
Lawrence Berkeley National Laboratory
LBL Publications

Title
EFFICIENT COMPUTATION OF SURFACE SUNLIT FRACTIONS IN URBAN-SCALE BUILDING
MODELING USING RAY-TRACING TECHNIQUES

Permalink
https://escholarship.org/uc/item/9q02q8sd

Authors
Luo, Xuan
Tang, Yu-hang
Hong, Tianzhen

Publication Date
2020

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9q02q8sd
https://escholarship.org
http://www.cdlib.org/

Energy Technologies Area
Lawrence Berkeley National Laboratory

Efficient Computation Of Surface Sunlit
Fractions In Urban-scale Building Modeling
Using Ray-tracing Techniques

Xuan Luo, Yu-hang Tang, and Tianzhen Hong
Lawrence Berkeley National Laboratory, Berkeley, CA

August 2020

Disclaimer:

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof or the Regents of
the University of California.

2020 Building Performance Analysis Conference and

SimBuild co-organized by ASHRAE and IBPSA-USA

Chicago, IL

August 12-14, 2020

EFFICIENT COMPUTATION OF SURFACE SUNLIT FRACTIONS IN URBAN-SCALE

BUILDING MODELING USING RAY-TRACING TECHNIQUES

Xuan Luo1, Yu-hang Tang1, Tianzhen Hong1
1Lawrence Berkeley National Laboratory, Berkeley, California, USA

ABSTRACT

For building energy simulation at an urban-scale, solar

shading calculations can be significantly slow when a

large number of shading surfaces are considered in the

solar shading calculations, due to the computational

complexity of the geometry calculations. We developed

a new algorithm using the ray-tracing technique to pre-

calculate the sunlit fractions of all exterior surfaces in an

urban district altogether. The ray tracing-based

calculator is accelerated using General Purpose Graphics

Processing Units (GPGPUs) and the Optix ray tracing

library, and provides an efficient, flexible, and robust

means for computing the sunlit fraction of large numbers

of urban surfaces of complex geometries.

INTRODUCTION

Buildings are responsible for about one-third of the

global energy consumption and a quarter of carbon

dioxide (CO2) emissions. Cities are paying greater

attention to building energy efficiency in urban planning,

and in meeting the city’s goals for the reduction of

greenhouse gas (GHG) emissions. To inform decision

making in urban energy planning, it requires to design

and operate urban buildings as a group rather than as

single individuals, accounting for interactions among

buildings (Hong et al. 2020). Modeling and optimizing

the performance of a group of buildings at an urban scale

provides quantitative insight for urban energy efficiency

and resiliency.

Accurate calculation of solar shading on building

exterior surfaces is of great importance in whole building

energy modeling, especially in dense urban areas where

buildings shaded each other. Building thermal load and

energy simulation requires the calculation of the

shadows caused by the building environment, building

elements or shading devices based on the certain angle

of incidence of the sun relative to the surface being

considered (Dubois 1997). Algorithms for solar shading

calculations have direct repercussions on the accuracy of

the results and the computational times of building

simulation tools. In building energy simulation tools,

analytical solutions such as polygon clipping algorithms,

are commonly used for shadow calculations for

individual buildings with shading surfaces (Crawley et

al. 2001). Research has also demonstrated the feasibility

and advantage of using a computer’s graphics

processing unit (GPU) to accelerate the calculation of

buildings’ solar shading (Jones and Greenberg 2012).

Computational tools for UBEM can simulate the

performance of buildings at urban-scale to provide

quantitative insights for stakeholders into the impact of

energy efficiency measures on buildings in urban

environments. In UBEM, modeling the energy use of a

building in an urban context requires simulating the

buildings’ shading effect with other buildings, including

solar shading. To assess heat gains and daylight in

buildings due to the sun for each of the building models,

it is necessary to know how much of each part of the

building is shaded and how much is in direct sunlight.

However, modeling a building in an urban context may

involve many shading surfaces from adjacent buildings

and structures, which can significantly slow down

building simulations using shading algorithms that

calculate each building individually. In UBEM tools,

GIS-based district level solar shading models have been

developed to estimate the solar potential of a building

group, including simplified geometry calculations (Melo

et al. 2013; Karteris, Slini, and Papadopoulos 2013; Lilis,

Giannakis, and Rovas 2017) and stochastic models with

image processing (Liang et al. 2014).

Ray tracing was a computer graphics algorithm

originally proposed for generating photorealistic

renderings by emulating the transmission of light rays in

3D scene. In this algorithm, a number of rays are shot

from a source region into the scene, while the

intersection between the rays and scene objects are then

solved and used to recursively compute a path of the ray

bouncing between object surfaces. The ray tracing

algorithm carries the following advantages:

1. The intersection of rays with many geometric objects

can be solved analytically. This allows for efficient and

robust handling of objects with non-convex and other

complex shapes.

2. By manipulating the initiation and recursive

generation of rays, it is straightforward to implement

various surface/light interactions such as diffusion,

transparency, and radiation.

3. The computation for tracing individual rays is strictly

independent and hence could be parallelized easily.

Currently, ray tracing has found widespread application

in tasks such as data visualization, indoor-light

emulation, 3D model reconstruction, and optical design.

The performance of ray tracing applications has also

seen exponential growth thanks to the introduction of

programmable GPGPUs and more recently RT cores in

the CUDA architecture, which are specialized hardware

for ray tracing. In particular, Monte Carlo Ray Tracing

has been adopted in calculating solar shading and

reflectance in urban canopy models for microclimate

modeling (Wang et al. 2016; Krayenhoff et al. 2014;

Erdélyi et al. 2014), but is less applied to detailed urban

building geometries for UBEM.

In this study, we developed a new algorithm using the

ray-tracing technique to pre-calculate the sunlit fractions

of each exterior surface of all buildings at district- or

city-scale. The ray-tracer we developed adopts the

stochastic sampling techniques, which are used to

simulate the interactions between rays and building

objects, including exterior surfaces and shading surfaces

in the building models. The calculator is then accelerated

using General Purpose Graphics Processing Units

(GPGPUs) and the Optix ray tracing library. We tested

the tracer’s performance using a standalone nine-zone

EnergyPlus model with L-shape geometry, attached

overhangs, and detached external shading surfaces. We

conducted a sensitivity analysis with different number of

rays as the input. We then applied the feature in

EnergyPlus to batch import the pre-calculated sunlit

fractions for annual simulation runs. A case study was

conducted with a district of 22 high-rise buildings in

downtown Chicago to evaluate the accuracy and

computation cost using the ray-tracing technique,

compared with using EnergyPlus to calculate solar

shading for individual buildings. We also discussed the

ray-tracer’s performance regarding different number of

urban surfaces considered in the shading calculation

scene.

METHODOLOGY

Ray-tracing for shading calculation

To calculate building surface shading, the ray tracing

algorithm works by shooting parallel rays, whose

directions are determined by the solar angle and the

geolocation of the building, onto the surfaces. The rays

are generated from a randomized planar grid, whose

direction is perpendicular to that of the rays. The spatial

extent of the source grid is determined to be the most

compact bounding box of the projection of all scene

objects onto the source plane. The ray tracer will then

compute the nearest hit point of each ray with the

surfaces in the scene, and then respawn the rays beyond

the hit point in order to discover all surfaces that lie along

the direction of the rays. The respawned rays are

necessary for estimating the total area of each surface

and for computing shading behind semi-transparent

surfaces, while the process will terminate when no more

surface hits can be found for each ray. The sunlit fraction

of a surface can then be deduced as the ratio between the

energy of first-hit rays and respawned rays.

Our ray-tracing program is written in CUDA C++ and

makes use of the NVIDIA Optix Prime library. CUDA

C++ is an extension of the C++ language with syntactic

features for executing codes on the CUDA GPUs. Optix

Prime is a lower-level program engine that simplifies the

design of ray tracing applications that executes on either

CUDA GPUs or x86 CPUs. Specifically, we used Optix

to compute the point of intersection between rays and

building models, while our custom CUDA C++ code is

used for scene modeling, ray generation and respawning,

results consolidation and post-processing.

Figure 1 Illustration of the ray-tracing algorithm for

calculating shadowing effect.

Figure 2 Flow chart of the ray tracer program.

For the input of the ray-tracer, we defined a “scene

schema” in JSON format, describing the surfaces in the

calculation scene. A scene specifies a list of the surfaces

modeled by polygons. A surface is required to input its

unique ID and 3D coordinate of the vertices. A surface

can also specify its transmittance, and the default is

opaque. A window surface is required to declare the ID

of its attached wall surface.

The program produces plain text output which can be

easily parsed and converted into common data file types

such as CSV and JSON.

Applying the ray-tracer in EnergyPlus

When EnergyPlus assesses heat gains in buildings due to

solar radiation, it needs to know how much of each part

of the building is shaded and how much is in direct

sunlight. Sunlit areas regarding the direct solar path

determine the solar gain of the building. The sunlit area

of each surface changes as the position of the sun

changes during the day. At the hourly time step, the solar

position is described in terms of three direction cosines

that are convenient for determining the angle of

incidence of the sun’s rays on a building surface,

calculated according to the solar declination angle and

the equation of time. In an urban scene with a fixed site

latitude and longitude, the annual schedule of solar

position angles in three direction cosines (SUNCOS

schedule) is also fixed and can be used as inputs of the

ray-tracer.

For standalone building simulation, EnergyPlus employs

polygon clipping algorithms to calculate sunlit fraction,

including the Sutherlan-Hodgman algorithm and the

Convex Weiler-Atherton algorithm. After polygon

clipping, the solar module calculates the overlapping

shadows to determine the final sunlit area for each

surface. With the current analytical implementation, the

results are accurate, but the calculation is

computationally intensive and can take a long time for

large building energy models with a lot of shading

surfaces. We added a new feature to EnergyPlus

(Version 8.9 and later) to optionally turn off the internal

calculation of solar shading and import pre-calculated

shading fractions as schedules for exterior surfaces. The

new feature enables a significant speedup for parametric

simulations that do not change building geometry or

shading surfaces as the solar shading calculations do not

need to be repeated between simulations. Currently, The

Schedule:File:Shading object allows shading schedules

to be imported altogether from a CSV file. The object

can be used to read in hourly or sub-hourly schedules of

the sunlit fraction of all exterior surfaces computed by

other software or developed in a spreadsheet or other

utility. We design the ray-tracer to output to the CSV

format compatible with EnergyPlus, and we adopt this

feature to import the sunlit fraction altogether to

EnergyPlus calculated by the tracer.

RESULTS

We tested the calculation accuracy of the tracer

compared to the analytical solution of EnergyPlus using

(1) a fictional two-story, nine-zone building located in

Phoenix, AZ, and (2) a high-rise office building located

in downtown Chicago, IL. They are referred to as the

Nine-story Building and High-rise Office, respectively.

The Nine-story Building has detached shading, reveals,

windows and self-shading, as visualized in Figure 3. The

detached shadings, located in both the east and west side

of the building, have a solar transmittance of 0.8. The

High-rise Office is surrounded by other buildings and its

surrounding surfaces are plotted in Figure 4. We ran

EnergyPlus simulation for one week (January 1st to

January 7th) at hourly timestep, and report the sunlit

fractions of all walls, roofs, and windows.

Figure 3 Geometry of a fictional nine-zone building.

Figure 4 A high-rise building model and its shading

surfaces.

The scene inputs for the models were created based on

the exterior surfaces, fenestrations, and shading surfaces’

geometry and transmittance inputs in EnergyPlus IDF

input files. The SUNCOS schedules for Phoenix and

Chicago were derived by EnergyPlus weather inputs.

For validation, we assume the sunlit fractions calculated

by EnergyPlus’ polygon clipping algorithms are the

ground truth values, and the tracer should provide

identical results with adequate sampling. However, it

should be noted that the tracer currently has a simplified

implementation for windows without considering the

window recess, as illustrated in Figure 5. Differences are

expected in window sunlit fraction calculation results

due to neglecting the grey area shaded by the window

recess.

Figure 5 Shading of window recess

To measure accuracy, we reported both Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE)

between the ray-tracer result and EnergyPlus result as,

𝑀𝐴𝐸 =
∑ ∑ |𝑓′−𝑓|𝑛

𝑖=1
𝑘
𝑡=1

𝑛𝑘
, (1)

RMSE = √∑ ∑ (𝑓′−𝑓)2𝑛
𝑖=1

𝑘
𝑡=1

𝑛𝑘
, (2)

where 𝑓′ is the ray-tracing result, 𝑓 is the polygon

clipping result, n is the total number of surfaces and k is

the total number of time steps to compare.

We also compared the accuracy of introducing different

number of rays in the ray-tracer calculation of the scene.

For validation, the metrics were reported based on an

average of (1) all surfaces and all timesteps (marked with

subscript A, (2) partial shaded surfaces of those

timesteps when the ground truth sunlit fraction is less

than 1 and greater than 0 (marked with subscript P). For

demonstration, windows are seperately compared. The

accuracy measurements, excluding window surfaces, are

listed in Table 1 and Table 2.

Table 1 Accuracy measurements of the Nine-zone

Building scene

OF RAYS MAEA RMSEA MAEP RMSEP

10,000 0.0030 0.0178 0.0081 0.0255

100,000 0.0009 0.0058 0.0024 0.0098

1,000,000 0.0005 0.0056 0.0014 0.0096

10,000,000 0.0005 0.0056 0.0014 0.0095

Table 2 Accuracy measurements of the High-rise Office

scene

OF RAYS MAEA RMSEA MAEP RMSEP

10,000 0.0619 0.2159 0.2403 0.4273

100,000 0.0021 0.0341 0.0120 0.0800

1,000,000 0.0002 0.0103 0.0008 0.0234

10,000,000 0.0000 0.0001 0.0000 0.0002

The results validate that with a reasonable number of

rays (e.g., 100,000 for the Nine-zone Building and

1,000,000 for the High-rise Office) introduced to the

scene, the tracer can calculate the sunlit fraction with an

average RMSE of less than 0.01. The High-rise Office

with many more surfaces requires more rays to achieve

adequate accuracy. The error decreases with the number

of rays increases from 10,000 to 1,000,000, while the

effect gets marginal when the number of rays continues

to go up.

Table 3 Accuracy measurements of the Nine-zone

Building scene – window surfaces

OF RAYS MAEA RMSEA MAEP RMSEP

10,000 0.0693 0.1313 0.1019 0.1591

100,000 0.0691 0.1312 0.1014 0.1589

1,000,000 0.0691 0.1312 0.1013 0.1590

For windows, however, the tracer results deviate from

the EnergyPlus results as listed in Table 3 due to the

simplification of the window recess. In these two cases,

an average error of less than 0.1 of the sunlit fractions

only causes an EnergyPlus simulated cooling and

heating load difference of less than 0.1%, for both the

annual total and peak loads. This is because the errors

due to sampling are random, and can be either an over-

or underestimation at each time step. If the errors are in

one direction with an average overestimation of 0.1 (the

window recess simplification), the annual energy

difference can be over 4% for both test cases.

CASE STUDY

Domain and simulation settings

We chose a city block in the Chicago downtown area

with highly dense high-rise buildings to conduct a case

study, as shown in Figure 6. The block contains 20

buildings with various heights and geometry. Instead of

conducting shading calculation building by building,

with the ray-tracer, we consider the whole city block as

a single urban scene to include all exterior surfaces in the

block and calculate their shadowing effect.

Figure 6 Building model and its shading surfaces.

We use the CityBES platform to model all buildings and

compared the shading calculation between applying

CityBES’ internal shading models and applying the ray-

tracer over this urban scene. CityBES is an open and free

data and computing web platform which uses CityGML-

based 3D city models to simulates building performance

at an urban scale, adopting EnergyPlus and Openstudio

as its simulation cores (Hong et al. 2016). CityBES

models the neighborhood buildings as shading surfaces

in EnergyPlus to consider the solar overshadowing effect

between buildings (Chen, Hong, and Piette 2017).

CityBES first processes the city GIS data to determine

the shading/neighborhood buildings, and assigned the

associated neighborhood exterior surfaces as the

potential shading surfaces. The High-rise Building in

Figure 4 is the 3D visualization of the highlighted

building in Figure 6 along with its shading surfaces (grey)

calculated by CityBES.

The internal model in CityBES still requires exhaust

search of the potential shadowing surfaces in the

building block or district. Beyond that, each building has

to perform its own shading calculation. With a massive

number of buildings in a larger simulation domain, the

process can be heavy-lifting. Applying the ray-tracer in

UBEM reduces the order of calculation by considering

buildings as a group.

For EnergyPlus models in the urban block, the

coordinates of each model are relative to its own origin.

To generate a single simulation scene for the ray-tracer,

we first converted the local coordinates to global based

on each building’s GIS location. Each surface in the

scene was applied with a unique name, and the sunlit

fraction was mapped back to the corresponding building

surface after the ray-tracer calculation.

Run time analysis

The run time performance is measured by the

computational time of the shading calculation

functionality alone. In EnergyPlus, we set a customized

timer measuring one-day simulation of the sunlit fraction

computation. For the ray-tracer, we measured the total

time of creating CUDA context, loading scene file,

parsing, post-processing and recursive ray tracing. We

further compared the ray-tracer’s computing time of the

three scenes to the calculation time in EnergyPlus in

Table 4. The number of exterior surfaces and shading

surfaces are also listed for reference. For the Chicago

Urban District scene, there are no external shading or

attached shading for buildings, while all buildings can

shade each other. All measurements are based on the

average hourly run time with a weekly simulation for

both calculations.

Table 4 Sunlit fraction calculation computing time of

the three scenes

CASE

NINE-

ZONE

OFFICE

HIGH-

RISE

BUILDING

CHICAGO

URBAN

DISTRICT

Exterior Surfaces 72 517 3119

Shading Surfaces 11 24 3119

Tracer

Calculation

Time

(seconds)

104 rays 0.005 0.005 0.014

105 rays 0.005 0.006 0.015

106 rays 0.008 0.008 0.018

107 rays 0.030 0.022 0.035

108 rays 0.220 0.140 0.237

Tracer I/O Overhead

(seconds)

0.150 0.159 0.278

EnergyPlus (seconds) 0.001 0.003 0.064

The run time benchmark results indicate the tracer takes

only 0.5 seconds (calculation time + I/O overhead) to

calculate the 20 buildings with 108 rays for a scene shot.

The calculation run time is linear with the number of

rays. The results show that for small models, the run time

of shading calculation in EnergyPlus is neglectable.

However, when the model becomes complex and the

number of surfaces reaches a certain amount as in the

high-rise building scene, the ray-tracer outperforms the

polygon-clipping method in EnergyPlus. The run time of

the ray tracer scales logarithmically with the scene size.

The tracer has the advantage of calculating large urban

scenes with a group of buildings as it does not require to

simulate building by building.

The report I/O overhead only includes the building scene

input and processing time, and does not include I/O from

the tracer back to EnergyPlus in this case study, which

could be another overhead depending on the complexity

of an urban scene. Efficiently adopting the ray-tracing

technique requires estimation of the data I/O overhead as

well.

CONCLUSION AND DISCUSSION

In this study, we introduced a ray tracing-based

calculator for efficient computation of sunlit fractions in

urban-scale building modeling. Tested with a sample

building, the ray-tracer results’ RMSE is less than 0.01

compared to EnergyPlus’s analytical solution. Tested in

an urban block with 20 high rise buildings, the tracer was

able to process 108 rays in 0.5 seconds for a city-scale

scene that contains 3120 surfaces. This approach

provides an efficient, flexible, and robust means for

computing the sunlit fraction of buildings that contain a

large number of surfaces of complex geometries and

absorbance characteristics. In an UBEM scene, the tracer

can extract geometry information from EnergyPlus

inputs and output sunlit fraction schedules back to

EnergyPlus directly without extra pre- or post-

processing. The workflow is also scalable to larger urban

domains. Future work includes improving algorithms to

handle window recess and applying ray-tracing

considering solar reflectance for further tracing the solar

beams. The work is also to be deployed in a larger

UBEM domain for accuracy/performance analysis.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a

collaborative effort of two DOE organizations - the

Office of Science and the National Nuclear Security

Administration.

REFERENCES

Chen, Yixing, Tianzhen Hong, and Mary Ann Piette.

2017. “City-Scale Building Retrofit Analysis: A

Case Study Using CityBES.” In Building

Simulation 2017. San Francisco, CA, USA.

Crawley, Drury B, Linda K Lawrie, Frederick C

Winkelmann, W F Buhl, Y Joe Huang, Curtis O

Pedersen, Richard K Strand, et al. 2001.

“EnergyPlus : Creating a New-Generation

Building Energy Simulation Program” 33.

Dubois, Mc. 1997. “Solar Shading and Building Energy

Use.” Lund University, no. 960480: 1–118.

https://doi.org/TABK--97/3049.

Erdélyi, Róbert, Yimin Wang, Weisi Guo, Edward

Hanna, and Giuseppe Colantuono. 2014. “Three-

Dimensional SOlar RAdiation Model (SORAM)

and Its Application to 3-D Urban Planning.”

Solar Energy 101: 63–73.

https://doi.org/10.1016/j.solener.2013.12.023.

Hong, Tianzhen, Yixing Chen, Sang Hoon Lee, and

Mary Ann Piette. 2016. “CityBES : A Web-Based

Platform to Support City-Scale Building Energy

Efficiency.” In Urban Computing 2016. San

Francisco, San Francisco, California, USA.

Hong, Tianzhen, Yixing Chen, Xuan Luo, Na Luo, and

Sang Hoon Lee. 2020. “Ten Questions on Urban

Building Energy Modeling.” Building and

Environment 168 (August 2019): 106508.

https://doi.org/10.1016/j.buildenv.2019.106508.

Jones, Nathaniel L ., and Donald P. Greenberg. 2012.

“Hardware Accelerated Computation of Direct

Solar Radiation through Transparent Shades and

Screens.” 5th National Conference of the

International Building Performance Simulation

Association-USA, 595–602.

Karteris, M., Th Slini, and A. M. Papadopoulos. 2013.

“Urban Solar Energy Potential in Greece: A

Statistical Calculation Model of Suitable Built

Roof Areas for Photovoltaics.” Energy and

Buildings 62: 459–68.

https://doi.org/10.1016/j.enbuild.2013.03.033.

Krayenhoff, E. S., A. Christen, A. Martilli, and T. R.

Oke. 2014. “A Multi-Layer Radiation Model for

Urban Neighbourhoods with Trees.” Boundary-

Layer Meteorology 151 (1): 139–78.

https://doi.org/10.1007/s10546-013-9883-1.

Liang, Jianming, Jianhua Gong, Wenhang Li, and

Abdoul Nasser Ibrahim. 2014. “A Visualization-

Oriented 3D Method for Efficient Computation of

Urban Solar Radiation Based on 3D-2D Surface

Mapping.” International Journal of Geographical

Information Science 28 (4): 780–98.

https://doi.org/10.1080/13658816.2014.880168.

Lilis, G N, G Giannakis, and D V Rovas. 2017. “Inter-

Building Shading Calculations Based on

CityGML Geometric Data.”

Melo, Emerson G., Marcelo P. Almeida, Roberto Zilles,

and José A.B. Grimoni. 2013. “Using a Shading

Matrix to Estimate the Shading Factor and the

Irradiation in a Three-Dimensional Model of a

Receiving Surface in an Urban Environment.”

Solar Energy 92: 15–25.

https://doi.org/10.1016/j.solener.2013.02.015.

Wang, Zhi Hua, Xiaoxi Zhao, Jiachuan Yang, and Jiyun

Song. 2016. “Cooling and Energy Saving

Potentials of Shade Trees and Urban Lawns in a

Desert City.” Applied Energy 161: 437–44.

https://doi.org/10.1016/j.apenergy.2015.10.047.

