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RESEARCH ARTICLE
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Abstract

The Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Net-

work has yielded neuroimaging and urinary biomarker findings that highlight unique alter-

ations in brain structure and in urinary proteins related to tissue remodeling and vascular

structure in patients with Urological Chronic Pelvic Pain Syndrome (UCPPS). We hypothe-

sized that localized changes in diffusion tensor imaging (DTI) measurements might be

associated with corresponding changes in urinary protein levels in UCPPS. To test this

hypothesis, we created statistical parameter maps depicting the linear correlation between

DTI measurements (fractional anisotropy (FA) and apparent diffusion coefficient (ADC))

and urinary protein quantification (MMP2, MMP9, NGAL, MMP9/NGAL complex, and

VEGF) in 30 UCPPS patients from the MAPP Research Network, after accounting for clini-

cal covariates. Results identified a brainstem region that showed a strong correlation

between both ADC (R2 = 0.49, P<0.0001) and FA (R2 = 0.39, P = 0.0002) with urinary

MMP9 levels as well as a correlation between both ADC (R2 = 0.42, P = 0.0001) and FA

(R2 = 0.29, P = 0.0020) and urinary MMP9/NGAL complex. Results also identified significant

correlations between FA and urinary MMP9 in white matter adjacent to sensorimotor regions
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(R2 = 0.30, P = 0.002; R2 = 0.36, P = 0.0005, respectively), as well as a correlation in similar

sensorimotor regions when examining ADC and urinary MMP2 levels (R2 = 0.42, P<0.0001)

as well as FA and urinary MMP9/NGAL complex (R2 = 0.33, P = 0.0008). A large, diffuse

cluster of white matter was identified as having a strong correlation between both ADC (R2 =

0.35, P = 0.0006) and FA (R2 = 0.43, P<0.0001) with urinary NGAL levels. In contrast, no

significant association between DTI measurements and VEGF was observed. Results sug-

gest that elevated MMP9 or MMP9/NGAL in UCPPS may be related to degenerative neuro-

nal changes in brainstem nuclei through excitotoxicity, while also facilitating synaptic

plasticity in sensorimotor regions.

Introduction

In 2007, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) began

using the classification of Urological Chronic Pelvic Pain Syndrome (UCPPS) to group a vari-

ety of chronic pain syndromes into a single classification [1]. Chronic pain syndromes now

classified under the term UCPPS are Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/

CPPS) and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Two main factors were

important in the development of this new classification: largely unsatisfactory patient response

to treatment for pain, and unknown etiology [2, 3]. In response to the need for a better under-

standing of the pathophysiology of UCPPS, and with the hope of finding new avenues for suc-

cessful treatments for the condition, the Multidisciplinary Approach to the Study of Chronic

Pelvic Pain (MAPP) Research Network was created. The MAPP Research Network was estab-

lished to address the lack of understanding of the etiology and pathophysiology of UCPPS by

focusing on several key areas: epidemiology of the disease, phenotyping of urological symp-

toms, phenotyping of non-urological symptoms, neuroimaging and neurobiology of UCPPS,

discovery and validation of peripheral (blood and urinary) biomarkers, and development of

translational animal models of UCPPS [4, 5].

The MAPP Research Network has identified several alterations in brain structure and func-

tion using functional MRI [6–8], volumetric anatomic imaging [9, 10], and diffusion tensor

imaging (DTI) [11–13]. Converging evidence from these studies and others [14] have identi-

fied unique functional, structural, and microstructural changes within regions of the sensori-

motor network, and cingulate cortical areas that correlate with pain and symptom severity

scores. Concurrent with these efforts, the MAPP Research Network has identified six novel

non-invasive urinary proteins as biomarker candidates for UCPPS relating to inflammatory,

tissue remodeling and/or vascular processes [15], including vascular endothelial growth factor

(VEGF) and its receptor VEGFR1, matrix metalloproteinase-2 (MMP2), MMP9, neutrophil

gelatinase-associated lipocalin (NGAL, Lipocalin 2), and the MMP9/NGAL complex. Similar

to neuroimaging biomarker candidates, several of these urinary proteins were also found to be

strongly associated with pain and urinary severity. In a study by Dagher et al this association

was observed for MMP9, MMP9/NGAL and VEGFR1 in males and for all of the proteins in

females [15].

Independent investigations have identified an apparent association between inflammatory

or vascular biomarkers and DTI changes suggesting a possible biological link between the

observed urinary protein levels and microstructural brain changes in syndromes like UCPPS.

Studies have shown that MMPs play a role in angiogenesis and inflammation [16–18], as well

as being involved in tissue remodeling [19, 20] and altering blood-brain barrier permeability
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[21], the latter of which has been shown to alter diffusion MRI measurements in the brain

[22–24]. In fact, studies in stroke victims [25–27] have identified a strong association between

MMP9 and diffusion MR measures of the apparent diffusion coefficient (ADC), an association

which was confirmed by gene knockdown of MMP9 activity in mouse studies [28]. Addition-

ally, MMP9 has been implicated in structural plasticity of dendritic spines [29], suggesting the

possibility that increased expression of MMP9 due to peripheral inflammatory processes may

concurrently facilitate increased brain plasticity in UCPPS.

In the current study, we explored possible neuroanatomical associations between urinary

biomarker levels and DTI measurements in patients with UCPPS. We hypothesized that the

reported protein biomarker levels are positively correlated with ADC, and negatively corre-

lated with fractional anisotropy (FA), suggesting a neurodegenerative process that may be

facilitated by elevated inflammation and its related consequences including tissue remodeling

and neovascularization. Additionally, we hypothesize that these correlations will be strongest

in spatially localized regions of the brain responsible for pain modulation and central control

of micturition, including the raphe nuclei and the locus coeruleus complex.

Materials and methods

Patient population

All subjects provided informed written consent to participate in the current study. All consent-

ing procedures and protocols were approved by the institutional review board at each of the

participating sites, which included the University of California, Los Angeles (UCLA), and

Northwestern University (NU). Detailed inclusion and exclusion criteria for UCPPS subjects

for the MAPP study are outlined in Landis et al [5]. All urinary biomarker analyses for all pro-

teins analyzed in this study were conducted at Boston Children’s Hospital. For the current

evaluation of urine protein biomarker levels, stratified random sampling was used to select a

subset of UCPPS subjects with more severe symptomatology. For a more detailed description

of subject selection for urine protein biomarker analysis, see Dagher et al [15].

For the current investigation, a subset of UCPPS subjects with both urinary protein bio-

marker measurements and high-quality DTI data were included. This cohort consisted of 30

subjects, 17 males and 13 females, an average age of 40 years old (± 13 years standard devia-

tion), and average symptom duration of 11 years (± 4 years standard deviation). Symptom

severity was adjusted for by incorporating two primary symptom constructs of pain and uri-

nary severity [30], which are based on the GUPI pain and urinary subscores and items of the

ICSI. Average pain severity was 13.6 (± 5.4 standard deviation) and average symptom severity

was 11.2 (± 6.5 standard deviation). Table 1 displays demographic information and average

urine biomarker concentrations for the patient cohort.

Urine protein biomarker acquisition and analysis

Briefly, urine samples were collected at study baseline and at the 6-month and 12-month fol-

low-up visits as part of the Trans-MAPP Epidemiology/Phenotyping study [5] according to

protocols established by the MAPP Biomarker Working Group and analyzed at the centralized

Table 1. UCPPS patient characteristics. Values reported as mean ± standard deviation.

N = 30 Age Symptom Duration (yrs) Pain Sev. Urinary Severity MMP9 (ng/mL) NGAL (ng/mL) MMP2 (ng/mL) MMP9/

NGAL (ng/mL)

VEGF (pg/mL)

Mean 39.9 10.7 13.6 11.1 0.63 6.80 0.17 0.13 121.30

SD 13.5 12.5 5.4 6.5 1.07 6.38 0.17 0.23 180.63

https://doi.org/10.1371/journal.pone.0206807.t001
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MAPP Tissue Analysis and Technology Core. Clean-catch midstream urine was collected

using alcohol-free Triad Medical-Benzalkonium chloride antiseptic towelettes (Allegro Medi-

cal, Mesa, AZ). After collection, urine was immediately frozen at -80˚C and shipped to the

MAPP Network Tissue Analysis and Technology Core for central processing, where it was

then divided into 3mL aliquots and stored at -80˚C as previously reported [31].

Urine samples were thawed, aliquoted and assayed. Total protein concentration was

assessed using the Bradford method, and monospecific enzyme-linked immunosorbent assays

(ELISAs; Quantikine; R&D Systems, Inc., Minneapolis, MN) were performed in duplicate in

a double blinded manner for MMP2, MMP9, NGAL, MMP9/NGAL complex, and VEGF

proteins according to manufacturer’s instructions. The average protein quantitation across

duplicates for each protein biomarker was used in subsequent analyses. A more complete

description of urine biomarker acquisition and analysis is available in Dagher et al [15]. Urine

protein measurements were selected as to match the acquisition date as closely as possible,

with the upper limit threshold set at one month between DTI acquisition and urine collection.

The mean time between DTI acquisition and urine measurements was 4 days (± 5 days stan-

dard deviation), with the maximum being 14 days.

Diffusion tensor imaging

The current study used data from two sites within the MAPP Network, Northwestern Univer-

sity (NWU) and the University of California Los Angeles (UCLA), as both used the same

scanner model (Siemens Trio 3T) and presented high-quality DTI scans with comparable

acquisition parameters including 8 b = 0 s/mm2 images, diffusion weighted images acquired

in 60 or 61 directions, a b-value of 1000 s/mm2, echo time/repetition time (TE/TR) = 88ms/

9500ms, slice thickness = 2mm with no gap, field of view (FOV) = 256mm, and an acquisition

matrix = 128x128 (2mm isotropic voxels). (For a more thorough description of the neuroimag-

ing acquisition methodology in the multisite MAPP study refer to Alger et al. [32] and previ-

ous MAPP DTI studies [11–13].

Data Analysis and Statistical Parameter Mapping (SPMs)

Diffusion MRI scans were corrected for eddy currents and motion using the eddy correct func-

tionality of the FSL Diffusion Toolbox (FDT) as part of FSL (FMRIB; Oxford, UK) [33]. FA

and ADC were calculated using the MRtrix package (Brain Research Institute, Melbourne,

Australia, http://www.brain.org.au/software/), and registered to the ICBM-DTI 1mm FA atlas

using linear (12 direction via FSL FLIRT) and then nonlinear (via FSL FNIRT) registration on

the FA images, the transforms of which were then applied to the ADC images.

The voxelwise associations were evaluated within a white matter mask (atlas thresholded at

FA> 0.3), including subcortical gray matter structures such as the basal ganglia and the thala-

mus, as outlined previously [12, 34]. Statistical parametric maps (SPM) were generated using a

general linear model (GLM) involving biomarker measurements along with covariates includ-

ing age, sex, and symptom duration. Two additional covariates were selected as representative

measures of the two most important factors (pain severity and urinary severity) as determined

by analysis of psychometric data from the MAPP study by Griffith et al [35]; similar measures

previously demonstrated the strongest relationship with mean DTI metrics in significantly dif-

ferent regions between UCPPS and HC subjects [12]. The GLM was implemented using the

3dttest++ command (https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dttest++.html)

from the AFNI software package (Analysis of Functional NeuroImages; https://afni.nimh.nih.

gov/). 3dttest++ solves for a linear regression at each voxel, which yields slopes and respective

T-statistics for the significance of the association between the voxelwise measure (ADC or FA)

DTI and urinary proteins in UCPPS
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and the variable of interest when accounting for the other covariates. The resulting SPMs were

thresholded at the voxelwise level, with significance set at P< 0.05 for each covariate of inter-

est. Clusters of significant voxels, defined as contiguous voxels with P< 0.05, that exceeded a

size threshold greater than 700 μL (equivalent to 700 voxels) where then used for further analy-

sis. This cluster size threshold is highly conservative (approx. 3-4x larger) compared to previ-

ous studies [12, 34], which were based on permutation calculations suggested by Bullmore

et al. [36]. For visualization, the voxelwise slope of the regression line of the covariate of inter-

est was displayed on the significant clusters. Average diffusion MR values within significant

clusters on SPMs were plotted against average urinary biomarker concentrations using Graph-

Pad Prism (Version 7.0c; GraphPad Software, Inc.; La Jolla, CA 92037), and linear regression

results were plotted including the best-fit line, 95% confidence intervals, and the R2 with

respective P-value.

Results

Urinary MMP2 concentration and cerebral DTI measurements

A small cluster (1.07mL) within white matter adjacent to the right motor cortex demonstrated

a positive, significant correlation between urinary MMP2 concentration and ADC after

accounting for age, sex, symptom duration, BPI severity and ICPI total score (Fig 1A). Quanti-

fication of the correlation between average ADC within this cluster and urinary MMP2 con-

centration showed a strong and significant association (Fig 1B; Pearson’s Correlation, R2 =
0.4091, P = 0.0001). No spatially-specific associations were observed between FA and MMP2

concentration on SPMs.

Urinary MMP9 concentration and cerebral DTI measurements

Two distinct regions of interest within the brain were identified as having a strong association

between DTI measurements and urinary MMP9 concentration (Fig 2), namely a region within

the brainstem and white matter connecting the sensorimotor regions, bilaterally. A 959uL

cluster within the brainstem, encompassing the dorsal Raphe nuclei (DRN) and the locus coe-

ruleus complex (locus coeruleus and Barrington’s nucleus; LCC), was identified as having a

strong association between MMP9 and ADC after accounting for covariates (Fig 2A and 2B;

R2 = 0.4946, P<0.0001). Similarly, a 1,005uL cluster within the midbrain was found to have a

strong association between MMP9 concentration and FA, after accounting for covariates (Fig

2C and 2D; R2 = 0.3897; P = 0.0002). The second set of clusters were identified as having a

strong correlation between MMP9 and FA within generalized sensorimotor regions, bilaterally

(Fig 2E and 2F; Left hemisphere, volume = 1,554uL, R2 = 0.4486, P<0.0001; Right hemisphere,
volume = 961uL, R2 = 0.3637, P = 0.0004). No significant difference in the slope between

MMP9 concentration and FA between left and right sensorimotor regions were observed

(P = 0.4314).

Urinary NGAL concentration and cerebral DTI measurements

Diffuse regions of white matter illustrated a strong association between DTI measurements

and measures of urinary NGAL concentration (Fig 3). Specifically, a large (46.0mL) cluster

distributed throughout cerebral white matter regions showed a strong positive correlation

between ADC and NGAL (Fig 3A and 3B; R2 = 0.3753, P = 0.0003). Additionally, a large

(31.0mL) cluster exhibited a strong negative correlation between FA and NGAL (Fig 3C and

3D; R2 = 0.4538, P<0.0001) throughout similar regions of the brain.

DTI and urinary proteins in UCPPS
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Urinary concentration of MMP9/NGAL complex and cerebral DTI

measurements

Comparable to regions associated with urinary MMP9 concentration, a 965uL brainstem

cluster, containing the DRN and LCC, was found to have a strong correlation between ADC

and urinary concentration of the MMP9/NGAL complex (Fig 4A and 4B; R2 = 0.4216,

P = 0.0001). An 916uL cluster within a similar brainstem region was identified as having a sig-

nificant association between FA and MMP9/NGAL complex (Fig 4C and 4D; R2 = 0.2774,

Fig 1. A) Anatomic localization of regions in the brain exhibiting a significant linear correlation between the apparent

diffusion coefficient (ADC) and urinary protein concentration of matrix metalloproteinase-2 (MMP2) within the right

somatosensory cortex. B) Linear correlation between average ADC within this cluster and urinary MMP2

concentration.

https://doi.org/10.1371/journal.pone.0206807.g001
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Fig 2. A) Anatomic localization of regions in the brain exhibiting a significant linear correlation between ADC and urinary protein concentration of matrix

metalloproteinase-9 (MMP9) within the midbrain portion of the brainstem, encompassing the dorsal Raphe nuclei (DRN). B) Linear correlation between

average ADC within this cluster and urinary MMP9 concentration. C) Anatomic localization of regions in the brain exhibiting a significant linear correlation

between fractional anisotropy (FA) and MMP9 also present in the brainstem. D) Linear correlation between average FA within this cluster and urinary MMP9

concentration. E) A second set of clusters with a significant linear correlation between FA and MMP were localized to the sensorimotor regions, bilaterally. F)

Linear correlation between average FA within these two clusters and urinary MMP9 concentration.

https://doi.org/10.1371/journal.pone.0206807.g002
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P = 0.0028). In addition to these brainstem regions, a single cluster within the left sensorimotor

region (704uL) also demonstrated a significant association between FA and MMP9/NGAL

concentration (Fig 4E and 4F; R2 = 0.3241, P = 0.0010).

Urinary concentration of VEGF and cerebral DTI measurements

Lastly, we examined the association between urinary VEGF concentration and DTI measure-

ments within the brain. Initial results suggested a strong positive correlation between ADC

and VEGF concentration localized to the midbrain (Fig 5A; volume = 981uL), but this trend

was driven by a single outlier patient (red circle), as once this outlier was removed there was

no apparent relationship (Fig 5B; R2 = 0.001, P = 0.8525). Equally, we observed an initial asso-

ciation between FA and VEGF concentration within the brainstem (Fig 5C; volume = 992uL)

that was found to be driven by a single outlier patient (Fig 5D; R2 = 0.002, P = 0.8250).

Discussion

The current study identified distinct regions of the brain that appear to be microstructurally

altered in proportion to the concentration of urinary biomarkers associated with inflamma-

tion, tissue remodeling and/or the vasculature (Fig 6). In particular, we found changes in diffu-

sion MR measurements most consistent with degenerative processes, namely an increase in

ADC and decrease in FA, in the brainstem and bilateral sensorimotor white matter regions

with increasing metabolite concentrations. Additionally, widespread alterations in ADC and

FA were associated with changes in NGAL, suggesting elevated NGAL may be associated with

a high degree of axonal or neural plasticity. While the goal of the present study was not to

Fig 3. A) Anatomic localization of regions in the brain exhibiting a significant linear correlation between ADC and neutrophil gelatinase-associated lipocalin

(NGAL), diffuse throughout the brain white matter. B) Linear correlation between average ADC within this cluster and urinary NGAL concentration. C)

Anatomic localization of regions in the brain exhibiting a significant linear correlation between FA and NGAL, diffusely distributed in white matter. D) Linear

correlation between average FA within this cluster and urinary NGAL concentration.

https://doi.org/10.1371/journal.pone.0206807.g003
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determine the mechanism(s) by which brain structure and these specific urinary biomarkers

might interact, we provide a number of potential possibilities, outlined below, that may help to

explain the underlying interaction and may provide promising paths for further research.

The degenerative changes within the brainstem associated with increasing MMP9 and

MMP9/NGAL concentration in the urine that were observed in this current study appear to be

localized to the DRN, which is the largest serotonergic nucleus and provides substantial

Fig 4. A) Anatomic localization of regions in the brain exhibiting a significant linear correlation between ADC and urinary concentration of the MMP9/NGAL

complex, in similar brainstem regions as MMP9. B) Linear correlation between average ADC within this cluster and urinary MMP9/NGAL concentration. C) Anatomic

localization of regions in the brain exhibiting a significant linear correlation between FA and MMP9/NGAL complex, similarly observed in the brainstem. D) Linear

correlation between average FA within this cluster and urinary MMP9/NGAL concentration. E) Anatomic localization of regions in the brain exhibiting a significant

linear correlation between FA and MMP9/NGAL complex in the left sensorimotor region. F) Linear correlation between average FA within this cluster and urinary

MMP9/NGAL concentration.

https://doi.org/10.1371/journal.pone.0206807.g004
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serotonin innervation throughout the brain. Alterations in serotonin levels have been observed

in chronic pain [37], and decreased serotonin activity [38, 39] and smaller physical size of the

DRN have both been observed in depression [40, 41], a common comorbidity observed in

patients with chronic pain [42–44], including those with UCPPS [45]. Further, the use of selec-

tive serotonin reuptake inhibitors (SSRIs) have shown some efficacy in treating both chronic

pain and depressive symptoms [46], including UCPPS [47], suggesting a potential link

between DRN degeneration, serotonergic alterations, and UCPPS.

Serotonergic projections from the DRN extend to numerous regions within the cerebral

cortex, including somatosensory and motor regions [48]. There is sufficient evidence to sug-

gest cortical serotonin levels influence synaptic and dendritic plasticity [49, 50], including

those associated with anxiety and depression [51–53]. This synaptic and dendritic plasticity is

also facilitated by MMP9 [54–58], which is also elevated in the serum of patients with depres-

sion [59]. In the brain, it is widely appreciated that MMPs activate neuroinflammatory path-

ways both directly and indirectly, contribute to neuroinflammation-mediated neurotoxicity

and compromise vascular integrity [60]. For example, elevated MMP9 is known to cause

Fig 5. A) Anatomic localization of regions in the brain exhibiting a significant linear correlation between ADC and urinary concentration of vascular endothelial

growth factor (VEGF) within the brainstem. B) No linear correlation between average ADC within this cluster and urinary VEGF concentration was observed after

outlier correction. C) Anatomic localization of regions in the brain exhibiting a significant linear correlation between FA and VEGF. D) Similar to ADC, no linear

correlation between average FA within this cluster and urinary VEGF concentration was observed after outlier correction. (Outliers = red circle).

https://doi.org/10.1371/journal.pone.0206807.g005
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excitotoxicity through glutamate dysfunction [61], and while the DRN is commonly associated

with serotonin activity, approximately 2/3 of serotonergic neurons in the DRN also release glu-

tamate [62, 63]. It is therefore conceivable that some patients with UCPPS may have elevated

MMP9 associated with an inflammatory process, which in turn may both contribute to the

neurodegenerative changes to the DRN directly through glutamatergic excitotoxicity as well as

facilitate synaptic plasticity near sensorimotor cortical regions to compensate for chronic affer-

ent pain input. The consequential damage to serotonergic neurons in the DRN may then

induce a reduction of cortical serotonin levels, resulting in additional comorbidities, including

anxiety and depression, commonly observed in UCPPS.

Microstructural changes in the brain corresponding to changes in urinary NGAL concen-

tration were notably more diffuse and widespread when compared with the spatially-specific

changes in the brainstem and somatosensory regions associated with MMP9 and MMP9/

NGAL complex. Although less is known about its effects in the brain, NGAL, or lipocalin-2, is

an inflammatory signaling molecule with a diversity of functions in the brain [64]. Consistent

with our observations of widespread microstructural alterations proportional to NGAL levels,

other studies have shown that NGAL tightly controls dendritic spine formation and matura-

tion [65]. It is also important to note that we have previously reported that NGAL binds to

MMP9 in the form of the MMP9/NGAL complex and in doing so, protects MMP9 from auto-

degradation [66] thereby protecting its biological activities. Additionally, NGAL has been

linked to anxiety, depression, pain hypersensitivity, emotional instability, psychological stress,

cognitive function, and locomotive behavior [64, 67, 68], many of which are common issues

for patients with UCPPS [45].

Another possible explanation is that changes in brain networks that are related to bladder

control create conditions in the bladder that alter the expression of the urinary biomarkers

described here. Multiple neuroimaging studies performed by the MAPP network suggest that

Fig 6. Illustration of observed associations between urinary protein levels and DTI brain measures. In UCPPS patients with elevated MMP9 as a result of

local or systemic inflammation, excitotoxicity and eventual death of neurons in the dorsal Raphe nuclei (DRN) may occur, as MMP9 is known to lead to

excitotoxicity in glutamatergic neurons and 2/3 of neurons in the DRN are both glutamatergic and serotonergic. The DRN is known to be the primary

serotonergic center for the brain and projects throughout the brain including sensorimotor (M1/S1) regions. Increased concentration of MMP9, NGAL,

MMP9/NGAL complex, and altered serotonin all modulate aspects of brain plasticity through manipulation of dendritic projections, altering long-term

potentiation (LTP), and other synaptic changes. Additionally, altered serotonin levels, MMP9, and NGAL have all independently been linked to other

conditions including anxiety and depression, which are also commonly observed in patients with UCPPS.

https://doi.org/10.1371/journal.pone.0206807.g006
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primary differences between UCPPS patients and heathy controls appear in sensorimotor, vis-

cerosensory, and brainstem regions related to the control of bladder function [10, 12, 13, 69,

70]. These changes may be related to a general upregulation of pelvic floor muscle tone

observed in UCPPS patients [71–76]. It is possible that upregulated pelvic floor activity could

create mechanical conditions similar to bladder outlet obstruction. Partial urinary outlet

obstruction is known to generate changes in gene expression in DRG neurons [77]. For exam-

ple, exposing detrusor smooth muscle cells to increased pressure creates a time-dependent

decrease in MMP-9 activity [78]. It is therefore possible that the changes in brainstem structure

in areas related to control of pelvic floor muscle and bladder function may change the mechan-

ical properties of the bladder environment, leading to changes in urinary biomarker expres-

sion. Taken together, these results suggest that a bidirectional loop may exist between

brainstem regions associated with micturition and the bladder. Additionally, results suggest

that the urinary proteins analyzed in this report have the potential to complement neuroimag-

ing approaches in the study of brain function in UCPPS patients.

Another potential mechanism to explain the observations in the current study may be

degenerative changes in the brain resulting from neuroinflammation, particularly due to glial

activation, which was recently targeted for imaging in chronic lower back pain patients using

positron emission tomography (PET) [79]. Several studies using DTI have found colocaliza-

tion of neuroinflammatory processes with FA and ADC alterations. For example, several stud-

ies have found colocalization between DTI measures and microglial activation in the brain as

assessed through PET using various radiolabels, including [11C]-PBR28 activity colocalizing

with decreased FA in both amyotrophic lateral sclerosis [80] and in primary lateral sclerosis

[81], and associations between global levels of [11C](R)-PK11195 radiolabel PET and DTI mea-

sures in multiple sclerosis [82] and stroke[83]. While these studies lend credence to the idea

that DTI measures are altered in the presence of neuroinflammatory processes, nonetheless

the relationship between the peripheral protein markers detected in urine used for this study

and neuroinflammation may indeed be tenuous.

There are several limitations to this study, which limit the conclusions including the small

sample size. Out of 259 urinary samples from UCPPS patients used in our previous study [15]

and 45 patients with high quality DTI used in a previous neuroimaging study [12], only 30 of

these patients had both urinary protein measurements and DTI data available for analysis in

the current study. While not an aim of this study, another limitation is related to lack of causal-

ity in that it is unclear as to whether the urinary markers reflect local organ (bladder, prostate,

or pelvic floor) dysregulation. Finally, the limited spatial resolution of DTI limits the identifi-

cation of the exact anatomical substrate of the identified brainstem changes. For example the

monoaminergic DRN and the LCC are closely adjacent, and have strong functional

connections.

Conclusions

In this study, we observed that specific urinary protein levels were highly correlated with brain

diffusion MRI measurements of microstructural integrity. Results suggest elevated MMP9 or

MMP9/NGAL in UCPPS may correlate with degeneration of neurons in brainstem nuclei,

possibly through glutamatergic excitotoxicity, while also facilitating synaptic plasticity in the

cerebral cortex. Both NGAL and MMP9 are known to modulate plasticity in the brain and

damage to monoaminergic neurons may explain comorbidities including depression that are

often associated with UCPPS. Future investigations exploring the potential association

between urine protein biomarkers and brain changes as measured by other neuroimaging

techniques are further warranted to validate and expand our findings, including structural and
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functional MRI analyses focusing on measurement of atrophic changes in the brainstem or

motor cortex and their association to MMP2, MMP9 and MMP9/NGAL protein levels.
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