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ABSTRACT 

The problem of Alfven-wave oscillations in an anisotropic sphere is 

studied, and two solutions are presented. One solution is exact, 

involving an expansion of the current inside the sphere in a series of 

orthonormal modes. The second is approximate, based on a perturbation 

expansion of the induced fields and currents in powers of the drop 

radius. The approximate solution can be applied to a material having 

a completely general conductivity tensor, while the exact solution is 

restricted to situations of high symmetry. 

As an illustration of these solutions, the resonant power absorption 

by electron-hole droplets in Ge is calculated explicitly. Size-

dependent resonances, for which the resonant field increases with the 

drop radius, have been observed experimentally. The present calculation 

* Supported in part by the U. S. Energy Development and Research 
Administration. 

tpresent Address: Physical Science Branch, General Electric Co., 
Corporate Research and Development. Schenectady, NY 12345. 
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shows that such resonances occur both in the magnetic and electric 

dipole absorption, with the magnetic dipole absorption being most 

intense, particularly for small drops. From the approximate solution, 

it is found that certain of the resonances can have a very strong 

dependence on the orientation of the magnetic field with respect to 

the crystal axes, similar to cyclotron resonance of an electron in Ge. 

As a second application of these results, the transition from 

Alfven waves (in a material having equal numbers of electrons and 

holes) to helicon waves (only one carrier type) is studied. The 

"elimination" of one carrier type can be accomplished by increasing its 

mass, decreasing its concentration, or increasing its collision rate. 

The Alfven to helicon transitions are quite different in each of these 

three cases, and examples of intermediate states are presented. 
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I. INTRODUCTION 

A. Scattering of Waves by a Sphere 

Electromagnetic waves have long been a valuable probe of the 

properties of free carriers in solids. A particularly important 

technique in semiconductors has been cyclotron resonance: 1 this gives 

the effective mass m and (using circularly polarized waves) the sign 

of the charge for each type of carrier in the material. From the 

1inewidths, information can be found concerning collision processes 

of the carriers. Unfortunately, this technique can generally only be 

used when the number of carriers is sma11.
2 

A high density n of 

carriers screens out low-frequency electric fields, and shifts the 

3 cyclotron resonance to frequencies near the plasma frequency, 

where c
L 

is the dielectric constant of the medium. The remaining plasma 

resonances and plasma-shifted cyclotron resonance contain much less in-

formation than the cyclotron resonance. The peak gives a measure only of 

the ratio n/m, and if these are several types of carriers, the effective 

mass is an average among those types. 

A static magnetic field B greatly changes the situation, opening 

a "window" in the normally screened frequencies below the plasma 

frequency: certain low-frequency waves can propagate through the 

material without loss if their frequency w is less than the cyclotron 
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w = eB/mc c 
(2) 

The nature of these waves depends sensitively on the types of carriers 

4 in the material. For a material with a single type of carrier, the 

propagating waves, called helicons, have one sign of circular polariza-

tion (depending on the sign of the carrier's charge) and are highly 

1/2 dispersive, k ~ w • where k = 2rr/A is the wave number, and A the 

wavelength in the medium. If there are equal numbers of electrons 

(negatively-charged carriers) and holes (positively-charged), then 

dispersionless, linearly-polarized waves can propagate. These are 

called Alfven waves. 

Such propagating waves can be conveniently studied using "dimensional 

resonance" techniques: by matching the linear dimension of a sample to 

the wavelength of the propagating wave, it is possible to excite a normal 

mode oscillation inside the solid, for which the absorption of the wave 

is greatly enhanced. This absorption is resonant in the wavelength of 

the wave (or the length of the sample). The technique therefore allows 

a precise measurement of the wavelength inside the sample, from which 

the properties of the carriers can be determined. The resonance 

condition is most easily visualized in a flat plate: the thickness of 

the plate t must be equal to an integral number, j, of half-wavelengths: 

t=jA/2. Such resonances are by no means confined to flat plates. 

Figure 1 shows schematically the field distributions in a sphere near 

the lowest two (dipole) dimensional resonances. (This figure will be 
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discussed in more detail later on) Below the spheres are shown the 

intensity of the electric fields at different points along the sphere 

diameter. The sinusoidal pattern clearly indicates what is meant by 

fitting one (or two) wavelengths inside the sphe~e. For a sphere of 

radius a, the resonance condition can be written 2na = YijA, or 

ka = Y ij (3) 

Here the y .. are a series of constants which, for the slab, would be nj. 
~J 

For the sphere, these constants are to be found by so.lving the e1ectro-

magnetic boundary value problem for absorption by a sphere. This 

difficult problem is the central topic of this paper. 

In a magnetic field, A is a function of B, so that the absorption 

is also resonant in B. As B is varied, a series of resonances will 

appear, different resonances associated with different normal modes 

(Yij ). When a is varied, the peaks of these resonances, Br' will shift 

2 in a characteristic manner which is different for helicon waves (Br a: a ) 

and Alfven waves (B ex: a) • This is discussed further in Section II. 
r 

If the conductivity of the sphere is an isotropic scalar, then the 

b1 d Mi . 5 f hi h h l' 11 pro em re uces to e scab.ter~ng, or w c t e so ut~ons are we 

known, and will serve in this paper as a guide to the more general 

problem. Unfortunately, in the problem of interest, the magnetic field 

breaks the spherical symmetry and introduces a tensor conductivity. 

The problem of e1ectromegnetic scattering in this case remained unsolved 

6 for almost fifty years •. Recently, Ford and Werner presented a formally 

exact numerical technique to calculate the magnetic dipole absorption 
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in this problem, in the special case in which there is a single carrier 

type with scalar mass. This solution places some limit on the size of 

the sphere, but in practice it is not very restrictive. The sphere 

must be small compared to the wavelength outside the sphere. The 

wavelength inside the sphere is reduced by IE, where £ is the effective 

dielectric constant of the medium (given, e.g., by Eq. (6) below). 

For a good conductor in a magnetic field, this reduction can be of the 

order of 100. In the specific example of this paper - electron-hole 

drops in Ge - the drops were probed with K-band microwaves, so that 

the wavelength outside the drop is 3 mm - much larger than the largest 

drops observed. 

B. Electr~n-hole Drops in Ge 

In a recent series of experiments. 7,S such dimensional resonances 

have been observed in microwave absorption by electron-hole drops (ERD) 

9 
in Ge. These drops are produced by condensation of excitons at low 

temperatures, and in unstrained Ge form small (a ~ 2-10 11m)lO metallic 

spheres, having equal numbers of electrons and holes, and a pair 

density of about 2.3 x 1017 -3 cm From an approximate theory of the 

dimensional resonances7
,11 (briefly described in Section II e below), 

I. a drop radius a > 100 11m was estimated, suggesting that what was observed 

was not the ordinary, small ERD. . 9 12 13 Subsequent exper1ments' , 

confirmed that the sample was strained in such a way as to produce 

12 14 . a potential well ' ins1de the sample, and that the small EHD were 

all attracted into the well, fOrming a single large mass of electron-hole 

liquid (ERL) near the bottom of the well. Because of the large strains, 
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the properties of this large liquid mass - called a y-drop - are quite 

different from the properties of EHD in unstressed Ge. The pair 

density is considerably lower, n = 5 x 1016 cm-3, 15 and consequently 

the recombination lifetime is over an order of magnitude longer. 

The purpose of the present paper is to extend the calculation of 

Ford and Werner to account for the dimensional resonances observed in 

these y-drops. The calculation is complicated because there several 

carrier types with anisotropic masses. In unstressed Ge the conduction 

band consists of four equivalent electron valleys with ellipsoidal masses 

symmetric about the different (lll>-axes of the crystal: mJl, = 1.58 m
O

' 

mt = 0.082 mO,l where mO is the free electron mass. Under a large 

(lll}-stress (as is associated with y_drops14), three of the valleys 

are raised in energy and only a single one remains populated. The 

valence bands consist of two warped hole bands, which are also gradually 

split by a ( 111 }-stress. Further details of these bands are presented 

in Appendix I. Thus, application of ( 111) stress gives rise to three 

distinct types of EHL: Ge(4:2), corresponding to very low (or zero) 

stress, for which 4 conduction band valleys and 2 valence bands are 

occupied; Ge(1:2), with 1 occupied conduction valley, but still 

2 valence bands; and Ge(l:l), for large enough stress that only 

1 valence band is occupied. The y-drop corresponds to Ge(1:2), but 

the formal solution will also be applied to Ge(4:2) and Ge(l:l). 

In Section II of this paper, the electromagnetic equations are 

summarized, and some simple properties of Alfven and helicon waves 

are reviewed. Also a simple theory of the dimensional resonances, 
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due to Cardone and Rosenblum16 is presented. The theory, based on an 

ad hoc application of Mie theory to the problem, is here called the 

empirical Mie theory (EMT). Section III presents the gene,ralization 

6 
of the exact theory of Ford and Werner. In addition to including the 

multiple, anisotropic-mass carriers of Ge, the Rayleigh limit (small a) 

is treated correctly, and electric as well as magnetic dipole absorption 

is calculated. Section IV presents an approximate analytic solution to 

the same problem, based on Ref. 18. This approximate solution comple-

ments the exact solution in many ways. It is much easier to handle 

and, while it lacks the rich, resonant structure of the full theory, 

it nevertheless reproduces the basic properties of the principal 

resonances with a reasonable accuracy. Furthermore, it is more versatile 

than the exact solution. The exact solution can only be applied in 

cases of high symmetry, when the conductivity has a particularly 

simple form. For the EHL in Ge. this means the solution can only be 

found when the field lies along the stress «lll}-)axis, except in 

unstressed Ge, where solutions can be found if B is parallel to either 

a ( ll1)- or a ( 100 }-axis. In this paper, the approximate solution is 

generalized to an arbitrary conductivity tensor, and as an application 

the full angle dependence of the dimensional resonances in the EHL is 

shown. 

In Section V, these theories are applied to the EHL in Ge, and a 

detailed comparison of the exact and approximate theories (as well as 

the EMT) is carried out. It is found that there is a quite complex 

spectrum; while the most intense absorption is magnetic dipole (excited 
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by the microwave magnetic field) ,there are also electric dipole 

resonances which should also be experimentally observable. These are 

three series of magnetic resonances, depending on the polarization of 

the microwave magnetic field BI with respect to the static field B: LM, 

-+ -+ 
for BI II B; and TM±, 

-+ -+ 
for transverse fields (B l l B) circularly polarized 

in opposite senses. Correspondingly, there are three series of 

electric resonances, LE and TE±. The spectra are much more complicated 

than expected from the EMT: the magnetic field induces a "mode mixing" 

which induces a contribution to the dipole absorption from resonances 

associated with all the multipole modes of Mie theory. It is found that 

these dimensional resonances can be of great value in analyzing the 

properties of the carriers: from the Rayleigh limit resonances the 

effective carrier masses can be found, while the shift of these resonances 

in field as a is varied allows a determination of the carrier density. 

Finally, the linewidth can be used to measure collision rates of the 

carriers. In a subsequent publication, the results of this paper will 

be compared to the experimentally observed Alfven resonances in EHD. 

Helicon and Alfven waves are just two limiting cases in a spectrum 

of possible resonances. In Section VI the transition between these 

two limits is briefly explored. For convenience, the initial material 

is taken to be composed of equal numbers of electrons and holes, each 

of which has an isotropic mass. The transition from Alfven to helicon-

like behavior is carried out in three different ways, each time by 

reducing the effectiveness of the holes as carriers. This is done by 

alternately decreasing the number of holes, increasing the hole mass, 
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and increasing the hole scattering rate. In each case the final state 

is the same: the resonance, due solely to the electrons, has features 

entirely characteristic of helicon waves. However the nature of the 

transition is quite different in the three cases, and illustrations are 

given of the very different types of resonances associated with the 

intermediate states (neither pure helicon nor pure Alfven). 
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II. BASIC EQUATIONS 

A. The Electromagnetic Equations 

# 

In a medium characterized by a complex tensor conductivity a, 

-+ # -+ 
j = a • E (4) 

Maxwell's equations have the form (for a plane wave E{t) = E e-iwt ) 

~·E = 0 

~·it = 0 
-+ 

~ -+ iwB x E =--c 

;:t -+ 4 n"t iw -+ 
VXB=-c J --sEc L 

4n # 
a iw 

iw # -+ 
- - £. E 

c 

# 

where SL is the lattice dielectric constant, and I is the identity 

matrix. Equations (5c) and (5d) can be combined to give the 

fundamental wave equation 

2 
V x (V x E) = w 2 

c 

# -+ 
S • E 

In addition to satisfying Maxwell's equations in. each medium, 

there also exist boundary conditions which must be satisfied at the 

interface between two media. These conditions require continuity of 

(5a) 

(5b) 

(5c) 

(5d) 

(6) 

(7) 

-+ -+ # -+ 
B, of the transverse components of E, and the normal components of s • E. 
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B. The Conductivity Tensor 

The properties of the medium are determined by its dielectric 

constant and its conductivity tensor. The conductivity tensor is in 

17 general found by solving Boltzmann's equation, but if the system of 

carriers can be characterized by an energy-independent collision time, 

T, the conductivity tensor may be found more easily from an equation-

of-motion method. This derivation will be appropriate for a degenerate 

Fermi system, for which only the collision time at the Fermi level is 

important. If the current is carried by a single kind of carrier 

# 

having charge e, density n, and effective mass tensor m, then the 

+ 
equation for the average carrier drift velocity V is 

# 
me 

+ + 
(d~ + ;!. ) 
dt '[ 

+ 
+ V + 

e(E + - X B) 
c 

(8) 

If the time dependence of the drift velocity is also taken as sinusoidal 

+ + 
with frequency w, then the current density j = ne v can be found: 

+ # + 
j = a· E 

# #-1 
a = p 

# + e+ + 2 
[(l/L - iw)m· j + - B x j] / (ne ) 

c 

# # # 

For a carrier with isotropic mass m = mI, a becomes: 

# 

a = 

(9) 

(lOa) 

(lOb) 

(11) 
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where 

(12a) 

(12b) 

(12c) 

_ 2 / 
0"0 = ne T m , (13) 

w is given by Eq. (2), and the magnetic field is taken to be along the c 

z-axis (0"3). 

The above tensor may be diagona1ized by going to the complex 

coordinates i± = i ± iy (corresponding to circularly polarized plane 

waves). Then 

with 

#-

0" = 
o 

o 
(14) 

(15) 

If there are several types of carriers, their conductivities are 

additive. We shall be particularly interested in the situation in 

which there are equal numbers of electrons and holes. The simplest 

example of such a "compensated plasma" would consist of two types of 

carriers with isotropic masses, ~ and m
2

• Each carrier would have a 

conductivity of the form of Eq. (11), and the total conductivity would 

therefore also be of the same form. 
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For systems having conductivities of the form of Eq. (11) (or, 

equivalently, of Eq. (14), the multipole absorption can be found 

exactly, as will be shown in Section III. For the EHL in Ge in an 

external magnetic field, the conductivity is more complicated, as 

discussed in the introduction and in Appendix I. The conductivity 

has the simple form of Eq. (11) only if the field lies along a high 

symmetry direction. For the magnetic field aligned along other 

directions, the dipole absorption can be approximately found by the 

methods of Section IV. 

c. Helicon and Alfven Waves in an Unbounded Medium 

Particular solutions of Eq. (7) are transverse-polarized plane 

waves: 
-+-+ 

-+ -+ i(k-r-wT) (16) E = El e 

k -+ (17) - E = 0 1 

_k2 E 2 -.+ -+ W (18) =- E - E 1 2 1 c 

The waves corresponding to the eigenfunctions of this equation are 

(1) a wave linearly polarized along the magnetic field, for which 

(19) 

and (2) circularly polarized waves propagating along the magnetic field, 

for which 

(20) 
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For a single carrier with isotropic mass, kl is independent of 

magnetic field, while, for high frequencies (WT » 1) 

( 2) W 
1 p 

- w(w± w
c

) 

where the plasma frequency W is defined by Eq. (1). In zero field, 
p 

kl , k± all reduce to the familiar result for a metal 

Thus for w < wp ' kO is imaginary, and no waves can propagate in the 

medium below its plasma frequency. In a finite magnetic field, the 

situation is radially changed. For w »w, w, 
p c 

2 w 
p 

w±w 
C 

(21) 

(22) 

(23) 

Thus, for one sign of circular polarization, k2 > 0 if Iw I > w. These 
c 

propagating waves are called helicon waves. 

sian relation is given by 

w 
k ~-E. 

c 

For w »w, their disper
c 

(24) 

These waves are highly dispersive (k/w * constant), and have a wave-

length A = 2n/k which increases as the square root of the magnetic 

field. 
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There is a close connection between the sign of the circular 

polarization and the sign of the electric charge of the carriers, as 

far as cyclotron resonance or helicon wave propagation is concerned. 

Cyclotron resonance is associated with an infinity of the conductivity. 

From Eq. (15), 0+ becomes infinite when Wc = -w < 0 - that is, if the 

carriers have a negative charge. Similarly, from Eq. (21), if 

Iwc I > w, then k+ is real if Wc < 0: in both cases, the (+)-polarized 

wave is helicon-or cyclotron-active for negatively charged particles. 

The opposite result holds for the (-)-polarized wave. 

In a compensated plasma, containing two types of carriers with 

opposite charges and scalar effective masses, ml and m2, a similar 

analysis shows that 

[ 

2 
w 1 P 

w±w 
cl 

+ w~2 ] 
w±w 

c2 

Now the lowest order term in W/Wci gives a contribution which 

is linear in charge and independent of effective mass, and hence 

vanishes in a compensated plasma (n
l 

= n
2 

= n). Thus, to lowest 

nonvanishing order: 

(25) 

(26) 

Thus for Alfven waves, both circular polarizations are propagating and 

dispersionless, and A ~ B. 
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D. Dimensional Resonances 

For a dielectric sphere (indeed a body of any shape) embedded in a 

material of different dielectric constant, there is a series of e1ectro-

magnetic "normal mode" oscillations. If the materials were completely 

,10ssless, these modes would be self-sustaining: once excited, they 

would continue to oscillate forever, with no external source. In a 

real, lossy medium, the oscillations would gradually die out. If the 

decay time is slow, power may still be easily coupled into the system 

by coupling to these normal modes. Since these normal modes can 

generally be considered as "fitting an integral number of wavelengths 

inside the sphere" (formally, Eq. (3), ka = y .. must be satisfied), 
1J 

there will be a resonant absorption of power as the electromagnetic 

wavelength is tuned through the value necessary to couple to the mode. 

For the problem of a conducting sphere in a magnetic field, 

16 Cardona and Rosenblum gave an approximate theory of these dimensional 

resonances, which explicitly determines the y .. of Eq. (3) in terms of 
1J 

zeroes of the spherical Bessel functions. Once these y .. are known, an 
1J 

explicit form for the wave number (eB. Eq. (24) or (26)> can be used to 

transform the resonance condition, Eq. (3) into an equation for the 

resonant magnetic field as a function of drop size. The resulting 

equations are quite different for helicon waves: 

2 
B = 47Tllecw (_a_ ) 

CYij 
(27a) 
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and for A1fven waves: 

(27b) 

Thus, if power absorption is plotted while the magnetic field is varied, 

the absorption will appear as a series of resonant peaks, one for each 

value of Yij • As the size of the sphere increases, the resonances will 

2 shift to higher field, with B ~ a for helicon waves, or B ~ a for 

A1fven waves. 

E. The "Empirical Mie Theory" (EMf) 

The theory presented by Cardona and Rosenb1um16 ,19 (called here 

the empirical Mie theory (EMf) for scattering by an anisotropic sphere) 

is based on an assumption which, though plausible, cannot be rigorously 

justified. Consequently, the validity of any results obtained by 

this theory can only be tested by comparison to the exact theory. 

However, by reducing the anisotropic scattering problem to a particular 

case of Mie theory, analytic results are available. The simple physical 

picture which these results present can be of great value in attempting 

to understand the complicated numerical results generated by the exact 

theory. 
20 In Section V, the EMf will be compared to the exact theory, 

and its usefulness demonstrated. 

Mie theory offers an exact solution to the problem of the scattering 

of a plane electromagnetic wave by a conducting sphere, as long as the 
# # 

conductivity is a scalar, cr = cr I. In an external magnetic field, 

even if the conductivity can be written in the diagonal form, Eq. (14), 
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the diagonal elements are in general not equal. Cardona and Rosenfeld 

assumed that the absorption due to each diagonal element of the 

conductivity tensor could be analyzed independently of the other 

diagonal elements. Furthermore, this absorption was assumed to be 

the same as that for a sphere having an isotropic conductivity of the 

same value, either 0+, 0_, or 03' The anisotropic problem is thereby 

reduced to Mie scattering for three different isotropic spheres, and the 

solutions can be found analytically. 

The normal modes of Mie theory consist of a series of electric 

or magnetic mu1tipo1es. If the conductivity in the Mie theory is 

taken as one of the elements of the conductivity tensor appropriate 

to the helicon problem (single carrier type) the following results are 

found: (1) There is no resonant absorption in the longitudinal mode 

(associated with 03)' and the resonances occur only in one transverse 

made (0_ for holes, 0+ for electrons); (2) in the resonant mode there 

is an infinite series of resonances, associated with each mu1tipo1e order. 

Results are similar for the A1fven problem, but now there are resonances 

in both transverse modes. 'For large fields, these resonances satisfy 

Eq. (27), with y .. defined as follows. For each y .. , 2i is the mu1tipo1e 
~J ~J 

order (i=l for dipole, 2 for quadrupole, etc.), while the j are numbered 

i in order of increasing magnitude of Yij' For an electric 2 -pole 

(magnetic 2i +1_po1e) resonance, Y
ij 

is the jth zero of the spherical 

Bessel function of ith order: j.(y
i

.) = O. This quite literally 
~ J 

corresponds to fitting j wavelengths inside the sphere. 
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The problem with this empirical Mie theory is that, once the 

absorption has been calculated for the three isotropic cases (0 = o±' 0 3), 

there is no rigorous technique to recombine them to generate the 

results for the anisotropic case of interest. What has been done in the 

past is to simply assume that the anisotropic absorption is approximately 

the sum of the three isotropic cases. This assumption will be analyzed 

below in Section V. 

However, using the analytic solutions from Mie theory, this 

empirical Mie theory can make some very definite predictions about the 

properties of these size resonances. For small enough spheres, the 

resonant field deviates from Eq. (27), and for all modes resonance 

occurs at the cyclotron field w = W (using Eq. (2) for w). Further, 
c c 

for small spheres, the absorption intensity is predicted to increase 

2i+3 . 2i+1 
as a for a magnetic 2

1
-po1e resonance, or as a for an electric 

i 2 -pole. The width ~B of the resonance is proportional to the collision 

-1 
rate, T ,and, if T is independent of magnetic field, ~B is fie1d-

independent for helicon waves, but proportional to B for Alfven waves. 12 

These general features are confirmed by the exact analysis, as will be 

shown in Section V. 
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III. EXACT RESULTS FOR DIPOLE ABSORPTION 

A. The Solution Inside the Sphere 

6 Following Ford and Werner, the problem is solved by expanding 

the current in terms of a complete basis set of vector functions over 

the sphere: 

1/2 1/2 
-nn (2~!1 ) j~+l(qr) 

Zm ( ~+1) j~_l(qr) 
Zm 

A~(q) = Y~,~+l - 2~+1 Y~ ~-1 , 

1/2 1/2 
7m ( ~+1) j ~+1 (qr) 

Zm 
(2i+1 ) j ~-1 (qr) 

Zm 
B~(q) = 

2~+1 Y~,~+l + Y~,~-l 

-rm 
j ~ (qr) 

Zm 
C~(q) = Y~,~ 

Zm 
where the j~ are spherical Bessel functions and the Y~ ~' are vector , 
spherical harmonics. A summary of the properties of these vector 

(28) 

(29) 

(30) 

-nn -rm functions is given in Appendix II; the A~(q) and C~(q) are constructed 

+m 
so as to be divergence1ess, while the B~(q) are cur11ess. 

+ Rather then expanding the true current j in terms of these 

functions, we expand the 'pseudo current' 

+ + iWE:L + 
J = j - 41T E (31) 

7m By Eq. (5d), this pseudo current is divergence1ess, so that the B~(q) 

do not appear in its expansion 

(32) 
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# 

If the conductivity tensor cr has the form (11), Eq. (7) may be rewritten 

-+ 
in terms of J: 

v x {V x [j + yz2. j + W~ x j]} 2 -+ 
= q J 

o 
(33) 

where y, W, and q2 are constants defined in terms of the conductivity o 

tensor elements (Appendix III, Eq. AIII.S). 
;t A AA 

form a complete set of functions, the operations v-x, Z-X, and zz 

applied to these functions can be expressed as linear combinations of 

these functions (see Appendix II), so that the differential equation (33) 

is transformed into an algebraic equations linear in the ~ and Ci. 
Since these functions are orthogonal over a sphere, the coefficients 

of each function must vanish separately. This leads to a system of 

coupled linear equations, Eq. (AIII.6), in the coefficients atm' ctm ' 

in which q enters as a parameter. This eigenvalue equation has 

solutions only for particular values of q. For each eigenvalue q, the 

-+ 
eigenvectors atm(q), ctm(q) define a particular pseudo current J q , 

which is a particular solution of Maxwell's equations inside the sphere. 

-+ 
The total current J must be a linear combination of these values 

-+ -+ 
J = E G J 

q q 
(34) 

where the G are determined by boundary conditions at the surface of the 
q 

sphere. 

The matrix equation, presented in Appendix III must be evaluated 

numerically, but certain simplifying features are evident from its 

general form. In the first place, the equations do not mix different 
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values of m. This simplification is made possible by the special 

# 

form of the conductivity tensor, Eq. (11) - any more general cr would 

lead to a mixing of mrvalues. (This can be seen by analysis of 

Bq. AII.13). Furthermore, the equations do not mix parity. The 

functions Ci, ~l' ~±l' all have parity (-l)~, so that the coefficients 

can be divided into two series: {aIm' c2m' a 3m,···}, and {clm' a2m, 

c 3m' ••• }, of which the first series has even parity and the second 

odd. Only the even series couples to an electric dipole field, whereas 

the odd series couples only to the magnetic dipole field. 

For a given q, the electric field is found to be 

(35) 

, 
where the f~m are defined in Eq. AIII.12. 

B. Solution Outside the Sphere 

Outside of the sphere, the electromagnetic fields also satisfy 
# 

Eq. (4)-(7), but with cr = 0 and the dielectric constant £L appropriate 

to the medium outside the sphere. Now for a good conductor £L « 1£1, 
# 

where £ is a typical value of £ (Eq. 6), the dielectric constant tensor 

inside the sphere. Thus there can be a large frequency range w where 

kOa « 1 even though ka » 1. where kO = ~ w/c is the wave vector 

outside the sphere, and k is the wave vector inside the sphere 

(e.e.: Eq. (24) or (26». 

In this frequency range, the field equations simplify considerably. 

The total field can be separated into two parts: an electric part, 
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+ 
Since a = 0 outside the sphere, the pseudo current J is given by 

+ iW£L + 
J = - 4TI E 

C. Boundary Conditions 

By standard pill box arguments, it is found that the boundary 

+ 
conditions at the surface of the sphere are continuity of B, of the 

+ + 
tangential component of E, and of the normal component of J. Again, 

(45) 

by using the orthogonality of the scalar and vector spherical harmonics, 

these equations become a matrix of linear equations, relating the 

coefficients Gq, ~~, and F~~ of Eqs. (34)-(35), and (40)-(45). These 

+ 
equations are: for the normal component of J: 

+ 
for the transverse component of E: 

(46) 

(47) 

where O~l is the Krorecker delta function O~l = 1 if ~=l, =0 otherwise; 

and 

D = Em 
+ • E 

1 
(48) 

b 1" 
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Further E~ is the dielectric constant outside the sphere, which may 

differ from EL in the sphere. These equations may be rewritten 

m 
13 DEm o~l -

41f h(2~+1) 1: G a~ (q) 
j ~ (qa) 

(49) F1~ = 
• 0 q m qa 
l.W EL q 

L 14~iw . (~+l) j ~ (qa) 
_ 41fi ~ jt (qa) I 

Gq -z-2 IJ~+l (qa) - qa ] a~m(q) + [f~m a~m] 0 qa q q c WE
L 

(50) 

(f~m is defined by Eq. AIII.13). Similarly, continuity of the magnetic -

field results in the equations: 

m -41fi 1: f2;H j~+l (qa) 
c~m 

F2~ =-- G c q q q 
(51) 

41fi 1: G 
c~m 

j~-l (qa) 3DBm °u = c q q 
q 

(52) 

D = ~ 21f e* 0 Bl 
Bm 3 m 

(53) 

The coefficients a~m(q) and c~m(q) are assumed to be known (Section 

III.A). Note that DEm couples only to the even parity series (odd 

a~m' even c~m)' while DBm couples to the odd parity series. Thus, in 

studying the purely electric dipole modes of the sphere (DBm = 0), the 

odd parity solutions are not excited. The even parity solution is 

found by solving the matrix equation 
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(54) 

# 

where ~ is a tensor transforming vectors in q-space into vectors in 

R,-space, which can be explicitly w:r.itten as: 

j j/, (qa) 
--- , j/, odd (55a) qa 

41Tia 
=--c c j/,m 

jj/,-l (qa) 
, j/, even 

qa (55b) 

A similar solution can be found for the magnetic dipole case, 

(56) 

# # 

where ~ is defined similarly to ~, with odd and even rows inter-

changed. 

Once the G are found by inversion of Eq. (54) (or 56), the entire 
q 

current and field distribution inside the sphere can be calculated. 

However, it is often sufficient to calculate only the total power 

absorbed by the sphere, which can be found much more easily. The power 

absorbed is simply 
W -+*-+ 

P = 2" Im(El • p) for electric dipole absorption, 

• -+ where the d1po1e moment P is defined by 

3 
-+ a 
P = - --=----,.-

(81T)l/2 

1 

}: 
-1 

(57) 

-+* -+ 
Similarly the magnetic dipole absorption is proportional to Im(B

1 
• M) , 

with 
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3 M = _ a 
(8rr) 1/2 

1 

E 
-1 

m A 

F2l em 

Thus all that is required is the calculation of the coefficients 

F~l' ¥;l· These can be found much more simply, using formal matrix 

manipulation. 22 
Thus, by Cramer's rule, the solution to Eq. (54) is 

given by 

cof(~l ) 
G = 3D q 

q Em det (RE) 

(58) 

(59) 

~ 

where det(A) is the determinant of the matrix A, while cof(Aij ) is the 
~ 

cofactor of the ijth element of the matrix A; that is, COf(Aij ) is the 
~ 

determinant of the reduced matrix formed from A by deleting the ith 

row and jth cOlumn. 22 Using Eq. (59), and the result22 

det(A) = L AOj cof(Ao
j

) , 
j 1 1 

for any i, (60) 

we may rewrite Eq. (49) as 

(61) 

h S ~ n '..,t.l were EQ,'q = -~Q,'q ~ r 

(62) 
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det(SB) 

DBm det(~) 

#- #-

(63) 

(64) 

Formally, the matrices Rand S are infinite dimentional, involving 

an infinite number of a~m's and c~m's. In practice the equations are 

truncated at some ~ ,and solved numerically on a CDC 7600 computer. max 

It is found that the resulting power absorption converges to a fixed 

value as ~ increases and that larger values of ~ are required as max max 

the sphere radius a increases. Results of these numerical calculations 

will be presented in Section V. 

In the calculations presented here, values of ~ up to 24 have max 

been used. Beyond this point, the numerical accuracy of the calculations 

(single precision was used) becomes insufficient to produce meaningful 

results. 

The above solutions have all been dipole modes of the sphere -

that is they are excited by spatially uniform electric and magnetic 

fields. If the sphere is large enough, the condition k a « 1 is no 
o 

longer well satisfied (k is the wave number outside the sphere -
o 

see Section B). In this case it should be possible to observe higher 

mUltipole resonances of the sphere. The calculations of this section 

can be extended to describe these. Ref. 6 has an example of the calcula-

tion of magnetic quadrupole resonances, and Ref. 22 presents a formal 

solution to the full Mie theory for an anisotropic sphere - including 

all multipole modes. 
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IV. THE APPROXIMATE SOLUTION 

In Ref. 18, Ford, Furdyna and Werner presented an alternative, but 

approximate, solution to the problem of helicon waves in a sphere. This 

solution is much easier to handle than the exact solution and can readily 

be used to analyze experimental data. While this solution is incomplete 

and does not show as rich a spectrum of resonances as the exact solution, 

it has the advantage that it may be generalized for a sphere with an 

arbitrary conductivity tensor, as will now be shown. Hence it provides 

new information not readily available from the exact solution. As an 

illustration, in Section V the angle dependence of the principal Alfven 

resonances will be derived for EHD in both strained and unstrained Ge. 

The approximation scheme involves a perturbation expansion of the 

internal fields in powers of the radius of the sphere. Hence the resulting 

absorption agrees with the exact calculation in the'small sphere limit. 

The perturbation expansion is explicitly carried out to second order, 

and from this result an empirical expression is formed which agrees with 

the perturbation result to second-order, but gives improved agreement with 

the exact result (in the cases in which this result is known). Following 

-+ 
Ref. 18, the pseudocurrent J (Eq. 31) is expanded 

-+ 
J = j(O) + j(l) + .... (65) 

where j(n) ~ a 2n -+ -+ 
similar expansions are formed for Band E. Inside the 

sphere, these fields and currents are found by solving Maxwell's equations 

(Eq. 4 and 5) sequentially: 

-+(n) 
J 

+-+ -+(n) 
(JoE (66) 
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+ +(n+l) 
\7xE 

(67) 

(68) 

+-+ 
These equations may be solved with an arbitrary conductivity tensor a. 

For electric dipole modes E(O) = El (Eq. 43), teO) = 0; for magnetic modes 

E(O) = 0, teO) = t
l

. Outside the sphere, the solutions are simplified: 

for the electric dipole modes the magnetic field is neglected, while the 

electric field is given by Eq. (36); the boundary conditions which are 

+ 
satisfied are the continuity of the tangential component of E and of the 

+ 
normal component of J. Conversely, for magnetic dipole fields, the external 

electric field is ignored, while the magnetic field satisfies Eq. (38) 

outside the sphere, and is continuous across the surface. Again, the 

primary quantity of interest is the power absorbed, which can be written 

in terms of the dipole moment of the sphere, as in Eqs. (57) (electric 

dipole). To order E(l), the electric dipole moment can be written 

+ 
p = 

where 

m 
fll = 

E 
Smn 

"'" 

and 

3 
a 

1 

L f~l e 
m=-l m 

ffrr [0 - 3J}E ] 
mn mn 

2 2 
-1 -1 w a £L 

B + B mn mn' 
5c

2 

"* + e • E 
n 1 

-1 
B n'n 

(Bmn 
2 2 

~ tl w a £L 

5c
2 mn 

(69) 

(70) 

(71a) 

(71b) 
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iWc
L 

°mn - -y,r Pmn 
(72) 

P a being the resistivity tensor. Equation (7la) is the direct second 

order perturbation result. Equation (7lb) is adapted following Ref. 18: 

when expanded in powers of a 2 , it agrees with the earlier result, and is 

chosen to give better agreement with the exact result for larger spheres. 

In an analogous fashion the magnetic dipole moment can be written (Eq. (58)) 

3 1 
-+ __ a L m '" M = f2l e 

.J87i m=-l 
m 

V2ii i 2 2 
M "'.* m 47TW a -+ 

f2l b mn e °B 
15 2 n 1 

c 

M D-l + D-l 8 .22 -1 7T1W a 
J)mn 

2lc
2 D mn mn' n'n 

8 .22 or "'" (0 - 7T1W a 
mn 2lc

2 mn 

- # 

D wPmn - w(o Tr(p) - P ) mn mn nm 

(This form of D was first presented in Ref. 24.) 
mn 

(73) 

(74) 

(75a) 

(75b) 

(76) 

The above results are applied to electron-hole drops in Ge in the 

following section, and the results are compared to the exact results of 

Section III. 
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v. APPLICATION: DIMENSIONAL RESONANCES IN ELECTRON-HOLE DROPS IN Ge 

A. Introduction 

Dimensional resonances, of the form discussed in Section II.E, have 

been observed in the absorption of microwave power due to large electron

hole drops (y-drops) formed in nonuniformly stressed Ge. 7 ,8 In fact, the 

existence of these large drops was first inferred from these resonances, 

and their size estimated from the simplified theory of Section II.E. 

The results of the previous sections can be used to obtain a more rigorous 

description of these resonances. 

Due to the multi-valley 'conduction band in Ge, the conductivity 

tensor inside an EHD can be written in the form of Eq. (9), only if the 

magnetic field is aligned along a high-symmetry axis of the crystal. In 

unstrained Ge, when' all four conduction band valleys are equally populated 

(Ge(4:2», these high symmetry directions are along (100) and (Ill) axes. 

However, the large y-drops have only been produced in the presence of a 

14 large (lll)-stress. This stress lowers one valley with respect to the 

other three, with the result that inside the y-drop only one valley is 

populated by carriers, to any significant extent. In this case the 

symmetry is reduced, and the exact solution can be found only if the 

field lies along the stress axis. The case in which the field lies along 

other directions can be treated approximately, as discussed in the 

previous section. 

The valence band in Ge is doubly degenerate at zero stress ("heavy" 

and "light" holes). This degeneracy causes the hole bands to be warped 

and greatly complicates the analysis of the hole conductivity, particularly 
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in a magnetic field. The stress acts to split these two bands, and at 

high stresses all of the holes are in a single ellipsoidal band. The 

stress required to depopulate one hole band is considerably larger than 

that needed to depopulate the three conduction band valleys, and in the 

experimentally observed y-drops the holes are thought to lie somewhat 

closer to the zero-stress limit. The complications of the valence band 

are for the most part ignored in this paper. In zero stress the holes 

25 
are treated as two decoupled spherical bands. Two limiting cases will 

be analyzed: [1] Ge(1:2), in which only one conduction is occupied, 

but the holes are treated in the unstressed limit; and [2] Ge(l:l), in 

which only a single, ellipsoidal hole band is occupied. 

In summary, the exact theory can be solved in four situations: 

BII( 100>: Ge(4:2) and BII( 111>: Ge(4:2), Ge(1:2), and Ge(l:l). The 

conductivity tensors in these four cases are derived in Appendix I. 

The resulting spectra are qualitatively similar in all four cases, and 

only Ge(1:2) will be analyzed in detail. This is the case which most 

closely corresponds to the observed y-drops. 

B. Size-Dependent Resonances: Magnetic Dipole 

Figure 2(a-c) shows typical magnetic dipole absorption spectra, 

plotting microwave absorption as a function of magnetic field for a variety 

of drop sizes. The three sets of spectra correspond to the three possible 

-+ 
polarizations of the microwave magnetic field, B

l
, with respect to the 

-+ -+ -+ 
static field, B. The 1M resonances (longitudinal magnetic, with BIll B) 

-+ -+ 
are shown in Fig. 2a, while the circularly polarized TM ± (transverse - Bll B) 
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are in Figs. 2b and 2c.The signs ± are defined through Eq. (44): for 

-+ A 

TM+, BIll e+l • For helicon waves, with only one species of carrier, one 

direction of circular polarization is inactive. For example, if there 

are only electrons (negatively-charged carriers), the size-dependent 

resonances occur only for the TM+ and 1M polarizations. In EHD, because 

there is an equal number of electrons and holes, both transverse modes 

are resonance-active. However, there is still a sense in which the TM-

resonances are associated with holes and the TM+ resonances with electrons. 

This will be discussed further in subsection C, when the Rayleigh limit 

is considered, and in Section VI, when, by varying the material parameters, 

the transition from Alfven to helicon waves is studied. 

For all of the theoretical curves in this section, the following 

material parameters were used: lattice dielectric £L = 15.38, microwave 

frequency, w/2TI = 25 GHz, and collision frequency Te = Th = T = 100/w. 

The last is chosen to give sharp resonances. The pair density inside 

the EHL decreases greatly with stress, and the following values are used: 

11 -3 9 26 17 -3 15 for Ge(4:2), n = 2.3xlO cm '; for Ge(1:2), n = 0.5xlO cm 

for Ge(l:l), n = 0.11 x lOll cm-3 . 26 

The theoretical spectra were calculated as in Fig. 2, varying field 

for fixed drop radius. Generally, the field was sampled in 100 G incre-

ments, and radii taken in 10 ~m intervals (25 ~m for Ge(l:l». For small 

drops, and to sort out complicated structure, smaller size intervals 

were used; while in order to study line shape and peak height, fields 

near the resonances were studied in 10 G intervals. The convergence of 

the numerical technique was checked throughout the range studied. 

However, outside this range (larger drops and higher fields), the 
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numerical convergence gradually becomes unsatisfactory. 

The spectra of Fig. 2 show a great profusion of resonances. In 

Fig. 3 the peak positions of these resonances are plotted as a function 

of drop size in the three different modes. Only the more intense, higher 

field modes (labeled in the figures) have been studied in detail. At 

lower fields some relatively prominent peaks have also been indicated 

in the figures, but there are many still weaker resonances which have 

been omitted for clarity. 

This large number of resonances is in marked contrast to the result 

of the empirical Mie theory (EMT) (Section II.E). For each (transverse)27 

magnetic dipole, the EMT predicts a single series of resonances, occurring 

at fields 

B 
m 

(77) 

where M = me + mh' and Y
lm 

= m'IT, with m an integer> O. The origin of 

the additional resonances in the exact theory can be readily understood. 

In the Mie theory for isotropic spheres, the different mUltipole excitations 

of the sphere are orthogonal, much as the normal modes of a rectangular 

microwave resonant cavity. The static magnetic field, which introduces 

an anisotropy into the conductivity tensor, breaks the spherical symmetry 

and acts much as a nonsymmetric perturbation in a cavity. Such a perturb-

ation has two major consequences. First, the original modes are no longer 

orthogonal. Consequently, a field which was originally (in the absence 

of the perturbation) purely dipole, will now couple weakly to resonances 

associated with all multipoles, hence greatly increasing the number of 

"dipole" resonances observed. Secondly, resonances associated with 
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different multipole orders are no longer orthogonal. If, in the unperturbed 

system, two resonances of different order would have crossed each other 

(as drop size varied), in the perturbed system these resonances are not 

orthogonal, and can no longer cross. Instead, complicated anti-crossing 

phenomena are observed, where the properties of the two resonances are 

gradually interchanged while the two resonances never get closer in field 

than a certain minimum distance. 

Such anti-crossing behavior is readily apparent in the curves of 

Fig. 3. Indeed, in each figure all of the labeled curves (a-d) correspond 

to the single yll-resonance of EMT, crossing a series of much weaker 

resonances. That this is indeed the case should be clear from Fig. 4, 

which plots the intensities of the labeled modes as a function of drop 

size. Clearly the intensity is successively being transferred from a to 

b to c to d as the drop radius increases. Such behavior is absent both 

in the EMT and in the approximate analytic theory of Section IV. The 

results of the approximate theory are presented as dashed lines in Figs. 

3 and 4. It can be seen that this theory gives a good account of the 

average behavior of the resonances (intensity and resonant field), but 

does not show all the complexity introduced by the multiple resonances 

and anti-crossing behavior. 

The approximate theory, by its construction, describes only the 

lowest order dipole resonance. The higher order dipole resonances of 

the EMT (Eq. (77) with m> 1) do show up in the exact theory as the weaker 

resonances observed at lower fields (the unlabeled lines in Fig. 3). 

O 1 f th 1M d . h . . b h . 28 k h t n y or e mo es 1S t e ant1-cross1ng e aV1?r wea enoug 0 

test the predicted EMT values for successive Ylm: the dots in Fig. 3a 
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d 'h l' h h h ,,29, h 1 'h correspon to stra1g t 1nes t roug t e or1g1n W1t s opes 1n t e 

ratio 1:1/2:1/3, and it is seen that the results of the exact calculation 

approximately agree with this, 

Note in Fig, 4 that for small drops (a < 50 ~m), the absorption 

intensity increases as as, in accord with the prediction of the EMT, but 

3 for larger drops the absorption saturates, increasing approximately as a 

30 in the largest drops. In these figures, what is actually plotted is X", 

-+ -+ 
the imaginary part of the magnetic susceptibility, where M = XVB, and V 

-+ -+ 
is the drop volume. The absorbed power P is equal to w/2 .... Im(M • B), or 

P (78) 

Note that although X" saturates in large drops, the integrated power per 

unit volume continues to increase since the linewidth increases with field. 

Figure 5 plots the linewidth (full width at half maximum) of the 

principal resonances as a function of field, comparing the exact (solid 

line) and approximate (dashed line) theories. The approximate theory is 

seen to slightly overestimate the linewidth. As predicted by the EMT, 

the linewidth increases approximately linearly with B. Note for the LM 

mode that above the c-d line-crossing there is evidence of further, 

weaker anti-crossing phenomena. Even though the weaker peak cannot 

easily be detected directly (it occurs more as a shoulder than a separate 

peak, for WT = 100), these phenomena can still lead to oscillatory 

structure in the peak intensity and linewidth. 

Figure 6 plots the analogous peak position vs. field for the other 

exactly soluble cases: Ge(4:2), BII(100) (Fig. 6a); Ge(4:2), BII(111) 

(Fig. 6b); and Ge(l:l), BII(111) (Fig. 6c). The principal difference 
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(note scale changes) is due to the very different pair densities in these 

cases: as in Eq. (77), B In fact, all the spectra appear quite 

12 ~ 31 
similar if plotted as B vs. a(Mn) 2a. Here M = me + ~, and a is a 

"fudge factor," which empirically measures the difference between the 

exact theory and the EMT (for which a would be equal to one). If 

a(Ge(1:2)) :: 1, then a=1.02 (Ge(4:2), B 11<100», 1.13 (Ge(4:2), BII(lll», 

1.12 (Ge(l:l)). The intensities, linewidths, and anti-crossing behavior 

are similar in all these cases. 

C. The Rayleigh Limit 

In the EMT it is found that as the drop radius becomes very small 

(smaller than the wavelength inside the drop), the resonances all shift 

to the cyclotron resonance field, and the field position becomes independent 

of a. While the resonances in Fig. 3 do have radius-independent limiting 

fields in this Rayleigh limit, the fields are not equal to the cyclotron 

fields and in fact are not the same for all resonances. 

Indeed, if all the resonances had the same Rayleigh limit, most of 

the anti-crossing behavior would be eliminated: if all of the resonances 

were straight lines (when plotted as B vs. a) coming from the same origin, 

33 they would simply fan out and never cross. What is happening in Fig. 3 

is that the curves with smaller slopes (curves b,c,d) start out from a 

higher Rayleigh limit field. Consequently, the a-curve, with larger slope, 

gradually "catches up" with them and the anti-crossings result. 

A simple physical model can explain both the correct Rayleigh limit 

of the dipole mode as well as the higher Rayleigh limits associated with 

the higher-order multipole resonances. Figure 1 shows the field distri-
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bution inside a sphere near the lowest transverse dipole resonances. 

The figure is schematic in that the fields were calculated in the Mie 

theory for an isotropic sphere, but should be approximately correct, 

particularly in the Rayleigh limit. The induced current approximately 

-+ 
follows E, and circulates in loops about the microwave magnetic field. 

Consequently, for the transverse modes, the current flows half of the 

time along the external field, and half perpendicular to it. Since 

eff _ 1_ -1 -1 -1 
resistances add in series the effective conductivity is cr± - ~(cr± + cr

3
) • 

-1 
For a simple scalar mass carrier of mass m, cr

3 
-1 34 

a: m, cr± a: m(l ± Wc/W) , 

so that 

eff 
The resonance condition, cr± -+ 00, becomes W = ±2w - that is, the 

c 

(79) 

resonance occurs at twice the cyclotron resonance field. That this is 

indeed approximately the case is shown by arrows in Figs. 3b and 3c. 

Note that for the TM- mode, the mass associated with the resonance is the 

hole mass (eB/wc = 2~), while for the TM+ mode it is the electron mass. 

creff = -1 -1 -1 Similar reasoning applied to the LM mode would suggest (cr+ + cr_) , 

or a resonance at a field eB/wc = 2m r' 

in Fig. 3a shows this to be the case. 

-1 
where m 

r 
-1 -1 

me + mh 
The arrow 

The Rayleigh limit of these resonances is analyzed further in Section 

V.D, in which the angle dependence of the resonances is studied (Fig. 9a) 

and in Section VI, in which the resonances are studied as m is varied. 
h 

It is seen there that the considerations of the present section are valid 

only near the Alfven limit - that is, when me and ~ have comparable 

magnitudes. If ~ »me' the TM- resonance occurs near the hole cyclotron 
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resonance field, and not at twice that value. 

For higher mu1tipo1e configurations, the fields presumably are 

similar to those shown in Fig. 7. These were constructed as in Fig. 1, 

using the results of the Mie theory. By an argument similar to that 

i given above, for a 2 -pole resonance, the carrier moves perpendicular to 

-+ 
B for only a fraction 1/2i of its orbit. Consequently, the effective 

o 
eff -1 conductivity is (a± ) ~ m(l ± wc /2iW), and the resonance occurs at a 

field 

w = ±2iw 
c 

Because of the complications of the Ge band structure, the resonant 

(80) 

fields will be slightly modified, but inspection of Fig. 3 shows that the 

above resonance conditions are approximately valid. Since the TM+ and 

TM- resonances appear to have the same zero-field limit, the arrows 

depict the average field found from Eq. (80) for electrons and holes. 

D. Angle Dependence of the Resonances 

The approximate theory can be used to study the angle dependence of 

these resonances. Figure 8 shows the angle dependence in a (llO)-plane 

of the resonances for a 40 ~m radius drop for the three cases Ge(1:2) 

(Fig. 8a); Ge(4:2) (Fig. 8b), and Ge(l:l) (Fig. 8c). Because there are 

four populated electron valleys in Ge(4:2), the spectra have 90 0 symmetry, 

while in the other cases there is only 180 0 symmetry. In Fig. 8, the 

exact resonances are also plotted along those symmetry directions for 

which the theory of Section III can be applied. The agreement is quite 

good for Ge(1:2) and Ge(l:l), but less so for Ge(4:2), where, due to the 
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higher pair density, mode anti-crossing phenomena are already important. 

Away from the symmetry directions, the peaks are no longer purely 

longitudinal or transverse: there are generally absorption peaks in all 

three modes, only slightly shifted from one another in field, although 

differing greatly in intensity. For the most part, the lowest lying 

mode is predominantly LM, with the most intense absorption in this 

branch (along the symmetry directions it is purely LM). The highest 

field mode is predominantly TM-, and the intermediate mode TMt. 

The complex angle dependence can approximately be understood from 

the simple considerations of the EMT and Section V.C. The solid lines 

in Fig. 9a show the Rayleigh limit resonances for Ge(1:2) (a = 111m) • 

Along with them are plotted the results expected from the previous 

section: the dashed lines represent cyclotron resonance fields for 

carriers with effective masses 2me (curve 1), 2~ (curve 2), and 2mr 

(curve 3). While there is much evidence of interaction between the 

different resonances, the three dashed curves give a qualitative picture 

of the real angle dependence •. As expected, the TM- mode is similar to ~, 

the TM+ to m , and the LM to m • e r 

At higher fields, the EMT predicts an angle dependence cclM = Ime + ~ • 

This angle dependence is plotted in Fig. 9b, along with the angle dependence 

found from the approximate theory of Section IV, for a drop with 120 11m 

radius. While the "LM" resonance has an angle dependence similar to 1M, 

the "TM-" mode has a much stronger variation with angle - it is quite 

similar to the cyclotron resonance of the electrons (curve 1 of Fig. 9a). 
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E. Size-Dependent Resonances: Electric Dipole 

The electric dipole modes form an interesting comparison. While the 

EMT predicts a series of electric dipole size-resonances, increasing in 

intensity as a 3 , a simple physical argument suggests that this is not the 

case. The electric dipole fields should look approximately like Fig. 1, 

+ + 
with E and B interchanged. In this case the electric field, and consequently 

the current, will have components perpendicular to the drop surface. 

These fields will induce surface charge and correspondingly large depolar-

ization fields. This in turn will cause any resonances to be shifted to 

high frequencies or high fields - the usual plasma resonance and plasma-

3 shifted cyclotron resonance .. However, this argument holds only if the 

induced field is spatially uniform, and begins to break down if there are 

several wavelengths inside the sphere~ 

These arguments are confirmed by the results of the exact calculation. 

These results are displaced in Figs. 10-14, which correspond to Figs. 2-6 

for the magnetic modes. There are no size-dependent resonances which 

3 5 increase in intensity as a or a. Even for the largest drops, the 

resonances are weak compared to the magnetic dipole resonances and fall 

off faster with drop size as a decreases (like a 7, or even faster). 

Indeed, in the approximate theory of Section IV, these resonances do not 

appear at all. 

There is, however, a rich spectrum of these weak resonances. The 

LE resonances appear similar to the TM resonances, while the TE resonances 

are quite complicated, and occur at generally lower magnetic fields. 

These resonances may be observable experimentally, since they are generally 
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separated in field from the more intense magnetic resonances. 

In addition to these size-dependent resonances, there are several 

3 other electric dipole resonances, which have intensities ~ a. While the 

resonant field does change weakly with a, this is a small effect, and 

the origin of these resonances can be understood from a simple Rayleigh-

3 35 limit theory' of plasma-shifted cyclotron resonance. The net field 

inside the sphere is the sum of the external field plus a depolarization 

field 

-+ -+ # -+ 
Eeff = E - L • P (81) 

-+ p (82) 

# # # 

where L is a depolarization tensor (L = 4~/3 I for a sphere), and X is 
o 

-+ 
the background susceptibility in the drop: £L = 1 + 4~Xo. If Eeff is 

used in Eq. (8), the resistivity tensor becomes 

p + i (i + XL) -1 • L 
-w 

-+ -+# -+ 
while the absorbed power is P = ls E • a • E. 

- eff 
# 

If a is written in the 

form AI.1 (as in Appendix r), this amounts to replacing Ml and M3 by 

eff -2 2 -2 L 
M. = M. - w /w , where w = l+XL 

1 1 P P 0 

particle M3 = m, and the longitudinal 

2 ne For a single scalar mass 

resonance condition is w
2 

For the transverse case 

# 

Diagonalizing a
eff

, the 

Ml ~ m(l - w~/w2), while M2 ~ - ~ m(l 
c 

resonance condition is found to be M~l 

or 

1 ± 
w 

c 
W 

(83) 

(84) 
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This is the plasma-shifted cyclotron resonance. 
1\ 

For w + 0, the ordinary 
p 

cyclotron resonance W = +w is recovered. If OJ »w, only the plasma-
c p 

shifted resonance W = ±~2/w is observed. 
c p 

If there are several types of carriers, it is possible that not all 

the resonance lines will be shifted to the plasma frequency. Thus when 

there are two holes, only one resonance is plasma-shifted to high fields 

while the other, although shifted from its low-density cyclotron field, 

remains at a low field.
35 

Similarly, in Ge(4:2), the presence of several 

ellipsoidal conduction band minima leads to a number of resonances which 

are not plasma shifted. For EHD in Ge, these resonances can be found by 
# 

using the appropriate (J in the above theory; they are discussed in Refs. 

12,31,36. For Ge(4:2), the angle dependence of these resonances is shown 

in Fig. 15 (calculated from the approximate theory of Section IV). All 

of the resonances are due to the multiple electron valleys, except the 

one at 400 G, which is due to the two- hole bands. In Ge(1:2), this is the 

only resonance which appears. For Ge(l:l), there is only one electron valley 

and one hole band populated, and consequently none of these "dielectric 

anomaly" resonances are observed. For an arbitrary angle, these 

resonances generally occur simultaneously in all three modes, L, Ti, 

and for magnetic as well as electric dipole absorption. Indeed the 

magnetic absorption is generally more intense than the electric. 

In Figs. lOb and 10c, the low-field tail of the plasma-shifted 

cyclotron resonance can be observed for small a. These resonances will 

be discussed in greater detail in a separate paper. 



-.,: .j ~, J. ;'~ 
J _.d· ) ., 

-47-

, 
VI. THE TRANSITION FROM ALFVEN TO HELICON WAVES 

Helicon and Alfven waves are two limiting extremes of the kinds of 

waves which can be expected in a material with two types of carriers. 

In Alfven waves, both types of carriers have a comparable mobility, and 

the number of carriers of each type are equal. If the conductivity of 

one species decreases relative to the other, the propagating electro-

magnetic waves of the system gradually change from Alfven-like to 

helicon-like behavior. The present theory of electromagnetic absorption 

by a sphere offers a convenient means of studying this transition. 

For simplicity, the material parameters will be chosen similar to 

the EHD in Ge, except that the carriers will be assumed to have scalar 

masses: the initial, Alfven-state, is taken to have m = 0.12 m , 
e a 

~ = 0.30 rna, 
16 -3 urr

h 
:c 100. The dimensional n = n = 5 x 10 cm , WT = e h e 

resonances of the system are analyzed using the approximate theory of 

Section IV. 

The transition to the helicon~state can occur in any of three 

essentially different ways. Either the mass of one particle can become 

very large, or its concentration quite small, or its scattering time very 

short. All three of these cases lead to the same final state. If the 

holes are eliminated, then the final state has dimensional resonances 

only in the TM+ case. These resonances are typically helicon-like: 

2 
the resonant field increases as a , and the linewidth of the resonance 

is independent of magnetic field. 

The manner in which the TM- and 1M resonances disappear varies 

greatly in the three cases. In each case, however, both resonances 
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change qualitatively in the same manner, with the TM- resonance 

disappearing sooner. 

Figure 16 shows how the resonances change as the hole mass is 

increased. The resonant field is plotted vs. hole mass in Fig. l7a, for 

a drop with a = 1 ~m (the Rayleigh limit spectrum). For large enough m
h

, 

the TM- resonance occurs slightly above the hole cyclotron resonance 

field (not at twice this field, as suggested by the discussion of 

Section V.C), and the resonant field shifts linearly with~. The LM 

!,; 
resonance shifts approximately like m~ again quite a different result 

from the considerations of Section V.C so that, for large enough ~, 

it is also shifted to unobservably high fields. 

situation is shown in Figs. l7b and l7c (m
h 

= 20 

the TM+ resonance is helicon-like, shifting field 

A typical intermediate 

m). For low fields, 
e 

as a
2 

(the dashed line 

in Fig. l7b is the helicon limit: ~ + 00), while the linewidth (Fig. l7c) 

is independent of field. Once the resonant field approaches the hole 

cyclotron-resonance field, however, Alfven-like behavior is observed: 

B cc a; 6B cc B. 

If instead, the hole density n
h 

is reduced, while ~ is constant, 

quite different resonances are observed. Again the TM+ resonance gradually 

shifts to the helicon limit, but now the TM- and LM resonances decrease 

greatly in intensity and gradually become size-independent resonances 

occurring at the cyclotron field. Figure 17 illustrates an intermediate 

Finally, if Th decreases, the resonances greatly broaden out, and 

the TI1- and LM resonances are lost as their peak intensity goes to zero. 

The resonances also shift to higher fields, but for WT
h 

» 1, this effect 
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is small. The TM- resonance essentially vanishes as soon as wT
h 

< 1, but 

a weak, broad 1M resonance can still be observed for wT
h 

= 0.1. At first, 

the TM+ resonance linewidth increases, as illustrated in Fig. 18, but 

the linewidth starts to decrease again as soon as WT
h 

<1, and for small 

enough Th , the linewidth depends only on Te. For WT
h 
~ 0.1, the TM+ 

resonant field shifts approximately like a
2

, but only for WT ~ 10-3 
h 

is the linewidth approximately field-independent. 
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APPENDIX I: EFFECTIVE MASSES AND CONDUCTIVITY TENSOR IN Ge 

A. Conduction Band 

The conduction band in Ge has four equivalent minima, located at 

the L-point of the Brillouin zone (intersection of (lll)-direction with 

12 14 zone boundary).' In each minimum ("valley"), the carrier mass is 

anisotropic, having one value along its respective (lll)-axis, m~ = 1.58 m
o

' 

and a much lower value perpendicular to that axis, mt = 0.082 m
o

' where 

m is the free electron mass. For a magnetic field along any crystalline 
o 

direction, the conductivity tensor of electrons in anyone valley can be 

found from Eq. (10). In an EHD in unstrained Ge, all four valleys are 

equally populated, and the net conductivity tensor is the sum of the 

four tensors associated with the individual valleys. This procedure is 

carried out in detail, e.g., in Refs. 35 and 37. If the magnetic field 

is along an arbitrary crystalline direction, all nine components of the 

conductivity tensor will, in general, be different from zero, and the 

exact results found in Section III do not apply. However, if the field 

is along an axis of at least 3-fold symmetry, the conductivity tensor will 

have no components linking longitudinal and transverse directions. In 

~ 

this case a can be written in the form of Eq. (11), and the calculations 

of Section III follow. For an EHD in Ge, the three- and four-fold crystal 

axes lie along (111)- and (lOO)-directions. 

explicitly be written as 

a. 
1 

= 
a 

o 
1 - iWT e 

where a 
o 

2 Ne T , and for H..11 ( 100): 

The a. of Eq. (11) can 
1 

(ALI) 



W eBI c . For H 11(111) 
co 

= 

and 

D 
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-m ]l 
2 e 

2 
mlm +]l 

t e 

(AI.2a) 

(AI. 2b) 

(AI. 2c) 

-I WiT I [1 - iWT ], and co e e 

(AI. 3a) 

(AI. 3b) 

(AI. 3c) 

(AI. 4 ) 

Under a large uniaxial stress along a (lll)-direction, the electron 

ellipsoids are split in energy, with the ellipsoid associated with the 

strain direction being lowered in energy with respect to the other 

ellipsoids. It has been possible to produce large masses of EHL in 

. d G f h' h 1 h' 11' . d 12,14,15 d stra1ne e, or w 1C on y t 1S one va ey 1S occup1e , an 

size-dependent Alfven resonances have been observed in the microwave 

7 8 absorption spectrum.' For this situation the conductivity tensor reduces 
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to that of a single valley. It can be written in the simpler form of 

Eq. (11), only if the field is parallel to the stress axis. In this 

case, B 11(111), Ge(1:2) or Ge(l:l), 

(AI. Sa) 

(AI. Sb) 

= (AI.5c) 

-1 
Note that here m

t 
and m~ are completely decoupled, and M3 is independent 

of the magnetic field. In the previous cases M3 goes to a constant as B 

becomes infinite, but there is a longitudinal magnetoresistance (i.e. 

M3 is field-dependent). 

The above analysis has assumed an energy- and magnetic field-

independent relaxation time. The general theory is by no means limited 

to such simple cases: the conductivity tensor may be derived from a 

detailed kinetic theory. This will in general complicate the form of the 

# 

elements, (J •• , but will not usually affect the symmetry of (J - that is, 
1J 

# 

whether or not it can be written in the form, Eq. (11). If (J can be 

written in this form the analysis of Section III can be carried out. 

In the EHL in Ge, the collision processes are dominated by electron

hole col1isions, with '[ '" 6 x 10-11 sec at B = 0. 38 In a large magnetic 

field, there can be structure in (J due to the Shubnikov-deHaas effect. 

This has been observed in other materials as an approximately sinusoidal 
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(in lIB) modulation superimposed on the Alfven resonances. 39 ,40 A large 

magnetic field may directly affect the collision rate: when the cyclotron 

radius becomes smaller than the screening length, the effective scattering 

. d h' h 11" 1 . f . 41 cross sectlon may ecrease, en anclng t e co lslon 1 etlme. These 

effects will not be further considered further in the present paper, and 

a constant relaxation rate will be assumed. These modifications should, 

however, be included when the theory is compared to experiment. 

B. Valence Bands 

-+ 
The valence bands in Ge have a doubly degenerate maximum at k = 0 

in the Brillouin zone (ignoring spin). The degeneracy, and the resultant 

band coupling, greatly complicate the analysis of the conductivity tensor, 

.. 1 1 . . f' ld 17 partlcu ar y ln a magnetlc le . As with the conduction band, these 

complications are ignored in this paper, and the holes are treated in a 

semiclassical approximation as two independent particles, one with heavy 

mass and one light. The band coupling is included only in that the 

25 
relaxation time is taken to be the same for both types of holes. 

In unstressed Ge, the hole masses are treated as scalars, but the 

values of the masses depend on the field direction. 
1 

Thus, for heavy 

holes the conductivity tensor can always be written in the form, Eq. (11), 

with 

and 

2 2 
~H + ]Jh 

-1 
( ~Hi) 

(AI. 6a) 
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-1 
~H 

':' ~, 

,1:$ , , 

(AI. 6b) 

(AI. 6c) 

with llh = +lwcoITh/(l-iWTh)· Similar equations hold for the light holes, 

with ~H ~ mLH · Note that because of the opposite sign of electronic 

charge, lle and llh have different signs. 

Because of the resonant denominators in Eq. (AI.6), the masses are 

taken to be the cyclotron masses for that direction of magnetic field. 

The cyclotron masses are in turn found by numerical integration over a 

constant energy surface, following an approximate technique due to 

42 
Shockley (see Eq. (74) of Ref. 1): 

m 
c 

(AI. 7) 

where (z,p,~) form a cylindrical coordinate system with the field parallel 

to z. The mass parameters of Ref. 1 are chosen as A = 13.30, B = 8.92, 

and C = 11. 54, to agree with the experimentally observed cyclotron 

43 resonances. That Eq. (AI.6) is only approximate can be clearly seen 

in the high stress limit. Then the heavy hole mass is ellipsoidal with 

m,Q, 0.04 and the conductivity tensor should have the 

same form as (AI.5). In the present approximation, Ml and M2 are treated 

correctly, but M3 = m
t

, not m,Q, as it should. Again, the present form is 

adequate for exploring the structure expected for Alfven resonances in a 

sphere, but a more detailed theory is necessary for comparing the theory 

to experiment. 
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The ratio of heavy to light holes, NHH/NLL , is found by numerical 

integration over the two bands, assuming both have the same Fermi level. 

In zero stress it is simply equal to (mdHH/mdLH)3/2 = 23.6, where m
dHH 

0.346 rna, mdLH = 0.042 rna are the density of states masses of the two 

bands. 

For a weak (lll)-stress, as in Ge(I:2), the hole masses are 

44 complicated fuhctions of angle and stress. In the present paper, it 

will be assumed that, for Ge(I:2), the splitting of the valence band is 

small. In particular, the hole masses and heavy-to-light hole density 

ratio will be taken to be the same as in unstressed Ge. 
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APPENDIX II: VECTOR SPHERICAL HARMONICS 

The vector spherical harmonics, Eqs. (28-30), form a complete set 

of vector functions over the surface of a sphere. As such, if we perform 

-+ AA-+ 

some vector operation on one of them (Vxy, zzoy, etc.), the result can 

be expressed in terms of other vector spherical harmonics. This is why 

they are valuable: vector and differential equations can be transformed 

into matrix equations. 

This appendix is essentially a catalog of such transformations, 

including results found in Refs. 6 and 18. The derivations of these 

formulas are tedious but straightforward. A good reference on these 

functions is the book by Edmonds. 45 

These relations are based on the following conventional definition 

of ordinary spherical harmonics: 

(_l)m [(2Q, + 1)(Q, - m)!]~ pm( 8) im</> 
4n (Q, + m) ! Q, cos e (AIL 1) 

m 
where PQ,(x) are the associated Legendre polynomials: 

m 
P Q, (x) (AIL 2) 

In most derivations, the following form of the vector spherical harmonics 

is more convenient than the original definition: 

«Hm) (t+m+l»)>i 
k 

±m m-l A + «Q, - m + 1) (Q, + m + 1) ) 2 ym A 

YQ,+l,Q, = YQ, eO 2 (Q, + 1)(2Q, + 1) el (Q,+1)(2Q,+1) Q, 

+ ((t - m) (t - m +1) t ym+l A 

2 (Q, + 1)(2Q, + 1) Q, e_l 
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( 9,-m)(9,-m+1»)~ m-1 A _ (9,-m)(9,+m»)~ m A 

29,(29, + 1) Y 9, e1 9,(29, + 1) Y 9, eO 

+ (9,+m)(9,+m+1»)~ ym+1 A 

29,(29,+1) 9, e_1 

where the basis vectors, ~., are defined in Eq. (44). 
1. 

These functions are orthonormal 

The relations we will need are the following: 

DIFFERENTIAL: 

Let R(r) be any function of r = 1;1 only. Then 

o 

( 
9, )~ 9,-1 d ( R ) m 

29, + 1 r dr r9,-l Y 9, 

(All. 3) 

(All. 4) 

(AILS) 
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i - m 
( 

2 2 ) ~ 
(AIl.8b) 

AA -+m 
ZZ • Yi-I,i 

(AIl.8e) 

(AIL 9) 

. ( i + I)~ :±m 
1 2i+1 Yi,i 

(AII.IO) 
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Finally, we can find the action of an arbitrary tensor element on 

+ A A + 
Y (e.e .• Y). If we rewrite Eq. (AII.3) as 

1 J 

+m 
Y.H · .Q, J, 

this can be inverted to give 

i 

'i' +m+i 
L Y.Q,+j,.Q, 
j 

C n ., 
N,m,J,l 

c n + ... 
N,m 1,J,1 

These two equations can then be combined to yield 

c n • L c n +.. . N,m,n,J V N,m 1-J,V,1 
+m+i-j 
Y.Q,+V,.Q, 

(AILll) 

(AIL12) 

(AILl3) 

-t1n :hn -tm 
The above relations can be rewritten in terms of the A.Q,' B.Q,' C.Q,' 

The most difficult is perhaps Eq. (AII.S), which results in 

AA +m 
zz • C 

.Q, 
m

2 em + m [(.Q,-m+l)(.Q,+m+1»)~ +m 
.Q,(.Q,+1) .Q, [.Q,(.Q,+1)]!z (2.Q,+ 1)(2.Q,+ 3) B.Q,+l 

( 
(.Q,-m)(.Q,+m) )~ -:?TIl (.Q,-m+1)(.Q,+m+1)(.Q,+2»)~-t1n 

(2.Q,+1)(2.Q,-1) B.Q,_l - (.Q,+1)(2.Q,+1)(2.Q,+3) A.Q,+l 

- (.Q, + m) (.Q, - m) (.Q, - 1) ) ~ Am ] 
.Q,(2.Q, + 1) (2.Q, - 1) .Q,-1 

(AIL 14a) 
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AA rn zz· R, 

_ 1 (R,(R,+m+l)(R,-m+l)(R,+m+2)(R,-m+Z»)~ 
ZR,+3 (ZR,+I)(R,+I)(R,+Z)(2R,+5) 

x [Vf"=2 ~+Z - v' R, + 3 p;n ] + 1 (R,+I) (R,Z - mZ) (R,+m-l) (R,-m-l»)~ 
)(J R,+Z ZR,-1 R,(2R,+I)(R,-I)(ZR,-3) 

x [_~ -+m .rr;--:;- +m] 1 [(R,+m+l)(R,-m+l) 
yR,-Z AR,_Z + yR,-1 BR,_2 +ZR,+1 (R,+I)(ZR,+Z) 

(AIL 14b) 

z z ."? = -m ( (R, + m + 1) (R, - m + 1) ) ~ +m m ( R, Z - m Z ) ~ -tIn 
R, y'R, + 1 (2R, + 1) (R, + Z) (ZR, + 3) CR,+1 + vr (2R.+l) (R,-I) (2R,-I) CR,_1 

_ (CR,+m+l) (R,-m+l) (R,-m+Z) (R,+m+2»)~ [_ In + Z +m -1- -+m ] 
Z YIV BR,+2 - yR, + 3 AR,+2 

(2R,+3) (ZR,+I)(R,+Z)(ZR,+5) 

_ ( (R,+m-l) (R,-m-l) (R,Z - mZ) )~ [_ In _ 2 -+m - rn-:;- I ±m ] 
Z YIV AR,_Z + yR, - 1 Bn_z 

(ZR,-I) (ZR,+I) (R,-I) (ZR,-3) IV 

1 [(R,+m+l) (R,-m+l) [( )~ +m +m] 
+ ZR, + 1 (R,+I) (2R,+3) R,(R,+I) AR, + (R, + 1) BR, 

(AII.14c) 



,"., ~ \' J U C1 ., , 
" .': ... I 

-63-

APPENDIX III. DETAILS OF EXACT SOLUTION (SECTION III) 

A) The relation 

can be inverted: 

-(+ 

p' 

where 

p' 1 

p' 
2 

p' 3 

and 

= 
( p' 

-i:~ 

a'/(a,2 = 1 1 

+ -(+ + 
E = p' oJ 

iP2 

:. ) p' 1 

0 3 

2 a
2 

) 

' 2 2 
= -a / (a - a ) 

2 1 2 

[a3 r _ iW£L 
4TI 

a' = a 
iW£L 

1 1 - 41T 

By substituting Eq. (AIII.1) into Eq. (7), we find 

where 

2 4TIiw 
qo =--

pic 2 
1 

Y = (p' - p')/p' 3 1 1 

(AIII.1) 

(AlII. 2) 

(AIII.3a) 

(AIII.3b) 

(AlII .3c) 

(AlII. 3d) 

(AIII.4) . 

(AlII .Sa) 

(AIII.Sb) 
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B) The eigenvalue equation. 
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(AlII .Sc) 

By substituting J (Eq. 32) into Eq. (AIII.4), and utilizing the 
q 

relations of Appendix II, this differential equation can be turned into 

-+- -+-
a linear equation relating the various A~m' C~m: 

.E q2 [(a~mr: + c~mcr;,) + 
~m 

= 

Here the V's are defined in Eq. (AII.14), 

m 
M~,~_l = -~-l ~ , 

1/2 
= (~+l) (~-l) (~-m) (~+m) ) 

~ 2(2~-1)(2~+1) 

(AlII. 6) 

(AIII.7) 

and ~~, = 0 if ~' =1= ~ ± 1. 
-+- -+-

Since the A~m's and C~m's are mutually 

orthogonal, the coefficient of each must vanish separately in Eq. (AIII.6). 

By rewriting 

(AIII.B) 
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,J 
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Eq. (AIII.6) is transformed into the eigenvalue equations: 

a _c ~ _c ~ ] 
.tm .t+ I,m .t+ 1, .t .t-l, m .t-l,.t -Aa .tm 

3 1 1 
y[cnm V3 n,n + an 1 V,:! 0 1 + an 1 V3'o 1 ] 

IV IV IV IV+;In J.r'V+, m IV- ,ill,/,,- ,m 

-iW [ m c - a ~ - a :r.e ] = -A c .t(.t+l) .tm .t+l,m .t+l,.t .t-l,m .t-l,.t .tm 

-+ 

(AIlL9) 

(AIlI.lO) 

These equations are solved numerically. Once J is known, the 
q 

electric and magnetic fields can readily be found, using Eqs. (2d) and 

(AIII.l). The magnetic field may be expressed 

13 = -4ni 
q qc (AIlI.ll) 

while the electric field may be expressed as 

E = (I-A) p' j + ~ f' ~ 
q 1 q .tm.tm.t 

(AIlI.l2) 

where the fim are defined through 
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fn + (~+I) PI'a n (I-A) 
f' = !Vm !Vm 
~m 

(AIII.13) 

/~(~+I) 

(AIII.14) 

[ 
3 I (~2 _m2)(~+I) ] 

+ y O~(V2,~_I,~c~_I,m +V2,~_2,~ a~_2,m) - ~(2~-1) ail,m 

o~ = (2~+1) /(~+I)/~ (AIII.15) 
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FIGURE CAPTIONS 

Fig. 1. Magnetic dipole resonant field distributions. The figure shows 

the electric and magnetic fields induced in a sphere by the 

+ 
frequency-dependent field Bl in the presence of a static field, 

+ + + 
Bo ' for the transverse case BIlBO. The field distribution is 

actually calculated for an isotropic sphere, and it .is 

hypothesized that (for a small enough sphere) tl;is distribution 

+ 
is not chang~d greatly by the static field B. Fields near the 

o 

two lowest dipole resonances are shown. Below each sphere is 

shown the intensity and direction of the induced electric field 

+ 
along a diagonal of the sphere perpendicular to Bl • From this, 

the concept of fitting one (or two) wavelengths inside the 

sphere should be clear. 

Fig. 2. Magnetic dipole absorption for a sphere of EHL (Ge(1:2» inside 

bulk Ge: Microwave power absorption as a function of field 

for several values of drop radius a, B II (111). (Top) LM: The 

microwave field Bl is parallel to the static field; (center) 

TMi- and (bottom) TM-: the microwave field is circularly polarized 

+ 
perpendicular to B. The actual power absorbed depends on the 

. + 
magnitude of Bl , and can be inferred from Fig. 4. All the 

spectra in Fig. 2 are drawn to a common scale (fixed value of 

Inll). The more intense lines of each spectrum are labelled. 

t.'· 
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Fig. 3. Magnetic dipole absorption for Ge(I:2): resonant field versus 

drop radius. The material parameters 

and the labelling of the modes is the same as in Fig. 2. Many 

weaker resonances are not shown, for clarity. The solid lines 

are the resonant fields calculated for the exact theory of 

Section III, while the dashed lines represent the approximate 

theory of Section IV. The dots in Fig. (3a) for a=200 ~m 

represent the spacing of resonances predicted by the EMT. 

The arrows in all figures at a=O represent the approximate 
I 

Rayleigh limit fields calculated in Section V.C. 

Fig. 4. Magnetic dipole absorption for Ge(I:2): Absorption intensity 

versus drop radius. What is plotted is actually the magnetic 

susceptibility, X", defined in Eq. (78). The solid curves 

represent the labelled resonances of the exact theory, where 

the labelling is the same as in Figs. 2 and 3. The dashed 

lines represent the approximate theory, as in Fig. 3. The 

evidence of mode crossing is especially strong here: the 

sum of the peak intensities of all the labelled resonances 

(plotted as a dotted line) is almost equal to the intensity 

of the single resonance of the approximate theory. Note that 

for small drops, X" increases as a2 (the absorbed power 

increases like as). 
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Fig. 5. Magnetic dipole absorption for Ge(1:2): Linewidth (full width 

at half maximum intensity) versus resonant fields. Again the 

solid lines represent the result of the exact theory, and the 

dashed lines represent the approximate theory. While there is 

much evidence of mode crossing, the resonance width generally 

increases linearly with B, except at the lowest fields. 

Fig. 6. Magnetic dipole absorption for EHD in Ge: resonant field 

versus drop radius: (top) Ge(4:2), B II (100); (center) 

Ge(4:2), B II (111 >; (bottom) Ge(l:l), B II (Ill>. The LM 

resonances are indicated by solid lines, the TM+ by dashed, 

and the TM- by dotted lines. Only the most intense resonances, 

corresponding to the labelled resonances of Fig. (2), are shown. 

Fig. 7. Induced field distribution for multipole absorption. These 

fields were calculated as in Fig. (1), and represent the 

approximate field distributions near the lowest magnetic dipole, 

quadrupole, and octupole resonances. The upper figures show 

the magnetic field distribution in a central plane section of 

the sphere. The lower figures show the electric field 

distribution on a spherical shell. 

Fig. 8. Angle dependence of the dimensional resonances in EHD. 

(Top) Ge(1:2); (center) Ge(4:2); (bottom) Ge(l:l). These 

resonances were calculated using the approximate theory, for 

a drop with a 40~m. The field is assumed to lie in a (011)-

plane, with e being the angle between the field direction and 

the ( 100 > -axis. The results of the exact theory are also shown 

along the high symmetry of directions where this theory is 

. . 
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applicable: The LM resonance is indicated by a 0, the TM+ 

by a + sign, and the TM- by a - (For Ge(4:2), there are 

already two TM+(TM-) resonances of comparable intensity, 

and the fields of both are shown). 

Fig. 9. Angle dependence of the dimensional resonances in Ge(1:2). 

Top: Rayleigh limit (a=l~m). In addition to the calculations 

of the approximate theory (solid lines), the results of the 

elementary considerations of Section V.C are presented as 

dashed lines. Curve 1 represents cyclotron resonance for a 

particle with mass 2m
e

; curve 2 is for mass 2~1; curve 3 for 

mass 2m. Bottom: Large drop case (a=120~m). The dashed 
r 

curve is proportional to Ime+mh' as explained in the text. 

Fig. 10. Electric dipole absorption for Ge(1:2): power absorbed versus 

field for several drop sizes. All the spectra are drawn to 

a common scale; for easy comparison with Fig. (2), it is 

assumed that IEll2 here has the same value as IBll2 in that 

figure. 

Fig. 11. Electric dipole absorption for Ge(1:2): resonant field versus 

drop radius. The labelling of modes is the same here as in 

Fig. 10. For simplicity, the complicated series of line 

crossings associated with the a-mode in Fig. ll(c) will not be 

considered in detail. 
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Fig. 12. Electric dipole absorption for Ge(1:2): electric susceptibility, 

x", versus drop radius. The electric susceptibility is defined 

-+ -+ 
by an equation analogous to Eq. (78), with B1 -+ E

1
• For small 

drops, this susceptibility changes quite rapidly with a; for 

4 8 example X" 0: a ,a for the a- and b-modes of Fig. 12a. In 

Fig. 12c, certain mode-crossings associated with the a- and 

b-modes have been neglected, and the corresponding regions of 

the curves are shown as dashed. 

Fig. 13. Electric dipole absorption for Ge(1:2): 1inewidth versus 

resonant field. The labelling of the modes is the same as 

in Figs. 10, 11, and 12. As in the magnetic dipole case 

(Fig. 5), the 1inewidth increases approximately linearly in B. 

Fig. 14. Electric dipole absorption for ERD in Ge: resonant field 

versus drop radius. Top: Ge(4:2), B II (100); center: Ge(4:2), 

B II (111); bottom: Ge(l:l), B II (111). Only the most 

intense resonances, corresponding to the labelled resonances 

of Fig. (10), are shown. 

Fig. 15. Angular dependence of the low-field, approximately size-

independent resonances, Ge(4:2). The angles are defined as 

in Figs. 8 and 9, but, because of the symmetry in Ge(4:2), 

only half of the spectrum needs to be presented. These 

resonances occur in both the electric and magnetic dipole 

absorption, at nearly the same fields. 
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Fig. 16. Transition from Alfven to helicon resonances by increasing 

the hole mass. (16a). Resonant field versus ~ for 

Rayleigh limit resonances (a=l~m). (16b) Resonant fields 

versus drop radius for ~ = 20 me. Dashed curve shows the 

TM+ resonance in the helicon limit. (16c) Linewidth versus 

magnetic field for the TM+ resonance, ~ = 20 me. 

Fig. 17. Transition from Alfven to helicon resonances by decreasing 

the hole concentration. Plot shows resonant fields versus 

drop radius for ~ = t ne· 

Fig. 18. Transition from Alfven to helicon resonances by increasing 

the hole scattering rate. Plot shows linewidth of TM+ 

resonance as a function of wT
h

, for a = 20 ~m. 
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