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Abstract

The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central
problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on
linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a
serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge
this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration
among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of
kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the
assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric
perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic
alleles, applicable under broad conditions.
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Introduction

The evolution of cooperation and altruism are fundamental

scientific challenges highlighted by their role in the major

transitions in life’s history, when natural selection acted simulta-

neously on several competing levels [1–8]. In this context, the

relevance of basic concepts, including group selection and

Hamilton’s rule remain controversial [9–18]. Here we address

these problems by studying a framework for evolution in group

structured populations that incorporates inter- and intra-group

competition and migration. Combining group-centric with gene-

centric perspectives in a constructive group/kin selection ap-

proach, we build methodology that allows for the analysis of

arbitrary non-linear fitness functions, resulting from complex

multi-individual interactions across life cycles. We obtain the

conditions for a rare social allele to invade the population. This is

obtained in a mathematically rigorous way, by analyzing the

stability of the equilibrium in which this allele is absent. This

analysis is done for arbitrary strength of selection, but when

selection is weak and groups are large the condition for invasion

simplifies significantly into a form that is easy to apply and

provides substantial intuition. In the case of linear fitness functions,

the condition for invasion is identical to Hamilton’s rule, and it is

natural to regard the more general non-linear cases as general-

izations of that rule. Our results also show that one of the most

widely used approaches to analyzing kin selection models, [19],

[7](condition (6.7)), and [16](Box 6), yields incorrect results in

some biologically relevant situations.

Our results reveal conditions that are biologically realistic and

under which altruism can evolve when rare even with modest

genetic relatedness in groups, without kin recognition or green-

beard effects (the altruistic acts benefit all group members equally).

In this way we challenge a common understanding according to

which inter-group selection favoring altruism could only override

intra-group selection favoring selfishness under exceptional

conditions, namely small group size and very low migration rates

[13,17,20–28]. The issue is illustrated by quoting from the recent

review [13], p.12: ‘‘For group selection to overcome selection

within groups, less than one succesfully reproducing migrant may

be exchanged per two populations per population lifetime.’’ The

fact that this idea is still incorporated in mainstream evolutionary

biology is illustrated by the theoretical considerations on pp. 11, 12

of the influential recent textbook [29], where one reads: ‘‘[…] for

group selection to work populations must be isolated, such that

individuals cannot migrate among them. Otherwise there would

be nothing to stop the migration of selfish individuals […]. Once

selfish individuals arrive, their genotype would soon spread. In

nature groups are rarely isolated sufficiently to prevent such

immigration.’’

We identify the emphasis on linear public goods games in the

literature, including most of the papers quoted in the previous

paragraph, as having supported this belief in exceptionality. For

these games, the condition for altruism to proliferate is Hamilton’s

classical rule, requiring the relatedness in groups to exceed the

ratio of cost to benefit for each altruistic act. Therefore, in this

setting, altruism can only spread when either relatedness is large,

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e72043



or the cost/benefit ratio is low. And since relatedness is often low

[28] (Table 8.3), [30], [31] (Tables 6.4 and 6.5), [32], [33] (Table

4.9), exceptionally low cost/benefit ratios are required, as observed

for instance in [34]. In the absence of reasons to expect low cost/

benefit ratios to be common, researchers whose intuition is molded

by the linear public goods game are naturally led to the belief that

altruism could only spread through population viscosity in

exceptional cases.

In contrast, we show that for iterated public goods games, in

which altruists cooperate or not in each round based on previous

outcomes [35,36], altruism can spread even when cost/benefit

ratios for each altruistic act are reasonably high, groups are large,

selection is weak and migration rates are substantially larger than

the inverse of group size (high gene flow, realistically low

relatedness). This result corrects [36], who predicted that large

group size would not allow cooperation to spread when rare in this

model. For species that live in groups, several vital group activities

repeat themselves periodically and behavior changes as feedback is

obtained from previous iterations. The iterated public goods game

that we study is therefore often more realistic than a simple one

shot public goods game. A proper analysis of this model fills

therefore an important gap in the literature. (To illustrate the fact

that the incorrect conclusion from [36] is still incorporated in the

literature, we refer the reader to, e.g., Section 4.5 of the textbook

[37] and p. 359 of the very recent textbook [29]).

To obtain our result in the case of weak selection and large

groups we show that in the absence of selection, when groups are

large, the fraction of group members that are close relatives of a

randomly chosen individual has a non-Gaussian distribution with

a fatter tail. As a consequence, even when altruistic alleles are rare

in the population, they have a significant probability of

concentrating in some groups, accruing substantial reproductive

gains through multi-individual synergy.

The Two-Level Fisher-Wright Framework
When members of a species live in groups, their reproductive

success depends on the behavior of all group members. More

efficient groups may grow faster and split, outcompeting the less

efficient ones that die out. On the other hand, individuals may free

ride on the cooperation of other members of their group, and in

this way outcompete them. This picture is further complicated by

migration among groups. The Two-level Fisher-Wright framework with

selection and migration (2lFW) captures all these elements, in a

simplified fashion. (In the last two paragraphs of this section we

explain how it relates to the trait group framework and budding-

viscosity models.) In 2lFW haploid individuals live in a large

number g of groups of size n, and are of two genetically

determined phenotypic types, A or N. Generations do not overlap,

reproduction is asexual and the type is inherited by the offspring

(mutations will be considered briefly later). The relative fitness (w)

of a type A, and that of a type N, in a group that has k types A,

are, respectively, wA
k ~1zdvA

k and wN
k ~1zdvN

k , with the

convention that vN
0 ~0, i.e., wN

0 ~1. The quantities vA
k and vN

k

represent life-cycle payoffs derived from behavior, physiology, etc.

The parameter d§0 indicates the strength of selection. Figure 1

describes the creation of a new generation in the 2lFW through

inter- and intra- group competition, followed by migration at rate

m.

Cases in which types A behave in some altruistic fashion are of

particular interest [38]. Most of the literature concerns the very

special case of a linear public goods game (PG), defined by

vA
k ~

k{1

n{1
B{C,

vN
k ~

k

n{1
B,

with 0vCvB, in which each type A cooperates, at a cost C to

herself, providing a benefit B shared by the other members of her

group. The need to consider more complex intra-group interac-

tions and non-linear payoff functions is, nevertheless, well known

[10,14,30,35,36,39–49]. Non-linearities appear naturally whenev-

er activities involve many group members simultaneously. They

result from threshold phenomena, increasing returns to scale,

saturation, etc. For instance, to hunt large prey may require a

large minimum number of hunters, the likelihood of success may

first increase rapidly with the number of hunters, but it may

plateau when this number becomes very large. Allowing for the

analysis of such synergistic multi-individual interactions and

activities is a central feature of our approach, distinguishing it

from theoretical frameworks based on pairwise interactions, or

single actors benefiting a group [4,50,51].

The 2lFW framework can be seen as a generalization of the

trait-group framework (see Sec. 2.3.2 of [5]), which corresponds to

the case m~1. One can interpret 1{m as a viscosity, or an

assortment parameter. Because migration is completely random in

2lFW, this assortment represents a worst case scenario, abstracting

away additional assortment caused by kin recognition, greenbeard

effects, selective acceptance of migrants, joint migration of

individuals, etc. We notice that, according to [52], the 2lFW can

be classified as a Type II group selection model, as the intergroup

competition component qualifies as an explicit group level event

that is absent in a trait-group model. It is well known [35,36,43]

that even when m~1 non-linearities in fitness functions allow for

coexistence of cooperators and defectors. But under the strong

altruism condition vA
kz1vvN

k (meaning that each type A would be

better off mutating into a type N), this is not the case [38,53]. One

of our goals is to determine the level of migration compatible with

invasion by rare strong altruists.

The model with the population structure of 2lFW and PG

payoffs was studied in [54] with the name ‘‘budding-viscosity

model’’. But, as the authors explained on p.1714, this name may

not be appropriate in some applications. We propose the name

‘‘two-level Fisher-Wright framework with selection and migration’’

to denote a mathematical structure applicable to several demo-

graphic/reproductive biological systems, including group fission-

ing and budding, and admitting arbitrary payoff functions. This

name also emphasizes that selection occurs at the individual and

the group levels. In [54] motivation for the population structure is

discussed in detail, references to previous work leading to it are

provided (notably [55]) and an explanation of how it allows

viscosity to increase relatedness without increasing in the same

measure the competition among relatives (as is the case in an

island model with inelastic group size [56]) is presented. The

analysis in [54] relied on the assumptions of PG payoffs and weak

selection (dvv1). The paper [57] provides an alternative analysis,

which depends on the same strong assumptions, in the section

called ‘‘typical kin selection model’’. This paper was a response to

[58], where group selection was argued to be an important

mechanism for the evolution of cooperation, and a multilevel

selection model based on Moran’s model was introduced. In [57]

it was argued that kin selection is a better tool for studying

evolution in group structured populations. In the context of this

Altruism Can Proliferate despite High Gene Flow
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debate, our analysis of 2lFW with non-linear fitness functions

highlights the importance of combining group-centric with gene-

centric perspectives, and shows that group selection can be an

important force in evolution under realistic conditions. It also

shows that mathematically rigorous analysis can be carried out, to

a large extent, even when selection is strong, fitness functions are

non-linear and migration rates are arbitrary. And it shows that one

has to be very careful in applying mathematically non-rigorous

methodology, as it can produce substantially incorrect results, even

when selection is weak. We will see this when we observe that

methods based on the approximation of regression coefficients by

partial derivatives lead to such incorrect results in important

examples.

Results

A Basic Example: Iterated Public Goods Game
Non-linearities in life-cycle payoffs can result from activities

repeating themselves during a lifetime, and behavior being

contingent on previous outcomes. A basic example is the iterated

public goods game (IPG) [35,36]. In IPG a PG is repeated an

average of T times in a life-cycle. We will suppose that types N

never cooperate, while types A cooperate in the first round and

later cooperate only if at least a fraction a of group members

cooperated in the previous round. The payoffs (see Figure S1 in

File S1) are, therefore, given by

vA
k ~

k{1

n{1
B{C, if

k

n
v a ,

T
k{1

n{1
B{C

� �
, if

k

n
§ a ,

8>><
>>:

vN
k ~

k

n{1
B, if

k

n
v a ,

T
k

n{1
B, if

k

n
§ a ,

8>><
>>:

for constants 0vCvB, T§1 and 0ƒaƒ1 (C and B are costs

and benefits in each iteration). Mathematically, this model

generalizes the iterated prisoner dilemma and tit-for-tat, from

the dyadic setting of [59] and [60] to the multi-individual setting.

But while direct or indirect reciprocity requires the identification

of individuals in the group, this is not the case here. The behavior

of types A in the IPG can be triggered by individuals simply

discontinuing cooperative behavior when previous cooperation

produced negative feedback to them, for instance, when they

received a negative payoff. In other words, allele A can predispose

individuals to cooperate, but as they do it and obtain feedback

from that behavior, they may continue it or discontinue it. The

IPG is in this sense closely related to generalized reciprocity

mechanisms [61,62] with low cognitive requirements. (In gener-

alized reciprocity models individuals interact in pairs, and

generalized reciprocators help any other member of the group,

but only in the first iteration, or when they were helped by some

group member in the previous iteration. In contrast, in the IPG

the actions involve several individuals simultaneously, but as in

generalized reciprocity, individuals react to their own previous

experience, without having to remember who did what.) Negative

feedback from cooperation should occur if the fraction of group

members that cooperated was less than C=B, but not if it was

larger than that threshold, since in the former case the payoff to a

cooperator is negative, while in the latter case it is positive. This

gives a special role to the value a~C=B.

When are types A altruistic in the IPG? There is more than one

way in which the concept of altruism in the context of the trait-

group framework has been defined [38]. These different defini-

tions carry over to the 2lFW. A particularly simple concept is

called in [38] the ‘‘multilevel interpretation’’ of altruism. That

definition requires the two conditions wA
k vwN

k , for all k, and �wwk

increasing in k. The first one means that types A are always worse

off than types N in the same group, and the second one means that

the more types A in a group, the better for the group. Both

conditions are clearly always satisfied in the IPG.

There are nevertheless good arguments for considering other

definitions of altruism [38]. A particularly appealing definition is

Figure 1. Diagram of the 2lFW process. (Left) FW intergroup competition: Each group in the new generation independently descends from

a group in the previous generation, with probabilities proportional to group average fitness �wwk~
kwA

k z(n{k)wN
k

n
: (Center) FW Intragroup

competition: If a group descends from a group with k types A, then it will have i types A with probability P(k,i)~bin(iDn,kwA
k =n�wwk), where the

binomial probability bin(iDn,q) is the probability of i successes in n independent trials, each with probability q of success. (Right) Migration: Once
the new g groups have been formed according to the two-level competition process, a random fraction m of the individuals migrates. Migrants are
randomly shuffled. Note: The assignment of relative fitness to the groups in the fashion done above is a necessary and sufficient condition [68] for
individuals in the parental generation to have each an expected number of offspring proportional to their personal relative fitness.
doi:10.1371/journal.pone.0072043.g001

Altruism Can Proliferate despite High Gene Flow
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called ‘‘focal-complement interpretation’’ in [38], and is often

known as ‘‘mutation condition’’, or ‘‘strong altruism’’. Suppose

that a type N mutated into a type A, everything else remaining

unchanged. Would this cause a decrease in the fitness of the

mutant? Would it cause an increase in the average fitness of the

other members of the mutant’s group? Since the average fitness of

the n members of the mutant’s group increases with the mutation,

the answer to the second question will be affirmative whenever the

answer to the first question is affirmative. Therefore the condition

for types A to be strongly altruistic is that vA
kz1{vN

k v 0 for all k.

In File S1 (Section S8, last subsection) this condition is shown to be

satisfied when aƒC=B and to fail otherwise.

To sum up, if aƒC=B, the behavior of types A is altruistic in

the strong sense that each type A individual would increase its

fitness if it behaved as a type N, everything else being equal, i.e.,

vA
kz1vvN

k . Moreover, types N always free ride and have greater

fitness than types A in the same group, regardless of the values of a

and T , i.e., vA
k vvN

k .

Figure 2 displays a detailed analysis of some instances of the

IPG, giving conditions for allele A to spread when rare (In this

figure, a~C=B, so that, in particular, types A are strongly

altruistic). For many species that live and interact in groups for

many years, several vital activities, including collective hunting

and food sharing, can repeat themselves hundreds or thousands of

times in a life-cycle, giving plausibility to the values of T in

Figure 2. The assumption that individuals discontinue behavior

after a single unsuccessful participation is a simplification. When

this is not a realistic assumption, we can, however, interpret the

parameter T as the ratio between the typical number of repetitions

of the activity and the typical number of unsuccessful attempts

before cooperation is discontinued by a type A.

Panel C, in which selection is weak and groups are large, shows

two important contrasting results. When T~1, and the IPG is

identical to the PG, allele A can only invade under Hamilton’s

condition R~FSTwC=B. But as T increases, the level of

relatedness needed for invasion drops substantially, so that for

modest values of B=C, allele A can invade under R~FST

significantly lower than 10%, compatible with levels observed in

several species, including humans [28] (Table 8.3), [30], [31]

(Tables 6.4 and 6.5), [32], [33] (Table 4.9). The corresponding

number of migrants per group per generation, nm~(1{R)=(2R),
can be of the order of 10. Further examples showing the spread of

altruism and cooperation under high levels of gene flow and low

levels of relatedness are provided in Figure S5, S6, S7 and S8, S20

and S21 in File S1.

The 2-player iterated prisoner dilemma has been analysed in

detail in the literature, as reviewed, for instance in Chapter 4 of

[37]. In this setting, when types N are defectors and types A play

tit-for-tat, types A will not be able to invade when rare, if

assortment is random (because then they are typically paired with

defectors and lose in fitness to those by cooperating in the first

iteration). A very modest level of relatedness is nevertheless

sufficient to allow tit-for-tat to proliferate when rare, as computed

in Section 4.1.2 of [37]. Our computations here provide similar

results for the n-player iterated public goods game and correct the

computations in Section 4.5.1 of that text, which had indicated

that types A would require very high levels of relatedness to

invade. In File S1 (Section S8, next to last subsection), we explain

in detail what assumption in [36], reproduced in [37], led to that

incorrect conclusion.

It is important to also emphasize a relevant difference between

tit-for-tat in 2-player iterated prisoner’s dilemmas and types A with

aƒC=B in n-player public goods games (as in Figure 2). The

former can proliferate under random assortment provided that

initially they are not very rare. This is so because, when common,

tit-for-tat is not altruistic; cooperation in each iteration assures

continuation of cooperation, and in the long run benefits the

cooperator. In contrast, the latter is strongly altruistic in the sense

that vA
kz1vvN

k and therefore never proliferates under random

assortment ([53], reviewed in [38]). In other words, while 2-player

reciprocity is sometimes not altruistic, but rather cooperative, the

behavior of types A that we are studying in Figure 2, is genuinely

altruistic rather than simply cooperative.

Condition for Invasion Under Strong Selection
To analyze the 2lFW, denote by fk(t), k~0,:::,n the fraction of

groups in generation t that have exactly k types A. Denote by

p(t)~
Pn

k~1 (k=n)fk(t) the frequency of types A in the population.

The state of the population in generation t is described by the

vector f (t)~(f1(t),:::,fn(t)), since f0(t)~1{
Pn

k~1 fk(t). We will

suppose that g&n, so that, by the law of large numbers, f (t)
evolves as a deterministic (non-linear) dynamical system in

dimension n. Here we will study its linearization close to the fixed

point (0,:::,0), with no types A. This means that we are restricting

Figure 2. Iterated public goods game (IPG). A public goods game
(PG) is repeated an average of T times in a life-cycle. In each round each
individual can cooperate at a cost C to herself, producing a benefit B
shared by the other members of the group. Types N never cooperate,
while types A cooperate in the first round and later cooperate only if at
least a fraction a of group members cooperated in the previous round.
In all panels a~C=B (types A are strongly altruistic) and curves
correspond to T~1 (black, this case is identical to PG), 10 (blue), 100
(magenta), 1000 (green) (bottom to top in Panel A, top to bottom in
Panels B and C). Panel A: C~1, B~3, n~50. Curves give the critical
migration rate ms below which types A proliferate when rare, and that
solves r(ms)~1, or equivalently Dp~0 in (1). (The subscript ‘s’ stands
for ‘survival’.) The dependence of ms on the strength of selection d
indicates the relevance of studying both weak and strong selection.
Short horizontal red lines indicate value of ms under weak selection,
obtained from setting Dp~0 in (2) (note the excellent agreement).
Panel B: Again, C~1, B~3, n~50. Curves give the critical relatedness

R0
s ~R0(ms) above which types A proliferate. Here R0(m)~(1{m)2=

(n{(n{1)(1{m)2)&1=(1z2nm) is the relatedness obtained from
neutral genetic markers. Short horizontal red lines are again from
Dp~0 in (2). Panel C: Limit of large n under weak selection. Critical
values of relatedness R~FST~1=(1z2nm), as function of C=B. Solid lines

provide the solution to the equation C=B{R~(T{1)R(1{C=B)1=R

derived from setting Dp~0 in (3). Dashed lines give its approximation (5).
Red vertical line corresponds to C=B~1=3, while horizontal red lines are
at the same level of those from Panel B. Their intersections illustrate the
fact that both the solid and dashed lines in Panel C are good
approximations to weak-selection values of critical relatedness, R0

s , when
n~50.
doi:10.1371/journal.pone.0072043.g002
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ourselves to the case in which p%1, and studying the conditions

for allele A to invade the population when rare. With the notation

introduced in Fig. 1, we have then f (tz1)~f (t)Md(AzB),
where

Md
k,i~�wwkP(k,i)~�wwkbin iDn,

kwA
k

n�wwk

� �
,

Ai,j~bin(jDi,1{m),

Bi,j~imdj,1,

where bin(iDn,q) represents the binomial distribution with n trials

with probability of success q and we use the standard Kronecker

notation di,j~1 if j~i and dj,i~0 if ji. Matrix Md represents the

production of groups in the new generation, through the two-level

competition, prior to migration. Matrix A represents the effect of

types A migrating out of groups, and matrix B represents the effect

of these migrant types A joining groups that previous to migration

had no types A. (Explanation for A and B: When p%1, the

migrant types A are a small fraction of the migrant population,

and therefore each one is likely to settle in a different group that

had no types A before migration. A group that had i types A prior

to migration will therefore have j types A after migration with the

probability given by Ai,j above. To understand the form of B now,

note that such a group that had i types A prior to migration will

contribute an average of im migrant types A, who will therefore

produce that same number of groups with exactly one type A
each.)

A standard application of the Perron-Frobenius Theorem (See

Section 2 of File S1) implies that when t&1, we have, in good

approximation, f (t)~Crtn, where C is a constant that depends on

f (0), rw0 is the leading eigenvalue of Md(AzB) and n is its

corresponding left-eigenvector normalized as a probability vector.

This means that, regardless of the initial distribution f (0), with

0vp(0)%1, demographics and natural selection drive f (t)
towards multiples of n, in what can be seen as self-organization

of copies of A in the optimal stable way for them to spread. Once

this has happened, p(t) grows at rate r. Consequently, allele A will

proliferate, when rare, if the viability condition rw1 holds, and it will

vanish if rv1 (see Figure 2 and Sections S1 and S2 in File S1 for

applications and further explanations, see also Figure S2 to S9 in

File S1 for illustrations). When rw1, even if allele A is initially

absent, a small rate of mutation will introduce it, allowing it to

then invade the population. In the terminology of evolutionary

game theory (see, e.g., [28](Chapter 7)), phenotype N is an

evolutionary stable strategy (ESS) when rv1 and N is not an ESS

when rw1.

The viability condition rw1 has a gene-centric (kin-selection)

interpretation in terms of average (neighbor modulated) fitnesses.

For this purpose, define Dp(t)~p(tz1){p(t). Then it is well

known that �WWDp~p(W A{ �WW )~p(1{p)(W A{W N ), where

W A and W N are the average fitnesses of types A and N, and
�WW~pW Az(1{p)W N is the average fitness of all individuals. If

we choose a random type A, it will have probability proportional

to kfk of being in a group with exactly k types A (Bayesian

sampling bias, reviewed in Section S3 of File S1). Therefore

W A~1zd
Pn

k~1 kfkvA
k =
Pn

k~1 kfk. When p%1, if we choose a

random individual, it is likely to be in a group with no types A.

Therefore, in good approximation, �WW~1. Since f (t) is driven

towards multiples of n, we obtain.

Dp ~ pd

Pn
k~1 knkvA

kPn
k~1 knk

, ð1Þ

provided p%1 and t&1 (the error term is of order p2+bt, with

0vbv1). The viability condition rw1 can also be stated as

Dpw0, in (1). It is important to observe that p(t) does not need to

be monotone, and that Dpw0 is the proper condition for invasion

only when, as in (1), one is considering the stationary regime, t&1.

(See Figures S10, S11, S12 and S13 in File S1 for illustrations of

the onset of this stationary regime.)

Weak Selection
If selection is weak, i.e., dvv1, migration acts much faster

than selection, providing a separation of time scales [3,57,63–65].

This allows us to replace n in (1) with n0, obtained by assuming

d~0 within error of order d (see also Figure S15 and S16 in File

S1). Defining now pk~kn0
k=(
P

i~1,:::,n in0
i ), allows us then to

rewrite the neighbor modulated fitness relation (1) in the form

Dp ~ pd
Xn

k~1

pkvA
k ð2Þ

(within error term of order d2). Algebraic simplifications (presented

in Section S5 of File S1) transform the eigenvalue equation for n0

into the following equations for p~(p1,:::,pn):

pQ~p,
Xn

k~1

pk~1,

with the n|n matrix Q given by

Qi,j~mdj,1 z (1{m) bin (j{1 Dn{1,(1{m)i=n):

Matrix Q is a Markov transition matrix (i.e., Qi,j§0 andP
j~1,:::,n Qi,j~1) and p is its invariant probability distribution

(see Section S5 in File S1 and Figure S17 in File S1 for details).

They have natural interpretations in terms of identity by descent

(IBD) under neutral genetic drift, as we explain next when we

provide a second, independent, derivation of (2). This derivation is

gene-centered, and is more intuitive and simpler than the

derivations in the previous section. But it relies heavily on the

assumption that selection is weak.

Two individuals are said to be IBD if following their lineages

back in time, they coalesce before a migration event affects either

one (see Figure S14 in File S1 for an illustration of the concept).

The separation of time scales implies that when selection acts, the

demographic distribution is well approximated by that obtained in

equilibrium with d~0. This means that in good approximation

W A~1zd
P

k pkvA
k , where pk is the d~0 equilibrium probabil-

ity that in the group of a randomly chosen focal type A there are

exactly k types A (focal included). But because we are supposing

that types A are rare, the only individuals that are type A in this

group are those that are IBD to the focal, so that pk is also the

probability that exactly k individuals in this group are IBD to the

focal. As in the derivation of (1), since types A are rare, we have
�WW~1 and hence Dp~p(W A{1)~dp

Pn
k~1 pkvA

k , which is (2).
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Now, the probability pj that the focal is IBD to exactly j{1

other members of her group is dj,1 if the focal is a migrant

(probability m), while if she is not a migrant (probability 1{m),

then we have to consider how many individuals in her mother’s

group were IBD to her mother. If, counting her mother, that

number was i (probability pi, assuming demographic equilibrium)

then the probability that the focal is IBD to exactly j{1 other

members of her group is equal to the probability that of the n{1
other members of her group, exactly j{1 are non-migrants who

chose for mother one of the i candidates (among n possibilities)

that were IBD to the focal’s mother (probability

bin(j{1Dn{1,(1{m)i=n)). Combining these pieces, we have

pj ~ mdj,1 z (1{m)
Xn

i~1

pi bin j{1Dn{1,(1{m)
i

n

� �
:

This is exactly the same as the set of equations pQ~p.

The IBD distribution p contains all the relevant information

about genetic relatedness in the groups, including and exceeding

that given by the average relatedness between group members,

R~(1{m)2=(n{(n{1)(1{m)2) (see Figure S18 in File S1),

obtained from lineages, regression coefficients, or Wright’s FST

statistics. (See Sections S3 and S5 in File S1 for a review on these

alternative, equivalent, definitions of relatedness, and its compu-

tation.) Specifically, we can define R as the probability that a

second member chosen from the focal’s group is IBD to the focal

and then obtain (from linearity of expected values) that

R~((
Pn

k~1 kpk){1)=(n{1) is a linear function of p’s first

moment. When vA
k is a non-linear function of k, more information

contained in p, including its higher moments, is needed to decide

whether Dpw0 in (2). (In [66] the second moment of p was used to

obtain conditions for invasion by rare greenbeards in an island

population structure.) It is important to also stress that (2) can be

easily used for applications in which even the knowledge of all the

moments of p (see [63]) would be cumbersome to apply, as for

instance in the computation of the short horizontal red lines in

Figure 2, Panels A and B.

Large Groups Under Weak Selection
The stationarity condition p~pQ allows for a recursive

computation of all the moments of p (see Section S5 in File S1).

These moments can then be used to show the powerful result that

if n is large and m is small, then p, when properly rescaled, is close

to a beta distribution, with mean R~FST (see Section S6 and

Figure S19 in File S1). In this case, if in addition to the assumption

of weak selection, also vA
k is well approximated by *

vk=n

A , for some

piecewise continuous function
*
vx

A, 0ƒxƒ1, then (2) takes the easy

to apply form

Dp ~ pd
1

R
{1

� �ð1

0

(1{x)
1
R

{2 *
vx

A dx, ð3Þ

where R~
1

1z2nm
. Equations (1) and (3) play complementary

roles in the analysis of 2lFW. Both provide the condition for

invasion by allele A; (1) holds in full generality, while (3) requires

special assumptions (small d, large n), but is computationally much

simpler and provides a great deal of intuition, as we discuss next.

Equation (3) should be contrasted with what [36] predicted by

supposing that the number of individuals in a group that are IBD

to a focal individual would be well approximated by a binomial

with n{1 attempts and probability R of success. That would lead

to a normal distribution, narrowly concentrated close to its mean

R, in place of the beta distribution above. Our result reveals a

strong dependency structure among lineages, producing the beta

distribution, with a standard deviation comparable to its mean,

and a tail that decays slowly compared to a Gaussian distribution.

As a consequence, fitness functions that are large only when the

fraction of types A in a group is above a threshold value, as in the

IPG, will allow for proliferation of types A under levels of

relatedness substantially lower than that predicted under the

assumption in [36] (for another example see also Section S7 and in

File S1 and Figure S20 in File S1). We will refer to the fact that the

fraction of group members that are IBD to a focal individual has a

non-vanishing standard deviation, even when selection is weak and

groups are large, as persistence of variability. This phenomenon poses

a severe limitation to the applicability of covariance-regression

methods in which regression of fitness on genotype is replaced with

derivatives, as in [19], [16](Box 6), [7](condition (6.7)). Both the

assumptions in [36], or in [19] applied to the IPG would have

implied incorrectly that when selection is weak and groups are

large, types A could only invade the population when rare if

RwC=B (these computations are presented in Sections S8 an S9

in File S1). In a companion paper [37] we show that

methodologies in which one expresses the fitness of a focal

individual in terms of partial derivatives with respect to the focal

individual’s phenotype and the phenotype of the individuals with

whom the focal interacts, as in [3,7,16,19,51,57], require A
x to be a

linear function of x.

For the PG, (2) and (3) clearly reduce to the well known

Dp~pd({CzBR). The same is also true for the more general

(1), as was shown in [22], where in case of strong selection the

relatedness R depends on the payoff functions. (The derivation in

[22] was based on the Price equation. An alternative derivation is

provided in Section 4 of File S1.) In contrast, if we are under the

conditions of (3) with
*
vx

A~{CzBxzB2x2z:::zBlx
l , then

Dp ~ pd ({CzBRzB2R2z:::zBlRl), ð4Þ

where Rl~l!Rl=½((l{1)Rz1)((l{2)Rz1) � � � (Rz1)� is the l-th
moment of the beta distribution.

For the IPG,
*
vx

A~{CzBx, if 0ƒxva, and A
x ~({CzBx)T ,

if aƒxƒ1. The viability condition derived from (3) can be

analyzed in detail, by simple, but long, computations, presented in

Section S8 in File S1 and illustrated by Figure S21–S26 in File S1.

In the case a~C=B, the viability condition reads

C=B{Rw(T{1)R(1{C=B)1=R. When T is large, this yields

the following approximation for the critical relatedness R~FST :

R~
{ ln (1{C=B)

ln T
: ð5Þ

If also C=B%1, then

R~
C=B

ln T
~

C=B

2:3 log10 T
: ð6Þ

The simplicity and transparency of (5) and (6) illustrate the

power of (3), and Fig. 2 shows how well they compare to the more

general, but less transparent (1). Note also how (5) and (6) provide

a direct grasp on the effect of the number of repetitions in the

Altruism Can Proliferate despite High Gene Flow
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game, and a nice comparison between the PG and the IPG. Both

Figure 2 and (6) show that alleles that promote contingent

cooperative behavior, which is discontinued when participation is

low, can spread under levels of genetic relatedness (~FST ) more

than 5 times smaller than C=B. This mechanism should, therefore,

be seriously investigated as a possible route for the proliferation of

altruistic/cooperative behavior.

Conclusions

1. Natural selection in group structured populations is best

analyzed by a combination of group-centric and gene-centric

perspectives and methods. Both shed light, carry intuition and

provide computational power, in different ways. For instance,

in this paper the analysis of invasion under strong selection

focused on groups, while that under weak selection focused on

genes. Our computations indicate the advantage of a pluralistic

group-centric/gene-centric approach over views that regard

one of these two approaches as being redundant, less

informative, or counterproductive. Contrast, on one hand,

with, e.g., [14], which to us seems excessively negative about

the contributions of kin selection ideas. And contrast, on the

other hand, with, e.g., Section 6.5 of [17], or the subsection on

group selection in Chapter 15 of [29], which to us seem

excessively negative about the contributions of group selection

ideas).

2. Rigorous mathematical analysis of models is sometimes

possible even when fitness functions are non-linear, selection

is possibly strong, and the migration rate is arbitrary. And it is

needed for assessing the validity of non-rigorous approaches,

showing for instance that regression coefficients may be poorely

approximated by partial derivatives, even when selection is

weak. (Contrast with, e.g., [19](from (1) to (2)), [51]((3.4), (3.5)),

[16](Box 6), [7](condition (6.7)).)

3. Hamilton’s condition for the spread of altruism, CvBR,

should be complemented with more general rules (like those

obtained by setting Dpw0 in (2), (3), or (4)) that extend it to

non-linear fitness functions. In Section 9 of File S1, we

compare these extensions of Hamilton’s condition to other

extensions, based on covariance-regression formulas, like

display (5) in [16]. We observe there that for the fundamental

purpose of computing critical levels of relatedness needed for

invasion, in term of parameters of the models, like in (5) and (6)

above, covariance-regression formulas are incomplete in that

they must be complemented with computations of the

appropriate distribution of alleles in groups. And once these

distributions are computed, our methods are much more direct

and simpler.

4. Contingent forms of group altruism that are discontinued when

participation is low can proliferate under biologically realistic

conditions even in large groups. Their role in the spread of

altruism should be empirically investigated. (Contrast with

[36].)

5. Natural selection can promote traits that (in net terms over a

full life-cycle) are costly to the actors and beneficial to the other

members of their group, under demographic conditions that

are not stringent. This can happen in large groups and with

realistically high levels of gene flow, through population

viscosity, without the need for kin recognition or greenbeard

effects. Excessive focus on one-shot linear public goods games

in the literature has obscured this fact. (Contrast with, e.g.,

[13,17,20–29].)

Supporting Information

File S1 Supporting Information. Figure S1, Payoff profiles.

Payoffs vA
k for types A are represented by black squares, while red

circles depict payoffs vN
k for types N. From left: Public goods game

(PG, Example 1) for n = 20, C = 1 and B = 5. Iterated public goods

game (IPG, Example 2) for n = 20, C = 1, B = 5, a = 4 and T = 2.

Threshold model (THR, Example 3) for n = 20 C = 1, h = 4 and

A = A9 = 10. Figure S2, Perron-Frobenius eigenvalues r as a

function of m for d = 0.1, 0.2 and 0.4. From top to bottom: Public

goods game (PG, Example 1) with n = 20, C = 1, B = 5. Iterated

public goods (IPG, Example 2) with n = 20, C = 1, B = 5, a = 8 and

T = 10. Threshold model (THR, Example 3) with n = 20, C = 1,

h = 4, A = A9 = 10. Critical migration values ms are obtained by

solving r(ms) = 1. Figure S3, Public goods game (Example 1):

Panel A represents critical values ms as a function of the strength of

selection d. Curves correspond to the case C = 1, B = 2 and n = 10

(top, black dotted line), n = 20 (middle, blue dashed line) and n = 50

(bottom, magenta full line). Short horizontal red lines indicate

critical values at the weak selection limit obtained from (2) in the

paper. The inset shows the same curves within the full range of

possible values for ms, illustrating the well known fact that for this

model, only under exceptional conditions can the allele A invade.

Panel B depicts the same conditions except for B = 5. Figure S4,

Public goods game (Example 1): Critical relatedness R0
s ~R0 msð Þ

above which types A proliferate, as a function of the strength of

selection d. (R0(m) = (1– m)2/(n – (n –1)(1– m)2) < 1/(1+2nm) is the

relatedness obtained from neutral genetic markers; see Sections S5

and S7). Panels correspond to the same parameter values as in

Figure S3: C = 1, B = 2 and n = 10 (bottom, black dotted line),

n = 20 (middle, blue dashed line) and n = 50 (top, magenta full

line). Panel B depicts the same conditions except for B = 5. Short

horizontal red lines indicate critical values at the weak selection

limit obtained from Hamilton’s rule R0
s ~C=B , or, equivalently,

from (2) in the paper. Note the appreciable effect of the strength of

selection. Figure S5, Iterated public goods game (Example 2):

Critical values ms as a function of the strength of selection d. Panel

A depicts the case n = 20, C = 1, B = 5, a = 4 with, respectively from

bottom to top, T = 1 (dotted black line), T = 10 (dashed blue line),

T = 100 (dot-dashed magenta) and T = 500 (green full line). Panel

B depicts the same conditions except for a = 8. Short horizontal

red lines indicate critical values at the weak selection limit obtained

from (2) in the paper. Each curve has T fixed, but to compare

different values of T, the product dT is a natural measure of

strength of selection, and is used in the horizontal axis. Figure S6,
Iterated public goods game (Example 2): Critical relatedness

R0
s ~R0 msð Þ above which types A proliferate, as a function of the

strength of selection d. (R0(m) = (1– m)2/(n – (n –1)(1– m)2) is the

relatedness obtained from neutral genetic markers; see Sections S5

and S7). Panels correspond to the same parameter values as in

Figure S5: Panel A depicts the case n = 20, C = 1, B = 5, a = 4 with,

respectively from top to bottom, T = 1 (dotted black line), T = 10

(dashed blue line), T = 100 (dot-dashed magenta) and T = 500

(green full line). Panel B depicts the same conditions except for

a = 8. As in Figure S5, each curve has T fixed, but to compare

different values of T, the product dT is a natural measure of

strength of selection, and is used in the horizontal axis. Short

horizontal red lines indicate critical values at the weak selection

limit obtained from (2) in the paper. These values are: Panel A:

0.2000, 0.0865, 0.0402, 0.0243. Panel B: 0.2000, 0.1099, 0.0638,

0.0452. Note the very low values of critical relatedness in Panel A.

Figure S7, Threshold model (Example 3): Critical values ms as a

function of the strength of selection d. Panel A depicts the case

n = 20, C = 1, h = 4, A9 = 2A, with, respectively from bottom to top,
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A = 5 (dotted black line), A = 10 (dashed blue line), A = 50 (dot-

dashed magenta) and A = 100 (green full line). Panel B depicts the

same conditions except for h = 8. Short horizontal red lines

indicate critical values at the weak selection limit obtained from (2)

in the paper. Each curve has A fixed, but to compare different

values of A, the product dA is a natural measure of strength of

selection, and is used in the horizontal axis. Figure S8, Threshold

model (Example 3): Critical relatedness R0
s ~R0 msð Þ above which

types A proliferate, as a function of the strength of selection d.

(R0(m) = (1– m)2/(n – (n –1)(1– m)2) is the relatedness obtained from

neutral genetic markers; see Sections S5 and S7). Panels

correspond to the same parameter values as in Figure S7: Panel

A depicts the case n = 20, C = 1, h = 4, A9 = 2A, with, respectively

from top to bottom, A = 5 (dotted black line), A = 10 (dashed blue

line), A = 50 (dot-dashed magenta) and A = 100 (green full line).

Panel B depicts the same conditions except for h = 8. As in Figure

S7, each curve has A fixed, but to compare different values of A,

the product dA is a natural measure of strength of selection, and is

used in the horizontal axis. Short horizontal red lines indicate

critical values at the weak selection limit obtained from (2) in the

paper. These values are: Panel A: 0.012, 0.017, 0.044, 0.071.

Panel B: 0.061, 0.075, 0.137, 0.194. Note the extremely low values

of critical relatedness in Panel A. The large values of A can result

from contingent cooperation, based on feedback, as for the IPG.

For instance, suppose that a certain activity repeats itself T times

over a life-cycle. Suppose also that in each repetition the payoff is

well described by the threshold model. If types A discontinue the

participation when their payoff in the previous round was negative

(as in the IPG discussed in Figure 2 in the paper), then the

resulting payoff over the T iterations is also given by a threshold

model, with the same value of C, but A replaced by (A – C)T+C,

and A9 replaced with A9T. This gives plausibility to values of A and

A9 as large as those in this figure, since T can be in the hundreds,

or thousands (see discussion on the IPG in the paper). Figure S9,
Public goods game (Example 1): Perron-Frobenius eigenvectors

n = (n1, …, nn) represented in each box as a histogram, as a

function of the strength of selection d (rows) and of the migration

rate parameter m (columns). Critical migration rates ms are

annotated in each row. Perron-Frobenius eigenvalues r are also

provided for each box. In this picture we have C = 1, B = 2 and

n = 20. Figure S10, Self-organization of copies of A. In these

pictures we have PG with n = 2, C = 1, B = 3, d = 0.3, resulting in

ms = 0.2889. Pictures show evolution of f(t) = (f1(t), f2(t)), started

from several different initial distributions f(0). Circles over the lines

mark f(t), with t = 0, 1, …, 500 obtained by iterations of the map f(t

+1) = f(t)M(A+B). The direction spanned by the eigenvector n is

represented as a dotted green line. Left side (black): cases with r
,1, the allele A is eliminated; right side (red): cases with r .1, the

allele A spreads. In the top row, m is far from ms: (A1) m = 0.3389,

r = 0.9340, n = (0.8506, 0.1494); (B1) m = 0.2389, r = 1.078,

n = (0.7342, 0.2658). In the bottom row, m is close to ms: (A2)

m = 0.2890, r = 0.999856, n = (0.7342, 0.2658); (B2) m = 0.2888,

r = 1.000014, n = (0.7999, 0.2001). Note that in all cases f(t)

reaches in a few generations a steady state, in which it shrinks (r
,1), or grows (r .1), as a multiple of n. When m approaches ms,

the eigenvalue r becomes close to 1, the stationary movement

along the direction given by n slows down and the trajectories

towards this direction straighten themselves, but are not slowed

down. Figure S11, Self-organization of copies of A. In this

picture we have IPG with n = 10, C = 1, B = 3, T = 100, a = 2,

d = 0.01, and m = 0.153, slightly smaller than ms = 0.163. Top part

shows evolution of p(t), and bottom part shows corresponding

evolution of f(t) = (f1(t), …, f10(t)), displayed as normalized

histograms. Two initial conditions are compared: (Red) f(0) = 10–

2(1, 0, …, 0), so that p(0) = 10–3. (Black) f(0) = 10–5(0, …, 0, 1), so

that p(0) = 10–5. Note that from generation to generation the

distribution of copies of A adjusts itself to the same stationary

distribution, ‘‘losing memory of the initial distribution’’. Figure
S12, Self-organization of copies of A. This picture corresponds to

the same model and situation described in Figure S11, but with a

different time-frame, including later times. Note that eventually

the two curves of p(t) become parallel straight lines, illustrating the

exponential growth of p(t) at rate r independently of the initial

condition. This picture also illustrates two other important points:

1) The possible non-monotonicity of p(t). 2) The fact that the

asymptotic rate of growth may be smaller than the initial rate of

growth. Indeed, computations of Dp only indicate the long term

prospects for the allele A, when done under stationary conditions,

as in (1). The initial distribution of copies of A in the red line

produces neighbor modulated fitness for A below that of allele N,

so that Dp(0) ,0. In contrast, the initial distribution of copies of A

in the black line produces neighbor modulated fitness for A well

above that of allele N, so that not only Dp(0) .0, but this growth

happens at an unsustainably high rate. The distribution n, towards

which the copies of A self-organize is optimal for their stationary,

stable, growth. This is so because (r, n) is the leading eigenpair of

the driving matrix M(A+B): n is the vector n9 that satisfies the

eigenvalue (stationarity) equation n9M(A+B) = r9n9, with maximum

r9. Figure S13, Self-organization of copies of A. This picture

corresponds to the same model described in Figure S11, but now

m = 0.173 is slightly larger than ms = 0.163. Note that again

eventually the two curves of p(t) become parallel straight lines,

illustrating in this case the exponential decrease of p(t) at a rate

independent of the initial condition. Here again one can see that

Dp(0) is not indicative of the relevant long term evolution. The self-

organized distribution n is still optimal for the proliferation of the

allele A in a stable, sustainable, fashion. But when r ,1, as in this

picture, this optimal stable distribution is still not good enough for

A to spread, and instead, its copies are eliminated by natural

selection. Figure S14, This diagram illustrates the concept of

identity by descent (IBD) in the 2lFW. Two individuals X an Y in a

given group in generation t, regardless of their type, are identical

by descent (IBD) if their lineages, when followed back in time,

coalesce before a migration event (indicated by a dashed arrow in

the figure in the right panel). Considering a migration rate of m,

migration typically takes place within a random number, of order

1/m of generations back. Figure S15, Perron-Frobenius eigen-

vectors n = nd for selection strengths d = 0.01 (left column), d = 0.3

(middle column) and d = 0.7 (right column). Migration rate is set to

m = 0.1 and group sizes to n = 20. Each line represents a different

model. The top row, labeled as PG depicts the Public Goods game

(Example 1) with parameters C = 1 and B = 2. The Iterated Public

Goods game (Example 2) with parameters C = 1, B = 4, a = 4 and

T = 10 is shown in row at the middle, labeled as IPG. The bottom

row shows Perron-Frobenius eigenvectors for the Threshold model

(THR, Example 3) with C = 1, A = A9 = 5 and h = 4. The leftmost

column emphasizes that the weak selection limit n0
k is independent

of the model. In contrast, when selection is strong, nd depends on

the model, as illustrated in the other columns. Figure S16,
Distribution pk (bars) given by p = pQ and

P
n
k~1 pk~1,

compared with knd
k

�P
k’k’nd

k’. Here nd is the Perron-Frobenius

eigenvector of M(A+B), with d = 0.01, for the Threshold model

(THR, Example 3) with parameters n = 20, C = 1, A = A9 = 5 and

h = 4 (red diamonds). The comparison is repeated for migration

rates m = 0.01 (top panel) and m = 0.1 (bottom panel). Figure S17,
This diagram illustrates why KD evolves as a Markov chain driven

by Q. In this picture KD
u represents the number of individuals that

are IBD to the focal individual F u, in generation u (red circle).
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Two scenarios are discernible. MC1 (left panel): the focal

individual is a migrant. This happens with probability m and

implies that KD
u ~1. MC2 (right panel): the focal individual F u is

not a migrant, and she is a child of F u{1. Each individual in the

focal group in generation u chooses a mother from the group of

F u{1 in the previous generation with uniform probability, as

d = 0. With probability KD
u{1=n the chosen mother is IBD to

F u{1 (orange circles) and, consequently, her children are also IBD

to F u, provided that they are not migrants. In this case, the

number of individuals in generation u that are IBD to the focal is,

therefore, 1 (for the focal individual herself) plus a number of

individuals given by a binomial random variable with probability

of success 1{mð ÞKD
u{1=n in n –1 trials. Figure S18, Relatedness

R0 as a function of migration rate m, under neutral drift, d = 0, as

given by (S11). From top to bottom, n = 20 (dot-dashed blue line),

n = 50 (dashed green line) and n = 100 (full red line). Figure S19,
Limit of large n and small m under weak selection. This figure

compares tail probabilities for the distribution p (stairs) and for

Beta distributions with parameters a = 1 and b = 2mn. Panel A

shows the case n = 20 for, from top to bottom, m = 0.01 (red dotted

line), m = 0.1 (blue dashed line) and m = 0.5 (black dot dashed line).

Panel B depicts the same scenarios for the case n = 100. Figure
S20, Limit of large n under weak selection for the threshold model

(THR, Example 3). Panels represent critical migration rates (A and

C) and critical relatedness (B and D) for the THR with C = 1,

A = A9 = 10 as a function of ~hh~h=n . Top panels A and B depict

the case n = 20. Bottom panels C and D depict the case n = 100. In

each panel critical values obtained by the viability condition under

weak selection derived from (A2) (black full lines) are compared

with the approximation for large n given by (S25) (ms~~mms=n ,

R0
s ~

~RR0
s , approx.1, dashed blue lines) and with the approximation

(S26) (approx.2, dotted red lines). Figure S21, Limit of large n

under weak selection for the Iterated public goods (IPG) game

(Example 2). Panels represent critical migration rates (A and C)

and critical relatedness (B and D) for the IPG with C = 1, B = 5 and

T = 100 as a function of ~aa~a=n . Top panels A and B depict the

case n = 20. Bottom panels C and D depict the case n = 100. In

each panel critical values obtained by the viability condition under

weak selection derived from (2) (black full lines) are compared with

the approximation for large n given by solving (S27) in R (approx.,

dashed blue lines). In panel B we have R0
s ~4:02% when ~aa~20%,

and in panel D we have R0
s ~5:54% when ~aa~20%. Types A are

altruistic in the strong sense of (S31) when 0ƒ~aaƒ20%. Figure
S22, Limit of large n under weak selection for the Iterated public

goods (IPG) game (Example 2): behavior of solutions for (S27) -

Part 1. Top panel: H(R) corresponds to the l.h.s. of (S27) while G(R)

depicts the r.h.s. of (S27). H(R) is strictly decreasing and it is

positive for R,C/B. Derivatives of G(R) converge to 0 as R R 0.

H(R) and G(R) are equal to each other at exactly one point R~~RR0
s

that is a decreasing function of C/B. Curves depicted correspond

to the cases C/B = 0.5 (full black line), C/B = 0.2 (dashed red line)

and C/B = 0.1 (dot-dashed blue line) with ~aa~C=B and T = 100.

Bottom panel: ~RR0
s as a function of ~aa for C/B = 0.5 (top, full black

line), C/B = 0.2 (middle, dashed red line) and C/B = 0.1 (bottom,

dot-dashed blue line) and T = 100. ~RR0
s is continuous in the interval

0ƒ~aaƒ1, takes the value C/B on both end-points of this domain

and has a minimum at ~aa~C=B . Figure S23, Limit of large n

under weak selection for the Iterated public goods (IPG) game

(Example 2): behavior of solutions for (S27) - Part 2. Top panel:

G(R) and H(R) for C/B = 0.5, ~aa~0:5 and T = 10 (leftmost, full

black line), T = 103 (dashed red line) and T = 105 (dot-dashed blue

line). ~RR0
s is a decreasing function of T. Bottom panel: in the limit T

R ‘, if 0ƒ~aavC=B then ~RR0
s?

C=B{~aa
1{~aa (full magenta line). If

C=B ƒ~aaƒ1 then ~RR0
s?0 very slowly. Figure S24, Limit of large

n under weak selection for the Iterated public goods (IPG) game

(Example 2): behavior of solutions for (S27) - Part 3. H(R) (strictly

decreasing straight line) and G(R) for C/B = 0.5 and T = 10 for

~aa~0:01, 0.1, 0.3, 0.4, 0.5 from right to left in Panel A and for

~aa~0:5, 0.6, 0.7, 0.9, 0.999 from left to right in Panel B. The graph

of G(R) moves upwards for 0ƒ~aavC=B and downwards for

C=B ƒ~aaƒ1. G(R) R (T –1)(BR – C) as ~aa?0 (dashed magenta line

in Panel A). In Panel B it can be seen that G(R) R 0 as ~aa?1.

Figure S25, Limit of large n under weak selection for the Iterated

public goods (IPG) game (Example 2): behavior of solutions for

(S27) - Part 4. In all panels C/B = 0.5. Panel A depicts ~RR0
s as a

function of 1/log(T) for ~aa~0:3 (full black line) and for ~aa~0:7

(dashed red line). For 0ƒ~aavC=B ~RR0
s?

C=B{~aa

1{~aa
(this value is

approximately 0.286 for the case shown). If C=B ƒ~aaƒ1 then ~RR0
s

converges to 0 very slowly as T increases, more specifically
~RR0

s*{ log 1{~aað Þ= log Tð Þ (dotted magenta line). Bottom panels

show the behavior of G(R) as T increases. Panel B: case ~aavC=B

for, from right to left, T = 2, 10, 100, 500. Panel A: case ~aawC=B

for T = 2, 10, 100, 500, from right to left. G(R) stays at zero for

R̂R~ max
C=B{~aa

1{~aa
,0

� �
and goes monotonically to infinity for

R̂RvRvC=B . Figure S26, The solid lines provide the solution
~RR0

s of C/B – R = (T –1)R(1– (C/B))1/R, as a function of C/B, for

(top to bottom) T = 1 (black), 10 (blue), 100 (magenta), 1000

(green) and 10000 (cian). The corresponding dashed lines with

same colors (no black one) provide the approximation (A5), R = –

ln(1– (C/B))/ln T. This figure is an expanded version of Panel C of

Figure 2 in the paper.
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