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BUILDING MODELING USING RAY-TRACING TECHNIQUES

Xuan Luo1, Yu-hang Tang1, Tianzhen Hong1  
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ABSTRACT 

For building energy simulation at an urban-scale, solar 

shading calculations can be significantly slow when a 

large number of shading surfaces are considered in the 

solar shading calculations, due to the computational 

complexity of the geometry calculations. We developed 

a new algorithm using the ray-tracing technique to pre-

calculate the sunlit fractions of all exterior surfaces in an 

urban district altogether. The ray tracing-based 

calculator is accelerated using General Purpose Graphics 

Processing Units (GPGPUs) and the Optix ray tracing 

library, and provides an efficient, flexible, and robust 

means for computing the sunlit fraction of large numbers 

of urban surfaces of complex geometries. 

INTRODUCTION 

Buildings are responsible for about one-third of  the 

global energy consumption and a quarter of carbon 

dioxide (CO2) emissions. Cities are paying greater 

attention to building energy efficiency in urban planning, 

and in meeting the city’s goals for the reduction of 

greenhouse gas (GHG) emissions. To inform decision 

making in urban energy planning, it requires to design 

and operate urban buildings as a group rather than as 

single individuals, accounting for interactions among 

buildings (Hong et al. 2020). Modeling and optimizing 

the performance of a group of buildings at an urban scale 

provides quantitative insight for urban energy efficiency 

and resiliency. 

Accurate calculation of solar shading on building 

exterior surfaces is of great importance in whole building 

energy modeling, especially in dense urban areas where 

buildings shaded each other. Building thermal load and 

energy simulation requires the calculation of the 

shadows caused by the building environment, building 

elements or shading devices based on the certain angle 

of incidence of the sun relative to the surface being 

considered (Dubois 1997). Algorithms for solar shading 

calculations have direct repercussions on the accuracy of 

the results and the computational times of building 

simulation tools. In building energy simulation tools, 

analytical solutions such as polygon clipping algorithms, 

are commonly used for shadow calculations for 

individual buildings with shading surfaces (Crawley et 

al. 2001). Research has also demonstrated the feasibility 

and advantage of using a computer’s graphics 

processing unit (GPU) to accelerate the calculation of 

buildings’ solar shading (Jones and Greenberg 2012). 

Computational tools for UBEM can simulate the 

performance of buildings at urban-scale to provide 

quantitative insights for stakeholders into the impact of 

energy efficiency measures on buildings in urban 

environments. In UBEM, modeling the energy use of a 

building in an urban context requires simulating the 

buildings’ shading effect with other buildings, including 

solar shading. To assess heat gains and daylight in 

buildings due to the sun for each of the building models, 

it is necessary to know how much of each part of the 

building is shaded and how much is in direct sunlight. 

However, modeling a building in an urban context may 

involve many shading surfaces from adjacent buildings 

and structures, which can significantly slow down 

building simulations using shading algorithms that 

calculate each building individually. In UBEM tools, 

GIS-based district level solar shading models have been 

developed to estimate the solar potential of a building 

group, including simplified geometry calculations (Melo 

et al. 2013; Karteris, Slini, and Papadopoulos 2013; Lilis, 

Giannakis, and Rovas 2017) and stochastic models with 

image processing (Liang et al. 2014). 

Ray tracing was a computer graphics algorithm 

originally proposed for generating photorealistic 

renderings by emulating the transmission of light rays in 

3D scene. In this algorithm, a number of rays are shot 

from a source region into the scene, while the 

intersection between the rays and scene objects are then 

solved and used to recursively compute a path of the ray 

bouncing between object surfaces. The ray tracing 

algorithm carries the following advantages: 

1. The intersection of rays with many geometric objects

can be solved analytically. This allows for efficient and

robust handling of objects with non-convex and other

complex shapes.

2. By manipulating the initiation and recursive

generation of rays, it is straightforward to implement

various surface/light interactions such as diffusion,

transparency, and radiation.



   

 

3. The computation for tracing individual rays is strictly 

independent and hence could be parallelized easily. 

Currently, ray tracing has found widespread application 

in tasks such as data visualization, indoor-light 

emulation, 3D model reconstruction, and optical design. 

The performance of ray tracing applications has also 

seen exponential growth thanks to the introduction of 

programmable GPGPUs and more recently RT cores in 

the CUDA architecture, which are specialized hardware 

for ray tracing. In particular, Monte Carlo Ray Tracing 

has been adopted in calculating solar shading and 

reflectance in urban canopy models for microclimate 

modeling (Wang et al. 2016; Krayenhoff et al. 2014; 

Erdélyi et al. 2014), but is less applied to detailed urban 

building geometries for UBEM. 

In this study, we developed a new algorithm using the 

ray-tracing technique to pre-calculate the sunlit fractions 

of each exterior surface of all buildings at district- or 

city-scale. The ray-tracer we developed adopts the 

stochastic sampling techniques, which are used to 

simulate the interactions between rays and building 

objects, including exterior surfaces and shading surfaces 

in the building models. The calculator is then accelerated 

using General Purpose Graphics Processing Units 

(GPGPUs) and the Optix ray tracing library. We tested 

the tracer’s performance using a standalone nine-zone 

EnergyPlus model with L-shape geometry, attached 

overhangs, and detached external shading surfaces. We 

conducted a sensitivity analysis with different number of 

rays as the input. We then applied the feature in 

EnergyPlus to batch import the pre-calculated sunlit 

fractions for annual simulation runs. A case study was 

conducted with a district of 22 high-rise buildings in 

downtown Chicago to evaluate the accuracy and 

computation cost using the ray-tracing technique, 

compared with using EnergyPlus to calculate solar 

shading for individual buildings. We also discussed the 

ray-tracer’s performance regarding different number of 

urban surfaces considered in the shading calculation 

scene. 

METHODOLOGY 

Ray-tracing for shading calculation 

To calculate building surface shading, the ray tracing 

algorithm works by shooting parallel rays, whose 

directions are determined by the solar angle and the 

geolocation of the building, onto the surfaces. The rays 

are generated from a randomized planar grid, whose 

direction is perpendicular to that of the rays. The spatial 

extent of the source grid is determined to be the most 

compact bounding box of the projection of all scene 

objects onto the source plane. The ray tracer will then 

compute the nearest hit point of each ray with the 

surfaces in the scene, and then respawn the rays beyond 

the hit point in order to discover all surfaces that lie along 

the direction of the rays. The respawned rays are 

necessary for estimating the total area of each surface 

and for computing shading behind semi-transparent 

surfaces, while the process will terminate when no more 

surface hits can be found for each ray. The sunlit fraction 

of a surface can then be deduced as the ratio between the 

energy of first-hit rays and respawned rays. 

Our ray-tracing program is written in CUDA C++ and 

makes use of the NVIDIA Optix Prime library. CUDA 

C++ is an extension of the C++ language with syntactic 

features for executing codes on the CUDA GPUs. Optix 

Prime is a lower-level program engine that simplifies the 

design of ray tracing applications that executes on either 

CUDA GPUs or x86 CPUs. Specifically, we used Optix 

to compute the point of intersection between rays and 

building models, while our custom CUDA C++ code is 

used for scene modeling, ray generation and respawning, 

results consolidation and post-processing. 

 

Figure 1 Illustration of the ray-tracing algorithm for 

calculating shadowing effect. 

 
Figure 2 Flow chart of the ray tracer program. 

 



   

 

For the input of the ray-tracer, we defined a “scene 

schema” in JSON format, describing the surfaces in the 

calculation scene. A scene specifies a list of the surfaces 

modeled by polygons. A surface is required to input its 

unique ID and 3D coordinate of the vertices. A surface 

can also specify its transmittance, and the default is 

opaque. A window surface is required to declare the ID 

of its attached wall surface. 

The program produces plain text output which can be 

easily parsed and converted into common data file types 

such as CSV and JSON. 

Applying the ray-tracer in EnergyPlus 

When EnergyPlus assesses heat gains in buildings due to 

solar radiation, it needs to know how much of each part 

of the building is shaded and how much is in direct 

sunlight. Sunlit areas regarding the direct solar path 

determine the solar gain of the building. The sunlit area 

of each surface changes as the position of the sun 

changes during the day. At the hourly time step, the solar 

position is described in terms of three direction cosines 

that are convenient for determining the angle of 

incidence of the sun’s rays on a building surface, 

calculated according to the solar declination angle and 

the equation of time. In an urban scene with a fixed site 

latitude and longitude, the annual schedule of solar 

position angles in three direction cosines (SUNCOS 

schedule) is also fixed and can be used as inputs of the 

ray-tracer. 

For standalone building simulation, EnergyPlus employs 

polygon clipping algorithms to calculate sunlit fraction, 

including the Sutherlan-Hodgman algorithm and the 

Convex Weiler-Atherton algorithm. After polygon 

clipping, the solar module calculates the overlapping 

shadows to determine the final sunlit area for each 

surface. With the current analytical implementation, the 

results are accurate, but the calculation is 

computationally intensive and can take a long time for 

large building energy models with a lot of shading 

surfaces. We added a new feature to EnergyPlus 

(Version 8.9 and later) to optionally turn off the internal 

calculation of solar shading and import pre-calculated 

shading fractions as schedules for exterior surfaces. The 

new feature enables a significant speedup for parametric 

simulations that do not change building geometry or 

shading surfaces as the solar shading calculations do not 

need to be repeated between simulations.  Currently, The 

Schedule:File:Shading object allows shading schedules 

to be imported altogether from a CSV file. The object 

can be used to read in hourly or sub-hourly schedules of 

the sunlit fraction of all exterior surfaces computed by 

other software or developed in a spreadsheet or other 

utility. We design the ray-tracer to output to the CSV 

format compatible with EnergyPlus, and we adopt this 

feature to import the sunlit fraction altogether to 

EnergyPlus calculated by the tracer. 

RESULTS 

We tested the calculation accuracy of the tracer 

compared to the analytical solution of EnergyPlus using 

(1) a fictional two-story, nine-zone building located in 

Phoenix, AZ, and (2) a high-rise office building located 

in downtown Chicago, IL. They are referred to as the 

Nine-story Building and High-rise Office, respectively. 

The Nine-story Building has detached shading, reveals, 

windows and self-shading, as visualized in Figure 3. The 

detached shadings, located in both the east and west side 

of the building, have a solar transmittance of 0.8. The 

High-rise Office is surrounded by other buildings and its 

surrounding surfaces are plotted in Figure 4. We ran 

EnergyPlus simulation for one week (January 1st to 

January 7th) at hourly timestep, and report the sunlit 

fractions of all walls, roofs, and windows. 

 

 
Figure 3 Geometry of a fictional nine-zone building. 

 

  

Figure 4 A high-rise building model and its shading 

surfaces. 
 

The scene inputs for the models were created based on 

the exterior surfaces, fenestrations, and shading surfaces’ 

geometry and transmittance inputs in EnergyPlus IDF 

input files. The SUNCOS schedules for Phoenix and 

Chicago were derived by EnergyPlus weather inputs.  

For validation, we assume the sunlit fractions calculated 

by EnergyPlus’ polygon clipping algorithms are the 

ground truth values, and the tracer should provide 



   

 

identical results with adequate sampling. However, it 

should be noted that the tracer currently has a simplified 

implementation for windows without considering the 

window recess, as illustrated in Figure 5. Differences are 

expected in window sunlit fraction calculation results 

due to neglecting the grey area shaded by the window 

recess.  

 

Figure 5 Shading of window recess  
 

To measure accuracy, we reported both Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) 

between the ray-tracer result and EnergyPlus result as,  

𝑀𝐴𝐸 =
∑ ∑ |𝑓′−𝑓|𝑛

𝑖=1
𝑘
𝑡=1

𝑛𝑘
,                         (1) 

RMSE =  √∑ ∑ (𝑓′−𝑓)2𝑛
𝑖=1

𝑘
𝑡=1

𝑛𝑘
,                     (2) 

where 𝑓′  is the ray-tracing result, 𝑓  is the polygon 

clipping result, n is the total number of surfaces and k is 

the total number of time steps to compare. 

We also compared the accuracy of introducing different 

number of rays in the ray-tracer calculation of the scene. 

For validation, the metrics were reported based on an 

average of (1) all surfaces and all timesteps (marked with 

subscript A, (2) partial shaded surfaces of those 

timesteps when the ground truth sunlit fraction is less 

than 1 and greater than 0 (marked with subscript P). For 

demonstration, windows are seperately compared. The 

accuracy measurements, excluding window surfaces, are 

listed in Table 1 and Table 2. 
 

Table 1 Accuracy measurements of the Nine-zone 

Building scene 
 

# OF RAYS MAEA RMSEA MAEP RMSEP 

10,000 0.0030 0.0178 0.0081 0.0255 

100,000 0.0009 0.0058 0.0024 0.0098 

1,000,000 0.0005 0.0056 0.0014 0.0096 

10,000,000 0.0005 0.0056 0.0014 0.0095 
 

 

Table 2 Accuracy measurements of the High-rise Office 

scene 
 

# OF RAYS MAEA RMSEA MAEP RMSEP 

10,000 0.0619 0.2159 0.2403 0.4273 

100,000 0.0021 0.0341 0.0120 0.0800 

1,000,000 0.0002 0.0103 0.0008 0.0234 

10,000,000 0.0000 0.0001 0.0000 0.0002 
 

The results validate that with a reasonable number of 

rays (e.g., 100,000 for the Nine-zone Building and 

1,000,000 for the High-rise Office) introduced to the 

scene, the tracer can calculate the sunlit fraction with an 

average RMSE of less than 0.01. The High-rise Office 

with many more surfaces requires more rays to achieve 

adequate accuracy. The error decreases with the number 

of rays increases from 10,000 to 1,000,000, while the 

effect gets marginal when the number of rays continues 

to go up. 
 

Table 3  Accuracy measurements of the Nine-zone 

Building scene – window surfaces 

# OF RAYS MAEA RMSEA MAEP RMSEP 

10,000 0.0693 0.1313 0.1019 0.1591 

100,000 0.0691 0.1312 0.1014 0.1589 

1,000,000 0.0691 0.1312 0.1013 0.1590 
 

For windows, however, the tracer results deviate from 

the EnergyPlus results as listed in Table 3 due to the 

simplification of the window recess. In these two cases, 

an average error of less than 0.1 of the sunlit fractions 

only causes an EnergyPlus simulated cooling and 

heating load difference of less than 0.1%, for both the 

annual total and peak loads. This is because the errors 

due to sampling are random, and can be either an over- 

or underestimation at each time step. If the errors are in 

one direction with an average overestimation of 0.1 (the 

window recess simplification), the annual energy 

difference can be over 4% for both test cases. 

CASE STUDY 

Domain and simulation settings  

We chose a city block in the Chicago downtown area 

with highly dense high-rise buildings to conduct a case 

study, as shown in Figure 6. The block contains 20 

buildings with various heights and geometry. Instead of 

conducting shading calculation building by building, 

with the ray-tracer, we consider the whole city block as 

a single urban scene to include all exterior surfaces in the 

block and calculate their shadowing effect. 

 

 
Figure 6 Building model and its shading surfaces.  



   

 

 

We use the CityBES platform to model all buildings and 

compared the shading calculation between applying 

CityBES’ internal shading models and applying the ray-

tracer over this urban scene. CityBES is an open and free 

data and computing web platform which uses CityGML-

based 3D city models to simulates building performance 

at an urban scale, adopting EnergyPlus and Openstudio 

as its simulation cores (Hong et al. 2016).  CityBES 

models the neighborhood buildings as shading surfaces 

in EnergyPlus to consider the solar overshadowing effect 

between buildings (Chen, Hong, and Piette 2017). 

CityBES first processes the city GIS data to determine 

the shading/neighborhood buildings, and assigned the 

associated neighborhood exterior surfaces as the 

potential shading surfaces. The High-rise Building in 

Figure 4 is the 3D visualization of the highlighted 

building in Figure 6 along with its shading surfaces (grey) 

calculated by CityBES. 

The internal model in CityBES still requires exhaust 

search of the potential shadowing surfaces in the 

building block or district. Beyond that, each building has 

to perform its own shading calculation. With a massive 

number of buildings in a larger simulation domain, the 

process can be heavy-lifting. Applying the ray-tracer in 

UBEM reduces the order of calculation by considering 

buildings as a group.  

For EnergyPlus models in the urban block, the 

coordinates of each model are relative to its own origin. 

To generate a single simulation scene for the ray-tracer, 

we first converted the local coordinates to global based 

on each building’s GIS location. Each surface in the 

scene was applied with a unique name, and the sunlit 

fraction was mapped back to the corresponding building 

surface after the ray-tracer calculation. 

Run time analysis 

The run time performance is measured by the 

computational time of the shading calculation 

functionality alone. In EnergyPlus, we set a customized 

timer measuring one-day simulation of the sunlit fraction 

computation. For the ray-tracer, we measured the total 

time of creating CUDA context, loading scene file, 

parsing, post-processing and recursive ray tracing. We 

further compared the ray-tracer’s computing time of the 

three scenes to the calculation time in EnergyPlus in 

Table 4. The number of exterior surfaces and shading 

surfaces are also listed for reference. For the Chicago 

Urban District scene, there are no external shading or 

attached shading for buildings, while all buildings can 

shade each other. All measurements are based on the 

average hourly run time with a weekly simulation for 

both calculations.  

 

Table 4 Sunlit fraction calculation computing time of 

the three scenes 
 

CASE 

NINE-

ZONE 

OFFICE 

HIGH-

RISE 

BUILDING 

CHICAGO 

URBAN 

DISTRICT 

# Exterior Surfaces 72 517 3119 

# Shading Surfaces 11 24 3119 

Tracer 

Calculation  

Time 

(seconds) 

104 rays 0.005 0.005 0.014 

105 rays 0.005 0.006 0.015 

106 rays 0.008 0.008 0.018 

107 rays 0.030 0.022 0.035 

108 rays 0.220 0.140 0.237 

Tracer I/O Overhead 

(seconds) 

0.150 0.159 0.278 

EnergyPlus (seconds) 0.001 0.003 0.064 
 

The run time benchmark results indicate the tracer takes 

only 0.5 seconds (calculation time + I/O overhead) to 

calculate the 20 buildings with 108 rays for a scene shot. 

The calculation run time is linear with the number of 

rays. The results show that for small models, the run time 

of shading calculation in EnergyPlus is neglectable. 

However, when the model becomes complex and the 

number of surfaces reaches a certain amount as in the 

high-rise building scene, the ray-tracer outperforms the 

polygon-clipping method in EnergyPlus. The run time of 

the ray tracer scales logarithmically with the scene size. 

The tracer has the advantage of calculating large urban 

scenes with a group of buildings as it does not require to 

simulate building by building. 

The report I/O overhead only includes the building scene 

input and processing time, and does not include I/O from 

the tracer back to EnergyPlus in this case study, which 

could be another overhead depending on the complexity 

of an urban scene. Efficiently adopting the ray-tracing 

technique requires estimation of the data I/O overhead as 

well. 

CONCLUSION AND DISCUSSION  

In this study, we introduced a ray tracing-based 

calculator  for efficient computation of sunlit fractions in 

urban-scale building modeling. Tested with a sample 

building, the ray-tracer results’ RMSE is less than 0.01 

compared to EnergyPlus’s analytical solution. Tested in 

an urban block with 20 high rise buildings, the tracer was 

able to process 108 rays in 0.5 seconds for a city-scale 

scene that contains 3120 surfaces. This approach 

provides an efficient, flexible, and robust means for 

computing the sunlit fraction of buildings that contain a 

large number of surfaces of complex geometries and 

absorbance characteristics. In an UBEM scene, the tracer 

can extract geometry information from EnergyPlus 

inputs and output sunlit fraction schedules back to 

EnergyPlus directly without extra pre- or post-



processing. The workflow is also scalable to larger urban 

domains. Future work includes improving algorithms to 

handle window recess and applying ray-tracing 

considering solar reflectance for further tracing the solar 

beams. The work is also to be deployed in a larger 

UBEM domain for accuracy/performance analysis. 
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