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The Mid-Cell Cytoplasmic Solution to Gel State Transition Drives Cytoplasmic Mixing of Tracer  

Beads and Organelles in the Giant Amoebozoa Chaos carolinensis 

By: Ulises Diaz 

ABSTRACT 

 

The cytoplasm is a dynamic fluid where cellular building blocks and components are 

continuously mixing. Cytoplasmic mixing is important for transporting intracellular material ranging 

from nucleotides and proteins to full organelles. In large cell types, such as ameboid and 

neutrophil cells, cytoplasmic streaming is coupled to membrane deformations that accompany in 

motility. How well or how long it takes for material to mix in cytoplasmic streams during motility 

remains an open question. In relatively small volumes of viscous fluids at very low Reynolds 

numbers, such as the cytoplasm, it should be difficult to obtain significant mixing for structures in 

the size range of organelles simply from streaming laminar flows. Although small things like 

proteins can eventually mix through diffusion, microscale structures are expected to mix on a 

significantly slower time frame or not at all. In this work we discovered how the giant amoeba 

Chaos carolinensis overcomes these limitations using a novel cytoplasmic gel state capture and 

release strategy to facilitate the extremely efficient mixing of its cytoplasm. While it was previously 

thought that the amoeba solution to gel state transitions only occurs at the trailing and leading 

edge of the cell body, our work indicates that these transitions occur frequently throughout the 

mid-cell region, driving the cytoplasmic mixing of beads and organelles. These results indicate 

that amoeba reaches a stable mixed state during motility in as little as one cytoplasmic 

stream/flow cycle, effectively making it a Bernoulli system and thus one of the fastest possible 

known intracellular mixers.  

To study cytoplasmic streams, we microinjected fluorescent beads into amoeba and 

recorded their movement using time-lapse microscopy for up to 12 hours. In addition to bead 

trajectories, we microinject histone H1 labeled with alexa 488 and tracked nuclei movement. To 
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separate the movements of beads and nuclei from overall cell motility, we employed automated 

image processing to stabilize the videos, making the amoeba appear to crawl in place. Power law 

fits of interparticle distance over time allowed us to classify bead pair separation events into sub-

diffusive, diffusive, super-diffusive, and ballistic transport regimes. Using mean squared 

displacement analysis, we also distinguished gel-state from liquid-state flows. This classification 

enabled us to calculate diffusion coefficients, mean velocities, and dwell times for each state, 

which we used to simulate the time required for two particle populations to achieve stable mixing. 

To validate these simulations, we developed a method to computationally label and track two 

distinct bead populations from a single-color bead injection. This approach allowed us to observe 

new mixing events frame by frame and showed strong agreement between simulated and 

experimental results. 

Here we show the innovative strategy through which the giant amoeba Chaos carolinensis 

achieves efficient cytoplasmic mixing despite its reliance on low-Reynolds-number, laminar flow. 

Our results highlight the role of mid-cell sol-to-gel transitions in facilitating efficient mixing, 

enabling material exchange between cytoplasmic layers and allowing complete intracellular 

mixing within a single flow cycle. Novel computational approaches validated the robustness of 

these dynamics through simulation, showing alignment with experimental data for both bead and 

nuclear trajectories. Moreover, pseudopod modulation was found to have minimal impact on 

mixing efficiency, underscoring the unique contribution of sol-to-gel state dynamics. This work 

establishes a robust framework for studying intracellular mixing, with potential applications across 

cellular systems characterized by cytoplasmic streaming. 
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CHAPTER 1 

INTRODUCTION 

Importance of Mixing  

The cytoplasm is a densely packed environment, where diffusion alone is often insufficient 

for distributing macromolecules and organelles. This limitation arises due to the crowded nature 

of the cytoplasm, filled with proteins, organelles, and various molecular structures that significantly 

hinder the movement of particles. In cells diffusion is unreliable for long-distance transport 1. To 

overcome this limitation, cells have evolved mechanisms to locally synthesize or secrete 

molecules using strategically localized organelles. This is most evident in the development of 

reticulated organelle networks, such as the endoplasmic reticulum (ER) and mitochondrial 

network, which are coordinated in conjunction to the cytoskeleton. Intracellular material is also 

transported using these networks by various means including, motor proteins which bind cargo 

and walk along these networks, anchored motor proteins which generate cytoplasmic flow, or by 

directly tethering material onto the network then using its growth and regulation for distribution.  

In cells lacking connected organelle networks, Intracellular materials are typically 

transported through cytoplasmic flows, either directly through the active generation of flow or 

passively via diffusion and advection. In particular, larger cells have developed active 

mechanisms to facilitate transport through bulk cytoplasmic streaming. In these cells cytoplasmic 

streams are generated primarily through two mechanisms: stationary cortical motor proteins that 

drive cytoplasmic flow or through cellular deformation that generates cytoplasmic flow through 

movement of the cell boundary 2, 3. 

Large, stationary cells, such as the syncytial Drosophila embryo before gastrulation and 

plant cells, rely on stationary motor proteins to drive cytoplasmic streaming 2. In contrast, motile 

cells like neutrophils and giant amoebas create cytoplasmic streams through active membrane 

deformations that accompany cellular motility 3. In amoeboid cells, mixing is particularly important 
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as these cells lack reticulated organelle networks 4 to facilitate localized delivery via targeted 

secretion, synthesis, or the use of molecular motors to transport cargo along these networks. 

However, it is unclear how effectively ameboid cells mix their intracellular material, given that 

cytoplasmic streams tend to be laminar in flow, which is typically insufficient for mixing at such 

low Reynolds numbers, such as those found in the cytoplasm.  

The Reynolds number (Re) is a key dimensionless parameter in fluid mechanics that helps 

predict whether a fluid flow will be laminar or turbulent. It represents the ratio of inertial forces to 

viscous forces, providing insight into how smoothly or chaotically fluid will flow under specific 

conditions 5, 6, 7, 8 . The Reynolds number is given by:  

 
The cytoplasm is an environment with an extremely low Re. For instance, the Re for a 10 

µm C. elegans pronucleus moving at 0.1 µm/s through the cytoplasm is reported to be as low as 

(10-9).9 Such a low Re indicates that the flow is highly laminar, with very little turbulence to 

promote mixing. Similarly, our calculations show that the ~20 µm diameter nuclei of the amoeba 

Chaos carolinensis, traveling at 10. µm/s, has a Re of approximately (10⁻⁷), also within the laminar 

flow regime. At such a low Re, diffusion is insufficient for transporting organelles across long 

distances. Even the smallest organelles, like peroxisomes which range between 0.1 and 1um 10, 

have difficulty moving short distances within a reasonable amount of time. For example, in the 

hypha of the fungus Ustilago maydis, it is calculated that peroxisomes, measured to have a 
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diameter of ~0.23 µm, would take roughly 42 minutes to travel 25 µm through the cytoplasm using 

diffusion alone 11. Similarly in BS-C-1 mammalian cells it is reported that an increase in lysosome 

size from 0.52 µm to 1.3 µm results in a decrease in lysosome diffusion coefficients 12, reflecting 

the effects of the size on diffusion at such low Re environments. A summary of Re regimes and 

mixing characteristics can be found in table 1 (below). 

 
Table 1: Reynolds Number and Mixing Characteristics 
This table provides an overview of flow regimes based on Reynolds number ranges, along with their 
associated mixing characteristics. Lower Reynolds numbers correspond to laminar flow with minimal 
mixing, where fluid layers slide past each other smoothly. As the Reynolds number increases, transitional 
flow begins, introducing minor vortices. Further increases lead to transitional to turbulent flow, where mixing 
becomes more chaotic and involves larger vortices. At high Reynolds numbers, fully turbulent flow occurs,  
Characterized by intense mixing and effective blending due to widely distributed energy and eddies. 
 

 

 

In large cells, like the amoeba Chaos, which can grow up to 5mm long, it’s clear that 

diffusion alone would not be sufficient for transporting large organelles like nuclei across such 

long distances, especially given their size.  In the Chaos genus, nuclei size ranges from 19 µm in 

the Chaos carolinensis 13 (used in this study), to 25.7 µm in Chaos neos 14, to 34.3 µm in Chaos 

diffluens 14, and 55.8 µm in Chaos nitida 14. To transport such large organelles across seemingly 

vast distances, amoeba Chaos uses membrane deformations to create advection and enhance 

diffusion, allowing for long distance transport of material within a reasonable time scale. To probe 

the contributions of advection vs. diffusion on intracellular transport we use the Péclet number. 
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 The Péclet number (Pe) quantifies the balance between advection and diffusion for an 

object moving at velocity U over a length L, with D as the diffusion coefficient. The Pe is given by:  

 
The Re and Pe both describe fluid flow dynamics, with Re comparing inertial to viscous 

forces and Pe comparing advection to diffusion rates. While the Re predicts flow types (laminar 

vs. turbulent), the Pe focuses on the balance between transport mechanisms across length 

scales. Larger length scales favor advection, explaining the occurrence of cytoplasmic streaming 

in large cells. However, effective intracellular mixing likely requires additional complex flows, as 

seen in active turbulence, which enhances dispersion 9. From our experimental nuclei trajectories 

in amoeba Chaos carolinensis, we estimate that the Pe in cytoplasmic streams is 77.69, which is 

characteristic of a weak advection system and unlikely to generate the turbulent flow necessary 

for efficient mixing 15.  Advection doesn’t take over until after the Pe > 100, with diffusion having 

minimal impact at this regime. Diffusion becomes negligible when Pe >> 1000, as strong 

advection dominates 16,17 (Table 2).  
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Table 2: Péclet Number and Transport Characteristics  
This table categorizes transport processes based on the Péclet number (Pe) highlighting the balance 
between diffusion and advection. Low Pe values indicate diffusion-dominated transport, where particles 
spread primarily through molecular diffusion. At Pe ≈ 1, advection and diffusion contribute equally. Higher 
Pe values, especially above 1000, show advection-dominated transport, typical in fast-moving flows like 
rivers and pipelines. 
 

 
Traditional View of Sol to Gel Transition 

The first observations of protoplasm, consisting of the gel ectoplasm and solution 

endoplasm (cytoplasmic stream), were made by Eckler in 1849 18. However, it wasn’t until 1917 

that Hyman proposed the sol-gel theory 19. The sol-gel theory explains how amoeba control their 

movement and shape changes using the transformation between two states of their cytoplasm. 

This idea was further advanced by Mast in a series of works in 1926, 1931, and 1934 20,21.22.  

Since then, modern studies have continued to focus on the sol to gel transition 23,24. Since the sol 

to gel transition zone is not directly visible using light microscopy, most studies of the sol to gel 

transition have concentrated on the leading edge of the cell, where the solution state of the 

cytoplasm transitions into a gel state as the pseudopod extends, and at the rear of the cell, where 

the gel state reverts to a sol state to replenish the cytoplasmic supply at the front 25, 26. 
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Molecular Basis of Sol to Gel Transition 

 A comprehensive understanding of the molecular organization and regulation of the sol to 

gel transition remains incomplete. It is currently hypothesized that the sol and gel layers are 

composed of the same cytoplasmic material, although detailed proteomic profiles of these layers 

are still lacking. However, in vitro studies have shown that cytoplasmic extracts can transition 

between gel and liquid states, even demonstrating fluid streaming between the two phases in 

extracts 27. Furthermore, reconstituted systems containing actomyosin components have also 

replicated these properties, suggesting that it is the organizational arrangement of the cytoplasmic 

components, rather than their composition, that differentiates the sol and gel states 28. 

Historically, light microscopy revealed regions of actin enrichment in amoeba; however, 

the technology at the time was limited in its ability to visualize the organization of actin filaments 

at the microscale 29. To observe the microscale organization of filaments many studies turned to 

scanning electron microscopy (SEM), which enabled detailed visualization of cellular regions 

known to exist in either sol or gel states. For instance, studies comparing the hyaline cap of the 

leading edge—characterized by sol state cytoplasm—with the surrounding gel layer revealed 

striking differences: the sol state cytoplasm contains sparse, thin actin filaments, while the gel 

layer exhibits both thin and thick filaments arranged into a dense actin network 30, 31. Intriguingly, 

these filament structures have also been reconstituted in vitro from cytoplasmic extracts under 

conditions that induce either relaxation or contraction, thereby mimicking the native sol to gel 

transitions observed within the cell 32, 33, 34. While studies utilizing SEM revealed organizational 

differences between actin filaments in sol and gel states, SEM fails to capture transitions between 

sol and gel states since it requires fixed samples. The visualization of the active transition between 

states, as it relates to actin organization, may provide insights as to the regulation of the sol to gel 

transition and is an active endeavor of the authors. We hope to discuss our insights on the subject 

matter in subsequent studies.  
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Efficient Mixing in Laminar Flow  

Here we show the amoeba Chaos carolinensis uses the sol-gel transition to achieve 

complete cytoplasmic mixing within a single flow cycle, which we define as the time taken for a 

particle to traverse the full length of cytoplasmic solution layer and return via the gel layer. This 

discovery is surprising, given that the cytoplasmic streams in Chaos carolinensis, which make up 

the entire solution layer, exhibits a low Re, and laminar flow. Such conditions typically limit mixing 

potential, and the gel layer itself imposes even more confinement with even fewer chances for 

mixing than laminar flows alone would allow. 

Our findings indicate that Chaos carolinensis overcomes these limitations by inducing sol 

to gel transitions within the mid-cell region, effectively transferring particles—such as beads and 

nuclei—between the solution and gel states. This dynamic enables particle exchange across the 

cytoplasm layers, promoting mixing. We explore this mechanism here by simulating cytoplasmic 

flow including and excluding mid-cell state switching and comparing mixing behaviors. We 

validate our simulation by examining the mixing of two bead populations at different time delay 

intervals, using a method we developed to digitally label each bead population based on tracking 

data from a single experimental label. Ultimately, we demonstrate that this single-cycle mixing is 

a result of the amoeba’s ability to leverage sol to gel transitions as a powerful natural mixing 

strategy. These insights not only broaden our understanding of amoeboid cytoplasmic dynamics 

but also suggest that sol to gel transitions may represent a generalizable mechanism for efficient 

intracellular mixing in cells with cytoplasmic streaming. 
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METHODS 

Microinjection  

Microinjection was used to deliver 20 µm and 10 µm YG fluorescent beads (Polysciences 

Fluoresbrite® YG Microspheres 20.0 µm, Catalog Number 19096-2, and Polysciences 

Fluoresbrite® YG Carboxylate Microspheres 10.0 µm, Catalog Number 18142), as well as Histone 

H1 protein labeled with Alexa-488 (Invitrogen™ Histone H1 From Calf Thymus, Alexa Fluor™ 488 

Conjugate, catalog number H13188). All microinjections were carried out using a Drummond 

Nanoject II system (discontinued), following our own adapted protocol for Drosophila 

microinjection 35. A Zeiss Stemi 508 stereo microscope equipped with a Transillumination 300 

system and dark field illumination was utilized to visualize the microinjection needle tips easily. 

To inject two 20 µm beads into amoeba, the microinjection needle was carefully cut open 

using a razor under a microscope until the beads could be front-filled. Once the beads were inside 

the needle, they were positioned near the amoeba and front-filled with low pressure to prevent 

them from moving too far up the needle. If the beads traveled too high, gravity was used to guide 

them back down to the tip. Right before the beads were ready to fall out, the needle was swiftly 

inserted into the amoeba, and a minimal amount of pressure was applied to ensure precise 

deposition of the two beads into the amoeba’s cytoplasmic stream. The same method was 

employed for injecting 10 µm beads, where 18 beads were loaded and allowed to flow down the 

tip via gravity before being quickly injected into the amoeba to avoid premature loss of the beads. 

This gravity-assisted microinjection technique was essential for the amoeba's survival, as 

the large diameter of the needle needed for handling 20 µm beads carried the risk of over-

injecting, which could cause the amoeba to rupture. However, using this technique, our 

microinjected cells closely resemble those in control amoebas injected with fluorescent dextran, 

which is introduced through a standard needle with an opening under 1 µm. 

To further ensure amoeba health, we incubate the injected cells for one hour to allow 

complete wound healing, even though initial wound closure at the injection site appears to occur 
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within seconds. Importantly, we do not anticipate any adverse effects from the size of our beads 

to impact the amoeba’s health. While controls for un-injected cells are not included here, our 

routine experiments inserting 100 µm silicon microchips into amoebas—with control studies—

demonstrate no adverse effects on amoeba health (data not shown). In these experiments, we 

assess cell health through crawling speed and pseudopod formation, comparing the injected cells  

to un-injected cells. 

To label nuclei we use Histone H1-Alexa 488, which was commercially available and pre-

labeled. To prepare our injectant we resuspended 100 mg of lyophilized histone H1-Alexa 488 in 

pasteurized spring water. Sodium azide, a toxic preservative, was removed by rinsing the protein 

with pasteurized spring water three times using 10 kDa spin columns. For microinjection, needles 

were back-filled with a 5 mg/ml concentration of Histone H1-Alexa 488. To prevent clogging, 

continuous pressure was applied once the needle tip was broken, and multiple amoebae were 

injected to maximize the success rate of the injections. 

Microscopy  

All micromanipulation was done using a Zies Stemi 508 with a Transillumination 300 base. 

This configuration is equipped with darkfield illumination which is useful for viewing microcapillary 

needles during micromanipulation. Injected cells were prescreened for fluorescence using a Zeis 

Axio Zoom V16 before mounting and imaging using other modalities. All samples microinjected 

with 20 µm beads, 10 µm beads, and Histone H1-488 were imaged using a Nikon Ti2 Inverted 

Fluorescence Microscope equipped with a Nikon Plan Apo Lambda 4x Objective, a Hamamatsu 

Ocra-Flash4.0 CMOS camera, and a quad band pass filter. We aimed to have an acquisition 

frame rate of 2fps while imaging in bright field and the 488 nm fluorescence channel. To achieve 

this frame rate, we modified our brightfield channel to fire without moving any filters from the 

fluorescence channel out of the way., The sample in supplementary figure 3, along with the 

sample in supplementary figure 7, were imaged using an Olympus FV3000 Confocal microscope  

using a 60x glycerol objective.  
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Image Processing 

OttoReg pipeline 

The OttoReg pipeline was developed for the automated segmentation, cropping, and 

registration of time-lapse videos of amoeba crawling in a 3 mm diameter well, created using a 

120 µm spacer between a coverslip and a glass slide. This pipeline is useful for separating general 

cellular motion from the motion of intracellular particles to analyze the motion of particles with 

Mean Squared Displacement (MSD) (Fig. 1). The OttoReg pipeline consists of three separate 

modules, all written in MATLAB. The first module, OttoSeg, uses a maximum intensity projection 

to generate a background image, which is then subtracted from every frame of the video to 

produce segmented frames. Variations of this approach include using a median intensity 

projection to compensate for fluctuations in transmitted light sources, and a rolling projection to 

generate a series of background images over time. The rolling projection is especially useful for 

cases where bubbles form inside the spacer during long time-lapse acquisitions, helping to 

maintain accurate segmentation. The second module, OttoCrop, takes the segmented frames 

from OttoSeg and binarizes each one to generate a centroid, which is then used for automated 

cropping. The user defines the crop height and width, which are applied uniformly to all frames. 

The final module, OttoReg, performs image registration across time for all cropped frames using 

an image registration configuration created with MATLAB’s Image Registration Estimator tool. 

All modules have been optimized for speed to handle the 10 TB of data generated from image 

acquisitions. To achieve this, the pipeline is designed to support multicore processing using 

MATLAB’s Parallel Computing Toolbox.   
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Figure 1. Separating Bead Movement from Cell Movement Using OttoReg 
This figure demonstrates the effect of the OttoReg pipeline on separating bead movement from cell 
movement during tracking. The left panels (T1, T2, T3) show the trajectories of two tracked beads (cyan for 
Bead 1 and blue for Bead 2) over time in both the Standard View (top row) and the OttoReg View (bottom 
row). In the Standard View, both bead movement and overall cell movement are conflated, as shown by 
the shifting cell outline and bead positions. The OttoReg View corrects for cell movement, isolating the true 
motion of the beads within the cell. The right panels show the mean squared displacement (MSD) plots for 
both beads in the Standard View and OttoReg View. In the Standard View MSD, oscillations are evident, 
likely due to cell movement, while in the OttoReg View, these oscillations are reduced, providing a clearer 
representation of the actual bead motion independent of the cell's overall movement.  
 
 
Computational Analysis  

Geodesic distance  

Our analysis of mixing dynamics is based in part on pairwise distances between beads, in 

which the temporal dynamics with which such distance increases can be used to classify the type 

of fluid motion. Using geodesic distance to measure distances within our amoeba’s cytoplasm is 

essential for accurately capturing spatial relationships as the cell is not convex, and constantly 

changes shape and extends multiple pseudopods. Unlike Euclidean distance, which measures a 

straight-line path, geodesic distance follows the actual curved route along the amoeba’s body, 

reflecting the shortest path through its complex and shifting landscape. This distinction is 

illustrated in figure 2, where the Euclidean distance between two points in the amoeba (left 
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panels) differs significantly from the geodesic distance (right panels). The Euclidean measure, 

shown as a direct line, fails to account for the amoeba’s contours and structural boundaries. In 

contrast, the geodesic distance follows the organism's curved shape, adapting as the amoeba 

changes form. This approach provides a more realistic and meaningful measurement of 

separation within the dynamic environment of the amoeba, accommodating its irregular 

morphology and continuous structural changes. While more accurate, we note that the geodesic 

distance calculation takes significantly longer than the Euclidean distance calculation. This is 

because the distance between the bead and every possible pixel has to be calculated for each 

frame.  

 

 
Figure 2. Euclidean Distance vs. Geodesic Distance 
This figure compares the differences between Euclidean distance and geodesic distance within a binary 
image of an amoeba. The left column illustrates the Euclidean distance, where the shortest path is 
calculated in a straight line between two points, even if obstacles are present. The right column shows the 
geodesic distance, which accounts for the object's geometry and calculates the shortest path along the 
surface. The top row displays the binary representation of the two-distance metrics, while the bottom row 
shows the corresponding distance gradients with color-coded heat maps, where warmer colors represent 
shorter distances, and cooler colors represent longer distances. The geodesic distance, as shown, correctly 
follows the contour of the shape, while the Euclidean distance disregards the object's boundaries. 
 
 
 



13 
 

Continuous bead tracking 

Bead tracking was performed using the TrackMate plugin in ImageJ 36, with subsequent 

analysis carried out in MATLAB by loading the spot and track data into spreadsheets. Tracking 

multiple particles presents a significant challenge, especially when more than two beads are 

microinjected into a cell, as it complicates continuous trackability. For example, tracking two beads 

can produce two trajectories that span the entire video. However, when tracking multiple beads, 

accuracy decreases, often causing tracks to break mid-trajectory. This results in multiple tracks 

being generated for a single bead. 

In our dataset, which contained 18 microinjected 10 µm beads, we generated a total of 54 

tracks. To analyze this video effectively, we developed a MATLAB script that identifies overlapping 

tracks. This allowed us to isolate video segments containing 18 continuous tracks that span the 

entire length of the video segment. Using this method, we were able to digitally label two distinct 

bead populations based on their known trajectories, enabling us to study how quickly these two 

labeled populations mixed over time. 

This algorithm allowed us to observe multiple mixing events within a single video and gave 

us the flexibility to analyze mixing starting at any chosen frame. We leveraged this to examine 

mixing across different delay times. 

Parameters for simulation 

To study mixing from two bead trajectories, we track them over time and extract key 

parameters such as the diffusion coefficient, mean velocity, and dwell time for the respective gel 

and liquid states. To classify these states, we first apply a 20-second rolling mean squared 

displacement (MSD) across each bead’s trajectory, generating an array where each frame 

corresponds to the MSD across time within the 20 second window. We then apply a threshold 

against the 20 second window MSD to distinguish gel states from liquid states. The accuracy of 

this threshold is verified post-analysis by generating a video overlay that highlights the gel and 

solution/liquid state trajectories. 



14 
 

Once the gel and liquid segments are identified for each trajectory, MSD analysis is applied 

to these track subsets to derive diffusion coefficients and mean velocities by fitting a diffusion with 

drift model to the MSD curve for each state. These parameters are then used to simulate bead 

movement, allowing us to assess mixing based on the simulation results. 

Hyper mixing simulation  

We used a structured element matrix in MATLAB to model the movement of 2,500 beads, 

divided into two groups of 1,250. At T0, all beads are evenly distributed over a 200 µm x 200 µm 

plane at z = 0, representing the liquid layer. This layer is split across the middle of the Y axis to 

initiate separate groups at T0. As time progresses, this sheet moves in the positive Y direction, 

with additional layers at z = 20 and z = -20 representing the exterior gel layers of the amoeba. For 

each bead, its XY position and layer (upper gel, lower gel, or liquid associated) is stored, along 

with a clock variable that tracks the time until the next state transition between layers.  When 

beads in the liquid layer (z = 0) reach Y = 200 (the front of the cell), they either shift up or down 

into the gel layers, which flow in the negative Y direction. In addition to switching layers at Y = 200 

for beads in the liquid layer, or at Y = 0 for beads in the gel layers, beads can also change layers 

at any point before reaching the end of their respective layers based on the dwell time in the 

current state (see below). 

The simulation is carried out in three primary sections, each implementing specific rules. 

The first section, the "stepping section," moves all beads in their respective directions—liquid 

beads flow in the positive X direction, while gel beads flow in the negative X direction as the gel 

treadmills backwards in the reference frame of the cell. Here movement in the Y direction is driven 

through diffusion to reflect the properties of laminar flow. We used a Gaussian model based on 

Einstein’s formula for diffusion to simulate these steps 37,38. The step size for each bead is 

determined using a random number drawn from a Gaussian distribution, fitted to the 

experimentally derived diffusion coefficient and mean velocity ranges.  
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In the second section, we check for beads that have moved past the XY boundaries of 

their respective layers. Beads reaching the end of their layer will switch states, moving from liquid 

to gel or vice versa. In our simulations, the probability of switching to either gel layer is set to 50% 

since we don’t have experimental data to fit a distribution to model the gel layer selection.  

In the third section, beads that have switched states are assigned a clock state drawn 

from a dwell time distribution.  For all beads, the clock is decremented each time-step, and when 

the clock reaches zero, the bead switches states regardless of whether they have reached the 

end of their current layer. Once this happens a new value is updated, and the clock is reset.  The 

first clock value is assigned for every bead at T0. Clock values are generated using a random 

number, fitted to a distribution based on experimental dwell time data for gel and liquid layers. 

The most appropriate distribution is selected by testing several models and choosing the one with 

the lowest AIC value.  

To assess the impact of layer switching caused by the third section of our simulation, we 

ran the simulation without this feature, referring to it as "standard mixing." When all three sections 

are enabled, including the layer switching, we refer to it as "hyper mixing." 

SMI and SNN metrics 

To quantitatively measure mixing across time in our simulation data, we use two distinct 

mixing metrics. The first, the Subdomain Mixing Index (SMI), evaluates the fraction of different 

bead populations within fixed subdomains 39. Subdomain-based methods divide the system into 

smaller, defined regions or "bins" to quantify the distribution of distinct bead populations within 

each subdomain. This approaches evaluate mixing by comparing the relative proportions of bead 

types in each region to an ideal mixed state. In the SMI, each subdomain is weighted based on 

the number of beads it contains relative to the total population. The sum of these subdomain 

fractions gives the SMI. Although the SMI was formulated to handle multiple distinct populations 

within a given space39, we have simplified the SMI formula to handle two distinct populations. The 

SMI is calculated as follows: 
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Formula 1: Subdomain Mixing Index (SMI)  

 

 The SMI metric is particularly useful for measuring mixing in fixed spaces, like those 

represented in our simulation. The SMI accurately determines the length of time it takes for a 

system to reach a stable mixing state 39. While adjusting subdomain size can affect the overall 

mixing magnitude reported, it has no impact on the time it takes to reach a stable state.  

Our second metric, the Simple Nearest Neighbor (SNN) score is designed for dynamic 

environments, such as inside a shape-changing amoeba. Neighbor-based methods to calculate 

mixing focus on the immediate surroundings of individual beads, analyzing how the local 

environment contributes to overall mixing. The SNN metric calculates the fraction of mixing by 

summing the fractions of similarly labeled beads from the nearest five neighbors for each bead, 

thereby avoiding the limitations of fixed space. The SNN is calculated as follows:  
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Formula 2: Simple Nearest Neighbor (SNN)  

 

This more flexible approach allows us to measure mixing without the need for subdomains. 

To test the accuracy of our mixing metric, we plot it against the SMI and show similar results. In 

addition to using the SNN directly across time in our simulations, we also use the mean SNN 

across time delays to quantify mixing in experimental data. Time delays provide a comprehensive 

view of the entire mixing process, making it possible to understand how well two populations mix 

and whether the mixture remains stable over time. The mean SNN across time delays is 

calculated as follows:  
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Formula 3: mean SNN across time delays  

 

 To apply these equations to experimental data, we developed a computational method to 

designate two distinct bead populations from a single experimentally injected label, allowing us to 

study mixing across delays. This was achieved by tracking individual beads and computationally 

assigning each trajectory one of two separate colors based on the minor axis orientation which 

essentially splits the amoeba down the middle the short way then assigns a color for beads on 

either side, which is consistent with our scheme for labelling beads in the simulations.  
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RESULTS 

Observations of Sol and Gel Layers  

 Our first step to understanding mixing is to characterize the fluid flow as a function of 

position in the cell, since it is this flow that is thought to generate the mixing.  The morphology of 

the amoeba consists of two layers of gel sandwiching a layer of solution that streams through a 

mechanism involving the selective blebbing of the actin cortex at the leading edge (Fig 3.1, Fig 

3.2). The leading edge maintains a continuous solution to gel state transition. Meanwhile, the rear 

of the cell, known as the uropod, maintains a continuous gel to solution state transition. While gel 

and solution states are easily distinguishable within these regions of the cell, we sought to provide 

evidence for laminar flow in the solution state layer and to determine the thickness of solution and 

gel state layers at the mid-cell region where the difference between layers is not as obvious. To 

search for laminar flow and the border between solution and gel state layers we turned to Particle 

Image Velocimetry (PIV). PIV is an optical measurement technique used to measure fluid flow by 

tracking the movement of particles within fluid. PIV adopts an Eulerian approach, focusing on 

fixed points within a flow field and measuring how the fluid moves through these points over time. 

This contrasts with a Lagrangian approach, which would track individual particles as they move 

through the flow. By capturing velocity information across a grid of fixed points, PIV provides a 

comprehensive, instantaneous map of flow patterns rather than following individual particles along 

their paths. This makes PIV particularly useful for studying complex, spatially distributed flow 

fields. Using PIV, we traced the bulk flow of cytoplasmic vacuoles, vesicles, and refractile bodies 

observed in our transmitted light timelapse acquisitions. We detected laminar flow streamlines in 

cytoplasmic streams (Fig 3.3), confirming our assumption that cytoplasmic streams are laminar. 

We used the sum of velocities, u and v components, to find interfaces between different flows, 

which effectively marks the borders between sol and gel states in the mid-cell region (Fig 3.4). 

From these measurements we note the gel phase is roughly 40 µm on either side with the solution 
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phase being 80 – 100 µm. Without PIV analysis the border between solution and gel states would 

be indistinguishable in this region of the cell (Fig 3.5).  

 
Figure 3. Solution and Gel State Laminar Flow 
This figure illustrates the morphological distribution of gel and liquid states within an amoeba. 3.1 Cross-
sectional view in the x-y plane highlights the overall shape of the amoeba. 3.2 Side view (x-z-plane) shows 
the stratification of states along the length of the cell. The dashed line marks the axis of view for the side 
projection, with the liquid state concentrated in the central core, surrounded by the gel state. The dashed 
line marks the axis of view for the side projection. This highlights the spatial dynamics of cytoplasmic sol to 
gel transitions in amoeboid movement. 3.3 Laminar flow streamlines obtained from particle image 
velocimetry (PIV) analysis in the liquid (sol) state of the cytoplasm. The streamlines illustrate the smooth, 
parallel flow of cytoplasmic contents in this region. The dashed line indicates cell boundary. The flow velocity 
is measured in microns per second (µm/s), with a scale bar representing 50 µm. 3.4 Heat map showing the 
sum of velocity magnitudes in the solution and gel phases of the cytoplasm. The warmer colors represent 
faster velocities, while cooler colors correspond to slower velocities. Gel and sol regions are marked, 
showing a clear difference in flow characteristics across these mid-cell regions. 3.5 Transmitted light image 
showing the distinct separation between gel and sol regions in the amoeba's cytoplasm. The boundaries 
are labeled accordingly, and the gel phase (~40 µm) and sol phase (~80–100 µm) thicknesses are noted. 
The dashed lines mark the cell boundary.  
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Close Bead Pairs Separation Events  
 

Next, we quantified separation of marker beads under the action of cytoplasmic flow.  

Fitting a power law exponent to describe how the interparticle distance increases over time, for 

pairs of beads that are initially close together, can quantify how efficiently cells mix. In mixing 

processes, the distance between particles often grows according to a power law relationship. A 

higher exponent represents faster and more efficient mixing, whereas a lower exponent suggests 

less efficient mixing or restricted movement, making power law scaling useful for distinguishing 

between different mixing regimes. 

In idealized laminar flows, such as those observed in cytoplasmic streaming (Fig. 3.3), 

particles move in smooth, ordered layers. These systems typically exhibit lower mixing efficiency 

compared to turbulent flows because the movement is steady and predictable, leading to regular, 

non-chaotic particle separation 40. While laminar flows can sometimes display linear growth in 

distance similar to ballistic regimes, they inherently lack the high mixing efficiency of turbulent 

systems. For example, in boundary layers along flat plates under laminar flow conditions, fluid 

particles near the surface can show linear displacement for short times due to the constant shear. 

The displacement in this layer follows a nearly linear progression before any significant deviation 

due to mixing or turbulence. The power law of 1, characteristic of ballistic regimes, reflects steady, 

linear separation 41,42. However, laminar flows are more commonly associated with a lower power 

law exponent. In these cases, the system exists in the sub diffusive regime with power law 

exponents between 0 and 0.5 37, 43, 44, indicating very slow mixing 45.   

When particles encounter chaotic behavior or eddies within turbulent systems, the power 

law exponent typically falls between 0.5 and 1, a range known as the super-diffusive regime 46, 

47. This regime represents mixing that occurs more efficiently than in laminar flows, but it does not 

follow the perfect linearity of ballistic behavior. This transitional turbulence causes the chaotic 

motion of particles, leading to accelerated mixing. In contrast, ballistic behavior (power law of 1) 
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represents linear growth and typically occurs when particles move at constant velocity, such as 

during the early stages of dispersion or when forces act uniformly on the particles 48, 49. 

In the super-ballistic regime, where the power law is greater than 1, particles experience 

faster-than-linear separation. This phenomenon is often associated with shock waves or explosive 

mixing, where particles are driven apart at an accelerating rate 42, 50. Such systems exhibit the 

highest mixing efficiency due to the rapid dispersion of particles. 

In our data, power law fits for geodesic interparticle distance (Fig. 2) were distributed 

across different regimes (Table 3). The majority were in sub-diffusive regimes (power law between 

0 and 0.5) and super-diffusive regimes (power law between 0.5 and 1), with a few outliers in the 

super-ballistic regime. We measured the interparticle distance for 169 bead pair separation events 

across 4 different experimental samples and fit a power law exponent to describe the interparticle 

distance as a function of time for each event, observing similar results for all four samples (Fig.4, 

Sup. Fig. S1 – Sup. Fig. S3). Our results indicate that 7% of the total separation events (12 

events) were super-ballistic, with a power law exponent slightly greater than 1. 39% of the events 

(66 events) were super-diffusive (exponent between 0.5 and 1), and 46% (78 events) were sub-

diffusive (exponent between 0 and 0.5). Lastly, 3% of the events (4 events) exhibited a power law 

exponent slightly below 0, indicating that the beads moved closer together by the end of the assay 

due to trajectories crashing into the cell boundary.  

Most bead separation events fell within the super-diffusive regime, with only a few entering 

the super-ballistic regime. However, we observed no turbulent flows or explosive events to 

account for these findings. To better understand these anomalies, we conducted a mean squared 

displacement analysis (MSD), which helps identify sub-diffusive, diffusive, and super-diffusive 

segments of time in individual trajectories. Upon analyzing the MSD of the super-diffusive and 

super-ballistic separation events, we found that 67% (52/78) of these events featured one bead 

with a super-diffusive trajectory while the other had a sub-diffusive or restricted trajectory. This 
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pattern suggests that one bead was flowing in the liquid state while the other was trapped in the 

gel state. In contrast, 33% (26/78) of the super-diffusive and super-ballistic separation events had 

both beads following super-diffusive trajectories, indicating that both beads were flowing with the 

liquid state flow, possibly into different pseudopods. 

 
Table 3. Summary of Regimes Based on r(t) ∝ tα  
This table categorizes different regimes of particle separation based on the power-law exponent α, which 
describes how the distance between particles scales with time. The regimes range from super-ballistic 
(rapid, faster-than-linear separation) to localized or stagnant, where no separation occurs. Each regime's 
associated separation growth, mixing efficiency, and typical example scenarios are listed as examples for 
how mixing behavior changes across different systems. 
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Figure 4. 20 µm Bead Separation Assay n1 of 4  
4.1 Time-lapse images showing the microinjection of 20 µm yellow-green (YG) fluorescent beads into 
Amoeba Chaos. The top row presents the standard view, and the bottom row shows the OttoReg view, 
where automated segmentation, cropping, and registration have been applied. The images capture a 
separation event for bead pair 13. Scale bars represent 200 µm. 4.2 Interparticle distance over time for 
each bead pair tracked throughout the experiment. Each plot corresponds to a bead pair, displaying the 
distance (µm) between beads over time (s). 4.3 Power law exponent for interparticle distance as a function 
of time. The bar graph shows the power law exponent for each bead pair, with values color-coded and 
labeled. The red dashed line is placed at Y = 1. 4.4 (MSD) plots for each bead pair trajectory. These plots 
show the MSD (µm²) as a function of delay time (seconds), providing insight into the diffusion behavior of 
the beads within the amoeba. 
 
Pseudopod Modulation and Separation Rate 

We speculated that pseudopod formation, migration, and resorption might drive mixing 

similar to the Baker's Transformation in which a region of space is deformed and then folded over. 

It is named the Baker's Transformation because its action resembles the traditional folding and 

stretching of dough by a baker. The transformation is particularly useful in understanding how 

repeated stretching and folding operations lead to efficient mixing in confined spaces, and it is a 

classic example in the field of chaotic dynamics 52, 53. In theory, complete mixing requires infinitely 

many cycles, but in practice, near-complete mixing can often be achieved after just 5 to 10 cycles 

using the Baker’s Transformation 52, 53. In this view, the differences in motion between bead pairs 

in our previous section might correspond to entry of one bead into a pseudopod followed by 

motion of the pseudopod in a new direction. In such a situation, pseudopods would be playing a 

central role in determining bead motion, such that.an increase in pseudopod number should lead 

to a higher frequency of ballistic and super diffusive bead pair separation, and reduction in 

pseudopod number leads to reduced bead separation.   

To test this idea, we used non-chemical perturbations to modulate pseudopod number in 

microinjected bead pair time-lapse experiments. We compared the power law exponents across 

three experimental groups: methyl cellulose at 25ºC, to increase pseudopod number; water at 

37ºC, to decrease pseudopod number; and water at 25ºC as the control, reused from the previous 

section (Fig 5.1). To assess the effectiveness of our treatments in modulating pseudopod number, 
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we monitored concave cell curvature 

in all frames for every time-lapse 

acquisition (Fig. 5.2). Our analysis 

showed a significant difference in the 

concave sum across frames (Fig. 

5.3), confirming the effectiveness of 

our pseudopod modulating 

conditions. We also plotted the start 

and end of each bead pair 

separation event for every group 

(Fig. 5.4). Despite seeing a 

significant increase in pseudopod 

number in the methyl cellulose at 

25ºC group compared to the water at 

25ºC control, we found no significant 

difference in the power law 

exponents between the groups (Fig. 

5.5), suggesting that an increase in 

pseudopods may have minimal or no 

effect on the overall mixing outcome. 
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Figure 5. Bead Separation Rate and Pseudopod Number 
5.1 Non-chemical pseudopod modulating conditions: 5.1.1–5.1.3 Time-lapse images showing amoeba in 
three different environmental conditions: Methyl Cellulose at 25°C, Water at 25°C, and Water at 37°C. The 
methyl cellulose condition at 25°C increases pseudopod number whereas the water condition at 37°C 
reduces pseudopod number. The water condition at 25°C represents normal number of pseudopods. The 
total number of frames, hours recorded, and number of cells (n) are indicated. 5.2 Pseudopod number 
readout: Cell curvature analysis is shown, where convex (blue) and concave (red) regions along the cell 
outline correspond to areas where pseudopods are found.  5.3 Concave sum comparison: Violin plot 
showing the distribution of concave sums under different environmental conditions (Methyl Cellulose 25°C, 
Water 25°C, and Water 37°C). The asterisks indicate statistically significant differences between conditions, 
marking the effectiveness of pseudopod modulation under these conditions. 5.4 Bead pair separation 
events: Scatter plots showing the position of bead pairs under the three conditions at time 0 seconds (top 
row) and 40 seconds (bottom row). The number of bead pairs (n) for each condition is indicated. 5.5 Power 
law exponents: Violin plot showing the separation rate (power law exponent) for bead pairs across the three 
environmental conditions. Significant differences between conditions are indicated by asterisks, with "NS" 
indicating non-significant differences. 

 
Gel and Liquid State Observations 

To further investigate the flow dynamics within the solution and gel state layers, we 

measured the dwell time distribution, diffusion coefficients, and mean velocity of 20 µm beads 

moving through each state. Since each bead trajectory includes multiple transitions between 

solution and gel layers, we segmented and classified the flow states within individual trajectories 

to analyze the properties of each layer separately. To classify states, we first applied a rolling 

mean square displacement (MSD) and assigned an MSD value to each time point (Fig 6.1 - Fig 

6.3). Using an MSD threshold, we then distinguished between solution and gel states, generating 

dwell time segments for each state along individual trajectories (Fig 6.4). 

The MSD threshold was fine-tuned by overlaying videos of bead movement with color-

coded bead states—green for liquid state flow and magenta for gel state flow. By testing various 

threshold values, we identified the most accurate labeling threshold. This approach was feasible 

for quality control because bead state transitions are visually clear, as the direction of flow 

reverses when beads switch states (Fig 6.6). 
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After classifying states, we fit mean MSD curves to the segments corresponding to 

solution and gel states, calculating diffusion coefficients of 19.6 µm²/s for the gel state and 212 

µm²/s for the solution state (Fig 6.5). To disentangle the contributions of diffusion and advection 

in our observed diffusion coefficients (derived from MSD curves), we used the Stokes-Einstein 

equation. This equation provides an idealized calculation of the diffusion coefficient based on 

particle size, temperature, and fluid viscosity, assuming pure Brownian motion without any 

advective influence. It serves as a baseline, allowing us to estimate the expected diffusion 

coefficient under purely diffusive conditions. The diffusion coefficient is calculated using the 

following equation given by:  

  
Although no direct viscosity measurements are available for Chaos carolinensis, traction 

force microscopy has been used to estimate cytoplasmic viscosity in macrophages, which exhibit 

similar amoeboid movement and cytoplasmic streaming. The cytoplasmic viscosity measured in 

macrophages is approximately 210 mPa·s, providing a reasonable basis for estimating the role 

of advection in bead flow within our system. However, it remains unclear whether the reported 

viscosity in macrophages corresponds to the solution or gel layer. For reference, the estimated 
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diffusion coefficient for a 20 µm bead in macrophage cytoplasm is approximately 0.108 µm²/s. In 

comparison, our measured diffusion coefficients for Chaos cytoplasm are significantly higher: 19.6 

µm²/s in the gel state and 212 µm²/s in the solution state. This suggests that advection plays a 

prominent role in Chaos cytoplasmic dynamics. 

Additionally, we measured mean bead velocities of 3.44 µm/s in the gel state and 12.8 

µm/s in the solution state. Using these values, we calculated the Péclet number (Pe) for each 

layer. For a bead moving at 12.8 µm/s through the solution layer over a characteristic distance of 

1200 µm, with a diffusion coefficient of 212 µm²/s, the Pe is approximately 72.45, which falls within 

the regime where weak advection is the dominant transport mechanism (Table 2). This Pe value 

aligns with the discrepancy between our observed diffusion coefficients and those estimated via 

the Stokes-Einstein equation. In contrast, for a bead moving through the gel layer at 3.44 µm/s 

over the same distance, with a diffusion coefficient of 19.6 µm²/s, the Pe is approximately 210.61 

in the gel layer. This value indicates a regime where advection becomes the dominant transport 

mechanism, with diffusion beginning to play a minimal role, underscoring the confined nature of 

the gel layer. We note that advection in the gel layer may be explained by the known treadmilling 

of the actin cytoskeleton. This may be especially pronounced in cells with a uropod, since the 

uropod consumes the gel layer, driving its retrograde flow. Together, these findings suggest that 

advection is the primary driver of bead transport within Chaos cytoplasm.  

 Our dwell time histogram (Fig 6.5) shows that most dwell time events last around 20 

seconds, with many events also falling under 10 seconds. These short dwell times imply that 

beads frequently switch between layers before reaching the leading or trailing edges. It is unlikely 

that diffusion in the z-direction explains this solution to gel state movement. To determine the 

average time that a bead would take to diffuse out of a 100 µm solution state layer we use the 

electrostatic approximation given by:   
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The electrostatic approximation estimates it would take 3.93 seconds for a bead randomly 

placed in the solution layer to diffuse to the gel layer, indicating that mere arrival in the gel layer 

is insufficient for beads to switch states. This also suggests that biological regulation may play a 

role controlling the sol to gel transition aside from the physical properties of the cytoplasm.  

Our time-lapse videos qualitatively show that beads transition between solution and gel 

layers before flowing to either the trailing or leading edge, suggesting that the sol to gel transition 

occurs not only at the cell ends (as traditionally studied) but also in the mid-cell region. Of the 

separation events in super-diffusive and ballistic regimes, 67% (52 out of 78) featured an MSD 

profile where one bead followed a super-diffusive trajectory while the other had a sub-diffusive or 

restricted trajectory (Fig 4.4). This dual MSD profile can be explained by three possible scenarios: 

(1) the beads are simply flowing past each other in separate layers; or (2) and (3) the beads start 

in the same layer (gel or liquid), but one switches to the other layer. The short dwell time counts 

(Fig 6.5) and observed mid cell state transitions suggest that the solution to gel transition is a 

dynamic process that occurs everywhere in the cell.  

 

 
 
 
 
 
 
 
 
 
 



31 
 

 



32 
 

Figure 6. Extracting Gel and Liquid State Parameters for Mixing Simulation 
6.1 Time-lapse images of 20 µm Yellow Green (YG) fluorescent bead microinjection into an amoeba. Bead 
movement is tracked over time, with images captured every 0.5 seconds from 0 to 40 seconds. 10 second 
intervals between frames are shown in this panel. 6.2 Rolling 20s tracks and mean squared displacement 
(MSD) curves - beads and cell centroid. 6.2.1 Bead 0 tracks, showing the trajectory over time. 6.2.2 Bead 
1 tracks, showing the trajectory over time. 6.2.3 Cell centroid tracks, indicating the motion of the overall cell 
body. 6.2.4–6.2.6 Rolling MSD plots for Bead 0, Bead 1, and the cell centroid over time. 6.3 Mean MSD 
across time from rolling 20s tracks. Rolling MSD mean plotted for Bead 0, Bead 1, and cell centroid (3.3.1–
3.3.3). 6.4 Mean MSD across time, with rolling MSD means plotted for Bead 0, Bead 1, and the cell centroid. 
A Gel and liquid state detection is applied with gel states highlighted in magenta and liquid states highlighted 
in green (3.4.1–3.4.3). 6.5 Gel and liquid state dwell times, diffusion coefficients, and mean velocity: 6.5.1–
6.5.2 Histograms of dwell times for the gel and liquid states for Beads 0 and 1. 6.5.3–6.5.4 MSD fits for gel 
/ liquid states. diffusion coefficients (D) and mean velocities (V). 6.6 Visualization of gel and liquid state flow 
labeled with 20 µm YG fluorescent beads over time in the microinjection time-lapse. 

 
 To observe the viscoelastic properties of the gel layer we immobilized a cell with a minimal 

concentration of 1 µM [latrunculin B] and observed the motion of an undigested rotifer in its gel 

layer. While the minimal latrunculin B treatment immobilized our amoeba, it had little to no effect 

on the rotifer’s movement (Fig 7.1). Using PIV on transmitted light microscopy timelapse data, 

we examine the effect of the confined rotifer’s movement across the gel layer. When the rotifer 

moves, the PIV data shows velocity magnitude extending over a long distance across the gel 

layer (Fig 7.2). The flow propagating well beyond the rotifer itself suggests that the gel layer is 

elastic enough to transmit movement across a broad area rather than dissipating it locally, which 

is characteristic of viscoelastic or elastic materials. This elasticity likely supports the amoeba's 

shape maintenance and structural integrity, even as it undergoes dynamic changes during 

movement and pseudopod formation. 
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Figure 7. PIV Analysis of Rotifer Movement in Gel Layer of Amoeba Chaos 
7.1 Transmitted light time-lapse images showing the movement of a rotifer inside the gel layer of an amoeba 
treated with 1 µM Latrunculin B (LatB), a compound known to disrupt actin polymerization. Overlaid on the 
images are particle image velocimetry (PIV) vectors, which indicate the local flow patterns within the 
amoeba's cytoplasm as the rotifer moves. Time stamps for each frame are provided in seconds, and the 
scale bar represents 40 µm. 7.2 PIV vector overlays on heat maps representing vector magnitude in pixels 
per frame (px/frame). These heat maps show the velocity distribution in the surrounding cytoplasm as the 
rotifer moves, with warmer colors indicating higher velocity regions. The arrows illustrate the direction and 
magnitude of flow, with clear vortex-like structures appearing around the rotifer, especially in later frames. 
Each panel corresponds to the time stamps shown in S2.1, highlighting the dynamic interaction between 
the rotifer and the surrounding gel layer of the amoeba 
 
Hyper Mixing Simulation of Beads 

To study the effects of mid cell state switching on mixing we turn to simulations driven by 

our observations for gel and solution/liquid layers in the previous section, “Gel and Liquid State 

Observations”. In our simulation, the organization of gel and liquid state layers reflects amoeba 

morphology (Fig. 3.1, Fig. 3.2). However, we scale down the liquid and gel layers, representing 

them as three planes, each measuring 200 µm by 200 µm (Fig. 8.1). 

Our simulation, referred to as hyper mixing, follows three core rules (Fig 8.2): (1) bead 

movement through stepping, (2) end switching, and (3) mid-cell switching. In the first step, beads 

take a step within their respective layers, with gel and liquid flows moving in opposite directions. 

For each bead in the solution/liquid state, an individual step is calculated for the X and Y 

component per time point. The distance for each step in the X component is generated by adding 

dx(BrownianMotion), calculated using the liquid state diffusion coefficient D, and 

dx(DirectedMotion), calculated using the liquid state mean velocity V. The same operation is 

applied to the Y component of beads in the liquid state. In the gel state, all beads take a uniform 

step at every time point since the entire gel layer moves like a conveyor belt with beads on it. 

Similarly, this X component of this step is generated by adding dx(BrownianMotion), calculated 

using the gel state diffusion coefficient D, and dx(DirectedMotion), calculated using the gel state 

mean velocity V. To accurately represent the conveyor belt properties of the gel layer we only 

added noise to the Y component of beads in the gel layer. This noise is generated by dimming 

the gel state diffusion coefficient D to 1% in our dx(BrownianMotion) calculation. Since the gel 
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state has a Pe of 212, indicating that its advection dominates with diffusion contributing minimally, 

we don’t expect lateral diffusion in the Y direction to play a critical role in the gel layer.  This also 

best reflects the confined movement of the bead’s conveyor belt like movement, which is most 

likely driven by actin treadmilling at the cortex.  

In the second step, beads switch layer states upon reaching the cell boundary (Y = 200 

for liquid flow and Y = 0 for gel flow). Once they switch states, beads are assigned a dwell time, 

determining when they will switch layers again. In the third step, we model mid-cell switching by 

checking for expired dwell times, which triggers state changes. Each time a bead switches state, 

a new dwell time is then assigned, drawn from the distributions fit in figure 6.5, and the simulation 

advances to the next time point, repeating the cycle of these three core rules. At T0 the simulation 

is primed by assigning each bead a random dwell time. 

To assess the impact of mid-cell switching, we ran the simulation without enabling the third 

core rule, referring to this simplified version as standard mixing, which only includes stepping and 

end switching. This version aligns with traditional views and observations reported of sol to gel 

transitions in amoeba 51, 25. 

Visual results from both standard mixing and hyper mixing simulations show that hyper 

mixing significantly accelerates mixing compared to standard mixing (Fig. 8.3). To quantify this 

difference, we applied two mixing metrics: the Subdomain Mixing Index (SMI) and the Simple 

Nearest Neighbor (SNN) mixing score (Fig 8.4).  The SMI calculates the weighted sum of fractions 

for two populations in fixed subdomains weighted by the total number of beads in each while the 

SNN measures the sum of fractions for each bead’s five nearest neighbors. The Subdomain 

Mixing Index (SMI) is a reliable metric for determining when a system reaches stable mixing, as 

variations in subdomain size do not affect the point at which complete mixing is observed 16. We 

developed the SNN to calculate the percentage of mixing without relying on fixed subdomains, 

which is particularly useful for amoebas that constantly change shape over time, making fixed 

subdomains impractical. Here our data shows that SMI and SNN both reach an asymptote at the 
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very similar times, showing that the SNN can be used as a reliable mixing metric to quantify mixing 

over time in subsequent applications (Fig 8.4.1 and Fig 8.4.3). 

In our standard mixing simulation, both SMI and SNN indicated stable mixing after 6 flow 

cycles (Fig 8.4.1).  A flow cycle is defined as the time it takes for a bead to travel completely 

through the liquid layer and return via the gel layer. In our simulations, we add 1000 particles to 

X = 0 and use these extra particles to determine the average time it takes 1000 particles to 

complete 1 flow cycle (Fig. 8.3.2). Aside from mixing slowly, standard mixing also takes much 

longer to evenly spread beads (Fig 8.3.2, Fig. 8.3.4, Fig. 8.3.5, Fig.8.4.2 and Fig. 8.4.4). Bead 

density analysis over time, measured using a central subdomain in each layer, revealed that 

beads remained clustered within their respective layers in standard mixing (Fig 8.4.2). In contrast, 

the hyper mixing simulation demonstrated complete mixing after just one flow cycle, with central 

subdomain density measurements showing that beads were evenly distributed after a single cycle 

(Fig 8.4.3 and Fig 8.4.4). This is also apparent in figure 8.3.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



37 
 

 
Figure 8. Hyper Mixing Simulation 
8.1 3D simulation model: A 3D representation of the simulation space, showing the gel (magenta) and liquid 
(green) states across the X, Y, and Z axes. 8.2 Standard vs. Hyper Mixing Simulation Rules: 8.2.1–8.2.2 
Standard mixing rules - beads take steps and change states at leading and trailing edges. 

 
(Figure caption continued on the next page)  
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(Figure caption continued from previous page)  
 

8.2.3 Hyper mixing rules - mid-cell state changes that allow more complex state transitions. 8.3 Standard 
vs. Hyper Mixing Simulation Result Plots: 8.3.1–8.3.5 Time Laps of Standard Mixing Simulation Results 
Plots. 8.3.6–8.3.10 Time Laps of Hyper Mixing Simulation Results Plots. 8.4 Quantification of Mixing Across 
Time Using SMI and SNN Metrics: 8.4.1 SMI and SNN comparison over time for standard mixing. 8.4.2 
Standard mixing center point density across all 3 layers. 8.4.3 SMI and SNN comparison over time for hyper 
mixing, highlighting the increased mixing rate compared to standard mixing. 8.4.4 Hyper mixing center point 
density, showing a more even distribution of points across the cell layers compared to standard mixing. Red 
markers indicate complete flow cycles.  

 
Hyper Mixing Simulation Validation via Experimental Delays 

To validate the results of our hyper mixing simulation, we sought to test mixing 

experimentally. The SMI and SNN metrics depend on spatial observation between two or more 

distinct populations of beads. Conventionally, this would require microinjecting two bead 

populations with different labels into an amoeba, which is technically challenging. This approach 

demands two simultaneous on-scope injections and limits the study to observing a single mixing 

event post-injection (Fig. 9.1). To address these limitations, we developed an alternative strategy: 

we microinjected a single population of beads and then used image analysis to digitally split the 

population into two artificially colored groups. This method allowed us to initiate tracking of mixing 

events at any frame throughout the video, provided that all trajectories were continuous (Fig. 9.2). 

Tracking beads continuously over long periods, up to 12 hours in this case, becomes 

increasingly difficult as bead populations become larger. For this reason, we only microinjected 

18, 10 µm YG beads into our sample. Despite our reasonable bead population size we generated 

54 total tracks, indicating that some tracks failed to maintain continuity and started new tracks to 

preserve accuracy. To overcome this limitation, we developed a custom MATLAB script that 

filtered through the 54 tracks to find video segments containing 18 continuous tracks. We then 

analyzed those individual video segments. 

The longest continuous segment, consisting of 15,000 frames, captured 1 hour and 2.5 

minutes of continuous mixing. From this segment, we calculated SNN scores across 10,000 

mixing delays ranging from 0 to 5,000 seconds and plotted the results (Fig. 9.4 and Fig. 9.5).  We 
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did not use the SMI index for experimental data because of difficulty defining the sub-domains in 

a cell that constantly changes shape. Complete mixing, as judged by reaching the asymptotic 

value of the SNN plot, was achieved within 500 seconds in this cell. This is also how long it takes 

to complete a flow cycle in this cell.   

To validate our hyper mixing simulation, we extracted liquid and gel state parameters—

dwell times, diffusion coefficients, and mean velocities—from the same video segment used to 

calculate mixing across delays. We used the extracted gel and solution state parameters, 

including dwell time distributions in the sol and gel states, to run a hyper mixing simulation and 

compared the simulated SNN scores with the experimentally observed delay SNN scores across 

time. The resulting plots showed nearly identical lines between the simulation SMI and 

experimental SNN (Fig. 9.5), and a similar trend between simulation SNN and experimental SNN, 

confirming that our simulations accurately reflected the experimental mixing behavior found in the 

amoeba’s cytoplasm. We emphasize that our model does not involve fitting any free parameters 

to the SNN curve - all parameters of the model were measured experimentally from bead tracking 

data. Ultimately, this method allowed us to study mixing both indirectly via hyper mixing 

simulations and directly through digital experimental mixing across delay intervals. 
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Figure 9. Experimental Mixing vs. Simulation Mixing 
9.1 Analog experimental mixing using dual label multi-color mixing. Pros and cons are noted: 
computationally easy but experimentally difficult. 9.2 Digital experimental mixing (DEM) using 10 µm bead 
microinjection. This method uses a single label to establish multi-color mixing. Pros and cons are noted: 
experimentally easy but computationally challenging. 9.3 Time-lapse images showing the digital 
experimental mixing (DEM) process using 10 µm YG bead microinjection. Bead movement is tracked over 
450 seconds, and the bottom row illustrates single label multi-color mixing in corresponding frames. 9.4 
Diagram to show Simple Nearest Neighbor (SNN) calculations are performed across different delay frames 
(1s, 2s, 3s, and up to 5000s delay). 9.5 Expression for the SNN mean, where d is the delay and N is the 
total number of frames (15000).  
 
(Figure caption continued on the next page)  
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(Figure caption continued from previous page)  
 
9.6 DEM SNN calculations across time delays. The plot shows the percentage mixed as a function of delay, 
with mean and standard deviation indicated. 9.7 Comparison of DEM SNN with Hyper Mixing Simulation 
SNN: The plot compares the experimental SNN with simulated SNN for hyper mixing, showing similar 
mixing behavior between exp. l and sim. results. 
 
Hyper Mixing Simulation of Nuclei  

To confirm that the mixing results obtained with beads reflect the dynamics experienced 

by actual organelles, we repeated our analysis using nuclei instead of beads to track flow and 

measure mixing.  It is well known that amoebas can contain many nuclei, sometimes numbering 

in the hundreds per cell 26. Nuclei in amoeba chaos are reported to be around 19 µm in diameter 

13, which is why we chose to use 20 µm beads in our initial experiments. The large number of 

nuclei makes it technically challenging to track them, since their tracks will frequently overlap.  To 

improve our ability to track nuclei over time, we designed an assay to sparsely label nuclei using 

Histone H1-488 protein microinjection (Fig. 10 and Fig. 11.1). Unlike uniform labeling methods 

like DNA dyes (e.g., Spy 650), we found that when Histone H1-488 is injected into cells, it is 

transported into nuclei heterogeneously, causing nuclei to be labelled at varying intensity levels 

(Fig. 10). By focusing on tracking only the brightest nuclei, we effectively reduce the density of 

nuclei being tracked. However, we still generate thousands of tracks per experiment since the 

brightest nuclei are significantly dimmer than 10 µm or 20 µm YG beads used in previous sections. 

Despite the reduced density, tracks frequently end causing new ones to form when nuclei 

move out of the focal plane (e.g., moving away from the coverslip) since they are so dim. Tracking 

can also be affected when nuclei intersect many other dimly lit nuclei. This makes continuous 

tracking across long time periods challenging. To address the issue of shorter track lengths 

compared to those analyzed in previous sections, we modified our MATLAB script to extract 

parameters for the hyper mixing simulation without requiring tracks to be continuous for the entire 

video length. Instead, we set a cut off for minimum track length and analyzed all tracks for dwell 

states using an MSD threshold, as done in previous sections. With thousands of tracks to 
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consider, it became especially important to trim the first and last dwell state events in each track, 

since we cannot determine the full duration of those events.  From these trimmed tracks, we 

classify nuclei as gel or liquid state based on MSD. We also use these trimmed tracks to calculate 

gel and liquid state dwell time distributions (Sup. Fig S4).   

Our hyper mixing simulation results for nuclei (Fig. 11.2 and Fig. 11.3) were consistent 

with those for 10 µm and 20 µm beads in the previous sections. We found that nuclei mixing was 

completed in one cycle (Fig. 11.3), with both the SMI and SNN metrics stabilizing around the 

same time. The only difference between bead and nuclei simulations was the distribution used to 

model dwell time in the gel layers. Gel state dwell time was modeled using an inverse gaussian 

distribution in bead simulations whereas a Birnbaum-Saunders distribution was used to model gel 

state dwell time in nuclei simulations.  

 

Figure 10. Using Histone H1-488 Microinjection for Sparse Nuclei Labeling 
This figure illustrates the results of microinjection of Histone H1-Alexa488 for sparse labeling of nuclei in 
cells. The brightfield images (left column) show the overall morphology of the cells, while the fluorescence 
images (middle columns) display nuclei labeled with H1-Alexa488 (green), Spy650 (magenta), and 
Memglow560 (cyan). Yellow arrows indicate specific nuclei labeled with H1-Alexa488 and Spy650 in both 
time points, taken 1 hour post-microinjection. The H1-Alexa488 signal is localized to the injected nuclei. 
The overlap between Spy650 and H1-Alexa488 demonstrates colocalization in specific nuclear regions. 
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Figure 11. Mixing of Nuclei – Histone H1-488 n1 of 4 
11.1 Fluorescence time lapse panel of histone H1-488 microinjected into amoeba. A 30 second interval is 
given between frames and each frame has a scale bar of 400 µm. 11.2 Gel and liquid state hyper-mixing 
simulation: 11.3 Simulation results of SMI and SNN mixing across time. The plot shows the percentage of 
mixed nuclei over time, comparing the Subdomain Mixing Index (SMI) and Spatial Nearest Neighbors (SNN) 
metrics, demonstrating consistent mixing behavior over a 2500-second period. 
 

All four Histone H1-488 samples reach a stable mixing state in 1 flow cycle, which took an 

average of 136 seconds across all four samples (Fig 12.1 and Fig 12.2). This was surprising 

considering that sample n1 had a liquid state flow over 80 percent slower than the rest of the 

samples. This is reflected in the significantly lower diffusion coefficient of 40.2 µm/s2 in sample n1 

compared to 182 µm/s2, 180 µm/s2, and 217 µm/s2 in samples n2 n3 and n4 (Sup. Fig. S4, Sup. 

Fig. S6, Sup. Fig. S8, Sup. Fig. S10). The diffusion coefficients for the gel layer were 6.39 

µm/s2,14.5 µm/s2, 25.4 µm/s2, and 15.1 µm/s2 for samples n1, n2, n3, and n4. Despite our 

observed range of solution/liquid and gel state diffusion coefficients, each amoeba crawled at 

relatively similar speeds, ~ 6 µm/s (Fig12.5). The amoeba with the slowest liquid and gel diffusion 

coefficients, sample n1, was also the largest cell of the 4 (Fig 12.6). The flow system across the 

liquid and gel layers demonstrates remarkable versatility, not only achieving a stable mixing state 

across samples with varying diffusion coefficients but also maintaining consistent cell crawling 

speeds. This consistency in crawling speed, despite differences in diffusion and flow rates, 

highlights the adaptability of the flow mechanism in facilitating both effective mixing and stable 

locomotion across diverse physical states. The ability of even slower-flowing samples like n1 to 

reach comparable crawling velocities suggests that the system compensates for diffusion 

variability, ensuring reliable performance in both mixing and cellular movement. 
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Figure 12. Mixing of Nuclei is independent of Diffusion Constant 
12.1 SMI (% mixed) over time for all Histone H1-488 samples. The plot shows the subdomain mixing index 
(SMI) for four different cells (n1, n2, n3, n4), indicating the degree of mixing as a percentage over time. 12.2 
Zoomed-out view of the SMI % mixed over an extended period, showing long-term mixing stability across 
all four cells. 12.3 Diffusion coefficients for the gel (magenta) and liquid (green) states in cells n1 to n4. 12.4 
Mean velocity comparison between gel and liquid states in the four cells. 12.5 Cell crawling speed for each 
cell (n1 to n4) shown in a violin plot. Significant differences between the cells are indicated using asterisks. 
12.6 2D cell area for cells n1 to n4, demonstrating the variation in cell size, with statistically significant 
differences indicated using asterisks. 
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DISSCUSSION 

In both the ballistic and super-ballistic regimes, systems exhibit high to very high mixing 

efficiency, and the potential for complete mixing within one cycle is strong, particularly in the 

super-ballistic regime where particle separation happens at an increasingly rapid rate 41. However, 

In the super-diffusive regime, while high mixing efficiency is observed, complete mixing in a single 

cycle is unlikely, and even more unlikely in the sub-diffusive regime. In super-diffusive regimes, 

particles will explore a large part of the system in a relatively short time, but the process is not as 

thorough as it would be in ballistic or super-ballistic regimes, where complete mixing is more 

probable within one cycle. Despite over 90% of our observations falling in the super-diffusive and 

sub-diffusive regimes, our data indicates that amoeba reaches complete mixing within one flow 

cycle. From an ergodic hierarchy perspective, amoeba hyper mixing is a Bernoulli system, which 

is the fastest type of mixing known. This observation suggests that amoeba may have evolved a 

way to use laminar flows to achieve super-ballistic mixing results; one of the advantages active 

matter mixing systems possess over mixers made using conventional materials and strategies.  

Our measurements do not support our original idea of a pseudopod-based Baker's 

transform.  The timescale of mixing, as fast as 88 seconds (Sup. Fig. S7) is faster than the 

timescale of pseudopod formation which roughly takes 200 seconds.  Moreover, when pseudopod 

number was altered in our samples (Fig. 5), it did not significantly affect bead separation rates or 

power law exponents, suggesting that pseudopod generation alone does not directly influence 

mixing efficiency. This contradicts the intuitive notion that more pseudopods lead to faster or more 

efficient intracellular mixing. In a broader context, this is particularly important because several 

different species of amoeba lack the ability to form pseudopods while other naturally produce 

more pseudopods, such as the amoeba chaos used in this study. In addition, it’s possible that 

other systems lacking pseudopods but possessing gel and liquid state cytoplasm, along with 
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laminar flows, such as the slime mold, may also intracellularly mix using a similar strategy to the 

one reported in this work.   

The sol to gel transition occurs across the entire cell body, particularly at the leading and 

trailing edges, as previously reported. While the mechanism controlling this transition remains 

unclear, our study highlights a novel characteristic: mid-cell sol to gel switching. We know that gel 

transforms into sol state at the uropod (rear) and sol transitions into gel at the hyaline cap (front). 

We also know that in the gel state, the actin network is densely packed into thick filaments, while 

in the sol state, it becomes loosely organized into sparse, thin filaments. 

The complete assembly and disassembly of this network at the front and rear may explain 

the sol to gel transition at the cell’s edges, but it does not account for the newly observed mid-cell 

switching. Since the cortical actin network treadmills along with the gel layer from the leading to 

the trailing edge, we hypothesize that structural fatigue accumulates as the network travels 

between 1200 µm ~ 2000 µm, depending on the shape of the amoeba, from the hyaline cap to 

the uropod. This fatigue could lead to breaks in the network, which are subsequently repaired 

through self-assembly, possibly driving mid-cell sol to gel transitions and resulting in mid-cell 

cytoplasmic and bead state exchanges. 

Supporting this hypothesis, we found that the Birnbaum-Saunders distribution, commonly 

known as the fatigue life distribution, best fits the experimental gel state dwell times in our nuclei 

experiments. This distribution, typically used to model the time until failure in materials subjected 

to cyclic or repeated stress, suggests that the actin cytoskeleton may experience fatigue and 

periodic self-repair as it treadmills from front to rear. This process could explain the unique mid-

cell sol to gel transitions observed and may highlight the unforeseen advantages of structural 

fatigue when traveling across long distances.  

To further investigate this possibility, future studies will aim to use live-cell fluorescence  

microscopy to visualize the actin cytoskeleton alongside bead dynamics, offering potential 

insights into this fatigue driven transition.  
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CONCLUSION 

Our study provides detailed insights into the intracellular mixing dynamics within amoeba 

Chaos by utilizing both experimental and simulation-based approaches. Through the analysis of 

close bead pair separation events, we identified that most events fell within the sub-diffusive and 

super-diffusive regimes, with only a small fraction in the super-ballistic regime. These findings 

suggest that the amoeba's cytoplasmic flow should at most support moderate mixing behaviors. 

The lack of significant turbulent flow or explosive mixing events further highlights the controlled 

nature of amoeboid cytoplasmic streaming. However, when examining how mid-cell switching 

influences mixing, we discovered that amoeba is capable of complete mixing within one cycle, 

creating a Bernoulli system which is otherwise expected to arise from super-ballistic bead 

separation instead of the observed sub-diffusive and super-diffusive regimes.  

We also demonstrated that increasing pseudopod number did not significantly enhance 

bead pair separation rates, suggesting that pseudopod generation alone may have a minimal 

impact on cytoplasmic mixing efficiency. This insight contributes to our understanding of how 

amoeboid motility and mixing may not be directly correlated with pseudopod formation but rather 

with other internal dynamics such as the sol to gel state transition. 

By looking at mixing across delays in experimental data we validated our hyper mixing 

simulation and by extension the results generated from these simulations. Both simulated and 

experimental mixing shows that complete mixing can be achieved in a single flow cycle for both 

beads and nuclei. This consistency between experimental and simulated data across multiple 

sample types further supports the robustness of our approach. Interestingly, the variation in gel 

state dwell time distributions between beads and nuclei highlights subtle biological differences in 

regulation of their movement, particularly in the gel layer. 

Ultimately, our findings provide a novel method to study mixing in amoeboid cells both 

experimentally and through simulations, offering a reliable framework for future investigations into 
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cytoplasmic dynamics and mixing efficiency in other cellular systems. Our study also opens 

avenues for exploring the role of biomechanical properties, such as diffusion coefficients and cell 

size, in determining the efficiency of intracellular mixing processes. This work paves the way for 

further research into how cellular environments can modulate cytoplasmic mixing, with potential 

applications in understanding intracellular transport and distribution of organelles and 

macromolecules in various cell types. 
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SUPPLEMENTARY FIGURES 
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Figure S1. 20 µm Bead Separation Assay n2 of 4 
S1.1 Time-lapse images showing the microinjection of 20 µm yellow-green (YG) fluorescent beads into 
Amoeba Chaos. The top row presents the standard view, and the bottom row shows the OttoReg view, 
where automated segmentation, cropping, and registration have been applied. The images capture a 
separation event for bead pair 21, showing the displacement of the beads over a 40-second time window. 
Scale bars represent 200 µm. S1.2 Interparticle distance over time for bead pairs tracked in the experiment. 
Each plot corresponds to a unique bead pair, displaying the distance (µm) between beads over time (s). 
S1.3 Power law exponent for interparticle distance as a function of time. The bar graph shows the power 
law exponent for each bead pair, with values color-coded and labeled. The red dashed line at Y = 1. S1.4 
(MSD) plots for each bead pair trajectory. These plots show the MSD (µm²) as a function of delay time 
(seconds), providing insight into the diffusion behavior of the beads within the amoeba. 
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Figure S2. 20 µm Bead Separation Assay n3 of 4 
S2.1 Time-lapse images showing the microinjection of 20 µm yellow-green (YG) fluorescent beads into 
Amoeba Chaos. The top row presents the standard view, and the bottom row shows the OttoReg view, 
where automated segmentation, cropping, and registration have been applied. The images capture a 
separation event for bead pair 16, showing the displacement of the beads over a 40-second time window. 
Scale bars represent 200 µm. S2.2 Interparticle distance over time for bead pairs tracked in the experiment. 
Each plot corresponds to a unique bead pair, displaying the distance (µm) between beads over time (s). 
S2.3 Power law exponent for interparticle distance as a function of time. The bar graph shows the power 
law exponent for each bead pair, with values color-coded and labeled. The red dashed line at Y = 1. S2.4 
(MSD) plots for each bead pair trajectory. These plots show the MSD (µm²) as a function of delay time 
(seconds), providing insight into the diffusion behavior of the beads within the amoeba. 
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Figure S3. 20 µm Bead Separation Assay n4 of 4 
S3.1 Time-lapse images showing the microinjection of 20 µm yellow-green (YG) fluorescent beads into 
Amoeba Chaos. The top row presents the standard view, and the bottom row shows the OttoReg view, 
where automated segmentation, cropping, and registration have been applied. The images capture a 
separation event for bead pair 5, showing the displacement of the beads over a 40-second time window. 
Scale bars represent 200 µm. S3.2 Interparticle distance over time for bead pairs tracked in the experiment. 
Each plot corresponds to a unique bead pair, displaying the distance (µm) between beads over time (s). 
S3.3 Power law exponent for interparticle distance as a function of time. The bar graph shows the power 
law exponent for each bead pair, with values color-coded and labeled. The red dashed line at Y = 1. S3.4 
(MSD) plots for each bead pair trajectory. These plots show the MSD (µm²) as a function of delay time 
(seconds), providing insight into the diffusion behavior of the beads within the amoeba. 
 

 
Figure S4. Gel and Sol parameters H1-488 n1 of 4 
S4.1. Gel state dwell time histogram, showing the frequency of dwell times for the gel state. S4.2 Histogram 
with Birnbaum-Saunders probability density function (PDF) overlay for gel state dwell times. S4.3 Q-Q plot 
comparing observed gel state dwell times with the Birnbaum-Saunders distribution. S4.4 Gel state diffusion 
coefficient (D) and mean velocity (V) derived from MSD analysis. S4.5 Liquid state dwell time histogram, 
showing the frequency of liquid state dwell times. S4.6 Histogram with Gamma PDF overlay for liquid state 
dwell times. S4.7 Q-Q plot comparing observed liquid state dwell times with the Gamma distribution. S4.8 
Liquid state diffusion coefficient (D) and mean velocity (V) derived from MSD analysis. 
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Figure S5. Mixing of Nuclei – Histone H1-488 n2 of 4 
S5.1 Fluorescence time lapse panel of histone H1-488. Mean squared displacement (MSD) threshold used 
to identify gel and liquid state localization in the nuclei labeled with Histone H1-488. Gel (magenta) and 
liquid (green) bead flow state is represented in the timelapse panel. S5.2 Gel and liquid state hyper-mixing 
simulation. S5.3 Simulation results of SMI and SNN mixing across time. The plot shows the percentage of 
mixed nuclei over time, comparing the Subdomain Mixing Index (SMI) and Spatial Nearest Neighbors (SNN) 
metrics, demonstrating consistent mixing behavior over a 2500-second period 
 

 
 
Figure S6. Gel and Sol parameters H1-488 n2 of 4 
S6.1 Gel state dwell time histogram, showing the frequency of gel state dwell times. S6.2 Gel state dwell 
Histogram with Birnbaum-Saunders probability density function (PDF) overlay. S6.3 Q-Q plot comparing 
observed gel state dwell times with the Birnbaum-Saunders distribution. S6.4 Gel state diffusion coefficient 
(D) and mean velocity (V) derived from MSD analysis. S6.5 Liquid state dwell time histogram, showing the 
frequency of liquid state dwell times. S6.6 Histogram with Gamma PDF overlay for liquid state dwell times. 
S6.7 Q-Q plot comparing observed liquid state dwell times with the Gamma distribution. S6.8 Liquid state 
diffusion coefficient (D) and mean velocity (V) derived from MSD analysis of MSD curves for respective 
states. 
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Figure S7. Mixing of Nuclei – Histone H1-488 n3 of 4 
S7.1 Fluorescence time lapse panel of histone H1-488. Mean squared displacement (MSD) threshold used 
to identify gel and liquid state localization in the nuclei labeled with Histone H1-488. Gel (magenta) and 
liquid (green) bead flow state is represented in the timelapse panel. S7.2 Gel and liquid state hyper-mixing 
simulation: S7.3 Simulation results of SMI and SNN mixing across time. The plot shows the percentage of 
mixed nuclei over time, comparing the Subdomain Mixing Index (SMI) and Spatial Nearest Neighbors (SNN) 
metrics, demonstrating consistent mixing behavior over a 2500-second period. 
 

 
Figure S8. Gel and Sol parameters H1-488 n3 of 4 
S8.1 Gel state dwell time histogram, showing the frequency of gel state dwell times. S8.2 Histogram with 
Birnbaum-Saunders probability density function (PDF) overlay for gel state dwell times. S8.3 Q-Q plot 
comparing observed gel state dwell times with the Birnbaum-Saunders distribution. S8.4 Gel state diffusion 
coefficient (D) and mean velocity (V) derived from MSD analysis. S8.5 Liquid state dwell time histogram, 
showing the frequency of liquid state dwell times. S8.6 Histogram with Weibull PDF overlay for liquid state 
dwell times. S8.7 Q-Q plot comparing observed liquid state dwell times with the Weibull distribution. S8.8 
Liquid state diffusion coefficient (D) and mean velocity (V) derived from MSD analysis of MSD curves for 
respective states. 
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Figure S9. Mixing of Nuclei – Histone H1-488 n4 of 4 
S9.1 Fluorescence time lapse panel of histone H1-488. Mean squared displacement (MSD) threshold used 
to identify gel and liquid state localization in the nuclei labeled with Histone H1-488. Gel (magenta) and 
liquid (green) bead flow state is represented in the timelapse panel. S9.2 Gel and liquid state hyper-mixing 
simulation: S9.2 Simulation results of SMI and SNN mixing across time. The plot shows the percentage of 
mixed nuclei over time, comparing the Subdomain Mixing Index (SMI) and Spatial Nearest Neighbors (SNN) 
metrics, demonstrating consistent mixing behavior over a 2500-second period. 
 

 
 
Figure S10. Gel and Sol parameters H1-488 n4 of 4 
S10.1 Gel state dwell time histogram, showing the frequency of gel state dwell times. S10.2 Gel state dwell 
Histogram with Birnbaum-Saunders probability density function (PDF) overlay. S10.3 Q-Q plot comparing 
observed gel state dwell times with the Birnbaum-Saunders distribution. S10.4 Gel state diffusion coefficient 
(D) and mean velocity (V) derived from MSD analysis. S10.5 Liquid state dwell time histogram, showing 
the frequency of liquid state dwell times. S10.6 Histogram with Weibull PDF overlay for liquid state dwell 
times. S10.7 Q-Q plot comparing observed liquid state dwell times with the Weibull distribution. S10.8 Liquid 
state diffusion coefficient (D) and mean velocity (V) derived from MSD analysis of MSD curves for respective 
states. 
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