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Abstract  

Markov chain Monte Carlo (MCMC) simulation methods are widely used to generate 

samples from a target distribution. In posterior inference of highly-parameterized 

environmental models, the convergence speed of MCMC methods may be disturbingly 

low, even with the state-of-the-art algorithms, such as DREAM(ZS) (differential 

evolution adaptive Metropolis). At each iteration, DREAM(ZS) generates the proposal 

distributions with a mix of parallel direction jump and snooker jump that are only based 

on the information about the model parameters in the thinned chain history. In this study, 

to speed up the convergence of DREAM(ZS), we introduce a Kalman proposal 

distribution that utilizes the information contained in the covariance structure of the 

model parameters, the measurements and the model outputs. Compared with the 

parallel direction jump and the snooker jump, the Kalman jump can generate a more 

directional update of the model parameters. As the Kalman jump cannot maintain 

detailed balance, we restrict it only to the “burn-in” period and use the other two jumps 

with diminishing adaptation afterwards. The modified algorithm is called DREAM(KZS) 

as it uses the three jumps simultaneously with pre-defined probabilities. Numerical 

experiments demonstrate that DREAM(KZS) converges to the same posterior distribution 

as DREAM(ZS) but with much lower computational budget. Specifically, in problems 

with about 100 unknown model parameters, the saving can be as big as 20 times.       

  



1. Introduction 

Environmental modeling is an important tool for analyzing and predicting the 

behavior of a system that integrates hydrological, ecological and biogeochemical 

processes, etc. [Schnoor, 1996]. However, there are many sources of uncertainty that 

would hamper an accurate prediction of the system behavior of concern. These 

uncertainties are usually originated from model conceptualization and data collection, 

which include errors in the model structure, initial and boundary conditions, model 

parameters and measurement data [Clark et al., 2011; Refsgaard et al., 2012; Vrugt, 

2016; Wagener and Gupta, 2005]. In many cases, model parameters cannot be 

measured directly, or one can only obtain very sparse measurements of some spatially 

distributed parameters [Vereecken et al., 2016]. In this situation, it is common practice 

to calibrate the model parameters against the measurements, where Bayesian methods 

are ideal tools as they can handle uncertainties in the model parameters and outputs in 

a coherent and consistent manner. 

Let’s assume that the observation process of an arbitrary environmental system 

can be expressed as: 

 𝐝 = 𝑓(𝐦) + 𝛆, (1) 

where 𝐝 = {𝑑1, … , 𝑑𝑛}  is a 𝑛 -vector for the measurements, 𝑓(∙)  is a numerical 

model for the environmental system, 𝐦 = {𝑚1, … , 𝑚𝑘} is a 𝑘-vector for the unknown 

model parameters, and 𝛆 = {𝜀1, … , 𝜀𝑛}  is a 𝑛 -vector for the measurement errors, 

respectively. In this work, 𝛆 is assumed to follow a zero-mean multivariate Gaussian 

distribution with the covariance matrix 𝚺, i.e., 𝛆 ~ 𝒩𝑛(𝟎, 𝚺).  

In the Bayesian framework, we simulate all the quantities as random variables. 

Before assimilating any measurement data, our knowledge about the model parameters 

is represented by the prior distribution. When the measurements are available, we can 

evaluate the goodness of fit between the simulated model outputs and the measurements 

with the likelihood function. Conditioned on the measurements, our knowledge about 

the model parameters is updated and represented by the posterior distribution. 

According to Bayes' theorem, the posterior distribution is expressed as: 



 𝑝(𝐦|𝐝) =
𝑝(𝐦)𝑝(𝐝|𝐦)

𝑝(𝐝)
, (2) 

where 𝑝(𝐦) and 𝑝(𝐦|𝐝) signify the prior and posterior probability density functions 

(pdfs), 𝐿(𝐦|𝐝) ≡ 𝑝(𝐝|𝐦)  is the likelihood function, and 𝑝(𝐝) =

∫ 𝑝(𝐝|𝐦)𝑝(𝐦)𝑑𝐦 is the evidence, which is a normalizing constant. In practice, we 

usually don’t need to evaluate the evidence 𝑝(𝐝), then we can rewrite equation (2) as: 

 𝑝(𝐦|𝐝) ∝ 𝑝(𝐦)𝐿(𝐦|𝐝). (3) 

When the measurement errors are modeled as zero-mean Gaussian random variables, 

the likelihood function can be expressed as: 

 𝐿(𝐦|𝐝) =
1

(2𝜋)𝑛/2|𝚺|1/2
exp {−

1

2
[𝐝 − 𝑓(𝐦)]T𝚺−1[𝐝 − 𝑓(𝐦)]}. (4) 

For complex, nonlinear systems, analytical forms of the posterior distribution are 

nonexistent. To obtain a numerical approximation, one has to resort to Monte Carlo 

simulation methods. Over the past decades, Markov chain Monte Carlo (MCMC) 

simulation has become increasingly popular in the inference of the posterior statistics. 

MCMC simulation works by constructing a Markov chain to explore the parameter 

space and successively draw samples from the posterior distribution. Before the 

Markov chain reaches its stationary regime, it has to sufficiently explore the parameter 

space, i.e., it requires a “burn-in” period.  

MCMC was first introduced by Metropolis et al. [1953] with the random walk 

Metropolis (RWM) algorithm. Then Hastings [1970] extended the RWM algorithm to 

more general cases by considering non-symmetrical jumping distributions, which is 

well known as the Metropolis-Hastings (M-H) algorithm. In the past decades, 

considerable effort has been devoted to improving the efficiency of the original RWM 

and M-H algorithms by adaptively tuning the proposal distribution. One famous 

example is the differential evolution adaptive Metropolis (DREAM) algorithm 

developed by Vrugt et al. [2009b]. The DREAM algorithm is based on the differential 

evolution Markov chain algorithm [Ter Braak, 2006] but uses randomized subspace 

sampling and outlier chain correction. Based on DREAM, some extensions have also 

been made, e.g., DREAM(ZS) and MT-DREAM(ZS) that are more suitable for high-



dimensional inverse problems [Laloy and Vrugt, 2012; Laloy et al., 2013], DREAM(D) 

for problems with discrete and combinatorial posterior distributions [Vrugt and Ter 

Braak, 2011] and DREAM(ABC) for diagnostic model evaluation [Sadegh and Vrugt, 

2014], etc. Due to the high efficiency, the family of the DREAM algorithms have found 

very wide applications in different fields like geophysics, hydrology and soil science 

[Bikowski et al., 2012; Keating et al., 2010; Linde and Vrugt, 2013; Lochbühler et al., 

2014; Muleta et al., 2012; Ramin et al., 2014; Shi et al., 2014; Wöhling and Vrugt, 2011; 

Xu et al., 2017b; Ying et al., 2017; Zeng et al., 2016; Zhang et al., 2013]. For more 

details, one can refer to [Vrugt, 2016] and the references therein.  

In this work, our focus is the DREAM(ZS) algorithm, which is more efficient than 

the original DREAM algorithm and does not require the forceful treatment of outlier 

chains used in DREAM. However, in posterior inference of highly-parameterized, 

CPU-intensive environmental models, DREAM(ZS) may not necessarily be efficient 

enough. For example, if the number of unknown model parameters is more than 100, 

then one may need hundreds of thousands of model evaluations to sample the target 

distribution [Laloy and Vrugt, 2012; Laloy et al., 2013]. In DREAM(ZS), two ways of 

generating proposal distributions, i.e., the parallel direction jump and the snooker jump, 

are used. However, the two jumps are solely based on the information about the model 

parameters in the thinned chain history, which may not be very efficient for high-

dimensional problems.  

Here, we introduce a Kalman proposal distribution that is especially designed to 

speed up the convergence of DREAM(ZS) in exploring high-dimensional target 

distributions. The new proposal distribution is based on the updating scheme in the 

ensemble smoother (ES) [Evensen, 2007] that only updates the model parameters by 

assimilating all historical measurements. In the Kalman jump, the information 

contained in the covariance structure of the model parameters, the measurements and 

the model outputs is utilized. Thus the Kalman jump can generate a more directional 

update of the model parameters than the parallel direction jump and the snooker jump. 

The Kalman proposal was also suggested by Vrugt et al. [2013] to update samples of a 

particle-MCMC filter, but this idea has not been implemented in [Vrugt et al., 2013]. 



As the Kalman jump cannot maintain detailed balance, we will restrict it to the “burn-

in” period. After that, we will use a mix of the parallel direction jump and the snooker 

jump to sample the posterior, which can satisfy detailed balance with diminishing 

adaptation. As all the three jumps will be used in the modified algorithm, we call it the 

DREAM(KZS) algorithm in this paper, where K stands for the Kalman jump, Z stands 

for the parallel direction jump and S stands for the snooker jump.  

The remainder of this paper is organized as follows. We first formulate the 

DREAM(KZS) algorithm in Section 2. Then in Section 3, we compare the performance 

of DREAM(KZS) with DREAM(ZS) in numerical case studies involving non-linearity and 

high-dimensionality. Finally, some conclusions and discussions are provided in Section 

4.     

2. Methods 

2.1. DREAM(ZS): the basic algorithm 

In most cases, analytical forms of the posterior, 𝑝(𝐦|𝐝) are nonexistent. In this 

situation, we can resort to an MCMC algorithm, e.g., DREAM(ZS), to sample the 

posterior distribution. MCMC explores the parameter space by constructing a Markov 

chain that gradually converges to its equilibrium distribution, i.e., the posterior 

distribution. The Markov chain evolves so that more effort will be spent in the posterior 

regions. This is realized by moving the Markov chain from the current state, 𝐦𝑡−1 to 

a candidate state, 𝐦p  that mimics a sample drawn from the posterior distribution 

[Andrieu et al., 2003]. The probability of accepting 𝐦p as the next state of the Markov 

chain is calculated as: 

 𝑝acc(𝐦𝑡−1 → 𝐦p) = min [1,
𝑝(𝐦p)𝑞(𝐦p → 𝐦𝑡−1 )

𝑝(𝐦𝑡−1)𝑞(𝐦𝑡−1 → 𝐦p)
], (5) 

where 𝑝(𝐦p) and 𝑝(𝐦𝑡−1) are the posterior densities of 𝐦p and 𝐦𝑡−1, which are 

proportional to the product of the corresponding prior density times the likelihood; 

𝑞(𝐦p → 𝐦𝑡−1) and 𝑞(𝐦𝑡−1 → 𝐦p) are the conditional probabilities of trail moves 



from 𝐦p to 𝐦𝑡−1 and from 𝐦𝑡−1 to 𝐦p, respectively. In DREAM(ZS), a symmetric 

jumping distribution is used, i.e., 𝑞(𝐦p → 𝐦𝑡−1) = 𝑞(𝐦𝑡−1 → 𝐦p). Thus equation 

(5) simplifies to : 

 𝑝acc(𝐦𝑡−1 → 𝐦p) = min [1,
𝑝(𝐦p)

𝑝(𝐦𝑡−1)
]. (6) 

If 𝑝acc(𝐦𝑡−1 → 𝐦p)  is larger than a random draw, 𝑢  from the standard uniform 

distribution, 𝑢 ~ 𝒰(0,1), we accept the candidate state, i.e., 𝐦𝑡 = 𝐦p; Otherwise, the 

Markov chain will stay at the previous state, i.e., 𝐦𝑡 = 𝐦𝑡−1 . After a number of 

iterations, the Markov chain will converge to its stationary regime and then the states 

in the Markov chain can be viewed as samples drawn from the posterior distribution.  

The efficiency of an MCMC algorithm is largely determined by the choice of the 

proposal distribution that generates the candidate state. In DREAM(ZS), 𝑁 Markov 

chains are evolving simultaneously. The candidate state for the 𝑖th  chain (𝑖 =

1, … , 𝑁) is generated using differential evolution based on an archive of past states: 

 𝐦p
𝑖 = 𝐦𝑡−1

𝑖 + Δ𝐦𝑖, (7) 

where Δ𝐦𝑖 is the jump distance from the current state, 𝐦𝑡−1
𝑖  to the candidate state, 

𝐦p
𝑖 , which is calculated as: 

 
Δ𝐦𝐴

𝑖 = 𝜁𝑑∗ + (1𝑑∗ + 𝜆𝑑∗)𝛾(𝛿,𝑑∗) ∑ (𝐙𝐴

𝐚𝑗 − 𝐙𝐴

𝐛𝑗) ,𝛿
𝑗=1

Δ𝐦≠𝐴
𝑖 = 0.

 (8) 

In the above equation, 𝐴 is a 𝑑∗-dimensional subset of the original 𝑘-dimensional 

parameter space. Equation (8) means that we only update 𝑑∗  randomly selected 

parameters in 𝐦𝑡−1
𝑖  and keep the rest 𝑘 − 𝑑∗ parameters unchanged; 𝜁𝑑∗  and 𝜆𝑑∗  

are random samples drawn from a multivariate normal distribution, 𝒩𝑑∗(0, 𝑒∗) and a 

multivariate uniform distribution, 𝒰𝑑∗(−𝑒, 𝑒), respectively. The default values for 𝑒∗ 

and 𝑒 are 10−12 and 0.05, respectively; 𝛾(𝛿,𝑑∗) = 2.38/√2𝛿𝑑∗ is the jump rate and 

𝛿 is the number of chain pairs that are used to generate the jump. In DREAM(ZS), the 

value of 𝛾 is periodically (e.g., with a 20% chance) set as 1, which facilitates jumps 



from one mode to another in the posterior distribution; 𝐙 is a 𝑘 × 𝑧 matrix for the 

thinned chain history with 𝑧  parameter samples; 𝐚  and 𝐛  are 𝛿  integers drawn 

from {1, … , 𝑧} without replacement. It is noted here that the length of the archive 𝐙 

increases linearly with the iteration number. Thus, 𝑧 is not a fixed value.  

The above way of generating candidate states is called the parallel direction jump. 

To enhance the diversity of the proposals, another way to generate candidate states, i.e., 

the snooker jump [Ter Braak and Vrugt, 2008], is also used in DREAM(ZS). The distance 

of the snooker jump is calculated as: 

 Δ𝐦𝑖 = 𝜁𝑘 + 𝛾(𝐙⊥
𝑏 − 𝐙⊥

𝑐 ), (9) 

where 𝜁𝑘  are random samples drawn from the multivariate normal distribution, 

𝒩𝑘(0, 𝑒∗); 𝛾 is the jump rate of the snooker update, which is randomly drawn from 

the uniform distribution, 𝒰(1.2, 2.2); 𝐙⊥
𝑏  and 𝐙⊥

𝑐  are projection points of 𝐙𝑏  and 

𝐙𝑐 onto the direction from 𝐦𝑡−1
𝑖  to 𝐙𝑎, respectively; 𝑎, 𝑏 and 𝑐 are integers drawn 

from {1, … , 𝑧} without replacement.  

In DREAM(ZS), the relative growth of the archive decreases over time, this 

diminishing adaptation can guarantee that the Markov chains are ergodic and can 

converge to the posterior distribution [Roberts and Rosenthal, 2007]. Here, the 

probabilities of using the parallel direction jump and the snooker jump are 𝑝Z and 𝑝S, 

where 𝑝Z ≥ 0,  𝑝S ≥ 0 and 𝑝Z + 𝑝S = 1. 

2.2. The Kalman jump 

From equations (8) and (9) we can see that, the parallel direction jump and the 

snooker jump are solely based on the information about the model parameters in the 

thinned chain history. If the information contained in the covariance structure of the 

model parameters, the measurements and the model outputs is utilized to generate the 

proposals, a more directional jump can be obtained. One method that fits this situation 

is the ensemble smoother [Evensen, 2007], which can update the model parameters and 

model states in the optimal direction by making best use of the measurements. Here, 

we adopt a modified scheme of the ensemble smoother that only updates the model 

parameters by assimilating all historical measurements to generate the jump for 𝐦𝑡−1
𝑖 :   



 
Δ𝐦𝑖 = 𝐂MD(𝐂DD + 𝚺)−1[𝐝 + 𝛆𝑡−1

𝑖 − 𝑓(𝐦𝑡−1
𝑖 )]   

= 𝐊𝑡−1
𝑖 𝛆𝑡−1

𝑖 + 𝐊𝑡−1
𝑖 𝐫𝑡−1

𝑖 , 

(10) 

where 𝐂MD is the 𝑘 × 𝑛 cross-covariance matrix between the model parameters and 

model outputs; 𝐂DD is the 𝑛 × 𝑛 auto-covariance matrix of the model outputs; 𝚺 is 

the 𝑛 × 𝑛  covariance matrix of the measurement errors, and 𝛆𝑡−1
𝑖  is one set of 

randomly simulated measurement noise drawn from the multivariate normal 

distribution, 𝒩𝑛(𝟎, 𝚺) ; 𝐊𝑡−1
𝑖 = 𝐂MD(𝐂DD + 𝚺)−1  is the Kalman gain and it is 

calculated from an archive of past states in 𝜏 chains. Here, the chain indices are 𝜏 

integers randomly drawn from {1, … , 𝑖 − 1, 𝑖 + 1, … , 𝑁} without replacement; 𝐫𝑡−1
𝑖 =

𝐝 − 𝑓(𝐦𝑡−1
𝑖 ) is the residual vector. Then the proposal state 𝐦p

𝑖  can be obtained 

according to equations (7) and (10).  

Obviously, the Kalman jump is asymmetric, i.e., 𝑞(𝐦𝑡−1
𝑖 → 𝐦p

𝑖 ) ≠ 𝑞(𝐦p
𝑖 →

𝐦𝑡−1
𝑖 ) . As symmetric jumping distribution is considered in DREAM(ZS), here we 

introduce a backward jump of the Kalman proposal distribution to satisfy symmetry. 

The backward jump is implemented as follows. If the candidate state 𝐦p
𝑖  is accepted, 

i.e., 𝐦𝑡
𝑖 = 𝐦p

𝑖 , the jump distance for 𝐦𝑡
𝑖  at the next iteration is directly calculated as: 

 Δ𝐦𝑖 = −𝐊𝑡−1
𝑖 𝛆𝑡

𝑖 − 𝐊𝑡−1
𝑖 𝐫𝑡−1

𝑖 , (11) 

where 𝛆𝑡
𝑖  is another random sample drawn from 𝒩𝑛(𝟎, 𝚺) . This treatment can 

guarantee that 𝑞(𝐦𝑡−1
𝑖 → 𝐦p

𝑖 ) = 𝑞(𝐦p
𝑖 → 𝐦𝑡−1

𝑖 ) and enable us to use equation (6) 

to calculate the acceptance rate directly.  

It should be noted here that in many cases the distribution of the measurement 

errors is not available. In this situation, we can estimate the measurement error 

parameters together with the unknown model parameters. Then in the Kalman jump 

described in equation (10), the measurement error covariance, 𝚺  and the 

measurement error realization, 𝛆𝑡−1
𝑖  are all generated from the measurement error 

parameters at iteration 𝑡 − 1 in the 𝑖th chain. 



2.3. DREAM(KZS)  

Here, we augment DREAM(ZS) with the Kalman jump to enhance the diversity of 

the proposals. This extension is referred to as DREAM(KZS), as we use the three jumps 

simultaneously with pre-defined probabilities. As the Kalman jump can generate a 

rather directional update of the model parameters, the forward jump described in 

equation (10) will be very likely accepted and the backward jump described in equation 

(11) will be very likely rejected. At this point, the Kalman jump cannot maintain 

detailed balance. To address this issue, we can restrict the Kalman jump only to the 

“burn-in” period. Afterwards we will use the parallel direction jump and the snooker 

jump to sample the posterior distribution and the detailed balance is satisfied with 

diminishing adaptation. It is expected that introducing the Kalman jump in DREAM(ZS) 

can speed up the convergence of MCMC simulations.  

The implementation detail of DREAM(KZS) is shown in Algorithm 1. Here 

𝑧0 (𝑧0 > 𝑁) is the initial size of the archive 𝐙. From this initial archive, we randomly 

draw 𝑁 samples as the starting states of the 𝑁 Markov chains. This initial archive is 

also used to generate the candidate states for the 𝑁 starting states; 𝑝K,  𝑝Z and 𝑝S 

are the probabilities of using the Kalman jump, the parallel direction jump and the 

snooker jump during the “burn-in” period. Here 𝑝K ≥ 0, 𝑝Z ≥ 0, 𝑝S ≥ 0, and 𝑝K +

𝑝Z + 𝑝S = 1. For example, we can set the “burn-in” period, 𝑇burn−in as 20% of the 

total iteration number, 𝑇, i.e., 𝑇burn−in = 0.2 × 𝑇; 𝑝Z
′  and 𝑝S

′  are the probabilities of 

using the parallel direction jump and the snooker jump after the “burn-in” period. Here 

𝑝Z
′ ≥ 0, 𝑝S

′ ≥ 0 , and 𝑝Z
′ + 𝑝S

′ = 1 . Every 𝑇thin  generations, we will append the 

current 𝑁 states in the Markov chains to the archive Z, thus the number of samples in 

the archive 𝐙 will grow from 𝑧 to 𝑧 + 𝑁. 

 

  



Algorithm 1 The DREAM(KZS) algorithm. 

1. Draw 𝑧0 samples from the prior distribution to create the initial archive Z. 

2. for 𝑡 = 2, … , 𝑇 do  

for 𝑖 = 1, … , 𝑁 do 

Draw a random sample 𝑢 from the uniform distribution, 𝒰(0,1). 

if 𝑡 ≤ 𝑇burn−in then 

Generate a candidate state 𝐦p
𝑖  using the Kalman jump, the parallel direction 

jump or the snooker jump with the selection probabilities of 𝑝K, 𝑝Z and 𝑝S. 

else 

Generate a candidate state 𝐦p
𝑖  using the parallel direction jump or the snooker 

jump with the selection probabilities of 𝑝Z
′  and 𝑝S

′ . 

end if 

Evaluate the prior density times the likelihood for 𝐦𝑡−1
𝑖  and 𝐦p

𝑖 , calculate the 

acceptance rate 𝑝acc(𝐦𝑡−1
𝑖 → 𝐦p

𝑖 ) according to equation (6).  

if 𝑢 ≤ 𝑝acc(𝐦𝑡−1
𝑖 → 𝐦p

𝑖 ) then  Accept 𝐦p
𝑖  and set 𝐦𝑡

𝑖 = 𝐦p
𝑖 .  

else  Reject 𝐦p
𝑖  and set 𝐦𝑡

𝑖 = 𝐦𝑡−1
𝑖 . 

end if 

end for 

Append the current 𝑁  states in the Markov chains to the archive Z when 

mod(𝑡, 𝑇thin) = 0. 

end for 

3. Illustrative examples 

In this section, we illustrate the performance of the DREAM(KZS) algorithm by 

application to three different case studies involving the simulation of surface and 

subsurface hydrological processes. Compared with the original DREAM(ZS) algorithm, 

a significant improvement in the convergence speed will be observed through 

introducing the Kalman proposal distribution, especially in high-dimensional inverse 

problems. 

3.1. Example 1: A rainfall-runoff model 

We first test a 7-parameter model, known as the hmodel, that describes the rainfall-

runoff process at the Guadalupe River basin at Spring Branch, Texas [Duan et al., 2006]. 

In this model, precipitation that falls in the watershed undergoes various processes 

including evaporation, runoff generation, interception, percolation, and distribution 

between fast and slow reservoirs, then it discharges from the outlet of the watershed 

through surface and subsurface routings. The 7 parameters and the corresponding prior 



ranges are listed in Table 1. For a detailed description of the model structure and 

underling processes, one can refer to [Schoups and Vrugt, 2010]. This model is also 

included in the DREAM software package as a benchmark test for diagnostic model 

evaluation [Vrugt, 2016].   

[Table 1] 

To infer the 7 unknown model parameters, we run DREAM(ZS) and DREAM(KZS) 

respectively conditioned on the measured streamflow data. The measurements are 

generated from one set of true model parameters 𝐦∗ (Table 1) perturbed with additive 

measurement errors that follow 𝒩𝑛(𝟎, 𝛔2) , where 𝑛 = 1827  is the number of 

measurement data, 𝛔 = 0.05 × 𝑓(𝐦∗) is the standard deviation of the measurement 

error, and 𝑓(∙) signifies the hmodel. In both algorithms, there are 𝑁 = 4 parallel 

chains evolving simultaneously with a total chain length of 6000, which means 24,000 

model evaluations in total. In DREAM(ZS), the probabilities of using the parallel 

direction jump and the snooker jump are 𝑝Z = 90% and 𝑝S = 10%, respectively. In 

the first 20% simulation time of DREAM(KZS), the probabilities of using the Kalman 

jump, the parallel direction jump and the snooker jump are 𝑝K = 20%, 𝑝Z = 72% 

and 𝑝S = 8%, while in the remaining 80% simulation, 𝑝K = 0%, 𝑝Z = 90% and 

𝑝S = 10%. The convergence of the two algorithms is monitored with the 𝑅̂-statistic 

proposed by Gelman and Rubin [1992]. Evolutions of the 𝑅̂ -statistics of the 7 

parameters in DREAM(ZS) and DREAM(KZS) are shown in Figure 1(a) and Figure 1(b), 

respectively. When the 𝑅̂-statistics of all the 7 parameters are below 1.2 (the red dashed 

lines in Figure 1), we can declare that the Markov chains converge to the equilibrium 

distribution. As shown in Figure 1, DREAM(KZS) converges faster than DREAM(ZS), 

which signifies an improved efficiency by introducing the Kalman proposal distribution 

in DREAM(ZS).  

[Figure 1] 

In Figure 2, We compare the marginal posterior pdfs obtained by DREAM(ZS) (red 

curves) and DREAM(KZS) (blue dashed curves) estimated via a Gaussian kernel using 



the last 4000 samples in the Markov chains. It is found that, the two algorithms can 

obtain almost identical results, which indicates the estimation accuracy of DREAM(KZS).  

[Figure 2] 

To further convince the performance of DREAM(KZS), we run some extra 

simulations with different sets of true model parameters and observe similar results. In 

Figure 3, we compare the multivariate 𝑅̂-statistics obtained by DREAM(ZS) (magenta 

curves) and DREAM(KZS) (blue curves) given 4 different sets of true model parameters. 

In each subplot, 4 curves with the same color signify 4 repeated simulations with 

DREAM(ZS) or DREAM(KZS) given the same set of measurements generated from the 

same set of true model parameters. It should be noted here that, in Figure 1 we draw 

the evolution of the 𝑅̂-statistics of the 7 parameters separately, while in Figure 3 we 

monitor the overall convergence with the multivariate 𝑅̂-statistics. From Figure 3, it is 

found that DREAM(KZS) generally converges faster than DREAM(ZS) (it is noted here 

that, when doing more simulation tests of this example, we observe that occasionally 

DREAM(KZS) performs similarly as DREAM(ZS) in convergence speed). 

[Figure 3] 

In the above simulations, the distribution of the measurement errors is assumed to 

be known, i.e., the mean is zero and the standard deviation is 5% of the true model 

response. While in many cases, the measurement error distribution is unknown. In this 

situation, we can estimate the parameters that describe the measurement error 

distribution together with the unknown model parameters using DREAM(KZS). For 

example, we can define a model, 𝛔 = 𝑎 + 𝑏 ∗ 𝐝 for the standard deviation of the 

measurement error if it is linearly dependent on the measurement. Here 𝑎 and 𝑏 are 

two extra unknown parameters for the measurement error distribution, whose prior 

distributions are 𝒰(0,1) and 𝒰(0,1), respectively. At iteration 𝑡 − 1, the current state 

in the 𝑖th chain is [𝐦𝑡−1
𝑖 ;  𝑎𝑡−1

𝑖 ;  𝑏𝑡−1
𝑖 ]. Then we can use the corresponding model 

outputs, 𝑓(𝐦𝑡−1
𝑖 ) and the estimated standard deviation of the measurement error, 

𝛔𝑡−1
𝑖 = 𝑎𝑡−1

𝑖 + 𝑏𝑡−1
𝑖 ∗ 𝐝 to evaluate the likelihood function defined in equation (4). 



Similarly, we can calculate the likelihood of the proposal, [𝐦𝑝
𝑖 ;  𝑎𝑝

𝑖 ;  𝑏𝑝
𝑖 ] and decide 

whether to accept it according to equation (6). Using the same settings for DREAM(KZS) 

as in the previous simulations, the two types of unknown parameters can be well 

identified. As shown in Figure 4, the estimated posterior pdfs (blue curves) can cover 

the true values (black vertical lines) of the model parameters and the parameters for the 

measurement error distribution. 

[Figure 4] 

3.2. Example 2: High-dimensional contaminant source identification 

When dealing with high-dimensional inverse problems, MCMC usually requires 

a very large number of model evaluations, which generally means a prohibitive 

computational cost. In the following example, we will show that when the number of 

unknown model parameters is large, DREAM(KZS) can converge much faster than 

DREAM(ZS), thus save a lot of computational cost. 

[Figure 5]  

Here we consider the process of contaminant transport in a steady-state saturated 

groundwater flow system. As shown in Figure 5, the flow domain is 20[𝐿] × 10[𝐿] 

with no-flow conditions at the upper and lower boundaries, constant-head conditions at 

the left and right boundaries, respectively. The conductivity (𝐾[𝐿𝑇−1])  field is 

heterogeneous and its log-transformed values (𝑌 = ln𝐾) are assumed to be spatially 

correlated in the following way: 

 𝐶𝑌(𝑥1, 𝑦1; 𝑥2, 𝑦2) = 𝜎𝑌
2exp (−

|𝑥1 − 𝑥2|

𝜆𝑥
−

|𝑦1 − 𝑦2|

𝜆𝑦
), (12) 

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are two arbitrary locations in the flow domain, 𝜎𝑌
2 = 1 

is the variance of the Y field, 𝜆𝑥 = 10[𝐿] and 𝜆𝑦 = 5[𝐿] are the correlation lengths 

along the x and y directions, respectively. To reduce the parametric dimensionality, we 

represent the Y field with the Karhunen-Loève (KL) expansion [Zhang and Lu, 2004]: 



 𝑌(𝐱) ≈ 𝑌̅(𝐱) + ∑ √𝜏𝑖𝑠𝑖(𝐱)𝜉𝑖

𝑁KL

𝑖=1

, (13) 

where 𝑌̅(𝐱) = 2 is the mean value of the Y field; 𝑠𝑖(𝐱) and 𝜏𝑖 are the eigenfunctions 

and eigenvalues of the covariance kernel defined in equation (12); 𝜉𝑖  are i.i.d. 

Gaussian random variables, hereafter referred to as KL terms, that fit 𝜉𝑖~𝒩(0,1), 𝑖 =

1, … , 𝑁KL; 𝑁KL = 100 is the number of truncated KL terms that can preserve about 

95% of the field variance, i.e., ∑ 𝜏𝑖
𝑁KL
𝑖=1 / ∑ 𝜏𝑖

∞
𝑖=1 ≈ 0.95. Then we can obtain steady-

state hydraulic head, ℎ[𝐿] and pore water velocity, 𝑣[𝐿𝑇−1] by numerically solving 

the following equations with MODFLOW [Harbaugh et al., 2000]: 

 
∂

∂𝑥𝑖
(𝐾𝑖

𝜕ℎ

𝜕𝑥𝑖
) = 0, (14) 

and 

 𝑣𝑖 = −
𝐾𝑖

𝜃

𝜕ℎ

𝜕𝑥𝑖
, (15) 

where the subscript 𝑖 demotes the component along the respective coordinate axis 

(𝑖 = 1, 2), 𝜃 = 0.25[−] is the porosity of the aquifer. 

In the steady-state flow field, some amount of contaminant is released from an 

unknown point source. The contaminant source is located somewhere in the area 

denoted by the red dashed rectangle in Figure 5. Its releasing strength (mass-loading 

rate, [𝑀𝑇−1]) varies with time and can be described by 6 parameters in 6 time segments, 

i.e., 𝑆𝑖[𝑀𝑇−1]  during 𝑡𝑖 = 𝑖[𝑇]: (𝑖 + 1)[𝑇] , for 𝑖 = 1, … ,6 . Concentration of the 

contaminant, 𝐶[𝑀𝐿−3] at different times and locations can be obtained by numerically 

solving the following advection dispersion equation with MT3DMS [Zheng and Wang, 

1999]: 

 
∂(𝜃𝐶)

∂𝑡
=

∂

∂𝑥𝑖
(𝜃𝐷𝑖𝑗

𝜕𝐶

𝜕𝑥𝑗
) −

𝜕

𝜕𝑥𝑖

(𝜃𝑣𝑖𝐶) + 𝑞s𝐶s, (16) 

where 𝑞s[𝑇−1] is the volumetric flow rate per unit volume of the aquifer; 𝐶s[𝑀𝐿−3] 

is the concentration of the contaminant source; 𝐷𝑖𝑗[𝐿2𝑇−1]  is the hydrodynamic 

dispersion tensor, which has the following component forms: 



 {

𝐷𝑥𝑥 = (𝛼𝐿𝑣𝑥
2 + 𝛼𝑇𝑣𝑦

2)/|𝒗|,

𝐷𝑦𝑦 = (𝛼𝐿𝑣𝑦
2 + 𝛼𝑇𝑣𝑥

2)/|𝒗|,

𝐷𝑥𝑦 = 𝐷𝑦𝑥 = (𝛼𝐿 − 𝛼𝑇)𝑣𝑥𝑣𝑦/|𝒗|,

 (17) 

where 𝐷𝑥𝑥 and 𝐷𝑦𝑦 are the principal components of the dispersion tensor, [𝐿2𝑇−1], 

𝐷𝑥𝑦  and 𝐷𝑦𝑥  are the cross terms, [𝐿2𝑇−1] , 𝛼𝐿 = 0.3[𝐿]  is the longitudinal 

dispersivity, 𝛼𝑇 = 0.03[𝐿]  is the transverse dispersivity, 𝑣𝑥  and 𝑣𝑦  are the 

components of the velocity 𝒗 along the x and y directions, |𝒗| = √𝑣𝑥
2 + 𝑣𝑦

2 is the 

magnitude of the velocity, respectively. 

In this example, there are 108 unknown model parameters, i.e., the 100 KL terms, 

𝜉𝑖(𝑖 = 1, … ,100) , that parameterize the log conductivity field; the location of the 

contaminant source, (𝑥s, 𝑦s)[𝐿],  and the time-varying source strengths, 

(𝑆1, … , 𝑆6)[𝑀𝑇−1] . Here we assume that the 8 source parameters are uniformly 

distributed, whose ranges are listed in Table 2. 

[Table 2] 

To infer the 108 unknown model parameters, we collect measurements of the 

hydraulic head and concentration at 15 wells denoted by the blue dots in Figure 5. As 

the flow field is steady, we collect the head measurements only once, while the 

concentration measurements are collected every 1[𝑇]  from 4[𝑇]  to 12[𝑇] . The 

errors for the head and concentration measurements are assumed to be independent and 

Gaussian with zero means and standard deviations of 0.005[𝐿] and 0.005[𝑀𝐿−3], 

respectively. To better explore the high-dimensional parameter space, we run 𝑁 = 20 

parallel chains simultaneously in both DREAM(ZS) and DREAM(KZS). Here the chain 

lengths of DREAM(ZS) and DREAM(KZS) are set as 40,000 and 2000, which mean that 

the total numbers of model evaluations are 800,000 and 40,000, respectively. The 

probabilities of using the different jumps in DREAM(ZS) and DREAM(KZS) are the same 

as those in example 1. In DREAM(KZS), the “burn-in” period is set as the first 70% 

simulation time, which is much longer than that in example 1. It is expected that using 



the Kalman jump over a longer period is beneficial to better estimate unknown model 

parameters in high-dimensional, nonlinear problems. 

[Figure 6] 

In Figure 6, we draw trace plots of the 8 contaminant source parameters obtained 

by DREAM(ZS) as well as the true values. It is found that after about 200,000 model 

evaluations, the variance of the samples in the Markov chains is greatly reduced, while 

the mean values are still slightly deviated from the true values. Then the Markov chains 

spend a very long time (about 600,000 model evaluations) approaching to the true 

values. In this simulation, DREAM(ZS) consumes 800,000 model evaluations, which 

imposes a very high computational burden. However, when we introduce the Kalman 

proposal distribution in DREAM(ZS), the convergence can be greatly accelerated. As 

shown in Figure 7, the chains of DREAM(KZS) approach very close to the true values of 

the contaminant source parameters within 30,000 model evaluations, which is less than 

1/20 the computational cost needed by DREAM(ZS).  

[Figure 7] 

Using the last 10,000 samples in the Markov chains of DREAM(ZS) and 

DREAM(KZS), we can obtain the mean estimates of the Y field. From Figure 8, it is found 

that the estimated Y fields from both DREAM(ZS) and DREAM(KZS) can resemble the 

reference field to some extent. For a better estimation, we can collect more 

measurement data and use longer chains in the MCMC simulations. Inevitably, the cost 

in both data collection and computation will be increased. 

[Figure 8] 

3.3. Example 3: A 3D groundwater model 

Here we further test the performance of DREAM(KZS) in a 3D groundwater model 

presented in [Fienen et al., 2013]. This model has 3 layers, 40 rows and 35 columns. 

From top to bottom, the thicknesses of the 3 layers are 1.8 meters (m), 1.4 m and 1.8 m, 

respectively. The spacing for each row is 2.0 m, and the spacing for each column is 1.5 



m. On all sides, the boundaries are constant with the head of 60 m. At row 18, column 

17, there is a single well pumping water from each layer with a constant rate of 0.01 

liter per minute. We assume that the Y (i.e., the log-transformed conductivity) fields in 

the three layers fit the correlation function defined in equation (12), where 𝜆𝑥 =

37.5 𝑚 , 𝜆𝑦 = 60 𝑚 , 𝑌̅(𝐱) = −6.5 , and 𝜎𝑌
2 = 0.5 . To reduce the parametric 

dimensionality, we use 40 KL terms to represent the Y field in each layer, which can 

preserve about 94% of the field variance. Then steady-state fields of hydraulic head are 

obtained by running the numerical solver of MODFLOW [Harbaugh et al., 2000].  

In this example, there are 120 unknown model parameters for the Y fields in the 

three layers. To reduce the parametric uncertainty, we collect 243 head measurements 

in the 3 layers at 81 wells and then assimilate them in the MCMC simulations. The 81 

wells are located every 4 rows from row 3 to row 35, every 3 columns from column 5 

to column 29. The measurement errors are assumed to be independent and Gaussian 

with zero mean and standard deviation of 0.01 m.  

[Figure 9] 

To infer the 120 unknown model parameters, we run both DREAM(ZS) and 

DREAM(KZS) with 𝑁 = 20  parallel chains and a chain length of 4000. The 

probabilities of using the different jumps in DREAM(ZS) and DREAM(KZS) are the same 

as example 1. Using the last 10,000 samples in the Markov chains, we can obtain mean 

estimates of the Y fields in the 3 layers. As shown in Figure 9, both algorithms can 

capture the main patterns of the reference fields quite well. In Figure 10, we plot the 

root-mean-square error (RMSE) between the simulated model outputs in the chains and 

the measurements for both algorithms. It is again observed that introducing the Kalman 

proposal distribution can significantly speed up (about 20 times) the convergence of 

DREAM(ZS). 

[Figure 10] 

4. Conclusions and discussions 



In this paper, we try to speed up the convergence of DREAM(ZS) by introducing a 

Kalman proposal distribution. In MCMC simulations, we use three jumps, i.e., the 

Kalman jump, the parallel direction jump and the snooker jump simultaneously with 

pre-defined probabilities to generate the proposal distributions. The new algorithm is 

thus called DREAM(KZS). As the Kalman jump cannot maintain detailed balance, we 

restrict it to the “burn-in” period. After that, we will use a mix of the parallel direction 

jump and the snooker jump to sample the posterior, which can satisfy detailed balance 

with diminishing adaptation.  

Illustrated with three numerical cases, we find that DREAM(KZS) generally 

converges faster than DREAM(ZS). Specifically, in problems with about 100 unknown 

model parameters, the saving in computational budget can be as big as 20 times. It is 

because the Kalman jump utilizes the information contained in the covariance structure 

of the model parameters, the measurements and the model outputs, which can generate 

a more directional update of the model parameters than the other two jumps that only 

utilize the information about the model parameters. The Kalman filter (KF)-based 

methods, such as the ensemble Kalman filter and the ensemble smoother, have been 

adopted to solve high-dimensional inverse problems [Chen and Zhang, 2006; Crestani 

et al., 2013; Zhou et al., 2014]. However, they are not guaranteed to obtain a correct 

estimation of the posterior distribution. DREAM(KZS) combines the strengths of MCMC 

and the KF-based ensemble smoother while it remedies the weaknesses of the two 

methods. Thus, it enjoys both accuracy and efficiency in exploring the posterior 

distribution. 

Nevertheless, there are many issues that deserve further consideration. For 

example, we adopt the backward jump of the Kalman proposal distribution to realize 

symmetry, which is rather crude. To address this issue, more theoretical development is 

needed. Moreover, we assume that the measurement errors fit Gaussian distribution. In 

practice, we usually have to consider non-Gaussian errors and infer the error statistics 

along with the model parameters [Schoups and Vrugt, 2010; Vrugt et al., 2009a]. 

Another issue that should be concerned is the model structure error, which is also not 

considered in the present study. To address this issue, we can adopt the framework of 



Bayesian model averaging [Rojas et al., 2008; Vrugt et al., 2008; Ye et al., 2004], or 

quantify the model structure uncertainty together with other sources of uncertainties 

[Xu and Valocchi, 2015; Xu et al., 2017a], etc. These issues will be addressed in our 

future work.  
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Tables 

Table 1. Prior ranges and true values of the 7 parameters in the hmodel 

Parameter 

[unit] 
Symbol Prior range 

True 

value 

Maximum interception 

[mm] 
𝐼max  [0.5 10] 3.601 

Soil water storage capacity 

[mm] 
𝑆max  [10 1000] 704.566 

Maximum percolation rate 

[mm d-1] 
𝑄max  [0 100] 99.124 

Evaporation parameter 

[-] 
𝛼E  [1×10-6 100] 43.568 

Runoff parameter 

[-] 
αF  [-10 10] 4.161 

Time constant, fast reservoir 

[days] 
𝐾F  [0 10] 9.051 

Time constant, slow reservoir 

[days] 
𝐾S  [0 150] 14.780 

 



Table 2. Prior ranges and true values of the contaminant source parameters 

Parameter [unit] Prior range True value 

xs [L] [3 5] 3.520 

ys [L] [4 6] 4.437 

S1 [MT-1] [0 8] 5.692 

S2 [MT-1] [0 8] 7.883 

S3 [MT-1] [0 8] 6.306 

S4 [MT-1] [0 8] 1.485 

S5 [MT-1] [0 8] 6.872 

S6 [MT-1] [0 8] 5.552 

  



Figures 

Figure 1. Evolution of the 𝑅̂-statistics of the 7 model parameters in (a) DREAM(ZS) and 

(b) DREAM(KZS). The threshold of 1.2 for convergence diagnosis is represented by the 

red dashed lines. 

Figure 2. Marginal posterior pdfs of the 7 model parameters obtained by DREAM(ZS) 

(red curves) and DREAM(KZS) (blue dashed curves), respectively. The true values of the 

model parameters are represented by the black vertical lines. 

Figure 3. Given 4 different sets of measurement data generated from 4 different sets of 

true model parameters, the multivariate 𝑅̂-statistics obtained by DREAM(ZS) (magenta 

curves) and DREAM(KZS) (blue curves). In each subplot, the 4 curves with the same 

color signify 4 repeated simulations with DREAM(ZS) or DREAM(KZS) given the same 

set of measurement data. 

Figure 4. Marginal posterior pdfs of the 7 model parameters and the 2 parameters for 

the measurement error distribution obtained by DREAM(KZS) (blue curves). The true 

values of the two types of parameters are represented by the black vertical lines. 

Figure 5. Flow domain of example 2. 

Figure 6. Trace plots of contaminant source parameters obtained by DREAM(ZS). Here 

the true values are represented by the red crosses. 

Figure 7. Trace plots of contaminant source parameters obtained by DREAM(KZS). Here 

the true values are represented by the red crosses. 

Figure 8. (a) The reference Y field and the mean estimates of the Y field obtained by (b) 

DREAM(ZS) and (c) DREAM(KZS). 

Figure 9. The first column: the reference Y fields in the 3 layers; The second column: 

the estimated Y fields obtained by DREAM(ZS); The third column: the estimated Y fields 

obtained by DREAM(KZS). 

Figure 10. RMSE values between the simulated model outputs in the Markov chains 



and the measurements. Here the blue dots are for the results obtained by DREAM(ZS), 

and the red dots are for the results obtained by DREAM(KZS).  
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