
UC Santa Cruz
Open Educational Resources

Title
Beginning Logic Design

Permalink
https://escholarship.org/uc/item/9q1786xf

Author
Schlag, Martine

Publication Date
2024-09-06

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at https://creativecommons.org/licenses/by-
nc-sa/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9q1786xf
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Beginning Logic Design
Martine Schlag

SynSeq_fig4

Inc

clk
TC

Q0

Q1

Q2D2

D1

D0
D Q
D FF

D Q
D FF

D Q
D FF B2

B1

B0

Beginning Logic Design © 2024 by Martine Schlag is licensed under
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International unless otherwise noted

https://creativecommons.org/licenses/by-nc-sa/4.0/

Beginning Logic Design Contents

Contents

List of Figures v

List of Tables x

Foreword xi

1 Fundamentals 1
1.1 Creating logic circuits . 1
1.2 Modeling the behavior of logic circuits . 4
1.3 Combinational versus Sequential Logic . 6
1.4 Technology aspects that might matter . 7

2 Combinational Logic 9
2.1 Introduction . 9
2.2 Boolean functions . 10
2.3 Truth tables and Kmaps . 11
2.4 Boolean Expressions . 12
2.5 Boolean Algebra . 14
2.6 Logic Diagrams and Boolean Expressions . 17
2.7 Sum-of-Products, Minterms, and Canonical SOP . 18
2.8 Product-of-Sums, Maxterms, and Canonical POS . 21
2.9 Bubbles and DeMorgan’s Laws . 23
2.10 Transient behavior of combinational circuits . 25
2.11 Regular structures . 27

2.11.1 Decoders . 27
2.11.2 Multiplexers . 28
2.11.3 Comparators . 30

2.12 Pre-fabricated components . 31
2.12.1 Look-Up Tables . 31
2.12.2 Programmable Logic Devices . 32

3 Synthesis of Combinational Logic 34
3.1 Introduction . 34
3.2 Literals . 34
3.3 Using Kmaps to obtain minimal SOP/POS expressions 35

iiiiii

3.3.1 Finding implicants . 36
3.3.2 Forming the cover . 37
3.3.3 Using Kmaps to obtain minimal SOP expressions 38
3.3.4 Using Kmaps to obtain minimal POS expressions 39
3.3.5 Taking advantage of Don’t Cares . 40

3.4 Beyond Kmaps . 42
3.4.1 Tabular method for generating PIs . 43
3.4.2 PI chart for selecting a cover . 44

3.5 Multiple outputs and two-level synthesis . 45
3.6 ESPRESSO, MISII, and BDDs . 47

4 Synchronous Sequential Circuits 48
4.1 The clock . 49
4.2 Basic memory device: the D Flip-Flop . 49

4.2.1 Rules for synchronous design . 50
4.3 A simple shift register . 51
4.4 Parity checker . 53
4.5 Counters . 56
4.6 Registers . 58
4.7 Analysis of Synchronous Sequential Circuits . 60

4.7.1 Example 1 sequential circuit analysis . 61
4.7.2 Example 2 sequential circuit analysis . 63

4.8 Synchronizing external inputs . 65
4.9 Timing Constraints . 67

5 Synthesis of Synchronous Sequential Circuits 70
5.1 Counters revisited . 71

5.1.1 Gray Code Counter . 73
5.2 Even Blocks Machine . 75

5.2.1 Even Blocks Machine Mealy Version . 78
5.3 Message Checker . 80
5.4 One-hot State Encoding . 83
5.5 Well-defined State Machines . 84
5.6 Mealy versus Moore . 86
5.7 State Minimization . 88

6 Sequential System Design 92
6.1 Introduction . 92
6.2 Bike Counter . 92

6.2.1 Bike Counter revisited . 95
6.3 Shift and Add Multiplier . 97
6.4 Shift and Subtract Divider . 102
6.5 Asynchronous Outputs: A cautionary tale . 105
6.6 Gratuitous Advice . 112

A Table of Symbols 113

B Binary Representations 116
B.1 Unsigned Integer . 116
B.2 2’s Complement Integer . 117
B.3 ASCII Character . 118

C Proofs of Boolean Algebra Identities 119
C.1 Duality . 121

D Bibliography 123

Beginning Logic Design List of Figures

List of Figures

1.1 The three basic components we will use to build circuits: NOT, AND, OR. 1
1.2 A symbol representing a logic circuit. 2
1.3 The logic diagram for the HA component. 2
1.4 The symbol for the HA component. 2
1.5 The nets of the HA logic diagram. Each net is a specific color. 3
1.6 Logic diagram using HA components to sum three bits. 3
1.7 Flattened logic diagram to sum three bits. 3
1.8 Logic operation of the basic gates: NOT, AND, OR. 4
1.9 Four snapshots in the operation of an AND gate. 4
1.10 Timing diagram showing the continuous operation of an AND gate. 5
1.11 Timing diagram with Gate Model output of an AND gate. 6
1.12 A logic circuit output can oscillate even while its inputs are steady 6
1.13 Ordering of gates in a combinational circuit . 7

2.1 Four views of the HA logic diagram. 9
2.2 The XOR gate for 2, 3, and 4 inputs. 10
2.3 Format of the 2-variable Kmap and the regions in which its variables are 1. 11
2.4 Format of the 3-variable Kmap and the regions in which its variables are 1. 12
2.5 Format of the 4-variable Kmap and the regions in which its variables are 1. 12
2.6 The 2-variable Kmaps for our HA circuit. 13
2.7 The Kmaps of the 3-variable majority and parity functions. 13
2.8 Extracting boolean expressions from the HA logic diagram. 14
2.9 Parentheses may be required in boolean expressions obtained from logic diagrams. . 14
2.10 Obtaining a boolean expression for the output of a logic diagram. 17
2.11 A simpler logic circuit. 18
2.12 Using the ONSET of a function to obtain its K-map. 20
2.13 Using the OFFSET of a function to obtain its K-map. 22
2.14 Using bubbles instead of NOT gates in a logic diagram. 23
2.15 Using NOR gates in our HA circuit. 23
2.16 Equivalent circuits based on (a) Involution Law and (b and c) DeMorgan’s Laws. . . 24
2.17 Converting an SOP circuit to an equivalent NAND-NAND circuit. 24
2.18 Converting a POS circuit to an equivalent NOR-NOR circuit. 24
2.19 A combinational circuit with a hazard. 25
2.20 Timing diagram showing a hazard in a combinational circuit. 25
2.21 Static timing analysis calculation of the ready time of gate g9. 26

vvv

2.22 Static timing analysis example: (a) data, (b) result. 27
2.23 2-input decoder: (a) symbol, (b) logic circuit. 27
2.24 Co-incident decoding in a 4-input decoder. 28
2.25 Two input multiplexer: (a) 2-to-1 multiplexer symbol, (b) 2-to-1 multiplexer logic

circuit. 29
2.26 Larger multiplexers. 29
2.27 Structure of larger muxes (a) decomposition, (b) 8-input multiplexer. 29
2.28 Comparison of single-bit integers: (a) equality, (b) greater-than. 30
2.29 Comparison of n-bit vectors to determine equality. 30
2.30 Splitting the n-bit unsigned integers into A and B into the high and low order parts. 31
2.31 Comparison of single-bit integers: (a) equality, (b) greater-than. 31
2.32 (a) Truth table of f(a, b, c) =

∑︁
m(1, 2, 3, 4, 6), (b) implementation of f(a, b, c) with

an 8-input multiplexer, (c) 3-LUT implementing f(a, b, c). 32
2.33 Programmable Logic Array organization. The vertical/horizontal wires are con-

nected if the programmable switch at their intersection is green. 33

3.1 The number of 2-input gates for abc and ab+ c is the same. 35
3.2 The cells covered by the four minterms for fM3. 36
3.3 The cells covered by the three implicants of ab+ ac+ bc. 36
3.4 Two rectangles and their product terms. 37
3.5 The prime implicants (PIs) of

∑︁
m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14). 38

3.6 Identifying which PIs of
∑︁

m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14) are forced. Cells in the
ONSET that are covered by only one PI are indicated by a large boldface 1. 39

3.7 After selecting the forced PIs (striped), only cell 11 of the ONSET remains to be
covered. 39

3.8 To find the POS for f(x, y, z, w) =
∑︁

m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14) the minimal
SOP expression for f(x, y, z, w) =

∑︁
m(2, 6, 8, 12, 15) is obtained. 40

3.9 The Kmap of the incompletely specified function that recognizes multiples of 3 for
a decimal digit. 41

3.10 Kmaps and PIs for the options in resolving the don’t cares. 42
3.11 The prime implicants (PIs) of

∑︁
m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14). 42

3.12 Tabular method for finding PIs of
∑︁

m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14). 43
3.13 The PI charts for

∑︁
m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14). 44

3.14 The Kmaps for minimal multiple function SOP expressions. 46
3.15 PI chart for minimal multiple function SOP expressions. 46

4.1 A 0.5MHz clock. 49
4.2 The positive edge-triggered D Flip Flop. 49
4.3 Basic operation of the positive edge-triggered D Flip Flop. 50
4.4 A 3-bit shift register. 51
4.5 Simulation of a 3-bit shift register with D FFs not initialized. 52
4.6 Using a 3-bit shift register to detect patterns on the synchronous input a. 52
4.7 Simulation of the pattern detector circuit. 53
4.8 Input/output stream for the pattern detector. 53
4.9 Symbol for parity checker. 54
4.10 Sequential circuit for parity checker. 54

4.11 Simulation of uninitialized parity checker circuit. 54
4.12 Simulation of parity checker when the D FF is initially 0. 55
4.13 (a) Addition of R input to the Parity Checker. (b) Additional logic to initialize the

D FF to 0 when input R is 1. 56
4.14 Modification of a D FF to be initially 1 rather than 0. 56
4.15 Symbol for the simple 4-bit binary counter. 56
4.16 Counting sequence for the simple 4-bit binary counter. 57
4.17 Counting up calculation. 57
4.18 Logic diagram for a 4-bit binary counter. 58
4.19 Alternative logic diagram for a 4-bit binary counter. 58
4.20 Logic diagram for a 16-bit binary counter constructed from 4-bit counters. 59
4.21 The DE FF flip-flop: (a) symbol, (b) implementation, and (c) misguided implemen-

tation. 59
4.22 Registers: (a) basic N-bit register, (a) N-bit shift register, (c) N-bit ring counter. The

FFs in the ring counter must be initialized to 0. 60
4.23 Model of synchronous sequential circuits. 61
4.24 Example 1 sequential circuit analysis. 61
4.25 State diagram for analysis Example 1. 63
4.26 Simulation of analysis Example 1. 63
4.27 Example 2 of sequential circuit analysis. 64
4.28 State diagram for analysis Example 2. 64
4.29 Simulation of Example 2 circuit with input transition on clock edge at 30µs. 65
4.30 Snapshots of Example 2 circuit in state B: (a) with x=0 (b) just after x transitions

to 1. 66
4.31 Synchronizer (shaded background) added to the external input of the Example 2

circuit. 66
4.32 The D input of the D FF should be stable within the light blue regions. 67
4.33 Sliced model of synchronous sequential circuits. 68
4.34 Setup time requirement: (a) satisfied, (b) violated. 68
4.35 Hold time requirement: (a) satisfied, (b) violated. 69

5.1 Model of synchronous sequential circuits. 70
5.2 (a) Symbol and (b) state diagram for a 3-bit counter. 71
5.3 Kmaps for combinational logic of 3-bit counter. 73
5.4 Logic diagram for 3-bit counter. The FFs are assumed to be initially 0. 73
5.5 Two Gray code counter implementations: (a) encoding the output of a binary

counter; and (b) using Gray Code for the state encoding of a 3-bit counter. 74
5.6 Symbol for the Even Blocks machine. 75
5.7 Construction of state diagram for the Even Blocks machine. 75
5.8 Kmaps for combinational logic of Even Blocks machine. 77
5.9 Logic diagram for Even Blocks machine. The FFs are assumed to be initially 0. . . . 77
5.10 Simulation of Even Blocks machine. 77
5.11 State diagram for Mealy version of the Even Blocks machine. 78
5.12 Kmaps for combinational logic of Even Blocks Mealy machine. 79
5.13 Logic diagram for Even Blocks Mealy machine. The FFs are assumed to be initially 0. 79

5.14 Simulation of both Even Blocks machines. Mealy version state and output are labeled
State2 and y2. 80

5.15 Symbol for the Message Checker. 81
5.16 Construction of state diagram for the Message Checker machine. 81
5.17 Kmaps for combinational logic of Message Checker machine. 82
5.18 One-hot state encoding: from state diagram to logic. 83
5.19 One-hot implementation of the Even Blocks machine. The FFs are initialized to 0. . 84
5.20 Rule 1 mutually exclusive transitions: (a) rule not satisfied, (b) rule satisfied. 85
5.21 Rule 2 exhaustive transitions: (a) rule not satisfied, (b) rule satisfied. 86
5.22 Combinational logic paths created by connecting Mealy versus Moore machines. . . . 87
5.23 Connecting Mealy machines may create combinational loops. 87
5.24 Edge Detector logic diagram . 88
5.25 Edge detector state diagrams: (a) original and (b) reduced. 89
5.26 Yet another Edge Detector state diagram. 89
5.27 Moore’s algorithm applied to yet another Edge Detector. 90
5.28 Moore’s algorithm applied to a Mealy machine. 91
5.29 Result of Moore’s algorithm. 91

6.1 UCSC bike path with its planned bike counter system. 92
6.2 Signature on the sensor output of a bicycle crossing the light sensor. 93
6.3 Symbol for the component counting bicycles crossing the sensor. 93
6.4 Block diagram for Bike Counter. 94
6.5 State diagram for state machine of Bike Counter. 94
6.6 Logic diagram for state machine of Bike Counter. 95
6.7 Patch applied to original Bike Counter logic diagram to provide the output error. . 96
6.8 Revised state diagram with additional state ERR. 96
6.9 Logic circuit for the revised state diagram with additional state ERR. 97
6.10 Symbol for multiplier. 98
6.11 Multiplication of 123 and 78: (a) Decimal and (b) Binary. 98
6.12 Summing the partial products. 99
6.13 Generating the partial products. 99
6.14 Shift register for providing multiplier bits. 99
6.15 Block diagram for Shift and Add multiplier. 100
6.16 State diagram for multiplier control. 100
6.17 Completed block diagram and state diagram for the Shift and Add Multiplier. 101
6.18 Symbol for Divider. 102
6.19 Decimal long division of 159 by 12. 102
6.20 (a) 8-bit binary division of 159 by 12; (b) 8-bit binary division of A by D. 103
6.21 Design of divider for n-bit integers. 104
6.22 State diagram for divider control. 104
6.23 Completed design of divider. 105
6.24 A 2-input multiplexer and a timing diagram showing its glitch. 106
6.25 Passing the 2-input multiplexer output through a FF. 106
6.26 The Dictionary component. 107
6.27 The Rolodex component storing the keys and data. 107
6.28 The operation of the Rolodex component storing the keys and data. 107

6.29 The initial design of the Dictionary component. 108
6.30 The functional simulation of the Dictionary design. 108
6.31 The timing simulation of the Dictionary design. 109
6.32 The revised design of the Dictionary component. 109
6.33 The timing simulation of the revised Dictionary design. 110
6.34 Source of the glitch in the original Dictionary FSM’s Next output. 110
6.35 A new state encoding for the Dictionary FSM. 111
6.36 Output encoding of state machines. 111

Beginning Logic Design List of Tables

List of Tables

2.1 Truth table for the settled values of the HA component. 10
2.2 The minterms for variables a, b, c and the mn notation. 19
2.3 The minterms corresponding to the ONSET for f . 20
2.4 The maxterms for variables a, b, c and the Mn notation. 22
2.5 The maxterms corresponding to the OFFSET for f 22

3.1 Examples for number of literals in an expression . 34

4.1 (a) Truth table and (b) State Transition Table for analysis Example 1. 62
4.2 State encoding and symbolic State Transition Table for analysis Example 1. 62
4.3 (a) State transition table, (b) state encoding, and (c) Symbolic STT for Example 2. 64

5.1 State encoding and Symbolic State Transition Table for the 3-bit binary counter. . . 72
5.2 Encoded STT for the 3-bit binary counter. 72
5.3 3-bit Gray counter (a) Gray Code state encoding and (b) encoded state transition

table. 74
5.4 Symbolic state transition table for Even Blocks machine. 76
5.5 Even Blocks implementation: (a) state encoding and (b) encoded state transition

table. 76
5.6 Symbolic state transition table for Mealy version of the Even Blocks machine. . . . 78
5.7 Even Blocks mealy machine implementation: (a) state encoding and (b) encoded

state transition table. 78
5.8 Comparison of input/output of Moore and Mealy versions of the Even Blocks ma-

chines. 80
5.9 Sample input/output of Message Checker machine. 81
5.10 Symbolic state transition table for Message Checker machine. 82
5.11 Message Checker encoded state transition table. 82
5.12 State transition table of the Edge Detector. 88
5.13 State transition table of yet another Edge Detector. 89

6.1 State transition table for Shift and Add multiplier. 101
6.2 State transition table for Divider. 105

xxx

Beginning Logic Design Chapter 0. Foreword

Foreword

These pages are based on 20 years of teaching the first course on digital design to engineering
majors at UC Santa Cruz. Over this span, I have observed students abandon textbooks in favor
of online searches for notes/videos or for answers in forums. While their cost is certainly an issue,
textbooks on this subject often target current methodologies and technologies, perhaps even several.
It’s not surprising that students go elsewhere for explanations and answers to their questions at
hand. Although there are many excellent sources available online, these resources have different
conventions, notation, and assumptions that can easily confuse a novice. Searching online for an
answer with little or no background can lead to incorrect or irrelevant material, wasting valuable
time. For this reason, I wrote up my lecture notes for students to use as a reference. In these notes,
the intent is to compartmentalize the topics as much as possible, get to the point quickly, and make
the material efficiently accessible.

Since the 1990’s students have been realizing their digital designs with FPGAs using software
design tools. These tools have evolved from schematic entry with separate synthesis and simulation
tools, to design environments that integrate entry, simulation, and synthesis (project managers),
and now to HDL-only design entry. While HDLs have advanced and greatly facilitated hardware
design, in a first course in logic design, it’s important that the circuit structure is explicit and the
implementation tools are transparent. For this reason, there is intentionally no HDL code in this
text. Digital designs are presented as circuit diagrams, specification is given by boolean equations
and state diagrams, and their behavior is revealed in waveforms. The development of logic design
using these structural abstractions provides students with a firm basis for reasoning about logic
and synchronization. It is these abstractions that have persisted over the last 20 years as tools have
advanced.

Target Audience

At UC Santa Cruz, the first course in logic design assumes only the introductory course on computer
organization (no physics or electronics courses). Basic logic gates are introduced without context
and are used to assemble logic circuits. At UC Santa Cruz, discussion of the realization of gates
and different technologies is relegated to the last two weeks of the quarter for the practical reason
that in a 10-week quarter, it is a race to cover combinational and sequential logic sufficiently
early so that students can complete a project involving multiple state machines. This arrangement
also has two other benefits: the technology aspects are better absorbed once students understand
circuit structures, and students new to electronics are more comfortable beginning with boolean

xixixi

logic.

Course infrastructure

The experience of conceiving, entering, and debugging a digital design is invaluable. A non-trivial
design will rarely be correct on the first attempt. The process of analyzing and debugging will
significantly clarify and deepen understanding of the operation of the design. Seeing one’s design
come to life and operate correctly (finally!) is often the positive reinforcement (joy) that fosters
excitement for pursuing more advanced knowledge. While digital design can be studied with paper
and pencil, using software tools and hardware to realize designs is highly recommended.

Design entry and simulation tools are a bare minimum. There are many free versions available for
different programmable devices. Either schematic or language-based entry tools will do, though
hardware languages are now the preferred medium. But for a beginning logic design class, re-
stricting the language to structural constructs is recommended. Currently, in our classes, we use
Verilog limited to assign statements and a library module for a D FF: no always blocks nor other
statements. While hardware description languages are more efficient, for beginning logic design
students it is important to be able to specify structure, without attempting to understand what
the synthesizer will produce. By limiting the use of the language, the focus is on the structure of
the design rather than the semantics of the description language.

Notes on topic selection

As mentioned no prior exposure to electronics is assumed. The development begins with the
introduction of the NOT, AND, and OR logic gates as the building blocks. The dynamic behavior
of logic elements is discussed early rather than later in the development. The transition from
combinational circuits to sequential circuits is facilitated by viewing logic gates as continuously
operating, especially when code is used to specify combinational logic.

With the use of design tools, even in beginning courses, mastering Kmaps (Karnaugh Maps) is
no longer necessary for implementing designs. Yet a Kmap is a compact format that students are
likely to encounter in documentation, and they are invaluable in exposing basic concepts in logic
synthesis. Kmaps are introduced in Chapter 2 as an alternative format for truth tables. They are
used in Chapter 3 for logic synthesis and in Chapter 5 to generate next-state and output equations
for the examples in Sections 5.1 through 5.3. Beyond these examples, one-hot state encoding is
used, and this allows the state equations to be directly derived from the state diagram (without
Kmaps). Hence logic optimization (Chapter 3) can be skipped if desired, though I have found
that this topic helps students better understand how their designs are being synthesized, and in
particular, the effect that intentional and unintentional “Don’t Cares” can have. For these reasons,
Kmaps remain, followed by further optional topics. Chapters 1 through 3 contain optional sections
that can be omitted: Sections 1.4, 2.11, 2.12, 3.4, 3.5, 3.6.

Beginning Logic Design Chapter 1. Fundamentals

Chapter 1

Fundamentals

To get started quickly, assume that the basic logic gates (NOT, AND, OR) are available along
with some means of assembling them. We will not now go into how these gates are made nor the
technological aspects needed to keep them happy and cooperating in a logic circuit. Section 1.4
(which can be skipped) goes into some of the physical aspects that may be necessary for their
operation.

1.1 Creating logic circuits

Our designs will be assembled by interconnecting logic components, either the basic logic gates or
components we have constructed or been given. Logic components have pins (aka terminals) by
which they can be connected to other components. Each component pin is one of two types, input
or output. By convention, in our diagrams, the input pins are on the left and the output pins are
on the right for each gate or component. The basic gates for the NOT, AND, OR logic operations
will be represented in our logic diagrams using the standard gate symbols shown in Figure 1.1.

Base_fig2

Figure 1.1: The three basic components we will use to build circuits: NOT, AND, OR.

As we will see, any logic function can be accomplished with just these three operations. However,
it will be convenient to construct additional components as we build our projects. In our diagrams,
we will use a symbol to represent a component we build. This is a box with the labeled input pins

111

Beginning Logic Design Chapter 1. Fundamentals

located on the left and the labeled output pins on the right.1 In the diagram below the symbol for
the component Vanilla has inputs a, b, and c. Its outputs are p and q.

a
b
c

p

q

Vanilla

Base_fig1
Figure 1.2: A symbol representing a logic circuit.

Our logic circuits are built by interconnecting the pins of components. In the diagram below we
have assembled a circuit with two inputs, a and b, and two outputs, s and c. Note the labeled

Base_fig3

a

b
s

c

Figure 1.3: The logic diagram for the HA component.

symbols in Figure 1.3 identifying the external inputs and external outputs of our circuit. This circuit
forms a component that we have named HA and will be represented by the symbol below. The pins
correspond to the labeled external inputs and outputs.

Base_fig4

a

b

c

s

HA

Figure 1.4: The symbol for the HA component.

In our diagram, the components are interconnected by drawing lines (wires) between their pins.
A group of pins that have been connected forms a net. Each pin in the circuit belongs to only
one net: if a pin belongs to two nets, then these two nets together should instead be one net. In
Figure 1.5 each separate net of the HA circuit has been identified by assigning a color to the wires
that interconnect the net’s pins. A pin is the source of a net if it is either the output pin of a
component or an external input. We will use the source pin to determine the logic value to associate
with a net, so unless specifically allowed, we will assume that each net has at most one source. The

1It was not important to label the inputs of the basic gates because these operations are symmetric: swapping
the connections of the two inputs has no effect.

222

Beginning Logic Design Chapter 1. Fundamentals

Base_fig5

a

b

c

s

Figure 1.5: The nets of the HA logic diagram. Each net is a specific color.

other pins are called loads and will assume the same logic value as the net to which they belong.
A net may have any number of loads.

We can use our components to build larger components rather than assembling gates directly.
For example, we can build a circuit that performs the addition of three bits using two of the HA
components from Figure 1.3. The resulting circuit at the gate level is shown below. It’s the same

a

b

c

s

HA

Base_fig4-5

a

b

c

s

HA
x

y

Cout

Cin Sum

Figure 1.6: Logic diagram using HA components to sum three bits.

as if we had drawn the logic diagram for the HA component twice.

a

b

c

s

HA

Base_fig4-8

x

y

Cout

Cin
Sum

a

b

c

s

HA

Figure 1.7: Flattened logic diagram to sum three bits.

Repeating regular structures allows us to easily assemble designs on a very large scale (VLSI).

333

Beginning Logic Design Chapter 1. Fundamentals

1.2 Modeling the behavior of logic circuits

An output pin will have a value, either 0 or 1, since we are modeling our circuits at the logic level.
The logic value of a net is the logic value of its source pin. When a net does not have a source
pin we will use the value Z to indicate that the net and its loads are not driven to either 0 or 1.
This might occur be an error, forgetting to provide a value for an external input, or it could be
intentional. In some circumstances, we will not know the value associated with a net or pin even
though it might be driven: we just don’t happen to know whether it is driven to 0 or 1. This
could occur when our circuit wakes up (power is first provided) or if we don’t know the value of an
external input. We use X to represent the unknown value.

When their input pins have been driven for a sufficient amount of time, the output pins of the basic
gates will have values consistent with the logic operation they represent. These values are given
for each of the gates in the tables in Figure 1.8.

I O

NOTsymbol

I1
I2

O

ANDsymbol

I1
I2

O

ORsymbol

 I O
 0 1
 1 0

 I1 I2 O
 0 0 0
 0 1 0
 1 0 0
 1 1 1

 I1 I2 O
 0 0 0
 0 1 1
 1 0 1
 1 1 1

Figure 1.8: Logic operation of the basic gates: NOT, AND, OR.

Our logic diagrams represent physical devices with outputs that vary over time, even possibly
when their inputs are not changing. The basic gates will behave according to their expected logic
operations, however, there is a delay between when an input value changes and when the output
value changes as a result. Figure 1.9 below has four successive snapshots for the values of an AND
gate’s pins. Initially, both inputs of the AND gate are 1 and the output is also 1. This is

Base_fig6

Time 12.0 Time 13.0 Time 13.4 Time 14.0

a

b
c

1
1

1 a
b

0
1

c 1 c 0
a
b

0
1

a

b
0
0

c 0

Figure 1.9: Four snapshots in the operation of an AND gate.

consistent with the operation of an AND gate. At time 13.0 input a is 0 but the output c is 1; c’s
value is inconsistent with the value of the inputs at time 13.0. At time 13.4 the output c is now
changed to 0 which is consistent.

444

Beginning Logic Design Chapter 1. Fundamentals

The snapshots in Figure 1.9 do not tell us when the values of the pins changed nor even if they
changed multiple times. Instead of snapshots, we use timing diagrams to represent the logic value
of pins over time. The timing diagram in Figure 1.10 is consistent with the four snapshots above.
The horizontal scale along the bottom is the time in appropriate units. The values of the three pins
are represented as horizontal lines (also called waveforms). Each of the values we are displaying
(signals) is either 0 or 1. In this diagram, we see that a changed from 1 to 0 at time 12.8 and that
the output c changed from 1 to 0 at time 13.2. And there were no other changes (aka transitions)
on a or c. Note that b changes at time 14.0 but this does not cause any change on the output c.

a

b

c 1

0

11 12 13 14 15 11

Base_fig7

1

0

1

0

Figure 1.10: Timing diagram showing the continuous operation of an AND gate.

To keep our discussion independent of any particular technology we will assume that the basic
gates provided to us faithfully implement the corresponding logical operations with some amount
of delay dg. Specifically,

Gate Model The logic level of the output pin of a basic gate at time t is given by the
gate’s logic operation on the logic level of the gate’s input pins at time t− dg, where dg
is the constant delay associated with the gate.

As an example, Figure 1.11 shows the waveforms associated with the inputs of an AND gate, a and
b. The waveform labeled a·b shows the AND operation applied to the logic values of a and b. The
waveform labeled c is obtained by shifting the waveform a·b by 0.4 time units. Thus the waveform
c is the output of the AND gate with inputs a and b and delay d = 0.4 in our Gate Model.

Section 1.4 discusses why this model may not always hold depending on the particular technology.
Adopting this model does not mean that an output pin of a component can only change as a result
of a change in one of its inputs.

In the circuit and timing diagram in Figure 1.12, the output of the AND gate is 0 while the external
input a is 0. When a becomes 1, the output of the AND gate will alternate between 0 and 1, and
continue to alternate despite no further change to the input a. The alternating behavior here is
due to the feedback in this logic circuit. In analyzing and designing logic circuits we will separate

555

Beginning Logic Design Chapter 1. Fundamentals

a

b

a∙b

c

1

0

1

0

1

0

1 2 3 4 50

1

0

Base_fig7-5

!

Figure 1.11: Timing diagram with Gate Model output of an AND gate.

Base_fig8
19 20 21 22 23

a

x

1

0

1

0

a x

a x a x

Figure 1.12: A logic circuit output can oscillate even while its inputs are steady

logic circuits into two classes according to whether they have feedback.

1.3 Combinational versus Sequential Logic

To simplify the analysis and synthesis of logic we classify circuits as either combinational or sequen-
tial.2 In Chapters 2 and 3 we will analyze and synthesize combinational circuits, while Chapters 4
and 5 describe synchronous sequential design.

A combinational logic circuit does not have feedback. Its gates can be assigned numbers so that
each gate’s inputs are either connected to an external input or the output of a gate with a lower

2The term “combinatorial” is also used, but is less common.

666

Beginning Logic Design Chapter 1. Fundamentals

number.3 In addition, each component must itself be a combinational circuit. Our three basic
gates are combinational. In Figure 1.13 below, the numbers indicate an ordering that satisfies the
requirement. This is not the only such order. The AND gate could have been first or between the
first OR and NOT gates. There is no such ordering for the gates in Figure 1.12. The AND gate

Base_fig9

a

b
s

c

3

1 2 54

Figure 1.13: Ordering of gates in a combinational circuit

and NOT gate each has inputs from the other.

A key property of a combinational circuit is that when its external inputs are stable (not changing
value) beginning at time t, all of the output values of its gates will also be stable beginning at time
t+Dc for some constant Dc. We say that the circuit has settled by time t+Dc. In our model, a gate
output is stable by time t+dg if its inputs are stable beginning at time t. Hence in a combinational
circuit, a gate output will be stable at time t+Dc where Dc is at least as large as the sum of the
gate delays along any path from an external input to that gate. The number of gates on a path
as well as the type of gates affects this number Dc, and keeping Dc as small as possible is often a
design goal.

A combinational logic circuit is “memory-less” in that the values of its outputs at time t+Dc are
determined completely by the value of its external inputs at time t. The values of the inputs before
time t have no effect. Determining the output values of a combinational circuit and Dc is covered
in Chapter 2. The circuit in Figure 1.12 is not memoryless. The value of the output x at any later
time depends on knowing that the input a changed from 0 to 1 at time 20.

1.4 Technology aspects that might matter

We have assumed very little about our basic gates so that we can quickly focus on logic design.
The subsequent chapters do not depend on anything in this section, so it can be safely skipped.
But keep reading if you are interested in some of the technology-dependent aspects of implementing
digital logic.

Logic has been built with several different electronic technologies such as relays, vacuum tubes,
transistors, and even non-electronic ones such as hydraulics and Lego blocks. However, it is the
miniaturization of the transistor that has provided the ability to assemble extremely large circuits.
Typically, a logic design course will start with a discussion of transistors and switching circuits.
Instead, we have chosen to begin with the basic logic gates without explaining how the logic values
0 and 1 are represented nor how they are transmitted between gates.

3You may have encountered this numbering in other domains and recognize it as a topological sort.

777

Beginning Logic Design Chapter 1. Fundamentals

This makes our discussion independent of technology, but there are physical issues that may arise
and constrain our designs depending on the scale.

First, it’s important to remember that our gates are physical devices that require energy. Low power
design has been an important focus of circuit design in the past decade, both to support longer
battery life as well as reduce our overall energy consumption. A more immediate power concern in
classroom lab settings is to remember to connect power and ground when we are implementing our
circuits from discrete parts, or switching on the prototyping board we are using!4

For the electronic devices, logic values 0 and 1 correspond to voltage levels and a current require-
ment. Metal wires are used to transmit these values. When implementing logic with discrete parts,
it’s important to ensure that the parts are compatible in terms of their voltage/current requirements
so that they faithfully communicate their logic values. Discrete parts belong to logic families that
are designed to work together. Using parts from different families may require additional circuitry
to translate. The voltage/current requirements of input/output devices (e.g. switches, buttons,
LEDs) must also be compatible.

The number of loads (input pins) on a net is its fanout. Nets with large fanouts can affect the delay
of the circuit as well as whether the circuit operates at all. Depending on the discrete part type there
may be a limit on the number of loads one output pin can drive due to current requirements. On
an FPGA large fanout nets can be handled with specialized routing resources, but these resources
are not unlimited. We have not mentioned wiring as a source of circuit delay since, generally, gate
delays will dominate wiring delays. However, wiring delays are not always negligible and large
fanout can result in wiring delays that significantly affect circuit speed.

As mentioned our gate model does not completely reflect reality. Gates are physical devices that
have inertia. The delay before the gate output responds (changes its output to a new logic value)
may depend on the direction of the change (from 0 to 1, or 1 to 0) and the number of loads and
wiring of the net associated with the output pin. The behavior of the inputs may also have an
effect. For example, if an input pin of a NOT gate transitions from 1 to 0 and then back to 1 in
a sufficiently short time, the NOT gate output may never become 1. Hence the timing diagram in
Figure 1.12 may not reflect what is occurring in the circuit. The delay of the gates in this circuit
and possibly the wiring will affect whether these gates have 0 or 1 logic levels, and also the degree
to which oscillation occurs. To fully understand the behavior of the circuit in Figure 1.12 we need
to know more about the physical properties of the gates and model the circuit in much greater
detail than our gate model provides.

4This is mentioned because of the surprising number of times this has turned out to be why nothing was happening.

888

Beginning Logic Design Chapter 2. Combinational Logic

Chapter 2

Combinational Logic

2.1 Introduction

In a combinational circuit, we can sort the gates so that each gate’s inputs are either external inputs
to the circuit or outputs of previous gates in the sorted order. There are no “loops” in the circuit
(aka feedback), and so we can determine the output value of each gate by starting at the external
inputs and tracing through the circuit’s gates in the sorted order assigning each gate output the
value consistent with its inputs’ values. A circuit is said to have settled once all of its gates have
output values consistent with their input values.

Figure 2.1 has four views of our HA circuit from Figure 1.3. Each view shows the logic values of the
nets for one of the four possible input values to HA once all of the gates have settled.

Comb_fig1

a

b
s

c0

0

0
0

a

b
s

c0

1

0
1

a

b
s

c1

1

1
0

0
1

a

b
s

c1

0

Figure 2.1: Four views of the HA logic diagram.

Once a combinational circuit has settled, as long as the external inputs remain stable (unchanged),
the circuit’s gate outputs will not change value. These values are determined solely by the values
on the external inputs. We will see the same output values whenever the circuit has settled with
these input values. The output values of a settled combinational circuit are determined solely by
the values on its external inputs, while the output of a sequential circuit will also depend on their
previous values. In this respect, combinational logic is “memory-less” while sequential logic has
“state.”

999

Beginning Logic Design Chapter 2. Combinational Logic

In analyzing and synthesizing combinational circuits we will focus first on their settled behavior.
The transient behavior of combinational circuits is discussed in Section 2.10.

 a b c s
 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 0

Table 2.1: Truth table for the settled values of the HA component.

The settled behavior of HA can be summarized in a truth table as in Table 2.1. There is a column for
each input and then a column for each output. There are four possible values for the two inputs,
each listed in a separate row along with the associated output values.

2.2 Boolean functions

We can think of a combinational logic circuit as a mathematical function of its inputs by considering
only its settled behavior. Since the values of inputs and outputs will be 0 or 1, this mathematical
function is a boolean function [1].

A boolean function of n variables is a function mapping n-tuples of 0’s and 1’s to either 0 or 1.1

Our HA circuit implements two boolean functions of 2 variables (a and b), one function for output
c and another function for output s.

Example 1 The majority function of n inputs has output values 1 when more than half of its
inputs are 1, and has output value 0 otherwise.

Example 2 The parity function of n inputs has an output value of 1 when an odd number of its
input variables are 1 and has an output value of 0 otherwise. (Recall that zero is an even number.)

The parity function is a usual suspect in arithmetic circuits. It even has its gate symbol (XOR).
 You may have noticed that the s output of the HA circuit is the parity of 2 inputs.

Comb_fig2

I1
I2

O I1
I2 O
I3

OI3
I2
I1

I4

Figure 2.2: The XOR gate for 2, 3, and 4 inputs.

1We can think of n-tuples of 0’s and 1’s as bit vectors of length n.

101010

Beginning Logic Design Chapter 2. Combinational Logic

2.3 Truth tables and Kmaps

A common way to represent a boolean function is a truth table. We’ve already seen it used to
describe the operation of basic gates as well as the behavior of our HA circuit. A simple truth table
has a column for each of the inputs, and then each of the outputs. There is a row for each of the
possible input values. In each row, the associated output value of the output(s) is given. Below are
the truth tables for the majority and parity functions of 1, 2, and 3 variables.

a fM1(a)

 0 0
 1 0

a b fM2(a, b)

 0 0 0
 0 1 0
 1 0 0
 1 1 1

a b c fM3(a, b, c)

 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 1
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 1

a fP1(a)

 0 0
 1 1

a b fP2(a, b)

 0 0 0
 0 1 1
 1 0 1
 1 1 0

a b c fP3(a, b, c)

 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

A Karnaugh-map (Kmap for short) is a truth table in a different format [2]. This format will be
practical for synthesizing logic. In a Kmap, the truth table is organized as a grid with 2n cells.
Each cell is associated with one of the possible input values. The format of a 2-variable Kmap is

!

"

00

01

10

11

!

"

00

01

10

11

!

"

00

01

10

11

Comb_fig3

Figure 2.3: Format of the 2-variable Kmap and the regions in which its variables are 1.

shown on the left in Figure 2.3. Within each cell, the label in its top left corner is the value of the
variables a and b for that cell. A Kmap can be divided into half according to the value of a single
variable. On the right in Figure 2.3 the halves for a=1 and b=1 have been shaded. The format

111111

Beginning Logic Design Chapter 2. Combinational Logic

of 3-variable and 4-variable Kmaps are shown in Figures 2.4 and 2.5.2 The division of the Kmap
according to each variable is shown on the right. The order of the columns and rows may seem
unusual. They are arranged so that all of the cells corresponding to a fixed variable value form one
region provided we imagine that the left and right columns are next to each other as well as the
top and bottom rows. In a Kmap, two cells that share a side will have input labels that differ

!
"

#
000

001

100

101

110

111

010

011

!
"

#
000

001

100

101

110

111

010

011

!
"

#
000

001

100

101

110

111

010

011

!
"

#
000

001

100

101

110

111

010

011

Comb_fig5

Figure 2.4: Format of the 3-variable Kmap and the regions in which its variables are 1.

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

Comb_fig6

Figure 2.5: Format of the 4-variable Kmap and the regions in which its variables are 1.

in exactly one variable. For example the cell labeled 0110 in Figure 2.5 has neighboring cells with
labels 0010, 0111, 0100, and 1110. The Kmap for a boolean function of n variables is obtained
by filling the cells of an n-variable Kmap with the output value corresponding to the input label
of each cell. In Figure 2.6, the truth tables for our HA outputs are shown as Kmaps. The truth
tables for our 3-variable majority and parity functions are shown as Kmaps in Figure 2.7.

2.4 Boolean Expressions

A function of n variables has 2n different input values and hence will require a truth table with
2n rows or a Kmap with 2n cells. This quickly becomes impractical as n increases. Instead of

2This is the column-major format. The row-major is also widely used.

121212

Beginning Logic Design Chapter 2. Combinational Logic

 a b c s
 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 0 a

b

00

01

10

11

c

0 0

0 1

a

b

00

01

10

11

s

0 1

1 0

Comb_fig4

Figure 2.6: The 2-variable Kmaps for our HA circuit.

!
"

#
000

001

100

101

110

111

010

011

Comb_fig5-5

$%&

0 0

0

0

1

1

11
!

"

#
000

001

100

101

110

111

010

011

$'&

0 1

1

1

0

0

10

Figure 2.7: The Kmaps of the 3-variable majority and parity functions.

listing every output value, a boolean expression can be used to represent a boolean function. A
boolean expression is formed from 0, 1, and variables using our three boolean operations, NOT,
AND, and OR. If x and y are two boolean expressions, then we can form the following additional
expressions:

x is the complement of x (NOT),
x ∗ y is the conjunction of x and y (AND),
x+ y is the disjunction of x and y (OR).

Given values for its variables, we can evaluate a boolean expression using our NOT, AND, and OR
operations. The AND operation has precedence over the OR operation, and parentheses should be
used when a different order is intended. For example, the order of operations in a + b ∗ c is the
same as in a+ (b ∗ c) but different than in (a+ b) ∗ c.

A boolean expression E represents a boolean function f if E’s variables are inputs to f and
evaluating E results in the same mapping of input values to 0 or 1 as f . There are many possible
expressions for a boolean function. Finding a “good” expression is often a part of optimizing logic
designs.

We can obtain boolean expressions for the gate outputs of a combinational circuit by using the labels
of the external inputs as variables and assigning each gate output the expression corresponding to
the gate’s operation on the expressions obtained for its inputs. On the right in Figure 2.8, the
expressions for each gate output are shown. The expression for output c is already using only
the external input variables a and b.

c = a ∗ b

To obtain an expression for s that uses only the external inputs, we can substitute for each inter-

131313

Beginning Logic Design Chapter 2. Combinational Logic

Comb_fig7

a

b

c

s

𝐸!𝐸" 𝐸#

𝐜	 = 𝑎	 ∗ 𝑏
𝐸" = 𝑎 + 𝑏	
𝐸# = 𝐸"
𝐸! = 𝑐 + 𝐸#	
𝐬	 = 𝐸!

c = a ∗ b
E1 = a+ b

E2 = E1

E3 = c+ E2

s = E3

Figure 2.8: Extracting boolean expressions from the HA logic diagram.

mediate expression as follows.

s = E3

= (c+ E2)

= (c+ E1)

= ((a ∗ b) + E1)

= ((a ∗ b) + (a+ b))

Note that we have inserted parentheses when substituting a variable with an expression. This
avoids any the possibility that we might inadvertently change the intended order of operations.
The correct expression for the diagram in Figure 2.9(a) is x ∗ (y + z). Without the parentheses,
we would obtain x ∗ y + z which is instead the correct expression for the diagram in Figure 2.9(b).
 The two expressions x ∗ y + z and x ∗ (y + z) are not equivalent: they differ for some variable

Comb_fig8

x

y

f

z

x

y

f

z

(a) (b)

Figure 2.9: Parentheses may be required in boolean expressions obtained from logic diagrams.

values. (Check x = 0, y = 1, and z = 1.). They represent different boolean functions.

2.5 Boolean Algebra

Two boolean expressions are equivalent if they represent the same boolean function. This merely
means that they always agree when they are evaluated with the same input values. Checking
all input values is impractical to determine equivalence. Instead, we can manipulate boolean
expressions algebraically using the laws of boolean algebra. Many of these laws are familiar since
they are learned in early mathematics courses, but a few will be unfamiliar, even seeming incorrect,
since they do not hold in algebras familiar to you. Don’t forget to use the unfamiliar laws.

141414

Beginning Logic Design Chapter 2. Combinational Logic

A boolean algebra consists of

 a set of elements B with designated identity elements 0 and 1,
 the negation operation a for any element a in B,
 the operation a ∗ b for any elements a, b in B, and
 the operation a+ b for any elements a, b in B

satisfying the following laws for all elements a, b, c in B:

Commutative Laws Distributive Laws
a+ b = b+ a a ∗ (b+ c) = a ∗ b+ a ∗ c
a ∗ b = b ∗ a a+ (b ∗ c) = (a+ b) ∗ (a+ c)

Complement Laws Identity Laws
a+ a = 1 0 + b = b
a ∗ a = 0 1 ∗ b = b

Associative Laws
a+ (b+ c) = (a+ b) + c
a ∗ (b ∗ c) = (a ∗ b) ∗ c

Huntington showed that associativity can be derived from the other laws and so can be omitted
from the definition [3]. However, it is typically included in the definition of boolean algebras.

The set B = {0, 1} with our NOT, AND, OR operations qualifies as a boolean algebra. Essentially
the same, but with different notation, propositional logic with B = {FALSE, TRUE} and the
operations ¬, ∧, and ∨ is also a boolean algebra. But these are not the only boolean algebras.
Boolean algebras can have more than two elements, even an infinite number. Another boolean
algebra you may have encountered is the algebra of sets with the complement, intersection, and
union operations where the empty set and universal set serve as the identity elements. Bit vectors
can also be the set of elements of a boolean algebra.

In addition to the required laws, all boolean algebras satisfy the identities below that can be derived
from the laws above.

Idempotent Domination
a+ a = a 1 + b = 1
a ∗ a = a 0 ∗ b = 0

Absorption Simplification
a+ a ∗ b = a a ∗ (a+ b) = a ∗ b
a ∗ (a+ b) = a a+ (a ∗ b) = a+ b

Involution Uniqueness of complements
a = a if a+ b = 1 and a ∗ b = 0 then b = a

151515

Beginning Logic Design Chapter 2. Combinational Logic

DeMorgan’s Laws
(a+ b) = a ∗ b
(a ∗ b) = a+ b

These additional laws can be shown using only the laws that define boolean algebras. Their proofs
can be found in Appendix C.

As in familiar algebras, the ∗ symbol is often omitted for clarity and size: ab = a∗ b. Using boolean
algebra we can manipulate the expressions obtained from logic circuits. The expression for the s
output of our HA can be simplified as follows:

s = ((ab) + (a+ b))

= (ab) ∗ ((a+ b))

= (a+ b)(a+ b)

= a(a+ b) + b(a+ b)

= (aa+ ab) + (ba+ bb)

= (0 + ab) + (ba+ 0)

= ab+ ab

= fP2(a, b)

= a⊕ b

The ⊕ operation (XOR) corresponds to the parity function on 2 variables and the XOR gate. The
XOR operation is commutative and associative, though generally complicated expressions with ⊕
are best resolved by replacing x⊕ y by either xy + xy or (x+ y)(x+ y).

Although many of the laws of Boolean algebra are familiar, some can easily be overlooked since
they are new and seem unusual. The second Distributive Law is often forgotten. In simplifying the
expression

(a+ b+ c+ de) ∗ (a+ b+ c+ d+ e)

the first inclination might be to distribute the “∗” (product) operation over the “+” (sum) obtaining
20 product terms.3 Instead in boolean algebra, the common elements in the two sum terms can be
factored out:

(a+ b+ c+ de) ∗ (a+ b+ c+ d+ e) = ((a+ b+ c) + de) ∗ ((a+ b+ c) + d+ e)

= (a+ b+ c) + (de) ∗ (d+ e)

= (a+ b+ c) + (de) ∗ (de)
= (a+ b+ c) + 0

= a+ b+ c

3This could eventually lead to the same expression, however with much more work and so greater risk of error.

161616

Beginning Logic Design Chapter 2. Combinational Logic

When applying DeMorgan’s Law it may be necessary to introduce parentheses to preserve the order
of operations:

abc = a ∗ (bc)
= a ∗ (b+ c)

= a ∗ b+ a ∗ c
̸= a ∗ b+ c

2.6 Logic Diagrams and Boolean Expressions

We can obtain a boolean expression for the output of a combinational circuit from a logic diagram
by labeling and obtaining an expression for each gate output in terms of its inputs. In Figure 2.10
we have added labels to the gate outputs that are internal net sources and obtained the expressions
for each gate output on the right. The expression for the external output f in terms of the

Comb_fig9

a

b
f

c

g

h i j

g = a ∗ b
h = b ∗ c
i = g + h
j = +i
f = g + j

 g = a * b
 h = b * c
 i = g + h
 j = i
 f = g + j

Figure 2.10: Obtaining a boolean expression for the output of a logic diagram.

external inputs is obtained by substituting for the internal gate outputs.

f = g + j

= ab+ j

= ab+ i

= ab+ g + h

= ab+ ab+ h

= ab+ ab+ bc

Using boolean algebra we obtain a simpler expression for the output f.

f = ab+ ab+ bc

= ab+ ab ∗ bc
= ab+ (a+ b) ∗ (b+ c)

= ab+ (b+ a) ∗ (b+ c)

= ab+ b+ (a ∗ c)

171717

Beginning Logic Design Chapter 2. Combinational Logic

= a+ b+ (a ∗ c)
= a+ a ∗ c+ b

= a+ c+ b

This expression gives the following logic diagram.

Comb_fig10

a

b
f

c

Figure 2.11: A simpler logic circuit.

A logic diagram can be represented by a single boolean expression as long as its gates each drive
one pin. In Figure 2.10 the net g is connected to both OR gates. To represent this circuit, we need
a boolean expression for g as well as one for f. The circuit in Figure 2.10 would correspond to the
following boolean expressions:

g = ab

f = g + g + bc

2.7 Sum-of-Products, Minterms, and Canonical SOP

A single boolean function can be represented by different boolean expressions. There are specific
formats for these expressions that are practical for building circuits and as input for tools that
generate circuits. Sum-of-products (SOP) and product-of-sums (POS) are two such formats. These
formats correspond to two-level logic circuits that can be optimized.

A product term is

• 1,

• a variable

• the complement of a variable, or

• the AND of several complemented or uncomplemented variables.

If the possible variables are a, b, c then the following are examples of product terms.

1, a, a, c, abc, ac, bca

A sum-of-products expression is

• 0,

181818

Beginning Logic Design Chapter 2. Combinational Logic

• a product term, or

• the OR of several product terms.

If the possible variables are {a, b, c} the following are examples of sum-of-product expressions.

0, 1, a, a+ b, a, c+ c, ab+ c+ cb, abc+ abc, ab+ bc, bca

Even when only SOP expressions are involved, there are still many possibilities. The following are
all SOP expressions for the same boolean function.

ac+ bc+ ac, abc+ ab+ ac, ac+ abc+ ac, abc+ abc+ abc+ abc+ abc

The fourth expression in the list above is in a format that is unique up to the ordering of terms
and variables within terms. In each of its product terms, all possible variables appear, either
complemented or uncomplemented.

A minterm for a set of variables is a product term in which each of the variables in the set appears
exactly once, either complemented or uncomplemented.

A canonical sum-of-products expression for a boolean function f is a sum-of-products expression
for f where each product term is a minterm for the variables of f .

A minterm will evaluate to 1 only when its complemented variables are 0 and its uncomplemented
variables are 1. Since all variables appear in a minterm there is exactly one assignment of values
for which the minterm evaluates to 1. Table 2.2 contains the eight possible value assignments
for the variables a, b, c and the corresponding minterm that evaluates to 1 for that assignment.
 The notation mn in Table 2.2 is “shorthand” for the minterm that is 1 for the binary vector

a b c minterm
 0 0 0 abc m0

 0 0 1 abc m1

 0 1 0 abc m2

 0 1 1 abc m3

 1 0 0 abc m4

 1 0 1 abc m5

 1 1 0 abc m6

 1 1 1 abc m7

Table 2.2: The minterms for variables a, b, c and the mn notation.

that represents the value n. For example, m6 = abc evaluates to 1 for a, b, c = 1, 1, 0 and 110 is
the binary representation of 6. Changing the order of the variables affects this minterm
notation! In this text we will adopt the convention that the variable order is given by the order
of the arguments to the function. For example, in the function f(x, y, z, w, v) =

∑︁
m(. . .) the order

of the variables is x, y, z, w, v. Care should be taken since this convention may not be in force
elsewhere.

The minterms that appear in the canonical SOP expression of a function f correspond to the
variable assignments for which f evaluates to 1. These assignments form the ONSET of f . There

191919

Beginning Logic Design Chapter 2. Combinational Logic

a b c f abc + abc + abc + abc + abc minterm
 0 0 0 0 0 0 0 0 0
 0 0 1 1 1 0 0 0 0 m1

 0 1 0 1 0 1 0 0 0 m2

 0 1 1 1 0 0 1 0 0 m3

 1 0 0 1 0 0 0 1 0 m4

 1 0 1 0 0 0 0 0 0
 1 1 0 1 0 0 0 0 1 m6

 1 1 1 0 0 0 0 0 0

Table 2.3: The minterms corresponding to the ONSET for f .

is only one canonical sum-of-products for a function f since the minterms are fixed by the ONSET.
Although this expression is unique, it is often cumbersome. A shorter notation for this expression
is the “sum-of-minterms” form f(variables) =

∑︁
m(ONSET). The function from Table 2.3 would

be written as:
f(a, b, c) =

∑︂
m(1, 2, 3, 4, 6)

Here we have specified the order of the variables in the minterm notation by listing the arguments
to f . From the sum-of-minterms format it is simple to fill in a K-map: we merely need to put 1’s
in the cells corresponding to the ONSET of the function as in Figure 2.12. In the remaining cells,
the function will be 0. Here, each cell is labeled with the value corresponding to its binary vector,
rather than the binary vector itself.

!
"

#
0

1

4

5

6

7

2

3

Comb_fig10-5

$!, #, " = '(), *, +, ,, -
0 1

1

1

0

1

01

$

Figure 2.12: Using the ONSET of a function to obtain its K-map.

The sum-of-minterms and canonical sum-of-products expressions for our majority and parity func-
tion examples are

fM3(a, b, c) =
∑︂

m(3, 5, 6, 7)

= abc+ abc+ abc+ abc

fP3(a, b, c) =
∑︂

m(1, 2, 4, 7)

= abc+ abc+ abc+ abc

One “take-away” from this section is that any boolean function can be realized by a combination
of NOT, AND, OR operations. For this reason, we say that together these three operators form a
universal set of operators.

202020

Beginning Logic Design Chapter 2. Combinational Logic

2.8 Product-of-Sums, Maxterms, and Canonical POS

The product-of-sums format is similar in structure to the sum-of-products format but with the roles
of the AND and OR operations swapped. However swapping the two operations in an expression
will not, in general, provide an equivalent expression!!

A sum term is

• 0,

• a variable

• the complement of variable, or

• the OR of several complemented or uncomplemented variables.

If the possible variables are a, b, c then the following are examples of sum terms.

0, a, a, c, a+ b+ c, a+ c, b+ c+ a

A product-of-sums expression is

• 1,

• a sum term, or

• the AND of several sum terms.

If the possible variables are a, b, c then the following are examples of product-of-sum expres-
sions.

0, 1, a, ab, a, cc, (a+ b)c(c+ b), (a+ b+ c)(a+ b+ c), (a+ b)(b+ c), b+ c

A maxterm for a set of variables is a sum term in which every variable appears exactly once, either
complemented or uncomplemented.

A canonical product-of-sums expression for a boolean function f is a product-of-sums expression
where each sum term is a maxterm for the variables of f .

A maxterm will evaluate to 0 only when its complemented variables are 1 and its uncomplemented
variables are 0. Since all variables appear in a maxterm there is exactly one assignment of values to
the variables for which the maxterm will be 0. The table below lists the eight possible assignment
values for the variables a, b, c and the corresponding maxterm that will be 0 for that assignment.
 The notation Mn in Table 2.4 is “shorthand” for the maxterm that evaluates to 0 for the binary
vector that represents the value n. For example, M5 = a + b + c evaluates to 0 for a, b, c = 1, 0, 1
and 101 is the binary representation of 5. As before the order of the variables affects this notation
and we adopt the convention that the variable order is given by the order of the arguments to
the function. For example, in the function f(x, y, z, w, v) =

∑︁
m(. . .) the order of the variables is

x, y, z, w, v. Care should be taken since this convention may not be in force elsewhere.

The maxterms that appear in the canonical POS expression of a function f correspond to the
variable assignments for which f evaluates to 0. These assignments form the OFFSET of f .

212121

Beginning Logic Design Chapter 2. Combinational Logic

a b c maxterm
 0 0 0 a+ b+ c M0

 0 0 1 a+ b+ c M1

 0 1 0 a+ b+ c M2

 0 1 1 a+ b+ c M3

 1 0 0 a+ b+ c M4

 1 0 1 a+ b+ c M5

 1 1 0 a+ b+ c M6

 1 1 1 a+ b+ c M7

Table 2.4: The maxterms for variables a, b, c and the Mn notation.

a b c f (a+ b+ c) * (a+ b+ c) * (a+ b+ c) maxterm
 0 0 0 0 0 1 1 M0

 0 0 1 1 1 1 1
 0 1 0 1 1 1 1
 0 1 1 1 1 1 1
 1 0 0 1 1 1 1
 1 0 1 0 1 0 1 M5

 1 1 0 1 1 1 1
 1 1 1 0 1 1 0 M7

Table 2.5: The maxterms corresponding to the OFFSET for f .

There is only one canonical product-of-sums expression for a function f since the maxterms are
fixed by the OFFSET (assuming the ordering of terms and variables within terms). Although this
expression is unique, it is also often cumbersome. A shorthand for it the “product-of-maxterms”
notation f(variables) =

∏︁
M(OFFSET). The function from Table 2.5 would be written as:

f(a, b, c) =
∏︂

M(0, 5, 7)

Similarly to the sum-of-minterms, it is simple to fill in a K-map from the product-of-maxterms
format: we put 0’s in the cells corresponding to the OFFSET and 1’s in the remaining cells as in
Figure 2.13. Again, here the cells are labeled with the value corresponding to their binary vector,
rather than the binary vector itself.

!
"

#
0

1

4

5

6

7

2

3

Comb_fig10-7

$!, #, " ='(), *, +
0 1

1

1

0

1

01

$

Figure 2.13: Using the OFFSET of a function to obtain its K-map.

The product-of-maxterm and canonical product-of-sums expressions for our majority and parity

222222

Beginning Logic Design Chapter 2. Combinational Logic

function examples are

fM3(a, b, c) =
∏︂

M(0, 1, 2, 4)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

fP3(a, b, c) =
∏︂

M(0, 3, 5, 6)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

2.9 Bubbles and DeMorgan’s Laws

The NOT gate represents the complement operation in logic diagrams. But it can also appear as
a “bubble” on an input or output pin. In Figure 2.14 the circuit from Figure 2.11 is shown on the
left, and again on the right with the NOT gates replaced by bubbles on the input pins of the OR
gate.

Comb_fig11

a

b
f

c

a

b
f

c

Figure 2.14: Using bubbles instead of NOT gates in a logic diagram.

In Figure 2.15 below the NOT gates and OR gates have been replaced with NOR gates. A NOR
gate corresponds to the complementing result of the OR operation while a NAND gate corresponds
to the complementing result of the AND operation. Depending on the technology we use to build
the circuit, a NOR may be more efficient than an OR gate (e.g. CMOS).

Comb_fig12

a

b

c

s

a

b

c

s

Figure 2.15: Using NOR gates in our HA circuit.

The Involution Law (a = a) and DeMorgan’s Laws can be used to move the “bubbles” around in
our logic diagrams. Figure 2.16 shows the equivalent circuits that these laws provide.

By using these laws we can transform a sum-of-products circuit into an equivalent circuit with
only NAND gates. Figure 2.17 shows the three steps: (a) the original circuit, (b) introducing two
bubbles on the connections between the AND gate outputs and the inputs to the OR gate, and

232323

Beginning Logic Design Chapter 2. Combinational Logic

Comb_fig13

(a) (b) (c)

Figure 2.16: Equivalent circuits based on (a) Involution Law and (b and c) DeMorgan’s Laws.Comb_fig14

(a) (b) (c)

a

b

fc

d

f

a

b

c

d

f

a

b

c

d

Figure 2.17: Converting an SOP circuit to an equivalent NAND-NAND circuit.

(c) using DeMorgan’s Law on the OR gate. Since any boolean function has a sum-of-products
expression that can be converted to a logic diagram with only NAND gates, the NAND operation,
by itself, is a universal operator. This will also work for the NOR operation since we can transform
a product-of-sums circuit into a circuit built only from NOR gates. Note that in Figure 2.18 (b)
we introduced a NOT gate on the input that went directly to the AND gate. In (c) the NOT gate
has been implemented with a NOR gate, although we are allowing negated inputs for other gates.

Comb_fig15

(a) (b) (c)

a

b f

c
d

a

b f

c
d

a

b f

c
d

Figure 2.18: Converting a POS circuit to an equivalent NOR-NOR circuit.

242424

Beginning Logic Design Chapter 2. Combinational Logic

2.10 Transient behavior of combinational circuits

So far in this chapter, we have been concerned with the “final” value of the outputs of combinational
circuits. As discussed in Chapter 1 we are not considering any physical properties of our circuit
and its environment that might result in a gate not providing its expected output value. However,
we do expect that some amount of time is required for a gate’s output value to change after its
inputs change. And the outputs might not be consistent with the new input values until then. To
build sequential logic, we will need to consider the amount of time required for our combinational
circuits to react and settle when its inputs change value.

Consider the circuit in Figure 2.19. We can derive the following boolean expression for its out-
put:

f = ab+ ac.

If b and c are both 1, then f = a∗1+a∗1 = a+a = 1 and the value of a does not affect f .

Comb_fig16

a
b f

c

e

gd

Figure 2.19: A combinational circuit with a hazard.

In the timing diagram in Figure 2.20, both inputs b and c are 1 and the input a changes from 1
to 0 at time 10.0. The NOT gate takes 5.0 time to react to this change, while the two AND gates
take time 15.0 to react to their input changes.

10 20 30 40 50 60

Comb_fig17 a

b

c

d

e

g

f

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 2.20: Timing diagram showing a hazard in a combinational circuit.

252525

Beginning Logic Design Chapter 2. Combinational Logic

The OR gate sees its top input e change from 1 to 0 at time 25.0 and its other input g changes from
0 to 1 at time 30.0. Between time 25.0 and time 30.0, both inputs of the OR gate are 0. Determining
whether, and for how long the output of the OR gate in Figure 2.19 will be 0 requires us to analyze
this circuit in more detail than our gate model provides. Because there is a possibility that this
circuit may temporarily provide an output that is inconsistent with both its previous and current
input we say this circuit has a hazard. The hazard in the circuit in Figure 2.19 occurs because a
change on the input a travels through multiple gates at different depths on parallel paths. However,
hazards can also occur merely as the result of wiring delays. Although we may not know exactly
when or if there will be a hazard, we can determine when an output will have settled to its final
value.

Using static timing analysis we can obtain an upper bound on the amount of time needed for a
combinational circuit to settle. In static timing analysis, we calculate when the output of a gate
is “ready” by determining when all of its inputs have “arrived” and adding the time the gate will
need for its output value to reflect these input values. The arrival time of an input is the time the
source of its net is ready plus the delay associated with the connection between the source’s output
pin and the gate’s input pin (wiring delay). In a combinational circuit, we can order the calculation
of the gates’ ready times so that the the arrival times of a gate’s inputs are already known when
its ready time is calculated. In Figure 2.21, the ready time of gate g9 is being calculated based on
the ready time of the gates providing its inputs, g1 and g4. The output of gate g9 will be ready

g1
#$%

Comb_fig18

g4

g9
()
(*

#$+

#$,

Figure 2.21: Static timing analysis calculation of the ready time of gate g9.

at time Tg9 where
Tg9 = max{Tg1 +D(w3), Tg4 +D(w7)}+D(g9).

The inputs to g9 are from g1 and g4. They are available at times Tg1 and Tg4. We add the delay
of the connections w3 and w7 to these times and use the larger value as the time at which g9’s
input pins will have their final values. We then add the time required for g9’s output to become
consistent with these input values. This calculation begins with the times provided for the external
inputs. It requires values for the delay of the connections (in blue) and the gate delays (in brown)
as shown on the left in Figure 2.22. The results (in pink), are the ready times for the output of
each gate as shown on the right in Figure 2.22. In some cases, a change in the input value of a
gate might not cause the output value to change. For example, if the first input to arrive at g9 in
Figure 2.21 gate has value 1, the value of the other input will not affect this OR gate’s output value:
the output will remain 1. Unfortunately timing analysis that takes into account logic values of the
inputs/outputs (dynamic timing analysis) is computationally expensive and often not practical.
Even more accurate timing estimates would be provided by modeling the physical properties of the

262626

Beginning Logic Design Chapter 2. Combinational Logic

Comb_fig19

g2

15
a
b f

c
g1 g3

g4

3

2

2

2
4

5
3 5!a= 2

!b= 0

!c= 0

5

15

15 a
b f

c

g2

g1 g3

g4
!a= 2
!b= 0

!c= 0

!"# = 9

!"& = 20

!") = 26

!"+ = 44
!- = 49

(a) (b)

Figure 2.22: Static timing analysis example: (a) data, (b) result.

technology we are using. Static timing analysis provides a useful compromise between accuracy
and efficiency.

2.11 Regular structures

Some logic functions can be implemented in combinational logic with regular structures. These
may be available as components in a library. In this section, we will construct them from the basic
gates (AND, OR, NOT) although they can often be implemented more efficiently in the technology
used for the basic gates (e.g. transistors).

2.11.1 Decoders

A decoder with n inputs will have 2n outputs. Each output is one of the 2n minterms. For example,
a 2-input decoder with inputs x1 and x0 will have four outputs (as in Figure 2.23(a)) corresponding
to the minterms m0 = x1 x0. m1 = x1 x0. m2 = x1 x0. and m3 = x1 x0. This 2-input decoder
can be implemented using four 2-input AND gates as shown in Figure 2.23(b). Generating

Comb_fig20

x1 d1

d0

(a)

x0

d3
d2

x1

x0

d1

d0

d3

d2

(b)

d0

d1
d2

d3

x0

x1

DEC2

Figure 2.23: 2-input decoder: (a) symbol, (b) logic circuit.

all 2n minterms separately will require 2n n-input AND gates. Each n-input AND gate can be
implemented with n− 1 2-input AND gates. A more efficient approach relies on incident decoding

272727

Beginning Logic Design Chapter 2. Combinational Logic

where the inputs are divided into two groups, decoded separately, and then AND gates combine
pairs of outputs from each decoder. Figure 2.24 illustrates incident decoding for a 4-input decoder.
The inputs x3, x2, x1, and x0 are divided into the lower bits, x1 and x0, and upper bits x3 and
x2. As an example, consider the output d13 which should be 1 when both a3 and b1 are 1 and
this requires that x3x2=11 and x1x0=01. Since each 2-input decoder has four 2-input gates, this
circuit requires a total of twenty-four 2-input gates versus the forty-eight 2-input gates needed to
generate all 16 minterms separately. There is nothing special about 2 here.4 The inputs could be

Comb_fig21

x1
x0

x3 a1
x2

a3
a2

b1

b0

d1 d5 d9 d13b2

a0

b3

d0 d4 d8 d12

d2 d6 d14d10

d3 d7 d15d11

d0

d1
d2

d3

x0

x1

DEC2

d0

d1
d2

d3

x0

x1

DEC2

Figure 2.24: Co-incident decoding in a 4-input decoder.

divided into k groups of n/k inputs and then the n/k-decoders outputs would be combined using
2n k-input AND gates. The choice of k will depend on the parameters of the technology used to
implement the decoder.

2.11.2 Multiplexers

A multiplexer allows multiple sources to send their values to the same place, though not simul-
taneously. Additional inputs select which source is currently the output of the multiplexer. For
example, a 2-input multiplexer with source inputs i0 and i1 would have one selector s and its output
would be

o =

{︃
i0 if s = 0
i1 if s = 1

We could think of this mechanically as a two-pole switch, but in logic design, a multiplexer’s
output need only have the same logic value as the source. The output doesn’t need to be physically
connected to a source. The value of the output of a 2-input multiplexer is given by the boolean
equation:

o = s · i0 + s · i1.

The symbol for a 2-to-1 multiplexer is shown in Figure 2.25(a) and its logic circuit is in Fig-
ure 2.25(b). The symbols for the 2-input, 4-input, 8-input, and 2n-input multiplexers are

4A surprising thing to say in digital design.

282828

Beginning Logic Design Chapter 2. Combinational Logic

s

I0

I1

s

i1

O
i0

O

s

I1

I0

(a) (b)

Comb_fig22

O

Figure 2.25: Two input multiplexer: (a) 2-to-1 multiplexer symbol, (b) 2-to-1 multiplexer logic
circuit.

s

I0

I1
O

s

i1

I0

(a)

Comb_fig23

I0

I1
I2

I3
s1 s0

O

s1

I1
I0

(b)

s0

I3
I2

I0

I1
I2

I3
I4

I5
I6

I7
s2 s1

 s0

O

s2

I6
I4

(c)

s1

I7
I5

I1
I0

I2

I3

s0

I0

I1

I2

I0

I1
I2

I

s&"%..
.s$

O

s!"#

(d)

I2!"%

...

2!"%

. . . .

s%

...

. . . .

O

O

O

O

O

Figure 2.26: Larger multiplexers.

shown in Figure 2.26. The number of selectors grows as the base 2 logarithm of the number of
inputs. With these larger multiplexers, the role of the multiplexer appears more akin to indexing in
arrays. Multiplexers can be implemented as shown in Figure 2.27(a) where a 2n-input multiplexer

Comb_fig24

O

s!"#

I0

I1
I2

s!"#..
.s$

s!"$

I2!"%

...

2!"#−1

s%

...

. . . .

I2!"#

I2!"#+1
I2!"#+2. . . .

I0

I1
I2

s!"#..
.s$

s!"$

I2!"#−1

...

2!"#−1

s%

...

. . . .

I0
I1
I2

(b)

O

s2

I6

I4

s1

I7

I5

I1

I0

I2

I3

s0

(a)

I

I

s

I0

I1
O

s

I0

I1
O

s

I0

I1
O

s

I0

I1
O

s

I0

I1
O

s

I0

I1
O

s

I0

I1
O

s

I0

I1
O

O

O

Figure 2.27: Structure of larger muxes (a) decomposition, (b) 8-input multiplexer.

has been decomposed into two 2n−1-input multiplexers and the final output is determined by the
most significant selector, sn−1. Repeatedly applying this decomposition for an 8-input multiplexer
results in the circuit in Figure 2.27(b).

292929

Beginning Logic Design Chapter 2. Combinational Logic

2.11.3 Comparators

A common task is the need to compare two integer values to determine whether they are the same, or
if one is greater than the other. Suppose we are given two n-bit unsigned integers, A = an−1 . . . a1a0
and B = bn−1 . . . b1b0. For n = 1, the XNOR gate as in Figure 2.28(a) will tell us if A and B are
the same, while A > B occurs only when a0 = 1 and b0 = 0 and this can be recognized by an AND
gate with an inverted input as shown in Figure 2.28(b).

Comb_fig25

a0
b0

a0
b0 GTEQ

(a) (b)

Figure 2.28: Comparison of single-bit integers: (a) equality, (b) greater-than.

This circuit is shown in Figure 2.29. Two n-bit integers (or any two n-bit vectors) will be the Comb_fig26
. . . .

...

EQ

an-1
bn-1

a0
b0

a1
b1

a2
b2

Figure 2.29: Comparison of n-bit vectors to determine equality.

same if they agree at every bit position. We can apply an XNOR gate to the pair of bits at each
position and then use n-input AND to determine if all the pairs agree.

To determine whether A > B is more complicated since the bit positions have different significance.
In Figure 2.30 the n-bit unsigned integers A and B have been split into smaller integers of size m
and n−m. The bit vectors AH and BH are the high order bits (the leftmost n−m bits, while AL

and BL are the low order bits (the rightmost m bits).

In checking whether A > B there are two possibilities. If AH > BH then we know that A > B
without considering the low-order vectors. But if AH = BH then A > B depends on whether
AL > BL. (If AH < BH we know A < B.). So A > B is equivalent to AH > BH , or AH = BH and
AL > BL. Figure 2.31 represents the structure of an n-bit comparison achieved in this manner.
The symbol on the left in Figure 2.31(a) provides both the EQ and GT outputs. In Figure 2.31(b)
the comparison of A and B is obtained from the EQ and GT outputs comparing AH with BH , and
AL with BL.

303030

Beginning Logic Design Chapter 2. Combinational Logic

AH AL

an-1 an-2 . . . am+1 am am-1 am-2 . . . a1 a0

BH BL

bn-1 bn-2 . . . bm+1 bm bm-1 bm-2 . . b1 b0

Comb_fig26-5

Figure 2.30: Splitting the n-bit unsigned integers into A and B into the high and low order parts.Comb_fig27

... EQ

GT

EQ

GT

CMPEQGT

EQ

GT EQ

GT

CMPEQGT

EQ

GT

CMPEQGT

(m≈n/2)

a0
a1

an-1

...

b0
b1

bn-1

...

a0
a1

am-1

...

b0
b1

bm-1

...
am
am+1

an-1

...

bm
bm+1

bn-1

(a) (b)

Figure 2.31: Comparison of single-bit integers: (a) equality, (b) greater-than.

For signed integers, the leading bit (the sign bit) must be considered. In 2’s complement, A > B
for signed integers A and B, if A is non-negative and B is negative, or if they have the same sign
and A > B when considered as unsigned integers.

2.12 Pre-fabricated components

To facilitate and accelerate the assembly of logic circuits, prefabricated components provide struc-
tures that can be conveniently configured to become the desired logic circuit. Two common struc-
tures used to implement combinational logic are look-up tables and arrays of gates with pro-
grammable connections.

2.12.1 Look-Up Tables

In a Look-Up Table with n inputs (an n-LUT) the output is produced by using the n-inputs as
selectors to “look-up” the value in a truth table. Recall that the role of a multiplexer is similar
to indexing in an array, and so LUTs are in essence 2n-input multiplexers where the 2n inputs
(sources) are the output values from the truth table for the desired function. In Figure 2.32 The
truth table of the function f(a, b, c) =

∑︁
m(1, 2, 3, 4, 6) is shown in Figure 2.32(a). This function is

313131

Beginning Logic Design Chapter 2. Combinational Logic

implemented in Figure 2.32(b) by setting the inputs of an 8-input multiplexer to 0 or 1 according
to the function’s output in the truth table. Figure 2.32(c) shows a 3-LUT implementing this same
function. The 3-LUT must be “configured” with the values from the truth table. In a reconfigurable
logic device, these values are held in a shift register and are shifted in during the configuration of
the device with a bitstream.

a b c f

 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 1
 1 0 0 1
 1 0 1 0
 1 1 0 1
 1 1 1 0

Comb_fig28

I0

I1
I2

I3
I4

I5
I6

I7
s2 s1

 s0

f

a
b
c

0
1
1
1
1
0
1
0

O

Comb_fig29

f

a

b

c

f2
f1
f0

3-LUT I0

I1

I2

I3

I4

I5

I6

I7
s2 s1

 s0

0

1

1

1

1

0

1

0

O

 (a) (b) (c)

Figure 2.32: (a) Truth table of f(a, b, c) =
∑︁

m(1, 2, 3, 4, 6), (b) implementation of f(a, b, c) with
an 8-input multiplexer, (c) 3-LUT implementing f(a, b, c).

An n-LUT can implement any boolean function of n variables or less, but functions of more than n
variables must be decomposed into functions with fewer variables. Designers use software to enter
their desired circuit and program the device. This software decomposes logic into the appropriate
size LUTs and maps the gates and their interconnections to locations on the device.

2.12.2 Programmable Logic Devices

There are several different types of Programmable Logic Devices (PLDs). In these devices, the
gates are already present. The desired circuit is obtained by programming the connections to the
gate input pins. Figure 2.33 contains a representation of a small Programmable Logic Array.5 This
PLA has an AND-plane where the external inputs or their complements can be connected to the
AND gate inputs. In OR-plane the product terms from the AND gates can be selected and possibly
inverted. In the AND-plane and OR-plane, two wires that overlap are connected by programming
the switches. The outputs of the OR gates can be inverted by connecting the first input of the
XOR gate to either 0 or 1 (0⊕ x = x and 1⊕ x = x). In Figure 2.33 the green switches are closed
(connect the vertical/horizontal wires) while the red switches are open.

The PLA in Figure 2.33 is programmed to implement the functions f(a, b, c) =
∑︁

m(1, 2, 3, 4, 6)
and g(a, b, c) =

∑︁
m(0, 2, 7). With only 4 AND gates available, and two functions that together

have seven minterms, it might not appear feasible at first. But by obtaining an SOP expression for
5This is a representation of the logic structure within a PLA. The logic gates and their programmable inputs are

realized by a network of transistors.

323232

Beginning Logic Design Chapter 2. Combinational Logic

a

c
b

f

Comb_fig30

g

1
0

Figure 2.33: Programmable Logic Array organization. The vertical/horizontal wires are connected
if the programmable switch at their intersection is green.

the complement of f(a, b, c) as follows,

f(a, b, c) =
∑︂

m(1, 2, 3, 4, 6) =
∑︂

m(0, 5, 7) = a b c+ a b c+ a b c

we can implement both f(a, b, c) and g(a, b, c) from the minterms m0, m2, m5, and m7.

There are a variety of structures available as Programmable Logic Devices. Capacity, perfor-
mance, and the configuration process are the main considerations in selecting a device to implement
logic.

333333

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

Chapter 3

Synthesis of Combinational Logic

3.1 Introduction

In Chapter 2 we presented several ways to represent, analyze, and manipulate combinational logic.
In this chapter, we will discuss how to synthesize the best or better combinational logic. How
this is approached will depend on the goal (cost versus performance) and also the technology used
to implement the logic. But even without a specific technology in mind, obtaining small boolean
expressions is useful as a starting point, or merely as a way to obtain a compact representation for
logic. We will be considering this “technology-independent” logic minimization.

3.2 Literals

The number of literals in a boolean expression is one way to measure the “size” of our boolean
expressions. It corresponds to the total number of 2-input gates in a logic diagram obtained from
the expressions. This is considered a “technology independent” measure.

A literal in a boolean expression is an occurrence of a variable or its complement.

Every occurrence of a variable is a separate literal: aaaaa has 5 literals and aa+ bc has 4 literals.
Table 3.1 has more examples. The number of literals in an expression corresponds to the number

 Expression # of literals Expression # of literals
0 0 1 0
a 1 c 1

ab+ c 3 a+ b+ c 3

b(a+ c) + acd 6 aa+ aaa 5

Table 3.1: Examples for number of literals in an expression

of 2-input gates required for that expression. The expressions abc and ab+c both have three literals
and will require two 2-input gates as shown in Figure 3.1. With the number of literals as the
measure, there is no additional cost for the complementing variable. In some technologies, both

343434

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

OptC_fig1

(a) (b)

a

b

c

a

b

c

Figure 3.1: The number of 2-input gates for abc and ab+ c is the same.

the complemented and uncomplemented inputs are available, and in some technologies (CMOS)
implementing an expression with a complemented input or output will be less costly than when it
is uncomplemented.

3.3 Using Kmaps to obtain minimal SOP/POS expressions

Our goal is to obtain sum-of-products (SOP) and product-of-sums (POS) expressions with the
minimum number of literals. We begin by considering the sum of products.

As an example, consider the majority-of-3 function from Section 2.2 and its expressions from Sec-
tion 2.7.

fM3(a, b, c) =
∑︂

m(3, 5, 6, 7)

= abc+ abc+ abc+ abc

Each product term in any sum-of-products expression for a function is considered an implicant of
the function represented. Whenever such a product term evaluates to 1, its function will evaluate to
1. The input values for which an implicant evaluates to 1 are said to be covered by that implicant.
Every element of the ONSET (the input values for which the function is 1) must be covered by
at least one implicant. So in choosing product terms for our sum-of-products expression, we must
meet two conditions:

1. Each product term must be an implicant of the function.
(It should not cover any elements in the OFFSET.)

2. Each element of the ONSET must be covered by at least one implicant.

A sum-of-minterms expression meets these requirements since each minterm covers exactly 1 el-
ement of the ONSET. However, the sum-of-minterms is rarely the expression with the fewest
literals. Consider the majority-of-3 function, fM3. Its sum-of-minterms expression is

fM3(a, b, c) = abc+ abc+ abc+ abc

353535

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

x

!
"

#
0

1

4

5

6

7

2

3

OptC_fig1-5

$%&

0 0

0

0

1

1

11

!# ̅"
!(#"
(!#"
!#"

Implicant

Figure 3.2: The cells covered by the four minterms for fM3.

To have a majority of 1’s among the three inputs, at least two of them must be 1. This observation
leads to the following expression for fM3

fM3(a, b, c) = ab+ ac+ bc

This expression has 6 literals while the sum-of-minterms expression has 12. The implicants in the
6 literal expression are ab, ac, and bc. They each cover two elements of the ONSET. Since the
ONSET has 4 elements, these implicants must overlap. In Figure 3.3 the cells covered by the three
implicants are shown.

!
"

#
0

1

4

5

6

7

2

3

OptC_fig2

$%&

0 0

0

0

1

1

11

!#
!"
#"

6,7
5,7
3,7

Cells coveredImplicant

Figure 3.3: The cells covered by the three implicants of ab+ ac+ bc.

3.3.1 Finding implicants

The first step in finding a minimal sum-of-products for a boolean function f is to identify its
implicants. For a small number of variables, this can be done by drawing rectangles in Kmaps.

Recall from Section 2.3 that for each variable, the Kmap can be divided into two: one half where
the variable is 1 and in the other half it is 0. A product term will be 1 in the cells where its
uncomplemented variables are 1, and its complemented variables are 0. For a variable not appearing
in the product term, there will be equal numbers of cells where that variable is 1 versus 0. Two
examples of implicants, acd and bd, are shown in Figure 3.4 . The rectangle associated with acd
is in the half where a = 0, in the half where c = 0, and in the half where d = 1. It overlaps both
halves for the variable b. The rectangle associated with bd is in the half where b = 1 and in the
half where d = 0. It overlaps both halves for the variables a and c.

363636

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

11

11

!

"

#

$
0

1

8

9

12

13

4

5

2

3

10

11

14

15

6

7

OptC_fig3

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

!

"

#

$
0000

0001

1000

1001

1100

1101

0100

0101

0010

0011

1010

1011

1110

1111

0110

0111

11

%! ̅"#

$#̅

Figure 3.4: Two rectangles and their product terms.

The rectangles (aka cubes) associated with product terms will have dimensions that are powers of 2
(1×1, 1×2, 1×4, 2×2, 2×4, etc.). The product term associated with the smallest cube, a 1×1, is a
minterm. When the size of a cube doubles, the number of variables in the associated product term
goes down by 1. Since the goal is to have as few literals as possible, using a cube that fits inside a
larger one is sub-optimal. A prime implicant of f is a product term that cannot lose any variable
and remain an implicant. That is, the prime implicant is a product term that cannot be smaller.
In terms of cubes, a prime implicant (aka PI) is a cube that is not entirely inside another cube;
it cannot be larger. As an example, the PIs of the function

∑︁
m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14) are

shown in Figure 3.5. Here we have indicated each PI on a separate Kmap for clarity. In practice,
they will be drawn on one Kmap as in Figure 3.6. Note that P4 and P5 are entirely covered by
other PIs, but neither can be expanded. P4 and P5 are prime implicants since they are not inside
any other PI. The function in Figure 3.5 has 29 implicants, but only 6 of them are prime implicants.
We can safely ignore the non-prime implicants since it would be sub-optimal to include them in
our SOP expression. This greatly simplifies the next step: selecting implicants for the cover.

3.3.2 Forming the cover

Once we have identified the PIs we need to select enough of them to cover the cells in the ONSET.
We could include all of them, but that may not be necessary. Our goal is to minimize the number
of literals so a “smaller” cover is better. If a PI is the only PI that covers a particular cell then we
cannot cover the ONSET without it: it must be included. Such a PI is said to be forced by that
cell.1

In Figure 3.6 the five cells of the ONSET that have only one PI covering them are indicated by
large boldface 1’s. P1 is forced by cell 7, P2 is forced by cells 0 and 4, P3 is forced by cell 13, and

1The term “essential” prime implicant is used in the literature rather than “forced” and can lead to confusion
when the dictionary definition of essential is applied. It could be that a prime implicant that is not forced by any
cell, will always be in a minimal SOP.

373737

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

Prime Implicants

/̅0
/̅ ̅1
̅10
230
/231
/140

0 0

1

11 1

0 01

1

1

1

0

/

1

3

1

1 1

0

OptC_fig4

56
57
58
59
5:
5;

0 0

1

11 1

0 01

1

1

1

0

/

1

3

1

1 1

0

0 0

1

11 1

0 01

1

1

1

0

/

1

3

1

1 1

0

0 0

1

11 1

0 01

1

1

1

0

/

1

3

1

1 1

0

0 0

1

11 1

0 01

1

1

1

0

/

1

3

1

1 1

0

0 0

1

11 1

0 01

1

1

1

0

/

1

3

1

1 1

0

Figure 3.5: The prime implicants (PIs) of
∑︁

m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14).

P6 is forced by cell 14. P4 and P5 are not forced. The remaining cells of the ONSET all have at
least two PIs that cover them.

We must include P1, P2, P3, and P6 in the cover. Together these four PIs almost cover the ONSET;
the only cell in the ONSET that they don’t cover is 11 as shown in Figure 3.7. To cover cell 11,
we can select either P4 or P5. The product term for P4 has one less literal, so it should be selected
instead of P5. Our cover is then P1, P2, P3, P4, and P6 and the minimum SOP expression is

xw + xz + zw + yw + xzw

3.3.3 Using Kmaps to obtain minimal SOP expressions

The procedure we have followed can be summarized in four steps.

1. Identify PIs. (It is tempting here to ignore a PI that appears unlikely to end up in the cover,
but this will affect the next step.)

2. Identify the cells of the ONSET that force a PI.

3. Add the forced PIs to the cover and mark the cells they cover.

4. Select a “smallest” group of the remaining PIs to cover any remaining uncovered cells of the
ONSET.

The fourth/final step in this procedure seems to have “punted the ball” so to speak, but for problems
with at most 6 variables, the number of unforced PIs will likely be small and it will be simple to
identify the best group to cover the remaining cells. A more complete and systematic method for
step 4 can be found in Section 3.4. Beyond 6 variables using Kmaps becomes unmanageable and
impractical, and the methods in Section 3.4 will be preferable.

383838

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

Prime Implicants

/̅0
/̅ ̅1
̅10
230
/231
/140

0 0

1

11 1

0 01

5(/, 3, 1, 0) =:m(0,1,3,4,5,7,9,10,11,13,14)

1

1
1

0

/

1

3

1

1 1

0
Forced
Forced

Forced

Forced

OptC_fig5

;<
;=
;>
;?
;@
;A

Figure 3.6: Identifying which PIs of
∑︁

m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14) are forced. Cells in the
ONSET that are covered by only one PI are indicated by a large boldface 1.

!"
!#
!$
!%
!&
!'

Prime Implicants

6̅7
6̅ ̅8
̅87
9:7
69:8
68;7

0 0

1
11 1

0 01

<(6, :, 8, 7) =Am(0,1,3,4,5,7,9,10,11,13,14)

1

1

1

0

6

8

:

1

1 1

Forced
Forced

Forced

Forced

OptC_fig6

7

Figure 3.7: After selecting the forced PIs (striped), only cell 11 of the ONSET remains to be
covered.

3.3.4 Using Kmaps to obtain minimal POS expressions

The method in Section 3.3.3 for obtaining a minimal SOP expression has a counterpart for POS
expressions in which the OFFSET of the function is covered by implicates (sum terms). Instead of
presenting a separate procedure with notation for sum terms, we will make use of the procedure for
SOPs. To obtain a minimal POS expression for a function f we will first obtain the minimal SOP
expression for f , the complement of f . Then by complementing this SOP expression and applying
DeMorgan’s Laws, we will obtain a POS expression for f . The number of literals will not change
when we apply DeMorgan’s Laws, so the POS expression will also be minimal.

The Kmap for the complement of the function from Figure 3.5 is shown in Figure 3.8.

Since all of the PIs are forced, the minimal SOP expression is

f(x, y, z, w) = x y z w + x z w + x z w.

We can then complement this expression to obtain a POS expression for f(x, y, z, w).

f(x, y, z, w) = f(x, y, z, w)

393939

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

Prime Implicants
./01
.̅031
. ̅031

1 1

0

00 0

1 10

̅4(., /, 0, 1) =9m(2,6,8,12,15)

0

0

0

1

.

0

/

0

0 0

1
Forced
Forced

Forced

OptC_fig6-5

?@
?A
?B

Figure 3.8: To find the POS for f(x, y, z, w) =
∑︁

m(0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 14) the minimal SOP
expression for f(x, y, z, w) =

∑︁
m(2, 6, 8, 12, 15) is obtained.

= x y z w + x z w + x z w

= (x y z w) ∗ (x z w) ∗ (x z w)
= (x+ y + z + w)(x+ z + w)(x+ z + w)

= (x+ y + z + w)(x+ z + w)(x+ z + w)

For this particular function, the minimal SOP expression has 11 literals while the minimal POS
expression has 10. For each function where the SOP expression has fewer literals, there is a function
where the POS has fewer literals: (its complement).

The procedure to find a minimal POS expression for a function f can be summarized in three
steps:

1. Obtain the minimal SOP expression for f using the procedure from Section 3.3.3.

2. Complement the expression obtained in Step 1.

3. Apply DeMorgan’s Laws to transform the complemented expression into a POS.

3.3.5 Taking advantage of Don’t Cares

A boolean function of n variables has 2n possible input values. This may be more than we need,
while 2n−1 is not enough. For example, if the input to our design represents a decimal digit (0-9),
we will need a boolean function with 4 variables (d3, d2, d1, d0). This function will have six input
values (representing 10-15) that are not used. For the input values that do not have a required
output value, we say that the output value of the function is a don’t care. A function with don’t
care inputs is said to be incompletely specified: some of the input values do not have a specific
output value.2

We could randomly pick output values for 10-15, but a better approach is to decide on output values
that help minimize our logic. As an example suppose we need a logic circuit that will recognize

2Technically to be a function, an output value for each possible input value must be provided. By inventing and
using the don’t care as a possible output value we have retained this property.

404040

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

0 1

?

10 ?

? 01

0

0

0

?

!"

1

? ?

OptC_fig7-5

!#

!$
!%

Figure 3.9: The Kmap of the incompletely specified function that recognizes multiples of 3 for a
decimal digit.

when a decimal digit is a multiple of 3. There will be four inputs to this circuit and one output.
The output should be 1 for the input values representing 0, 3, 6, and 9, and the output should be 0
for the input values representing 1, 2, 4, 5, 7, and 8. We leave the output for the inputs representing
10-15 as unspecified by using the “?” to represent a don’t care. The Kmap for this function is
shown in Figure 3.9. Our incompletely specified functions will have a DCSET (the set of don’t care
input values) in addition to their ONSET and OFFSET. Our function to detect multiples of 3 in
a decimal digit can be written as

f(d3, d2, d1, d0) =
∑︂

m(0, 3, 6, 9) + D(10, 11, 12, 13, 14, 15)

=
∏︂

M(1, 2, 4, 5, 7, 8) + D(10, 11, 12, 13, 14, 15)

To obtain a boolean expression for our circuit there are several possibilities. We could decide to
set the output values of the DCSET all to 0, all to 1, or extend the function to recognize only 12
and 15 as multiples of 3. These three options correspond to the Kmaps in Figure 3.10(a), (b), and
(c). They produce SOP expressions with 16, 16, and 20 literals. In Figure 3.10(d), the “?” cells are
used to create larger prime implicants than in (a). Setting all the DCSET cells to 1 as in (b) would
also result in these larger prime implicants, but the increased ONSET forces more PIs into the
cover. The best option is to consider the DCSET cells as 1’s to find PIs while treating them as 0’s
to form the cover. In Figure 3.10(d) the four PIs are all forced, so together they form the cover.
The resulting SOP expression has 12 literals and results in the following Boolean function:

f1(d3, d2, d1, d0) =
∑︂

m(0, 3, 6, 9, 11, 13, 14, 15) = d3 d2 d1 d0 + d3 d0 + d2 d1 d0 + d2 d1 d0

The only change needed to our minimal SOP procedure is to consider elements of both the DCSET
and ONSET in identifying implicants. Now a product term is an implicant if it evaluates to 1 only
for elements that are in either the ONSET or DCSET. We will require prime implicants to cover
at least one element of the ONSET; they cannot only consist of DCSET cells.

The DCSET should also be used for obtaining a minimal POS. Since the elements of the DCSET
can either evaluate to 0 or 1, the minimal SOP and POS may not be equivalent expressions. The

414141

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

OptC_fig7-8

(a) (b) (c) (d)

0 1

?

10 ?

? 01

0

0

0

?1

? ?

!"

!#

!$
!%

0 1

1

10 1

1 01

0

0

0

11

1 1

!#

!"

!%
!$

0 1

0

10 0

1 01

0

0

0

11

0 0

!"

!#

!%
!$

0 1

0

10 0

0 01

0

0

0

01

0 0

!"

!#

!%
!$

Figure 3.10: Kmaps and PIs for the options in resolving the don’t cares.

minimal POS expression for our example, also results in an expression of 12 literals, however, this
POS expression corresponds to a different boolean expression.

f2(d3, d2, d1, d0) =
∑︂

m(0, 3, 6, 9, 11) = (d2 + d1)(d2 + d0)(d3 + d0)(d2 + d1 + d0)(d3 + d1 + d0)

3.4 Beyond Kmaps

The Kmap method in Section 3.3.3 for finding minimal SOP expressions quickly becomes imprac-
tical as the number of variables grows. Identifying PIs in Kmaps with more than 6 variables is
complex. And even with 5 or 6 variable Kmaps, it can be challenging to correctly identify them.
In this section, we describe the Quine-McCluskey method which can handle a large number of vari-
ables and is suitable for automation. Though this method will find the minimal SOP expressions,
alternate heuristic methods will be needed to handle larger problems.

We will use the function f(x, y, z, w) =
∑︁

m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14) whose Kmap is shown in
Figure 3.11 to illustrate the method.

Prime Implicants

/̅0
/̅ ̅1
20 ̅13
/ 203
/201
/143
01430 1

1

11 0

0 01

5(/, 0, 1, 3) =:m(0,1,3,4,5,7,9,10,11,13,14)

1

1

1

0

/

1

0

0

1 1

3

;<
;=
;>
;?
;@
;A
;B

Forced
Forced

OptC_fig7

Figure 3.11: The prime implicants (PIs) of
∑︁

m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14).

424242

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

3.4.1 Tabular method for generating PIs

Finding prime implicants in Kmaps is practical for up to 5 or 6 variables. Beyond that, we can
use the Quine-McCluskey tabular method. This method generates implicants in increasing size
beginning with the minterms which are 1× 1 cubes. Given a function of n variables, an implicant
(a product term) is represented by a string of 0’s, 1’s, and -’s. The ith position in this string
corresponds to the ith variable of the function. The ith position of the string for a product term
will be

0 if the ith variable is complemented in the term
1 if the ith variable is uncomplemented in the term
- if the ith variable does not appear in the term

Here are some examples of the strings that represent product terms for the variables x, y, z, and
w.

x y z w 0100

x y w 00-1
x 1---

x z 1-0-
1 ----

The process begins by grouping the minterms for the ONSET of the function by the number of
1’s in their associated strings. In Figure 3.12 there are four horizontal sections separated by

OptC_fig8

!×! !×# !×$ or 2×# 2×$
no	
1’s

+, 0000 .̅ /0 ̅123 +, + +5 000- .̅ /0 ̅1 +, + +5 + +6 + +7 0-0- .̅ ̅1
None+, ++6 0-00 .̅ ̅123 +, + +6 + +5 + +7 0-0- .̅ ̅1

one	
1

+5 0001 .̅ /0 ̅13 +5 + +7 0-01 .̅ ̅13
+5 + +9 -001 /0 ̅13

+6 0100 .̅0 ̅123 +6 + +7 010- .̅0 ̅1 +6 + +7 + +: + +; 01-- .̅0
+6 + +: 01-0 .̅023 +6 + +: + +7 + +; 01-- .̅0

two	
1’s

+7 0101 .̅0 ̅13 +7 + +; 01-1 .̅03
+: 0110 .̅0123 +: + +; 011- .̅01

+: + +56 -110 0123
+9 1001 . /0 ̅13 +9 + +55 10-1 . /03
+5, 1010 . /0123 +5, + +55 101- . /01

+5, + +56 1-10 .123

three	
1’s

+; 0111 .̅013
+55 1011 . /013
+56 1110 .0123

Figure 3.12: Tabular method for finding PIs of
∑︁

m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14).

the dark blue lines for the implicants with no, one, two, and three 1’s in their strings. In the

434343

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

first three columns, we have the minterms (1 × 1 rectangles) that correspond to our ONSET. In
the second group of three columns, the minterms have been combined to form implicants of size
2. Two minterms can be combined if the polarity (complementation) of their variables is the
same except for exactly one variable. In our example, m9 = x y z w(1001) can be combined with
m11 = x y z w(1011) since only the polarity of variable z is different.

The method continues, generating the implicants of size 2k+1 by pairing up two implicants of size
2k. Two implicants (product terms) can be combined if they have the same variables present (so
they must have -’s in the same positions) and exactly one of their variable’s polarity is different. For
example, in x y z(010-) can be combined with x y z(011-) to form x y(01--) since only the polarity
of variable z is different. But x y z(010-) cannot be combined with x y z(001-), nor x y w(01-1).
Since two implicants can be combined when they have the same number of -’s and their number
of 1’s differs by one, we need only consider combining implicants with the implicants in the section
just below.

If we can combine an implicant, then it is not prime since it is covered by a larger implicant.
The implicants we were able to combine are in gold in Figure 3.12: they are not prime. The green
implicants were not combined: they are prime. Note that we generated duplicates for the implicants
of size 8 (light green). In general, an implicant with k -’s will be generated k times. There are a
total of seven deep green implicants corresponding to the seven prime implicants as confirmed in
Figure 3.11.

3.4.2 PI chart for selecting a cover

Once we have identified the PIs as in Figure 3.11 we can create the chart shown in Figure 3.13(a).

!" !# !$!% !& !' !(!#" !## !#$
)# x x x x

)* x x x x
)+ x x
)$ x x

)% x x
)& x x
)' x x

!(!#" !## !#$
)+ x
)$ x x
)% x x
)& x x
)' x

OptC_fig9

(a) (b)

Figure 3.13: The PI charts for
∑︁

m(0, 1, 4, 5, 6, 7, 9, 10, 11, 14).

In this chart, there is a column for each element of the ONSET (identified by its minterm) and a row
for each PI. We place an “x” in a location if the column’s minterm is covered by the row’s PI. We
can then identify the minterms that have only one x in their column (m0 and m7). These minterms

444444

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

force the PIs that correspond to their “x”. In Figure 3.13(a), the forcing minterms and forced PIs
are shown in blue. We can then mark all of the minterms covered by the forced PIs (striped).
This accomplishes Steps 2 and 3 of our procedure from Section 3.3.3. Removing the rows of the
covered minterms and columns of the forced PIs results in the reduced chart in Figure 3.13(b). In
the reduced chart each minterm will have at least two “x”s in its column. When the chart is this
small we can see by inspection that selecting P4 and P6 is optimal. When it is larger, we can use
Petrick’s method which forms a boolean expression that corresponds to the selections of PIs that
complete the cover. Specifically, we create a boolean variable for each non-forced PI, say pi. For
each remaining uncovered minterm of the ONSET, we form a sum term with the variables of the
PIs that cover it. The product of these sum terms is a POS expression that evaluates to 1 only if
the PIs whose variables are 1 complete the cover. The expression we would obtain for the chart in
Figure 3.13(b) is

(p3 + p4)(p5 + p6)(p4 + p5)(p6 + p7)

Using boolean algebra we can transform this expression to an SOP expression. Using the Idempo-
tent and Absorption Laws will help reduce the number of terms during the expansion.

(p3 + p4)(p5 + p6)(p4 + p5)(p6 + p7) = p3p5p6 + p3p5p7 + p4p5p7 + p4p6

For this SOP expression to evaluate to 1, we need at least one product term to evaluate to 1. Each
product term’s cost can be evaluated by summing the number of literals in the PIs associated with
its variables. For example the term p3p5p6 from the equation above will produce an expression
with 2 + 2 = 2 = 6 literals since P3, P5, and P6 all have 2 literals. The best choice to complete the
cover is p4p6 which results in 4 literals. Hence the best cover for the entire function will consist of
P1, P2, P4, and P6 and the minimal SOP expression is

x y + x z + x y w + x z w.

3.5 Multiple outputs and two-level synthesis

When our combinational logic has more than one output it may be advantageous to consider SOP
expressions that are not minimal by themselves, but have common terms. Consider the minimal
SOP expressions for the following two functions f1 and f2:

f1(x, y, z, w) = y z w + x y z

f2(x, y, z, w) = y z w + x y w

We instead could use the following expressions that have a total of 10 literals.3

g = x y z w

f1(x, y, z, w) = y z w + g

f2(x, y, z, w) = y z w + g

From the Kmaps of f1 and f2 in Figure 3.14 (left and middle) it is shown that the original expressions
given for f1 and f2 were minimal SOP expressions. The Kmap on the right is for the product

3Here g is not an input variable and hence does not count as a literal.

454545

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

!

"

OptC_fig10

0 0

0

00 1

1 00

0

1

0

00

0 0 0 0

0

00 1

0 00

1

0

0

1

#

!

$

0

0 0

"

$

#
0 0

0

00 1

0 00

0

0

0

0

#

!

$

0

0 0

"

%& %' %& ∗ %'

Figure 3.14: The Kmaps for minimal multiple function SOP expressions.

of f1 and f2. The implicant x y z w is neither a prime implicant of f1 nor f2 but it is a prime
implicant of their product f1 ∗ f2. Including an implicant which is not prime for either f1, f2, nor
f1 ∗ f2 will not be minimal since we can replace it with a larger implicant (product term with fewer
literals).

To form the cover, create a PI chart as described in Section 3.4.2. The chart will now have separate
sections for the ONSETs of the two functions. As before the PIs are in the leftmost column, and
an “x” indicates that the row’s PI covers the column’s minterm. But the PIs of f1 or f1 ∗ f2 can
be used only for f1’s cover, while the PIs of f2 or f1 ∗ f2 can be used for f2’s cover. The chart

ONSET of !" ONSET of !#
PI PI of $% $"# $"& $' $"& $"(
)* ̅, -. !" x x

/* ̅, !" x x
*,. !# x x
/*. !# x x
/* ̅,. !" ∗ !# x x

OptC_fig11

(a) (b)

ONSET of !" ONSET of !#
PI PI of $"& $"&
/* ̅, !" x
/*. !# x
/* ̅,. !" ∗ !# x x

Figure 3.15: PI chart for minimal multiple function SOP expressions.

for our example is in Figure 3.15(a). The minterm m13 is listed in both sections, but it is not
covered by x y z for f2, nor x y w for f1. But x y z w will cover m13 in both functions. Removing
the rows of the forced PIs and the columns of the cells they cover, we obtain the reduced chart in
Figure 3.15(b). Selecting the PI x y z w covers the remaining two cells.

464646

Beginning Logic Design Chapter 3. Synthesis of Combinational Logic

The procedure to find a set of minimal SOP expressions for two functions is summarized as fol-
lows.

1. Identify the PIs of the three functions f1, f2, and f1 ∗ f2.

2. Identify the cells of the f1’s ONSET that force a PI of f1 or f1 ∗ f2.

3. Add the forced PIs to the cover for f1 and mark the cells of f1 they cover.

4. Identify the cells of the f2’s ONSET that force a PI of f2 or f1 ∗ f2.

5. Add the forced PIs to the cover for f2 and mark the cells of f2 they cover.

6. Select a “smallest” group of the remaining PIs to cover any remaining uncovered cells of f1
and f2.

This procedure can be extended to k functions by considering the PIs of the products of any subset
of the k functions. For example, with three functions we would obtain the PIs of f1, f2, f3, f1 ∗ f2,
f1 ∗ f3, f2 ∗ f3, and f1 ∗ f2 ∗ f3.

3.6 ESPRESSO, MISII, and BDDs

By the early 1980’s the growth in the number of gates that could be placed on one integrated circuit
was exceeding what could be handled without automation. Computer-assisted design (CAD) tools
became indispensable for designing integrated circuits at this larger scale. Thus began a symbiotic
cycle between computer-assisted design tools and circuit technologies. Faster processing and greater
storage capacity were needed for the tools that would support the design of faster processors and
larger storage devices.

The methods described in Section 3.4 can be automated, but even these limit the size of the
functions that can be handled (the number of PIs grows exponentially with the number of variables).
New methods, algorithms, and heuristics were needed. Three of the most notable for logic synthesis
were ESPRESSO, MIS, and BDDs [4, 5, 6]. ESPRESSO was a program developed at UC Berkeley
for two-level SOP/POS logic synthesis. MIS and MISII, also from UC Berkeley, provided a set of
operations for multi-level combinational logic (sets of boolean equations) that could be combined
in scripts. The Binary Decision Diagram (BDD) provides a compact representation of boolean
functions that is now widely used in CAD tools.

474747

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

Chapter 4

Synchronous Sequential Circuits

In previous chapters, we have analyzed and synthesized combinational circuits. Our combinational
circuits were assembled without loops from basic gates (acyclic graphs) and their settled behavior
could be represented by boolean functions of their inputs. But not all computations can be per-
formed without “memory” or “state.” In some cases, it may be necessary to “take notes” based
on previous input values. Even when a combinational circuit is feasible, it may be more efficient
to perform the computation in steps using a smaller circuit to iterate. Sequential circuits have
“memory.” The logic values of their outputs depend not only on the current values of the circuit
inputs but also on their previous values.

When there are loops (feedback) in our circuits, analyzing and predicting their behavior can be
complicated. Even their settled behavior may depend on the physical properties of the gates,
wiring, and the circuit’s environment. Timing can not only affect when the output values will be
available but also the values themselves. We can simulate our designs, but the accuracy of the
simulation will depend on estimates of the physical characteristics. These estimates may only be
sufficiently accurate in the final stages and still have margins of error. And Murphy’s Law ensures
that if something can go wrong, it will.1 Fortunately, we can handle this issue by following some
simple rules that result in a synchronous sequential design.

Synchronous sequential circuit design follows some simple rules so that the behavior of the circuit
can be reliably predicted. The following ingredients are needed:

1. A clock signal with which the external inputs and memory elements of the circuit will be
synchronized.

2. A memory device that updates its logic value only in response to the clock signal.

3. Synchronized inputs that are valid with respect to the clock.

1And no doubt this will occur first when it causes the greatest cost, harm, and embarrassment – a corollary to
Murphy’s Law.

484848

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

4.1 The clock

Synchronous sequential circuits make use of an input that is designated as a clock. The clock signal
alternates between 0 and 1 at a fixed rate referred to as its frequency. One full oscillation (say from
0 to 1 back to 0) is a clock cycle. The elapsed time for a clock cycle is the clock period and the
frequency is the reciprocal of the clock period. The clock clk shown in the timing diagram in

1 2 3 4 5 6

Seq_fig1

1

0

!" !"!" !"!" !"

clk

one clock cycle

Figure 4.1: A 0.5MHz clock.

Figure 4.1 has a clock period of 2 microseconds. Its frequency is

1

2 ∗ 10−6 secs
=

5 ∗ 105

secs
= 0.5 ∗ 106 Hz = 0.5 MHz.

Entire texts have been written on generating and wiring clocks. For the sake of simplicity, we
will assume that a suitable single clock signal is provided and that any clock issue (skew, power,
noise, jitter, start-up) will not be a concern. But these are certainly concerns in high-performance
designs.

4.2 Basic memory device: the D Flip-Flop

We begin with the most basic memory device: the positive edge-triggered D flip-flop represented
by the symbol in Figure 4.2. This component remembers a 1-bit value. The lower pin on the left

Seq_fig2

D Q
D FF

Figure 4.2: The positive edge-triggered D Flip Flop.

is the clock input. The triangle on this pin indicates that this input is sensitive to a rising edge

494949

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

(the transition from 0 to 1) rather than either logic level. The D input pin provides the value to be
loaded at the next rising clock edge and the Q output pin is the current stored value: the state of
this flip-flop.

The timing diagram in Figure 4.3 illustrates the operation of a D FF. Specifically,

• The Q output will remain unchanged until after a positive clock edge.

• On or near the rising edge of the clock input, the logic value of the D pin will be loaded
into the flip-flop, and after some delay the output Q will transition from the previous to the
new value (if it is different) and this happens shortly after the clock edge.2 In our timing
diagrams, the time between the clock edge and Q’s transition is exaggerated to clarify that
the transition is after the clock edge.

1 2 3 4 5 6

Seq_fig3

!" !"!" !"!" !"

D Q
D FF

x

clk

y

clk

x 1

0

1

0

y 1

0

Figure 4.3: Basic operation of the positive edge-triggered D Flip Flop.

In Figure 4.3 the value of the Q output is “unknown” before 1µs since the value stored in this
flip-flop before the first load could be either 0 or 1. There is one more thing important to know
about D FFs:

! WARNING:
To correctly operate the D FF, the D input must be valid and stable for a specified small window
of time before and after the rising edge of the clock input. Failure to meet this condition can result
in unpredictable behavior of the output Q even possibly instability.

Following the rules in Section 4.2.1 allow us to check that this requirement is met by our de-
sign.

4.2.1 Rules for synchronous design

The following rules will result in a sequential circuit that is synchronous with the input signal
clk.

1. Each component has no more than one input pin designated as its clock input, and it should
be labeled clk.

2When the circuit contains only devices sensitive to one type of clock edge the term clock edge refers to that
type.

505050

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

2. At the top level and within each component the clk net should be connected directly to the
clock input pin of all components with clock pins (including all D FFs).

3. The signal clk should not be an input to any logic gate or a component pin other than the
component’s clock pin.

4. The external inputs to the circuit should be synchronous with clk. (When the intended
external inputs are asynchronous, they need to be synchronized as discussed in Section 4.8.)

5. There are no loops in the logic diagram that do not traverse at least one D FF. That is,
removing the D FFs would leave a combinational logic circuit.

Adhering to these rules ensures that the timing constraints for the D FFs can be easily verified.
These constraints and how to satisfy them are discussed in Section 4.9. Furthermore, the outputs
of such a circuit are synchronized with clk and can be used directly as inputs to other components
sharing clk as their clock. Until Section 4.9 we will assume that the FF input values are stable
and valid around the clock edge as required.

4.3 A simple shift register

Our first example is the 3-bit register shown in Figure 4.4. The three D FFs store three bits. At
the rising clock edge, the logic values of the flip-flops shift to the right with the leftmost flip-flop
assuming the value of the input a. The timing diagram in Figure 4.5 shows the operation of

Seq_fig4

D Q
D FF

D Q
D FF

a

clk

b dD Q
D FF

c

Figure 4.4: A 3-bit shift register.

the 3-bit shift register with a 0.2 MHz clock. The flip-flops are not initialized, so their values are
unknown until they load a known value. This happens at the first clock edge for the leftmost
flip-flop, the second for the middle flip-flop, and the third for the rightmost. The external input
a is stable around the rising clock edges but can change between them. Only its value at the rising
clock edges will be reflected in the later outputs of the flip-flops. The waveforms for the three
flip-flop outputs, b, c, and d are the same but shifted one clock cycle.

With this 3-bit shift register, we can detect a 3-bit pattern on consecutive inputs by adding com-
binational logic to recognize the pattern. In Figure 4.6 AND gates have been added to detect two
simple patterns. The output g will be 1 when the three stored bits are two 1’s followed by a 0. The
output e will be 1 when the last two stored bits are both 1 and the current input is 0. The two
outputs g and e are detecting the same pattern, but as seen in Figure 4.7 they are different since
they are based on the values of a at different times. The pattern will be detected one clock cycle
earlier on the output e, but any changes on a while b and c are 1 will be reflected on the output
e. There are three of these changes indicated by the yellow vertical dashed lines in the 15µs to

515151

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits
Seq_fig5

10 20 30 40 50 60!" !"!" !"!"
clk

a
1

0

1

0

c

1

0
b

d

1

0

1

0

Figure 4.5: Simulation of a 3-bit shift register with D FFs not initialized.
Seq_fig6

D Q
D FF

D Q
D FF

a

clk

b

g

D Q
D FF c d

e

Figure 4.6: Using a 3-bit shift register to detect patterns on the synchronous input a.

20µs clock cycle. Since g depends only on the FF outputs it will not be affected by changes in a
within the same clock period. We will refer to an output that depends only on the stored bits as
a Moore output while an output whose value depends on the value(s) of the current input(s) is a
Mealy output.3 The behavior of a synchronous sequential design can be represented by the values of
its input/outputs at the clock edges. In Figure 4.8 this stream is shown below the timing diagram.
 We can use functions to represent the behavior of our sequential circuits by introducing time as a
variable. Each net’s value is represented by a function of the clock edge ordinal (1,2,3,...etc). The
output of a D FF at the tth clock edge, Q(t) for t ≥ 1. For t > 1, Q(t) will is the value that was
loaded at the t− 1th clock edge since this value is retained until after the tth clock edge:

for t > 1 we have Q(t) = D(t− 1) and Q(1) is unknown.

Using this notation we can obtain the following equations for each of the nets from the logic
diagram.

b(t) = a(t− 1)

c(t) = b(t− 1)

d(t) = c(t− 1)

3The Moore/Mealy terminology is usually applied to entire designs rather than individual outputs. A Moore
machine is a circuit with only Moore outputs, and just one Mealy output makes a circuit Mealy.

525252

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

1

0

a
1

0

e

c

1

0
b

d

1

0

1

0

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

g 1

0

Seq_fig7

Figure 4.7: Simulation of the pattern detector circuit.

1

0

a 1

0

e

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

g 1

0

Seq_fig8

clk t 1 2 3 4 5 6 7 8 9 10 11

a 0 1 1 0 0 1 1 1 0 1 1

g X X 0 0 1 0 0 0 0 1 0
e X 0 0 1 0 0 0 0 1 0 0

Figure 4.8: Input/output stream for the pattern detector.

e(t) = a(t) ∗ b(t) ∗ c(t)
g(t) = b(t) ∗ c(t) ∗ d(t)

By substitution, we obtain the following equations for the external outputs in terms of the external
input:

e(t) = a(t) ∗ a(t− 1) ∗ a(t− 2)

g(t) = a(t− 1) ∗ a(t− 2) ∗ a(t− 3)

4.4 Parity checker

Recall that the parity function is 1 when there is an odd number of inputs with the value 1. Here we
desire a component with one synchronous input (this implies there is a clock input as well) whose

535353

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

output is 1 when the current input and all the previous inputs together have an odd number of 1’s.
 If we only needed to consider the last K inputs we could use a shift register and remember the last

Seq_fig9

x y
Parity

Figure 4.9: Symbol for parity checker.

K, but there is no limit on how many of the past inputs can affect the current output. Fortunately,
we don’t need to remember the last K inputs exactly: we just need to know the parity of all of
these previous inputs together. We can write an equation for the current output y(t) in terms of
the current and previous inputs (x(t), x(t−1), x(t−2), . . . , x(2), x(1)) and then substitute y(t−1)
for the parity of the previous inputs.

If y(t) = x(t)⊕ x(t− 1)⊕ x(t− 2)⊕ · · · ⊕ x(2)⊕ x(1)

then y(t) = x(t)⊕ y(t− 1)

Using this equation we can build the circuit in Figure 4.10. The output Q of the D FF holds y(t−1)
since this is the value that was loaded into the FF at the previous clock edge. The simulation of

Seq_fig10

x

clk

y(t-1)

yD Q
D FF

y(t)

x(t)

Py

Figure 4.10: Sequential circuit for parity checker.

the circuit in Figure 4.10 is shown in Figure 4.11.

1

0

x 1

0

y

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

Py 1

0

Seq_fig11

Figure 4.11: Simulation of uninitialized parity checker circuit.

Because the D FF was not initialized, the output of the XOR gate will be unknown even when the
input x is 0 or 1. This unknown value will be loaded into the D FF and this will continue. The D

545454

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

FF will never have a known value if it is initially unknown. For this design, the D FF needs to be
initialized to 0 since this represents the parity of the number of 1’s at the start.4 In Figure 4.12.
the circuit in Figure 4.10 is simulated assuming that the D FF is initially 0.

1

0

x 1

0

y

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

Py 1

0

Seq_fig12

t 1 2 3 4 5 6 7 8 9 10 11

x 0 1 1 0 0 1 1 1 0 1 1

Py 0 0 1 0 0 0 1 0 1 1 0
y 0 1 0 0 0 1 0 1 1 0 1

Figure 4.12: Simulation of parity checker when the D FF is initially 0.

Just as providing power, the initialization of memory elements in a sequential design is an issue
that must be considered. Depending on the implementation technology, initialization of memory
elements may or may not be provided. In FPGAs, some of the memory elements may be initialized
to 0 and there is built-in circuitry that your design can access to re-initialize during operation. Pay
attention to instructions and/or descriptions of devices to ensure that the initialization of memory
elements is addressed and that any simulation tools reflect this initialization.

If you must handle the initialization yourself, you will need additional logic in your design. In
Figure 4.13(a) an input R has been added to the symbol for the parity checker to indicate when
it should be initialized. An AND gate has been added to the circuit as shown in Figure 4.13(b)
so that the D FF will load a 0 when the R input is 1 at the clock edge. With this additional
circuitry, the parity checker will operate correctly as expected beginning with the first clock edge
after the R input returns from 1 to 0 and remains 0.

In some cases, you might need the D FF to be initially 1 rather than 0. You can achieve this by
replacing the D FF with the circuit in Figure 4.14.

! WARNING:
The initialization of memory elements should be synchronized with the clock. Follow the instruc-
tions provided with your implementation technology. Under no circumstances should the asyn-
chronous reset/set pins of devices be used either for initialization or as part of the design of a
synchronous sequential circuit.

4The shift register in the previous section will have known values after 3 clock edges. But if the output value in
the first few cycles needs to be 0 then the D FFs in the shift register should be initialized.

555555

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

Seq_fig13

x

clk

y(t-1)

yD Q
D FF

y(t)

x(t)

Py
Rx

R
y

Parity

(a) (b)

Figure 4.13: (a) Addition of R input to the Parity Checker. (b) Additional logic to initialize the D
FF to 0 when input R is 1.

Seq_fig14

clk

QD Q
D FF

D

Figure 4.14: Modification of a D FF to be initially 1 rather than 0.

4.5 Counters

One of the most basic and frequent components in digital systems is the counter. There are many
varieties (binary, binary-coded decimal, Johnson, ring) with different control options (counting
up, counting down, reset, load, etc.). The instruction counter is at the heart of a programmable
controller and the speed at which it can increment can limit the clock frequency of the entire
system.

Here we will assemble a simple binary counter BCNT4 with one input, Inc, that controls whether the
counter increments at the clock edge or keeps its current value. In Chapter 5 we will mechanically
synthesize this logic from a truth table, but here the logic will reflect the calculation needed to
increment a binary number.

Seq_fig14-5

Inc
B3

B2

B1

B0

TC

BCNT4

Figure 4.15: Symbol for the simple 4-bit binary counter.

565656

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

Our 4-bit Binary Counter counts from 0 up to 15. Counting up from 15 returns the counter to 0.
The counter will hold a 4-bit value Q3 Q2 Q1 Q0 representing its current value. Its outputs are B3
B2 B1 B0 which is its current value and a fifth output, TC for terminal count, that will be 1 when
the counter is at its highest value (15). The TC output will be useful for assembling larger counters
and for use in logic controlling the counter.

To understand the logic needed for a counter the sequence of values the counter takes on as it
advances is shown in Figure 4.16. A bit is shaded if its value has changed from the previous count.
For example, Q2 changes to 0 at 8 and is shaded since it was 1 at 7. The first bit Q0 changes value
on every increment. The next bit, Q1 changes when Q0 is 1 in the previous count. For Q2 to change,
both Q0 and Q1 have to be 1. And Q3 changes when the other three bits are 1. Incrementing

CNT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

Q3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Q2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

Q1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

Q0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Seq_fig15

Figure 4.16: Counting sequence for the simple 4-bit binary counter.

is the operation of adding 1 shown in Figure 4.17. For the Qi bit to change, we need a carry to

. . . 0 1 1 1 1 1 1 1 1 1 1
+ . . . 0 0 0 0 0 0 0 0 0 0 1

. . . 1 0 0 0 0 0 0 0 0 0 0

Q"Q"#$ Q$ Q%Q&. . . . Q' Q(

Seq_fig15-5

Figure 4.17: Counting up calculation.

make its way from Q0 all the way to Qi. A carry will only reach Qi if all of the bits to Qi’s right are
1. If any bit to its right is 0, the carry will be absorbed at the first 0 bit and no bit to the left will
change. Similarly, a bit will change from 1 to 0 if there is a carry that reaches it and all the bits
to its right are 1. Hence Qi changes value when Inc is 1 and Qi−1 ∗ Qi−2 ∗ · · · ∗ Q1 ∗ Q0 is 1. The
following equation provides the next value of Qi.

Di = Qi ⊕ (Inc ∗ Qi−1 ∗ Qi−2 ∗ · · · ∗ Q1 ∗ Q0)

 The logic diagram based on this equation is shown in Figure 4.18.5 The AND gate required grows
in number of inputs with each additional bit. Constructing a 16-bit counter in this manner would
require a 17-input AND gate. Since each AND gate is the same product as for the previous bit with
one more bit, we could also chain these AND gates as in Figure 4.19. While the AND gates are all
2-input gates there is now a path with 4 gates (in blue) to the last FF. This is the carry-chain of
the counter. To build larger counters we can combine smaller counters as in Figure 4.20 where a
16-bit counter has been assembled from four 4-bit counters. Each 4-bit counter advances when Inc

5We have used the BUF symbol here to relabel the FF outputs Q3 Q2 Q1 Q0 to the external outputs B3 B2 B1 B0.
The BUF symbol does not affect the logic. It may be used in logic diagrams to permit connect nets that have different
labels.

575757

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits
Seq_fig16

Inc

clk
B2

B3

TC

D Q
D FF

D Q
D FF

D Q
D FF

D Q
D FFQ0 Q1 Q2

B1

B0

Q3

Figure 4.18: Logic diagram for a 4-bit binary counter.
Seq_fig17

Inc

clk

TC

D Q
D FF

D Q
D FF

D Q
D FF

D Q
D FFQ0 Q1 Q2

B2

B3

B1

B0

Figure 4.19: Alternative logic diagram for a 4-bit binary counter.

is 1 and the TC’s of the previous counters as all 1. Note that the TC output of the 4-bit counters
in Figures 4.18 and 4.19 did not depend on their Inc input. As a result, there is no combinational
path through the 4-bit counters. The carry chain of our 16-bit counter is organized as a tree rather
than a long chain.

! WARNING:
Ripple counters use fewer gates and hence may seem attractive, but they are not synchronous and
may cause timing issues. Do not be tempted.

4.6 Registers

In Section 4.3 three FFs were arranged in series to form a simple 3-bit shift register. To build more
complex registers, FFs with an additional input, an enable E, are handy. The symbol for such a
flip-flop is shown in Figure 4.21(a). The additional E input controls whether or not the D FF loads
at the rising clock edge. When E is 1 the operation is the same as a D FF, but while E is 0 the D
FF does not load the D input when there is a rising clock edge. The DE FF may be available

585858

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

Inc
B3

B2

B1

B0

TC

BCNT4

Seq_fig18

Inc

clk

Inc
B3

B2

B1

B0

TC

BCNT4

B2

B3

B1

B0

B6

B7

B5

B4

Inc
B3

B2

B1

B0

TC

BCNT4

Inc
B3

B2

B1

B0

TC

BCNT4

B10

B11

B9

B8

B14

B15

B13

B12

TC

Figure 4.20: Logic diagram for a 16-bit binary counter constructed from 4-bit counters.

Seq_fig18-5

(a) (c)

D Q
DE FF

E D
QD Q

D FF

clk
E

s

0

1 D Q

clk
E

D Q
D FF

(b)

Figure 4.21: The DE FF flip-flop: (a) symbol, (b) implementation, and (c) misguided implementa-
tion.

as a basic component.6 If not, it can be implemented by adding a 2-input multiplexer to the D
input of a D FF as shown in Figure 4.21(b). The D FF in Figure 4.21(b) will load at every rising
clock edge, but when E is 0, it will reload its current value rather than the D input. So in effect,
it will appear that the FF holds its current value when E is 0. Figure 4.21(c) might be the first
idea for an implementation since the AND gate blocks the clock edge when E is 0, but this design
is incorrect! It is a violation of the rules of synchronous sequential circuit design: there is logic
on the clock input of the FF. Consider what will happen if E transitions from 0 to 1 while clk is
1. This would result in a rising edge on the clock input of the D FF in the middle of a clock cycle,
loading whatever value happened to be present on D at the time.

A DE FF can be thought of as a 1-bit register with the E input serving as the load control. Various
N-bit registers can be built with N DE FFs. In Figure 4.22 the DE FF is used to construct three
different components.7 Figure 4.22(a) stores an N-bit value when the Load input is 1 at the clock
edge. Figure 4.22(b) is an N-bit shift register. The bits are shifted right when the Shift input
is 1 at the clock edge and the value of In is loaded into the leftmost FF. Figure 4.22(c) is a ring
counter. It is constructed from the shift register by connecting the rightmost output of the shift
register to the input In. The FFs of the ring counter must be initialized to 0 since the values in
the ring counter circulate. A 5-bit ring counter will have the values 10000, 01000, 00100, 00010,

6In this case the enable input may be labeled CE for clock enable.
7Design entry of these registers will benefit from the use of bus structures rather than instantiating individual

FFs.

595959

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

00001, advancing to the next value when the Inc input is 1 at the clock edge. This is an example
of one-hot state encoding that we will see in Section 5.4.Seq_fig18-7

Load

clk

D Q
DE FF

E
Q0D0 D Q

DE FF

E
Q1D1 D Q

DE FF

E
Q2D2 D Q

DE FF

E
QN-1DN

.

.

(a)

Seq_fig18-8

Shift

clk

D Q
DE FF

E

Q0

In D Q
DE FF

E

.

.
Q1 Q2

D Q
DE FF

E
D Q
DE FF

E

. QN-1

(b)

Seq_fig18-9

Inc

clk

Q0

.

.
Q1 Q2

D Q
DE FF

E
D Q
DE FF

E

. D Q
DE FF

E

.
D Q
DE FF

E

QN-1

(c)
Figure 4.22: Registers: (a) basic N-bit register, (a) N-bit shift register, (c) N-bit ring counter. The
FFs in the ring counter must be initialized to 0.

4.7 Analysis of Synchronous Sequential Circuits

Without labels on the inputs, outputs, or internal nets, a synchronous sequential circuit is a
spaghetti of gates, FFs, and wires. When it is a synchronous design, the external clock input
can be identified since it will be the net connected to all of the FF clock inputs and nothing else.
After extracting the FFs and the clock net, what is left is combinational logic (the cloud). The
external inputs and FF outputs are inputs to the combinational cloud. The output of the combi-
national cloud provides the external outputs and the D inputs to the FFs. Figure 4.23 shows this
arrangement.

We will refer to the value of the outputs of the FFs (Q’s) as the present state of the circuit. The
state does not change before the next clock edge. The inputs of the FFs (D’s) will be loaded into
the FFs at the next clock edge: the value of the D’s are the next state. By analyzing the logic in
the combinational cloud we can determine for each possible present state and value of the inputs,
the next state, and the value of the outputs.

606060

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

D Q
D FF

D Q
D FF

D Q
D FF

...

Inputs Outputs

Present
State

.

.

.

Combinational
LogicPresent

State
Next
State

clk

Seq_fig19

.

.

Figure 4.23: Model of synchronous sequential circuits.

4.7.1 Example 1 sequential circuit analysis

We will use the circuit in Figure 4.24(a) as an example for our analysis. As mentioned we can

D Q
D FF

D Q
D FF

Seq_fig20

a

g

clk

Q0

Q1

a

g

D1

D0Q0

Q1

D Q
D FF

D Q
D FFD1

D0

D Q
D FF

D Q
D FF

(a) (b)

Figure 4.24: Example 1 sequential circuit analysis.

think of the FF outputs as inputs to the combinational logic cloud and the FF inputs are outputs of
the combinational logic cloud. In Figure 4.24(b) we have sliced the FFs in half to reflect this.

From the combinational cloud, we obtain the following equations for the outputs of the combina-
tional logic cloud:

g = Q1Q0

D1 = Q1Q0 + aQ1Q0

D0 = aQ1Q0 + aQ1Q0 + aQ1Q0

616161

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

From these equations, the truth table shown in Table 4.1(a) is obtained. For a sequential circuit,
it is more convenient to present this table in the format shown in Table 4.1(b): a State Transition
Table. In the State Transition Table, each row corresponds to a value of the state variables. The

Q1 Q0 a D1 D0 g

 0 0 0 0 0 0
 0 1 0 0 0 0
 1 0 0 1 1 0
 1 1 0 0 0 1
 0 0 1 0 1 0
 0 1 1 1 0 0
 1 0 1 1 0 0
 1 1 1 0 1 1

D1 D0 Output
Q1 Q0 a = 0 a = 1 g

 0 0 0 0 0 1 0
 0 1 0 0 1 0 0
 1 0 1 1 1 0 0
 1 1 0 0 0 1 1

 (a) (b)

Table 4.1: (a) Truth table and (b) State Transition Table for analysis Example 1.

next state and output values are listed in columns for the separate input values. In this example,
the equation for the output g does not depend on the input a so only one column is needed.

Table 4.1(b) is an encoded State Transition Table. That is, the state is represented by boolean
variables. By assigning labels to the possible values of the state variables as in Table 4.2(a) and
using these labels we obtain the symbolic State Transition Table in Table 4.2(b). From the

Q1 Q0 State
 0 0 A
 0 1 B
 1 0 C
 1 1 D

 Present Next State Output
 State x = 0 x = 1 g

 A A B 0
 B A C 0
 C D C 0
 D A B 1

 (a) (b)

Table 4.2: State encoding and symbolic State Transition Table for analysis Example 1.

symbolic State Transition Table, the state diagram in Figure 4.25 is obtained. Because each state is
represented by a large circle, a bubble, this diagram is often referred to as a bubble diagram. The
arrows between the circles correspond to the transitions that occur on the clock edge. Specifically,
there is an arrow from state X to state Y labeled with the boolean expression E if the next state
will be Y when the present state is X and E is 1. Here, the value of the output g is given in the
states. The state diagram has the same information as the symbolic state transition table, but in
a format where the flow between states is easier to grasp. The state diagram is often useful in
understanding a sequential circuit.

From the diagram in Figure 4.25, we can see that the output is 1 only in state D. State D can only
be reached from state C with a 0 input. State C can be reached with two 1’s. In fact, from any
state, two 1s followed by a 0 will result in state D. This sequential circuit detects two 1’s followed
by a 0 similar to the circuit in Figure 4.6. The simulation using the same input as Figure 4.7 is

626262

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

A
0

D
1

C
0

B
0

!a

!a

a a !a

!a
a

Seq_fig21

a

Figure 4.25: State diagram for analysis Example 1.

shown in Figure 4.26. The state corresponding to the value of Q1 Q0 is shown on a separate line.
Here we have assumed the FFs were initially 0 corresponding to state A. Although this circuit
would function correctly after two clock edges regardless of whether the FFs are initialized, most
simulators would continue to show the state variables as unknown.8

1

0

Seq_fig21-5

1

0

A B C D A B C D B C

a
1

0

Q0

Q1

State

g 1

0

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

Figure 4.26: Simulation of analysis Example 1.

4.7.2 Example 2 sequential circuit analysis

Figure 4.27 is the logic circuit for a second sequential circuit analysis example. For this example,
we obtain the following equations from its combinational logic:

y = xQ1

D1 = xQ0 + xQ1

D0 = Q1Q0 + xQ0 + xQ1Q0

In this example, the output y, depends on the input x, as well as one of the state bits. Two
columns, one for each of the input values, are needed in the output section of the state transition
table. The state diagram for Example 2 is shown in Figure 4.28. Here the value of the output

8Although the value of the state variables may remain unknown after the first clock edge, the number of possible
values for the state variables will be reduced and as a result, their values would be known after the second clock edge
(for this example). Most simulators do not provide the necessary level of detail to capture this result.

636363

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits Seq_fig22

x

y

clk

Q0

Q1
D Q
D FFD1

D0

Q1

Q0

D Q
D FF

x

Figure 4.27: Example 2 of sequential circuit analysis.

D1 D0 y

Q1Q0 x = 0 x = 1 x = 0 x = 1

 0 0 0 0 0 1 0 1
 0 1 0 1 1 0 0 1
 1 0 1 0 0 0 0 0
 1 1 1 1 1 1 0 0

Q1Q0 State
 0 0 A
 0 1 B
 1 0 C
 1 1 D

 Present Next State Output
 State x = 0 x = 1 x = 0 x = 1

 A A B 0 1
 B B C 0 1
 C C A 0 0
 D D D 0 0

 (a) (b) (c)

Table 4.3: (a) State transition table, (b) state encoding, and (c) Symbolic STT for Example 2.

depends on the value of the input as well as the state, so the output values are indicated on the
arrows. There is an arrow from state X to state Y labeled E/b if the next state will be Y and
output will be b, when the present state is X and the boolean expression E is 1. In this state

A DCB

!x/0

x/1

Seq_fig23

!x/0 !x/0

x/0

x/1

!x/0 x/0

Figure 4.28: State diagram for analysis Example 2.

diagram, state D is unreachable from the other states, and there is no way to leave state D. If the
FFs are not initialized, it is possible that state D will be the initial state and hence the only state
the circuit will visit. But it is also possible that the circuit could enter state D due to a timing
issue as discussed in Section 4.8.

646464

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

4.8 Synchronizing external inputs

The D FF component introduced in Section 4.2 came with the following warning regarding its D
input:

! WARNING:
To correctly operate the D FF, the D input must be valid and stable for a specified small window of
time before and after the rising edge of the clock input. Failure to meet this condition can result
in unpredictable behavior of the output Q, even instability.

But even when the D FFs operate as expected, there could be an issue when there are multiple D
FFs in the design and an external input changes at or near the clock edge. Figure 4.29 is a

Seq_fig24

A B D

x 1

0

Q0

Q1

State

y

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

1

0
1

0

1

0

Figure 4.29: Simulation of Example 2 circuit with input transition on clock edge at 30µs.

simulation of the circuit in Figure 4.27 from Example 2 (Section 4.7.2). At time 30 µs the input
x transitions from 0 to 1. This occurs at or very near the clock edge. The simulation shows the
circuit entering state D. But from the state diagram in Figure 4.28, it should not be possible to
enter state D from any of the other states. Since there is no transition leaving state D, the circuit
is now stuck in state D (unless there is another anomaly).

The two snapshots of this circuit in Figure 4.30 show how state D was reached. The wires and
gates are in red/green according to their logic value 0/1. In both snapshots, the circuit is in state
B (Q1Q0 = 01). On the left in (a) x=0 and the logic has settled. On the right in (b) x=1 but not
all of the logic has settled with their new values. D1 has transitioned from 0 to 1 but D0 is still 1.
A clock edge at this point would load both FFs with 1 resulting in state D.

In general if an input changes near a clock edge, there is a possibility that some but not all of the
combinational logic affected by this input will have settled to expected values before the next clock
edge. Some of the gates will have transitioned to new values while others might take longer. An
asynchronous input is a signal from a device that does not share your system’s clock. This input
can change value at any time, possibly near the clock edge. To avoid combinational logic using
inconsistent input values, asynchronous inputs should affect only one path through the logic. The
simplest way to ensure this is to connect an asynchronous input directly to one D FF and then use
this D FF’s output as the input to your circuit. This D FF is called a synchronizer. Its sole purpose

656565

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

Seq_fig25

x

y

clk

Q0

Q1D1

D0

Q1

Q0

D Q
D FF

x

x

y

clk

Q0

Q1D1

D0

Q1

Q0

x

(a) (b)

D Q
D FF

D Q
D FF

D Q
D FF

Figure 4.30: Snapshots of Example 2 circuit in state B: (a) with x=0 (b) just after x transitions to
1.

is to ensure that the rest of your circuit receives a new input value sufficiently early in the clock
cycle. It does add a clock delay to the external input, but since this external input is asynchronous
it was not required to be present at any specific clock edge.9 When the asynchronous input changes
near a clock edge the synchronizer may or may not capture the new value on that clock edge, but
if not, it will capture the new value on the following clock edge. Using a synchronizer ensures that
the combinational cloud has a full clock cycle to settle.

Seq_fig26

y

clk

Q0

Q1D1

D0

Q1

Q0

D Q
D FF

xsync

D Q
D FFclk

D Q
D FF

x

Figure 4.31: Synchronizer (shaded background) added to the external input of the Example 2
circuit.

9Adding FFs on inputs involved in feedback loops can cause problems.

666666

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

4.9 Timing Constraints

When the D FF was introduced earlier in Section 4.2 it came with the following instruction:

! WARNING:
To correctly operate the D FF, the D input must be valid and stable for a specified small window of
time before and after the rising edge of the clock input. Failure to meet this condition can result
in unpredictable behavior of the output Q even possibly instability.

In this section, we shall see how the rules for synchronous sequential design from Section 4.2.1
will allow us to check this requirement. We will need upper and lower bounds on the delay of the
combinational cloud of the synchronous sequential circuit as well as the D FF’s timing information.
The size of the window around the clock edge for which the D input to D FF must be stable is
defined by two numbers, wSE and wH . In Figure 4.32 this window is in light blue. The width of
the window before the clock edge is the setup time and the width after the clock edge is the hold
time. These two values, wSE and wH , are properties of the FF.

clk 1

0

!"!#$

SynSeq_fig23

Figure 4.32: The D input of the D FF should be stable within the light blue regions.

To check whether a design meets the setup and hold time requirements of its FFs, the timing of
changes on their D inputs need to be examined. The D inputs of the FFs come from the combinational
cloud shown in Figure 4.33. Here we have sliced our model of synchronous sequential circuits
through the FFs holding the state bits. Synchronizers have been added to the external inputs as
discussed in Section 4.8.10

Using the method from Section 2.10 we can obtain bounds on when the outputs of the combinational
cloud will settle after a change in its inputs. Suppose we know that its outputs will settle by time
TMaxC . The inputs of the combinational cloud are from the FFs, either the state bit FFs or
synchronizers. Their logic values will change only in response to a rising clock edge after the
propagation delay of the FF, D(D FF). If there is a rising clock edge at time 0, the values of the
outputs of the combinational cloud will have settled by time D(D FF) + TMaxC , and they will not
change until after the next clock edge. The next clock edge will be at time Tclk and we need the
FF inputs to be stable wSE before this clock edge. The inequality we need to satisfy is:

D(D FF) + TMaxC ≤ Tclk − wSE

10Synchronizers are used for asynchronous external inputs which (as the name implies) can change at any time.
There is no way to ensure that they do not violate the setup/hold times of the D FFs used as synchronizers.

676767

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

xm

D Q
D FF

D Q
D FF

D QD FF

D QD FF

Combinational
Logic

...

clk

...

...
x0

z0...
zk

D0

Dn

Q0

Qn

SynSeq_fig24

D Q
D FF

D Q
D FF

Figure 4.33: Sliced model of synchronous sequential circuits.

Figure 4.34 illustrates the setup time requirement. In Figure 4.34(a) the setup time constraint is
met while in Figure 4.34(b) there could be a setup time violation. There are several ways to

clk 1

0

!"#

SynSeq_fig25

$ DFF '()*+

',-.

clk 1

0

!"#
$ DFF '()*+

',-.

(a) (b)

Figure 4.34: Setup time requirement: (a) satisfied, (b) violated.

resolve a possible setup time violation:

• Increase the clock period (Tclk). Increasing the clock period will reduce the performance of
the system and may not be an option if our design must operate at a certain speed.

• Use a different FF with smaller propagation delay (D(D FF)) or smaller setup time (wSE).

• Redesign the circuit to reduce the delay of the combinational cloud. This might involve im-
proving the combinational logic or even decomposing the design into separate Moore machines
(e.g. pipelining).

To meet the hold time requirement we need to be sure that the inputs to FFs must also remain
unchanged past the clock edge for the hold time. If the setup time is met, then the outputs of the
combinational cloud have settled before the clock edge. They can only change again as a result

686868

Beginning Logic Design Chapter 4. Synchronous Sequential Circuits

of new values entering the combinational cloud after the clock edge. The earliest that new values
entering the cloud could reach the FF inputs is D(D FF) + TminC where D(D FF) is the delay of
the FF and TminC is the minimum delay through the combinational cloud. TminC could be very
small as in a simple shift register where the output of one FF is directly connected to the input of
another. To avoid a hold time violation we need this fastest delay to exceed the hold time. That
is, we need

D(D FF) + TminC ≥ wH

Figure 4.35 illustrates the hold time requirement. In Figure 4.35(a) the hold time constraint is
met while in Figure 4.35(b) there could be a hold time violation. It may seem surprising, but

SynSeq_fig26

(a) (b)

! DFF

clk 1

0
$%&'

()
$*+,- ! DFF

clk 1

0
$%&'

()
$*+,-

Figure 4.35: Hold time requirement: (a) satisfied, (b) violated.

combinational logic that is too fast can be a problem for the FFs. The solutions for resolving a
hold time violation include:

• Use a different FF with a smaller hold time (wH).

• Add delay (e.g. two inverters) to increase the delay for the fastest paths through the combi-
national cloud. Care should be taken to ensure that any delay added does not cause, possibly
other paths, to exceed TMaxC , and cause setup time violations.

Changing the clock speed will not resolve a hold time violation, but adding a delay may require
increasing the clock period.

Clock skew is an additional consideration in meeting the setup and hold time requirements. The
clock inputs of the FFs will not receive the clock edge at exactly the same time due to the physical
properties of the clock net wiring. The maximum difference in time for the clock edge to reach
the FFs is the clock skew. The setup/hold time window is anchored to the clock edge a FF
receives. When the clock edge shifts, a hold or setup time violation may result since the FF’s
input may not shift by the same amount. Using the specialized wiring resources intended for clock
distribution will minimize clock skew in FPGAs. Integrated circuit designers will carefully design
clock distribution networks to minimize skew as well as achieve performance requirements and
reduce power consumption.

696969

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

Chapter 5

Synthesis of Synchronous Sequential
Circuits

Chapter 4 introduced sequential circuits using a basic memory device: the D FF. Several circuits
were introduced and a general method for analyzing these circuits was developed. Figure 5.1 (from
Section 4.7) captures the structure of a synchronous sequential circuit. In this chapter, we will
present the steps needed to obtain a synchronous sequential circuit for a given state diagram or
other description of the circuit’s desired behavior. This will be the reverse of the analysis process
described in Section 4.7. We will design the combinational logic cloud, and decide how to encode
the states, including the number of state bits (FFs) used.

D Q
D FF

D Q
D FF

D Q
D FF

...

Inputs Outputs

Present
State

.

.

.

Combinational
LogicPresent

State
Next
State

clk

SynSeq_fig1

.

.

Figure 5.1: Model of synchronous sequential circuits.

The result of the analysis in Section 4.7 was a state diagram. State diagrams describe the behavior
of finite state machines. Our goal will be to produce a logic diagram for a synchronous sequential

707070

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

circuit from a description of the desired behavior. When this description is a state diagram the
process is straightforward, but otherwise, the first step will be to obtain a state diagram. Selecting
the encoding of the states is one of the decisions to consider (unless it is specified).

The examples in this chapter are necessarily simple to keep their size small. We will begin with
the simple binary counter for which the state diagram is clear-cut.

5.1 Counters revisited

In Section 4.5 a 4-bit binary counter was assembled based on equations capturing the effect of
incrementing a bit vector. Here we will use a state diagram to represent the desired operation of a
counter, but with 3-bits rather than 4-bits to keep the size manageable. The symbol for the 3-bit
counter is shown in Figure 5.2(a) and its state diagram is on the right (Figure 5.2(b)). The 3-bit

S0
000, 0

s3
011, 0

S2
010, 0

S1
001, 0

Inc

Inc

SynSeq_fig2

Inc IncInc

S4
100, 0

S7
111, 1

S6
110, 0

S5
101, 0

Inc

Inc

Inc IncInc

IncIncInc Inc Inc

Inc

Inc

B2

B1

B0

BCNT3

TC

(a) (b)

Figure 5.2: (a) Symbol and (b) state diagram for a 3-bit counter.

counter counts from 0 to 7, incrementing when its input Inc is 1. The output (indicated in each
state below the line) is the value of the count and TC. Recall that TC should be 1 when the counter
is at its maximum value: 7 for a 3-bit counter.

From the state diagram, we can obtain the Symbolic State Transition Table shown on the left below
in Table 5.1(a). On the right one possible encoding for the states is given in Table 5.1(b). Each
state has been encoded with the bit vector corresponding to its binary value. This encoding is
convenient because the encoding of the state is also the value for the outputs B2 B1 B0. We have
used 3 bits to encode 8 states which is a minimum length encoding since 3 is the smallest number
of bits that can have 8 values. When there are N states at least log2N will be needed. The
next step is to obtain the Encoded State Transition Table shown in Table 5.2 below. Table 5.2
is essentially a truth table. To obtain equations for D2 D1 D0 and the four outputs we use Kmaps
as described in Section 3.3. Since the values of B2 B1 B0 are the same as the state encoding these
outputs will come directly from the FF outputs.

D2 = Q2Q1 +Q2Q0 +Q2 Inc +Q2Q1Q0 Inc
D1 = Q1Q0 +Q1 Inc +Q1Q0 Inc

717171

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

 Present Next State Output
 State Inc = 0 Inc = 1 B2 B1 B0 TC
 S0 S0 S1 0 0 0 0
 S1 S1 S2 0 0 1 0
 S2 S2 S3 0 1 0 0
 S3 S3 S4 0 1 1 0
 S4 S4 S5 1 0 0 0
 S5 S5 S6 1 0 1 0
 S6 S6 S7 1 1 0 0
 S7 S7 S0 1 1 1 1

 State Q2 Q1 Q0

 S0 0 0 0
 S1 0 0 1
 S2 0 1 0
 S3 0 1 1
 S4 1 0 0
 S5 1 0 1
 S6 1 1 0
 S7 1 1 1

 (a) (b)

Table 5.1: State encoding and Symbolic State Transition Table for the 3-bit binary counter.

D2 D1 D0 Outputs
Q2Q1Q0 Inc = 0 Inc = 1 B2B1B0 TC
 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 1 0 0 1 0 1 0 0 0 1 0
 0 1 0 0 1 0 0 1 1 0 1 0 0
 0 1 1 0 1 1 1 0 0 0 1 1 0
 1 0 0 1 0 0 1 0 1 1 0 0 0
 1 0 1 1 0 1 1 1 0 1 0 1 0
 1 1 0 1 1 0 1 1 1 1 1 0 0
 1 1 1 1 1 1 0 0 0 1 1 1 1

Table 5.2: Encoded STT for the 3-bit binary counter.

D0 = Q0 Inc +Q0 Inc
TC = Q2Q1Q0

These may appear different from the equations we obtained in Section 4.5. However, by regrouping
their terms and using the identity a⊕ b = ab+ ab we see that they are the same.

D2 = Q2(Q1 +Q0 + Inc) +Q2(Q1Q0 Inc)
= Q2(Q1Q0 Inc) +Q2(Q1Q0 Inc)
= Q2 ⊕ (Q1Q0 Inc)

D1 = Q1(Q0 + Inc) +Q1(Q0 Inc)
= Q1(Q0 Inc) +Q1(Q0 Inc)
= Q1 ⊕ (Q0 Inc)

D0 = Q0 ⊕ Inc
TC = Q2Q1Q0

Using these equations for the combinational logic we obtain the circuit in Figure 5.4. This is the
same as the circuit in Figure 4.18 for the first three bits, but here the FFs are displayed vertically.
 The FFs of the counter should be initialized to the desired starting value, usually 0. If they are
not, then the count will start at an unknown value.

727272

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

0 0

00 00

1 0

!"

!#

!$

SynSeq_fig3

1 1

0

10 1

0 00

1

0

0

01

1 1

!"

Inc

!#
!$

(#

0 0

0

01 0

1 10

1

0

1

01

1 1

Inc

!"

!#
!$

($

0 1

1

01 1

1 00

1

1

0

00

1 0

Inc

!"

!#
!$

(")*

Figure 5.3: Kmaps for combinational logic of 3-bit counter.SynSeq_fig4

Inc

clk
TC

Q0

Q1

Q2D2

D1

D0
D Q
D FF

D Q
D FF

D Q
D FF B2

B1

B0

Figure 5.4: Logic diagram for 3-bit counter. The FFs are assumed to be initially 0.

5.1.1 Gray Code Counter

In an n-bit Gray code, the bit vectors are ordered so that only one bit will change between consec-
utive bit vectors. For example, 001 is followed by 011 rather than 010. Below is the sequence of
the vectors in a 3-bit Gray code:

000 001 011 010 110 111 101 100

An n-bit Gray code can be obtained from the (n − 1)-bit Gray code, by appending two copies of
the (n − 1)-bit Gray code with the second copy reversed, adding a leading 0 to the first half, and
adding a leading 1 to the second half.

 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

Gray codes are useful when two or more outputs must change value, and we need to ensure that the
output values are never incorrect. For example, when a binary counter increments from 1 (01) to 2
(10), for a brief moment the two output bits are either 00 or 11 depending on which of the two bits

737373

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

changes first. The outputs should never be incorrect when they are asynchronous inputs to another
device since they could be sampled at any time. It is not possible to guarantee that two outputs
will transition to new values at the same exact time and so for a short time, the output values
will be incorrect.1 By using a Gray counter there is no possibility for the outputs to be incorrect
during any transition since only one output bit is changing when it increments. Two approaches SynSeq_fig5

(a)

G2

G1

G0

B2

B1

B0
Binary-to-Gray
Converter

Inc

clk

Q0

Q1

Q2D2

D1

D0
D Q
D FF

D Q
D FF

D Q
D FF

G2

G1

G0

Combinational
Logic

(b)

clk

TC

TC

Inc Inc
B2

B1

B0

BCNT3

TC

Figure 5.5: Two Gray code counter implementations: (a) encoding the output of a binary counter;
and (b) using Gray Code for the state encoding of a 3-bit counter.

to the implementation of a 3-bit Gray Code counter are shown in Figure 5.5. In Figure 5.5(a)
combinational logic is used to re-encode the output of a 3-bit binary counter to its corresponding
Gray code. Instead, in Figure 5.5(b) the Gray code is used to encode the states to achieve the goal
of ensuring that the G2 G1 G0 outputs are never incorrect since they are outputs of the FFs, and
only one of them changes in each increment. Approach (a) does not provide this assurance.

To implement the Gray Code counter in Figure 5.5(b) we use the encoding for the states given in
Table 5.3(a) to obtain the encoded state transition table in Table 5.3(b).

 State Q2 Q1 Q0

 S0 0 0 0
 S1 0 0 1
 S2 0 1 1
 S3 0 1 0
 S4 1 1 0
 S5 1 1 1
 S6 1 0 1
 S7 1 0 0

D2 D1 D0 Outputs
 State Q2Q1Q0 Inc = 0 Inc = 1 G2G1G0 TC
 S0 0 0 0 0 0 0 0 0 1 0 0 0 0
 S1 0 0 1 0 0 1 0 1 1 0 0 1 0
 S3 0 1 0 0 1 0 1 1 0 0 1 0 0
 S2 0 1 1 0 1 1 0 1 0 0 1 1 0
 S7 1 0 0 1 0 0 0 0 0 1 0 0 1
 S6 1 0 1 1 0 1 1 0 0 1 0 1 0
 S4 1 1 0 1 1 0 1 1 1 1 1 0 0
 S5 1 1 1 1 1 1 1 0 1 1 1 1 0

 (a) (b)

Table 5.3: 3-bit Gray counter (a) Gray Code state encoding and (b) encoded state transition table.
1With a great deal of engineering effort taking into account delays of wires and components, this time can be

reduced, but never completely eliminated.

747474

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

5.2 Even Blocks Machine

In this section, our task is to produce a circuit given the following description.

Design a sequential circuit with one synchronous input and one synchronous output.
The output should be 1 for one clock cycle after an even length block of 1’s followed by
a 0 is observed on the input.

Since the input/output is synchronous, this circuit will have a clock input in addition to one input
and one output. So the symbol for our circuit will be as shown in Figure 5.6.

SeqSyn_fig7

x y
EvenBlk

Figure 5.6: Symbol for the Even Blocks machine.

A “block of 1’s” is a group of consecutive 1’s that cannot be made longer. This means that the block
must start with the first input or there must be a 0 input before the block of 1’s.2 The steps below

CHILL
0

!x

x

SeqSyn_fig8

CHILL
0

ODD
0

!x

x EVEN
0

x

x!x

EUREKA
1

!x

x

!x

CHILL
0

ODD
0

!x

x EVEN
0

x

x

CHILL
0

ODD
0

!x

x EVEN
0

x

x!x

EUREKA
1

!x

1

2

3

4

Figure 5.7: Construction of state diagram for the Even Blocks machine.

explain how a state diagram might be constructed. These steps are shown in Figure 5.7.

1. Initially the machine is in state CHILL and this is indicated by the jagged arrow into CHILL.
As long as the input x is 0 the machine will remain in CHILL awaiting the start of a block of
1’s. When x is 1 the machine will leave CHILL since a block of 1’s has begun. The output
should be 0.

2The description is vague on this point. In practice, it might be wise to verify whether the block must have a 0
before it.

757575

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

2. After leaving CHILL the machine keeps track of whether the number of 1’s it has seen so far
is odd or even. It will alternate between ODD and EVEN while x is 1. The output should still
be 0.

3. If x is 0 in state ODD then we have an odd length block of 1’s followed by a 0 and the machine
should return to CHILL. But if x is 0 in state EVEN then we have an even length block of 1’s
followed by a 0 and the machine should enter a state where it will output 1: EUREKA.

4. To complete the state machine we need to indicate what happens in state EUREKA. The output
is 1 in state EUREKA and the machine should leave this state on the next clock edge since the
output should only be 1 for one clock cycle. If x is 0 the machine returns to CHILL awaiting
the start of the next block of 1’s. But if x is 1 then this is the start of a new block of 1’s so
the the machine returns to ODD.

From the state diagram, we obtain the state transition table:

 Present Next State
 State x = 0 x = 1 Output
 CHILL CHILL ODD 0
 ODD CHILL EVEN 0
 EVEN EUREKA ODD 0
 EUREKA CHILL ODD 1

Table 5.4: Symbolic state transition table for Even Blocks machine.

Below is a state encoding of minimum length and the resulting encoded state transition table is
shown.

 State Q1Q0

 CHILL 0 0
 ODD 0 1
 EVEN 1 0
 EUREKA 1 1

D1 D0 Output
 State Q1Q0 x = 0 x = 1 y
 CHILL 0 0 0 0 0 1 0
 ODD 0 1 0 0 1 0 0
 EVEN 1 0 1 1 0 1 0
 EUREKA 1 1 0 0 0 1 1

 (a) (b)

Table 5.5: Even Blocks implementation: (a) state encoding and (b) encoded state transition table.

The next step is to obtain logic equations for the next state variables, D1 and D0, and the output
y.

D1 = xQ1Q0 + xQ1Q0

D0 = xQ1 +Q1Q0 + xQ0

y = Q1Q0

767676

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

SynSeq_fig9

0 1

10 00

0 0

!"

!#

x

$"

1 0

10 00

1 1

!"

!#

x 0 1

00

!"
!#

%$#

Figure 5.8: Kmaps for combinational logic of Even Blocks machine.

Q1

SynSeq_fig10

x

Q0

D1

D0 D Q
D FF

D Q
D FF

y

clk

Q0
Q1

Figure 5.9: Logic diagram for Even Blocks machine. The FFs are assumed to be initially 0.

With these equations for the combinational logic, we obtain the circuit in Figure 5.9. The FFs
should be initialized to 0 so that the machine wakes up in the initial state, CHILL.

A simulation of this circuit is shown in Figure 5.10. This design is a Moore machine. Its output
value depends only on the present state (the FF values). As a consequence, the output y will be 1
only after x is 0 on the clock edge following an even block of 1’s. The 1 output will be on the clock
edge after the 0 input, not the same clock edge.

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

CHILL ODD EVEN EUREKA CHILL ODD CHILL ODD EVEN

x 1

0

State

y 1

0

EVEN ODD

SynSeq_fig11

Figure 5.10: Simulation of Even Blocks machine.

777777

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

5.2.1 Even Blocks Machine Mealy Version

The Even Blocks machine above had a Moore output. Suppose that instead, the circuit should
respond as soon as x is 0 rather than after the clock edge. This is a different machine. Its state
diagram is shown in Figure 5.11. The values for the output y are shown on the arcs(transitions)
since the value of the output now depends on the value of the input (in state EVEN2). The main
difference here is that in state EVEN2 the output is 1 if x is 0. There is no need for the EUREKA
state: in state EVEN2 the machine transition back to CHILL2 if x is 0.

CHILL2 ODD2

!x/0

x/0 EVEN2x/0

x/0!x/0
!x/1

SynSeq_fig12

Figure 5.11: State diagram for Mealy version of the Even Blocks machine.

From the state diagram, we obtain the state transition table:

 Present Next State Output
 State x = 0 x = 1 x = 0 x = 1

 CHILL2 CHILL2 ODD2 0 0
 ODD2 CHILL2 EVEN2 0 0
 EVEN2 CHILL2 ODD2 1 0

Table 5.6: Symbolic state transition table for Mealy version of the Even Blocks machine.

Below is a state encoding of minimum length, and the resulting encoded state transition table is
shown. Since this machine has three states, a minimum length encoding will require two state bits
Q1 Q0, and so one of the four possible values will not be used. Since the unused value for the state
bits does not occur, the values for the next state and output can be indicated as don’t care (?).

 State Q1Q0

 CHILL2 0 0
 ODD2 0 1
 EVEN2 1 0

D1 D0 y
 State Q1Q0 x = 0 x = 1 x = 0 x = 1

 CHILL2 0 0 0 0 0 1 0 0
 ODD2 0 1 0 0 1 0 0 0
 EVEN2 1 0 0 0 0 1 1 0
 unused 1 1 ? ? ? ? ? ?

 (a) (b)

Table 5.7: Even Blocks mealy machine implementation: (a) state encoding and (b) encoded state
transition table.

787878

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

The next step is to obtain logic equations for the next state variables, D1 and D0, and the output
y.

SynSeq_fig13

0 1

00 ?0

? 0

!"

!#

x

$"

1 0

00 ?0

? 1

!"

!#

x

%$#

0 0

10 ?0

? 0

!"

!#

x

Figure 5.12: Kmaps for combinational logic of Even Blocks Mealy machine.

D1 = xQ0

D0 = xQ0

y = xQ1

With these equations for the combinational logic, we obtain the circuit in Figure 5.9.

Q1

SynSeq_fig14

x

Q0

D1

D0 D Q
D FF

D Q
D FF y

clk

Figure 5.13: Logic diagram for Even Blocks Mealy machine. The FFs are assumed to be initially
0.

The simulation of this circuit on the same input as the Moore version is shown in Figure 5.14 where
both the Moore and Mealy state and output are shown. Note that the output y2 is 1 at the 20µs
clock edge, one cycle earlier than in the Moore version y (25µs clock edge). In the Mealy version,
the output is also 1 in between clock edges such as at 16µs. In addition, the output will not be 1 for
a full clock cycle. In Section 5.6 the trade-offs between Mealy and Moore machines explored. But
when the specification requires the output to react to the current input on the same clock edge a
Mealy machine is needed. Table 5.8 shows the inputs and outputs of both machines at clock edges.

797979

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits
SynSeq_fig15

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

CHILL2 ODD2 EVEN2 CHILL2 ODD2 CHILL2 ODD2 EVEN2

x 1

0

State2

y2 1

0

EVEN2 ODD2

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

CHILL ODD EVEN EUREKA CHILL ODD CHILL ODD EVENState

y 1

0

EVEN ODD

Figure 5.14: Simulation of both Even Blocks machines. Mealy version state and output are labeled
State2 and y2.

 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 x 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1

 Moore y 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 Mealy y2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 5.8: Comparison of input/output of Moore and Mealy versions of the Even Blocks machines.

5.3 Message Checker

In serial communication, messages are transmitted one bit at a time on a single wire rather than
on multiple wires in parallel. Logic circuits are needed to pack and unpack these messages. Here
we will consider a small example.

Design a sequential circuit with two synchronous inputs, s and d, and two synchronous outputs, e
and p. This device will receive a message, one bit at a time on the clock edge.

• The value of the bit sent will be on the input d.

• The input s will mark the beginning and end of the message, since there may be several clock
edges between messages. Specifically, s will be 1 at the same clock edge as the first bit of the
message and 1 at the clock edge with the last bit of the message.

• The output e should identify the end bit of a message: e should be 1 on the same edge that
s is 1 but only at the end of messages, not the start.

• The output p is 1 at the end of a message if the number of 1 bits in the message is 2 plus a
multiple of 3 (aka 2 (mod 3)).

Since the inputs are synchronous, the circuit will have a clock input in addition to s and d. The
symbol for the circuit is shown in Figure 5.15. Below is a sample input/output sequence. Since
the outputs are 1 on the same clock edge as the last bit of the message, they will both be Mealy.

808080

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

SeqSyn_fig16

s

d

e

p

MsgChk

Figure 5.15: Symbol for the Message Checker.

 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 s 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1
 d 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0
 e 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
 p 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Table 5.9: Sample input/output of Message Checker machine.

The steps below explain how a state diagram might be constructed. These steps are illustrated in
Figure 5.16.

s!dCHILL ZERO

!s

ONE

!s!d

TWO
!sd !sd

!s!d!s!d

sd

!sd

s!d/00
CHILL ZERO

!s/00

ONE

!s!d/00

s!d/11

TWO

s/10

sd/10

!sd/00 !sd/00

!s!d/00!s!d/00
sd/00

!sd/00
s!d/10
sd/11

CHILL

!s

s!d

sd

1

2

3

4

SeqSyn_fig17

s!d/00
CHILL ZERO

!s/00

ONE

!s!d/00

TWO!sd/00 !sd/00

!s!d/00!s!d/00
sd/00

!sd/00

Figure 5.16: Construction of state diagram for the Message Checker machine.

1. Initially the machine is in state CHILL and this is indicated by the jagged arrow into CHILL.
As long as the input s is 0 the machine will remain in CHILL awaiting the start of a message.
When s is 1 the machine will leave CHILL since a message has begun. The next state when s
is 1 will depend on the value of d so there are separate arcs.

2. At the start of a message (in CHILL with s=1) the machine keeps track of the number of 1’s
in the message. Much like a counter, the machine cycles between ZERO, ONE, and TWO when d
is 1 but stays put when d is 0. This continues while s remains 0 since the message has not

818181

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

ended.

3. Pairs of values for the outputs (ep) have been added to the arcs. Both e and p will be 0 until
the last bit of the message.

4. To complete the state machine we add the arcs (in green) for s=1 from ZERO, ONE, and TWO to
CHILL since this is the end of the message. In ZERO the number of 1’s in the message cannot
be 2 (mod 3) regardless of the value of d so p will be 0 in both cases. In states ONE, and TWO
the value of p will depend on d so there are two separate arcs.

From the state diagram, we obtain the state transition table:

 Present Next State Output
 State sd = 00 sd = 01 sd = 10 sd = 11 sd = 00 sd = 01 sd = 10 sd = 11

 CHILL CHILL CHILL ZERO ONE 00 00 00 00
 ZERO ZERO ONE CHILL CHILL 00 00 10 10
 ONE ONE TWO CHILL CHILL 00 00 10 11
 TWO TWO ZERO CHILL CHILL 00 00 11 10

Table 5.10: Symbolic state transition table for Message Checker machine.

Below a state encoding of minimum length is used for the states to produce an encoded state
transition table.

sd= D1D0 sd= Output
 State Q1Q0 00 01 10 11 00 01 10 11

 CHILL 0 0 00 00 01 10 00 00 00 00
 ZERO 0 1 01 10 00 00 00 00 10 10
 ONE 1 0 10 11 00 00 00 00 10 11
 TWO 1 1 11 01 00 00 00 00 11 10

Table 5.11: Message Checker encoded state transition table.

0 1

0

00 0

0 10

1

0

1

01

0 0

!

s

#$

%$

#&
0 0

1

10 1

0 00

0

0

0

10

1 1

s

!

#&
#$

'

1 1

0

01 0

1 00

0

0

0

01

0 0

s

!

#&
#$

%&

0 0

1

00 0

0 00

0

0

0

00

1 0

s

!

#&
#$

(

SeqSyn_fig18Figure 5.17: Kmaps for combinational logic of Message Checker machine.

The Kmaps for the next state variables, D1 and D0, and the outputs e and p are in Figure 5.17
followed by the logic equations.

828282

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

D1 = s dQ1Q0 + s dQ1Q0 + s dQ1 + sQ1Q0

D0 = s dQ1Q0 + s dQ1 + s dQ0

e = sQ0 + sQ1

p = s dQ1Q0 + s dQ1Q0

The FFs should be initialized to 0 so that the machine wakes up in the initial state, CHILL.

5.4 One-hot State Encoding

In the previous sections, the state encodings were minimum-length encodings. The smallest number
of bits possible was used to minimize the number of FFs. When FPGAs are used to implement
the design, minimizing the number of FFs may be less efficient. This is because the resources (chip
area) have already been pre-allocated for the FFs and combinational logic. Using more FFs can
result in smaller output and next state equations providing better performance. In a one-hot state
encoding there is one state bit for each state, and that bit is 1 only for its associated state. A key
advantage of one-hot encoding is the simple correspondence between the state diagram (or table)
and the next state logic equations.

Figure 5.18 illustrates the correspondence between the state diagram and the logic for the next
state equations. The states are labeled with their state bits. That is, the machine is in the state
labeled Q23 exactly when variable Q23 is 1 and all the other state variables are 0. There are three
transitions into Q23. The next state will be Q23 when one of these transitions occurs. The variable
D23 should be 1 when the next state will be Q23. The transition from state Q13 will occur if cd is
1 and Q13 is 1 (the machine is in state Q13). Combining the logic for the three transitions into Q13

gives the equation for D23:

D23 = (a+ b)Q23 + c dQ13 + (a+ c) dQ7.

(a+c)!d

"#$

a+b

SynSeq_fig19

cd

"%$ "&
Q23

D23

clk

D Q
D FF

(a+c)!d

a+b

cd
Q13

Q7

Q23

Figure 5.18: One-hot state encoding: from state diagram to logic.

In one-hot encoding, the FF corresponding to the initial state of the machine should be initialized
to 1.

838383

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

! WARNING:
If all of the FFs initialize to 0, then all of the next state equations will evaluate to 0 and this
will continue resulting in a very boring machine. The FF corresponding to the initial state should
initialize to 1.

The Even Blocks machine implemented with one-hot encoding is shown in Figure 5.19. The state
bit associated with each state is shown in the state diagram on the left and the logic diagram is
on the right. Note that inverters are added to the FF for the initial state so that the machine will
wake up in state CHILL. The equations

D3 = xQ2

D2 = xQ1

D1 = xQ0 + xQ2 + xQ3 = x(Q0 +Q2 +Q3)

D0 = xQ0 + xQ1 + xQ3 = x(Q0 +Q1 +Q3)

y = Q3

SeqSyn_fig20

CHILL

0

ODD

0

!x

x EVEN

0

x

x!x

!x

x

!x

"# "$ "%
EUREKA

1
"&

Q2

x

clk

Q0

Q1

D2

D1

D0 D Q
D FF

D Q
D FF

D Q
D FF

D3 Q3 yD Q
D FF

x

x

xQ0
Q1
Q3

Q0
Q2
Q3

Q1

Q2

Figure 5.19: One-hot implementation of the Even Blocks machine. The FFs are initialized to 0.

5.5 Well-defined State Machines

Constructing the state diagram (or the equivalent symbolic state transition table) is the step that
requires the most thought. Several modifications to the state diagram may be needed, or even a
complete redesign from scratch may be a good idea. Identifying the inputs/outputs of the state
machine should be the first task. Once they are known, two rules must be met to ensure that the
state machine is well defined.

Rule 1 : mutually exclusive transitions For each state S, the conditions on the arcs leaving
S should be mutually exclusive. It should not be possible for more than one condition to
evaluate to 1.

Rule 2 : exhaustive transitions For each state S, the condition on at least one arc leaving S
must be possible. It should not be possible for all of the conditions to simultaneously evaluate
to 0.

848484

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

Rule 1 prevents multiple states from simultaneously being possible as the next state. If two arcs
can be 1 simultaneously then there are two possible next states. In this case, the output of the next
state combinational logic may even be a different or unused state value. For example, if one-hot
state encoding is used, then there will be two state bits that are 1. Verifying this rule can become
complicated as the number of inputs increases. Suppose we have a state S with the arcs as shown in
Figures 5.20(a) and (b). The color of the cells of the Kmaps correspond to the conditions on the

SynSeq_fig21

a+b!c

"

!a !b

!ab

(a) (b)

c

a

b

a+b!c

"

!a !b

!abc

c

a

b

Figure 5.20: Rule 1 mutually exclusive transitions: (a) rule not satisfied, (b) rule satisfied.

arcs out of state S that they satisfy. In Figure 5.20(a) the cell where a=0, b=1, and c=0 is both red
and green since it satisfies both the red and green conditions. In Figure 5.20(b) the green condition
was changed so that it no longer includes this case and now there is no overlap in the Kmap. The
desired behavior of the state machine should determine how the overlap is resolved.

Rule 2 ensures that the next state is spelled out in all cases. If a value for the inputs is not
covered by any of the conditions, then there is no next state defined when that value occurs. If
this happens the combinational logic may provide an unexpected value for the next state. When
one-hot state encoding is used, all of the state bits will be 0 and they will remain that way until the
state machine FFs are re-initialized. Again, verifying this rule becomes complicated as the number
of inputs increases. Suppose we have a state S with the arcs as shown in Figures 5.21(a) and (b).
 The colors of the cells of the Kmaps correspond to the color of the arc condition they satisfy. In
Figure 5.21(a) the cell where a=1, b=0, and c=1 does not satisfy any condition. If this input value
occurs the next state will not be defined. This has been fixed in Figure 5.21(b) by changing the
red condition so that it now covers this case.

In some cases, there may be input combinations that are not expected to occur. For example, a
counter may have two inputs Inc and Dec that indicate that an increment/decrement of the value
should occur at a clock edge. If both inputs are 0, the counter holds its value and if one of the
two inputs is 1, then the requested change occurs. But if both inputs are 1 simultaneously and no
provision has been made for this case, the value of the counter assumes may be quite unexpected.
Both Inc and Dec could be 1 as a result of a logic error in the surrounding circuit or simply a
misconception of how the counter will behave in this case. The design of the counter should take

858585

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

SynSeq_fig22

a

!

"a "b

"ab

(a) (b)

c

a

b

!

"a "b

"ab

c

a

b

a(b+"c)

Figure 5.21: Rule 2 exhaustive transitions: (a) rule not satisfied, (b) rule satisfied.

into consideration the possibility that these inputs could both be 1 and ensure that the outcome
(its value) in this case is not completely unexpected. Options might include not changing the value
or deciding that one of the two inputs, Inc or Dec, takes priority over the other. In general, even
when an input value should not occur, it is best to define a next state for it that is friendly. With
one-hot encoding, if no next state is defined for a particular input value, then all of the state bits
will be 0 if this input value occurs.

5.6 Mealy versus Moore

Earlier in this chapter two versions of the Even Blocks Machine were implemented. The first was
a Moore version with 4 states and the second a Mealy with 3 states. The outputs of these two
versions will not always agree. In general, the requirements for the design will determine whether
an output should react to the current input or only past inputs.

When designing state machines as part of a larger sequential system (as in Chapter 6), there may
be a choice as to whether an output of a state machine is Mealy or Moore. The advantages/disad-
vantages are discussed here.

Fewer states Delaying the output till after the clock edge will often require an additional state.
For example, the Moore version of the Even Blocks Machine needed a separate state, EUREKA,
in which the output y was 1. A Mealy output can always be changed to a Moore output
by passing it through a FF. However, this might affect the timing of the interaction of the
machine with other components, so it is best to design the machine with the output as a
Moore output directly.3

Shorter logic paths A digital system composed of multiple state machines may have paths of
3There in an example in Section 6.5.

868686

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

combinational logic that cross between state machine boundaries. Since a Mealy output
depends on the input to the machine, there is a path of combinational logic from an input
to that output. When two Mealy machines are connected as in the top half of Figure 5.22
there is a combinational logic path through both machines from an input xi to some output
zj. This is not the case with Moore machines since the outputs will only depend on the FF
outputs. In the bottom half of Figure 5.22, two Moore machines are connected, but there is
no combinational path from any of the inputs xi to any output zj. In effect, using several

SynSeq_fig27

Next State
Combinational
Logic

...

clk

zm..
.
z0

D0

Dn

Q0

QnD Q
D FF

D Q
D FF

Output
Combinational
Logicxm

Next State
Combinational
Logic

...

clk

...
x0

D0

Dn

Q0

QnD Q
D FF

D Q
D FF

Output
Combinational
Logic

Next State
Combinational
Logic

...

clk

zm..
.
z0

D0

Dn

Q0

QnD Q
D FF

D Q
D FF

Output
Combinational
Logicxm

Next State
Combinational
Logic

...

clk

...
x0

D0

Dn

Q0

QnD Q
D FF

D Q
D FF

Output
Combinational
Logic

Figure 5.22: Combinational logic paths created by connecting Mealy versus Moore machines.

smaller Moore machines is akin to pipelining. The task is divided into stages, each with a
short delay, The clock can then be faster, but more clock cycles will be required to produce
the final output.

Avoiding combinational loops As noted composing Mealy machines can create longer combi-
national paths. There is also the possibility of inadvertently creating a combinational loop.
In Figure 5.23 the blue wires could be part of a combinational loop. Depending on the type

SynSeq_fig28

Next State
Combinational
Logic

...

clk

..

.
z0

D0

Dn

Q0

QnD Q
D FF

D Q
D FF

Output
Combinational
Logic

Next State
Combinational
Logic

...

clk

...
x0

D0

Dn

Q0

QnD Q
D FF

D Q
D FF

Output
Combinational
Logic

Figure 5.23: Connecting Mealy machines may create combinational loops.

878787

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

of simulation, a combinational loop may cause the simulator to stall since the evaluation of
the logic values of nets in the loop will never settle. If the simulation takes into account gate
delays, then the outputs of the gates on the loop will appear to be oscillating.

5.7 State Minimization

An edge detector is a circuit that will recognize a rising edge on its input. Its output will be 1
for one clock cycle when the inputs at the last two clock edges were a 0 followed by a 1. This
component can be implemented with a 2-bit shift register as shown in Figure 5.24 and AND to
recognize the pattern 10. Its state transition table is in Table 5.12. SynSeq_fig29

x Q0
D Q
D FF

D Q
D FF y

clk

Q1

Figure 5.24: Edge Detector logic diagram .

D0D1 Output
Q0Q1 x = 0 x = 1 y
 0 0 0 0 1 0 0
 0 1 0 0 1 0 0
 1 0 0 1 1 1 1
 1 1 0 1 1 1 0

Table 5.12: State transition table of the Edge Detector.

The state diagram for this Edge Detector is in Figure 5.25(a) below. The shaded states have the
same output and their transitions for either input value take them to the same state. This can
also be seen from the state transition table in Table 5.24 where the rows for these two states, 00
and 01, have the same next states and output. In Figure 5.25(b), the states 00 and 01 have been
merged into one state, 0- reducing the number of states from four to three.

A sequence of input values (possibly empty) that will result in different sequences of output values
when the machine is started in state A versus state B is said to distinguish states A and B. Two
states are distinguishable if there is a sequence that can distinguish between them, and otherwise
they are indistinguishable or equivalent. For example in the Edge Detector, 10 is distinguishable
from the other states since it is the only state with an output value of 1. States 00 and 11 are
distinguishable since when the input is 1, their next states will be 10 and 11 which have different
output. However, in the unreduced Edge Detector, states 10 and 00 are indistinguishable. This
was established by observing that their output and next states were the same. Unfortunately, this
method is not enough to identify all equivalent states. Figure 5.26 contains a third state diagram
for yet another Edge Detector and Table 5.26 contains the state transition table.

888888

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

11 01

0

10

0 0

SynSeq_30

1

10

1

00

1

0

0

0

1

11 0-

0

10

0 0

1

10

1

0

1

(a) (b)

Figure 5.25: Edge detector state diagrams: (a) original and (b) reduced.

11 01

0

10

0 0

SynSeq_31

1

10

1

00

1

0

0

0

1

Figure 5.26: Yet another Edge Detector state diagram.

D0D1 Output
Q0Q1 x = 0 x = 1 y
 0 0 0 1 1 0 0
 0 1 0 0 1 0 0
 1 0 0 1 1 1 1
 1 1 0 1 1 1 0

Table 5.13: State transition table of yet another Edge Detector.

This version differs from the shift register version only in that the transition from 00 with input
0 is to state 01 rather than to state 00. States 00 and 01 are still indistinguishable, even though
their next states are not the same (though their next states are equivalent).

Moore’s method for identifying equivalent states is outlined below.

1. Group states by output.

2. For each group and each state in that group
Generate a label consisting of the group labels of the next states for all input values.

3. For each group
Subdivide each group by the generated labels

4. If at least one new group was created repeat step 2

In this method, states are first partitioned into groups based on their output. At any time, states

898989

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

that are in separate groups are known to be distinguishable. The algorithm proceeds by examining
states that are still potentially equivalent: states in the same group. If two states in the same
group have next states that are already known to be distinguishable, then these two states become
distinguishable and they are moved to separate groups. This process repeats until no new groups
are formed.

Step 1. Group states by output(A B D) (C)
1 2

x=0 1 1 1 1
x=1 1 2 2 1 Step 2. Label with next state groups

(A) (B D) (C)
1 2 3

x=0 2 2 2 2
x=1 1 3 3 1

Step 2. Find groups of next states

Step 3. Split groups according to labels

No change. Done! B and D are equivalent.

A B

0

C
0 0

1

10

1

D

1

0

0

0

1

(A) (B D) (C)

Step 3. Split groups according to labels

SynSeq_33

 1 2
 (A B D) (C) Step 1. Group states by output

 x=0 1 1 1 1 Step 2. Generate next-group labels
 x=1 1 2 2 1

 1 2 3
 (A) (B D) (C) Step 3: Sub-divide groups

 x=0 2 2 2 2 Step 2. Generate next-group labels
 x=1 1 3 3 1

 1 2 3
 (A) (B D) (C) Step 3: Sub-divide groups

 No change: Done

Figure 5.27: Moore’s algorithm applied to yet another Edge Detector.

In Figure 5.27, Moore’s method is applied to the state machine from Figure 5.26. The states are
divided into two groups based on their output. States A, B, and D have outputs 1, while state C has
output 1. The two groups are labeled using script numbers (any symbol would do). The states are
then labeled with the groups of their next states. For example, state A is labeled with 1 1 because
its next states are A and B which are in group 1. State B is labeled with 1 2 because its next states
are D and C which are in groups 1 and 2. After labeling all 4 states, group 1 is split into two groups
since state A has a different label from B and D. States B and D remain together since they have
the same label. State C is already by itself and hence is distinguishable from all other states. It
is not necessary to determine the label of a state that is in a group by itself. This process is then
repeated with the 3 groups. Since the labels within each group are the same, no new groups are
created and the process is complete. States B and D are the only two equivalent states.

An application of Moore’s algorithm is shown in Figure 5.28. The state transition table of a Mealy
machine is on the left, and the application of the method is on the right. To be grouped in Step
1, two states should have the same output value for all input values. In general, there could be as
many as four groups at first, but in this state machine, only two output value combinations occur.

The minimized version of the machine is obtained by removing all but one state from each group
and redirecting transitions to removed states to the remaining state for its group. This process is
shown in Figure 5.29. On the left, in the original table, state C is replaced by state A, and state D
is replaced by B in the NS section. On the right, the rows corresponding to states C and D have
been removed to produce the final state transition table.

909090

Beginning Logic Design Chapter 5. Synthesis of Synchronous Sequential Circuits

 NS Output
 PS x=0 x=1 x=0 x=1
 A E D 0 1
 B F D 0 0
 C E B 0 1
 D F B 0 0
 E C F 0 1
 F B C 0 0

 1 2
 (A C E) (B D F) Step 1. Group states by output

 x=0 1 1 1 2 2 2 Step 2. Generate next-group labels
 x=1 2 2 2 2 2 1

 1 2 3
 (A C E) (B D) (F) Step 3: Sub-divide groups

 x=0 1 1 1 3 3 - Step 2. Generate next-group labels
 x=1 2 2 3 2 2 -

 1 2 3 4
 (A C) (E) (B D) (F) Step 3: Sub-divide groups

 x=0 2 2 - 4 4 - Step 2. Generate next-group labels
 x=1 3 3 - 3 3 -

 (A C) (E) (B D) (F) Step 3: Sub-divide groups
 No change: Done

Figure 5.28: Moore’s algorithm applied to a Mealy machine.

 NS Output
 PS x=0 x=1 x=0 x=1
 A E @@D B 0 1
 B F @@D B 0 0
 C E B 0 1
 D F B 0 0
 E SC A F 0 1
 F B SC A 0 0

 NS Output
 PS x=0 x=1 x=0 x=1
 A E B 0 1
 B F B 0 0
 E A F 0 1
 F B A 0 0

Figure 5.29: Result of Moore’s algorithm.

919191

Beginning Logic Design Chapter 6. Sequential System Design

Chapter 6

Sequential System Design

6.1 Introduction

Any digital design can be viewed as a “flattened” network of gates and FFs. Viewing a large design
in this way is complicated and tedious due to the number of gates and FFs involved. Applying
different design strategies in different parts of the design may be advantageous. For example, using
one-hot encoding would not be advisable for a 16-bit counter: 216 FFs would be needed! Instead
of a flattened network, designs can be assembled from smaller sequential components, with a state
machine controlling their interaction. We begin with a very simple (somewhat contrived) design of
a system to count bicycles crossing a sensor. Our designs will be synchronous in that all of their
sequential components will share the same clock. In Section 6.5 we will discuss how to provide
outputs to a component that is not synchronous (does not share the clock).

6.2 Bike Counter

12305

SysDes_fig1

Photo by UCSC Communications with permission

Figure 6.1: UCSC bike path with its planned bike counter system.

The UC Santa Cruz transportation department has requested help implementing a device to count
the number of bicycles using the bike path. The proposed system is shown in Figure 6.1. It consists

929292

Beginning Logic Design Chapter 6. Sequential System Design

of a light aimed across the path with a sensor on the other side detecting when the light is blocked
by an object.

The sensor provides a signal that is 1 when the light is blocked and 0 when it is not blocked.
Extensive studies have been conducted to determine the “signature” on the sensor output of a
bicycle crossing the light beam. This is complicated by the large squirrel population living in the
meadow that has been interfering with the sensor in protest of planned development on the meadow.
Figure 6.2 shows the signal expected when a bicycle crosses the sensor. Based on the studies, it
has been determined that when the sensor is blocked twice with at most 16 cycles of the provided
clock in between, a bicycle has crossed.1

clk
$

≤ 16 ()*(+,

SysDes_fig2

Figure 6.2: Signature on the sensor output of a bicycle crossing the light sensor.

The symbol for the desired component is shown in Figure 6.3. It has the sensor signal w as an input
and the provided clock signal. The output of the component is the number of bicycles detected.

Num_bikes
[15:0]

clk

16
w

Bike Counter

SysDes_fig3

Figure 6.3: Symbol for the component counting bicycles crossing the sensor.

Since we will be counting up every time a bicycle is detected, using a counter to store this number
is an obvious choice. In Figure 6.4 the 16-bit counter Bcounter will be used to record the number
of bikes. We assume this counter is reset to 0 on start-up. The CE input of this counter should be 1
for each bike detected. To generate the bike input that increments Bcounter, the input from the
sensor w needs to be monitored by a state machine. To detect a bicycle, the input w needs to be
1 and then 0 and then 1 again with no more than 16 clock cycles between the blocks of 1’s. Our
state machine could use 16 states to count the 0’s, but instead a 4-bit counter Time_Counter will
be used to keep track of the number of 0’s. This design choice makes the state machine smaller,
but it now needs to interact with Time_Counter. We will need to start Time_Counter after the
first block of 1’s and see if it reaches 15 before another block of 1’s begins. We have chosen to
have Time_Counter continuously count up by setting its CE input to 1 and resetting the counter
when we need to start the count. The TC output will serve as the signal that 16 clock cycles have
elapsed.

With the block diagram complete, the components can now be designed. In the process, you may
1... as opposed to angry squirrels, pedestrians, or two unicycles.

939393

Beginning Logic Design Chapter 6. Sequential System Design

Num_bikes
[15:0]

reset_timer
bike

StateMachine

w
TimeUp

clk

Time_Counter

TC

4

CE

Reset Q

clk
clk

Bcounter

CE Qbike 16

TimeUp

TimeUp

w

bike

reset_timer

reset_timer

1

clk

SysDes_fig4

Figure 6.4: Block diagram for Bike Counter.

discover that additional component inputs/outputs are needed or even additional components. This
is an iterative process, but completing as much of the block diagram as possible will reduce the
revision(s).

The counters have been designed in Sections 4.5 and 5.1. The state machine is the remaining
component to design. Its state diagram is in Figure 6.5. In the initial state IDLE, we wait for w to

IDLE

RW

BTWFW

!"

"

" !" & $%&'()

!"

!" & $%&'()
"

!"/+%,'

"

/-'.'/ /%&'-

SysDes_fig5

Figure 6.5: State diagram for state machine of Bike Counter.

become 1. When w is 1 the machine transitions to state FW and stays there until w is 0. This is the
first block of 1’s that may correspond to the front wheel of a bicycle. Time_Counter is reset on the
transition out of state FW since the number of 0’s must now be monitored. In state BTW the machine
waits until either w or TimeUp becomes 1. If w becomes 1 before TimeUp then the second block of
1’s has occurred within 16 clock cycles. In this case the machine transitions to state RW where it
will wait for the second block of 1’s representing the rear wheel to end. On the transition back to
IDLE the Bcounter is incremented since the bike should not be counted until it has completely past
the sensor. If bike was 1 while in state RW the counter would increment at each clock edge while w
remained 1. In state BTW, if TimeUp becomes 1 before w then we transition back to state IDLE and
await the next bicycle.

The state diagram in Figure 6.5 does not completely specify the values of the two outputs,

949494

Beginning Logic Design Chapter 6. Sequential System Design

reset_time and bike. The two cases where these outputs need to be asserted (in this case have
value 1) are indicated, but their values elsewhere are not. The output bike should be 0 at all other
transitions since the Bcounter should not increment. But for reset_time, there is more flexibility.
We need reset_time to be 1 on the transition from FW to BTW and it should be 0 in BTW. But
elsewhere it can be either 0 or 1. Though in the equations we have chosen to make it 0.

The next state and output equations for the state machine are below. Here we have chosen to use
the names of the state (in upper case) as the state variables, rather than Qi’s. The corresponding
next state variables have NEXT_ as a prefix.

Next_IDLE = w ∗ IDLE + w ∗ TimeUp ∗BTW + w ∗RW

Next_FW = w ∗ IDLE + w ∗ FW

Next_BTW = w ∗ TimeUp ∗BTW + w ∗ FW

Next_RW = w ∗RW + w ∗BTW

bike = w ∗RW

reset_timer = w ∗ FW

The state machine is implemented in Figure 6.6. Since the input w has multiple loads it would be
wise to verify that this input is synchronous with the clock. If not it should be first passed through
as D FF before connecting it to any components. The input TimeUp is synchronous since it is from
a component with the same clock.

BTW

w

clk

IDLE

FW

D Q
D FF

D Q
D FF

D Q
D FF

NEXT_RW RW
D Q
D FF

BTW

SysDes_fig6

ww
RW

w
FW

NEXT_BTW

NEXT_FW

NEXT_IDLE

BTW

w
wTimeUp

w
FW

w
IDLE

w
RW

BTW

w
TimeUp

w
IDLE

bike

reset_timer

Figure 6.6: Logic diagram for state machine of Bike Counter.

6.2.1 Bike Counter revisited

More often than not, the first design is not the final one. Beyond design errors, there could be
misunderstanding of the desired behavior or the specification may have been revised. It is tempting
to attempt a patch to the existing design by inserting or removing components, but often a better
approach is to redesign the state machine.

959595

Beginning Logic Design Chapter 6. Sequential System Design

Here we will consider a change request from the transportation department. They have requested
an additional output, error, that they plan to use for an error indicator light on the device. The
output error should become 1 when more than 16 clocks have elapsed since the first block of 1’s on
w. This corresponds to the transition from state BTW back to IDLE: setError = w∗TimeUp∗BTW .
The output error should remain 1 while w is 0 and return to 0 when w is 1 again in state IDLE:
resetError = w ∗ IDLE. In Figure 6.7, a D FF has been added to provide the output error.

BTW

w

clk

IDLE

FW

D Q
D FF

D Q
D FF

D Q
D FF

NEXT_RW RW
D Q
D FF

BTW

SysDes_fig7

ww
RW

w
FW

NEXT_BTW

NEXT_FW

NEXT_IDLE

BTW

w
wTimeUp

w
FW

w
IDLE

w
RW

BTW

w
TimeUp

w
IDLE

bike

reset_timer

D Q
D FF

error

setError

resetError

error

setError

resetError

Figure 6.7: Patch applied to original Bike Counter logic diagram to provide the output error.

The signals seterror and reseterror control this new D FF.

Consider instead the revised state diagram in Figure 6.8. A fifth state ERR has been added and the
output error will be 1 in this state and 0 elsewhere. The machine enters state ERR from BTW when
time expires and w is still 0. It stays in state ERR until w is 1 again. Since this would be the start of
a block of 1’s the machine goes directly from ERR to FW when w is 1. The next state and output

IDLE

RW

BTWFW

!"

"

" !" & $%&'()

!"

!" & $%&'()

"

!"/+%,'

"

/-'.'/ /%&'-

SysDes_fig8

ERR
!"

"

'--0-

Figure 6.8: Revised state diagram with additional state ERR.

logic equations for the revised state machine are below.

Next_IDLE = w ∗ IDLE + w ∗RW

Next_FW = w ∗ IDLE + w ∗ ERR+ w ∗ FW

Next_BTW = w ∗ TimeUp ∗BTW + w ∗ FW

Next_RW = w ∗RW + w ∗BTW

Next_ERR = w ∗ TimeUp ∗BTW + w ∗ ERR

969696

Beginning Logic Design Chapter 6. Sequential System Design

bike = w ∗RW

reset_timer = w ∗ FW

The corresponding logic diagram is in Figure 6.9.

BTW

w

clk

IDLE

FW

D Q
D FF

D Q
D FF

D Q
D FF

NEXT_RW RW
D Q
D FF

BTW

SysDes_fig9

ww
RW

w
FW

NEXT_BTW

NEXT_FW

NEXT_IDLE

BTW

w

wTimeUp

w
FW

w
IDLE

w
RW

w

TimeUp

w
IDLE

bike

reset_timer

NEXT_ERR ERR
D Q
D FF

w
ERR

w

BTW

ERR

error

Figure 6.9: Logic circuit for the revised state diagram with additional state ERR.

The two designs in Figures 6.7 and 6.8 both have 5 FFs. If we consider the error FF to be part
of the state machine in Figure 6.7, then this design has a state machine with 5 states using the
encodings 10000, 01000, 00100, 00010, and 00011. There are two IDLE states, one with error
having value 1 and the other with error having value 0. The difference between the two designs is
essentially how the 5 states were encoded, and conceptually for the designer the separation between
the control and supporting components.

6.3 Shift and Add Multiplier

The multiplication of integers can be implemented either as a combinational or sequential circuit.
There are a variety of approaches, trading off time and resources. In this section, a sequential
multiplier for two n-bit unsigned integers is constructed with a simple shift and add approach.
The symbol for the multiplier is shown in Figure 6.10. Because the number of clock cycles
needed to complete the multiplication will vary, there is an output Ready that signals when the
multiplier is available or busy. The Ready output also indicates that the output bus P has the result
from the most recent multiplication. When the multiplier is available, the input Go will begin the
multiplication of the two integers on the inputs A and B. These two inputs should be valid on the
same clock edge where Go becomes 1, but need not remain afterward. The Ready output will be
0 on the next clock edge. When the Ready output is 1 again, this indicates that the output bus P
has the result of the multiplication of A and B. The result of a multiplication of two n-bit unsigned
integers will require at most 2n bits.

979797

Beginning Logic Design Chapter 6. Sequential System Design

P

clk

2n

Go

Multiplier

SysDes_fig10

Bn
An

Ready

Figure 6.10: Symbol for multiplier.

0 1 1 1 1 0 1 1
x 0 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 1
0 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0
0 0 1 1 1 2 2 3 2 1 1 1 1 0 0 0

1 2 3
x 7 8
9 8 4

8 6 1
9 5 9 4

SysDes_fig11

Product

Multiplier

Multiplicand

Partial

Products

Multiplier
Multiplicand

Partial

Products

(a) (b)

Figure 6.11: Multiplication of 123 and 78: (a) Decimal and (b) Binary.

The steps in the multiplication of 123 and 78 are shown in Figure 6.11 for both decimal and binary
representations. In each step, a partial product is obtained by multiplying a single digit of the
multiplier (either 7 or 8) with the multiplicand (123). The same procedure is used for binary
multiplication, but since the multiplier digits are either 0 or 1, each partial product is either 0 or
the multiplicand. The partial products are shifted to the left lining up with the position of their
multiplier digit.

In a shift and add multiplier, the partial products are generated one at a time by shifting the
multiplicand to the left. Rather than collecting all the partial products first and then summing
them, they can be added to a running total as they are generated. In Figure 6.12, a 2n-bit register
is used to hold the running total.2 The adder sums each partial product with the output of the
register and the result is loaded into the register using the control input LD. The register should
be 0 initially. It can be reset to 0 with the control input (R input). As mentioned the partial
products are either 0 or shifted versions of the multiplicand. They are generated using the 2n-bit
shift register shown in Figure 6.13. The multiplicand A is extended by adding n 0’s on the left.
Its extended value will be loaded into the shift register when the control input LD is 1 at the clock
edge. The shift register will shift its contents (Q) to the left when the control input SHL is 1 at the
clock edge. The input SIn is the new value of the rightmost bit when a shift occurs. In this case,
it is set to 0 so that 0’s will fill in as the multiplicand is shifted right.

When the multiplier bit is 0, the partial product should be 0 rather than the shifted multiplicand.
Rather than generating a bit vector of 0’s for the adder, we will skip adding the multiplicand by

2A register filling this type of role is often referred to as an accumulator.

989898

Beginning Logic Design Chapter 6. Sequential System Design
SysDes_fig12

Partial
Products 2n

2n + 2n

LD
R

Q

clk

Reg
D P

2n

LP
RP

Figure 6.12: Summing the partial products.

not loading the result of the adder into the register. Not adding anything has the same effect as
adding 0.

SysDes_fig13

Partial
Products

0 SIn

Q
ShReg
D

LD
SHL

clk

2n2nn
A Zero

Extend

SA
LA

Figure 6.13: Generating the partial products.

The bits of the multiplier B will be “served up” one by one to determine whether the shifted
multiplicand should be added. We need to store B since this input may no longer be valid after
the initial Go signal. The shift register in Figure 6.14 should be loaded with the B input at the
start and then shifted right so that the next multiplier bit is available as the rightmost bit (NB[0]
of the output NB. The 0 on the SIn input will fill in the bits from the left with 0’s as the bits of
B are shifted out. When all of the bits in the shift register are 0 the multiplication is complete.
There will be no further additions. The NOR gate output will be 1 when all, except possibly the
rightmost bit, of NB is 0.

SysDes_fig14

0 SIn

Q
ShReg
D

LD
SHR

clk

nn
B NB NB[0]

n-1
NB[n-1:1]

SB
LB

Figure 6.14: Shift register for providing multiplier bits.

The block diagram in Figure 6.15 assembles the three components. The missing piece is the
controller that will provide values to control their inputs as well as the Ready external output. The
state diagram for the controller is shown in Figure 6.16. Only two states are needed. In the initial
state CHILL. the machine waits for a Go signal while indicating that it is ready. When Go becomes 1
at the clock edge, the registers are initialized by asserting RP, LA, and LB. The machine transitions
to state SHADD, where both shift registers will shift at clock edges. The P register is loaded when m,
the current multiplier bit is 1. When the input z is 1, the machine transitions back to state CHILL

999999

Beginning Logic Design Chapter 6. Sequential System Design

2n

2n +

Control

go

clk

m

SysDes_fig15

2n

LD
R

Q

clk

Reg
D P

0 SIn

Q
ShReg
D

LD
SHL

clk

2n2nnA Zero
Extend

LA
SA

0 SIn

Q
ShReg
D

LD
SHR

clk

nnB NB

LB
SB

LP
RP

LA
SA

LB
SB

LP
RP

NB[0]

z

Ready
Go

clk

Zn-1
NB[n-1:1]

Figure 6.15: Block diagram for Shift and Add multiplier.

since there will be no more additions after the clock edge. The outputs that need to be asserted
have been indicated on the arcs (Mealy outputs) or in the state (Moore output). Table 6.1 is

CHILL SHADD

go

go

#z % m

SysDes_fig16

RP,LA,LB
Ready SA,SB

LP
#z % 'm

z % 'm
z % m LP

Figure 6.16: State diagram for multiplier control.

the state transition table. Here a different format is used. Instead of a column for each possible
value of the three inputs (8 columns!) there is a column for each input, and each row corresponds
to a transition in the state diagram. Each row identifies the current state and the combination of
inputs for a specific transition and provides the next state and values of the outputs.3 From the
state diagram, 1’s have been entered when the outputs need to be asserted. The remaining entries
could all be 0, but there may be cases where there is a choice. For example, the outputs SA and
SB can either be 0 or 1 in state CHILL while go is 0. This is not the case for the LP since register
P must keep its value, the result of the multiplication, until the next go signal. In Table 6.1 don’t
cares (?’s) have been entered for output values that can be either 0 or 1. Depending on the shift
register design, it might be possible for their LD and SH inputs to be simultaneously 1. But without
knowing their specific behavior, we need to assume that the shift registers’ LD and SH inputs should
not be simultaneously 1 when their contents need to be valid. There are 7 outputs shown in

3Computer architecture students may note the similarity with microcode.

100100100

Beginning Logic Design Chapter 6. Sequential System Design

 Present Inputs Next Outputs
 State go z m State Ready RP LA LB LP SA SB

 CHILL 0 – – CHILL 1 0 ? ? 0 ? ?
 CHILL 1 – – SHADD 1 1 1 1 0 0 0
 SHADD – 0 0 SHADD 0 0 0 0 0 1 1
 SHADD – 0 1 SHADD 0 0 0 0 1 1 1
 SHADD – 1 0 CHILL 0 0 0 0 0 ? ?
 SHADD – 1 1 CHILL 0 0 0 0 1 ? ?

Table 6.1: State transition table for Shift and Add multiplier.

Table 6.1, but they can be reduced to 4. For example, RP, LA, and LB can all be one signal which
we will name initR, by resolving LA, and LB’s don’t cares to agree with RP. SA and SB can be the
same signal, sh. The output LP is not compatible with any of the other outputs. Since there are
only two states, only one FF is needed. The state and output equations are:

Next_CHILL = go ∗ CHILL+ z ∗ SHADD

SHADD = CHILL

initR = go ∗ CHILL

sh = SHADD

loadP = m ∗ SHADD

ready = CHILL

The completed block diagram is in Figure 6.17. The 6 outputs needed to control the registers have
been reduced to 3 (SH, LP, and InitR) and connected to the registers.

2n

2n +

Control

go

clk

ready

m

SysDes_fig17

2n

LD
R

Q

clk

Reg
D P

0 SIn

Q
ShReg
D

LD
SHL

clk

2n2nnA Zero
Extend

InitR
SH

0 SIn

Q
ShReg
D

LD
SHR

clk

nnB NB

InitR
SH

LP
InitR

InitR
SH

LP

NB[0]

z

ReadyGo

clk

Zn-1
NB[n-1:1] initR

sh

loadP

CHILL SHADD

go

go initR

ready sh

#z % m loadP

#z % 'm

z % 'm

z % m loadP

Figure 6.17: Completed block diagram and state diagram for the Shift and Add Multiplier.

The design in this section mimics the familiar multiplication method taught in grade schools. This
particular design has two obvious inefficiencies. First, at each stage, only an n-bit addition is taking

101101101

Beginning Logic Design Chapter 6. Sequential System Design

place. In all but n of the columns 0 is being added. Hence the 2n-bit adder could be replaced with
an n-bit adder by shifting the accumulated sum P rather than the multiplicand A. Second, checking
whether the remaining multiplier bits are all 0 as the termination condition (an n-bit NOR) will
eventually, as n grows, become less efficient than using a counter to track the number of iterations.
In any event, more efficient multiplier designs exist that use faster adders, higher radix, and take
direct advantage of the realization technology.

6.4 Shift and Subtract Divider

To divide an integer A by D we will reverse the process used in the Shift and Add multiplier,
essentially attempting to subtract potential partial products. The symbol for the divider is shown
in Figure 6.18. The result of the division is two integers, the quotient Q and the remainder Rem.

Sequential Divider

Q

clk

n

Go

Divider

Dn
An

Ready

Rem n

SysDes_fig31

Figure 6.18: Symbol for Divider.

Although the number of clock cycles needed to complete the division will not vary, the divider still
provides an output Ready that signals when the divider is available or busy. The Ready output also
indicates that the output buses Q and Rem have the result from the most recent division. When the
divider is available, the input Go will begin the division of the two integers on the inputs A and D.
These two inputs should be valid on the same clock edge where Go becomes 1, but need not remain
afterward. The Ready output will be 0 on the next clock edge. When the Ready output is 1 again,
this indicates that the output buses Q and Rem have the result of the division of A by D.

1 5 9
- 1 2

- 3 6
3 9

3

1 3
0 0 1 5 9

- 0 1 2

- 3 6
3 9

3

1 3

- 0 0 0

0

0 0 1 5 9

Remainder

Divisor

Dividend

Quotient

0 1 21 2

Division Example: 159/12

SysDes_fig32a

0 0 1 5 9
- 0 0 0 0 x 0 1 2

0 0 1 5 9
- 0 1 2 1 x 0 1 2

0 0 0 3 9
- 0 3 6 3 x 0 1 2

0 0 0 0 3 Remainder

DivisorDividend Quotient

SysDes_fig32bFigure 6.19: Decimal long division of 159 by 12.

Figure 6.19 shows the paper-pencil long division of 159 by 12 on the left, with the process on the
right. In each step, a shifted version of the divider is considered. The number of multiples of

102102102

Beginning Logic Design Chapter 6. Sequential System Design

this shifted version that can be subtracted from what remains of the dividend determines the next
digit of the quotient. The initial remainder is the dividend. In the paper-pencil method, the most
significant digits of the dividend and divisor were aligned, while a general process for 3-digit integers
would zero-extend the dividend by two digits so that the least significant digit of the divisor would
align with the most significant digit of the dividend.

In binary, the only multiples of the divisor to consider are 0 or 1 so we merely need to check whether
we can subtract the divisor from the remainder. The division of 159 by 12 assuming 8 binary digits
is shown in Figure 6.20(a). Our divider will align the rightmost bit of the divisor with the leftmost
bit of the dividend, In Figure 6.20(b), the process for the division of 8-bit integers D into A is
shown. Each step requires a 15-bit subtraction.

1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0

1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0

1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0

1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0

1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1
0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

1 5 9
1 2 0

0

0

0

1

1

0

1

1 3
SysDes_fig33

0 0 0 0 0 0 0 0 A A A A A A A A
I 0 D D D D D D D D 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 R R R R R R R R
I 0 0 D D D D D D D D 0 0 0 0 0 0

0 0 0 0 0 0 0 0 R R R R R R R R

I 0 0 0 D D D D D D D D 0 0 0 0 0
0 0 0 0 0 0 0 0 R R R R R R R R

I 0 0 0 0 D D D D D D D D 0 0 0 0
0 0 0 0 0 0 0 0 R R R R R R R R

I 0 0 0 0 0 D D D D D D D D 0 0 0
0 0 0 0 0 0 0 0 R R R R R R R R

I 0 0 0 0 0 0 D D D D D D D D 0 0
0 0 0 0 0 0 0 0 R R R R R R R R

I 0 0 0 0 0 0 0 D D D D D D D D 0
0 0 0 0 0 0 0 0 R R R R R R R R

I 0 0 0 0 0 0 0 0 D D D D D D D D
0 0 0 0 0 0 0 0 R R R R R R R R

Q

Q

Q

Q

Q

Q

Q

Q

SysDes_fig34

Figure 6.20: (a) 8-bit binary division of 159 by 12; (b) 8-bit binary division of A by D.

Figure 6.21 contains the design of the divider for n-bit unsigned integers corresponding to the
process in Figure 6.20(b). Here the inputs, unsigned n-bit integers, are converted to 2n-bit signed
integers to support the subtraction of unsigned 2n − 1-bit integers. Three registers are used to
hold the remainder (R), the divisor (D), and the quotient (Q). The R register is loaded with the
zero-extended A at the start and then will be loaded with the result of the subtraction when needed.
The D shift register is loaded with the shifted divisor at the start and then shifted right at each
iteration. The Q shift register holds the resulting quotient at the end of the process by capturing
each bit as it is produced bit and shifting left. The Q shift register is also used to detect the last
iteration: it is initially loaded with the n-bit vector representing “1” (n − 1 zero’s and 1 in the
rightmost position) and then Q’s leftmost bit will become 1 after exactly n− 1 iterations.

The state diagram for the controller is shown in Figure 6.22. As with the Shift and Ad Multiplier,
only two states are needed. In the initial state, CHILL, the machine waits for the go while indicating
that it is ready to begin a new division and that outputs Q and R hold the result of the previous
division (if any). The machine transitions to the state TESTSUB when it receives the go signal.
While in TESTSUB the D and Q registers will be shifted, and the R register will be loaded if D can
be subtracted from R (if D is not greater than R). Once n− 1 bits of the quotient has been shifted
into Q, the leftmost bit of Q (last) becomes 1, and the machine transitions back to CHILL as it
shifts in the last bit of the quotient into Q and updates R if needed.

103103103

Beginning Logic Design Chapter 6. Sequential System Design

2n
SUB

Control

go

clk

ge

n RemLD

SHR

A

SD
Q

ShReg

Din

LD

clk

2n

2nD
LD

LA

LR
SQ

LD

GE

last

Ready

Go

clk

Q
Reg

D

s clk

2n

LR

Q[n-1]

Rem

LQ

2n

SD

1

LA

Zero
Extend

Zero
Shift

2nn

Reduce

0

SysDes_fig35

R

D

Q
Q

LD
n

LQ

SIn

Q
ShReg

SHL
GE
SQ

clk

Dinn1s

Figure 6.21: Design of divider for n-bit integers.

CHILL

go

go LA,LD,LQ,LR

Ready SQ,	SD

ge (last

TESTSUB

ge (last
ge (last LR

ge (last		LR

SysDes_fig36

Figure 6.22: State diagram for divider control.

The state transition table for this machine, Table 6.2, uses the same format as the multiplier’s:
each row identifies the current state and the combination of inputs for a specific transition, and
provides the next state and values of the outputs. From the state diagram, 1’s have been entered
when the outputs need to be asserted. The remaining entries could all be 0, but there may be
cases where there is a choice. For example, the outputs LA and LD can either be 0 or 1 in state
CHILL while go is 0. This is not the case for the LQ and LR since registers Q and R must keep their
contents, the result of the division, until the next go signal. In Table 6.2 don’t cares (?’s) have been
entered for output values that can be either 0 or 1. There are 7 outputs shown in Table 6.2, but
they can be reduced to 4. Outputs LA, LD, and LQ can all be one signal which we will name InitD,
by resolving LA, and LD’s don’t cares to agree with LQ. SD and SQ can be the same signal, SH. The
output LR is not compatible with any of the other outputs. Since there are only two states, only
one FF is needed. The state and output equations are:

Next_CHILL = go ∗ CHILL+ last ∗ TESTSUB

TESTSUB = CHILL

104104104

Beginning Logic Design Chapter 6. Sequential System Design

 Present Inputs Next Outputs
 State go last ge State Ready LA LD LQ LR SD SQ

 CHILL 0 – – CHILL 1 ? ? 0 0 ? 0
 CHILL 1 – – TESTSUB 1 1 1 1 1 0 0

 TESTSUB – 0 0 TESTSUB 0 ? 0 0 0 1 1
 TESTSUB – 0 1 TESTSUB 0 0 0 0 1 1 1
 TESTSUB – 1 0 CHILL 0 ? ? 0 0 ? 1
 TESTSUB – 1 1 CHILL 0 0 ? 0 1 ? 1

Table 6.2: State transition table for Divider.

initD = go ∗ CHILL

sh = TESTSUB

loadR = go ∗ CHILL+ ge ∗ TESTSUB

ready = CHILL

The completed design of the divider is in Figure 6.23.

2n
SUB

Control

go

clk ready

ge

n Rem
LD

SHR

A

SH
Q

ShReg

Din

LD

clk

2n

2nD
INITD

INITD

LR
SH

GE

last

Ready

Go

clk

Q
Reg

D

s clk

2n

LR

Q[n-1]

Rem
2n

1

INITD

Zero
Extend

Zero
Shift

2nn

Reduce

0

SysDes_fig37

R

D

Q
Q

LD
n

INITD

SIn

Q
ShReg

SHL
GE
SH

clk

Dinn1s

initD
sh

loadR

CHILL

go
go initD,loadR

ready sh

ge (last

TESTSUB

ge (last
ge (last loadR

ge (last		loadR

SysDes_fig38

Figure 6.23: Completed design of divider.

As in the multiplier design, only an n-bit subtraction is taking place. Hence the 2n-bit subtraction
(adder) can be reduced to n-bits by shifting the remainder R rather than the divisor D.

6.5 Asynchronous Outputs: A cautionary tale

In Section 4.8, the use of a D FF as a synchronizer was introduced to synchronize an asynchronous
input so to avoid violating timing constraints. Care must also be taken when outputs are connected
to devices that do not share the same system clock. Some of these devices may be sensitive to
glitches as well as the timing of transitions.

In Section 2.10, we observed a glitch on the output of a 2-input multiplexer as shown in Figure 2.20.

105105105

Beginning Logic Design Chapter 6. Sequential System Design

Waveforms for this circuit’s inputs and outputs over a longer time frame are shown in Figure 6.24.
 Here the output f has a glitch at time 60. This may or may not affect the component connected

SysDec_fig18

1

0

a

b

c

f

1

0
1

0
1

0
1

0

a
b f

c

e

gd

10 20 30 40 50 60 70 80 90 100 110 120

1

0
clk

Figure 6.24: A 2-input multiplexer and a timing diagram showing its glitch.

to f. To remove the glitch f can be passed through a D FF as shown in Figure 6.25. This not only
removes the glitch but also results in a pulse that is the width of the clock. However, the output
f_synch is delayed by adding the D FF and this might be an issue SysDec_fig19

1

0

a

b

c

f

1

0
1

0
1

0
1

0
1

0

a
b f_synch

c

e

gd
D Q
D FFf

clk

10 20 30 40 50 60 70 80 90 100 110 120

f_synch

clk 1

0

Figure 6.25: Passing the 2-input multiplexer output through a FF.

Consider the following design where the goal is a circuit that retrieves data based on an input
key.4 The desired component, Dictionary, is shown in Figure 6.26. This component has two
synchronous inputs, a Go signal that begins the search, and the 8-bit Key. When Go is 1 on the
clock edge, the search begins with the Ready transitioning to 0. After some number of clock cycles,
the Ready output returns to 1. If the Found output is 0, no data corresponding to the Key. was
found, But when the Found output is 1, the 12-bit output Data is associated with the Key. Both
Ready and Found will keep their values until the next time Go is 1.

4In computer architecture such a circuit is referred to as an associative memory, but it is not implemented in the
manner presented here.

106106106

Beginning Logic Design Chapter 6. Sequential System Design

clk

12
Go

Dictionary

8 Key[7:0] Found
Data[11:0]

Ready

Look up Data associated with Key

Data stored in 20-bit Rolodex (sequential access memory).

Each 20-bit entry is a Key-Data pair.

Build a circuit to scan for first match of Key.

Figure 6.26: The Dictionary component.

Our Dictionary will be implemented using an asynchronous component, the Rolodex shown in
Figure 6.27.5 This component stores the keys and data as 20-bit words.

W0 W1 W2 W3 W4

10 20 30 40 50 60𝜇𝑠 𝜇𝑠𝜇𝑠 𝜇𝑠𝜇𝑠

1

0

1

0

First

Next

Word

Last

1

0

1

0

1

0

First and Next are asynchronous inputs

20
First

Rolodex

Next

Word[19:0]

Last

Figure 6.27: The Rolodex component storing the keys and data.

The list of words in the Rolodex are accessed one at a time using the inputs First and Next. The
operation of the Rolodex is illustrated by the timing diagram in Figure 6.28. A high pulse on

W0 W1 W2 W3 W4

10 20 30 40 50 60𝜇𝑠 𝜇𝑠𝜇𝑠 𝜇𝑠𝜇𝑠

1

0

1

0

First

Next

Word

Last

1

0

1

0

1

0

First and Next are asynchronous inputs

20
First

Rolodex

Next

Word[19:0]

Last

W1924 W1925 W1926 W1927

10 20 30 40 50 60𝜇𝑠 𝜇𝑠𝜇𝑠 𝜇𝑠𝜇𝑠

1

0

1

0

First

Next

Word

Last

1

0

1

0

1

0

First and Next are asynchronous inputs

20
First

Rolodex

Next

Word[19:0]

Last

Figure 6.28: The operation of the Rolodex component storing the keys and data.

the First input resets the Rolodex to its first word. A high pulse on the Next input advances the
Rolodex to the next word in its list. The output Last will be 1 when the last word in the list is
reached. Note that the Word output is unknown while either First and Next are high. Since the
Rolodex component has no clock input, the First and Next inputs must be valid at all times in
addition to meeting specific timing requirements.

5This component has been imagined purely for this example.

107107107

Beginning Logic Design Chapter 6. Sequential System Design

To implement the Dictionary we create a state machine FSM that restarts and then advances the
Rolodex until the upper 8 bits of the Word output matches Key. We stop advancing the Rolodex
if there is a match or the last word is reached. The design, including the state diagram for FSM,
is shown in Figure 6.29. Here the Go input is passed through an edge detector before the state

20
First

Rolodex

Next

Word[19:0]

Last

D Q
EdgeD

Found
First

FSM

wGo
wclk

GoP
Next

Last

I1

EQ

Comparator

I2
8

12
wData

wFound

wReady

wKey

Ready

S0 S1

GoP/First

S2

GoP Last ! Found

Last+Found

NextReady

8

SysDes_fig23

Figure 6.29: The initial design of the Dictionary component.

machine so that only one search will be initiated when Go goes high. A comparator is used to
determine when the top 8 bits of the Rolodex Word output matches the Key input. Note that
this design requires the Key input to remain stable until the result of the search is no longer
needed.

The functional simulation of the design in Figure 6.29 is shown in Figure 6.30.6 The timing diagram
on the left has a simulation where Key matches the fourth word (W3) and the timing diagram on
the right has a simulation where Key matches the first word (W0). This is the expected behavior of
the design.

S2 S1 S2 S1 S0S2 S1S0 S1

W0 W1 W2 W3

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

Functional simulation with Key matching Word3

GoP 1

0

Next 1

0

1

0

Found 1
0

State

First

Word

Ready

S0S0 S1

W0

Functional simulation with Key matching Word0

GoP 1

0

Next 1

0

1

0

Found 1
0

10 20 30 40 50 60!" !"!" !"!"
clk

1

0

State

First

Word

Ready

Figure 6.30: The functional simulation of the Dictionary design.

Unfortunately once implemented the design is not able to match the key associated with word
W0. The timing simulation shown in Figure 6.31, may explain why the design is not performing
correctly. The output Next of the state machine is 1 briefly just after the transition from state S0

6In a functional simulation there is no timing information for combinational logic.

108108108

Beginning Logic Design Chapter 6. Sequential System Design

Word S0 S1

W1 W2 W3 W3 W4

1

0

GoP

Next

First

1

0

1

0

1

0

In Timing simulation with Key matching Word0 is not found

10 20 30 40 50 60𝜇𝑠 𝜇𝑠𝜇𝑠 𝜇𝑠𝜇𝑠
clk

1

0

S2 S1 S2 S1

Found 1
0

S2 S1

Word

State

Ready
1

0

S2 S1 S2

SysDes_fig25

Figure 6.31: The timing simulation of the Dictionary design.

to state S1. This pulse causes the Rolodex to advance, rather than remain at word W0 for one clock
cycle. When the key is associated with word W0, the Rolodex does not stop at word W0. To remove
this glitch on the output Next, we could add D FFs to the outputs of FSM as in Figure 6.32. The

20
First

Rolodex

Next

Word[19:0]

Last

D Q
EdgeD

Found

FirstFSM

wGo

wclk

GoP

NextLast

I1

EQ

Comparator

I2
8

12
wData

wFound

wReady

D Q
D FF

D Q
D FF

Solution???

S0 S1

GoP/First

S2

GoP Last ! Found

Last+Found

NextReady

Ready

wKey

8

SysDes_fig26

Figure 6.32: The revised design of the Dictionary component.

resulting timing simulation after introducing the D FFs is shown in Figure 6.33. The outputs
of the new D FFs are DFirst and DNext. Although the glitch on Next is no longer reaching the
Rolodex, DNext is delayed by one clock cycle, which delays the Found signal as well. Now Found
is unknown when the state machine is in state S1. As a result, the next state becomes unknown.7
Redesigning the state machine to take into account the one cycle delay of DFirst and DNext is
one approach to solving the problem. A simpler approach is to examine the source of the glitch on
Next in the original design.

In Figure 6.34, the state diagram and encoding of FSM are shown on the top, and the circuit and
7The reader can verify that while passing only Next and not First through D FFs would correctly match a key

corresponding to word W0, it will result in an unknown state when the key does not correspond to word W0.

109109109

Beginning Logic Design Chapter 6. Sequential System Design

Word S0 S1

W0

1

0

GoP

Next

First

1

0

1

0

1

0

10 20 30 40 50 60𝜇𝑠 𝜇𝑠𝜇𝑠 𝜇𝑠𝜇𝑠
clk

1

0

Found 1
0

Word

State

1

0
DFirst

DNext 1

0

Now with Found is not correct in State S1
Figure 6.33: The timing simulation of the revised Dictionary design.

S0 S1

GoP/First

S2

GoP Last ! Found

Last+Found

NextReady

SysDes_fig28a

 Symbolic Encoded State
 State Q1 Q0

 S0 0 1
 S1 1 0
 S2 1 1

!"

clk

D Q
D FF

D Q
D FF

Next
!#

SysDes_fig28c

S2S0 S1

1

0

1

0

State

!"
!#

1

0
Next

!"
clk

1

0

SysDes_fig28d

Figure 6.34: Source of the glitch in the original Dictionary FSM’s Next output.

timing simulation of the output Next is shown on the bottom. As FSM transitions from S0 to S1
the outputs of the state FFs, Q1 and Q0 both change. It appears that Q1 transitions from 0 to 1,
before Q0 transitions from 1 to 0. (This could be due to clock skew. But even without clock skew,
wiring delays might result in Q1’s transition reaching the AND gate before Q0’s.) As a result, the
output of the AND gate goes high and then low (a short high pulse). Even though Next is a Moore
output, (depending only on the state of FSM), its output logic can have transients.

Rather than adding D FFs to outputs to remove transients, a state machine can be implemented
so that all or some of its outputs come directly from FFs. In Figure 6.35, a different encoding is
used for state S0. Now the logic for Next depends only on Q0, so Next is the output of the D FF
for Q0.

In output encoding, the states of a state machine are encoded using their output values. Figure 6.36
shows an example. The table on the left in Figure 6.36 has the desired values for the outputs,
O0, O1, and O2, of the five states of a state machine. A state encoding is on the right. The

110110110

Beginning Logic Design Chapter 6. Sequential System Design

S0 S1

GoP/First

S2

GoP Last ! Found

Last+Found

NextReady

SysDes_fig28a

 Symbolic Encoded State
 State Q1 Q0

 S0 0 1
 S1 1 0
 S2 1 1

!"

clk

D Q
D FF

D Q
D FF

Next

!#

SysDes_fig29c

S2S0 S1

1

0

1

0

State

!"
!#

1

0
Next

!"
clk

1

0

SysDes_fig29d

Figure 6.35: A new state encoding for the Dictionary FSM.

first three state bits, Q0, Q1, and Q2 correspond to the values of the outputs O0, O1, and O2.
Since S0 and S1 have the same output values, a fourth state bit, Q3, is added to provide different
encodings. Similarly, S2 and S3 are differentiated using the fourth bit. With this state encoding,
the outputs will correspond to state bits and will be implemented as direct outputs of FFs. In

 State O1 O2 O3

 S0 1 0 0
 S1 1 0 0
 S2 1 1 1
 S3 1 1 1
 S4 0 0 1

 State Q0 Q1 Q2 Q3

 S0 1 0 0 0
 S1 1 0 0 1
 S2 1 1 1 0
 S3 1 1 1 1
 S4 0 0 1 1

Figure 6.36: Output encoding of state machines.

a large design, it is often advantageous to have a small state machine handle the communication
with an asynchronous device (such as a memory) and the output encoding would only be needed
for the small state machine.

Even with output encoding, two outputs that transition at the same clock edge, cannot be assumed
to be exactly simultaneous. To ensure that one output transitions before the other, these changes
should not occur on the same clock edge. At most one output should change value at every clock
edge, such as in the Gray Code counter in Section 5.1.1.

One additional takeaway from the misguided insertion of D FFs into the Dictionary design is that
adding FFs on internal connections may introduce clock delays between components that affect their
operation. Even within a synchronous design, the effect on communication between components
needs to be carefully considered when introducing clock delays on their interconnections. Retiming
is a methodology for modifying the timing of a synchronous circuit by inserting positive and negative

111111111

Beginning Logic Design Chapter 6. Sequential System Design

clock delays.8 These clock delay insertions are balanced to retain the original communication
timing, but can then be repositioned within the circuit.

6.6 Gratuitous Advice

In this chapter, we have designed our circuits by selecting ”off-the-shelf” components and deriving
a state machine to control them. The boundary between ”control” and ”data” in a circuit is a
view imposed by the designer. The circuit itself is merely a list of gates, flip-flops, and nets. While
the entire design can be thought of as a large state machine, decomposing a design allows the
reuse of components, and imposes a structure that tools can use to optimize its implementation.
Further, imposing a hierarchy can reduce the design’s complexity and thereby enhance correctness.
Often there are multiple options in decomposing a design, offering trade-offs between complexity
and efficiency. In the bike counter in Section 6.2, instead of a separate timer, the state machine
could have included 16 additional states after the front wheel was detected to count the clock edges
between wheels. With one-hot state encoding, this amounts to replacing the 4-bit binary counter
for the timer with a 16-bit ring counter. Beginning a design by creating the block diagram and
symbols for the top-level components is an excellent way to discover and create a hierarchy in the
design.

8Despite a long and exhaustive search, the implementation of a device with a negative clock delay, a circuit whose
output predicts the value of its next input, still eludes us.

112112112

Beginning Logic Design Appendix A. Table of Symbols

113113113

Beginning Logic Design Appendix A. Table of Symbols

Appendix A

Symbols

 Name Symbol Logic Page

 NOT I O

NOTsymbol

 I O
 0 1
 1 0

 Page 1

 AND
I1
I2

O

ANDsymbol

 I1 I2 O
 0 0 0
 0 1 0
 1 0 0
 1 1 1

 Page 1

 OR
I1
I2

O

ORsymbol

 I1 I2 O
 0 0 0
 0 1 1
 1 0 1
 1 1 1

 Page 1

 NAND

NANDsymbol

I1
I2

O

 I1 I2 O
 0 0 1
 0 1 1
 1 0 1
 1 1 0

 Page 24

 NOR

NORsymbol

OI1
I2

 I1 I2 O
 0 0 1
 0 1 0
 1 0 0
 1 1 0

 Page 24

114114114

Beginning Logic Design Appendix A. Table of Symbols

 Name Symbol Logic Page

 XOR
I1
I2

O

XORsymbol

 I1 I2 O
 0 0 0
 0 1 1
 1 0 1
 1 1 0

 Page 10

 XNOR
I1
I2

O

XNORsymbol

 I1 I2 O
 0 0 1
 0 1 0
 1 0 0
 1 1 1

 Page 30

 BUF

BUFsymbol

I O
 I O
 0 0
 1 1

 Page 58

 D FF

DFFsymbol

D Q
D FF D clock Q

 0 ↑ 0
 1 ↑ 1
 - ��↑ no change

 Page 49

 DE FF

Seq_fig18-5

(a) (c)

D Q
DE FF

E D
QD Q

D FF

clk
E

s

0

1 D Q

clk
E

D Q
D FF

(b)

 D E clock Q
 0 1 ↑ 0
 1 1 ↑ 1
 - 0 - no change
 - - ��↑ no change

 Page 59

 2-1MUX

2-1MUXsymbol

s

I0

I1
O

 s O
 0 I0
 1 I1

 Page 29

115115115

Beginning Logic Design Appendix B. Binary Representations

Appendix B

Binary Representations

Many different binary codes assemble strings of “0” and “1” to represent various objects/values.
How we interpret them depends on the context and conventions we have established. This ap-
pendix describes several standard representations based on “0” and “1” that are used in computer
systems.

A bit is a single digit that can have two values, 0 or 1. A bit-vector is an ordered list of bits,
A⃗ = ⟨an−1 . . . a1a0⟩. The number of bits, n, is the length or width of the bit vector. A bit-vector of
length n has 2n possible values. How these values are interpreted depends on the type we associate
with the vector.

B.1 Unsigned Integer

The most common interpretation of a bit-vector is as the integer value it represents in radix 2
(more familiarly base 2). That is, A⃗ = ⟨an−1 . . . a1a0⟩ is associated with the integer value

I(A⃗) = an−1 ∗ 2n−1 + an−2 ∗ 2n−2 + · · ·+ a1 ∗ 21 + a0 ∗ 20

For example, the bit vector ⟨00011010⟩ represents the decimal value 0 ∗ 25+1 ∗ 24+1 ∗ 23+0 ∗ 22+
1∗21+0∗20 = 0+16+8+0+2+0 = 26. The leftmost bit is the most significant. As an unsigned
integer, a bit-vector of length n represents a non-negative integer in the range 0 to 2n − 1.1 Below
are the values for n = 8.

I(A⃗) A⃗

255 11111111

254 11111110

253 11111101

.

4 00000100

3 00000011

1The integer value 0 is neither positive nor negative.

116116116

Beginning Logic Design Appendix B. Binary Representations

2 00000010

1 00000001

0 00000000

B.2 2’s Complement Integer

In 2’s Complement, the integers in the range −2n−1 through 2n−1 − 1 are represented using the
following formula:

T (A⃗) =

{︄
I(A⃗) if an−1 = 0

I(A⃗)− 2n if an−1 = 1

The top half of the unsigned range is used for the negative integers. The leftmost bit, an−1 of A⃗
tells us whether it is negative or not. For example with n = 8, 255 is now -1, 254 is now -2, ..., and
128 is now -128.

T (A⃗) I(A⃗) A⃗
127 127 01111111
126 126 01111110
125 125 01111101
.
2 2 00000010
1 1 00000001
0 0 00000000
−1 255 11111111
−2 254 11111110
−3 253 11111101
.

−128 128 10000000

 As before, to find the n-bit vector corresponding to an integer N ≥ 0, we use the base 2 represen-
tation for N . To represent −N < 0 we find the base 2 representation of 2n −N > 0. For example,
for n = 8 and N = 26 we have 28 − 26 = 256 − 26 = 230 and the base 2 representation of 230
is ⟨11100110⟩. Hence ⟨11100110⟩ represents −26 in 2’s complement. This may seem complicated,
but there is a simpler way to find the 2’s complement vector corresponding to −N . It’s based on
observing that 2n is the n-bit vector of all 1’s plus the vector corresponding to 1:

2n = (2n − 1) + 1 = I(⟨111 . . . 11⟩) + I(⟨000 . . . 01⟩).

To find the 2’s complement representation of −N we are calculating

2n −N = (2n − 1) + 1−N = I(⟨111 . . . 11⟩)−N + I(⟨000 . . . 01⟩)

If A⃗ is the base 2 representation of N then

I(⟨111 . . . 11⟩)−N = I(⟨111 . . . 11⟩ − ⟨an−1 . . . a1a0⟩) = ⟨an−1 . . . a1a0⟩ = A⃗

Subtracting A⃗ from ⟨111 . . . 11⟩ results in the complement of A⃗. In our example for −26, the base
2 representation of 26 is ⟨00011010⟩, and its complement is ⟨11100101⟩. Adding 1 to ⟨11100101⟩
gives ⟨11100110⟩ as before. So to find the 2’s complement vector corresponding to −N , we can

117117117

Beginning Logic Design Appendix B. Binary Representations

complement the vector corresponding to N and add 1. This works even for N < 0! The big
advantage of using 2’s complement is that all arithmetic operations are the same as with unsigned
integers. We only need to consider signs to detect overflow. Counters are the same regardless of
whether their output is considered an unsigned or signed integer. Another advantage is that two
signed integers with the same sign can be compared in the same manner as unsigned integers. That
is, if A⃗ and B⃗ have the same leftmost bit, then T (A⃗) < T (B⃗) if and only if I(A⃗) < I(B⃗).

B.3 ASCII Character

The ASCII code associates the characters of the alphabet with 8-bit values. Although arithmetic
is not usually performed with characters, their values are compared to determine the alphabetic
order of words. The upper case characters “A” to “Z” run sequentially through the 8-bit values
from 65 to 90, while the lower case “a” to “z” are from 97 through 122. The difference between
the upper case and lower case versions of a letter is exactly 32. This conveniently allows us to
compare the alphabetic order of two letters, regardless of case, by ignoring the sixth bit (a5) of
their binary code. The numeric characters, “0” to “9” are also conveniently sequential starting at
48. The ASCII code is now the character code used almost everywhere. The EBCDIC code (from
IBM) preceded ASCII but is now seldom used except in legacy data/systems.

118118118

Beginning Logic Design Appendix C. Proofs of Boolean Algebra Identities

Appendix C

Boolean Algebra Identities

This appendix contains the proofs of several boolean algebra identities. Each proof relies only on
the laws of boolean algebras or identities earlier in the list.

Idempotent
a+ a = a a ∗ a = a
Proof: Proof:
a+ a = (a+ a) ∗ 1 (Identity) a ∗ a = (a ∗ a) + 0 (Identity)

= (a+ a) ∗ (a+ a) (Complement) = (a ∗ a) + (a ∗ a) (Complement)
= a+ (a ∗ a) (Distributive) = a ∗ (a+ a) (Distributive)
= a+ 0 (Complement) = a ∗ 1 (Complement)
= a (Identity) = a (Identity)

Domination
a+ 1 = 1 a ∗ 0 = 0
Proof: Proof:
a+ 1 = (a+ 1) ∗ 1 (Identity) a ∗ 0 = a ∗ 0 + 0 (Identity)

= (a+ 1) ∗ (a+ a) (Complements) = a ∗ 0 + a ∗ a (Complements)
= a+ (1 ∗ a) (Distributive) = a ∗ (0 + a) (Distributive)
= a+ a (Identity) = a ∗ a (Identity)
= 1 (Complements) = 0 (Complements)

Absorption
a+ a ∗ b = a a ∗ (a+ b) = a
Proof: Proof:
a+ a ∗ b = (a ∗ 1) + a ∗ b (Identity) a ∗ (a+ b) = (a+ 0) ∗ (a+ b) (Idenity)

= a ∗ (1 + b) (Distributive) = a+ (0 ∗ b) (Distributive)
= a ∗ 1 (Domination) = a+ 0 (Domination)
= a (Identity) = a (Identity)

119119119

Beginning Logic Design Appendix C. Proofs of Boolean Algebra Identities

Simplification
a+ a ∗ b = a+ b a ∗ (a+ b) = a ∗ b
Proof: Proof:
a+ a ∗ b = (a+ a) ∗ (a+ b) (Distributive) a ∗ (a+ b) = a ∗ a+ a ∗ b (Distributive)

= 1 ∗ (a+ b) (Complements) = 0 + a ∗ b (Complements)
= a+ b (Identity) = a ∗ b (Identity)

Uniqueness of complements
If a+ b = 1 and a ∗ b = 0 then b = a.
Proof:
Suppose a+ b = 1 and a ∗ b = 0 then
b = 1 ∗ b (Identity)

= (a+ a) ∗ b (Complements)
= a ∗ b+ a ∗ b (Distributive)
= 0 + a ∗ b (Hypothesis)
= a ∗ a+ a ∗ b (Complements)
= a ∗ (a+ b) (Distributive)
= a ∗ 1 (Hypothesis)
= a (Identity)

Involution
a = a
Proof: By the Complement Laws we know a + a = 1 and a ∗ a = 0. So by the Uniqueness of
Complements, a must be the complement of a: that is, a = a.

DeMorgan’s Laws
(a+ b) = a ∗ b
Proof:
(a+ b) = (a+ b) ∗ 1 (Identity)

= (a+ b) ∗ (a+ 1) (Domination)
= (a+ b) ∗ (a+ (b+ b)) (Complements)
= (a+ b) ∗ (b+ (a+ b)) (Associative)
= (a+ b) ∗ (b+ (a+ a ∗ b)) (Simplification)
= (a+ b) ∗ ((a+ b) + a ∗ b) (Associative)
= (a+ b) ∗ (a ∗ b) (Simplification)
= (a+ b) ∗ (a ∗ b) + 0 (Identity)
= (a+ b) ∗ (a ∗ b) + (0 + 0) (Identity or Idempotent)
= (a+ b) ∗ (a ∗ b) + (0 ∗ b+ 0 ∗ a) (Domination)
= (a+ b) ∗ (a ∗ b) + ((a ∗ a) ∗ b+ (b ∗ b) ∗ a) (Complements)
= (a+ b) ∗ (a ∗ b) + ((a ∗ (a ∗ b) + b ∗ (b ∗ a)) (Associative)
= (a+ b) ∗ (a ∗ b) + ((a ∗ (a ∗ b) + b ∗ (a ∗ b)) (Commutative)
= (a+ b) ∗ (a ∗ b) + (a+ b) ∗ (a ∗ b) (Distributive)
= ((a+ b) + (a+ b)) ∗ (a ∗ b) (Distributive)
= 1 ∗ (a ∗ b) (Complements)
= a ∗ b (Identity)

Rather than applying duality to the proof above for the second DeMorgan Law, below we use

120120120

Beginning Logic Design Appendix C. Proofs of Boolean Algebra Identities

uniqueness of complements. Note that the proof above essentially uses the same steps for estab-
lishing the uniqueness of complements.

(a ∗ b) = a+ b
Proof:
(a+ b) + (a ∗ b) = (a+ (a ∗ b))b (Associative, Commutative)

= (a+ b) + b (Simplification)
= a+ (b+ b) (Associative)
= a+ 1 (Complements)
= 1 (Domination)

(a+ b) ∗ (a ∗ b) = (a) ∗ (a ∗ b) + (b) ∗ (a ∗ b) (Distributive)
= (a ∗ a) ∗ b+ a ∗ (b ∗ b) (Associative, Commutative)
= 0 ∗ b+ a ∗ 0 (Complements)
= 0 + 0 (Domination)
= 0 (Identity)

By the uniqueness of complements, (a+ b) is the complement of (a ∗ b) hence a+ b = (a ∗ b).

C.1 Duality

You may have noticed that the laws of boolean algebra laws come in pairs that have a similar
structure. Within each pair, exchanging the +’s and ∗’s, and the 0’s and 1’s in one equation results
in the other equation. This property extends to the identities proved in this appendix. The proofs
themselves can be obtained by this transformation.

The dual of an expression E is obtained by swapping the two operations ∗ and + as well as 0 and
1. The order of the operations in the original expression should remain the same so parentheses
may be needed. For example, the dual of a + b ∗ c is a ∗ (b + c) as opposed to a ∗ b + c. Here are
more examples of expressions and their duals:
E dual of E
a a
0 + a 1 ∗ a
a+ bc a ∗ (b+ c)

ab+ ab (a+ b) ∗ (a+ b)

An expression and its dual are not, in general, equivalent. The dual of an expression can be
equivalent to the original, the complement of the original, or neither. One result that does follow
is:

If E1 and E2 are equivalent expressions, then their dual expressions are equivalent
to each other.

For example, after showing that
a+ a ∗ b = a+ b

we can also conclude that
a ∗ (a+ b) = a ∗ b

121121121

Beginning Logic Design Appendix C. Proofs of Boolean Algebra Identities

rather than providing a proof that uses the dual of the law at every step.

Bonus material
As mentioned, the Associative Law can be derived from the other 4 axioms of Boolean Algebras (the
Commutative, Identity, Complements, and Distributive Laws). Below is a proof for the disjunctive
operator. Note that the Domination, Absorption, and Simplification Identities were all shown
without using the Associative Law. The equivalent law for the conjunctive operator follows from
the principle of duality.

Associativity
(a+ b) + c = a+ (b+ c)
Proof:
(a+ b) + c = a ∗ ((a+ b) + c) + ((a+ b) + c) (Absorption)

= (a ∗ (a+ b) + a ∗ c) + ((a+ b) + c) (Distributive)
= (a+ a ∗ c) + ((a+ b) + c) (Absorption)
= a+ ((a+ b) + c) (Absorption)
= a+ a ∗ ((a+ b) + c) (Simplification)
= a+ (a ∗ (a+ b) + a ∗ c) (Distributive)
= a+ (a ∗ b+ a ∗ c) (Simplification)
= a+ a ∗ (b+ c) (Distributive)
= a+ (b+ c) (Simplification)

122122122

Beginning Logic Design Appendix D. Bibliography

Appendix D

Bibliography

[1] George Boole. An Investigation of the Laws of Thought: On Which Are Founded the Math-
ematical Theories of Logic and Probabilities. Cambridge Library Collection - Mathematics.
Cambridge University Press, 2009. (Originally published in 1854.).

[2] M. Karnaugh. The map method for synthesis of combinational logic circuits. Transactions
of the American Institute of Electrical Engineers, Part I: Communication and Electronics,
72(5):593–599, 1953.

[3] Edward V. Huntington. Sets of independent postulates for the algebra of logic. Transactions
of the American Mathematical Society, 5(3):288–309, 1904.

[4] Robert K Brayton, Gary D Hachtel, Lane A Hemachandra, A Richard Newton, and Alberto
Luigi M Sangiovanni-Vincentelli. A comparison of logic minimization strategies using espresso:
An apl program package for partitioned logic minimization. In Proceedings of the International
Symposium on Circuits and Systems, pages 42–48, 1982.

[5] Robert K Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R Wang. Mis:
A multiple-level logic optimization system. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6(6):1062–1081, 1987.

[6] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

123123123

	List of Figures
	List of Tables
	Foreword
	Fundamentals
	Creating logic circuits
	Modeling the behavior of logic circuits
	Combinational versus Sequential Logic
	Technology aspects that might matter

	Combinational Logic
	Introduction
	Boolean functions
	Truth tables and Kmaps
	Boolean Expressions
	Boolean Algebra
	Logic Diagrams and Boolean Expressions
	Sum-of-Products, Minterms, and Canonical SOP
	Product-of-Sums, Maxterms, and Canonical POS
	Bubbles and DeMorgan's Laws
	Transient behavior of combinational circuits
	Regular structures
	Decoders
	Multiplexers
	Comparators

	Pre-fabricated components
	Look-Up Tables
	Programmable Logic Devices

	Synthesis of Combinational Logic
	Introduction
	Literals
	Using Kmaps to obtain minimal SOP/POS expressions
	Finding implicants
	Forming the cover
	Using Kmaps to obtain minimal SOP expressions
	Using Kmaps to obtain minimal POS expressions
	Taking advantage of Don't Cares

	Beyond Kmaps
	Tabular method for generating PIs
	PI chart for selecting a cover

	Multiple outputs and two-level synthesis
	ESPRESSO, MISII, and BDDs

	Synchronous Sequential Circuits
	The clock
	Basic memory device: the D Flip-Flop
	Rules for synchronous design

	A simple shift register
	Parity checker
	Counters
	Registers
	Analysis of Synchronous Sequential Circuits
	Example 1 sequential circuit analysis
	Example 2 sequential circuit analysis

	Synchronizing external inputs
	Timing Constraints

	Synthesis of Synchronous Sequential Circuits
	Counters revisited
	Gray Code Counter

	Even Blocks Machine
	Even Blocks Machine Mealy Version

	Message Checker
	One-hot State Encoding
	Well-defined State Machines
	Mealy versus Moore
	State Minimization

	Sequential System Design
	Introduction
	Bike Counter
	Bike Counter revisited

	Shift and Add Multiplier
	Shift and Subtract Divider
	Asynchronous Outputs: A cautionary tale
	Gratuitous Advice

	Table of Symbols
	Binary Representations
	Unsigned Integer
	2's Complement Integer
	ASCII Character

	Proofs of Boolean Algebra Identities
	Duality

	Bibliography

