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ABSTRACT OF THE DISSERTATION

Beyond Moore neuromorphic chips:

harnessing complexity in atomic switch

networks for alternative computing

by

Kelsey Sue Scharnhorst

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2018

Professor James K. Gimzewski, Chair

The invention of the internet began the age of information as well as exponentially

increased the number of complex systems in our world. As the age of information

comes to an end, so does the persevering trend known as Moore’s Law. This means

that the number of circuit elements on an integrated chip will no longer double every

two years, nor will the processing speed of computers. Personal computers utilize the

Von Neumann architecture which separates storage from processing. This separation

causes information transfer lags as a computer processes information much faster

than it can be fetched from information storage. Thus, to circumvent both the

limitations on elemental packing, and areal density a movement into neuromorphic

hardware has occurred. Neuromorphic chips seek to emulate brain-like processing of
ii



information through low-power, highly parallel, densely interconnected, and closely

packed individual elements which have a non-intuitive entangled relationship. This

work explored the potential of atomic switch networks (ASNs) for reservoir, natural,

and unconventional computing, provides evidence for ASNs as complex adaptive

systems operating in and around the edge of chaos, presents a new material for

use in ASNs, and evaluates spoken digit recognition using reservoir computing.

A second project herein explores the maturation of human pluripotent stem cell-

derived cardiomyocytes for use in studying heart disease, which is the leading cause

of death in the world. Maturation of these cells is significant to the field. Via a

chemically defined differentiation regimen with a monolayer cell culture technique

on top of a multi-electrode array for real-time measurements of electrophysiological

properties, in vivo development was reproduced. Both systems described above

required data science analysis of time-series multi-electrode array information.
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Chapter 1

Introduction

Natural systems abundant in emergent phenomenon exist all around us in the

natural world and comprise of complex structures and behaviors. A flock of birds,

a swarm of bees. A pile of sand. Anything involving heat transfer, or pressure

gradients. Economies, ecosystems, stock markets, biological processes, the list goes

on. Earth itself is an incredibly complex natural system consisting of innumerable

fractals of systems branching upwards in complexity like the branches of a tree.

When a system has a dynamic response to a feedback loop, it can continually adapt.

Intelligence emerges via a fine set of fault-tolerant rules telling where a bird should

fly in 3D space with respect to others in the flock and at what velocity. Swarm

intelligence such as this is known as an emergent property. Consciousness can

be seen as a spontaneous evolution from the complex entanglement of interacting

synapses. Our brains consist of long and short range connections which are non-

trivially weighted to one another, in that all weights are different through space and

time. Although there is compartmentalization within the brain, information storage

occurs on the same platform as processing and is incredibly interconnected. This
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allows for mammals to process mutli-sensory information, fetch data from memory,

and come to a conclusion almost instantly when it comes to object recognition,

decision making, prediction, and time-dependent problems. On top of all this, the

brain is extremely low power. The term computer came about in 1804 and was

used to describe a human doing a calculation, it transformed with the invention of

computers to describe a machine performing a calculation. So, although the english

language has transformed the meaning of ’computer’, biological synapses are some

of the most complex computers known to man.

In order to solve and/or model more and more complex problem a revolutionized

platform will be required. When an individual element of a system lacks a property

the system as a whole exhibits, there exists emergent phenomenon. Emergence,

simply put means that the whole is greater than the sum of it’s parts. This thesis

will primarily address the question of how to characterize and harness such a system

in the form of a bio-inspired microchip with individual elements similar to those of

a mammalian synapse. The inspiration for this work stems largely from an area

called neuromorphic computing, presented in the 1960’s by Carver Mead. His work

focused on using analog hardware to emulate brain-like activity for problem solving.

These early chips were based on analog metal oxide semiconductors (MOS), and

after 35 years of research analog learning was shown via a single synapse transistor.

However, explorations in digital computers exploded and led to the complementary

metal oxide semiconductor (CMOS) integrated circuits used in digital computers

today.

Computing today has two main limitations that the research presented here

attempts to overcome. Both Moore’s Law and the Von Neumann Bottleneck

hinder the continued progress of integrated circuits (IC). While the first states
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Figure 1.1: The ASN went through different generations. Electrode numbers
increased from two, four, sixteen up to 128. Work presented in this document
began by optimizing the fabrication process for the 128 electrode devices.

that the number of transistors per IC doubles every two years, this law is coming

to its end upon reaching the theoretical and financial limits of individual circuit

element packing. At a certain point the increased cost outweighs the advantages of

increased processing power from the decreased size of transistors. The Von Neumann

Bottleneck also acts as a hurdle for increasing the computational complexity a

system is capable of. This bottleneck refers to the backup of information caused by

the separation of the storage/memory and processing components of a personal

computer (PC). Information transfer is the slowest portion of task performance.

Thus, to circumnavigate both packing density and transfer limits would allow for

faster computing using more individual circuit elements.
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Fabrication begins in a clean room where standard lithographic techniques are

used to pattern a grid of 5umx5um seed sites, 300 nm tall. Then, through the use

of self-assembly densely packed interconnect junctions arise via an electrochemical

reaction called electroless deposition, where as the name suggests a chemical reaction

occurs without applied electricity. A seed atom that has a higher affinity towards a

carrier ion which is bonded to our desired end material will swap positions. At the

end of these metal atoms assembling through stochastic waves of brownian motion

we are left with silver wires varying in thickness, length, and structure. There are

two ways to grow branching structures caused by mullins-serka instabilities, (1)

altering the concentration of the ions in the wavefront, or (2) varying the seed site

size which changes the surface area exposed to ions. If all the molecules in contact

with the seed site have switched positions and are now stable entities, then there

is a depletion region causing an influx of ions from the sides leading to a branch

being born. The entropy to grow out to the side rather than straight forward

becomes energetically favored. Through the careful consideration of past grad

students, it has been found that extremely branched elements exhibit less reliable

behavior than wires. A such, the work herein contains microchips with densely

packed nanowires that are functionalized by cladding the metal spaghetti with

an insulator. Individual elements are thus metal-insulator-metal (MIM) junctions

which have been shown to exhibit short-term and long-term memory based on input

frequency, amplitude, and duration. Each neuromorphic chip produced during this

work contains approximately 1E8 junctions/cm2 and have been shown to exhibit

behavior similar to the human brain. A brief history of chips is shown in fig. 1.1.
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Chapter 2

Atomic Switch Networks for

Alternative and Unconventional

Types of Computing

Naturally occurring complex systems based on self-organization are abundant

in this world and can be used as inspiration to construct new types of operational

nanotechnology using an abundance of interacting units in a network. Size and

interconnect density scaling limits hinder the continuation of standard integrated

circuit (IC) fabrication to handle higher complexity problems. This section focuses

on fabrication methodology of a self-organized complex device and its potential

for computing. Atomic switch networks (ASNs) were designed to combine highly

patterned top-down techniques with a self-organized bottom-up assembly. Individ-

ual units have an inherent memory and an ability to transform information via

nonlinear dynamics. The unique nonlinear and memory properties of the ASN

support its potential use in natural computing, such as reservoir computing – an
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area that looks at the computing ability of biologically-inspired complex systems.

2.0.1 Materials and methods

2.0.1.1 MEA fabrication

Using a silicon wafer 500 µm thick and 100 mm in diameter, a 500 nm thermal

oxide is deposited to act as the substrate for the MEA that connects to hardware

and the user interface. Electrodes patterned in a 4x4 array connect to outer

electrode pads that connect to hardware via gold spring loaded pins. The MEA

consists of a 5 nm Cr wetting layer and a 150 nm platinum layer via exposure of a

photoresist with UV rays and metal evaporation. Different electrode pad diameters

were used: 20, 30, and 50 µm while changing the spacing of these pads from 200,

300, and 500 µm. Wafers are dehydration baked for 10 min at 150and cooled for

two minutes. In addition, a 400 nm SU-8 layer is used as an insulating layer to

allow point contacts. The SU-8 is spin coated and photolithographically patterned,

post-exposure baked, developed, rinsed in IPA, baked, and diced.

2.0.1.2 Network fabrication

Many network fabrication methods were explored using metallic nanostructures

to form a functional complex system. These methods lead to three types of networks,

those that are seed-free, random seed, or patterned seed networks. Seed-free

networks result from pipetting 150 mL of monodisperse silver nanowires (120-150

nm x 20-50µm, Aldrich) in an isopropanol suspension (149.8 mg Ag/L). To fabricate

a random seed network, 1 mL of copper microspheres (1-10µm, 99.995% purity

Alfa-Aesar) is dropped onto the center of the MEA and allowed to air dry. Next a
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20 µL of 50 mM silver nitrate (AgNO3) is dropped in the center of the chip to allow

for the electroless deposition of silver that leads to dendritic branching structures.

To fabricate a highly patterned grid of copper seed sites, an oxidized silicon wafer

is coated with 2 µm of AZ NLOF 2020 and soft baked. A grid is patterned via

UV photolithography, post-exposure baked, developed in MF26A, and rinsed with

isopropanol. Copper (300 nm thick) is deposited via metal evaporation, then soaked

in acetone overnight for liftoff, and spin-rinse dried. Finally, the chip is placed in 5

mL of 50 mM AgNO3 for 40 min and leads to dense and interconnected network of

silver nanowires.

2.0.1.3 Network functionalization

Silver nanowire networks have up to 108 junctions where two structures cross

and are functionalized into working MIM switches via sulfurization with S8 gas at

10-1 Torr, and 130◦C for 5 min to form atomic switches of Ag—Ag2S—Ag. To form

a fully coated Ag2S layer, the sulfurization process is repeated until at least 75% of

electrode combinations have a resistance above 1 MΩ.

2.0.1.4 Network testing

The interface module, shown in figure fig. 2.1, for the ASN device was 3D printed

(MakerBot Replicator 2.0). The device was placed in the base of the module, which

attached to a locking head holding 16 spring-loaded pins used to contact each outer

MEA electrodes for the interface of the device to measurement hardware. A source

measure unit (National Instruments Model 4141) was used in combination with two

data acquisition cards (National Instruments Model 6368) and a switching module

(National Instruments Model 2532) to define the input/output (I/O) functionality of
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Figure 2.1: Device holder. Above is a computer aided design schematic of the
custom 3D printed sample holder to interface with the ASN device. The main
components are (a) the device holder, (b) electrical interface with gold spring-loaded
pins that make contact with the platinum electrode pads of the ASN when (c) the
interlocking component is twisted into the posts of (a) the device holder. The gold
pins in (b) are wired into measurement hardware.

each MEA electrode, deliver/measure I/O signals and collect simultaneous, spatially-

defined voltage traces. Control software for the ASN device was coded in LabView

2012 (National Instruments) to synchronize voltage and current acquisition, input

arbitrary voltage signals, record any combination of electrodes, measure resistance

between electrodes, input real-time signal feedback, and log data. Subsequent data

analysis was conducted in Matlab 2010b (Mathworks).
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2.0.2 Results and discussion

Networks of complex interconnected operational nanoarchitectures were pur-

pose built via top-down meets bottom-up fabrication techniques. Functional

networks consisted of drop cast monodisperse nanowires, or the ELD of metallic

nanodendrites, or nanowires. Finding positives and negatives of each technique,

the nanoarchitecture with patterned seeds led to the most reliable density. As such,

the size of patterned seed site was varied to maintain density control and maximize

the connectivity of individual atomic switches. Interacting switches produce a

complex network capable of memory and information transformation. On top of

this, emerging electrical activity from interacting elements span the entire network

over time. Natural computing requires memory and nonlinear functionality.

2.0.2.1 Structural and functional complexity of the network

Both structure and function of natural systems are closely intertwined. The

complex structure of ASNs allows for emerging complex behavior of the network

as a whole. Fabrication of these networks examined reproducible control over

structure, density, functional diversity, and reliable operational control. ASNs

have been fabricated via drop-casting of monodisperse nanowires, drop-casting

random seed sites, and photolithographically patterning seed-sites. While all three

have been shown to exhibit emergent behavior, memristive IV-curves, and power

laws, the structural variances cause changes to the reliability of network function.

Monodisperse wires held no control over the dispersion of the structure over the

network and thus opened up potential for unused point contact electrodes, as

well as exhibited a coffee ring effect. Additionally, the monodisperse nature of

the nanowires did not lead to a large variation in functional parameters such as
9



the ON/OFF thresholds of atomic switches and thus limits the potential for non-

linear transformations towards computing. Drop cast seed-sites allowed for much

larger variation in ON/OFF thresholds; however, the density was uncontrolled

and not always dispersed evenly across the MEA. Lastly, patterned seed-sites

allowed for functional diversity, areal density, switch density, and operational

control. Parameters for the highest level of unique dispersed elements included

optimizing the concentration of the electroless deposition solution, and studying

varying seed sizes [4, 73].

These patterned seed networks allow for complex functionality in the form of

entangled interactions between individual atomic switches in the network. Electrical

activity of ASNs is distributed through space and time and cannot be determined

by a single switch, but only the network as a whole 2.2. Applied voltages at the

input electrode move through the wires and non-trivially activate atomic switches

which govern the flow of current. This distribution of electricity throughout the

network is constantly reconfigured via the completion of a filament at one switch

causing a local potential drop, or the breaking of another switch at a different

location causing a local potential spike. In this way the network is inherently

re-configurable and adapts. This forms the potential for learning in the field of

natural computing, and more specifically artificial neural networks.

The resultant switching interactions lead to a constantly changing local and

global potential map across the network, facilitated by the distribution of wire

diameters and lengths. The diameters form different insulator widths, requiring dif-

ferent voltage levels to facilitate cation migration, and therefore different degrees of

short and long-term memory [19]. The shorter wire lengths make nearest-neighbor

con- nections and promote local interactions; longer wire lengths make long-range

10



Figure 2.2: Distributed switching activity. Each row (a)–(c) represents activity of
a patterned seed network (2 mm by 2 mm) for 3 ms (0.5 ms frame rate) at each
electrode with a 5 V DC bias input at the upper right corner and a ground at the
lower left corner. (a) Localized switching activity (b) switching activity localized to
upper left corner (c) distributed switching activity that affects the entire network.

connections that promote global interactions [1, 21]. The degree of the switching

event can therefore be categorized as local or global. These two types of switching

are presented in figure 5. Various methods have demonstrated that the ASN does

not adapt a static switch configuration [21, 23]. Application of a bias allows the

network to adopt different resistance states by initiating switching events, which

continually reconfigure the network in time. The different resistance states of the

network are mea- sured by recording the electrical potential at different loca- tions

using the MEA. While the networks are densely intricate, monitoring of bias over

the network is only done at each electrode. This is an inherent disadvantage to

under- standing intricate network dynamics as only the portions of the network that

are in direct contact with the electrodes are monitored. To create a representative

potential map of the network a smooth function is utilized to connect the biases

of neighboring electrodes to create a more legible potential map. However, it is
11



important to note that discrepancies in the smoothed portion of the representation

are undoubtedly pre- sent and discontinuities of bias are possible depending on

the topology and behavior of the network that is not in direct contact with the

electrodes.

These potential drops or spikes can be observed in a potential map of the

network (2x2 mm) through time (0.5 ms windows over 3 ms in each row) in order

to visually observe the magnitude of the perturbation as well as the fluctuations

between high and low resistances. 2.2 presents a sequence of images representing

the changes in electric potential at each measurement electrode in the ASN device.

During periods of low switching activity, the network reaches a metastable state

[10, 23], and the potential recorded by the electrodes remains nearly constant, as

seen in the first three frames of figure 5(a). Localized switching is best represented

in figures 5(a) and (b) by the changes in voltage observed at only one or two

electrodes. Distributed switching activity in the ASN is represented in figure 5(c)

to show global changes in potential due to an extensive switching event. The result

is that activity in the ASN is comprised of metastable configurations punctuated

with reconfigurations of varying degree [23]. This distribution of event sizes is

reminiscent of patterns of activity in the brain that spatially distribute input signals,

taking a one dimensional signal and mapping it into a higher dimension [2]. In

natural computing, the spatial distribution of signals emulates the representation

of information transfer in biological neural networks and produces the capability

for solving complex problems [8].
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2.0.3 Conclusion

To evaluate ASNs as a physical platform for complex natural systems, they have

been fabricated with multiple processes with different structures. Monodisperse

nanowires have dynamic activity, but are not density controlled and each element

is like that of the rest. Nanoarchitectonics are proposed to combine a seed-directed

DLA process with standard photolithography. Using nanoarchitectonic concepts

we designed a network formed from silver nanostructures via DLA growth. The

process itself was based on mathematical concepts and theoretical predictions and

is thermodynamically driven, leading to a large number of varying atomic switches

that produce robust behavior distributed in space and time. By using copper

micropheres the structure of silver nanoarchitectures obtained were controllable,

but their contacts and density were not. Patterned uniform grids of seeds via

lithographic processes allowed for not only reproducible and controllable density,

but also contact with the electrode pads, and a highly interconnected network.

ASN devices show switching activity distributed across the network in in the

form of nonlinear transformations across time, this arises due to nanowires varying in

size and insulator thickness. Individual MIM junctions have memristive properties

in the form of a memory based on the frequency and amplitude of an applied bias.

When these individual elements are connected within a complex network, behaviors

more complex than that of an individual arise. The potential map of the ASN

continually re-figures through the building and breaking of atomic filaments that

reroute electricity in recurrent complex paths. Constant fluctuation of voltage

throughout the network allows for the specific network state to map onto the output

signals. Thus, another form of nonlinearity is present due to the vast number of

atomic switching events.
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Neural networks operate based on the strengthening and weakening interactions

between individual neurons to solve problems and perform tasks. In the case of the

ASN, the same principles are used to adapt to input stimuli and naturally compute.

Through the use of a form of natural computing called reservoir computation,

harnessing the unique properties of a complex dynamic system become possible.

Reservoir computing needs multiple transformations of the input data to effectively

problem solve. The ASN does just this via nonlinear transformations across

the entire network, producing multiple dissimilar outputs. To surpass the limits

of CMOS technology, complex dynamic systems limit power consumption while

increasing information transfer. Through further fundamental studies, the ASN

has potential as a state of the art hardware platform, that is CMOS compatible

and capable of complex problem solving in the natural computing realm.
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Chapter 3

Logic

Efforts to achieve a low-power, dynamically complex system become crucial as

CMOS fabrication limits are realized. Atomic Switch Networks (ASNs) provide

fabrication advantages over traditional CMOS through the combination of top-down

and bottom-up techniques, leading to densely interconnected networks of atomic

switches. ASNs show emergent behaviors through the interaction of individual non-

linear elements. These properties make ASNs suitable for alternative computational

paradigms, such as neuromorphic or reservoir computing. This work examined ASNs’

ability to perform Boolean logic operations using non-temporal inputs based on

randomized Boolean input streams. Zero and one bits were converted to negative

and positive DC voltage pulses, respectfully. Next, a linear readout layer was

applied to an array of voltage outputs from the device to reconstruct target output

signals for the given task. ASNs produced nearly perfect results at low voltages for

AND, OR, and NAND with more than 95% confidence. XOR, which requires non-

linearity to solve, was able to be partially solved at high voltages with more than

95% confidence. As opposed to previous works which have investigated temporal
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computation in ASNs, this work was the first to demonstrate semi-predictable,

non-temporal, non-linear behavior within the device. Results demonstrated that

the device connectivity is complete enough to perform complex computations.

3.1 Introduction

Alternative computing paradigms become paramount as interest in computation

beyond CMOS grows, largely due to CMOS fabrication limits being quickly realized.

In particular, bio-inspired computational paradigms have gained traction for their

low power consumption and potential to solve complex distributed problems. Bio-

logical brains possess enormous computational efficiency, robust patterns of activity,

fault tolerance and consume minimal power [8, 24]. Succinctly, these characteristics

of the mammalian brain make it a model example of a complex cognitive platform

[13].

We focused on neuromorphic systems and reservoir computing, both of which

exist within the realm of bio-inspired computing. It is important to note that

all bio-inspired computing falls under the larger realm of natural computing [16].

Contrary to the traditional Von Neumann architectures, bio-inspired computing

seeks to combine data processing and storage on the same platform. Thus, these

systems hold the potential to surpass the Von Neumann bottleneck, a time delay

caused by the separation of data processing and storage.

Neuromorphic engineering, first proposed by Carver Mead in the 1980s, harnesses

VLSI to mimic neuro-biological architectures [59]. Neuromorphic architectures

focus on low power consumption, adaptability, and generating sparse outputs [91].

These systems provide a physical platform for alternative bio-inspired computing
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algorithms. The most common of these is known as Spike-Timing Dependent Plas-

ticity (STDP), but other high-performance spiking algorithms have been reported

such as the Simple Spiking Locally Competitive Algorithm (SSLCA) [95]. Other

recent relevant work in neuromorphic computing includes hybrid patterned crossbar

networks of memristive synapses with complementary metal-oxide semiconductor

neurons to implement synaptic functions such as STDP.

Reservoir computing (RC) is a system distinct from neuromorphic computing

in that it requires no pre-training of the network and uses a dynamical system as

a reservoir [25, 74]. RC is traditionally achieved by passing a time-varying input

through a dynamic reservoir, harnessing a linear combination of the diverse output

signals to reconstruct some target output. Physical platforms capable of RC have

been limited to date, but have been increasing rapidly. Our work belongs loosely

to this body of work, as the networks we will discuss demonstrate complex internal

behaviors that, while untrained, can be harnessed for computation. Previous studies

with Atomic Switch Networks (ASNs) have shown promise in reservoir computing

through training output signals with a simple linear regression algorithm to meet

various targeted waveform generations [17, 74].

These same ASNs have been shown to have an interconnect density of as many

as 108 switches/cm2, achieved via a thermodynamically favourable self assembly

reaction [77]. It’s important to note fabrication costs for such a reaction are merely

a fraction of standard lithographic techniques and are highly scalable. Individual

atomic switches exhibit non-linear properties, and when part of a network interact

in a dynamically complex way to produce emergent behaviors much more complex

than those of single elements [17, 97]. These devices transform inputs into a

higher dimensional space and thus provide a diverse class of output signals. In
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addition, networks exhibit robust patterns of activity distributed in space and time

and in turn are capable of fault-tolerance. This, combined with their inherent

memory, recurrent structure, and non-linearity, provides a promising platform for

computation [17].

Substituting self-organizing nanodevices for traditional computations has been

proposed before. Tour proposed building logic gates and performing other compu-

tations with a random, self-assembled nanocell accessed through I/O electrodes [88].

While this setup is excessive for logic functions, which are simple to implement in

CMOS, the ability of a nanodevice to learn these functions indicates an ability to

combine inputs in a variety of ways, leading to more complicated functions. Lawson

proposed the idea of Randomly Assembled Computers (RACs) in 2006 [51]. In their

work, random diode networks were constructed with a set of attached electrodes to

access and control the random network. They also investigated random logic func-

tions, as we did in this work. If the behavior of self-organizing nanodevices could

be sufficiently defined, eventually these devices could be trained to be comparable

to CMOS with the functions that they implement, while having the advantage that

they could be re-trained.

In this study, ASNs were investigated as devices for non-temporal, or time-

independent, logic computations. These combinatory non-temporal computations

consist of simultaneously applying all input signals to the ASN, and reading the

output values concurrently. However, unlike traditional combinatorial logic circuits,

the underlying ASN changes during its computations. Non-temporal computation

is robust in that devices require no intrinsic memory to perform the computation.

Temporal computation, on the other hand, relies on time separation of the inputs

and device memory. Non-temporal inputs were examined to highlight that real-
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world ASNs exhibit non-linear, time-independent properties that have not been

previously demonstrated.

3.2 Fabrication

A silicon wafer with a 500 nm thermal oxide functioned as the substrate for

the microchip. A layer of NLOF 2020 was deposited onto the wafer and UV

photo-lithographically (PL) patterned to deposit a 5 nm Cr wetting layer and

a 150 nm Platinum layer. These layers were lifted off to expose 4x4 patterned

platinum electrodes designed to connect ASN devices with experimental hardware

(fig. 3.1). Pt electrodes of reported device are 30 µm in diameter and spaced 500 µm

apart. A 400 nm insulating SU-8 layer was deposited to expose only point contacts

of Pt electrodes, as seen in fig. 3.1. Again, NLOF 2020 was UV PL patterned

onto which a 300 nm layer of copper was deposited and lifted off to provide a

grid of 5x5 µm copper posts with 5 µm pitch. Thus, the end device consists of

Si/SiO2/Cr/Pt-electrodes/SU-8/Cu-posts.

Growth of silver networks utilizes a bottom-up approach employing copper posts

as the seed sites for electroless deposition, or galvanic displacement. Microchips

are then placed in an aqueous solution of silver nitrate (50 mM) for 60 min, rinsed

in nanopure water and dried at 95◦C for 2 minutes. This self assembly process

of the silver structures is inexpensive, facile and follows the chemical equation

below. Spontaneous reduction of Ag+ metal cations occurs simultaneously with

the oxidation of Cu0 atoms, consistent with the cell potential (E◦).

Cu0(s) + 2 Ag+ (aq) −→ 2Ag0(s) + Cu2+ (aq) E◦ = 1.26 V
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Figure 3.1: Optical images of the wafer with Pt electrodes and SU-8 layers present
(scale bars = 1.5 mm and 500 µm, respectively). Pt electrode pattern (top) is
covered in SU-8 except at inner point contacts of the platinum (bottom).
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As previously reported, copper seed size, pitch, and solution concentration

determine silver crystal morphology. Seed sizes below 3.5 µm produce nanowire

networks through a process controlled by local crystal growth anisotropy, resulting

in augmentation along Ag(111) planes [4]. On the other hand, seeds above 10 µm

result in dendritic deposits due to depletion of the reactive solute species in the

growth front [4]. This depletion of Ag+ occurs at a rate capable of causing Mullins-

Sekerka instabilities, or regions where the metal cation is consumed faster than it is

replenished. Nearby, high density areas of metal cations build up causing branching

structures to form, followed by more depletion regions. The device presented here

builds off 5 µm seed sites and consists of a combination of dendritic and nanowire

morphologies as seen in fig. 3.2.

Sulfurization of devices leads to system-wide functionalization of metallic inter-

sections into metal-insulator-metal (MIM) junctions. A two chamber set up filled

with inert gas is used to heat solid sulfur (99.5% purity, Sigma-Aldrich) in one

chamber to 120◦C concurrently with heating of the chip chamber to 95◦C. After

half an hour a valve is opened allowing an influx of sulfur gas to the device chamber.

This functionalization allows for the complex system-wide dynamical switching

activity distributed throughout space and time.
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Figure 3.2: SEM images of the ASN device (scale bars = 20µm, 4 µm and 4 µm,
respectively). Seed sites can be seen in (a), zooming in illustrates silver nanowires
cladded in Ag2S crossing in the lower left of (b) and a dendritic structure originating
towards the top right of (c).
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3.3 Methods

To test the device’s capabilities, we investigated its ability to reconstruct logic

functions based on voltage input signals passed into the device.

All trials were preceded by ±3 V triangle waves. The purpose of this was

to prime the device, and to give greater consistency to results. We investigated

the capacity of the ASN to implement 2-input logic functions across a variety of

randomly selected electrode combinations. In addition to the two input electrodes,

a third electrode was grounded. Reads were done at different sampling rates,

including 5 kHz, 50 kHz, 100 kHz, and 1 MHz. ASN dynamics in the framework of

this study were found to be optimally captured at a 50 kHz sampling rate; thus,

results presented used this read rate. Trials were run with inputs set to ±0.01 V,

±0.1 V, ±1 V, and ±3 V. An example of device data sampled at 50 kHz with two

input signals of ±1 V is shown in fig. 3.3. Devices feature 16 electrodes: 2 inputs, 1

ground, and 13 output channels for data collection. Logic functions were learned

based on readings from the 13 output channels.

To test the network’s ability to combine and process inputs presented non-

temporally, two bit streams were produced by duplicating all 2-bit permutations

of 0 and 1 several hundred times and shuffling the resulting permutations. These

bit streams were then applied to the electrode pairs as +V volts when a 1 was

present in the stream, and as −V volts when a 0 was present. Each input stream

was advanced at a given frequency fin, and the ASN was sampled at a frequency

fs. Our system had noticeable 60 Hz noise on electrode samples, which was filtered

using a Butterworth filter with 20 dB loss in the 55 Hz to 62 Hz range. The data

points from each of the 13 output electrodes were then averaged throughout the

duration of each input bit, omitting the first and last 2 data points per input. Least
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Figure 3.3: Voltage readings from ±1 V input electrodes (top) and output electrodes
(bottom). Data were sampled at 50 kHz with input bit frequencies of 5 kHz. An
ideal network would have a large range of values in the output electrodes.
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squares regression was used to generate coefficients mapping these averages and a

bias term (1) to the desired logic output. The regression was trained across varying

lengths of training inputs, and then the resulting coefficients were tested across a

subsequent number of testing inputs.

There was no overlap between the data used to fit the least squares regression

and the data evaluated for accuracy. This was done to preserve the accuracy of

the reported figures (no “double dipping” [45]). This setup also mimics the in-situ

technique that is needed for these types of devices: since the ASN is volatile, the

readout coefficients periodically need to be re-calibrated [94]. The time period for

which coefficients are valid in the Ag—Ag2S—Ag devices is discussed further in

section 3.4.

Inputs were presented at 5 kHz, and electrodes were sampled at 50 kHz. Thus,

pulse widths for each bit (0 or 1) were 10 ms long. Five different electrode pair

and ground combinations were randomly selected and received two inputs. Four

target logic functions were used: AND, OR, NAND, and XOR. The first three

functions are linearly separable, meaning if the input signals can be reconstructed

from the readouts, then perfect accuracy can be achieved. The last function, XOR,

is not linearly separable, and any results better than a naive guess would require

predictable, non-linear behavior from the ASN. For XOR, a naive guess results in

50 % accuracy, as each output option has equal weight. For AND, OR, and NAND,

a naive guess results in 75 % accuracy. Due to this discrepancy, all accuracy results

have been normalized such that 1 indicates perfect accuracy, and 0 indicates that

the regression resulted in a naive guess. Standard deviations of output electrodes

indicate the reliability of successfully learning a logic function with a single electrode

combination at different points in time (fig. 3.4a and c).
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In addition to presenting the accuracy statistics for a sample of individual

electrode combinations, normalized accuracies were generated for all combinations

of electrodes (fig. 3.4b and d). These numbers were constructed to be indicative of

yield; accuracies presented for all combinations represent the accuracy at which

we are 95 % confident a random electrode combination will outperform at any

point in time. These were generated for each electrode combination at a given

input amplitude by calculating the mean µ and the standard deviation σ from each

individual electrode combination’s accuracy, taking µ− 1.65σ for each electrode

combination, and then taking the mean and standard deviation of this quantity

across all electrode combinations. Error bars are most simply described as the

standard deviations of yield for different electrode combinations.

This methodology supplied information on the internal connectivity of the

ASN, and the types of internal processing that was taking place. For example,

applying an input to an isolated electrode would result in a failure to learn any

logic functions. A lack of non-linear combinations of the inputs would result in no

ability to represent XOR.
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3.4 Results and Discussion

As the time-varying ASN inputs were utilized for non-temporal computations,

we theorized that lower voltages would be the most effective. Non-temporal

computations rely on a predictable internal state, which transforms the input in

some way that is conducive to a fixed readout layer. Since the internal state of the

ASN generally changes more with higher voltages, the readout layer would be less

stable. This hypothesis was shown to be mostly true; comparing the results of 3 V

and 0.01 V from fig. 3.4b and d, which was rendered from coefficients trained on

1000 input samples, the lower voltage produced more stable coefficients for AND,

OR, and NAND. 0.1 V and 1 V were also tested, and produced results between

these two situations, with more stability than 3 V and less than 0.01 V.

Results for AND, OR, and NAND tasks showed very high accuracy (fig. 3.4d).

This indicates that the device possessed connectivity amongst all electrodes. Since

AND, OR, and NAND are all linearly separable, the linear readout layer that

we used would get 100 % on all of these if it had access to the original inputs.

Since it did not, the readout layer relied on both inputs’ data being present in

the other electrodes. Physically this can be explained through the presence of

complex connections in the device, ranging from long to short distances. Near-100 %

performance on many different combinations of electrodes, with more than 95 %

confidence in all cases, demonstrates that the inputs were properly disseminated

throughout the network. Low voltages minimized network switching and could

therefore be considered a read-only operation. Lower amplitude input streams

performed better on the linear tasks and illustrates the ASN’s suitability for non-

reservoir applications. With the potential to implement more complex behaviors,

ASNs might be used for cheap, high-yield neuromorphic hardware.
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The network also demonstrated reliable, non-temporal non-linearities. This

can be seen in fig. 3.4b, where the XOR function was learned better than the

naive guess. XOR is not linearly separable, and thus if the ASN behaved only as a

resistive network, the linear readout would never beat the naive guess. These effects

were only prominent at high voltages; using 0.01 V was unable to learn anything

about XOR (fig. 3.4d). The non-linearities are partially visible in the electrode

reading diagram from fig. 3.3. These non-linearities demonstrate that ASNs might

be used to realize more complex non-temporal computing functions than purely

resistive networks. These non-linearities also add value in the context of reservoir

computing, which highly values materials demonstrating rich internal functions.

As an additional point of interest and to show the stability of the linear readout,

we include the accuracy heat map of linear and non-linear functions (AND & XOR)

with respect to different numbers of both training and testing samples. At 0.01 V

the accuracy of the linear functions increase with increasing training samples up

to some point at which point the system could no longer increase in performance

(fig. 3.5). In the presence of more switching, linear function accuracy is hindered;

AND results are shown in fig. 3.6, but are representative of OR and NAND tasks

as well. These results indicate that implementation of non-reservoir computing

in ASNs would operate in a low switching regime. The XOR heat map at 3 V

demonstrates that non-linearities in the device were subtle but reliable, requiring

a large number of training samples, but also remaining valid for a large number

of testing samples (fig. 3.7). Again, for these non-temporal logic tests, the target

function relies only on the inputs at the current point in time! Though ASNs

have been shown to have temporal properties that enable temporal computations,

no investigation of device non-linearities when given a constant signal have been
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previously presented. This result, and specifically the reliability of it, implies that

ASNs might be used to realize a more diverse set of functions than previously

imagined.

3.5 Conclusion

Evaluation of Boolean logic performance of an Ag—Ag2S—Ag Atomic Switch

Network device using randomized, non-temporal inputs were executed at multiple

input voltages. Amplitudes of encoded inputs assessed were ±0.01 V,±0.1 V,±1 V,

and ±3 V. Out of 16 electrodes, input and ground electrodes were randomly

assigned, leaving 13 electrodes for readouts, which were linearly regressed to predict

logic functions. The stability of the readout was investigated. Logic functions

explored included AND, OR, NAND and XOR; linearly separable tasks (AND, OR,

and NAND) exhibited nearly 100% accuracy for ±0.01 V data at a 95% confidence

level. This behavior indicated not only network connectivity, but also that ASNs

have promise for reliable non-temporal, neuromorphic-style computations. The

XOR function, which requires non-linearity to solve, was found to be partially

solvable with more than 95 % confidence thanks to stable, non-temporal, non-linear

behaviors in the device at ±3 V. These results highlight the need for further

research on the computational capabilities of ASNs, especially for functions that

would be difficult to realize in CMOS alone. We hope that this work, and the

peculiar non-linear behavior of ASNs, can be used to inspire clever solutions in the

future for a wide range of neuromorphic and reservoir computing applications.
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Figure 3.4: Accuracy on all logic functions learned using 1000 training samples.
fig. 3.4a and fig. 3.4b used 3 V inputs; fig. 3.4c, (continued on the following page)
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(caption cont.) and fig. 3.4d used 0.01 V. The left two plots represent normalized
accuracy (described in section 3.3) of a single electrode combination. Error bars
represent the standard deviations of the electrode combination’s performance at
different points in time. The right two plots are the 95 % confidence accuracies
across all electrode combinations; that is, we are 95 % sure that a random electrode
combination, at any point in time, will produce a regression that will outperform
the mean line shown. Faded markers below lines indicate the worst-performing
electrode combination’s 95 % confidence accuracy.
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Figure 3.5: Accuracy of learning AND with 0.01 V inputs across different numbers
of both training and testing samples.
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Figure 3.6: Accuracy of learning AND with 3 V inputs across different numbers of
both training and testing samples.
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Figure 3.7: Accuracy of learning the non-temporal XOR function with 3 V inputs
across different numbers of both training and testing samples. Beating the naive
guess for XOR relied on non-temporal non-linearities in the ASN. Those non-
linearities were stable, making regressed coefficients valid for a large number of
testing samples.
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Chapter 4

Complex Adaptive Systems

Complexity is an increasingly crucial aspect of societal, environmental and

biological phenomena. Using a dense unorganized network of synthetic synapses it

is shown that a complex adaptive system can be physically created on a microchip

built especially for complex problems. These neuro-inspired atomic switch networks

(ASNs) are a dynamic system with inherent and distributed memory, recurrent

pathways, and up to a billion interacting elements. We demonstrate key parameters

describing self-organized behavior such as non-linearity, power law dynamics, and

multistate switching regimes. Device dynamics are then investigated using a feed-

back loop which provides control over current and voltage power-law behavior. Wide

ranging prospective applications include understanding and eventually predicting

future events that display complex emergent behavior in the critical regime.

4.1 Introduction

Complex Adaptive Systems (CAS) are the driving force behind many interesting

phenomena that govern our world; they encompass everything from the behavior
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of subatomic particles, to fluctuations in the stock market. As the name suggests,

these systems consist of many complex interactions and are able to adapt within

an environment. A short list of commonly studied CAS are global trade, markets,

economies, neural networks, the internet, immune systems, and ecosystems, just to

name a few.[34] Their importance continually increases as society becomes more

globalized, and new large-scale interconnected systems arise.

Three main criteria classify CAS protean behavior. A system must first be

uniquely interconnected: a network of individual elements must have a complicated

and entangled relationship. Secondly, the network structure must be self-organized

to minimize energy, maximize entropy, and cannot be determined by any single

entity. Thirdly, there must be spontaneous emergent behavior that is solely a prop-

erty of the network and not that of any single individual within the network.[49]

These parameters enable CAS to operate and adapt through complicated inter-

actions between functionally diverse elements encouraging a highly correlated,

non-equilibrium critical state.

Self-organization drives the most interesting of the three criteria, emergent

behavior.[53] The behaviors of the nodes or agents within the system, while seem-

ingly random, all contribute in a specific way to create a larger behavioral pattern

that is distinct from individual elemental behavior. The subsequent pattern within

the system is the emergent behavior. In order to have emergent behaviors, the

system must be in what is called the “critical state” or on the “edge of chaos”.[9, 48]

A critical state means that the system has found a metastable position between

chaos and order, and small, local perturbations to the system can induce massive

changes that ripple across the entire network in a nonlinear cascading fashion.

Emerging behavior can learn from previous patterns in a recurrent feedback node,
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such as neural avalanches in the brain.[9, 13, 69] A small stimulus may ignite one

neuron that can potentially cascade throughout the brain, activating many different

pathways throughout the network.[49, 78]

In this paper, we discuss the previously reported atomic switch network (ASN)

in the context of CAS.[5, 17, 77] These recurrent complex networks demonstrate

intrinsic nonlinearity as well as a capacity for cognitive memory and learning.[17,

18, 74] Spatial Lissajous curves highlight the distinct transformative nature of the

network, or dynamic response. Finally, a feedback loop is implemented with I/O

software and warrants control over the slope of current and voltage power laws.

Results indicate the ASN functions as a CAS. Understanding the underlying rules

that govern CAS could lead to a deeper understanding of how these systems behave,

a task beyond the limits of current computational capacity.

4.2 Experimental Methods

4.2.1 Fabrication and Interfacing

Fabrication details of the ASN consist of a combination of top-down standard

CMOS photolithography methods with bottom-up self-assembly, a full description

of which can be found in Demis 2015.[18] Self-assembly of silver nanowire structures

follow Eq. (1) below and are subsequently sulfurized using a carrier gas to form

metal-insulator-metal (MIM) junctions.[4, 74] Examples of different stages in the

fabrication process can be seen in fig. 4.1. Individual atomic switches exhibit

non-linear behavior, quantized conductance, and short or long term fading memory

based on the frequency and amplitude of the perturbing bias.[29, 66, 83] Not only

do these elements inherently exhibit the properties just mentioned, but they also
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Figure 4.1: An optical image of an SiO2 coated wafer with 120 Pt electrodes (top
left, scale bar = 1 mm), a zoom in via SEM after SU-8 deposition to provide point
contact electrodes which are covered by 5x5 µm Cu posts (top right, scale bar =
300 µm). Finally, an SEM of a self-assembled Ag+ network after submersion in
AgNO3 (bottom, scale bar = 10 µm). See [18], Fig. 1 for design schematics.
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have the capacity to be coupled with one another, making them the ideal building

blocks for a system designed for complexity.

Cu0
(s) + 2Ag+

(aq) −→ 2Ag0
(s) + Cu2+

(aq) = 1.26 V (1)

Device input output (I/O) interface consists of an interlocking set up to make

contact with outer electrodes, an example of a next generation holder with an

optical image of a 120 electrode chip is shown in fig. 4.1. These contacts connect

to measurement hardware which consists of eight shielded connector blocks, a

source measure unit (National Instruments Model 4141), four data acquisition

boards (National Instruments Model 6368), and a switching module (National

Instruments Model 2532). This hardware paired with control software coded in

LabView 2012 (National Instruments) that allows for sourcing of multiple input

signals and concurrent recording of spatially distributed voltage traces which have

been transformed through the complicated interactions of atomic switches. Post

analysis work was conducted in MatLab 2010b and R2016a (MathWorks).

4.2.2 Non-linearity

Lissajous curves are powerful tools to understand the input-output behavior of

systems excited with periodic signals and are a useful tool in analyzing continuous

complex systems. A Lissajous plot allows quick identification of linear and non-

linear relations between inputs, e.g. phase delays, frequency shifts, and harmonic

generation. The detailed mathematics of Lissajous plots are described elsewhere

(see Ref. [1] for a tutorial introduction), but the implementation of this analytical

technique is straightforward: the output signal is plotted versus the periodic input
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Figure 4.2: (Color online) CAD rendering of the 3D printed interface set up for the
latest generation of ASN devices which include 120 electrodes with inner networks
over four times as large as previous 16 electrode devices. 120 pins in the middle
section make contact with outer device electrodes and connect to measurement I/O
hardware when the upper portion is depressed and locked into place within the
four posts.
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signal.[1] The resulting plots are then interpreted using Eqs. (2) and (3) below:

x(t) = Asin(ωt) (2)

y(t) =
∑

i=0 aisin(ωit− δi) (3)

Where A, ω are the input amplitude and frequency and ai , ωi , δi are the output

amplitudes, frequencies, and phase delays, respectively. If the plot shows a diagonal

line, the signals are proportional, i.e. a0 A, ω0 = ω, δ0 = 0 and all the other ai =

0 . An elliptical plot indicates a phase delay between the two signals, i.e. a0 6= 0,

ω0 = ω, δ0 6= 0, and all other ai = 0 . A circle is observed in the particular case

of signals in quadrature (a phase delay of 90 degrees). Any plot departing from

these reference shapes (straight lines, ellipses and circles) indicate that the output

contains frequencies that are not present in the input, and are the signature of a

non-linear relation between the two signals. The strength of the departure from

the reference shapes indicates the amplitude of the generated frequencies. If output

frequencies higher than that of the input have sufficiently large amplitudes, the

curves will intersect themselves.[26, 87]

Herein, Lissajous plots were used to describe the complex non-linear response

of the ASN to AC inputs. These experiments were conducted on a 120 electrode

device with 1 input, 62 outputs, and a grounded electrode to collect current through

the network. The input signal was a bipolar 11 Hz sine wave with an amplitude of

1.0 V applied between the upper left corner of the ASN and the grounded electrode.

The outputs correspond to the 62 measurements from the electrode array (y-axis).

The data presented in later sections spans approximately one minute of recorded

voltages.
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Figure 4.3: Representative example of the current-controlled feedback loop operating
in real-time through control of the applied bias voltage (top) with the resulting
current trace (bottom). In this example, the current set point modulated between
100µA and 500µA at 30s intervals and was monitored at a sampling frequency of
10kHz.

4.2.3 Current Control

A proportional-integral-derivative (PID) controller was used in conjunction with

measurement hardware described in section 4.2.1 to control current flow through

the system. PID loops are commonly used control systems that have feedback

mechanisms of three different types. LabView implementation allowed for a current-

controlled experiment. The voltage applied to the ASN was varied as seen fit by

the PID to meet the current set point based on previous current values from the

system (fig. 4.3). Data were sampled at a frequency of 10 kHz while the current set

points fluctuated from 100µA to 500µA at 30s intervals and are illustrated as the

red dashed line in fig. 4.3 The PID loop occasionally approaches the set point too

quickly, overshoots, and results in an oscillatory period of adjustments, such as in

the first pulse in the current trace below. However, this feedback loop processes
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in real-time and adjusts weights of stimulation to coerce a critical system into a

chosen state.

4.3 Results and Discussion

4.3.1 Non-linearity

The individual synthetic synapses, Ag—Ag2S—Ag MIM junctions, function as

nonlinear circuit elements and comprise a complex, dynamical system.[64] ASNs

have been previously shown to exhibit the universally accepted non-linear activity

metric of dynamic IV curves, such as soft switching, transitional, and hard switching

(fig. 4.4(a-c), respectively).[77] In addition, evidence of higher harmonic generation

in the device has been observed.[5] However, the ASN has never been characterized

using V in vs. V out Lissajous curves to describe the complex harmonic motion

between perturbations to the system and the mercurial array of outputs. Through

these curves, which monitor the relationship between two oscillating signals, we can

further verify the diversity of responses and network states throughout the ASN to

see proportional, non-linear, and asymmetric behavior.

Varying degrees of non-linear output responses are perceived via Lissajous

figures, which plot the input versus the output voltage signal to give a graphical

representation of the relative harmonic motion of the two. Distinct transformational

changes of the ASN are presented in fig. 4.4(d-f), showing multi-state switching

regimes resembling those seen in traditional IV curves. An ellipsoidal response

is the simplest case, demonstrating that these networks are capable of producing

complicated pathways and resistance states which delay the phase of the input

signal (fig. 4.4d). Non-elliptical plots mean that there are inherent non-linear
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Figure 4.4: (a-c) shows IV curves of the ASN network when stimulated with a
triangle wave input bias of ± 2.0 V at 10 Hz, exhibiting soft switching in (a),
persisting until a conduction transition begins in (b), leading to hard switching
in (c). Specific classes of V in V out Lissajous curves are featured in panels (d-f),
and were stimulated by a ± 1.0 V sinusoidal 11 Hz input signal. Amplitude of
the output signal corresponds to the value in the bottom right corner. Observed
activity includes (d) initial pseudo linearity (containing short periods of non-
linear responses), (e) asymmetric switching activity, and (f) bipolar switching
activity. Channels intermittently converge and proportionally follow the input
signal, resulting in the embedded elliptical shapes seen in (e) and (f).
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transformations occurring from the spontaneous emergent switching activity. In-

terestingly, the device operates between two states: one that has minimal output

activity and is nearly flat along the y-axis, and a second that pops up to readout

asymmetric or symmetric traces proportional to the input (fig. 4.4e,f). However,

there exist numerous complex transformations of the AC input that switch on and

off at ever-changing thresholds. Lissajous curves further reinforce the idea that the

dynamic response of the ASN produces complex activity and multiple operational

regimes exist throughout the network at any given time.

To further evince the system’s spatial-temporal activity and wide range of re-

sponses, these input-output plots were mapped onto the physical electrode locations

on the device (fig. 4.5). A bipolar 11 Hz sine wave was input at the electrode

marked with the red box (fig. 4.5, upper left corner), and the device was grounded

at the electrode marked with the black box (fig. 4.5, above input, upper left corner).

As expected, the input signal channel displays a direct linear relationship (a plot

of input vs. input) and the ground electrode displays no significant relationship

(noise) with respect to the input. For ease of comparison, fig. 4.4 is shown in fig. 4.5

within a blue box. Several channels in fig. 4.5 show an ellipsoidal shape indicating

that their phase is shifted with respect to the input. These curves are not perfect

ellipses and deformations are due to the non-linear processing of the ASN. Slight

distortions in the elliptical shape are a consequence of steady dynamic changes to

the signal’s harmonic motion, but the predominant elliptical shape indicates that

the system intermittently relaxes into a proportional response, with a mean signal

value very close to zero (-1.9 x 10 -5 V).

Other channels similar to fig. 4.4(e) (highlighted with a green box in fig. 4.5)

which show lop-sided switching and transformations of the input can be further
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Figure 4.5: Each subplot is a Lissajous figure displaying one minute of the ASN’s
response to an 11 Hz, 1 V sine wave at 64 spatially distributed measurement points
(Normalized output V vs. 1V input). The signal was input at the electrode marked
with the red box, and the device was grounded at the electrode marked with the
black box in the upper left of panel (a). Additional outlined subplots represent
examples shown in Figs. 4(d-f). Color bar represents the amplitude of normalized
output voltages through time.
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described as having asymmetric pathways, or a polarity-dependent response. Since

the bias read at the electrodes passes through an immense number of individual

atomic switches, the resulting I/O perturbation follows a highly recurrent self-

organized route through the network. The mean of this channel is 0.132 V, further

supporting switch rectification somewhere along the complex pathway (fig. 4.4e).

Finally, the symmetric traces in fig. 4.4(f) also yielded a near zero mean of 2.2

x 10 -3 V. Resistance changes in channels similar to fig. 4.4(e) and (f) heavily

involve the formation and annihilation of atomic switches across the network.

Behaviors stochastically move from proportional to non-linear responses via large

scale cascading switching events.

The variety of behavior displayed in the Lissajous plots indicates that the ASN

has the characteristics of a critical system. Self-organized growth leads to a uniquely

interconnected system and fulfills the first two criteria of a CAS.[49] The localized

regions of varying activity and behavior are reminiscent of the ”edge of chaos”

operational regime represented in well-known critical systems like the brain.[13]

The ”edge” happens at the critical transition between random/disordered and

ordered states.[6] It is suggested that operating in this regime leads to maximum

information processing and therefore computational capacity.[36, 52]

4.3.2 Control Dynamics

Results of the current controlled PID loop experiment yielded 1/f power law

scaling for the two current set points explored, indicative of self-organized criticality,

natural complexity and scale invariance (fig. 4.6 a-b).[6, 43] Similar trends were

observed for voltage and current data. The power spectral density (PSD) of the

output signal obeys a power law which may be manipulated by controlling the
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Figure 4.6: Plots (a) and (b) above show dependence of power law scaling (PSD α
value) from current set point data presented in Fig. 3. The PSD slope (α) of the
current output is shown in (a) at currents of 100 µA and 500 µA and simultaneously
acquired voltage (b). In all cases 1/f α scaling is present. Repeated cycling of
PID loop and current set point demonstrated an ability to tune the PSD slope (α),
and hence spatiotemporal dynamics of the current output (c) and local voltage
throughout the ASN device (d).
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current output of the device. Repeated cycling of the control loop between these

current set points demonstrated an ability to tune the PSD slope (α), and hence

spatiotemporal dynamics of the current or voltage through the network. While

power laws themselves indicate a complex system, they do not substantiate a CAS

unless the slope is variable such as in the mammalian brain.[8, 34, 35, 49] Thus, the

adaptive response of the ASN indicates a CAS exhibiting spontaneous emergent

behavior from a structurally complex system with entangled individual elements.

4.4 Conclusions

As the scope of our society becomes more global, we have seen the rise of

many new complex adaptive systems (CAS), and understanding the ways in which

these patterns emerge could lead to numerous applications in the realm of non-

linear dynamical systems that produce complex emergent behavior. Atomic Switch

Networks (ASNs) dynamics have been described via their spatially distributed

non-linear response shown with V in vs. V out Lissajous plots. The device generates

a wide range of outputs in response to an AC signal including phase shifts, and

higher harmonic switching which substantiates the case of criticality in the ASN. A

current controlled feedback experiment where the slope of the voltage and current

PSD’s were controllable is reported. Due to the recurrent functional topology of

ASNs, the system is able to produce persistent critical dynamics. Exhibiting control

over a critical network is noteworthy and furthers device potential in studying a

wide array of CAS systems.
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Chapter 5

Spoken Digit Classification Using

AgI Atomic Switch Networks

Increasing computational complexity becomes difficult as the fundamental limits

of Complementary Metal Oxide Semiconductor (CMOS) technology are reached.

Highly interconnected, densely packed, low-power fabrics of nanodevices provide

a potential alternative to CMOS. Here we examine a new material, AgI, for use

in an Atomic Switch Network (ASN), which has previously been shown to have

densely packed and entangled individual elements. Fundamental studies to verify

AgI formation were conducted via XPS, and UV-Vis spectroscopy. The AgI chip

was functionally tested via linear regression on basic logic tasks and spoken digit

identification. Results showed that the AgI chip added computational complexity

to a circuit, and was capable of computing XOR, a non-linear operation. The

AgI chip also successfully demonstrated non-linear memory, and was capable of

computing XOR across inputs at different points in time. The non-linear memory

of the chip was also shown to be useful for identifying spoken digits, allowing fewer
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data points to be regressed to achieve the same accuracy. This work motivates

further exploration of ASNs as viable computational elements, without relying as

heavily on precise CMOS fabrication.

5.1 Introduction

To address the ever increasing complexity of our world, alternative hardware is

required to overcome information transfer lags between memory and processing,

as well as packing density limitations. In order to circumvent the Von Neumann

Bottleneck, new materials must demonstrate the ability to reliably solve complex

problems that are either unsolvable or less efficient to solve through traditional

silicon processes. In addition to this, they must be able to be packed closer than

standard CMOS technology allows as the end of Moore’s Law is reached [85].

Highly interconnected nodes within mammalian brains serve as inspiration for

new computing systems with the goals of processing multi-input, chaotic, and/or

temporal problems. Specifically, the densely packed and interconnected nodes of

the brain are an ideal inspiration for finding solutions through emerging connective

weights that vary based on previous inputs.

Individual atomic switches have been shown to produce non-linear responses,

short and long-term memory, and quantized conductance [30, 82, 84]. These

properties make them ideal circuit elements for use within a network towards com-

plex problem solving. Continuing advancements in memristive hardware includes

patterned cross bar arrays, and density-controlled self-assembled atomic switch

networks [17, 82]. Previous work on silver atomic switch networks has utilized

sulfur vapors and the subsequent formation of Ag2S as an insulating medium. The
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Figure 5.1: SEM image of an AgI ASN (left), transparency was set to 70% and
overlaid on an optical image of point contact Pt electrodes shown in blue (left).
The overlay allows one to visualize the inner measurement contacts which are 50
µm in diameter in the context of the entire network (1 mm2). On the right is a
zoomed in SEM image of the same network to illustrate the variety of wire lengths
and diameters present. Scale bars = 250 µm and 10 µm, respectively.

sulfur deposition process is limited via a slow reaction rate and necessitates elevated

temperatures, resulting in long deposition times [73]. Other studies have suggested

that silver iodide may be utilized in electrochemical metallization memory cells

with lower set voltages and a longer filament lifetime, yielding less volatility and

potentially increasing the device’s reliability [75]. The reaction rates of silver

with iodine vapors are well documented and demonstrate that the reaction rate is

inversely proportional to temperature allowing for a rapid functionalization process

at ambient temperatures [72].

This work presents a new material for use in an AgI Atomic Switch Network

(ASN). The formation of AgI films was characterized and applied as the insulating

layer within a silver nanoarchitecture. The silver structure included long and

short connections as well as wide and thin wires, lending to a variety of ON/OFF

thresholds. Up to 108/cm2 junctions where two silver structures cross exist in ASNs,
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allowing for potential atomic switch formation [77]. A vast number of switching

elements with a constantly configuring network and a wide range of ON/OFF

properties leads to non-linear transformations of input data, the basis of complex

computation. As described in section 5.2, a Scanning Electron Microscope (SEM)

image of the fabricated ASN is shown in fig. 5.1.

Reservoir Computing (RC) was used to evaluate the computational capacity

of the AgI ASN. RC is inherently temporal in nature and can be used in many

of the same situations as recurrent feed-forward neural networks. RC exhibits

properties such as fault-tolerance, non-linearity, and learning [92]. Computational

neural models such as the perceptron and support vector machine can also be used

as reservoirs; however, long convergence times can be a drawback depending on the

task. Material-based reservoirs have the benefit of not needing to be trained while

providing similar computational qualities [38].

The AgI ASN material was evaluated by ensuring that the correct material

was formed and functionalizing the resulting ASN (section 5.2), and testing the

ASN’s computational abilities on RC tasks relating to both logic and spoken digit

recognition (section 5.2.1). Logic tests with RC were divided into both non-temporal

and temporal sections, demonstrating the flexibility of the ASN in solving non-linear

problems (sections 5.2.1.1 and 5.2.1.2). The results demonstrated that AgI ASNs

are capable of reliably adding computational value to these tasks (section 5.3).

5.2 Methods

Silver iodide was formed via two different experimental techniques, one under

ambient conditions and the other with added heat. To verify the formation of silver
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Figure 5.2: Layers of an atomic switch network (ASN) after top-down photolitho-
graphic fabrication methods are complete, prior to bottom-up assembly of a silver
network. This schematic is not to scale, but can be used as a comprehensive guide
to the components of the base multi-electrode array. The copper posts necessary to
the network architecture, while the point contact platinum electrodes are imperative
to the readouts of the network for later computation.

iodide, XPS and UV-Vis samples were prepared using transparent silver thin films

(20 nm). These films were deposited on glass cover slides via a silver target in a

Hummer 6.2 sputter system from Anatech Ltd (Hayward, CA, USA). In a negative

80 argon vacuum environment, the sputtering system operated at 15 mA of current.

These samples were subsequently used in characterizing the presence of AgI.

ASN devices were fabricated on silicon wafers with a 500 nm layer of oxide

deposited on the surface. Using standard photolithography techniques a 16 electrode

patterned grid of 150 nm thick platinum is deposited using a negative photoresist

(AZ NLOF 2020), and a 5 nm wetting layer of either Cr or Ti. Liftoff occurs over

night in N-methyl-2-pyrrolidine (NMP) heated to 60◦C. Point contact electrodes

were isolated using an insulating layer of SU-8 (400 nm) which was soft baked

at 90◦C and developed in SU8 developer for 3 minutes and post exposure baked

at 180◦C for 30min. Again using AZ NLOF 2020 and UV light, a 300 nm layer

of copper was deposited via metal evaporation at 3nm/s and lifted off over night
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in NMP at 60◦C. Once top down fabrication was complete devices consisted of a

stack of Si/SiO2/Cr/Pt-electrodes/SU-8/Cu-posts fig. 5.2 and were stored in inert

atmosphere until the the fabrication of a silver nanoarchitecture [17, 74].

Each atomic switch network structure is unique and determined though the

bottom-up fabrication of metal cations. In this case, silver nanowires form through

an electroless deposition reaction involving the reduction of silver and the oxidation

of copper. When the silicon device described above was placed in a solution of

50mM of silver nitrate (AgNO3), the ordered copper posts (5x5 µm) direct a density

controlled formation silver nanowires. This self organized growth occurs along the

[111] axis of silver. This crystal assembly occurs according to the following reaction:

Cu0
(s) + 2Ag+

(aq) −→ 2Ag0
(s) + Cu2+

(aq) = 1.26 V

5.2.0.1 Characterization

UV-Vis The visible absorbance spectra of the thin films were measured on an

HP 8453 spectrophotometer to identify the characteristic absorbance peak of AgI

after functionalization.

XPS Five samples (Ag on glass control; 2 AgI (heated) on glass and 2 AgI

(ambient) on glass) were secured to a sample load bar via carbon tape. In order

to reduce charging effects, corners of the carbon tape were folded to make contact

with the silver layer of each sample. This study used an AXIS Ultra DLD XPS

instrument from Kratos Analytical, operated and maintained by the Molecular

Instrumentation Center at the Department of Chemistry and Biochemistry at
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UCLA. The X-ray source is Al K-alpha at 15kV. Survey and high-resolution scans

were taken with pass filters of 160 and 20, averaged out over 4 and 16 sweeps,

respectively. In order to reduce charging effects due to instrumentation issues,

corners of the carbon tape were folded to make contact with the silver layer of

each sample. All XPS spectra were then converted to a file type readable by the

CasaXPS analytical software.

5.2.0.2 Device Functionalization

ASNs function via metal-insulator-metal junctions, the skeletal architecture

of which is supplied by metal nanowires. In order to functionalize the devices,

an insulating material must be added. In the case of AgI ASNs, two insulating

methods were explored. The first relied on ambient temperature; the device was

placed in a sealed 100 mL container at room temperature with an iodine pellet

and stored in a dark room for 24 hours. The second method consisted of a heated

(30◦C) nitrogen atmosphere, while the device was suspended over a solid iodine

pellet for five minutes. Transparent thin films were iodized using the same two

methods outlined above for the ASN devices; ambient and heated.

5.2.1 Reservoir Computing

Reservoir Computing (RC) is a means of computing complex functions without

significant pre-training, using some dynamical system as a reservoir [25, 74]. By

passing a time-varying input through a dynamic reservoir that implements non-

linearities, different points on the reservoir are measured and linearly combined to

reproduce an arbitrary output signal. RC leverages material complexity towards

computational purposes; atomic switch networks are a natural candidate for this as
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Ag2S networks have demonstrated the requisite complexity in the past [70, 71]. In

this work, we used AgI networks as such a reservoir, and evaluated its potential for

RC in two contexts: logic operations and spoken digit recognition.

5.2.1.1 Logic Operations, Non-Temporal

Similar to our prior work with Ag2S devices [70], the device was exposed to

several temporal bit streams at once. Both temporal (time and memory dependent)

and non-temporal tasks were evaluated on the output. For these digital logic

experiments two electrodes carried input signals of +Vlogic or −Vlogic, representing

a logical 1 and 0, respectively. One electrode was set as ground (0 V) and used

to collect current. The remaining 13 electrodes were used to read voltage activity

from different points on the device; a linear combination of these readings was

used to derive all task performance metrics. A purely metal network set up in this

manner would only be capable of performing linear computations on the active

inputs. Meaning, any non-temporal linear computation would be possible in a

metal network, but temporal and non-linear computations would not be possible.

To demonstrate the value added by using the reservoir, results are presented

with three different readout modes. These readout modes indicate the pattern

of electrodes used for linearly regressing coefficients to predict a target function.

Note that all readouts were split into training and testing partitions. Regression

was performed on the training partition, and reported accuracy results were from

the testing partition. “I” indicates that only the voltages of the reservoir inputs

were used to regress readout coefficients. “I” mode is therefore equivalent to no

reservoir at all, while accounting for the same electrical noise seen in the other

readout modes. “N” indicates that the readout electrodes were used - that is, the
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traditional reservoir output. “R” indicates full-reservoir readout mode, where both

readout and input electrodes were used for the regression. “R” is important for

memristive devices as the network demonstrates predominately resistive behavior,

and therefore the output voltage is strongly correlated to the input voltage [79].

Providing the input readouts therefore allows the regression to more accurately

excise this correlation.

Following prior results on an Ag2S network [70], it was decided that the linear

readout coefficients in this work would be calculated only one time per scenario.

A sufficient number of training examples was found to stabilize the reservoir’s

behavior, and evaluating testing data on only a single array of readout coefficients

was found to be valid [70].

5.2.1.2 Logic Operations, Temporal

Temporal tests were carried out by regressing the reservoir readouts at a time

t = τ based on one input from t = τ and another at t = 0. That is, both inputs to

each logic function were part of the same temporal stream, and were τ inputs apart.

Readout modes “I” and “R” were used, though “I” only served as confirmation

that using only the inputs would result in a naive guess, as the current input would

never have correlation with a past input.

5.2.1.3 Spoken Digit Recognition

A more-complicated task with strong temporal needs, we evaluated ASN perfor-

mance on spoken digit recognition using digits from the Free Spoken Digit Dataset

(FSDD) (https://github.com/Jakobovski/free-spoken-digit-dataset). Similar to

prior reservoir efforts at recognizing spoken digits, such as Jalalvand [37], recogni-
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tion was not performed on the raw audio data but rather on the Mel-Frequency

Cepstrum Coefficients (MFCCs) of the data. Each 8 kHz wave-format sound file

from the FSDD was zero-padded up to a 1 s recording and then converted into

MFCCs using the “python speech features” Python package 1. Default settings

were used, resulting in an array of MFCCs where each 25 ms window of signal is

parameterized by 13 MFCCs. Windows were offset by 10 ms, resulting in 1287

total coefficients. To reduce device thrashing, and because our system did not

allow for 13 simultaneous inputs, we flattened the resulting MFCC array and fed

them to the network one at a time, such that the entire temporal sequence of the

lowest-frequency coefficent’s value is passed first, then the next-lowest-frequency

coefficient’s values across all windows, and so on. The resulting 1287 Hz signal was

sent to one electrode, another electrode was used as a ground, and the remaining 14

electrodes were measured. Both the input electrode and the 14 reading electrodes

were recorded at 1 kHz. For RC, the resulting voltage streams were sampled at the

end of sub-windows of computation, and the entire collection of sampled recordings

was linearly regressed to indicate which digit was spoken (see fig. 5.3). Due to

limited resources, we used 12 unique spoken digit recordings, characterized by two

speakers, saying three digits, two unique times. For reference with the FSDD, the

speakers were Jackson and Theo, the digits spoken were zero, one, or two, and we

used the first two instances of each of those pairings. As a baseline, regressions

were performed on only the input electrode’s voltage reading (“I” mode) as well as

on the full electrode suite of the input electrode and the 14 read electrodes (“R”

mode).

1https://python-speech-features.readthedocs.io/
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Figure 5.3: ASN input process used for spoken digits. Raw audio was broken
into overlapping windows, each of which was converted to 13 MFCCs. These were
arranged to minimize input thrashing for the ASN, and then passed as input to
a single electrode. The final prediction was based on a linear combination of the
remaining electrodes; see text for details.
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5.3 Results and Discussion

5.3.1 ASN Characterization

fig. 5.4 shows the visible absorption spectra of transparent Ag and AgI thin films

prepared by both methods. The transparent Ag thin films prepared by desktop

sputtering exhibited surface plasmon resonance (SPR), suggesting the presence of

silver islands within the thin films [10]. The results are in line with previous reports

which have demonstrated that silver exposed to iodine decreases SPR intensity

coupled with a buildup of excitons [10]. An absorbance peak around 420 nm has

been previously reported relating to the dipole-forbidden 4d10 − 4d95s transition

in Ag which is enabled by the Ag+ ion’s tetrahedral symmetry within the AgI

wurtzite structure yielding p-d hybridization. Method B’s longer exposure to iodine

yielded a red-shifted maximum, it has been postulated this may arise due to the

formation of larger AgI particles [72].

Kinetic studies of AgI formation have demonstrated that the reaction exhibits

a rate constant inversely proportional to temperature.It is postulated that this

effect arises due to higher reaction temperatures favoring the growth of β-AgI basal

planes parallel to the surface, creating a protective layer that hinders the diffusion

of iodine through the thin film. Reactions occurring below 146◦ favor the formation

of mixtures containing γ- and β-AgI; above this temperature, the more conductive

α-AgI crystals with mobile silver atoms are formed.

5.3.2 Logic Operations, Non-Temporal

For non-temporal logic operations, four functions were tested: IN0, IN1, AND,

and XOR. These were tested to recall each individual input, to compute a linear
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Figure 5.4: UV-Vis of silver thin films before and after iodization using ambient
and heated methods.

combination of those inputs, and to compute a non-linear combination of those

inputs. Four different electrode configurations were tested, with differing electrodes

chosen for ground and input electrodes.

Mean and standard deviation of accuracy for linear functions (IN0, IN1, AND)

across different frequency and voltage settings is shown in fig. 5.6. Statistics were

computed across different electrode combinations and logic functions - 12 trials

each. In general, recall was perfect - for “I” and “R” modes, this was unsurprising

as the original inputs were available with only minor electrical noise added. For

“N”, the 10 Hz experiment exhibited a minor loss in accuracy, likely due to noise. If

there were a connectivity issue in the network, it would have shown in the 5000 Hz

trial in addition to the 10 Hz trial.

The non-linear function XOR was tested similarly, and its aggregate mean and
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Figure 5.5: XPS spectra of silver-based devices exposed to (sample, red) or withheld
from (control, black) iodization procedure. Characteristic peak for iodide 3d5/2 at
a binding energy of 620 electron volts (eV) are absent in those devices withheld from
iodization. In contrast, this peak is present in those devices exposed to iodization
procedure and is consistent with previously reported spectra for metal iodides.
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Figure 5.6: Mean ± standard deviation of accuracy for different input frequencies,
input voltages, and regression modes, computed across different electrode combina-
tions and the linear logic functions IN0, IN1, and AND. I - inputs only. N - read
electrodes only. R - full reservoir readout.
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Figure 5.7: Identical layout as fig. 5.6, but showing statistics only for XOR to
demonstrate non-linear results. Statistics are therefore computed across electrode
combos, demonstrating the variability of choosing different input electrodes.

standard deviation is shown in fig. 5.7. Statistics are shown with respect to electrode

combos - 4 trials each. This function is indicative of the ASN’s abilities for reservoir

computations, as it demonstrates functionality beyond that of the linear regression

used for readouts. This may be seen by looking at the “I” mode of fig. 5.7: the linear

readout was incapable of accurately regressing the non-linear function. However,

both the “N” and “R” modes at 10 Hz were capable of outperforming a naive guess.

The “R” mode demonstrated superior results as expected (section 5.2.1.1). We note

that the 5000 Hz readouts are not quite as effective, likely because the switching

time of this network was too large compared to the input exposure time. This

is corroborated by 3 V performing better than 0.3 V: memristive switching times

are known to decrease as voltage increases [94]. The 10 Hz results did not exhibit

this problem, and netted 100 % accuracy on all logic functions across all electrode

combinations.
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Figure 5.8: Recall of the input from τ bits in the past. While 10 Hz only had
enough data to test up to τ = 4 prior bits, it demonstrated perfect recall. 5000 Hz
on the other hand demonstrated linearly-decaying recall, consistent with capacitive
or inductive effects.

5.3.3 Logic Operations, Temporal

The temporal capacity of the reservoir was tested by applying the four different

logic functions to bits in the input bitstream that were τ inputs apart. As non-

temporal and linear functionality has already been demonstrated in section 5.3.2,

we focus here on the ability of the ASN to recall an input from τ bits back, and

the ability of the ASN to XOR the current input with that previous input.

“I” mode (inputs only) was tested with all temporal functions. As expected,

performance was at the naive-guess baseline for all points. Thus these graphs were

omitted.

Recall is shown in fig. 5.8. Due to a limited memory buffer, the 10 Hz experiments

used an input sequence with a pattern length of only 5, making it impossible to

measure τ > 4. Nonetheless, the temporal fidelity of this ASN was very high.

Prior inputs could be recalled with perfect accuracy, far above the naive guess

baseline of 60 %. The 5000 Hz experiments were conducted with a much larger
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Figure 5.9: XOR between the current input and the input τ bits in the past. Like
fig. 5.8, 10 Hz demonstrated perfect accuracy. Unlike recall, this illustrates that the
prior results were stored in a non-linear manner, allowing for richer computations.
5000 Hz did not outperform the naive baseline, indicating slower input was required.

buffer, and so we show recall for τ ∈ 2{0,...,6}. The roughly exponential fall-off

observed indicates linear memory retention. Interestingly, the write voltage did

not make a significant difference. It is possible that what is being observed is an

inductive or capacitive effect rather than a less-volatile, long-term change in the

device. Comparing with the non-temporal XOR results from fig. 5.7, where voltage

made a significant difference, this may be further explained by pointing out that

recalling a prior result is a linear operation. As such, we suggest that 5000 Hz is too

quick for interesting temporal behavior to emerge. This is corroborated in fig. 5.9,

described next.

The temporal computation of XOR is shown in fig. 5.9. The perfect accuracy of

the 10 Hz experiments indicates that the temporal input sequence is preserved in a

non-linear manner when exposed at 10 Hz. We note that while the naive baseline

was 80 %, indicating that 4/5 of the input bit stream’s XOR operations had the

same result, the bit stream was exposed many times. That is, there were more than
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5 experiments conducted, giving significance to the perfect accuracy. In contrast,

the 5000 Hz experiments did not meaningfully surpass the naive guess baseline.

Had the 5000 Hz exposed each input for a sufficient amount of time to produce

non-volatile, non-linear behaviors, this would not have been the case.

5.3.4 Spoken Digit Recognition

As discussed in section 5.2.1.3, the FSDD digits were encoded as MFCCs and

passed to the network as a temporal sequence at 1287 Hz. Results are shown in

fig. 5.10. The “Input only” lines are consistent with readout mode “I”, and the

“Reservoir” lines are consistent with readout mode “R”. The target function was

regressed by dividing the measured electrode data into N segments and using the

last data point from each segment. For “Input only”, this means that N = 80

used 80 values in the regression. For “Reservoir”, this means that N = 80 used

80 × 15 = 1200 values in the regression. For the accuracy at each N , 12-fold

cross-validation was used with 11 of the audio files as training data the 12th audio

file as testing data. Each file was exposed to the device multiple times on a loop,

aggregating far more than twelve tests to compute the accuracy. Nonetheless, there

were only 12 unique data streams used. As a result, this problem suffered from

significant overfitting, indicated by the “I” results decreasing in accuracy as more

points were used for the regression. This overfitting manifested as significant noise

in the accuracy; N = 100 might give an accuracy as high as 100 %, while N = 101

would give an accuracy of 54 %. To account for this, the space of points N tested

was divided into windows of size 25, and the average and standard deviation of

accuracy within this window is shown in fig. 5.10. For instance, the mean and

standard deviation shown at N = 100 indicate the statistics for N ∈ {88, ..., 112}.
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Figure 5.10: Mean and standard deviation for tapping the temporal sequence of
spoken digit MFCCs at N different points, and regressing to identify the digit
spoken. This plot shows that the “R” readout method avoided overfitting and
provided some benefit over using the inputs directly (“I” mode). See section 5.3.4
for precise formulation of this plot.
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The main take-away of this experiment is that the reservoir lent stability to the

regression, seen by a lack of downturn in the “R” lines, and provided a moderate

benefit in accuracy, even before the input-only lines began overfitting. The lack of

overfitting on the “R” lines could be interpreted as a side-effect of the temporal,

non-linear properties of the reservoir. This is corroborated by the fact that the “R”

lines achieved higher accuracy than the “I” lines, a phenomenon that could not

be achieved without non-linear or temporal behavior. However, compared with

section 5.3.3, it is unclear if the 1287 Hz input signal used for digit identification

was slow enough to effect significant changes in the ASN. Another interpretation

could be that the stability was added as a means of noise reduction via combining.

Rather than relying on a stream of individual values, each of which has some noise

associated, the “R” readout mode could rely on 15 such streams. Assuming the

noise on each electrode is somewhat independent, averaging these channels could

significantly reduce noise.

5.4 Conclusion

A new material for ASNs was verified via XPS and UV-Vis as AgI. Using

lithographic techniques, an ordered multi-electrode array and patterned seed sites

were fabricated. These served as the foundation for bottom up growth of silver

nanowires which were successfully iodized to create a large number of MIM junctions

in a densely packed and interconnected network. To evaluate the potential for

computation, the network was given a series of voltage inputs to represent logic

tasks. In addition to this, a series of spoken digits were converted from audio to

varying voltage traces of different magnitudes and sent into the new AgI ASN. It
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was demonstrated that the ASN has perfect, non-linear temporal recall of a 10 Hz

binary signal. A 5 kHz signal was shown to change too rapidly to effect lasting

change in the ASN. For spoken digits, it was shown that processing the audio signal

with a AgI ASN improved accuracy and prevented overfitting. These experiments,

coupled with the relative ease and inexpense of the AgI fabrication process, showed

AgI to be a promising ASN material. As advancements in traditional computer

architectures slow, we believe that in-memory computing fabrics, such as the

ASNs demonstrated in this work, may provide inexpensive, efficient, and accurate

computational elements that replace some traditional computing hardware.
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Chapter 6

Two dimensional

electrophysiological

characterization of human

pluripotent stem cell-derived

cardiomyocyte system

Stem cell-derived cardiomyocytes provide a promising tool for human develop-

mental biology, regenerative therapies, disease modeling, and drug discovery. As

human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type,

close monitoring of electrophysiological maturation is critical for their further appli-

cation to biology and translation. However, to date, electrophysiological analyses of

stem cell-derived cardiomyocytes has largely been limited by biologically undefined

factors including 3D nature of embryoid body, sera from animals, and the feeder
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cells isolated from mouse. Large variability in the aforementioned systems leads

to uncontrollable and irreproducible results, making conclusive studies difficult.

In this report, a chemically-defined differentiation regimen and a monolayer cell

culture technique was combined with multielectrode arrays for accurate, real-time,

and flexible measurement of electrophysiological parameters in translation-ready

human cardiomyocytes. Consistent with their natural counterpart, amplitude and

dV/dt max of field potential progressively increased during the course of matura-

tion. Monolayer culture allowed for the identification of pacemaking cells using the

multielectrode array platform and thereby the estimation of conduction velocity,

which gradually increased during the differentiation of cardiomyocytes. Thus, the

electrophysiological maturation of the human pluripotent stem cell-derived car-

diomyocytes in our system recapitulates in vivo development. This system provides

a versatile biological tool to analyze human heart development, disease mechanisms,

and the efficacy/toxicity of chemicals.

6.1 Introduction

The potential of human pluripotent stem cells (hPSC) to self-renew indefinitely

and differentiate into virtually any cell type makes them a valuable cell source for

human developmental biology, cell-based regenerative therapy, disease modeling,

and drug discovery/assessment.[15, 32, 33, 80, 81, 86, 98] As the human heart is

the least regenerative of tissues, cardiomyocytes derived from human embryonic

stem cell/induced pluripotent stem cells (hESC/iPSC-CMs) provide a particularly

powerful biological tool.[2, 41, 47, 60, 61, 93] Differentiation protocols have evolved

over the years to allow for large-scale induction of human cardiomyocytes, and efforts
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have been made to induce further maturation of ESC/iPSC-CMs in vitro, with

tissue engineering approaches showing promising results.[54, 65, 89, 99] However,

the maturity of in vitro hESC/iPSC-CMs still remains fetal-type with limited

electromechanical properties. Unlike postnatal cardiomyocytes, hESC/iPSC-CMs

are proliferative [12, 58, 76, 89], but with immature sarcomere structure [12, 58, 76]

and Ca2+ handling properties.[19, 39, 40, 42, 89] Sarcolemmal-dependency of

calcium kinetics, negative force-frequency relation [42] and high maximum diastolic

potential demonstrate the functional immaturity of hESC/iPSC-CMs. Indeed,

contractile forces generated by hESC/iPSC-CMs are estimated to be less than

0.5–5% of cardiomyocytes isolated from the neonatal heart.[22, 55] Application

of external biophysical cues including mechanical force [89], electrical stimulation

[65], and matrix stiffness [2, 31] are promising approaches to induce the maturation

of hESC/iPSC-CMs. However, these approaches have yet to achieve sufficient

functionality to replace the damaged cardiomyocytes in the diseased heart.

Following the induction of the cardiac gene program during early embryogenesis,

cardiomyocytes undergo a remarkable maturation process to develop into struc-

turally and functionally competent cardiomyocytes during fetal stages, characterized

by the assembly of contractile proteins into myofibrillar structure, expression of

ion channels and gap junctions at the right location, organization of mitochondria

and SR along the myofibrils, etc. The study of late-stage cardiogenesis is transla-

tionally relevant, as most of the events leading to congenital heart anomalies occur

at later stages, and cell therapy requires functional cardiomyocytes with strong

contractile force. Although great progress has been made in studies of specification

and multilineage differentiation of cardiac progenitors, our understanding of the

cardiac maturation process remains primitive.[62] While the differentiation level of
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early cardiac progenitors is well defined by marker gene expression, the maturity of

cardiomyocytes at late developmental stages is relatively less reflected in the gene

expression pattern.[14, 50, 56, 96] Given that the biophysical cues are not only the

results but also the essential drivers of the cardiac maturation [2, 21, 23, 31, 68],

the electrophysiological properties of hESC/iPSC-CMs are critical parameters to

monitor.

Microelectrode arrays (MEAs) provide a highly sensitive, non-invasive method

to study the electrophysiology of cardiomyocytes with spatiotemporal resolution.

However, to date, the application of MEA to human cardiomyocytes has largely

been limited by biologically undefined factors including 3D nature of embryoid body,

sera from animals, and feeder cells isolated from mouse.[32] In this paper, using two-

dimensional monolayer cultures of hESC-CMs with media free of animal products,

we present a hybrid method for real-time measurement of electrophysiological

dynamics of human cardiogenesis that is compatible with existing MEA technologies.

Combination of hESC/iPSC-CM monolayer culture and the MEA system enables

accurate, real-time, and flexible measurement of electrophysiological characteristics,

thereby providing a versatile biological tool to analyze human heart development,

understand disease mechanism, and assess the efficacy and toxicity of drugs.

6.2 Results

Molecular and cellular characterization of hESC-CMs. H9 and UCLA4

hESCs were grown and differentiated as previously described [60] and plated as

a monolayer. To define the differentiation stages, marker gene expression was

serially profiled (fig. 6.1a). mRNA quantification suggests that mesodermal markers
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Figure 6.1: (a) mRNA relative expression over the time course of hESC differentia-
tion toward cardiac lineages. The value is standardized to the peak value of the time
points for each gene. (b) Immunofluorescent staining for α-actinin in red showing
over 90% are positive for α-actinin (scale bar = 100 um) (c) Morphological changes
in hESC-CMs over the time course. Representative optical images of hESC-CMs on
MEA on Day 20 and Day 35 (fluorescent staining: α-Actinin in green, nucleus in
blue, scale bar = 10 um). (d) mRNA relative expression by qPCR standardized to
the expression of day0 over the time course of cardiac differentiation/maturation.

Figure 6.2: (a) Microelectrode arrays (MEA) with 120 integrated TiN electrodes
(30 µm diameter, 200 µm interelectrode spacing) were used to culture the 2D
hESC-CMs. (b) Representative optical image of hESC-CMs on top of MEA. (c)
Field potential signals were detected in electrodes which are in touch with the
hESC-CMs.
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(Mesp1, Bry) were highest at day 2 (mesodermal precursor stage; MP stage).

Cardiac progenitor marker, ISL1, reached its peak at day 5 (cardiac progenitor

stage; CP stage). Spontaneous contraction starts at around day 7. By day 14,

major cardiac structural proteins, ion channels, and gap junctions became strongly

expressed (immature cardiomyocyte stage; CM stage). At this stage, 90% of the

cells were MF20 + cardiomyocytes with typical sarcomeric structures (fig. 6.1b).

hESC-CMs underwent further maturation after day 14 and became elongated and

oriented perpendicular to the lateral registration of sarcomeres by day 30 (fig. 6.1c).

α-actinin staining suggests that the Z-band becomes more aligned at later stages

(fig. 6.1c).

To examine the maturation level of late-stage hESC-CMs, the expression of

marker genes at day 14 and day 28 were examined. Cardiac maturation indices, such

as the subtype ratio of enzymes (CK-M/B) and metabolic indicators (GLUT4/1),

progressively increased (fig. 6.1d). However, the expression level of most contractile

proteins (TNNT2, TNNI3), gap junction genes (GJA 3), or ion channel genes

(HCN4) were not significantly upregulated in mRNA at day 28 compared to day 14

(fig. 6.1d). Therefore, the mRNA expression profile was highly distinctive at early

differentiation stages (days 2–14) but became less definitive at late maturation

stages (days 14–28).

Validation of MEA culture. Taking advantage of the monolayer differentia-

tion regimen, hESC-CMs were cultured on an MEA platform that enables real-time

(up to 40,000 samples/sec), simultaneous acquisition of 120-channels of spatially dis-

tributed electrical data from individual microelectrodes embedded in a cell culture

device (fig. 6.2a-c). Inadequate contact between cultured cells and the measurement

electrodes resulted in signal amplitudes less than a pre-defined signal-to-noise ratio
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Figure 6.3: (a) Field potential features such as beat interval, field potential duration,
amplitude, and local activation time (LAT) were extracted out of the signal
sequences. On average, 100 out of 120 channels were selected to calculate the beat
interval after the peak detection and experiments were performed in triplicate.
(b) The beat interval was stable up to day 28–30 with a beat interval around 2
s. Starting from day 28, the beat interval of hESC-CMs became unstable and
irregular. The standard deviation (δ) of beat interval agreed with the beat interval
trend. (c) The field potential duration (FPD) ranged from 0.2 s to 0.5 s and was
relatively stable throughout the differentiation process. (d) The corrected FPD (
= FPD/[beat interval/1000] 1/3 ; Fridericia’s formula) was also relatively stable
ranging from 0.2 to 0.3.
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(4), making them indistinguishable from the background noise of the measurement

system. Electrode channels in firm contact with the underlying cell monolayer

acquired clearly distinguishable local field potential signals (fig. 6.3a) that enabled

examination of hESC-CMs maturation at the electrophysiological level by monitor-

ing their steady and consistent beat signatures over 10 days when cultured on an

MEA plate. Regular beat intervals ranging from 2–4 s with standard deviations

below 0.0014 s (fig. 6.3b) and field potential durations (FPDs) of approximately

0.3–0.4 s were observed throughout the differentiation (fig. 6.3c). Corrected FPD

was also relatively stable (fig. 6.3d).

Monitoring the field potential of hESC/iPSC-CMs following chemical compound

administration has been reported and expected as a novel drug screening tool

for cardiotoxicity. To validate the assay system, response to pharmacological

interventions were examined by administration of canonical ion channel blockers

E4031, TTX (tetrodotoxin), and Nifedipine (fig. 6.4). Consistent with previous

reports [33], E4031, a K+̂ channel blocker, reduced the field potential amplitude

and the beat interval in a concentration-dependent manner but had no impact on

FPD (fig. 6.4a,d,g). TTX, a selective Na + channel blocker, induced an increase

in the beat interval even at a remarkably low concentration with a concurrent

trend of reduction in the amplitude and FPD (fig. 6.4b,e,h). Nifedipine, a Ca2̂+

channel blocker with negative inotropic and chronotropic effects, showed a mild

trend of reduction in the peak amplitude of field potential, a significant increase in

the beat interval, and decrease in FPD (fig. 6.4c,f,i), consistent with well-known

clinical observations. Previous reports using hESCs showed a decrease in beat

interval with Nifedipine.[27] These inconsistencies may be attributed to the specific

details of differentiation regimens, relative condition of the cells, or inter-cell line
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Figure 6.4: Peak mean amplitude (a–c) and mean beat interval (d–f) of field
potential of monolayer cardiomyocytes cultured in the presence of (a,d) E4031
(K+ channel blocker), (b,e) TTX (tetrodotoxin, Na+̂ channel blocker) and (c,f)
Nifedipine (Ca2̂+ channel blocker). p-values are calculated by one-way ANOVA.
Data are representative of at least 2 biological replicates.
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difference. The observed reduction in peak amplitude in response to E4031 was

deemed statistically significant based on a p value of less than 0.05 in an analysis of

variance (ANOVA). Trends observed for the reduction in peak amplitudes for TTX

and Nifedipine were found to be statistically insignificant. Trends, both increases

and decreases, in observed beat intervals for all three ion channel blockers were also

statistically significant according to their representative p-values. These results

suggest that our system facilitates an accurate and real-time measurement of the

electrophysiological activity of hESC-CMs.[27, 33]

Identification of pacemaking cells in the monolayer cardiac sheet. The

combination of a confluent layer of hESC-CM and the large microelectrode array

allowed for not only temporal, but also for spatial analysis of the electrical activity.

The field potential propagation was characterized using the phase difference of each

channel covered by the confluent layer of hESC-CM. fig. 6.5 shows representative

field potential propagation waves at varying cell age from day 18 to 25. The propa-

gating wave generates circular wave fronts. Analysis over a 20-minute recording

window showed a consistent propagation map, indicating that the pacemaking

source was stable (fig. 6.5a–d). However, the propagation map changed over days,

indicating that the pacemaking source was not completely fixed over a long period

(fig. 6.5e–h,i).

The electrical activity of hESC-CMs was initialized by a small group of pace-

making cells and propagated to the surrounding cardiomyocytes via gap junctions.

Assuming that the propagation waves originated from a point source, the contour

of the activation map was approximated by a circle. Although the position of

pacemaking cells may fall outside of the electrode array in the MEA platform (see

fig. 6.2), the location of pacemaking cells can be predicted using the radius of the
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Figure 6.5: Field potential propagation, pacemaking and conduction velocity of the
2D hESC-CMs. (a–h) shows a representative activation map from day 19, 20, 21, 22,
25, 26, 28, 29, respectively. The activation map was consistent over the 20-minute
recording window showing a stable pace making source, but the propagation map
changed over days. (i) On day 23, a contour graph of the propagation wave was
generated from the activation map. (j) The center of the propagation wavelet was
identified by fitting the wavelet with a circle. The origin of the circle represented
the location of the pacemaking cells. The pacemaking cells were located at the
edge of the MEA.
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Figure 6.6: (a) The field potential amplitude rapidly increased until day 23 and
declined at day 27. The turning point agreed with that of the beat interval. (b)
The field potential amplitude upstroke speed increased from 15.3 µV/ms at day
18 to 122.9 µV/ms at day 26 and declined at day 27. (c) Conduction velocity
was calculated at each day. There was an increment of conduction velocity as the
development of hESC-CMs. Results from two samples were consistent.

curvature of the field potential. For example, the coordinates of the pacemaking

cells shown in fig. 6.5j were (1.5, 9.7), at the edge of the MEA electrodes.

Characterization of cardiac maturity and conduction velocity. The

capacity to monitor spatiotemporally resolved local field potentials in real-time

provides a readout for maturation of hESC-CMs during differentiation. Consistent

with a previous study [56], the mean field potential amplitude increased rapidly (4–5

fold) up to day 26 (fig. 6.6a). Furthermore, the maximal field potential upstroke

(dV/dt max), indicative of the sodium channel activity, became progressively larger

as the hESC-CMs maturate (fig. 6.6b). During natural embryogenesis, cardiac

conduction velocity increases as the heart maturates, with neonatal and adult

cardiomyocytes showing 0.3 m/s and 1 m/s, respectively. To examine whether

conduction velocity increases during the maturation of hESC-CMs in this system,

the conduction speed was calculated by analyzing the signal traveling distance

and time lag. Analysis performed in both vertical and diagonal directions with

respect to the pseudo pacemaking region (fig. 6.6c) reveal a conduction speed at
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day 18 of approximately 35 mm/s. As the hESC-CMs maturated over subsequent

days, conduction velocities increased up to a maximum of 120mm/s at day 28,

a value indicative of functional immaturity relative to neonatal cardiomyocytes.

Field potential amplitude, upstroke and conduction velocity were determined to be

statistically significant based on p-values ¡ 0.05 determined via ANOVA. In contrast

to commonly utilized molecular signatures, electrophysiological parameters showed

a clear progression of cardiac maturity during the differentiation stages between

days 14 to 26. Thus, the combination of the monolayer culture platform and MEA

facilitates comprehensive monitoring of the electrophysiological maturation process

of hESC-CMs.

6.3 Discussion

The integration of a chemically-defined differentiation regimen with a monolayer

culture of human pluripotent stem cell-derived cardiomyocytes and electrophysio-

logical measurement on an MEA platform provides a direct method to examine

the spatiotemporal dynamics of the electromechanical maturation in human car-

diomyocytes. Stem cell derived cardiomyocytes provide a powerful tool for human

developmental biology, regenerative therapies, disease modeling, and drug discovery.

However, the utility of MEA for the hESC/iPSC-CMs has been largely limited to

disease modeling and drug assessment.[3, 11, 15, 20, 28, 46, 63, 67, 90] The mono-

layer culture method described here overcomes technical problems associated with

the utilization of conventional 3D embryoid bodies, namely large inter-experiment

variability due to inconsistency in their size, quality, and attachment to MEA sur-

face. In addition, the use of animal sera and feeder cells often introduce additional
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variables to differentiation efficiency and functionality. Our chemically-defined

regimen serves to further minimize experiment-to-experiment variability.[60] In

combination, our system enables the monitoring of electric signals over weeks

from cells in direct contact with electrodes, identification of pacemaking cells,

and performance of computational analyses of localized voltage-type signal and

position-dependent properties of electrical activity.

Utilization of this system has enabled a direct characterization of electrophysi-

ological maturation in hESC-CMs. During the natural embryonic cardiogenesis,

action potential amplitude, action potential upstroke, conduction velocity, and heart

rate gradually increase as the fetal cardiomyocytes maturate. In vitro differentiation

of pluripotent stem cells recapitulates the natural developmental process. Our data

suggest that hESC-CM differentiation shows the same trend of electrophysiological

properties including field potential amplitude, dV/dt max, and conduction velocity.

Even though our differentiation protocol is ‘directed’ toward the cardiac lineage,

the differentiation of hESC-CMs follows the same developmental process at genetic

and electrophysiological levels. Of note, the electrophysiological parameters show a

progressive increase in the field potential amplitude, dV/dt, and conduction velocity

(fig. 6.6), while typical cardiac markers including TNNT2 and TNN13 do not show

significant differences after day 14 (fig. 6.1). Therefore, electrophysiological param-

eters appear to be more sensitive indicators for the assessment of cardiomyocyte

maturity than genetic parameters. Although our monolayer hESC-CMs display

robust beating, the electrophysiological parameters indicate that monolayer hESC-

CMs are less differentiated than cardiomyocytes generated via 3D embryoid bodies.

For example, previous reports show dV/dt max of 2 V/second or higher.[44, 57] The

relative immaturity of hESC-CMs may be in part because the monolayer condition
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is less physiological than the 3D environment. Possibly due to the immaturity or

to the spatial resolution of electrode array, the wave fronts were not reorganized

from circular to oval pattern as hESC-CMs differentiate. These limitations should

be considered when applying the monolayer hESC-CM MEA system to analyses

of human developmental biology, patient-specific disease mechanisms and drug

discovery/assessment.

Looking ahead, the availability of high-throughput measurement platforms

has proven to be highly advantageous in basic and translational research. High-

throughput optical readouts using voltage dyes, calcium dyes, or their combinations

have demonstrated the utility of hESC/iPSC-CMs as a model system for such

methods.[7, 33] While our current system configuration cannot be directly utilized

in high-throughput analysis, there is no fundamental barrier that precludes the

development of such capabilities. In fact, monolayer culture facilitates the basic

molecular and cell biology techniques including lipofection, viral infection, and

microscopic observation in combination with the electrophysiological analyses

described here. Further, when considering the reproducibility and the versatility of

the MEA platform coupled with 90% cardiac efficiency in our monolayer culture, the

development of high-throughput electrophysiological readouts represents a promising

research direction. The accurate, real-time, and flexible method demonstrated in

this study sets a new standard for electrophysiological analyses of hESC/iPSC-CMs

with broad applicability in stem cell biology.
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6.4 Methods

Microelectrode array measurements. hESC-CMs were maintained and

differentiated as previously described.[60] At 16 days of age hESC-CMs were

plated on uncoated, microelectrode arrays (MEAs) containing 120 integrated TiN

electrodes (30 µm diameter, 200 µm interelectrode spacing). The MEAs were

placed in an incubator with a temperature of 37◦C and 5% CO2. Two days were

given to ensure the cardiomyocytes were well attached to the MEA. Recording

commenced at a cell age of 18 days. Local field potentials at each electrode were

collected over a period of 20 minutes, twice a day, and 3 weeks in total with a

sampling rate of 1 kHz using the MEA2100-HS120 system (Multichannel systems,

Reutlingen, Germany). The chemical compounds used herein were purchased from

Tocris (E4031), Fisher Scientific (TTX) and Sigma-Aldrich (Nifedipine).

Peak detection. Determining the amplitude, frequency, and conduction ve-

locity of cardiomyocyte activity required reliable assignment of peaks in the local

field potential signal for all 120 channels. The Matlab function ‘findpeaks’ was

used with tunable parameters ‘minpeakheight’ and ‘minpeakdistance’ to reliably

determine signal peaks. Setting the ‘minpeakheight’ as 16 µV defined a minimum

signal-to-noise ratio of 4 considering the noise level in the MEA system was ± 8 µV.

The ‘minpeakdistance’ was set as 1000 ms, which was based on the experimental

observation that cardiomyocytes were beating at a frequency smaller than 1 Hz.

Beat interval. The beat interval was measured as the peak-to-peak time dif-

ference from the beat amplitude assignments for each channel. After implementing

peak detection as described above, the beat interval and standard deviation were

collected for all channels. Unsynchronized and/or significantly noisy electrodes

excluded from analysis were those with standard deviations that fell outside of 10%
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of the median standard deviation from all channels. The mean of the beat interval

± STD was calculated from all channels within this threshold. Analyses of the

field potential propagation. Time differences in the rhythmic local field potential

collected from 120 electrodes were quantified by dividing the complete data set for

each day into a sequence of segments (typically 30 s, each). Peak detection was

used to identify active channels. Cross correlation of the acquired signals from each

active channel with respect to a pre-chosen reference electrode provided the time

lag of each electrode with respect to the reference electrode. The time lags were

then normalized between 1 and 0, representing the pace leader and last follower,

respectively.

Identification of pacemaking cells. The pacemaking cells sometimes fall

outside the region of the MEA electrode area. Assuming the whole cardiomyocyte

culture had only one cluster of pacemaking cells and the pace-generating signal

propagated like a wave, the position of the pacemaking cells can be extrapolated

based on the partial propagation waveform that was detected in the MEA electrode

area. Compared to the localized pacemaking cells, a contour plot of propagation

time at each channel within the MEA electrode area was shown. Each archer-shape

line had the same propagation time. A circle was fitted to the archer-shape line and

the origin of the circle represented the location of the pacemaking cells. A Matlab

circle fit module developed by Izhak Bucher was adopted in the above process.

Conduction speed analysis. Conduction speed was defined as the velocity of

the field potential propagation across the MEA surface. The time for each electrical

beat was found through the peak detection analysis described previously. The time

lag and distance of each channel with respect to the pacemaking cells (earliest

beat identified from the 120 channels) was calculated. The conduction speed at
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each channel was therefore calculated. Conduction speed in both the vertical and

diagonal direction was shown in fig. 6.6c. To calculate the average conduction speed

for each recording period, the conduction speed was averaged in both 120 channels

and the 20-minute recording period. Results from a cell age of 18 days to 25 days

were shown in fig. 6.6.
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Chapter 7

Conclusions

Neuromorphic atomic switch networks have been fabricated in 16 and 128

electrode configurations. These devices consist of highly ordered top-down methods

combined with density directed bottom-up methods, the combination of which falls

into the realm of nanoarchitectonic design. Resulting silver networks consist of long

and short-range nanowire to microwire connections with up to 108/cm2 junctions

that once insulated hold the potential for atomic switch formation. Insulating

materials used were either sulfur or iodine, differences of which are touched up in

5. These chips present an alternative hardware solution that circumvents not only

the packing density limitations of Moore’s Law, but also the information transfer

lag-time known as the Von Neumann Bottleneck.

As such, atomic switch networks have been evaluated within the context of

computing. Specifically, they have been described with respect to unconventional,

alternative, or natural computing. These areas of computing emphasize computing

inspired by nature, simulation of nature by computing, and computing with natural

materials. Brain inspired neural networks fall into these categories, as does the
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physical implementation of a microchip structured similarly to the mammalian

brain. The ASNs described herein have been most suited for use as a reservoir in a

recurrent neural network, for reservoir computing. Reservoir computing is inherently

temporal in nature and has many benefits such as fault-tolerance, non-linearity, and

learning all without the need for pre-training within the network.[92] Classically

reservoir computing was implemented in a basin of water, and has since gained

popularity in photonics. Research towards ASN RC efforts included evaluation

of network dynamics, non-linear transformations, power spectral densities, and

benchmark tasks. One benchmark was to evaluate the network in linear and non-

linear logic tasks. As expected, low voltages that perturb the reservoir network

less are better at linear logic (AND, OR) while higher voltages excited the network

much more and performed better at non-linear XOR task. It should be noted

that the future of reservoir computing lies within solving complex problems, not

recreating standard computers which excel at linear logic.

With the growing complexity of our world comes an increase in complex adaptive

systems (CAS). Being able to model the evolution of patterns and cascading effects

of non-linear dynamical systems holds potential anywhere complex behavior emerges.

Examples of which include the internet, economics, ecosystems, and genetics, just

to name a few. A case for Atomic Switch Networks (ASNs) as a complex adaptive

system was made, calling attention to power law slopes and evidence for edge of

criticality operations. Spatially distributed non-linear responses were shown in Vin

vs. Vout plots to illustrate the dynamics of ASNs 4. These properties include a

large repertoire of outputs signals which can be described by phase shifts, and

non-linear transformations of the input signal. The ASN was pushed to produce

persistent critical dynamics between two states via a current controlled feedback
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loop, in not only current, but also in voltage. Control over a critical network holds

potential for the modeling of a wide array of CAS systems.

Atomic switch networks function as complex systems which transform data into

higher dimensional space. Differences in switching speeds and memory retention

for materials provide the potential for further studies. Once a larger data base for

temporal and spatial behavior exists, the commercialization of such systems as

chips for nonlinear, stochastic prediction, or pattern classification problem solving is

inevitable. At this point, the slower switching speeds of AgI lend a higher accuracy

for the use of linear regression algorithms consisting of a training and testing period.

The classically studied Ag2S not only takes longer to insulate and thus functionalize,

but also has less reliable switching behavior. That is not to say that there will be

no feasible application of such a speedy, stochastically switching system. Again,

I must stress the importance of archiving the properties of different materials for

these purposes, of which the work herein explored only two. Additionally, multiple

networks in varying configurations ought to be studied as modeling and theory

suggests these would excel at complex problem solving. The brain is a 3D network

which has compartmentalized areas that are still highly interconnected allowing

for quick information transfer and temporal processing. In order to reach the next

level of complexity a well thought out combination of neuromorphic chips, CMOS,

and software holds incredible potential for the future of computing.
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