the Metabolite Atlas. 
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ret 
iles 

	
	

A.  Get XIC 
Accepts list of parameters 
Returns JSON 
Aggregating along one dimension 
Multidimensional Slicing 

	
	
	

Website or 
Notebook 

Get Spectra 
Accepts list of parameters 
Returns JSON 
Aggregating along one dimension 
Multidimensional Slicing 

	
Get Heat Map 

Accepts list of parameters 
Returns JSON or image 
Aggregating along one dimension 
Multidimensional Slicing 

	
	
	
m/z 

	
tention 
time 

	
MetaboliteAtlas: Home      Experiments        Dictionaries       Contact  Benjamin Bowen 

Metadata 
Experiments 

	
20141003_MetAtlas_Demo 
Cre ator: bpb 

Last Update d: 2014-12-03 18:04:17.540000 

	
Edit Experiment Metadata Edit 

Experiment Dictionaries 

Pending Runs 

Files 
Permissions 

Expe rime nt ID:  542f304ff207836cd3c82bc1 

Edit Multiple Runs       Export Run(s)       Load Run(s) 

All Runs 
Show 10               e ntrie s Se arch: 

Se le ct        
Sample        

Cre ator        
Cre ation

 
in_file  arr_name        file _id        datatype        status        options Edit Metabolite Atlas Type Date 

control           bpb                 
2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Rep1 

lcms_test_1       10672          profile                Loade d              View File 
23:25:03.064000     Isolate_6.mzML 

m/z [min - max] control           bpb                 
2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Ext 

lcms_test_1       10668          profile                Loade d              View File 
23:25:03.044000     Blank_1.mzML 

retention time 
control           bpb                 

2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Rep2 
lcms_test_1       10673          profile                Loade d              View File 

23:25:03.070000     Control.mzML 

name control           bpb                 
2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Ext 

lcms_test_1       10669          profile                Loade d              View File 

B. FRQÀGHQFH

 23:25:03.049000     Blank_2.mzML 

	
25:03.054000 

	
lcms_test_1       10670          profile                Loade d              View File 

id control           bpb 

2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Rep1 lcms_test_1       10671          profile                Loade d              View File 

23:25:03.059000     Control.mzML 

control           bpb                 
2014-10-03 

23: 

control           bpb                 
2014-10-03 

/global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Ext 

Blank_3.mzML 

/global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140721 M9C Neg Rep1 

lcms_test_1       10678          profile                Loade d              View File 

23:30:03.383000     Isolate_6.mzML 

control           bpb                 
2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Rep3 

lcms_test_1       10675          profile                Loade d              View File 
23:25:03.080000     Control.mzML 

control           bpb                 
2014-10-03 /global/project/projectdirs/metatlas/original_data/bpb/20141003_MetAtlas_Demo/140718 M9C Rep2 

lcms_test_1       10674          profile  View File 
23:25:03.075000     Isolate_6.mzML 

	
	
	

Figure 1. Overview of Metabolite Atlas implementation scheme. (A) raw data extraction of 
chromatograms  and  spectra  from  a  large  number  of  LC/MS  runs  is  facilitated  by 
high-performance computing applications such as SciDB; (B) the specification, update, and 
management of metadata about experiments, samples, and of compounds in a Metabolite 
Atlas is facilitated by standard database applications such as MongoDB. The integrated 
analysis of these components via web-based interfaces makes the analysis and sharing of 
experimental observations in the context of raw data possible. 

	
The framework also facilitates storing and sharing descriptions about samples and experiments in a 

structured way. This is essential for propagation of identifications in an LCMS experiment. A peak 
identified as “Compound X” in one sample prepared with a specific extraction, reconstitution, and 
chromatography method might appear identical to another compound from a different sample or 
prepared using a different method. Thus, sample and method specific constraints on Metabolite Atlases 
make sharing of compound IDs have a rational. Once the form of the molecular ion is identified, 
in silico identification strategies including MIDAS and MetFrag provide effective strategies for 
compound identification [21,22]. 

This is important because many people with the same goals can’t leverage the work of the community. 
The majority of effort comprehensively understanding metabolomics data is associated with putative 
identifications of unknowns. The degeneracy associated with adducts, ionization, isotopes, in source 
degradation, ion suppression, saturation of detectors, chromatographic artifacts, unknown stereo-isomers and 
structural isomers has led to an explosion of challenges for reliable interpretation of metabolomics. This 
has led to a lack of clear expected deliverables from metabolomics workflow. 
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User 
updates 
retention 
time 

	
	
	
	
	
	
	

MetaboliteAtlas: Home  Experiments  Dictionaries  Contact  Benjamin Bowen 
	

	

Ben_20140910_zHilic_6550 
Cre ator: bpb 

	
Cre ation Date : 2014-09-10  18:56:38.639000 

	
M e thod: 6550 zHilic 

	
Sample : Footprinting 

	
ID: 54109ee67626405078e50035 

	

Automatic update 
in Metabolite Atlas 

	
Create New Compound  Delete Selected Compounds  Update Compounds 

	
Show  100  e ntrie s  Se arch: 

	
	

Se le ct  Adducts  Formula Name  RT M ax  RT M in  RT Pe ak  M /Z 
M/Z 
Thre shold 
(ppm) 

	
Ne utral 
Mass 

	

	 H+ C6H13NO2 Isoleucine 8.172 7.757 7.917 132.101876 5 131.0946 

	 H+ C6H13NO2 Leucine 8.541 8.141 8.289 132.101876 5 131.0946 

	 H+ C5H9NO2 proline 9.4 9 9.2 116.0708 5 115.0633 

	 H+ C4H6O4 succinic acid 5.1 4.7 4.9 119.0351 5 118.0266 

	 H+ C5H13NO Choline 6.60001 5.7 6.1 104.107 5 103.0996 

	 H+ C4H5N3O cytosine 7 6.6 6.8 112.0506 5 111.0433 

	 H+ C5H11NO2 betaine 7.7 6.93 7.13 118.0864 5 117.079 

	 H+ C6H5NO2 nicotinic acid 7 6.75 6.9 124.0384 5 123.032 

	 H+ C4H8N2O3 asparagine 11.5 11.1 11.3 133.0613 5 132.0535 

	
Figure 2. User interface for adjusting the retention time bounds. Integrated access to raw 
LC/MS data and a Metabolite Atlas is used to adjust retention time bounds. As improved 
retention and m/z bounds are specified the parameters for each compound are automatically 
updated in a Metabolite Atlas. 

	
Many other research teams have described the need for or are currently working on allied topics to 

our Metabolite Atlas framework. Early work focused on capturing in a structured vocabulary the 
description of experimental parameters and concisely represent the results [23]. Several data 
warehousing solutions are available for mass spectrometry where raw data files along with descriptions 
of the sample preparation and acquisition are publicly available. The most recent of these, Metabolights, 
is providing high quality descriptions of the parameters describing the acquisition [24]. At this time, 7



	

	

	
	
more than 100 experiments have been contributed to Metabolights; MassBank provides a portal for user 
viewing and submission of spectra for pure compounds [25]; and workflow tools allow users to 
contribute code that performs atomic-operations and chain them together [6,26]. In addition to schemas, 
data-warehousing and workflows, important algorithms are having a big impact overcoming the naïve 
oversimplification of spectral similarity algorithms and that of molecular weight assignment given a 
complex spectrum of adducts [27,28]. In comparison to all the above strategies, the Metabolite Atlas 
framework enables remote access to high-performance computing resources using a user friendly 
narrative-notebook interface for extremely high-speed queries to raw data that enable user-designed 
workflows while simultaneously tracking the metadata about experimental parameters and compounds 
detected [29]. 

The framework for computing and analysis is made accessible via a user interface which can capture 
the steps of an analysis from raw data, statistical analysis, and visualization in transparent and shareable 
format. Shown in Figure 3 are examples of the Metabolite Atlas accessed through an IPython and Jupyter 
notebook web interface. The use of these narrative notebooks allows users to share findings and methods 
through public repositories such as github [30]. As has been shown numerous times, popular methods in 
social networks will become widespread [31]. These methods will likely reduce the burden on analysis 
for the degenerate features detected in LC/MS experiments. 

	
	
	
	
	

Use of 
Python 
libraries to 
model data 

	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 3. Authenticated users can acquire data from Metabolite Atlas using IPython and 
Jupyter notebooks. These notebooks provide a user friendly interface to the Python 
programming language which contains extensive libraries for data processing including peak 
fitting  as  shown  here.  These  notebooks  can  be  easily  shared  via  the  nbviewer 
service [32]. Typical notebooks contain code for analysis, results, and text explaining the 
purpose of the code. 

	
The use of IPython and Jupyter notebooks is not unique to Metabolite Atlas. They are the fastest 

growing application of any programmatic interface today. This gives users of Metabolite Atlas access to 
algorithms for clustering through the SciPy and Scikit stats models. Factorization of data into component 8



	

	

ax.set_title(myCompound['compound']) 
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parts through NumPy and SciPy. As can be seen in Figure 4, this integration with these powerful toolkits 
enables the user to make graphical outputs using Matplotlib and other visualization packages as well as 
perform routine statistical tests. Through the Python programming language and the linkages to bind the 
R programming language through the IPython interface users can create custom analysis. Although plotting, 
factorization, and clustering are specifically called out above, analysis ranging from compound- 
substructure searching, N-degrees of freedom statistical testing, multiparameter optimization are all at hand, 
and given the low-barrier to entry of the IPython notebook interface to the novice programmer, user- 
defined analysis are easily built to suite the needs of each experiment. 

	
	
	

from clustergram import * 

	
clustergram (data = dataMat, standardize=2, col_pdist='correlation', 

colormap = 'cmr', 
row_pdist='correlation', 
row_labels = [rowLabels[i] for i in rIdx], 
col_labels = [colGroups[i] for i in idx], 
row_groups = [rowGroups[i] for i in rIdx], 
col_groups = [colGroups[i] for i in idx], 
display_range = (-2,2), 
figname = 'No L3 MetaboliteClustergram.pdf', 
figsize = 12, 
log = True) 

from itertools import groupby 

	
data_to_plot = [] 
groupName = [] 
for key, group in groupby(myVals, lambda x: x[0]): 

L = list(zip(*group)[1]) 
data_to_plot.append(L) 
groupName.append(key) 

	
fig = plt.figure(1, figsize=(9, 6)) 
ax = fig.add_subplot(111) 
bp = ax.boxplot(data_to_plot) 
ax.set_ ttt icklabels(ggg roup  aaa me)))  
ax.set_title(myCompound['compound']) 
ax.set_ylabel('Peak  Area') 
fig.savefig('Boxplot.pdf')) 

0..6figgg .ccc leee arrr ((( ) 

statistical analysis 
0.5.5  

	

	
0.4 

	

	
0.3 

	

	
0.2 

	

	
0.1 

	

	
0.0 

	
	
	
	

Figure 4. After optimizing the bounds for an Atlas, a user can acquire peak areas from 
Metabolite Atlas and perform statistical analysis for the compounds detected in their 
experiment. Python’s scientific libraries for statistical analysis can easily be implemented to 
perform common analysis such as hierarchical clustering and statistical confidence testing. 
Development of peak-shape modeling tools will be an important next step to deal with low- 
intensity peaks and missing values. 

	
4. Conclusion 

	

	
In conclusion we have described a computation framework for creating, sharing and updating 

Metabolite Atlases and interfacing them with IPython and Jupyter notebooks for data analysis. Adoption 
of this framework can provide transparency to data management and simplify workflows. Particularly 
exciting    is    the    integration    of    metabolomics    data    with    other    systems    biology    data. 
We anticipate that Metabolite Atlases can be compared alongside genomes for gene annotations. 
Measured metabolites can be compared to those predicted in a COMPOUNDS.DAT file from a 
Pathway/Genome Database (PDGB) determined for a genome using Pathway Tools [1,33]. Using the 
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KBase Model Building tools, measured metabolites can be compared to predictions of genome function 
and flux balance models [34]. 
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