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Abstract

Towards a Turnkey Model Predictive Controller: Identification, Application, and Theory

by

Steven J. Kuntz

An out-of-the-box model predictive control (MPC) algorithm, or a “turnkey” model predictive

controller has long been a dream of both academics and practitioners. MPC practice currently

includes time-consuming and ad hoc tuning steps to achieve adequate performance in the face

of persistent disturbances and plant-modelmismatch. In this dissertation, we present progress

towards developing a turnkey model predictive controller by developing identification meth-

ods suitable for out-of-the-box MPC implementations, applying those identification methods

to the offset-free control of real-world systems, and developing the theory of the stability of

MPC under plant-model mismatch.

In the first part of this dissertation, we propose algorithms for identifying plant and dis-

turbance models. Maximum likelihood (ML) estimation methods are applied directly and in

a nested fashion to identify complete plant and disturbance models. For the direct meth-

ods, high-level design constraints are imposed on the resulting offset-free controller through

eigenvalue constraints on the modeled system matrices. For the nested methods, we present

simple algorithmswith closed-form solutions that can easily be implemented by practitioners.

In the second part of this dissertation, we apply identification methods to the offset-

free control of two real-world systems: a benchmark temperature controller (TCLab), and

an industrial-scale chemical reactor. Both case studies showcase the ability of the identifica-

tion algorithms to produce models adequate for out-of-the-box MPC designs with guaranteed

offset-free performance. The industrial application also demonstrates an outsize real-world

benefit for adopting a turnkey approach, where we report a 38% improvement in setpoint

ix



tracking performance compared to an existing hand-tuned controller.

In the third and final part of this dissertation, we investigate the theoretical properties of

offset-free MPC subject to plant-model mismatch. We first investigate the offset-free perfor-

mance of linear offset-free MPC for control of nonlinear plants. We then investigate stabil-

ity of standard MPC under mismatch when the plant and model steady states are fixed and

aligned. Finally, we investigate the offset-free performance of nonlinear offset-freeMPC, with

and without plant-model mismatch.
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Chapter 1

Introduction

Process control is the engineering discipline tasked with active regulation of industrial sys-

tems, such as chemical plants, power systems, and building energy systems. The broad goal

is to profitably maintain operating conditions while satisfying safety, environmental, and

quality constraints. With increasing market competition, growing environmental and safety

concerns, and intensifying customer demands, the requirements on process control systems

have become stricter over time. To meet these requirements, it is necessary to design process

operations in a way that is rigorous and data-driven.

In Figure 1.1, the main aspects of process control are categorized based on the space and

time scales onwhich they operate. The lowest levels are occupied by local, continuously oper-

ating control systems. The highest levels consist of large-scale (plant-wide or even enterprise-

wide) problems that are infrequently solved. In chemical plants, all of these activities are

represented in some form, although some industries may neglect large-scale operations.

The dashed box in Figure 1.1 surrounds operations that are most often solved in a model-

based framework. Advanced process control (APC) is a catch-all term for multivariable, dy-

namic, model-based control. APC tracks setpoints given by the steady-state optimization

layer, which optimizes the plant steady state based on a rigorous (physics-based) steady-state

model. These two problems form the backbone of day-to-day operations in most chemical

plants. Finally, the plant schedules (manufacturing, maintenance, distribution, etc.) are de-

1



Introduction Chapter 1

Timescale Layer Space

days to years Planning and scheduling plant- to enterprise-wide

hours to days Steady-state optimization plant-wide

seconds to minutes Advanced process control per-unit to plant-wide

< 1 second Regulatory control per-valve to per-unit

< 1 second Measurement and actuation per-valve

instantaneous Process continuous

Figure 1.1: Process control heirarchy. The dashed box surrounds the control problem types

most often solved in a model-based fashion. Adapted from Seborg et al. (2017).

termined on an infrequent basis.

1.1 System identification

As many high-level process control operations are model-based, acquiring accurate pro-

cess models is the paramount concern in designing these systems. Process models derived

from conservation laws (mass, energy, components) and physical properties (thermodynam-

ics, kinetics) can be represented as an ordinary differential algebraic equations (DAEs),

dx

dt
(t) = F (x(t), u(t), w(t)) (1.1a)

y(t) = h(x(t), u(t), w(t)) (1.1b)
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where t ∈ R is time, x ∈ Rn
is the state, u ∈ Rnu

is the input (or actuator), y ∈ Rny
is the

output (or measurement), and w ∈ Rnw
is the disturbance or noise vector. However, pro-

cess control is a largely digital field. Except for measurement, actuation, and a small slice of

regulatory control (Figure 1.1), measurements are taken and actuators are updated at fixed

discrete intervals. Therefore it is work considering the discretized version of the DAE repre-

sentation (1.1),

x(k + 1) = f(x(k), u(k), w(k))

y(k) = h(x(k), u(k), w(k))

where k ∈ I≥0 is the (discrete) sampled time. For ease of notation, the time index may be

suppressed,

x+ = f(x, u, w) (1.2a)

y = h(x, u, w) (1.2b)

where (·)+ denotes a forward time shift operator, i.e., x+ = x(k + 1).

The control subfield concerned with producing system models from process data is called

system identification. This encompasses not only statistical methods, but also system theoretic

methods by which process models are extracted from signals (e.g., with linear algebra, Fourier

transforms, or curve fitting methods). System identification methods require data to produce

a process model. Sometimes an identification experiment is required, where the plant (1.2) is

perturbed so as to generate a dataset sufficient for identification. Other times, happenstance

or historical data can be used to identify the model. In either case, it is a huge advantage to be

able to do closed-loop identification, that is, identification without ceasing any of the process

control operations depicted in Figure 1.1, even the operating layer for which the model is
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being identified.

For most control implementations, linear Gaussian state-space (LGSS) models suffice,

x+ = Ax+Bu+ w (1.3a)

y = Cx+Du+ v (1.3b)

where w ∈ Rn
is the process noise and v ∈ Rny

is the measurement noise. Typically the

noise vectors (w, v) are modeled as independent and identically distributed (through time)

Gaussian random vectors, [
w
v

]
iid∼ N

(
0,

[
Qw Swv

S⊤
wv Rv

])
. (1.3c)

Thematrices (A,B,C,D,Qw, Swv, Rv) are typically black-box coefficients, although they can

also be treated as given functions of an unknown vector of model parameters θ. The LGSS

model (1.3) is used in a wide variety of control contexts to represent dynamics with process

and measurement uncertainty. System identification of LGSS models has a longstanding his-

tory of applied use and a large body of literature on its theory (Ljung, 1999; Hannan and

Deistler, 2012; Shumway and Stoffer, 2017). Other model types (transfer function, autore-

gressive) are common in system identification, but do not fit the state-space formalism that

has been increasingly adopted by practitioners.

The phenomenon in which the plant and model are not aligned, especially in the context

of a control implementation, is referred to as plant-model mismatch or simply mismatch. As

the identified model is never a perfect representation of the plant, control algorithms have

to be designed to handle an appropriate degree of mismatch. As some degree of mismatch is

guaranteed, handling mismatch is as necessary a goal as minimizing the mismatch itself.
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Figure 1.2: Setpoint tracking MPC. Adapted from Rawlings et al. (2020).

1.2 Model predictive control

For over three decades, model predictive control (MPC) has been the go-to APC method

in the chemical process industries (Qin and Badgwell, 2003; Darby and Nikolaou, 2012). MPC

is an advanced feedback control method in which an optimal control problem is solved on-

line, based on a current state estimate (Rawlings et al., 2020). Since MPC is formulated with

optimization problems, it can handle physical and safety constraints and optimize economic

objectives, which are key requirements for operating a safe and profitable chemical plant.

For setpoint tracking and output feedback, three basic control blocks are combined, each

solving a key problem in the state space:

• State estimator: where are we? Determine the current state estimate x̂(k) based on

past data (u(0), y(0), . . . , u(k − 1), y(k − 1)).

• Steady-state target problem: where should we go? Determine the steady-state targets

(xs, us) that achieve (or get closest to) the setpoints (usp, ysp).

• Regulator: how do we get there? Find a feedback law u = κ(x̂, xs, us) that drives the

plant to the steady-state targets (xs, us) given the current state estimate x̂(k).

This framework, illustrated in Figure 1.2, enables the translation of process data, constraints,

and operating specifications to a feedback law. In the absence of exogenous disturbances

and plant-model mismatch, and assuming the setpoints are reachable, the input and output

convergence to the supplied setpoints.
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1.2.1 Offset-free model predictive control

Noise, mismatch, and process upsets are ever-present realities of plant operations. To en-

able the MPC to track setpoints in the presence of persistent disturbances and plant-model

mismatch, it is common practice, as in classic regulatory control, to remove offset by aug-

menting the controller with integrators. In offset-free MPC, the integrators take the form of

uncontrollable integrating modes, called integrating disturbances.1 Offset-free MPC can track

setpoints even under significant plant-model mismatch and persistent disturbances, which is

crucial for profitability in the modern chemical industry. For the linear case (1.3), the model

is augmented as follows:

x+ = Ax+Bdd+Bu+ w (1.4a)

d+ = d+ wd (1.4b)

y = Cx+ Cdd+Du+ v (1.4c)

where d, wd ∈ Rnd
are the integrating disturbances and disturbance driving noise, respec-

tively. Again, the noise is assumed to be Gaussian,

[
w⊤ w⊤

d v⊤
]⊤ iid∼ N(0, Sd). (1.4d)

The offset-free MPC is illustrated in Figure 1.3. The offset-free linear MPC is defined in Chap-

ter 2, but we briefly outline the key modifications to the MPC below.

• State and disturbance estimator: Determine the current state and disturbance esti-

mates (x̂(k), d̂(k)) based on past data (u(0), y(0), . . . , u(k − 1), y(k − 1)).

• Steady-state target problem: Determine the steady-state targets (xs, us) that achieve

1
Generally speaking, uncontrollable modes are system eigenvalues that cannot be transferred to the origin

by any input sequence. In discrete time, an integrating mode is an eigenvalue on the unit circle. Typically, the

integrating disturbances are uncontrollable and have repeated, simple eigenvalues of 1.
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Figure 1.3: Offset-free MPC. Adapted from Rawlings et al. (2020).

(or get closest to) the setpoints (usp, ysp), subject to the current disturbance estimate d̂(k).

• Regulator: Find a feedback law u = κ(x̂, d̂, xs, us) that drives the plant to the steady-

state targets (xs, us) given the current state and disturbance estimates (x̂(k), d̂(k)).

1.2.2 Tuning and identification

In any MPC implementation, including the linear offset-free MPC introduced in Chap-

ter 2, a number of design parameters are introduced that must be tuned. For the regulator,

there are a number of well-known tuning rules that can be used to design the cost function

weights to achieve specific closed-loop dynamics for linear systems in the absence of esti-

mator errors (Bryson and Ho, 1975, Chapter 5). Moreover, the model can be modified to

formulate rate-of-change penalties on the inputs (Rawlings et al., 2020, Exercise 1.25). For the

steady-state target problem, the steady-state costs should reflect the relative importance of

the setpoints (usp, ysp), can be chosen to approximate a steady-state economic optimization

problem, or can simply be borrowed from the regulator problem. For the state estimator, the

problem of tuning becomes more ambiguous.

While tuning is widely practiced in industry, the Kalman filter is an optimal estimator

7



Introduction Chapter 1

and is fully specified by (1.4). Therefore, it is preferable to identify the noise model rather

than tune the state estimator. Nonetheless, both industrial practitioners and academic control

researchers hand-tune noise models or state estimators to achieve desirable performance.

This can be accomplished with pole placement (Wallace et al., 2012, 2015), covariance matrix

selection (Caveness and Downs, 2005; Huang et al., 2010; Petersen et al., 2017), or estimator

gain selection (Deenen et al., 2018).

In addition to the tuned parameters, the quality of the LADM (1.4) as a whole deter-

mines performance of the offset-free MPC. The plant is necessarily not a member of this class

of models, limiting the system identification methods and theory applicable to offset-free

MPC implementation. System identification methods for the LADM (1.4) or its disturbance

model include autocovariance least squares (ALS) estimation (Odelson et al., 2003), indirect or

nested maximum likelihood (ML) estimation of the disturbance model (Kuntz and Rawlings,

2022; Kuntz et al., 2023), and direct ML identification of the complete model (Zagrobelny and

Rawlings, 2015; Simpson et al., 2023; Kuntz and Rawlings, 2024a). All but the direct ML meth-

ods require identification of a disturbance-free model to which the integrating disturbance

states are augmented. To the best of our knowledge, only Kuntz and Rawlings (2022); Kuntz

et al. (2023); Kuntz and Rawlings (2024a) integrate plant and disturbance identification on

real-world (not simulated) process data, although Simpson et al. (2023) includes a simulated

example of LADM identification on a temperature control application.

1.3 Towards a turnkey model predictive controller

We define turnkey MPC as a MPC algorithm that can be deployed out-of-the-box, with no

additional tuning required. This extends to the design of the regulator, state and disturbance

estimator, target problem, and even on model upkeep, as illustrated in Figure 1.4. Such a

MPC implementation has been considered the “holy grail” of industrial MPC design. While
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Figure 1.4: Conceptual diagram of a turnkey model predictive controller. Solid black parts

of the diagram are discussed in this thesis, whereas gray parts are left for future work.

a few MPC technologies (e.g., adaptive MPC, reinforcement learning MPC) have promised

to achieve a turnkey design, none have seen widespread industry adoption, if any adoption

at all. While it is difficult, if not impossible, to achieve a turnkey controller with a blind

implementation (i.e., no process knowledge or data), we can at least hope to implement such

controllers when an initial seed of process data is available.

To automatically implement industrially relevant MPCs of the type discussed thus far,

it is necessary to develop high-quality system identification methods for the LADM (1.4).

We approach this problem in three parts. First, system identification algorithms for (1.4)

are proposed. Second, the algorithms are applied to real-world data on industrially relevant

control problems. Third, the control-theoretic significance of implementing MPCs with iden-

tified models is explored. The remainder of this section is devoted to outlining the thesis and

describing how each chapter contributes to the overall goal of developing a turnkey MPC

implementation.

Chapter 2: Offset-free MPC. Relevant background information on the offset-free MPC

problem is presented: basic linear systems theory, problem formulation, design considera-

tions, and closed-loop properties.
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Part I: Identification

Chapter 3: Constrained maximum likelihood identification. A constrained ML iden-

tification approach to the identification of the LADM (1.4) is presented. The algorithm en-

forces constraints that are relevant to control performance and safe operation.

Chapter 4: Maximum likelihood estimator of disturbance models. A method is pre-

sented for augmenting standard identificationmethods with disturbancemodel identification.

This method has closed-form solutions and is thus easily implemented. It also serves as tem-

plate for generating initial guesses for the algorithm in Chapter 3.

Part II: Application

Chapter 5: Case studies in combined identification and offset-free MPC. This chap-

ter presents a number of case studies on implementing turnkey MPCs with the identification

techniques proposed in Chapters 3 and 4.

Part III: Theory

Chapter 6: Linear control of nonlinear systems. The implications of using linear iden-

tified models for control of nonlinear systems is investigated. Linear offset-free MPC of non-

linear systems is considered as a special case. These results differ from the standard offset-free

theorems of Muske and Badgwell (2002); Pannocchia and Rawlings (2003); Morari andMaeder

(2012) in that they directly address closed-loop stability, rather than assume it is achieved.

Chapter 7: Stability of MPC despite plant-model mismatch. The stability (or lack

thereof) of MPC with plant-model mismatch is investigated. Only the special case of plant-

model mismatch that does not affect the steady state is considered, with the general case con-

sidered in Chapter 8. These results differ from standard inherent robustness results DeNicolao

10
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et al. (1996); Scokaert et al. (1997); Grimm et al. (2004); Pannocchia et al. (2011); Allan et al.

(2017) in that they consider strict convergence of the state to the origin, rather than conver-

gence to a ball around the origin, despite perturbations to the system. While the MPC is not

generally stable despite arbitrarily small mismatch, quadratic costs and a mild differentiability

requirement are enough to guarantee stability.

Chapter 8: Offset-free performance of MPC. The results of Chapter 7 are extended to

offset-free MPC, showing that under similar quadratic cost designs, the same differentiabil-

ity requirement, and a constraint backoff in the steady-state target problem, offset-free MPC

tracks setpoints and rejects disturbances robustly in the changes to the setpoints and distur-

bances. In the absence of changes to the setpoints, and asymptotically constant disturbances

and noises, offset-free performance is achieved.

Chapter 9: Conclusion. Finally, the progress towards developing a turnkey MPC is sum-

marized. Future research goals for establishing more “hands-off” MPC implementations are

discussed.

1.4 Notation and basic definitions

Sets Denote the integers, nonnegative integers, positive integers, and intervals of integers

by I, I≥0, I>0, and Ia:b = { a, a+ 1, . . . , b− 1, b }, respectively. Denote the set of reals, non-

negative reals, positive reals, and n×m real matrices byR,R≥0,R>0, andRn×m
, respectively.

Real intervals are denoted by square and round brackets, e.g., (a, b], where a round bracket

denotes the limit is not included, and a square bracket denotes the limit is included. Denote

the complex numbers, vectors, and matrices byC,Cn
, andCn×m

, respectively. For any z ∈ C,
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let z denote its complex conjugate, and define the conjugate of a vector or matrix element-

wise. Let R := R∪ {±∞} and R≥0 := R≥0 ∪ {∞} denote the extended reals and extended

nonnegative reals. The complement, interior, closure, and boundary of a set S are denoted

Sc
, int(S), cl(S), and ∂S, respectively. For any function V : X → R and ρ > 0, we define

levρV := {x ∈ X | V (x) ≤ ρ }. We say V : Rn → R≥0 is lower semicontinuous (l.s.c.) if

levρV is closed for each ρ ≥ 0.

Matrices and norms We denote by In and 0m×n the n × n identity matrix and m × n

zero matrix, respectively. Subscripts are omitted when the dimensions are clear from context.

Denote the vector and matrix transpose and Hermitian by (·)⊤ and (·)H := (·)
⊤
. Denote

the matrix inverse (for a square matrix) and pseudoinverse (for any matrix) by (·)−1
and (·)‡,

respectively. The trace and determinant ofA ∈ Rn×n
are denoted tr(A) and |A|, respectively.

For any matrix B ∈ Rn×m
, we denote by σ(B) and σ(B) the smallest and largest singular

values of B, respectively.

Denote the set of n × n symmetric, positive definite, and positive semidefinite matrices

by Sn
, Sn

++, and Sn
+. We denote the positive semidefinite square root of Q ⪰ 0 as Q1/2 ⪰ 0,

where Q = (Q1/2)2. We define the vector 2-norm and Q-weighted norm (seminorm) as

|x| :=
√
x⊤x and |x|Q :=

√
x⊤Qx, respectively, for all x ∈ Rn

and any Q ≻ 0 (Q ⪰ 0).

We define the induced matrix 2-norm by ∥A∥ := max|x|=1 |Ax| and note ∥A∥ = σ(A)

for all A ∈ Rn×m
. We define the closed (open) unit n-ball by Bn := {x ∈ Rn | |x| ≤ 1 }

(int(Bn) := {x ∈ Rn | |x| < 1 }). Denote the set of lower triangular matrices and lower tri-

angular matrices with positive diagonal entries by Ln
and Ln

++. RecallM ∈ Rn×n
is positive

definite if and only if there exists a unique L ∈ Ln
++, called the Cholesky factor, such that

M = LL⊤
. Let chol : Sn

++ → Ln
++ denote the invertible function that maps a positive

definite matrix to its Cholesky factor.
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Define the matrix direct sum ⊕ and the Kronecker product ⊗ by

A⊗B :=

A11B . . . A1mB
.
.
.

.

.

.

An1B . . . AnmB

 , A⊕B :=

[
A 0
0 B

]
.

Define the vectorization operator vec : Rn×m → Rnm
and symmetric vectorization operator

vecs : Sn → Rn2
by

vec(A) :=
[
A11 . . . An1 A12 . . . An2 . . . A1m . . . Anm

]⊤
,

vecs(M) :=
[
M11 . . . Mn1 M22 . . . Mn2 . . . Mnn

]⊤
for each A ∈ Rn×m

andM ∈ Sn
.

Define the set of eigenvalues of a matrix A ∈ Rn×n
by

λ(A) := {λ ∈ C | ∃v ̸= 0 : Av = λv } = {λ ∈ C | det(A− λI) = 0 } .

The spectral radius and spectral abscissa are defined as ρ(A) := maxλ∈λ(A) |λ| and α(A) :=

maxλ∈λ(A) Re(λ), respectively. We say a matrix A is Schur (Hurwitz) stable if ρ(A) < 1

(α(A) < 0).

Signals and comparison functions For any signal a(k), we denote, with slight abuse of

notation, both infinite and finite sequences in bold font as a := (a(0), . . . , a(k)) or a :=

(a(0), a(1), . . .), respectively, where length is specified or implied from context. We define

the infinite and length-k signal norm as ∥a∥ := supk≥0 |a(k)| and ∥a∥0:k := max0≤i≤k |a(i)|.

Let PD be the class of functions α : R≥0 → R≥0 such that α(0) = 0 and α(s) > 0 for

all s > 0. Let K be the class of PD-functions that are continuous and strictly increasing.

Let K∞ be the class of K-functions that are unbounded. Let KL be the set of functions β :

13



Introduction Chapter 1

R≥0 × I≥0 → R≥0 such that β(·, k) ∈ K, β(r, ·) is nonincreasing, and limi→∞ β(r, i) = 0 for

all (r, k) ∈ R≥0 × I≥0. Denote the identity map by id(·) := (·) ∈ K∞.

Probability and random variables We use∼ as a shorthand for “distributed as” and
iid∼ as

a shorthand for “independent and identically distributed as.” We denote that a random vector

x has a Gaussian distribution with mean µ and covariance Σ by x ∼ N(µ,Σ). We denote the

expectation by E and the probability measure by Pr[·].
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Chapter 2

Offset-free model predictive control

This chapter reviews problem formulations and properties of linear and nonlinear offset-free

MPC. This chapter contains no new results (except for a few trivial generalizations of standard

offset-free MPC theorems) and can safely be skipped by readers already familiar with offset-

free MPC.

2.1 Linear systems

Before defining the linearMPC schemes, it is worth reviewing basic facts of linear systems.

For simplicity, consider the noise-free system,

x+ = Ax+Bu (2.1a)

y = Cx+Du. (2.1b)

Recall the system (2.1) (or the pair (A,B)) is controllable (stabilizable) if any state can be

brought to the origin with a finite (infinite) sequence of inputs. Similarly, the system (2.1) (or

the pair (A,C)) is observable (detectable) if any unknown initial state can be determined by a

finite (infinite) sequence of inputs and outputs, starting from the initial time. The pair (A,B)
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is controllable if and only if the following controllability matrix is full row rank,

Cn :=
[
B AB . . . An−1B

]
, (2.2)

and the pair (A,C) is observable if the following observability matrix is full column rank,

On :=


C
CA
.
.
.

CAn−1

 . (2.3)

The system (2.1) (or the triple (A,B,C)) is minimal if both (A,B) is controllable and (A,C)

is observable, or equivalently, the matrixHnn := OnCn has rank n. For the system (2.1), there

always exists a similarity transformation [ xc
xuc ] := Tcx such that

[
x+c
x+uc

]
=

[
Ac A12

0 Auc

] [
xc
xuc

]
+

[
Bc

0

]
u, y =

[
Cc Cuc

] [ xc
xuc

]
+Du (2.4)

where (Ac, Bc) is controllable (or empty). We say the system (2.4) is in controllability canon-

ical form. We say (A,B) is stabilizable if Auc is Schur stable. Similarly, there always exists

(different) a similarity transformation [ xo
xuo ] := Tx such that

[
x+o
x+uo

]
=

[
Ao 0
A21 Auo

] [
xo
xuo

]
+

[
Bo

Buo

]
u, y =

[
Co 0

] [ xo
xuo

]
(2.5)

where (Ao, Co) is observable (or empty). We say the system (2.5) is in observability canon-

ical form. We say (A,C) is detectable if Auo is Schur stable. Next, we have the following

generalization of the classic Popov-Belevitch-Hautus test.

Lemma 2.1 ((Hespanha, 2018, Thms. 12.3, 14.3)). The pair (A,B) is controllable (stabilizable)

if and only if

rank
([
A− λI B

])
= n (2.6)
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for all λ ∈ C (|λ| ≥ 1).

Finally, we note these properties are, in some sense, duals of each other, in that (A,B) is

controllable (stabilizable) if and only if (A⊤, B⊤) is observable (detectable). Thus Lemma 2.1

can be slightly modified to characterize observable and detectable pairs.

When referring to controllability or observability properties of the LGSS model (1.3) and

LADM (1.4), assumewe are referring to the noise-free versions unless otherwise stated. Notice

that the LADM (1.4) is in controllability canonical form if (A,B) is controllable. In any case,

the integrating disturbances are uncontrollable and have eigenvalues on the unit circle, so

they are uncontrollable integrating modes.

2.2 Linear model predictive control

The setpoint tracking MPC outlined in Chapter 1 combines three distinct problems that

are solved at each time step: estimation, target calculation, and regulation. The goal is firstly

to remove offset from a setpoint rsp ∈ Rnr
in the controlled variables r = Hyy +Huu ∈ Rnr

and secondly to minimize the distance from a pair of input-output setpoints (usp, ysp) ∈

Rnu+ny
. While only offset-free MPC will be used in the case studies of Chapter 5, we sum-

marize the standard MPC described in (Rawlings et al., 2020, Chapter 1) to highlight the key

differences between standard and offset-free MPC.

State estimator The goal of the estimator is to determine a state estimate x̂(k) from past

data (u(0), y(0), . . . , u(k − 1), y(k − 1)). Typically a linear filter suffices,

x̂+ = Ax̂+Bu+K(y − Cx̂−Du) (2.7)
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where K ∈ Rn×ny
is the filter gain. To determine the filter gain from the LGSS model (1.3),

one can solve the discrete algebraic Riccati equation (DARE),

P = APA⊤ +Qw − (APC⊤ + Swv)(CPC
⊤ +Rv)

−1
(APC⊤ + Swv)

⊤
(2.8)

and implement the famous Kalman filter gainK := (APC⊤+Swv)(CPC
⊤+Rv)

−1
. We refer

the reader to (Kwakernaak and Sivan, 1972; Hespanha, 2018) for a classical treatment of the

linear optimal estimation problem and to (Rawlings et al., 2020, pp. 27–46) for a derivation of

the optimal filter gain K from least squares theory. Stability of the filter (2.7) is equivalent

to stability of the matrix A − KC , and is discussed further in Chapter 3. Since the Kalman

filter gainK is fully specified by the parameters in the LGSS model (1.3), identification of (1.3)

automatically gives the state estimator.

Remark 2.2. In most literature, the direct feedthrough term is not included (i.e.,D = 0), and

the state estimator can be split into two steps: prediction,

(x̂∗)+ = Ax̂+Bu+Kp(y − Cx̂) (2.9)

and filtering,

x̂ = x̂∗ +Kf (y − Cx̂∗) (2.10)

where x̂ and x̂∗ are the filtered and predicted estimates, and for the Kalman filter, Kp :=

(APA⊤ + Swv)(CPC
⊤ + Rv)

−1
and Kf := PC⊤(CPC⊤ + Rv)

−1
. This has the advan-

tage of providing feedback from the current output to the current input, which could not be

accomplished when the output was an explicit function of the input.
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Steady-state target problem The goal of the steady-state target problem is find targets

(xs, us) that track a setpoint rsp ∈ Rnr
in the controlled variables,

rsp = Hyys +Huus = HyCxs + (HyD +Hu)us (2.11)

while maintaining steady state,

xs = Axs +Bus (2.12)

and satisfying the linear constraints,

Eys + Fus = ECxs + (ED + F )us ≤ f. (2.13)

This can be accomplished in the following optimization problem

min
xs,us

1

2
|Cxs +Dus − ysp|2Qs

+
1

2
|us − usp|2Rs

subject to (2.11)–(2.13) (2.14)

where (usp, ysp) are auxilliary setpoints and (Qs, Rs) are positive definite weighting matrices.

We denote the solutions to (2.14) by (xs, us).

In practice, the setpoint (2.11) may not be reachable, meaning the target problem (2.14)

may not have solutions. In these cases, it may suffice to implement (2.11) as a soft constraint,

allowing (2.14) to choose the closest reachable setpoint.

Regulator The goal of the regulator is to produce a control law u = κ(x̂, xs, us) that drives

the system to the steady-state targets (xs, us) given a state estimate x̂. This can be accom-
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plished in the following finite horizon optimal control problem

min
x̃,ũ

1

2

N−1∑
i=0

|x̃i − xs|2Q + |ũi − us|2R +
1

2
|x̃N − xs|2Pf

(2.15a)

subject to x̃0 = x̂(k), (2.15b)

x̃i+1 = Ax̃i +Bũi ∀i ∈ I0:N−1, (2.15c)

ECx̃i + (ED + F )ũi ≤ f ∀i ∈ I0:N−1 (2.15d)

where ys := Cxs + Dus and x̃ := (x̃0, . . . , x̃N) and ũ := (ũ0, . . . , ũN−1) are state and

input sequences, and (Q,R, Pf ) are positive definite weighting matrices. Let x0i (x̂, xs, us)

and u0i (x̂, xs, us) denote solutions to (2.15) as a function of the current state estimate x̂ and

steady-state targets (xs, us). The control law is defined as the first input of the optimal input

sequence u = κ(x̂, xs, us) := u00(x̂, xs, us).

Remark 2.3. If the filter-predictor equations (2.9) and (2.10) of Remark 2.2 are used, and there

is cross-covariance (i.e., Swv ̸= 0), then the regulation problem should account for a nonzero

filtered process noise (Jørgensen et al., 2011). Specifically, the first step of (2.20c) should be

modified to x̃1 = Ax̃0 + Bũ0 + ŵ(k) where ŵ = Swv(CPC
⊤ + Rv)

−1(y − Cx̂∗). Note this

correction only applies at the current time step, and future predictions of the noise are zero.

Constraints For the SSTP and regulator we have used general linear constraints on the

inputs and outputs Ey + Fu ≤ f , but in practice box constraints are easiest to implement,

y ≤ y ≤ y, u ≤ u ≤ u (2.16)
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where (u, u) are the input bounds, (y, y) are the output bounds. Box constraints can be put

in the form Ey + Fu ≤ f by defining

E :=


I
−I
0
0

 , F :=


0
0
I
−I

 , f :=


y
−y
u
−u

 . (2.17)

For all problems discussed herein, constraints on outputs should be implemented as soft con-

straints in the optimizer so as to preserve feasibility of the control problem at all times.

2.3 Linear offset-free model predictive control

For the LADM (1.4), the linear MPC formulation from Section 2.2 is generalized as follows.

State and disturbance estimator The filter (2.7) is trivially generalized by lumping the

plant states x and integrating disturbances d into a single state vector xaug :=

[
x⊤ d⊤

]⊤
,

producing the filter

[
x̂+

d̂+

]
=

[
A Bd

0 I

] [
x̂

d̂

]
+

[
B
0

]
u+

[
Kx

Kd

](
y −

[
C Cd

] [x̂
d̂

]
−Du

)
. (2.18)

As for the general LGSS model (1.3), the the Kalman filter is the optimal state estimator for

LADM (1.4), and can be found by solving a DARE in the systemmatrices corresponding to the

augmented state. Moreover, (2.18) can be split into prediction and filtering steps as outlined

in Remark 2.2.

Steady-state target problem Since the integrating disturbances are uncontrollable, one

cannot expect to choose a disturbance target. Indeed, since they are integrating, one cannot

hope to forecast their evolution without taking into account future data. Instead, the distur-
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bances are assumed to be constant, and the steady-state targets (xs, us) are computed as a

function of the current disturbance estimate d̂(k),

min
xs,us

1

2
|us − usp|2Rs

+
1

2
|Cxs + Cdd̂s +Dus − ysp|2Qs

(2.19a)

subject to xs = Axs +Bdd̂(k) +Bus (2.19b)

rsp = HyCxs +HyCdd̂(k) + (HyD +Hu)us (2.19c)

ECxs + ECdd̂(k) + (ED + F )us ≤ f. (2.19d)

Denote the solutions to this problem by (xs(k), us(k)) = (xs(d̂(k)), us(d̂(k))).

Regulator As in the steady-state target problem, the regulator is solved under the assump-

tion the disturbances are constant,

min
x̃,ũ

1

2

N−1∑
i=0

|x̃i − xs(k)|2Q + |ũi − us(k)|2R +
1

2
|x̃N − xs(k)|2Pf

(2.20a)

subject to x̃0 = x̂(k), (2.20b)

x̃i+1 = Ax̃i +Bdd̂(k) +Bũi ∀i ∈ I0:N−1, (2.20c)

ECx̃i + ECdd̂(k) + (ED + F )ũi ≤ f ∀i ∈ I0:N−1. (2.20d)

where (Q,R, Pf ) are positive definite weighting matrices. In the case studies (Chapter 5), an

infinite-horizon, rate-of-change-penalized, and box-constrained variant of (2.20) is sometimes
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solved:

min
x̃0,x̃1,...
ũ0,ũ1,...

1

2

∞∑
i=0

|Cx̃i + Cdd̂(k) +Dũi − ys(k)|2Qy
+ |ũi − us(k)|2R + |ũi − ũi−1|2M (2.21a)

s.t. x̃0 = x̂(k), (2.21b)

x̃i+1 = Ax̃i +Bdd̂(k) +Bũi ∀i ∈ I≥0, (2.21c)

y ≤ Cx̃i + Cdd̂(k) +Dũi ≤ y ∀i ∈ I≥0, (2.21d)

u ≤ ũi ≤ u ∀i ∈ I≥0 (2.21e)

where ys(k) := Cxs(k) + Cdd̂(k) + Dus(k), and the weighting matrices Qy and M must

be positive definite and positive semidefinite. In practice, the infinite horizon problem (2.21)

is solved as a finite horizon problem, where the horizon length is taken sufficiently large to

approximate the infinite horizon controller.

For either problem, let x0i (x̂, d̂, xs, us) and u
0
i (x̂, d̂, xs, us) denote the solutions as a func-

tion of the current state estimate x̂, disturbance estimate d̂, and steady-state targets (xs, us).

The control law is defined as u = κ(x̂, d̂, xs, us) := u00(x̂, d̂, xs, us). In the absence of output

constraints, either regulation problem, (2.20) or (2.21), is agnostic to the current disturbance

estimate, and the control law is only a function of (x̂(k)−xs(k), us(k)). In fact, if neither the

inputs nor outputs are constrained, the unconstrained controller has a control law of the form

u = κ(x̂, d̂, xs, us) = κ(x̂−xs)+us. For the unconstrained case, the effect of the disturbance

enters the controller through the steady-state targets. Finally, we note if the filter-predictor

equations as used (c.f. Remark 2.2), the first constraint of (2.20c) and (2.21c) should be modi-

fied to x̃1 = Ax̃0+Bdd̂(k)+Bũ0+ ŵ(k) where ŵ = Swv(CPC
⊤+Rv)

−1(y−Cx̂∗−Cdd̂
∗).

2.3.1 Offset-free sufficient conditions

Muske and Badgwell (2002) first established sufficient conditions under which a linear
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offset-free MPC (e.g., (2.18)–(2.20)) with a separable disturbance model, i.e.,

Bd =
[
Bd 0

]
, Cd =

[
0 Cd

]
applied to a linear plant converges to the controlled variable setpoints rsp. This was gener-

alized to LADMs form (1.4) by Pannocchia and Rawlings (2003). Finally, Morari and Maeder

(2012) generalized the conditions to nonlinear plants and models. We restate the offset-free

conditions for linear models in the following theorem.

Theorem2.4 (Pannocchia and Rawlings (2003)). Consider a system controlled by the offset-free

MPC (2.18)–(2.20) with a constant setpoint rsp. Assume that

(i) the SSTP and regulator are feasible at all times,

(ii) the disturbance state is of the same dimension as the measurement (nd = p), and

(iii) the LADM (1.4) is detectable.

If the closed-loop system is stable and the constraints are not active at steady state, then there is

zero offset in the controlled variables at steady state, i.e., limk→∞ r(k) = rsp.

Remark 2.5. The contrapositive of Theorem 2.4 is significant as well. If we assume hypothe-

ses (i)–(iii) of Theorem 2.4 hold, then if there is offset in the controlled variables, we have

either hit a constraint or the system is unstable.

Remark 2.6. Despite the fact that Theorem 2.4 does not explicitly mention control of nonlin-

ear plants, the results are widely applicable to both linear and nonlinear plants with asymp-

totically constant disturbances. This is because Theorem 2.4 does not establish sufficient

conditions for controller stability, but simply states sufficient conditions for which a stable

controller also has zero offset. In fact, Pannocchia and Rawlings (2003) demonstrate the va-

lidity of Theorem 2.4 in the control of a highly nonlinear, non-isothermal reactor model.
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2.3.2 Disturbance model equivalence and design

One can infer from Theorem 2.4 that, to achieve offset-free control with offset-free MPC,

it is important to have a detectable model. To this end, we have the following result.

Lemma 2.7 (Pannocchia and Rawlings (2003)). The LADM (1.4) is detectable if and only if the

standard LGSS model (1.3) is detectable and

rank

[
A− In Bd

C Cd

]
= n+ nd (2.22)

The so-called offset-free rank condition (2.22) is important in formulating disturbancemod-

els for the offset-freeMPC algorithm. One can replace the third condition of Theorem 2.4 with

the rank condition (2.22). It turns out that, in the same way that a state-space realization is

only unique up to a similarity transformation, any detectable disturbancemodel is only unique

up to a similarity transformation. In fact, the Kalman filter behavior is equivalent under this

similarity transformation, so if disturbances are “misassigned” in the model there is no effect

on the closed-loop system.

Lemma 2.8 (Rajamani et al. (2009)). Consider the alternate LADM

x+ = Ax+Bu+ B̃dd̃+ w (2.23a)

d̃+ = d̃+ w̃d (2.23b)

y = Cx+ C̃dd̃+ v (2.23c)ww̃d

v

 iid∼ N(0, S̃d). (2.23d)

If the LGSS model (1.3) is detectable, then the LADMs (1.4) and (2.23) are detectable if and only

if both satisfy the offset-free rank condition (2.22). Moreover, there exists a choice of S̃d such

that (1.4) and (2.23) have equivalent Kalman filter innovations.
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The consequence of Lemma 2.8 is that, given a standard LGSSmodel (1.3), one can “design”

the disturbance model to be maximally interpretable, so long as it satisfies the rank condition

(2.22). To this end, we propose the follow general guidelines for choosing the disturbance

model:

• If Â does not contain integrators, use an output disturbance model.

• If Â contains integrators and nu = ny, use an input disturbance model, (Bd, Cd) =

(B, 0).

• Otherwise, use some combination of input and output disturbances, i.e. (Bd, Cd) =

(BĨ1, Ĩ2) where Ĩ1 and Ĩ2 are diagonal matrices with zeros and ones on the diagonal

and collectively p nonzero elements.

Models in these forms retain interpretability while ensuring that the offset-free rank condition

(2.22) is satisfied.

2.4 Nonlinear offset-free model predictive control

Morari and Maeder (2012) first extended the offset-free MPC results of Section 2.3 to de-

signs with nonlinear models of the following form:

x+ = f̂(x, u, d) (2.24a)

d+ = d (2.24b)

y = ĥ(x, u, d). (2.24c)

Pannocchia et al. (2015) later summarized and extended these results to consider the SSTP

explicitly and consider special cases guaranteeing estimator convergence. These authors con-

sider nonlinear versions of the linear offset-free MPC (2.7), (2.19), and (2.20). Specifically, they
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consider nonlinear observers of the form,

x̂+ = f̂(x̂, u, d̂) + κx(y − ĥ(x̂, u, d̂)) (2.25a)

d̂+ = d̂+ κd(y − ĥ(x̂, u, d̂)) (2.25b)

nonlinear SSTPs of the form,

min
xs,us

ℓs(us − usp, ĥ(xs, us, d̂(k))− ysp) (2.26a)

subject to xs = f̂(xs, us, d̂(k)) (2.26b)

rsp(k) = g(us, ĥ(xs, us, d̂(k))) (2.26c)

(us, ĥ(xs, us, d̂(k))) ∈ Z (2.26d)

and nonlinear regulators of the form,

min
x̃,ũ

1

2

N−1∑
i=0

ℓ(x̃i − xs(k), ũi − us(k)) + Vf (x̃N − xs(k)) (2.27a)

subject to x̃0 = x̂(k), (2.27b)

x̃i+1 = f̂(x̃i, ũi, d̂(k)) ∀i ∈ I0:N−1, (2.27c)

(ũi, ĥ(x̃i, ũi, d̂(k))) ∈ Z ∀i ∈ I0:N−1. (2.27d)

where κx, κd are the observer feedback laws, g is the (continuous) controlled variable function,

Z is a constraint set, and ℓs, ℓ, Vf are positive definite
1
steady-state, stage, and terminal cost

functions. As before, solutions to (2.26) are denoted (xs, us), solutions to (2.27) are denoted

x0i (x̂, d̂, xs, us) and u
0
i (x̂, d̂, xs, us), and the control law is defined as u = κ(x̂, d̂, xs, us) :=

u00(x̂, d̂, xs, us). For the nonlinear offset-free MPC (2.25)–(2.27), we have the following offset-

1
A function V : Rn → R≥0 is positive definite if V (x) = 0⇔ x = 0.
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free sufficiency theorem, which is a trivial modification of (Pannocchia et al., 2015, Thm. 14).

Theorem 2.9. Consider the plant (1.2) controlled by the nonlinear offset-free MPC (2.25)–(2.27).

Assume that

(i) the plant disturbance and reference are asymptotically constant, i.e., w(k) → w∞ and

rsp(k)→ r∞,

(ii) the observer feedback laws satisfy κd(e) = 0⇔ e = 0,

(iii) the SSTP (2.26) and regulator (2.27) are feasible at all times.

If the closed-loop system is stable and the constraints are not active at steady state, then there is

zero offset in the controlled variables at steady state, i.e., limk→∞ r(k) = r∞.

Proof. If the closed-loop system reaches a steady state, the state and disturbance estimates

must reach a steady state. Denote the steady-state estimates by (x̂∞, d̂∞) and let ŷ∞ :=

ĥ(x̂∞, u∞, d̂∞). By (2.25), we have d̂∞ = d̂∞ +κd(y∞− ŷ∞) and therefore κd(y∞− ŷ∞) = 0.

But by hypothesis (ii), this is equivalent to y∞ = ŷ∞. Denote the solution to the SSTP (2.26)

with (rsp(k), d̂(k)) = (rsp,∞, d̂∞) by (xs,∞, us,∞) and let ys,∞ := ĥ(xs,∞, us,∞, d̂∞). Since

the closed-loop system is at steady state, we have u∞ = u00(x̂∞, d̂∞, xs,∞, us,∞). Moreover,

x̂∞ = x00(x̂∞, d̂∞, xs,∞, us,∞) due to the constraint (2.27b). Since ℓ is positive definite, we have

(x̂∞, u∞) = (xs,∞, us,∞) and therefore y∞ = ŷ∞ = ĥ(x̂∞, u∞, d̂∞) = ĥ(xs,∞, us,∞, d̂∞) =:

ys,∞. Finally, by the constraint (2.26b) and continuity of g, we have

lim
k→∞

r(k) = lim
k→∞

g(u(k), y(k)) = g(u∞, y∞) = g(us,∞, ys,∞) = r∞.

Remark 2.10. Pannocchia et al. (2015) propose a slightly different observer than (2.25). They

do not consider direct feedthrough in the nonlinear plant andmodel, i.e., h(x, u, w) = h(x,w)
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and ĥ(x, u, d) = ĥ(x, d). As in Remark 2.2, the observer is split into a prediction step

(x̂∗)+ = f̂(x̂∗, u, d̂∗) (2.28)

(d̂∗)+ = d̂∗ (2.29)

and a filtering step

x̂ = x̂∗ + κx(y − ĥ(x̂∗, d̂∗)) (2.30)

d̂ = d̂∗ + κd(y − ĥ(x̂∗, d̂∗)) (2.31)

which, as in Remark 2.2, has the advantage of providing feedback from the current output. As

the nonlinear observer has no statistical relevance, there are no cross-correlation adjustments

to be made. Theorem 2.9 holds for either observer design with trivial modifications to the

proof.

For the special case of state feedback, Pannocchia et al. (2015) give a disturbance model

and estimator design are given for which the offset-free MPC is provably asymptotically sta-

ble and offset-free. Pannocchia et al. (2015) also generalize this observer design to economic

cost functions
2
and demonstrate convergence to the optimal steady state. A general, output-

feedback offset-free economicMPCwas first proposed by Vaccari and Pannocchia (2017), who

use a gradient correction strategy called modifier adaptation to ensure the economic MPC, if

it converges, achieves the optimal steady-state performance. For further developments of

modifier-adaptation for offset-free economic MPC, we refer the reader to Pannocchia (2018);

Faulwasser and Pannocchia (2019); Vaccari et al. (2021).

To the best of our knowledge, there are no stability results for linear, let alone nonlinear,

offset-free MPC for the intended setting: persistent disturbances and plant-model mismatch.

2
By economic cost functions, we simply mean costs that are not necessarily positive semidefinite, although

they are usually a quantification of the net operating cost (or negative profit).
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Some authors have proposed tracking MPC designs with offset-free behavior (Limon et al.,

2008; Betti et al., 2013; Falugi and Mayne, 2013; Falugi, 2015; Limon et al., 2018; Köhler et al.,

2020; Berberich et al., 2022a; Galuppini et al., 2023; Soloperto et al., 2023), but they all assume

access to plant dynamic equations (1.2). Part III of this thesis will cover offset-free perfor-

mance and asymptotic stability of nonlinear offset-free designs, similar to (2.25)–(2.27), with

positive definite quadratic costs.
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Identification
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Chapter 3

Constrained maximum likelihood
identification for offset-free control

As mentioned in Chapter 1, model quality is the main contributor to the performance of

industrial MPC implementations (Canney, 2003; Darby and Nikolaou, 2012). For offset-free

MPC, integral action is provided through the disturbance estimates, so the control perfor-

mance depends on the estimator dynamics. Tuning of integrating disturbance models can be a

time-consuming and ad-hoc procedure, requiring simplified parameterizations (e.g., diagonal

covariance matrices). In prior work, we have suggested identification as the preferred strat-

egy for acquiring LADMs (Kuntz and Rawlings, 2022; Kuntz et al., 2023). In this chapter, we

further develop ML identification because of its desirable statistical properties (consistency,

asymptotic efficiency) and ability to handle general model structures and constraints (Åström,

1979; Ljung, 1999). We remark that other identification methods (subspace identification, au-

toregressive modeling, etc.) are not suitable for LADM identification as they cannot impose

the model structure we require.

Design constraints can be included in tuning procedures to avoid undesirable filter be-

haviors (slow response time, fictitious high frequencies) that are passed to the control per-

formance through the integrating disturbance estimates. Control-relevant design constraints

and prior knowledge have sometimes been incorporated into identification problems (Piga
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et al., 2019; Formentin and Chiuso, 2021; Berberich et al., 2023). However, there are no gen-

eral approaches to shaping the closed-loop filter behavior in ML identification. To address

this gap, we consider ML identification with eigenvalue constraints implemented via the LMI

regions commonly used in robust control (Chilali and Gahinet, 1996; Chilali et al., 1999).

LMI region constraints have been used in subspace identification (Miller and De Calla-

fon, 2013). However, subspace identification cannot be used for LADM identification as it is

not possible to impose the required disturbance model structure. Open-loop stability con-

straints have been included in the expectation maximization (EM) algorithm (Umenberger

et al., 2018), but this formulation is not obviously generalized to filter stability or general LMI

region constraints.

While EM is an algorithm for ML, it does not have strong convergence guarantees. While

it can be shown that the EM iterates produce, almost surely, an increasing sequence of like-

lihood values (Shumway and Stoffer, 1982; Gibson and Ninness, 2005), slow convergence at

low noise levels has been reported on a range of problems (Umenberger et al., 2018; Redner

and Walker, 1984; Bermond and Cardoso, 1999; Petersen et al., 2005; Petersen and Winther,

2005; Olsson et al., 2007). Interior point, and even gradient methods (Olsson et al., 2007), are

therefore preferable to the EM approach.

As originally posed by Chilali and Gahinet (1996); Chilali et al. (1999), LMI regions are

strict semidefinite matrix inequalities. While Miller and De Callafon (2013) used relaxed LMI

regions with nonstrict inequalities, as we show in Section 3.4, the constraint sets are not

closed, and thus problematic as optimization constraints. To address this issue, we formu-

late tightened LMI region constraints that define a closed constraint set. This formulation

introduces nonlinear matrix inequalities and semidefinite matrix arguments, making the ML

problem a nonlinear semidefinite program (NSDP).

To efficiently convert the NSDP to a nonlinear program (NLP), we generalize the Burer-

Monteiro-Zhang (BMZ) method (Burer et al., 2002a,b), which was originally used to convert
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sparse semidefinite matrix arguments into vector arguments with minimal dimension. An

additional advantage of the BMZ method over standard Cholesky factor substitution is that

structural knowledge of the plant design (e.g., flowsheet or network structure) can be imposed

in the model parameterization in an efficient manner. Finally, while this work is primarily

motivated by identification of LADMs and offset-free MPC implementations, we remark that

any linear Gaussian state-space model can be identified, with eigenvalue constraints, using

this approach.

3.1 Maximum likelihood estimation

Maximum likelihood (ML) estimation is a popular statisticalmethod for parametricmodel-

ing. In general, theML estimation problem is to find parameters that maximize the conditional

density of the following model:

yN−1|uN−1 ∼ pN(yN−1|uN−1, θ) (3.1)

where yN−1 := (y(0), . . . , y(N − 1)) ∈ RpN
is the output (or measured) data, uN−1 :=

(u(0), . . . , u(N−1)) ∈ RmN
is the input (or actuator) data, θ ∈ Rnθ

are themodel parameters,

and pN : RpN × RmN × Rnθ → R≥0 is the conditional density function for N observations.

Maximizing the conditional density is equivalent to minimizing its negative logarithm, so the

ML estimate θ̂N is typically defined as a solution to

max
θ∈Θ

LN(θ) := ln p(yN−1|uN−1, θ) (3.2)

whereΘ is a problem-specific constraint set andLN : Rnθ → R is the (log-)likelihood function.

The likelihood functionLN suppresses notation of the data (uN−1,yN−1). In statistical theory,

LN can be viewed as a random variable (i.e., a function of the data as a random variable). For
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algorithms, however, it is more convenient to simply view LN as the objective function.

In system identification, models are typically causal, meaning the current output y(k)

is only a function of past inputs and outputs (uk−1,yk−1) (and optionally the current input

u(k)). In this case, it is convenient to successively condition on past data to give the equivalent

problem,

max
θ∈Θ

LN(θ) =
N−1∑
k=0

ln p(yk|uk−1,yk−1, θ). (3.3)

If the parameters themselves are random variables with a known distribution, or we have

some prior belief about what they should be, the model can include the prior distribution

θ ∼ p0(θ) (3.4)

and we can define the following maximum a posteriori (MAP) problem, a close sibling of the

ML problem (3.2):

max
θ∈Θ

LN(θ) + ln p0(θ). (3.5)

3.2 Problem statement

We consider stochastic LTI models in innovation form:

x̂k+1 = A(θ)x̂k +B(θ)uk +K(θ)ek (3.6a)

yk = C(θ)x̂k +D(θ)uk + ek (3.6b)

ek
iid∼ N(0, Re(θ)) (3.6c)

where x̂ ∈ Rn
are the model states, u ∈ Rnu

are the inputs, y ∈ Rny
are the outputs, e ∈ Rny

are the innovation errors, and θ ∈ Θ are the model parameters. The model functionsM(·) :=

(A(·), B(·), C(·), D(·), x̂0(·), K(·), Re(·)) are assumed to be known. While the modelM is
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kept fairly general throughout, it is advantageous to assume the model is identifiable in Θ.

Last, for brevity, we often drop the dependence on the parameters θ ∈ Θ and write the model

functions asM = (A,B,C,D, x̂0, K,Re).

While the subsequent developments apply to any model of the form (3.6), our main moti-

vation is to identify the LADM,

ŝk+1 = As(θ)ŝk +Bd(θ)d̂k +Bs(θ)uk +Ks(θ)ek (3.7a)

d̂k+1 = d̂k +Kd(θ)ek (3.7b)

yk = Cs(θ)ŝk + Cd(θ)d̂k +D(θ)uk + ek (3.7c)

ek
iid∼ N(0, Re(θ)) (3.7d)

where ŝ ∈ Rns
denote plant states and d̂ ∈ Rnd

denote integrating disturbances. The LADM

(3.7) is clearly a special case of (3.6) and can be put back into the standard form (3.6) by

consolidating the plant and disturbance states x̂k :=

[
ŝ⊤k d̂⊤k

]⊤
and defining

A :=

[
As Bd

0 I

]
, B :=

[
Bs

0

]
,

C :=
[
Cs Cd

]
, K :=

[
Ks

Kd

]
.

Typically the LADM (3.7) is parameterizedwith (As, Cs) in observability canonical form (Den-

ham, 1974), (Bd, Cd) fixed,
1 (Bs, Ks, Kd, Re) fully parameterized, and (D, ŝ0, d̂0) = (0, 0, 0).

Alternatively, we could choose a physics-based or gray-box plant model for the plant dynam-

ics (As, Bs, Cs, D).

1
With (As, Bs, Cs, D) fixed, all (Bd, Cd) such that (3.7) is observable are equivalent up to a similarity

transform (Rajamani et al., 2009). Thus, (Bd, Cd) are chosen by the practitioner to maximize interpretability of

the disturbance estimates.
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3.2.1 Constrained maximum likelihood identification

The ML identification problem is defined as follows:

max
θ∈Θ

LN(θ) := −
N

2
ln detRe(θ)−

1

2

N−1∑
k=0

|ek(θ)|2[Re(θ)]−1 (3.8)

where the ek(θ) are given by the recursion (3.6) (Åström, 1979, p. 557), (Ljung, 1999, p. 219).

Often, we may wish to regularize with respect to a previous parameter estimate θ, or incor-

porate an available prior distribution of the parameters p0(θ). In either case, we consider the

maximum a posteriori (MAP) estimation problem,

max
θ∈Θ

LN(θ)−R0(θ) (3.9)

where R0(θ) ∝ − ln p0(θ) is the regularization term, typically chosen as a distance from

θ (Sjöberg et al., 1993; Johansen, 1997). For example, a Gaussian prior or generalized ℓ2 penalty

can be implemented as

R0(θ) :=
1

2
|vec(θ)− vec(θ)|2V −1 (3.10)

where θ ∈ Θ is the prior estimate, vec is a vectorization operator,
2
and V ≻ 0 is the prior

estimate variance. Such penalties are useful for model updating and re-identification. We

typically use the penalty (3.10) with V = ρ−1I . Later on, we transform the parameters θ

into a more convenient space for optimization and find it more convenient to define the prior

directly in the transformed space.

For plants of the form (3.6), the ML estimates are consistent and asymptotically effi-

cient (Åström, 1979). In a standard setting, the plant is of the form (3.6) with A−KC stable,

and its coefficients are asymptotically recovered by (3.8). With sufficient data, the identified

2
The vectorization operator may depend on the parameterization, as θ may contain both a vector portion

and a sparse (semidefinite) matrix portion. The vectorization should only preserve the uniquely defined nonzero

elements of the sparse matrix.
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filter is stable. However, the LADM (3.7) is an intentional misspecification of the plant. Un-

der certain regularity assumptions, we are consistent with respect to the estimates nearest in

relative entropy rate, taken between the plant and model measurement distributions

θ∗ := max
θ∈Θ

N−1E[LN(θ)]

where the expectation is taken over the true distribution of measurements (yk)
N−1
k=0 (White,

1984; Douc and Moulines, 2012). Identified LADM filters do not necessarily inherit stability

from the plant, so we must design Θ to guarantee offset-free control.

3.2.2 Constraints

The constraint set Θ should capture both estimator design specifications and system

knowledge. At a bare minimum, we require nondegeneracy of the innovation errors,

Re(θ) ≻ 0 (3.11)

and stability of the estimator,

ρ(A(θ)−K(θ)C(θ)) < 1. (3.12)

Other useful constraints include spectral abscissa bounds,

α(−Ã(θ)) < 0, (3.13)

and bounds on the argument of the eigenvalues,

0 < |Im(µ)|/Re(µ) < tan(ω), ∀µ ∈ λ(Ã(θ)) (3.14)
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for either the open-loop stability Ã = A or estimator stability Ã = A − KC matrices, to

eliminate artificial high-frequency dynamics that may affect the control performance.

Chemical processes exhibit sparse interactions between units (mass and energy flows),

especially for large-scale plants (Daoutidis et al., 2019; Tang et al., 2023). Sparse parameter-

izations of (A,B,C,D,K) are easily encoded, but the sparse parameterization of Re is less

obviously accomplished. While the covarianceRe for a centralized Kalman filter is dense even

for sparse plants, correlations between distant units are small (Motee and Jadbabaie, 2009).

Thus, it suffices to consider only nearest-neighbor correlations, e.g.,

Re =


R1,1 R1,2

R⊤
1,2 R2,2

.
.
.

.
.
.

.
.
. RNu−1,Nu

R⊤
Nu−1,Nu

RNu,Nu

 (3.15)

where Ri,j ∈ Rpu×pu
is the covariance between the innovations of the i-th and j-th process

unit innovations. In (3.15), the sparse formulation introduces just O(Nup
2
u) variables com-

pared to O(N2
up

2
u) variables for the dense formulation. Another algorithm goal is to simulta-

neously and efficiently enforce both (3.11) and (3.15). Finally, we remark that such constraints

can be applied to the ML identification of any networked system with a time-invariant topol-

ogy, as in Zamani et al. (2015).

3.2.3 Other parameterizations

The remainder of this section presents some other formulations of the ML identification

problem. While we do not consider these formulations explicitly in our algorithm formula-

tion (Section 3.3) or case studies (Chapter 5), the methods are readily generalized to these

formulations.
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Time-varying Kalman filter formulations

More generally, we could consider models of the following form:

xk+1 = A(θ)xk +B(θ)uk + wk (3.16a)

yk = C(θ)xk +D(θ)uk + vk (3.16b)

x0 ∼ N(x̂0(θ), P̂0(θ)) (3.16c)[
wk

vk

]
iid∼ N(0, S(θ)) (3.16d)

where w ∈ Rn
and v ∈ Rny

are the process and measurement noises and

M := (A,B,C,D, x̂0, P̂0, S)

are the model functions. The noise covariance matrix S(θ) may be partitioned as

S(θ) =

[
Qw(θ) Swv(θ)

[Swv(θ)]
⊤ Rv(θ)

]
(3.17)

where Qw(θ) ∈ Sn
+ is the process noise covariance, Swv(θ) is the cross-covariance, and

Rv(θ) ∈ Sny

+ is the measurement noise covariance. Throughout, we impose the stronger

requirement Rv(θ) ≻ 0 on the measurement noise covariance.

For the model (3.16), the ML problem is defined as

max
θ∈Θ

LN(θ) := −
1

2

N−1∑
k=0

ln detRk(θ)− |ek(θ)|2[Rk(θ)]−1 (3.18)
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where the ek andRk are defined by the Kalman filtering equations

x̂k+1 = Ax̂k +Buk +Kkek (3.19a)

yk = Cx̂k +Duk + ek (3.19b)

ek ∼ N(0,Rk) (indep.) (3.19c)

where

P̂k+1 := AP̂kA
⊤ +Qw −KkRkK⊤

k (3.19d)

Kk := (AP̂kC
⊤ + Swv)R−1

k (3.19e)

Rk := CP̂kC
⊤ +Rv. (3.19f)

We remark that Rv ≻ 0 suffices to guarantee the innovations are uniformly nondegenerate,

i.e.,Rk ≻ 0. However, stability of the filter is more difficult to guarantee as the early iterates

A − KkC may not be stable, even though the overall filter is stable, or vice versa. Instead,

it is necessary to check that a stabilizing solution to the Riccati equation exists, which we

elaborate on in the next formulation.

Time-invariant Kalman filter formulations

In most situations, the state error covariance matrix converges exponentially fast to a

steady-state solution P̂k → P̂ , so it suffices to consider the original steady-state filter model

(3.6). In terms of the model (3.16), the steady-state filter takes the form K := (AP̂C⊤ +

Swv)R
−1
e and Re := CP̂C⊤ + Rv, where P̂ is the unique, stabilizing solution to the discrete

algebraic Riccati equation (DARE),

P̂ = AP̂A⊤ +Qw − (AP̂C⊤ + Swv)× (CP̂C⊤ +Rv)
−1(AP̂C⊤ + Swv)

⊤. (3.20)
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Recall a solution to the DARE (3.20) is stabilizing if the resulting AK := A−KC is stable.

Convergence of P̂k to P̂ is equivalent to the solution to the DARE (3.20) being unique and

stabilizing. We generally assume such a solution exists, but for completeness, we state the

following proposition, adapted from (Silverman, 1976, Thm. 18(iii)) (see Appendix 3.A.1 for

proof).

Proposition 3.1. Assume Rv ≻ 0 and consider the full rank factorization

[
Qw Swv

S⊤
wv Rv

]
=

[
B̃

D̃

] [
B̃⊤ D̃⊤]

Then the following statements are equivalent:

1. The DARE (3.20) has a unique, stabilizing solution P̂ ⪰ 0.

2. The error covariance converges exponentially fast P̂k → P̂ for any P̂0 ⪰ 0.

3. (A,C) is detectable and (A− FC, B̃ − FD̃) is stabilizable for all F ∈ Rn×ny .

Remark 3.2. The hypothesis of Proposition 3.1 holds if we constrainA to be stable or (A,C)

to be observable.

Remark 3.3. The cross-covariance Swv complicates the filter stability analysis. With Swv =

0, it would suffice to assume (A,C) detectable and (A,Qw) stabilizable. With nonzero Swv,

however, a more elaborate stabilizability condition is needed. (Silverman, 1976, Thm. 18)

considers the regulation problemwith a cross-weighting term and semidefinite input weights.

Proposition 3.1 specializes this result to the filter problem with positive definite Rv.

Remark 3.4. While Re(θ) and K(θ) could be defined via P̂ (θ), taken as the function that

returns solutions to the DARE (3.20) and therefore enforcing filters stability, it is more con-

venient to directly parameterize these matrices as in (3.6).
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Minimum determinant formulation

Suppose in the model (3.6), that Re is parameterized fully, and separately from the other

terms, i.e.,

M(θ̃, Re) =
(
A(θ̃), B(θ̃), C(θ̃), D(θ̃), x̂0(θ̃), K(θ̃), Re

)
.

Moreover, assume Re is constrained separately as well, i.e.,

Θ = Θ̃× Sny

++.

Then we can always solve (3.8) stagewise, first in Re, and then in the remaining variables θ̃.

Solving the inner problem gives the solution

R̂e(θ̃) :=
1

N

N−1∑
k=0

ek(θ̃)[ek(θ̃)]
⊤

where we use the fact that ek is only dependent on θ̃, and we assume R̂e(θ̃) ≻ 0 for all θ̃ ∈ Θ̃.

The outer problem can be written

min
θ̃∈Θ̃

det R̂e(θ̃). (3.21)

The problem (3.21) is of relevance because it avoids posing (3.8) as a NSDP. It has been

used both in the early ML identification literature (Åström and Eykhoff, 1971; Ljung, 1978;

Åström, 1980) and in recent works (McKelvey et al., 2004; Ribarits et al., 2005; Li et al., 2007).

None of these works consider filter stability constraints. To the best of our knowledge, only

Umenberger et al. (2018) consider the ML problem (3.18) with stability constraints, but they

consider open-loop stability (i.e., ρ(A) < 1) and use the EM algorithm.

Remark 3.5. For real-world data, det R̂e(β, Σ̃) = 0 is not attainable because that would

imply some direction of yk were perfectly modeled. Therefore, R̂e(θ̃) ≻ 0 for all θ̃ ∈ Θ̃ is a

reasonable assumption.
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3.3 Algorithm outline

3.3.1 Constraint set formulation

More generally, we seek to (i) impose eigenvalue constraints on any model function Ã(θ)

and (ii) impose a sparsity structure on any semidefinite model function Q̃(θ).

Eigenvalue constraints

First, we define a LMI region.

Definition 3.6. We call D ⊆ C an LMI region if

D = { z ∈ C | fD(z) :=M0 +M1z +M⊤
1 z ≻ 0 }

for some generating matrices (M0,M1) ∈ Sm×Rm×m
. We call fD : C→ Sm

the characteristic

function of D.

The following lemma defines the four basic LMI regions: shifted half-planes, circles cen-

tered on the real axis, conic sections, and horizontal bands. For a general discussion of LMI

regions properties, see Chilali and Gahinet (1996); Kushel (2019).

Lemma 3.7. For each s, x0 ∈ R, the subsets

D1(s) := { z ∈ C | Re(z) > s }

D2(s, x0) := { z ∈ C | |z − x0| < s }

D3(s, x0) := { z ∈ C | |Im(z)| < s(Re(z)− x0) }

D4(s) := { z ∈ C | |Im(z)| < s }
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are LMI regions with characteristic functions

fD1(x0)(z) := −2x0 + z + z

fD2(s,x0)(z) :=
[

s −x0
−x0 s

]
+ [ 0 1

0 0 ]z + [ 0 0
1 0 ]z

fD3(s,x0)(z) := −2sx0I2 + [ s 1
−1 s ]z + [ s −1

1 s ]z

fD4(s)(z) := −2sI2 + [ 0 1
−1 0 ]z + [ 0 −1

1 0 ]z.

Proof. The first identity follows from the formula 2Re(z) = z+z. For the second identity, we

have fD2(s,xs)(z) =
[

s z−x0
z−x0 s

]
≻ 0 if and only if s > 0 and s2 > |z − x0|2, or equivalently,

|z − x0| < s. For the third identity, we have fD3(s,x0)(z) =
[
2s(Re(z)−x0) 2ιIm(z)

−2ιIm(z) 2s(Re(z)−x0)

]
≻ 0 if

and only if 2s(Re(z)− x0) > 0 and 4s2(Re(z)− x0)2 > 4|Im(z)|2, or equivalently, |Im(z)| <

s(Re(z) − x0). For the fourth identity, we have fD4(s)(z) =
[

2s 2ιIm(z)
−2ιIm(z) 2s

]
≻ 0 if and only

if 2s > 0 and 4s2 > 4|Im(z)|2, or equivalently, |Im(z)| < s.

Remark 3.8. For continuous-time systems, −D1(α) corresponds to a minimum decay rate

of α > 0, D3(− tan(ω), 0) corresponds to a minimum damping ratio cos(ω), and D2(r, 0) ∩

D3(− tan(ω), 0) implies to a maximum undamped natural frequency r sin(ω), where α, r > 0

and ω ∈ [0, π/2] (Chilali and Gahinet, 1996). For discrete-time systems, D2(r, 0) corresponds

to a minimum decay rate of− ln r, andD2(r, 0)∩D3(tan(ω), 0) implies a minimum damping

ratio − cos(tan−1(ω/ ln r)) and maximum natural frequency (ln(r)2 + ω2)/∆, where r > 0,

ω ∈ [0, π/2], and ∆ is the sample time.

Remark 3.9. For any LMI regionD (including those in Lemma 3.7), the setD is convex, open,

and symmetric about the real axis. The intersection of two LMI regions D := D1 ∩ D2 is an

LMI region with the characteristic function fD(z) = fD1(z) ⊕ fD2(z). By this property, we

can construct any convex polyhedron that is symmetric about the real axis by intersecting

left and right half-planes, horizontal strips, and conic sections. Moreover, since any convex
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region can be approximated, to any desired accuracy, by a convex polyhedron, the set of LMI

regions is dense in the space of convex subsets of C that are symmetric about the real axis.

An LMI regionD with characteristic function fD also has characteristic functionMfD(·)M⊤

for any nonsingular M ∈ Rm×m
. For an in-depth discussion of LMI region geometry and

other properties, see Kushel (2019).

In Chilali and Gahinet (1996), it is shown a matrix Ã ∈ Rñ×ñ
has eigenvalues in a LMI

region D if and only if the following system of matrix inequalities is feasible:

MD(Ã, P ) ≻ 0, P ≻ 0 (3.22)

where the matrix characteristic functionMD : Rñ×ñ × Sñ → Sñm̃
of D is defined by

MD(Ã, P ) :=M0 ⊗ P +M1 ⊗ (ÃP ) +M⊤
1 ⊗ (ÃP )⊤. (3.23)

From this equivalence, we can build tractable eigenvalue constraints. For the constraint

(3.12), Lemma 3.7 gives the generating matrices (M0,M1) := ([ 1 0
0 1 ], [

0 1
0 0 ]) and we have the

matrix inequalities

[
P (A−KC)P

P (A−KC)⊤ P

]
≻ 0, P ≻ 0

which is a well-known LMI for checking stability (Boyd et al., 1994). Similarly, to implement

(3.13), we can use the generating matrices (M0,M1) := (0, 1), and to implement (3.14), we

can use (M0,M1) :=
([

−2 tan(ω) 0
0 −2 tan(ω)

]
,
[
tan(ω) 1
−1 tan(ω)

])
.

The system of matrix inequalities (3.22) contains only strict inequalities, so we “tighten”

46



Constrained maximum likelihood identification Chapter 3

them as follows:

MD(Ã, P ) ⪰M, P ⪰ 0, tr(V P ) ≤ ε−1
(3.24)

where ε > 0, V ∈ Sñ
++, andM ∈ Sñm̃

++. The set of Ã ∈ Rñ×ñ
for which (3.24) is feasible defines

a closed set for which λ(Ã) ⊆ D. In Section 3.4, we show this fact and other properties of the

constraint (3.24).

Sparsity structure

To encode sparsity information, we adapt the notation of Burer et al. (2002a). Define

the index sets Ln := { (i, j) ∈ I21:n | i ≥ j } and Dn := { (i, i) ∈ I21:n } corresponding to the

sparsity patterns of n × n lower triangular and diagonal matrices. With a slight abuse of

notation, we define the direct sum of index sets I ⊆ Ln
and J ⊆ Lm

by

I ⊕ J := I ∪ { (i+ n, j + n) | (i, j) ∈ J } ⊆ Ln+m.

For each I ⊆ Ln
, define the sets

Sn[I] := {S ∈ Sn | Sij = 0 ∀ (i, j) ∈ Ln \ I }

Ln[I] := {L ∈ Ln | Lij = 0 ∀ (i, j) ̸∈ I }

Ln
++[I] := {L ∈ Ln

++ | Lij = 0 ∀ (i, j) ̸∈ I } .

Finally, let vecsI : Sn → R|I|
denote the operator that vectorizes the |I| entries of the argu-

ment corresponding to the index set I .
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Constraint definition

To combine the LMI region and sparsity constraints, we partition the parameter into vec-

tor and sparse symmetric matrix parts, i.e., θ = (β,Σ), and define the constraint set Θ by

Θ = { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ⪰ H(β), A(β,Σ) ⪰ 0 }

(3.25)

where DnΣ ⊆ IΣ ⊆ LnΣ
, DnA ⊆ IA ⊆ LnA

, g : Rnβ × SnΣ → Rng
, h : Rnβ × SnΣ → Rnh

,

H : Rnβ → SnΣ
, andA : Rnβ ×SnΣ → SnA [IA]. The purpose of the partition θ = (β,Σ) is to

clearly delineate the sparse semidefinite matrix argument Σ from the remaining parameters

β. The index set IΣ defines the sparsity pattern of Σ andH , and the index set IA defines the

sparsity pattern of A.

Remark 3.10. Assumption 3.13 rules out direct use strict inequalities, e.g., Re(θ) ≻ 0 or

Rv(θ) ≻ 0. To satisfy nondegeneracy requirements, we use the closed constraintRe(θ) ⪰ δIp

with a small backoff δ > 0.

Remark 3.11. Typically, the index set IΣ encodes block diagonal structures, e.g., for the

model (3.16), Σ = P̂0 ⊕ Qw ⊕ Rv ∈ S2n+p[IΣ] where IΣ := Ln ⊕ Ln ⊕ Lp
. However, more

general structures (e.g., (3.15)) can be stated. For the time-varying formulation (3.18), we may

further restrict Qw and Rv to take block tridiagonal and diagonal structures, e.g.,

Qw =


Q1,1 Q1,2

Q⊤
1,2 Q2,2

.
.
.

.
.
.

.
.
. Qñ−1,ñ

Q⊤
ñ−1,ñ Qñ,ñ

 , Rv = R1 ⊕ . . .⊕Rñ

that arise in sequentially interconnected processes such as chemical plants. Adding a Q1,ñ

block can account for an overall recycle loop. Note that if we parameterize the block tridiag-

onalQw via a sparse shaping matrix (i.e.,Qw = GwG
⊤
w), then there are more parameters than
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if the sparsity of Qw is known.

Remark 3.12. As alluded to in Section 3.2, the Riccati equation solution has a dense solution,

but the entries far from the core sparsity pattern decay rapidly. Thus, we can approximate

an eigenvalue constraint, e.g., P − APA⊤ ≻ 0, as a function that maps to the same sparsity

pattern asAMotee and Jadbabaie (2009); Haber and Verhaegen (2016); Motee and Sun (2017);

Massei and Saluzzi (2024).

3.3.2 Cholesky factorization and elimination

At this juncture, the ML and MAP problems (3.8) and (3.9) with the constraints (3.25) are

in standard NSDP form and can be solved with any dedicated NSDP solver, e.g., Fiala et al.

(2013); Kočvara and Stingl (2015). However, such solvers are neither as widely available nor

as well-understood as NLP solvers such as IPOPT (Wächter and Biegler, 2006).

The Burer-Monteiro-Zhang (BMZ) method is a Cholesky factorization-based substitution

and elimination algorithm that can convert certain NSDPs to NLPs (Burer et al., 2002a,b).

In Section 3.5, we consider a generalization of this algorithm to (approximately) transform

a given NSDP into a NLP while only introducing |IA| new variables. This generalization

requires the following assumption:

Assumption 3.13. The model functionsM are twice differentiable and the constraint func-

tions C are differentiable. Moreover, cl(Θ++) = Θ where

Θ++ := { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ≻ H(β), A(β,Σ) ≻ 0 } .

(3.26)
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In Section 3.5, we construct functions

T : Rnβ × LnΣ
++[IΣ]× LnA

++[IA]→ Rnβ × SnΣ [IΣ]

AT : Rnβ × LnΣ
++[IΣ]× LnA

++[IA]→ SnA
++[IA]

and define transformed constraint functions

gT (ϕ) :=

[
g(T (ϕ))

vecsIA(A(T (ϕ))−AT (ϕ))

]
(3.27a)

hT (ϕ) := h(T (ϕ)) (3.27b)

and a transformed constraint set

Φ := {ϕ ∈ Rnβ × LnΣ
++[IΣ]× LnA

++[IA] | gT (ϕ) = 0, hT (ϕ) ≤ 0 } (3.28)

such that, under Assumption 3.13, T is an invertible map fromΦ toΘ++. Finally, to eliminate

the strict inequalities on the diagonal entries of (LΣ, LA) ∈ LnΣ
++[IΣ]×LnA

++[IA], we introduce

a fixed lower bound ε > 0 on the diagonal entries,

Φε := {ϕ ∈ Rnβ × LnΣ
ε [IΣ]× LnA

ε [IA] | gT (ϕ) = 0, hT (ϕ) ≤ 0 } (3.29)

where we have defined, for any ε > 0 and I ⊆ Ln
,

Ln
ε [I] := {L ∈ Ln[I] | Lii ≥ ε ∀i ∈ I1:n } .

We define the approximate transformed problem as

max
ϕ∈Φε

LN(T (ϕ)) +R0(T (ϕ)). (3.30)
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Algorithm 1 Identification of an innovation form model (3.6) with eigenvalue constraints

and the Cholesky factor-based substitution and elimination scheme.

Require: Model functions M = (A,B,C,D, x̂0, K,Re), regularization term R0, initial

parameters θ0 = (β,Σ0) constraint functions (g, h0, H0,A0) and sparsity patterns

(IΣ0 , IA0), a series of LMI region constraints (Di, Ãi(·))nc
i=1, and small ε, εi > 0.

1: For each i ∈ I1:nc , let MDi
: Rni×ni × Sni → Snimi

denote the matrix characteristic

function for Di.

2: Extend the parameters Σ := Σ0 ⊕ (
⊕nc

i=1 Pi) and θ := (β,Σ) with Pi ∈ Sni
.

3: Extend the constraint functions

h(θ) :=

 h0(θ0)
tr(V1P1)− ε−1

1
. . .

tr(VncPnc)− ε−1
nc


H(β) := H0(β)⊕ (

⊕nc

i=1 0ni×ni
)

A(θ) := A0(θ0)⊕
(⊕nc

i=1MDi
(Ãi(θ0), Pi)− εiI

)
.

4: Extend the index sets

IΣ := IΣ0 ⊕ (
⊕nc

i=1 Lni)

IA := IA0 ⊕ (
⊕nc

i=1 Lnimi) .

5: Form the functions T , T −1
, and Ã as in Section 3.5.

6: Form the transformed constraint functions (3.27).

7: Solve (3.29) and (3.30), and let ϕ̂ denote the solution.

8: Let θ̂ := T (ϕ̂).

If ϕ̂ solves the problem (3.30), then θ̂ := T (ϕ̂) approximately solves the MAP problem (3.9).

We recover the ML problem (3.8) and its approximate solutions with R0 ≡ 0.

3.3.3 Algorithm summary

Algorithm 1 provides an example of our approach towards solving the identification prob-

lem (3.9) with eigenvalue constraints and the Cholesky factor-based substitution and elimi-

nation scheme.
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3.4 Eigenvalue constraints

In this section, we elaborate on the LMI region constraints previewed in Section 3.3.

Throughout, assume the LMI region D is nonempty, not equal to C, and its characteristic

function fD and generating matrices (M0,M1) are fixed. Our goal in this section is to define,

using only matrix inequalities, a closed set of matrices A ∈ Rn×n
such that λ(A) ⊆ D. For

this section, the matrix A ∈ Rn×n
need not have any relation to the model function in (3.6),

and can in fact be any square matrix of any dimension (e.g., the filter stability matrixA−KC ,

the plant stability matrix As from (3.7), or any submatrix thereof). Throughout this section,

we assume the matrix characteristic functionMD is fixed.

3.4.1 LMI region constraints

Originally, Chilali and Gahinet (1996) proved the following theorem relating the eigen-

values of A ∈ Rn×n
to feasibility of a system of matrix inequalities.

Theorem 3.14 ((Chilali and Gahinet, 1996, Thm. 2.2)). For anyA ∈ Rn×n, we have λ(A) ⊆ D

if and only if

MD(A,P ) ≻ 0, P ≻ 0. (3.31)

holds for some P ∈ Sn.

Ultimately, we seek matrix inequalities that define a closed set of constraints. Due to the

strictness of the inequalities (3.31), it is unlikely that (Chilali and Gahinet, 1996, Thm. 2.2)

achieves this goal.
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3.4.2 Relaxed constraints

In Miller and De Callafon (2013), the following relaxation of (3.31) was considered,

MD(A,P ) ⪰ 0, P ≻ 0. (3.32)

SinceMD(A,P ) is linear in P , feasibility of (3.33) is equivalent to feasibility of

MD(A,P ) ⪰ 0, P ⪰ P0 (3.33)

for some fixed P0 ∈ Sn
++.

3

An attempt was made in (Miller and De Callafon, 2013, Thm. 1) to characterize the eigen-

values of matrices A ∈ Rn×n
for which (3.32) is feasible, but this theorem does not correctly

treat eigenvalues on the LMI region’s boundary ∂D. We restate (Miller and De Callafon, 2013,

Thm. 1) below as a conjecture and disprove it with a simple counterexample.

Conjecture 3.15 ((Miller and De Callafon, 2013, Thm. 1)). The matrix A ∈ Rn×n satisfies

λ(A) ⊂ cl(D) if and only if (3.32) holds for some P ∈ Sn.

Counterexample. Let D be the left half-plane, consider the Jordan block A = [ 0 1
0 0 ], and sup-

pose P = [ p11 p12
p12 p22 ] ∈ S2

such that (3.32) holds. Then λ(A) ⊂ cl(D) and

0 ⪯MD(A,P ) = −
[
2p12 p22
p22 0

]

which implies p12 = p22 = 0, a contradiction of (3.32). ※

The correction to Conjecture 3.15 requires a more careful treatment of eigenvalues lying

on the the LMI region’s boundary ∂D. Specifically, we show in the following proposition that

3
For any P0 ≻ 0 and P satisfying (3.32), define the scaling factor γ := ∥P0∥2∥P−1∥2 and a rescaled solution

P ∗ := γP . Then P ∗ ⪰ P0 andMD(A,P ∗) = γMD(A,P ) ⪰ 0.
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feasibility of (3.32) for a given A ∈ Rn×n
is equivalent to the eigenvalues of A being in cl(D),

with all non-simple eigenvalues lying in D (see Appendix 3.A.2 for proof).

Proposition 3.16. The matrix A ∈ Rn×n satisfies λ(A) ⊆ cl(D) and λ ∈ D for all non-simple

eigenvalues λ ∈ λ(A) if and only if (3.32) holds for some P ∈ Sn.

3.4.3 Tightened constraints

Instead of the “relaxed” constraints (3.32), we consider “tightened” constraints of the form

MD(A,P ) ⪰M, P ⪰ 0, tr(V P ) ≤ ε−1
(3.34)

whereM ∈ Snm
+ and V ∈ Sn

++ are fixed and chosen in a way that (3.34) implies (3.31). While

we allowM to be semidefinite,
4
in the following proposition, we showM ≻ 0 always suffices.

Proposition 3.17. Suppose M ∈ Snm
++ and V ∈ Sn

++. Then (3.34) implies (3.31) for all A ∈

Rn×n and ε > 0.

Proof. With M ≻ 0 and (3.34), we automatically have MD(A,P ) ≻ 0. It remains to show

(3.34) implies P ≻ 0. For contradiction suppose (3.34) and M ≻ 0, but P ̸≻ 0. Then there

exists a nonzero v ∈ Rn
such that Pv = 0, and

(Im ⊗ v)⊤MD(A,P )(Im ⊗ v) =M0 ⊗ (v⊤Pv) +M1 ⊗ (v⊤APv) +M⊤
1 ⊗ (v⊤PA⊤v) = 0

a contradiction of the assumptionMD(A,P ) ⪰M ≻ 0.

Remark 3.18. The tightened constraint (3.34) was inspired by a similar set of constraints

was introduced by Diehl et al. (2009) to “smooth” the spectral radius. Specifically, feasibility

4
For some LMI regions, M ⪰ 0 is advantageous. For example, we can always take M := [ 1 0

0 0 ] ⊗ Q with

Q ≻ 0 for circular LMI regions. Then we can reduce the constraint dimension by taking the Schur complement.
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of the nonlinear system

s2P − APA⊤ = W, P ⪰ 0, tr(V P ) ≤ ε−1
(3.35)

implies ρ(A) < s whereW,V ∈ Sn
++ and s, ε > 0 are fixed (Diehl et al., 2009, Thms. 5.4, 5.6).

Similarly, the spectral abscissa was “smoothed” in (Vanbiervliet et al., 2009, Thms. 2.5, 2.6),

and it is straightforward to generalize (Diehl et al., 2009, Thms. 5.4, 5.6) to show feasibility of

(A− sI)P + P (A− sI)⊤ = −W, P ⪰ 0, tr(V P ) ≤ ε−1
(3.36)

implies α(A) < s whereW,V ∈ Sn
++, s ∈ R, and ε > 0 are fixed. The authors do not discuss

LMI regions and the results are not obviously generalizable to them.

3.4.4 Constraint topology

Consider the constraint sets,

An
D := {A ∈ Rn×n | ∃P ∈ Sn : (3.31) holds }

Ãn
D := {A ∈ Rn×n | ∃P ∈ Sn : (3.32) holds }

An
D(ε) := {A ∈ Rn×n | ∃P ∈ Sn : (3.34) holds } .

The following proposition characterizes the topology of An
D and Ãn

D (see Appendix 3.A.3 for

proof).

Proposition 3.19. (a) An
D is open.

(b) Ãn
D is not open if (i) n ≥ 2 or (ii) ∂D ∩ R is nonempty.

(c) Ãn
D is not closed if (i) n ≥ 4 or (ii) ∂D ∩ R is nonempty and n ≥ 2.

(d) cl(An
D) = {A ∈ Rn×n | λ(A) ⊂ cl(D) }.

55



Constrained maximum likelihood identification Chapter 3

Proposition 3.19 reveals a weakness of the relaxed constraints (3.32) and (3.33). Since Ãn
D

is not closed, any feasible path towards a matrix A ∈ cl(An
D) \ Ãn

D has no feasible limiting P .

In fact, P will grow unbounded along the path of iterates.

To analyze the topology of An
D(ε), we take a barrier function approach. Consider the

parameterized linear SDP,

ϕD(A) := inf
P∈Sn+

tr(V P ) subject toMD(A,P ) ⪰M. (3.37)

The optimal value function ϕD : Rn×n → R≥0 ∪ {∞} is a barrier function for the con-

straint A ∈ An
D. Theorem 3.20 establishes properties of ϕD and its ε−1

-sublevel sets (see

Appendix 3.A.4 for proof).

Theorem 3.20. Let V ∈ Sn
++ andM ∈ Sn

+ such thatMD(A,P ) ⪰M impliesMD(A,P ) ≻ 0.

Then

(a) ϕD is continuous on AD;

(b) for each ε > 0, An
D(ε) is equivalent to the ε

−1-sublevel set of ϕD, i.e.,

An
D(ε) = {A ∈ Rn×n | ϕD(A) ≤ ε−1 } (3.38)

and both are closed; and

(c) An
D(ε)↗ An

D as ε↘ 0.

Remark 3.21. To reconstruct (3.35) via Theorem 3.20, we set M = sW ⊕ 0n×n for any

W,V ≻ 0 and s > 0 and apply the Schur complement lemma toMD2(A,P )/s−M/s, where

D2 is the circle defined in Lemma 3.7 with x0 = 0, and MD2 is defined by the generating

matrices used in Lemma 3.7. Then the ε−1
-sublevel set of ϕD2 equals the set of A ∈ Rn×n

for

which (3.35) is feasible.

Similarly, we can reconstruct the set of A ∈ Rn×n
for which (3.36) is feasible as ε−1

-
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sublevel sets of ϕD1 , where D1 is the shifted half-plane defined in Lemma 3.7, and M = W

for anyW,V ≻ 0.

3.5 Cholesky substitution and elimination

In this section, we seek to approximate certain NSDPs by NLPs. Specifically, we consider

the NSDP

min
(β,Σ)∈Θ

f(β,Σ) (3.39)

where Θ is defined as in (3.25). This covers both ML (3.8) and MAP (3.9) problems with con-

straints (3.25). We combine Cholesky factor-based substitution with an elimination scheme

to convert the NSDP to a NLP while adding just |IA| variables to the optimization problem.

For this section, we define the following notation. For each I ⊆ Ln
, let πL

I : Rn×n →

Ln[I] and πI : Rn×n → Sn[I] denote the orthogonal projections (in the Frobenius norm)

from Rn×n
onto the subspaces Ln[I] and Sn[I], respectively. Let chol : Sn

++ → Ln
++ denote

the invertible function that maps a positive definite matrix to its Cholesky factor.

3.5.1 Burer-Monteiro-Zhang method

We first consider the simplified constraint set

P := { (x,Q) ∈ Rm × Sn[I] | Q ⪰ H(x) } (3.40)

where Dn ⊆ I ⊆ Ln
and H : Rm → Sn

. As in Burer et al. (2002a), we parameterize the

matrix argument Q in a way that automatically enforces the constraint Q ≻ H(x) while

introducing just n scalar inequality constraints.

RecallQ ≻ H if and only ifQ = H+LL⊤
for the uniquematrixL = chol(Q−H) ∈ Ln

++.
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Algorithm 2 Cholesky factorization algorithm for solving systems of the form (3.42) based

on (Burer et al., 2002a, Lem. 1).

Require: Dn ⊆ I ⊆ Ln
, LI ∈ Ln

++[I], and H ∈ Sn

1: (J , LJ )← (Ln \ I, 0n×n)
2: for each (i, j) ∈ J in ascending lexicographic order do
3: LJ

ij ← − 1
LI
jj
(Hij +

∑j−1
k=1(L

I
ik + LJ

ik)(L
I
jk + LJ

jk))

4: end for
5: return LJ

With J := Ln \ I , we can split L into a sum of LI ∈ Ln
++[I] and LJ ∈ Ln[J ], giving

Q = H + (LI + LJ )(LI + LJ )⊤. (3.41)

But Q ∈ Sn[I], so we can apply the vectorization operator vecsJ on both sides to give

vecsJ (H + (LI + LJ )(LI + LJ )⊤) = 0. (3.42)

Equation (3.42) defines |J | equations to solve for the |J | variables of LJ
, where each LJ

ij is

fully specified by Hij and the Li′j′ with (i′, j′) < (i, j).5 In Algorithm 2, we compute the LJ
ij

in ascending lexicographic order via Cholesky factorization.

Notice that each LJ
is fully defined byH and LI

via Algorithm 2, so we have proven the

following lemma.

Lemma 3.22 ((Burer et al., 2002a, Lem. 1)). For each (H,LI) ∈ Sn × Ln[I] such that LI
ii ̸= 0

for each i ∈ I1:n, there is a unique LJ ∈ Ln[J ] satisfying (3.42).

With a slight abuse of notation, we let LJ = LJ (H,LI) denote the function defined by

Algorithm 2, which maps each (H,LI) ∈ Sn × Ln
++[I] to the matrix LJ ∈ Ln[J ] uniquely

5
The lexicographic order < on I2 is defined by (i, j) < (i′, j′) if i < i′ or (i = i′) ∧ (j < j′).
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satisfying (3.42). Moreover, we let

Q(H,LI) := H + (LI + LJ (H,LI))(LI + LJ (H,LI))⊤

as in (3.41). Clearly Q(H,LI) ≻ H is satisfied by definition. Finally, we define the transfor-

mation

T (x, LI) :=
(
x,Q(H(x), LI)

)
(3.43)

which has the inverse

T−1(x,Q) :=
(
x, πL

I [chol(Q−H(x))]
)

(3.44)

and we have the following lemma.

Lemma 3.23 ((Burer et al., 2002a, Lem. 2)). The function T defined by (3.43) is a bijection

between Rm × Ln
++[I] and int(P).

Differentiability of T and T−1
follow from differentiability ofH and Algorithm 2. In fact,

these functions are as smooth asH . More importantly, the bijection T allows us to transform

the minimum of a continuous function over P to an infimum over Rm × Ln
++[I], given by

the following theorem.

Theorem 3.24 ((Burer et al., 2002a, Thm. 1)). If f : P → R is continuous and attains a

minimum in P , then

min
(x,Q)∈P

f(x,Q) = inf
(x,LI)∈Rm×Ln

++[I]
f(T (x, LI)). (3.45)

We reiterate the proof of Theorem 3.24 for illustrative purposes.
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Proof. Continuity of f implies its minimum over P equals its infimum over int(P), i.e.,

min
(x,Q)∈P

f(x,Q) = inf
(x,Q)∈int(P)

f(x,Q)

Since T is a bijection, we can transform the optimization variables as follows:

inf
(x,Q)∈int(P)

f(x,Q) = inf
(x,LI)∈T−1(int(P))

f(T (x, LI)).

Finally, since Rm × Ln
++[I] = T−1(int(P)), we have (3.45).

3.5.2 Generalized Burer-Monteiro-Zhang method

We return to constraints of the form (3.25). Recall Assumption 3.13 requires the matrix in-

equalities are strictly feasible in the constraint set. We use a similar procedure to Section 3.5.1,

but Algorithm 2 must be applied to each strict inequality Σ ≻ H and A(β,Σ) ≻ 0.

For the sparse symmetric matrix Σ and matrix inequality Σ ≻ H(β), the procedure is the

same as in Section 3.5.1. Let LJΣ = LJΣ(H,LIΣ) denote the function defined by Algorithm 2

with LI = LIΣ
, I = IΣ, and n = nΣ. Then

Σ(β, LIΣ) := H + (LIΣ + LJΣ(H,LIΣ))(LIΣ + LJΣ(H,LIΣ))⊤

guarantees Σ(H,LIΣ) ≻ H and Σ(H,LIΣ) ∈ SnΣ [IΣ] for all (H,LIΣ) ∈ SnΣ × LnΣ
++[IΣ].

In other words, Σ is fully defined and the constraint Σ ≻ H automatically satisfied by

(H,LIΣ) ∈ SnΣ × LnΣ
++[IΣ].

For the general matrix inequality A(β,Σ) ⪰ 0, the procedure is slightly different. Let

LJA = LJA(LIA) denote function defined by Algorithm 2 with LI = LIA
, I = IA, n = nA,
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and H = 0. Define the functions

A(LIA) := (LIA + LJA(LIA))(LIA + LJA(LIA))⊤

which guarantees A(LIA) ∈ SnA
++[IA] for all LIA ∈ LnA

++[IA]. However, the constraint is not

fully eliminated; we are left with |IA| equality constraints in the transform space,

vecsIA(A(β,Σ(H(β), LIΣ))−A(LIA)) = 0

with the other |LnA \ IA| constraints automatically guaranteed by Algorithm 2.

To define the new constraints, we require the variable transformations

T (β, LIΣ , LIA) :=
(
β,Σ(H(β), LIΣ)

)
(3.46a)

AT (β, L
IΣ , LIA) := A(LIA) (3.46b)

which are well-defined for all (β, LIΣ , LIA) ∈ Rnβ × LnΣ [IΣ] × LnA [IA]. With the func-

tions (3.46), we define the transformed constraint functions (gT , hT ) and the transformed

constraint set Φ ⊆ Rnβ × LnΣ [IΣ] × LnA [IA] according to (3.27) and (3.28). The inverse

transform is

T −1(β,Σ) :=
(
β, πL

IΣ [chol(Σ−H(β))], πL
IA [chol(A(β,Σ))]

)
(3.47)

for all (β,Σ) ∈ Θ++, and we have the following lemma.

Lemma 3.25. The function T defined by (3.46) is a bijection between Φ and Θ++.

Proof. First, we have T (Φ) ⊆ Θ++ since the transformed constraints guarantee the con-

straints g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ≻ H(β), and A(β,Σ) ≻ 0 for any (β,Σ) := T (ϕ) and

ϕ ∈ Φ. Next, it is clear by construction that T −1 ◦ T is the identity map on Φ. Therefore T
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is injective. Similarly, we have T −1(Θ++) ⊆ Φ by construction, and T ◦ T −1
is the identity

map on Θ++, so T : Φ is surjective.

Under Assumption 3.13, the functions T , T −1
, andAT are as smooth asH , and moreover,

the bijection T transforms a minimum over Θ into an infimum over Φ.

Proposition 3.26. If Assumption 3.13 holds and f : Θ → R is continuous and attains a

minimum in Θ, then

min
θ∈Θ

f(θ) = inf
ϕ∈Φ

f(T (ϕ)).

Proof. The proof follows that of Theorem 3.24, noting that Assumption 3.13 gives cl(Θ++) =

Θ and therefore the minimum of f over Θ equals the infimum of f over Θ++.

3.5.3 Approximate solutions

As mentioned in Section 3.3, we consider a lower bound ε > 0 on the diagonal elements

of (LIΣ , LIA). We define the tightened constraint set Φε by (3.29). In the following theorem

we show, under Assumption 3.13 and continuity of f , the infimum of f ◦T overΦε converges

to the minimum of f over Θ (see Appendix 3.A.5 for proof).

Theorem 3.27. Suppose f is continuous and attains a minimum in Θ. Define

µ0 := min
θ∈Θ

f(θ)

µε := inf
ϕ∈Φε

f(T (ϕ)). (3.48)

If Assumption 3.13 holds, then µε ↘ µ as ε↘ 0.

In fact, with a few additional requirements on the objective f , convergence of approxi-

mate problem solutions to the solution of the original problem is guaranteed by the following

theorem (see Appendix 3.A.5 for proof).
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Theorem 3.28. Suppose f is continuous and Assumption 3.13 holds. Consider the set-valued

function θ̂ : R≥0 → P(Θ), defined as θ̂ε := argminθ∈T (Φε) f(θ) for all ε > 0, and θ̂0 :=

argminθ∈Θ f(θ). If there exists α ∈ R and compact C ⊆ Θ such that

Θf≤α := { θ ∈ Θ | f(θ) ≤ α }

is contained in C and Θf≤α ∩ Θ++ is nonempty, then there exists ε > 0 such that, for all

ε0 ∈ [0, ε),

(a) f achieves a minimum in Θ and θ̂0 is nonempty;

(b) if ε0 > 0, then f achieves a minimum in T (Θε0) and θ̂ε0 is nonempty;

(c) µε is continuous and θ̂ε is outer semicontinuous at ε = ε0; and

(d) if θ̂0 is a singleton, then lim supε↘0 θ̂ε = θ̂0.

Remark 3.29. Originally, Burer et al. (2002a) used a log-barrier approach to handle the strict

inequalities implied by L ∈ Ln
++[I] and achieve global convergence for a class of linear SDPs.

For problems of the form (3.45), the log-barrier term eliminates all remaining constraints.

However, for problems of the form (3.39) many constraints remain in addition to the strict

inequalities on the diagonal elements of (LIΣ , LIA) ∈ LnΣ
++[IΣ]× LnA

++[IA].

3.6 Summary and discussion

We stated a ML identification problem with model structure and constraints suitable for

implementing offset-free controllers (Section 3.2). An algorithm for solving the ML identi-

fication problem with standard software was outlined (Section 3.3). Tightened LMI region

constraints were introduced and shown to define closed sets of system matrices (Section 3.4,

Theorem 3.20). A substitution and elimination scheme for approximating NSDPs as NLPs was

presented (Section 3.5, Theorems 3.27 and 3.28). See Chapter 5 for real-world case studies of
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these methods. We conclude with a discussion of computational issues, possible future appli-

cations and research directions, and an appendix of proofs that were deferred from the main

chapter text.

Computational concerns The main limitation of eigenvalued-constrained ML is compu-

tational cost. While constrained ML retains linear scaling in sample size N , each LMI region

constraint on an arbitrary system matrix Ã ∈ Rñ×ñ
requires an additional O(ñ2(m2 + 1))

variables and O(ñ2m2) equality constraints. These requirements can be significantly re-

duced for spectral abscissa bounds D1(s) and stability constraints D2(s, 0). As mentioned

in Remark 3.18, these constraints are quite similar to the “smooth” spectral radii and abscissa

constraints of Diehl et al. (2009); Vanbiervliet et al. (2009), which only add O(ñ2) variables

and O(ñ2) equality constraints. For eigenvalues constrained to the LMI regions D1(s) or

D2(s, x0), implementing these constraints as a special case can reduce the computational

cost significantly.

For a standard, black-box LADM (3.7) with nd = ny, a canonical form for (As, Bs, Cs),

and (D, ŝ0, d̂0) = (0, 0, 0), there are O(ns(nu + ny) + p2) variables before constraints are

added, and O(n2
s) variables after. Thus, fitting black-box models of large-scale systems is

computationally prohibitive. However, as discussed in Section 3.2, large-scale chemical plants

and networked systems may be represented by significantly fewer variables: O(Nunu(pu +

mu) +Nup
2
u) without constraints, or O(Nun

2
u) with constraints, where Nu is the number of

units or nodes, and nu,mu, pu are the number of states, inputs, and outputs per unit or node.

Data-driven control The approach discussed so far is an indirect data-driven control de-

sign of offset-free MPC. A potential alternative is the direct data-driven control approach,

where the control law is designed according to data (Berberich et al., 2021; Dorfler et al., 2022;

Berberich et al., 2022a; Yuan and Cortés, 2022; Bianchin et al., 2023). The drawback of this ap-
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proach is its reliance on Willem’s Fundamental Lemma (Willems et al., 2005), which assumes

the data is generated from a plant of the model class and does not allow structured models.

We also remark the models considered in this chapter have far more general noise models

than those considered in direct data-driven control works.

Recent work on direct data-driven control has incorporated likelihood functions with

measurement noise models into the control design (Yin et al., 2023). To the best of our knowl-

edge, no current work has considered process noise, Kalman filter forms, or structuring the

model with uncontrollable integrators for offset-free MPC. There is a future possibility of

direct data-driven offset-free MPC design with both optimal control and estimation perfor-

mance.

Linear identification of nonlinear systems The main difficulty of linear identification

of nonlinear systems is plant-model mismatch. With ML identification, properties of the esti-

mates are dependent on the plant’s stochastic behavior (Jr., 1982; White, 1984). For stationary,

input-free models, the solution to the mismatched problem can be interpreted as (asymptot-

ically) minimizing the Kullback-Leibler divergence between the power spectral densities of

the model and plant (Anderson et al., 1978). However, there are still gaps in the treatment of

inputs, state-space models, and arbitrary nonlinear plants. Moreover, there are no guaran-

tees placed on this “closest” model, as it no longer aligns with the plant and therefore does

not inherit any physically relevant properties from it. The constraints considered herein ad-

dress concerns that the “closest” model may be unphysical. However, exactly what the closest

model may entail is highly speculative and an area of future research.

Closed-loop performancemonitoring SinceML identifiedmodels aremore distribution-

ally accurate, they are more suitable to the performance monitoring technique of Zagrobelny

et al. (2013). Integrated identification and offset-free controller validation may be possible by
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combining this method with ours. Another promising application is model re-identification,

as mentioned in Chapter 1. From the asymptotic distribution, decision functions can be con-

structed to map the on-line MPC performance to a re-identification signal. These decision

functions can be constructed so as to not alarm unless sufficiently exciting data is avail-

able. Decision-theoretic re-identification therefore has lower cost and risk compared to classic

adaptive control or online reinforcement learning methods that require a persistently excit-

ing identification signal. This approach could bring statistical data efficiency to the fields of

adaptive control and online reinforcement learning.
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Appendices

3.A Additional proofs

3.A.1 Proof of Proposition 3.1

Silverman (1976) presents complete characterization of the DARE solutions for regulation

problems with cross terms. However, this admits additional nullspace terms into the gain

matrix which the Kalman filtering problem does not allow. We avoid nullspace terms through

the assumption Rv ≻ 0 and therefore streamline the proof of Proposition 3.1.

For the following definitions and lemmas, we denote by W := (A,B,C,D) the system

matrices corresponding to the noise-free system (2.1).

Definition 3.30. The systemW is left invertible on I0:k−1 if

0 =


D
CB D
.
.
.

.
.
.

.
.
.

CAk−2B . . . CB D


 u0

.

.

.

uk−1



implies u0 = 0. The systemW is left invertible if there is some j ∈ I>0 such thatW is left

invertible on I0:k−1 for all k ≥ j.

Definition 3.31. The systemW is strongly detectable if yk → 0 implies xk → 0.
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The following lemmas are taken directly from (Silverman, 1976, Thms. 8, 18(iii)), but the

proofs are omitted for the sake of brevity.

Lemma 3.32 ((Silverman, 1976, Thm. 8)). IfW is left invertible, thenW is strongly detectable

if and only if (A−BF,C −DF ) is detectable for all F of appropriate dimension.

Lemma 3.33 ((Silverman, 1976, Thm. 18(iii))). IfW is left invertible, then the DARE

P = A⊤PA− (A⊤PB + C⊤D)(B⊤PB +D⊤D)−1(B⊤PA+D⊤C)

has a unique, stabilizing solution6 if and only ifW is stabilizable and semistrongly detectable.

For the remainder of this section, we consider the full rank factorization

[
Qw Swv

S⊤
wv Rv

]
=

[
B̃

D̃

] [
B̃⊤ D̃⊤]

and the dual system W̃ := (A⊤, C⊤, B̃⊤, D̃⊤) to analyze the properties of the original system

(3.16). The following lemma relates the properties Rv ≻ 0 and left invertability of W̃ .

Lemma 3.34. If Rv ≻ 0 then W̃ is left invertible.

Proof. Left invertability on I0:k−1 is equivalent to

0 =


D̃⊤

B̃⊤C⊤ D̃⊤

.

.

.

.
.
.

.
.
.

B̃⊤(A⊤)k−2C⊤ . . . B̃⊤C⊤ D̃⊤


 u0

.

.

.

uk−1

 (3.49)

implying u0 = 0. But Rv = D̃D̃⊤ ≻ 0, so D̃⊤
has a zero nullspace. For each k ∈ I>0, the

coefficient matrix of (3.49) has a zero nullspace. Thus, u0 = 0 and W̃ is left invertible.

6Contrary to in Section 3.2, here we mean the solution P is stabilizing when A − BK(P ) is stable, where
K(P ) := (B⊤PB +D⊤D)−1B⊤P .
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Finally, we can prove Proposition 3.1.

Proof of Proposition 3.1. By Lemma 3.34, we have that W̃ is left invertible. Therefore, by

Lemma 3.33, the DARE (3.20) has a unique, stabilizing solution if and only if W̃ is stabi-

lizable and strongly detectable. But by Lemma 3.32 and duality, the latter statement is true if

and only if (A,C) is detectable and (A−FC, B̃−FD̃) is stabilizable for all F ∈ Rn×ny
.

3.A.2 Proof of Proposition 3.16

Throughout this appendix, we define the set of n×n Hermitian, Hermitian positive defi-

nite, and Hermitian positive semidefinite matrices as Hn
, Hn

++, and Hn
+. Notice that fD maps

to Hermitian matrices so we can write it as f : C → Hm
. We define the extension ofMD to

complex argumentsMD : Cn×n ×Hn
+ → Hnm

as

MD(A,P ) :=M0 ⊗ P +M1 ⊗ (AP ) +M⊤
1 ⊗ (AP )H.

To show Proposition 3.16, we need a preliminary result about Hermitian positive semidefinite

matrices, generalized from Lemma A.1 of Chilali and Gahinet (1996).

Lemma 3.35. For anyM ∈ Hn, ifM ⪰ 0 (M ≻ 0) then Re(M) ⪰ 0 (Re(M) ≻ 0).

Proof. With M = Re(M) + ιIm(M), it is clear M Hermitian implies Re(M) is symmetric

and Im(M) is skew-symmetric. Thus v⊤Mv = v⊤Re(M)v for all v ∈ Rn
, and positive

(semi)definiteness ofM implies positive (semi)definiteness of Re(M).

In proving Proposition 3.16, we take the approach of Chilali and Gahinet (1996) but are

careful to distinguish eigenvalues on the interior D from those on the boundary ∂D.

Proof of Proposition 3.16. (⇐) Suppose thatMD(A,P ) ⪰ 0 for some P ≻ 0 and let λ ∈ λ(A).
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Then there exists a nonzero v ∈ Cn
for which vHA = λvH. Consider the identity

(Im ⊗ v)HMD(A,P )(Im ⊗ v) =M0 ⊗ vHPv +M1 ⊗ (vHAPv) +M⊤
1 ⊗ (vHPA⊤v)

=M0 ⊗ vHPv +M1 ⊗ (λvHPv) +M⊤
1 ⊗ (λvHPv)

= vHPv(M0 +M1λ+M⊤
1 λ)

= vHPvfD(λ).

The assumption P ≻ 0 implies vHPv > 0, and MD(A,P ) ⪰ 0 further implies fD(λ) ⪰ 0.

Therefore λ ∈ cl(D).

Next suppose λ ∈ λ(A) is non-simple and λ ∈ ∂D. Then there exists nonzero v1, v2 ∈ Cn

(linearly independent) such that vHfD(λ)v = 0, vH1 A = λvH1 , and v
H
2 A = λvH2 + v1. Because

D is open, λ ∈ ∂D = cl(D)\D must satisfy both fD(λ) ⪰ 0 and fD(λ) ̸≻ 0. Therefore fD(λ)

is singular, and there exists a nonzero vector v ∈ Cm
such that vHfD(λ)v = 0. With the 2×2

matrices

P̃ =

[
p11 p12
p12 p22

]
:=

[
vH1
vH2

]
P
[
v1 v2

]
≻ 0

J̃ := λI2 +

[
0 1
0 0

]

we have

[
v1 v2

]H
A = J̃

[
v1 v2

]H
and therefore

(Im ⊗
[
v1 v2

]
)HMD(A,P )(Im ⊗

[
v1 v2

]
) =M0 ⊗ P̃ +M1 ⊗ J̃ P̃ +M⊤

1 ⊗ (J̃ P̃ )⊤

=MD(J̃ , P̃ ) ⪰ 0.
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Next, we have

M̃ := K2,mMD(J̃ , P̃ )K
⊤
2,m

= P̃ ⊗M0 + J̃ P̃ ⊗M1 + (J̃ P̃ )⊤ ⊗M⊤
1

= P̃ ⊗ fD(λ) +
[
p12(M1 +M⊤

1 ) p22M1

p22M
⊤
1 0

]
⪰ 0.

Finally,

(I2 ⊗ v)HM̃(I2 ⊗ v) =
[
p12v

H(M1 +M⊤
1 )v p22v

HM1v
p22v

HM⊤
1 v 0

]
⪰ 0.

But P̃ ≻ 0 implies p22 > 0, so the above matrix inequality implies vHM1v = 0. Moreover,

with vHfD(λ)v = 0, we also have vHM0v = 0 and therefore f(z) ≡ 0 and D is empty, a

contradiction. Therefore each λ ∈ λ(A) non-simple implies λ ∈ D.

(⇒) Suppose λ(A) ⊂ cl(D) and λ ∈ λ(A) non-simple implies λ ∈ D.

If A = λ is a (possibly complex) scalar, then it lies in cl(D) by assumption, and therefore

MD(λ, p) = pfD(λ) ⪰ 0 for all p > 0.

If A = λIn + N is a (possibly complex) Jordan block, where N ∈ Rn×n
is a shift matrix

and n > 1, then λ ∈ D and fD(λ) ≻ 0. Let Tk := diag(kn−1, . . . , k, 1) for each k ∈ I>0. Then

T−1
k ATk = λIn + k−1N → λIn as k →∞. Moreover, becauseMD is continuous, we have

MD(T
−1
k ATk, In)→MD(λIn, In) = fD(λ)⊗ In ≻ 0.

Therefore there exists some k0 ∈ I>0 such that MD(T
−1
k ATk, In) ≻ 0 for all k ≥ k0. With
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P := TkT
⊤
k , we have

MD(A,P ) =M0 ⊗ TkT⊤
k +M1 ⊗ (ATkT

⊤
k ) +M⊤

1 ⊗ (ATkT
⊤
k )⊤

= (Im ⊗ Tk)(M0 ⊗ In +M1 ⊗ T−1
k ATk +M⊤

1 ⊗ (T−1
k ATk)

⊤)(Im ⊗ Tk)⊤

= (Im ⊗ Tk)MD(T
−1
k ATk, In)(Im ⊗ Tk)⊤ ≻ 0.

Finally, for any A ∈ Rn×n
, let A = V (

⊕p
i=1 Ji)V

−1
denote the Jordan decomposition of

A, where Ji = λiIni
+ Ni, λi ∈ λ(A), Ni are shift matrices, and n =

∑p
i=1 ni. We have

already shown that for each i ∈ I1:p, there exists Pi ≻ 0 such thatMD(Ji, Pi) ⪰ 0. Then with

P̃ := V (
⊕p

i=1 Pi)V
−1
, we have

(Im ⊗ V −1)MD(A, P̃ )(Im ⊗ V −1)H

=M0 ⊗

(
p⊕

i=1

Pi

)
+M1 ⊗

(
p⊕

i=1

JiPi

)
+M1 ⊗

(
p⊕

i=1

JiPi

)⊤

= Kn,m

(
p⊕

i=1

Km,ni
MD(Ji, Pi)K

⊤
m,ni

)
K⊤

n,m ⪰ 0

and thereforeMD(A, P̃ ) ⪰ 0. Last, Lemma 3.35 givesMD(A,P ) ⪰ 0 with P := Re(P̃ ) since

MD(A,P ) =MD(A,Re(P̃ )) = Re(MD(A, P̃ )).

3.A.3 Proof of Proposition 3.19

To show Proposition 3.19(a), we first require the following eigenvalue sensitivity result

due to (Golub and Van Loan, 2013, Thm. 7.2.3).

Theorem 3.36 ((Golub and Van Loan, 2013, Thm. 7.2.3)). For any A ∈ Cn×n, denote its Schur

decomposition by A = Q(D +N)QH, where Q ∈ Cn×n is unitary, D ∈ Cn×n is diagonal, and
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N ∈ Cn×n is strictly upper triangular.7 Let p be the smallest positive integer for whichMp = 0

whereMij := |Nij|. Then, for any E ∈ Rn×n and µ ∈ λ(A+ E),

min
λ∈λ(A)

|µ− λ| ≤ max { c∥E∥, (c∥E∥)1/p }

where c :=
∑p−1

k=0 ∥N∥k.

Proof of Proposition 3.19. Throughout this proof, we show a set S is not open (or not closed)

by demonstrating that Sc
(or S) does not contain all its limit points.

(a)—For any A ∈ An
D, continuity of fD gives the existence of a function δ(λ) > 0 such

that fD(z) ≻ 0 for all |z−λ| < δ(λ) and λ ∈ λ(A). Let δ := minλ∈λ(A) δ(λ). By Theorem 3.36

and norm equivalence, there exist c > 0 and p ∈ I1:n such that

max
µ∈λ(A+E)

min
λ∈λ(A)

|λ− µ| ≤ max { c∥E∥F, (c∥E∥F)1/p }

for all E ∈ Rn×n
. Therefore there exists a ε > 0 such that

max
µ∈λ(A+E)

min
λ∈λ(A)

|λ− µ| < δ

for all E ∈ B := {E ′ ∈ Rn×n | ∥E ′∥F < ε }. Finally, A+B is a neighborhood of A contained

in An
D, and, since A ∈ An

D was chosen arbitrarily, An
D is open.

(b)(i)—Because D is open, nonempty, and not equal to D, ∂D is nonempty. Let λ ∈ ∂D

and λk ∈ Dc
be a sequence for which λk → λ. By symmetry, we also have λ ∈ D and

λk ∈ Dc
.

For n = 2, we have A :=
[
Re(λ) −Im(λ)
Im(λ) Re(λ)

]
∈ R2×2

has eigenvalues λ, λ ∈ D, and Ak :=[
Re(λk) −Im(λk)
Im(λk) Re(λk)

]
∈ R2×2

has eigenvalues λk, λk ∈ Dc
for each k ∈ I>0. The corresponding

7A matrix U is strictly upper triangular if Uij = 0 for all i ≥ j.
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eigenvectors are [ ±ι
1 ] ∈ C2

. Therefore A ∈ Ã2
D but Ak ∈ (Ã2

D)
c
for each k ∈ I>0, and the

limit Ak → A gives us that (Ã2
D)

c
does not contain all its limit points.

For n > 2, let A0 ∈ Ãn−2
D , and we can extend the prior argument with the sequence

Bk := Ak ⊕ A0 ∈ (Ãn
D)

c, k ∈ I>0 that converges to B := A⊕ A0 ∈ Ãn
D.

(b)(ii)—By part (b)(i), it suffices to consider the case n = 1. By closure and convexity of

D, D ∩ R is either a closed line segment, a closed ray, or R itself. In other words, D ∩ R is

open if and only if it has no endpoints. Moreover, since ∂D ∩R is the set of the endpoints of

D ∩R, D ∩R is open if and only if ∂D ∩R is empty. Finally, since Ã1
D = D ∩R, Ã1

D is open

if and only if ∂D ∩ R is empty.

(c)(i)—Let λ ∈ ∂D. Suppose n = 4. Then λ ∈ ∂D by symmetry. Because D is open, there

exists a sequence λk ∈ D such that λk → λ, and by symmetry, we also have λk ∈ D and

λk → λ. Consider again the 2×2matricesA andAk from part (b)(i), which have eigenvalues

λ, λ ∈ D and λk, λk ∈ Dc
, respectively. Then the block matrices B :=

[
A I2
0 A

]
∈ R4×4

and Bk :=
[
Ak I2
0 Ak

]
∈ R4×4

have the same eigenvalues, but this time the eigenvectors are[ ±ι
1
0
0

]
,

[
0
0
±ι
1

]
∈ C4

and the eigenvalues are non-simple. Since λ is a non-simple eigenvalue on

the boundary of D, we have B ̸∈ Ã4
D. However, λk are all in the interior of D, so Bk ∈ Ã4

D.

Since Bk → B, the set Ã4
D does not contain all its limit points.

On the other hand, let λ ∈ ∂D and suppose n > 4. Similarly to part (b)(i), with any

Ã0 ∈ Ãn−4
D , we can extend the argument for the n = 4 case with the sequence Ãk := Bk ⊕

Ã0 ∈ Ãn
D, k ∈ I>0 that converges to Ã := B ⊕ Ã0 ∈ (Ãn

D)
c
.

(c)(ii)—Let λ ∈ ∂D∩R and n ≥ 2. BecauseD is convex, open, and nonempty, there exists

ε > 0 such that exactly one of the real intervals (λ, λ + ε) or (λ − ε, λ) is contained in D,

whereas the other is contained in int(Dc). Without loss of generality, assume (λ−ε, λ) ⊆ D.8

Then Ak := (λ − ε/k)In + Nn ∈ Ãn
D for each k ∈ I>0, but Ak → λIn + Nn ∈ (Ãn

D)
c
and

therefore Ãn
D does not contain all its limit points.

8
Otherwise, take the reflection about the imaginary axis −D and −Ãn

D .
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(d)—Since An

D := {A ∈ Rn×n | λ(A) ⊂ cl(D) } contains An
D, it suffices to show any A ∈

An

D is a limit point of An
D. Denote the Jordan form by A = V (

⊕p
i=1 µiIni

+Nni
)V −1

,

where V ∈ Rn×n
is invertible, µi ∈ λ(A), n =

∑p
i=1 ni, and Ni ∈ Rni×ni

is a shift ma-

trix. Because µi ∈ cl(D), there exists a sequence µi,k ∈ D such that µi,k → µi. Then

Ak := V (
⊕p

i=1 µi,kIni
+Ni)V

−1 ∈ An
D and Ak → A.

3.A.4 Proof of Theorem 3.20

To prove Theorem 3.20(a,b), we use sensitivity results on the value functions of parame-

terized nonlinear SDPs,

V (y) := inf
x∈X(y)

F (x, y) (3.50)

where the set-valued function X : Rm → P(Rn) is defined by

X(y) := {x ∈ Rn | G(x, y) ⪰ 0 } .

Consider also the graph of the set-valued function X,

Z := { (x, y) ∈ Rn+m | G(x, y) ⪰ 0 } .

Notice that Z is closed if G is continuous. We say Slater’s condition holds at y ∈ Rm
if

there exists x ∈ Rn
such that x ∈ int(X(y)), or equivalently, G(x, y) ≻ 0. In the following

proposition, we specialize (Bonnans and Shapiro, 2000, Prop. 4.4) to nonlinear SDPs.

Proposition 3.37. Let y0 ∈ Rm and suppose

(i) F and G are continuous on Rn+m;

(ii) there exist α ∈ R and compact C ⊂ Rn such that, for each y in a neighborhood of y0, the
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level set

lev≤αF (·, y) := {x ∈ X(y) | F (x, y) ≤ α }

is nonempty and contained in C ; and

(iii) Slater’s condition holds at y0.

Then F (·, y) attains a minimum on X(y) for all y ∈ Ny, and V (y) is continuous at y = y0.

Proof. See Proposition 4.4 and the discussions in pp. 264, 483–484, 491–492 of Bonnans and

Shapiro (2000).

Finally, we prove Theorem 3.20 with Proposition 3.37.

Proof of Theorem 3.20. Let vec : Rn×n → Rn2
and vecs : Rn×n → R(1/2)(n+1)n

denote the

vectorization and symmetric vectorization operators, respectively.

(a)—Let x := vecs(P ), y := vec(A), F (x, y) := tr(V P ), andG(x, y) := P ⊕ (MD(A,P )−

M). We aim to use Proposition 3.37 to show the continuity of ϕD on An
D. Let A0 ∈ An

D.

Condition (i) of Proposition 3.37 holds by assumption. Slater’s condition (iii) holds because

for any P ≻ 0 such thatMD(A0, P ) ≻ 0, we can define P0 := γP ≻ 0 for some γ > γ0 :=

∥M∥ × ∥[MD(A0, P )]
−1∥ to give

MD(A0, P0) = γMD(A0, P ) ≻ γ0MD(A0, P ) ⪰M.

Moreover, by continuity ofMD, there exists a neighborhoodNA ofA0 such thatMD(A,P0) ≻

M for all A ∈ NA. Letting α := tr(V P0) > 0, we have that the set

{P ∈ Sn
+ | tr(V P ) ≤ α }
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is compact and contains the nonempty level set

{P ∈ P(A) | tr(V P ) ≤ α }

for all A ∈ NA. Taking the image of each of the above sets under the vecs operation gives

condition (ii) of Proposition 3.37. All the conditions of Proposition 3.37 are thus satisfied for

each A0 ∈ An
D, and we have ϕD is continuous on An

D.

(b)—Continuity of ϕD on An
D implies closure of the sublevel sets of ϕD, and (3.38) follows

by definition of An
D(ε).

(c)—First, MD(A,P ) ≻ 0 implies P ≻ 0 by Proposition 3.17. Moreover, for any P ≻ 0

such that MD(A,P ) ≻ 0, we have MD(A,P ) ⪰ γMD(A,P ) ⪰ M with P := γP and

γ := ∥M∥ × ∥[MD(A,P )]−1∥, so feasibility of (3.22) is equivalent to feasibility of

MD(A,P ) ≻M, P ⪰ 0

and therefore

⋃
ε>0An

D(ε) = An
D. But An

D(ε) is monotonically decreasing,
9
so An

D(ε) ↗⋃
ε>0An

D(ε) = An
D as ε↘ 0.

3.A.5 Proof of Theorems 3.27 and 3.28

Starting with Theorem 3.27:

Proof of Theorem 3.27. Since µε is nondecreasing and bounded from below by µ, it suffices to

show that for each δ > 0, there exists a ε > 0 such that µε − µ < δ.

Let θ∗ ∈ Θ denote a point for which µ = f(θ∗). If θ∗ ∈ Θ++, we could simply choose

ε > 0 large enough to put θ∗ in T (Φε) and achieve µε − µ = 0 < δ.

9
By “monotonically decreasing” we mean ε ≤ ε′ ⇒ An

D(ε) ⊇ An
D(ε

′).
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Instead, we assume θ∗ ̸∈ Θ++. By Assumption 3.13, there exists a sequence θk ∈ Θ++, k ∈

I>0 such that θk → θ as k → ∞. Defining νk := f(θk), we have νk → µ by continuity of f .

Therefore, there exists some k0 ∈ I>0 such that νk−µ < δ for all k ≥ k0. For each θk ∈ Θ++,

there exists a unique ϕk = (βk, L
IΣ
k , LIA

k ) ∈ Φ such that θk = T (ϕk) (by Lemma 3.25). Let ε

be the minimum over all the diagonal elements of LIΣ
k0

and LIA
k0
. Then (βk0 , L

IΣ
k0
, LIA

k0
) ∈ Φε

by construction, νk0 ≥ µε by optimality, and µε − µ ≤ νk0 − µ < δ.

As in Appendix 3.A.4, we use sensitivity results of Bonnans and Shapiro (2000) on opti-

mization problems to prove Theorem 3.28. This time, however, we consider the continuity

of the value function for parameterized NLPs on Banach spaces. Let X , Y , and K be Banach

spaces and consider the parameterized NLP,

V (y) := inf
x∈X(y)

F (x, y) (3.51)

where the set-valued function X : Y → P(X ) is defined by

X(y) := {x ∈ X | G(x, y) ∈ K }

for some G : X ×Y → K andK ⊆ K is closed. LetX0(y) denote the (possibly empty) set of

solutions to (3.51). Define the graph of the set-valued function X(·) by

Z := { (x, y) ∈ X × Y | G(x, y) ∈ K } .

Notice that Z is closed if G is continuous and K is closed.

Proposition 3.38 ((Bonnans and Shapiro, 2000, Prop. 4.4)). Let y0 ∈ Y and assume:

(i) F and G are continuous on X × Y and K is closed;

(ii) there exist α ∈ R and a compact set C ⊆ X such that, for every y in a neighborhood of
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y0, the level set

{x ∈ X(y) | f(x, y) ≤ α }

is nonempty and contained in C ; and

(iii) for any neighborhood Nx of the solution set X0(y0), there exists a neighborhood Ny of y0

such that Nx ∩ X(y) is nonempty for all y ∈ Ny;

then V (y) is continuous and X0(y) is outer semicontinuous at y = y0.

Proof of Theorem 3.28. First, we must specify ε. For each θ ∈ Θ++, let

ε(θ) := max { ε > 0 | θ ∈ T (Φε) }

where the maximum is achieved since there is a finite number of diagonal elements of the

Cholesky factors that must be lower bounded. Now we specify ε as the supremum of ε(θ)

over all θ ∈ Θf≤α ∩Θ++,

ε := sup { ε(θ) | θ ∈ Θf≤α ∩Θ++ }

so that, for any ε ∈ (0, ε), Θf≤α ∩ T (Φε) is nonempty and is contained in the compact set C .

(a)—Following the proof of (Bonnans and Shapiro, 2000, Prop. 4.4), we have (i) F is con-

tinuous and (ii) the level set Θf≤α is nonempty and contained in the compact set C , which

implies Θf≤α is a compact level set and therefore the minimum of f over Θf≤α is achieved

and equals the minimum over Θ. Moreover, θ̂0 must be nonempty.

(b)—Similarly to part (a), we have, for each ε ∈ (0, ε), that the level set Θf≤α ∩ T (Φε) is

nonempty and contained in the compact set C , so f achieves its minimum over T (Φε) and θ̂ε

is nonempty.
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(c)—Consider the graph of the constraint function,

Z := { (θ, ε) ∈ Θ× R≥0 | θ ∈ T (Φε) if ε > 0 } .

Consider a sequence (θk, εk) ∈ Z, k ∈ I>0 that is convergent (θk, εk) → (θ, ε). Then ε ≥ 0,

otherwise the sequence would not converge. Moreover, θ ∈ Θ since θk ∈ T (Φεk) ⊆ Θ for

all k ∈ I>0 and Θ contains all its limit points. If ε = 0, then (θ, ε) ∈ Z trivially. On the

other hand, if ε > 0, then ε(θk) converges to ε(θ) because T is continuous and the max can

be taken over a finite number of elements of T −1(θk). Moreover, ε(θk) and upper bounds εk

because θk ∈ T (Φεk), so ε(θ) ≥ ε. Finally, we have θ ∈ T (Φε), (θ, ε) ∈ Z, and Z is closed.

Let ε0 ≥ 0 and Nθ be a neighborhood of θ̂ε0 . With

δ := sup { ε(θ) | θ ∈ Nθ } > 0

we have Nθ ∩Θ and Nθ ∩ T (Φε) are nonempty for all ε ∈ (0, ε0 + δ).

Finally, the requirements of Proposition 3.38 are satisfied for all ε0 ∈ [0, ε), so µε is con-

tinuous and θ̂ε is outer semicontinuous at ε = ε0.

(d)—The last statement follows by the definition of outer semicontinuity and the fact that

the lim sup is nonempty.
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Maximum likelihood estimation of
disturbance models

Despite the strong foundations and attractive statistical properties of maximum likelihood

(ML) identification, there are many reasons it may not be suitable to some applications. The

first and most obvious shortcoming is the availability of an initial guess. The methods of

Chapter 3 are optimization-based and therefore require a sensible initial guess to feed to the

optimizer. Second, computation may be difficult. While we do not find ML identification

computationally prohibitive in the case studies of Chapter 5, as discussed in Section 3.6, the

optimizationmay scale poorly to large-scale systems. Third, for some applications, it is neces-

sary to have a computationally lightweight framework with strong convergence guarantees,

minimal library requirements (e.g., only linear algebra packages), and/or closed-form solu-

tions.

To avoid nonlinear optimization, practitioners and theorists have long used regression-

based identification methods such as ARX models or subspace identification. While these

techniques are unsuitable for directly identifying the linear augmented disturbance model

(LADM) (1.4), they may be augmented or modified to allow LADM identification. For practi-

tioners, an attractive path from tuning to identification of disturbance models may be through

such an augmented method.
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In this chapter, we present methods for augmenting standard identification methods with

disturbance modeling capabilities. The key prerequisite for such an augmentation is the avail-

ability of a state sequence estimate produced during the standard identification algorithm.

From there, successive ML estimation problems can be solved to estimate a disturbance se-

quence and the noise covariance matrix. Throughout, we pose the subproblems with ML

estimation, sometimes even as approximations of the ML identification problem (3.8), and

focus on formulations that lead to closed-form solutions of the subproblems.

Additional notation The following additional notation is used throughout this chapter.

For any signal (a(k))k∈I≥0
, we denote the length-n past and future horizons as

A−n(k) :=

a(k − 1)
.
.
.

a(k − n)

 , An(k) :=

 a(k)
.
.
.

a(k + n− 1)


4.1 Literature review

Traditionally, MPC implementations have relied on linear finite impulse response (FIR)

plant models (Qin and Badgwell, 2003; Darby and Nikolaou, 2012) with which an algorithm

such as dynamic matrix control (DMC) (Cutler and Ramaker, 1980) or Identification and Com-

mand (IDCOM) (Richalet et al., 1978) is implemented. A few products, such as the Shell Mul-

tivariable Optimizing Controller (SMOC) (Marquis and Broustail, 1988; Yousfi and Tournier,

1991) and Adersa’s predictive functional control (PFC) algorithm, rely solely on a linear state-

space plant model. Darby and Nikolaou (2012) note that recent MPC products have shifted

away from FIR models and towards linear state-space models. This shift is motivated by a

number of shortcomings of the FIR approach, most notably: (1) the inability to handle unsta-

ble and integrating systems without modification, (2) the overparameterization of the under-

lying linear system (especially for slow processes), (3) the difficulty of formulating estimators,

82



Disturbance model identification Chapter 4

and (4) the fact that FIR models are a special case of the linear state-space model (Lee et al.,

1994; Lundström et al., 1995).

Other plant model formulations include autoregressive models (e.g., ARMA and CARIMA

models) (Clarke et al., 1987a,b; Clarke, 1991; Sun et al., 2011) and transfer function mod-

els (Ljung, 1999). Both model types require complicated estimator formulations and their

identification algorithms are typically formulated for single-input single-output (SISO) sys-

tems. As such, multi-input multi-output (MIMO) models are typically constructed from in-

dividually fit SISO models. Transfer function models must be realized as state-space models

in order to formulate controller constraints. As with FIR models, every autoregressive and

transfer function model can be realized as a state-space model (Ho and Kalman, 1966; Akaike,

1974).

To identify the plant model, practitioners typically fit a linear model to step response data,

although it is also possible to linearize a physics-based plant model (Caveness and Downs,

2005; Rawlings et al., 2020). Neither approach provides the noise covariance estimates re-

quired to design an estimator for MPC implementation. Subspace methods—such as canon-

ical variate analysis (CVA) (Larimore, 1983), N4SID (Van Overschee and De Moor, 1994), or

MOESP (Verhaegen, 1994)—can be used to identify estimate the process and measurement

noise covariances, but they are unsuitable for structuring disturbance model with uncontrol-

lable integrating modes (Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003). Dis-

turbance models may be tuned under strong assumptions on the process and measurement

noises (Lee et al., 1994; Lee and Yu, 1994), but the required assumptions are not general, pro-

ducing suboptimal estimator performance. Autocovariance least squares (ALS) can identify

the complete disturbance model, but it does not identify the plant model (Odelson et al., 2006).

Additionally, there is a trade-off between the computational complexity of ALS and the vari-

ance of the ALS estimates because the optimal least squares weighting matrix is a function

of the covariances to be estimated (Rajamani and Rawlings, 2009; Zagrobelny and Rawlings,
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2015; Arnold and Rawlings, 2022). Kuntz and Rawlings (2022) presented the first identifi-

cation algorithm that provides estimates of both the state-space model coefficients and the

disturbance noise covariance required to implement an offset-free MPC.

Most of the MPC deployment cost is incurred during plant identification due to the com-

monality of open-loop identification experiments, where product quality is difficult if not

impossible to maintain, and the process must be perturbed from the optimal operating point

in order to acquire quality data (Canney, 2003; Zhu, 2006). As a result, closed-loop identifi-

cation experiments are an opportunity for significant safety and profitability improvements

in chemical process control. Closed-loop identification experiments can then be conducted

online, at and around the optimal operating point, negating the cost of opening the loop to

perform the experiment. New MPCs can be implemented on processes controlled with other

methods (PID, DMC, etc.) and existing MPCs be significantly improved with re-identified

models. Closed-loop experiments can be conducted via setpoint perturbations that are more

predictable and reliable than open-loop input perturbations. Moreover, the control loop is

never broken, so the MPC is always enforcing constraints throughout the experiment.

Canney (2003) points out that MPC performance decays over time after deployment, and

proposes MPC upkeep be a continuous process of algorithm improvement, where the model,

MPC tuning, and organizational details are adjusted as necessary. A closed-loop disturbance

model identification method can be applied to continuous offset-free MPC monitoring and

upkeep. Previous attempts at continuous MPC monitoring and upkeep simply attempt to

detect (and sometimes diagnose the source of) plant-modelmismatch (Harrison andQin, 2009;

Pannocchia and De Luca, 2012; Kheradmandi and Mhaskar, 2018). However these algorithms

rely on heuristic cutoffs for the alarm thresholds because they are based on LTI system order

estimation. With the full set of parameter estimates, there is a future possibility of advanced

offset-free MPC monitoring schemes with rigorous performance guarantees.

Closed-loop experimentation requires an existing controller, meaning open-loop experi-
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ments for MPC design or PID tuning are still necessary. To this end, we suggest suboptimal

but safe experiments be done using traditional step-response designs, or loops be initially

closed with PID methods. While the algorithm proposed herein and in Kuntz and Rawlings

(2022) will still handle open-loop step responses. At a later date, a closed-loop identification

experiment may be run to refine and re-identify the model. The only advantage of open-loop

methods (Section 4.2) are their relative simplicity compared to closed-loop methods (Sec-

tion 4.3).

4.2 Simple methods for disturbance model identification

We modify the models (1.3) and (1.4) slightly to provide a better match with industrial

practice. First, we consider linear Gaussian state-space (LGSS) models without feedthrough

terms or cross-covariances,

x+ = Ax+Bu+ w (4.1a)

y = Cx+ v (4.1b)[
w
v

]
iid∼ N

(
0,

[
Qw

Rv

])
(4.1c)

rather than the general model (1.3). Similarly, we neglect the feedthrough term in the linear

augmented disturbance model (LADM),

x+ = Ax+Bu+Bdd+ w (4.2a)

d+ = d+ wd (4.2b)

y = Cx+ Cdd+ v (4.2c)wwd

v

 iid∼ N(0, Sd). (4.2d)
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model dimensions, (n, f, p)
Subspace identification

(4.8) or (4.11) or (4.13) and (4.16) or (4.28)

model dimensions, (n, f, p)

State-space model

(4.5) or (4.7) or (4.30)

Disturbance sequence estimation

(4.19) or (4.20)

Covariance estimation

(4.21)

(UN(0), YN(0))

x̃ = ĈpZ−p

θ̂ = (Â, B̂, Ĉ, Q̂w, R̂v)

d̂(k) = y(k)− ŷ(k)

Ŝd

Figure 4.1: Outline of the disturbance model identification method.

The goal of the identification algorithm is to estimate the parameters of the LADM (4.2)

from only input-output data (u, y). An outline of the algorithm is given in Figure 4.1. We split

the algorithm outline into two main parts: (i) standard state-space identification methods and

(ii) disturbance model augmentation. In this section, we focus on simple algorithms with

closed-form solutions. More a more general algorithm that works with closed-loop data and

provides a degree of statistical efficiency is given in Section 4.3.

4.2.1 Standard identification

First, we consider estimation of the parameters θ = (A,B,C,Qw, Rv) of the model (4.1).

Throughout this process, a focus is given to the estimation of a state sequence X̃N−p+1(p)

(where p is to be defined). If one were available, we could pose the ML problem corresponding

to the joint density in (XNs(p+ 1), YNs(p)),

max
θ
LSS

N (XNs+1(p), θ) := ln p(XNs(p+ 1), YNs(p)|x(p), UNs(p), θ) (4.3)
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using the estimated state sequence in place of XNs+1(p), where Ns := N − p.

For the general LGSS model (1.3), we have the log-likelihood function

LSS

N (X̃Ns+1(p), θ) ∝ −
Ns

2
ln detΣ− 1

2

N−1∑
k=p

|s(k)−Θt(k)|2Σ−1 . (4.4)

where s :=

x̃+
y

, t :=
x̃
u

, Θ :=

A B

C D

, and Σ :=

Qw Swv

S⊤
wv Rv

. Unique solutions to
(4.3) are given by

[
Â B̂

Ĉ D̂

]
=

(
N−1∑
k=p

s(k)[t(k)]⊤
)(

N−1∑
k=p

t(k)[t(k)]⊤
)−1

(4.5a)

[
Q̂w Ŝwv

Ŝ⊤
wv R̂v

]
=

1

Ns

N−1∑
k=p

(s(k)− Θ̂t(k))(s(k)− Θ̂t(k))⊤ (4.5b)

so long as the inverse exists (Anderson, 2003, Thm. 8.2.1). For the special case of (4.1), we

have the modified log-likelihood function,

LSS

N (X̃Ns+1(p), θ) ∝ −
Ns

2
(ln detQw + ln detRv)

− 1

2

N−1∑
k=p

[
|x̃(k + 1)− Ax̃(k)−Bu(k)|2

Q−1
w

+ |y(k)− Cx̃(k)|2
R−1

v

]
. (4.6)

For the log-likelihood (4.4), the problem (4.3) can be separated into (A,B,Qw) and (C,Rv)

subproblems, with unique solutions given by

[
Â B̂

]
=

(
N−1∑
k=p

x̃(k + 1)[t(k)]⊤
)(

N−1∑
k=p

t(k)[t(k)]⊤
)−1

(4.7a)

Ĉ =

(
N−1∑
k=p

y(k)[x̃(k)]⊤
)(

N−1∑
k=p

x̃(k)[x̃(k)]⊤
)−1

(4.7b)
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Q̂w =
1

Ns

N−1∑
k=p

(x̃(k + 1)− Âx̃(k)− B̂u(k))(x̃(k + 1)− Âx̃(k)− B̂u(k))⊤ (4.7c)

R̂v =
1

Ns

N−1∑
k=p

(y(k)− Ĉx̃(k))(y(k)− Ĉx̃(k))⊤ (4.7d)

so long as the inverses exist (Anderson, 2003, Thm. 8.2.1).

The ML problem (4.3) and estimates (4.5) and (4.7) accomplish the second stage in Fig-

ure 4.1. The remainder of this subsection is aimed at accomplishing the first stage through

simple methods.

States as past inputs and outputs

The most straightforward option is to package past histories of input-output data into the

state, i.e.,

x̃ :=

[
Y−py

U−pu

]
(4.8)

where py, pu ∈ I≥0 and p := min { py, pu }. While this is a straightforward option, it may

drastically inflate the state dimension. Moreover, this approach is equivalent to posing the

following autoregressive model:

y(k) =

py∑
i=1

Hiy(k − i) +
pu∑
j=1

Giu(k − i) + v(k), v(k)
iid∼ N(0, Rv). (4.9)

We can rewrite (4.9) in the form of (1.3) with

A :=



H1 ... Hpy−1 Hpy G1 ... Gpu−1 Gpu

Iny

.
.
.

Iny 0ny×ny

0
Inu

.
.
.

Inu 0

, B :=



0ny×nu

0ny×nu

.

.

.

0ny×nu

Inu
0nu×nu

.

.

.

0nu×nu

,

C := [H1 ... Hpy−1 Hpy G1 ... Gpu−1 Gpu ], D := 0,
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Qw :=

[
Rv

0

]
, Swv :=

[
Rv

0

]
.

The past-history state (4.8) creates rank-deficient covariance matrices,

[
Qw Swv

S⊤
wv Rv

]
=

Rv 0 Rv

0 0 0
Rv 0 Rv


and therefore the inverses in (4.5) will never exist. The state-space ML problem can still be

solved by directly posing the ML estimation of (4.9), or by using the arguments in Kuntz and

Rawlings (2023b). However, it is worth reducing the state dimension to avoid unnecessary

computation time and ill-conditioning in the controller and estimator.

State reduction with singular value decomposition

In lieu of the states, we can use the Kalman filter state estimates, which are represented

by past input-output data. There exists a steady-state Kalman gain K and innovation error

covariance Re such that AK := A−KC is stable and

x̂+ = AK x̂+BKz (4.10a)

e := y − Cx̂ iid∼ N(0, Re) (4.10b)

where BK :=

[
B K

]
, x̂ ∈ Rn

are the state estimates, and z :=

[
u⊤ y⊤

]⊤
is the combined

input-output data (Kwakernaak and Sivan, 1972; Hespanha, 2018). Given any n ≤ p ≪ N

chosen large enough so that Ap
K ≈ 0, we can recursively solve the Kalman predictor (4.10) to

write the state as follows,

x̂(k) = Ap
K x̂(k − p) + CpZ−p(k) ≈ CpZ−p(k)
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where Cp :=

[
BK AKBK . . . Ap−1

K BK

]
. Therefore, estimating Cp also provides state

estimates x̃ := CpZ−p for estimation of the parameters θ in the model (4.1).

It is fairly straightforward to construct a matrix Cp from the data using the singular value

decomposition (SVD). Take an economic SVD of the data matrix,

H =
[
Z−p(p) . . . Z−p(N)

]
≈ U1S1V

⊤
1 . (4.11a)

where U1 ∈ Rnyp×n
and V1 ∈ RNs×n

have orthogonal columns and S1 ∈ Rn×n
is diagonal

with positive diagonal elements. We can define our states as

x̃(k) := U⊤
1 Z−p(k) (4.11b)

and therefore Z−p(k) = U1x̃(k). But this means x̃(k) ≈ T x̂(k) where T := CpU1 ∈ Rn×n

is invertible because it is the product of full row and column rank matrices. Thus, our state

x̃(k) is approximately equal to the state estimates, up to a similarity transformation.

Ho-Kalman algorithm

An alternative to the direct ARX formulation (4.9) is to use the so-called Ho-Kalman al-

gorithm to find an estimate of Ĉp. Choose n < f, p ≪ N and suppose we have access to the

first p := f + p− 1Markov parameters Gi := CAi−1
K BK , i ∈ I1:p. Then we can write

Hf,p :=

G1 . . . Gp
.
.
.

.

.

.

Gf . . . Gf+p−1

 = OfCp, Of :=


C

CAK
.
.
.

CAf−1
K

 . (4.12)
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Notice that, if the model (4.1) is minimal, the block Hankel matrixHf,p has rank n. Taking an

(exact) economic SVD ofHf,p,

Hf,p = U1S1V
⊤
1 (4.13a)

where U1 ∈ Rnyp×n
and V1 ∈ R(nu+ny)f×n

have orthogonal columns and S1 ∈ Rn×n
is

diagonal with positive diagonal elements, we can realize Cp and Of as

Of := U1S
1/2
1 , Cp := S

1/2
1 V ⊤

1 . (4.13b)

To estimate the Markov parameters Gi, i ∈ I1:p, we use the Kalman predictor form (4.10)

to write the following ARX model:

y(k) = CAp
K x̂(k − p) + CCpZ−p(k) + e(k) ≈ CCpZ−p(k) + e(k) (4.14)

where the coefficient matrix contains the first pMarkov parameters,

CCp =
[
G1 . . . Gp

]
.

The ML estimation problem for the ARX model parameters is

max
CCp,Re

LARX

N (CCp, Re) (4.15)

where the log-likelihood function is given by

LARX

N (CCp, Re) := ln p(YNs(p)|UNs(p), CCp, Re)

∝ −Ns

2
ln detRv −

1

2

Ns−1∑
k=p

|y(k)− CCpZ−p(k)|R−1
e
.
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The unique solution to (4.15) is given by

ĈCp =

(
N−1∑
k=p

y(k)[Z−p(k)]
⊤
)(

N−1∑
k=p

Zp(k)[Z−p(k)]
⊤
)−1

, (4.16a)

R̂e =
N−1∑
k=p

(y(k)− ĈCpZ−p(k))(y(k)− ĈCpZ−p(k))
⊤

(4.16b)

so long as the inverse exists (Anderson, 2003, Thm. 8.2.1). Then we can substitute

ĈCp =
[
Ĝ1 . . . Ĝf+p−1

]
into (4.12) and compute Ĉp via the SVD (4.13). This time, due to noise in the estimates, the

SVD (4.13) will not be exact. However, the estimates are still, in some sense, “robust” to noise,

as shown by Oymak and Ozay (2022).

Selection of the model dimensions (n, f, p) can either be tuned by hand or with informa-

tion criteria methods. While dimension selection is outside of the scope of this chapter, Bauer

(2001); Chiuso (2010); Larimore (2005) each describe selection of the parameters n, f , and p,

respectively. In the case studies, we tuned (n, f, p) by hand and validated the chosen state

order n with the singular value criterion described by Bauer (2001).

4.2.2 Disturbance model identification

We now augment the standard LGSS model (4.1) with a disturbance model, given esti-

mates of the state sequence X̃Ns+1(p) and parameters θ̂ = (Â, B̂, Ĉ, Q̂w, R̂v) of the LGSS

model (4.1). This is done by first estimating a disturbance sequence that captures the most

long-term modeling error, and then re-estimating the noise covariances based on that distur-

bance sequence. The shaping matrices (Bd, Cd) of the noise model are inconsequential to the

algorithm, except that they must obey the offset-free rank condition (2.22), and that output
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disturbance models turn out to be computationally advantageous.

Estimating the disturbance sequence

Given amodel of the form (4.1), a disturbancemodel (Bd, Cd), and a state sequence (x̃(k)),

we treat the disturbance sequence (d(k)) as accounting for the long-range model errors. We

can write the long-range output at time k as

y(k) = ĈÂk−px̃(p) +
k−1∑
j=p

ĈÂk−j−1B̂u(j)

+
k−1∑
j=p

ĈÂk−j−1(Bdd(j) + w(j)) + Cdd(k) + v(k)

and the predicted long-range output at time k is

ŷ(k) := ĈÂk−px̃(p) +
k−1∑
j=p

ĈÂk−j−1B̂u(j). (4.17)

Next, we define the long-range prediction error as z(k) := y(k)− ŷ(k), which gives

z(k) =
k−1∑
j=p

ĈÂk−j−1(Bdd(j) + w(j)) + Cdd(k) + v(k).

Rewriting this as a linear model,

ZNs(p) = ADNs(p) + BWNs(p) + VNs(p) (4.18a)

BWNs(p) + VNs(p) ∼ N(0,V) (4.18b)
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where

A :=


Cd

ĈBd Cd
.
.
.

.
.
.

.
.
.

ĈÂN−2Bd . . . ĈBd Cd

 , B :=


0
B1 0
.
.
.

.
.
.

.
.
.

BN−1 . . . B1 0

 ,
Bj := ĈÂj−1 ∀j ≥ 1, V := B(I ⊗Qw)B⊤ + I ⊗Rv.

The model (4.18) has the ML estimate (Rao, 1971; Magnus and Neudecker, 2019, p. 313),

D̂Ns(p) = (A⊤V†
0A)†A⊤V†

0ZNs(p) (4.19)

where V0 := V + AA⊤
. This is an O(N3) computation with O(N2) memory requirements.

Notice that when Bd = 0 and Cd = I , we have A = I , V0 = V + I invertible, and

(A⊤V†
0A)†A⊤V†

0 = V0V−1
0 = I.

Thus the disturbance estimates (4.19) are equivalently written

d̂(k) = z(k) (4.20)

which is an O(N) computation without additional memory requirements. It is clear that

whenever the system is free of integrators, the simplified solution (4.20) is computationally

advantageous. A similarity transformation can be used to find the desired disturbance model

after the output disturbance model is found (Rajamani et al., 2009).
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Estimating the noise covariances

Given the estimated states and disturbances, one can stack the equations of the model

(4.2) to write a simple covariance estimation problem,

ẽ(k) :=

x̃(k + 1)

d̂(k + 1)
y(k)

−
Â Bd B̂
0 I 0

Ĉ Cd 0

x̃(k)d̂(k)
u(k)

 iid∼ N(0, Sd) (4.21)

The ML estimate of Sd is therefore Ŝd =
∑N−1

k=p ẽ(k)[ẽ(k)]
⊤
(Anderson, 2003, Thm. 8.2.1),

which completes the algorithm.

4.3 Closed-loop subspace identification

In this section, we describe a regularized version of the CVA algorithm of Larimore (1983,

1997, 2005). As in Section 4.2.1, the algorithm’s goal is to estimate the parameters θ =

(A,B,C,Qw, Rv) of the model (4.1) from input-output data (UN(0), YN(0)). The algorithm,

outlined in Figure 4.2, can be viewed as a nested modeling procedure using maximum like-

lihood (ML) at each step to compute parameter estimates. We refer the reader to Gong and

Samaniego (1981) for a theoretical justification of nested ML estimation. As in Section 4.2.1,

the algorithm takes two basic steps. First, we determine a state sequence X̃Ns+1(p) via ap-

proximations of the ML problem corresponding to the marginal density in YN(0),

max
θ
LN(θ) := ln p(YN(0)|UN(0), θ) (4.22)

where θ = (A,B,C,Qw, Rv) are the system parameters and p ≥ n is an integer to be defined.

Then, we solve theML problem (4.3) corresponding to the joint density in (XNs(p+1), YNs(p)).

To begin, we choose n ≤ f, p ≪ N . These denote the past and future horizons of the
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High-order ARX

(4.14) and (4.25)

Reg. weight, ρ

Model dims., n ≤ f, p≪ N
Extended state-space model

(4.23) and (4.28)

Model dims., n ≤ f, p≪ N

State-space model

(4.1) and (4.30)

Reg. weights, µ1, µ2

(UN(0), YN(0))

ĈCp

x̃ = ĈpZ−p

θ̂ = (Â, B̂, Ĉ, Q̂w, R̂v)

p := max{f − 1, p}

Figure 4.2: Outline of the closed-loop regularized subspace method, based on the work of La-

rimore (1983, 1997, 2005).

following extended state-space model:

Yf (k) = OfA
p
K x̂(k − p) +Hf,pZ−p(k) + GfZf (k) + Ef (k)

≈ Hf,pZ−p(k) + GfZf (k) + Ef (k). (4.23)

where Of ,Hf,p, Cp are defined as before, and

Gf :=


0
G1 0
.
.
.

.
.
.

.
.
.

Gf−1 . . . G1 0

 .

As in Section 4.2.1, our goal is to estimate the matrix Cp. Again, if the model (4.1) is minimal,

the coefficient matrixHf,p has rank n. Assuming we have access to some Markov parameter

estimates Ĝi, the extended state-space model (4.23) takes the form of a classic rank-reduced

regression problem for which closed-form solutions are well-known (Larimore, 1983; Ander-

son, 1999).
1

1
Since the regressors Zf are correlated with the errors Ef , joint estimation the parameters (Hf,p,Gf ) pro-

duces inconsistent estimates. As a result, we have to eliminate the GfZf term of the model (4.23) via a “pre-
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Before deriving the estimates to the above problems, it is worth discussing other closed-

loop subspace algorithms. Other classic subspace algorithms—such as N4SID (Van Overschee

and De Moor, 1994) and MOESP (Verhaegen, 1994)—can be used to supply parameters to

the disturbance model identification method of Section 4.2.2, so long as a Markov parameter

“pre-estimation” step is included. Van Overschee and De Moor (1995) showed that the clas-

sic subspace algorithms (CVA, N4SID, and MOESP) are equivalent up to formulation of the

estimation objective for estimation of the model (4.23).
2
Only the method of Larimore (1983,

1997, 2005) uses ML estimation at each step of the algorithm, making it the logical choice

for integration with the ML-based disturbance model identification. To use the method of

Section 4.2.2, one should take care to use methods that construct state sequences, rather than

those than construct the parameters (A,B,C) directly from thematrices (Of , Cp). In fact, any

closed-loop state-space identification method that estimates state sequences can be directly

integrated with the method of Section 4.2.2.

4.3.1 Estimating the Markov parameters

We must first obtain Markov parameter estimates Ĝi. Jansson (2003) first proposed “pre-

estimation” of the Markov parametersGi from the ARXmodel (4.14). The likelihood function

corresponding to the ARX model (4.14) is an approximation of the likelihood function LN(θ),

LN(θ) ≈ LARX

N (CCp, Re) :=
N−1∑
k=p

ln p(y(k)|Z−p(k), CCp, Re)

∝ −N − p
2

ln detRe −
1

2

N−1∑
k=p

|y(k)− CCpZ−p(k)|2R−1
e

estimation” step. In open-loop subspace methods, a slightly different extended state-space model is used, allow-

ing for consistent estimation of both of the parameters (Hf,p,Gf ), but only under under open-loop conditions.

2
N4SID and MOESP methods are weighted least squares problems, whereas CVA is an approximate ML

problem.
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as in (4.15). Closed-form solutions are given by (4.16). The ARX model is an overparame-

terization of the model (4.1), so it is beneficial to regularize the coefficients, trading a biased

estimate for reduced variance,
3

max
CCp,Re>0

LARX

N (CCp, Re)−
ρ

2
tr(R−1

e CCp(CCp)⊤) (4.24)

which results in the regularized estimates,

ĈCp =

(
N−1∑
k=p

y(k)[Z−p(k)]
⊤
)(

N−1∑
k=p

Z−p(k)[Z−p(k)]
⊤ + ρI

)−1

. (4.25)

The estimates (4.25) are unbiased when ρ = 0 and consistent for all ρ ≥ 0.4 Moreover, the

estimate errors EARX := ĈCp − CCp = [Ĝ1 − G1, . . . , Ĝp − Gp] are independent of the

innovation sequence e(k) and regression vectors Z−p(k).

4.3.2 Estimating the state sequence

It turns out that the likelihood of the extended state-space model (4.23), even though the

errors Ef (k) are serially correlated, is an approximation of the likelihood in the ML problem

(4.22) (Larimore, 1997). Assume that N ≫ f, p. Then, for each s ∈ Ip:p+f−1, we can use

successive conditioning to write the likelihood as

LN(θ) ≈ ln p(Y(Ms−1)f+s(s)|Y−s(s), U(Ms−1)f+s(s), θ)

≈
Ms−1∑
m=0

ℓf,p(mf + s)

3
The regularizer here is close to using the prior (CCp)i

iid∼ N(0, ρ−1Re) where (CCp)i denotes the i-th
column of CCp, but to be equivalent, we would also need to add (−ρ(nu + ny)p/2) ln detRe to the likelihood.

4
This neglects numerical errors introduced by the approximation Ap

K ≈ 0.
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whereMs := ⌊(N − s)/f⌋ and

ℓf,p(k) := ln p(Yf (k)|Z−p(k), Uf (k),Hf,p,Gf ,Rf ).

Terms at times k ∈ I0:N−1 \ Is:Msf+s−1 can be dropped because of the assumption that N ≫

f, p. Taking the average over s gives

LN(θ) ≈
1

f

p+f−1∑
s=p

Ms−1∑
m=0

ℓf,p(mf + s)

=
1

f

N−f∑
k=p

ℓf,p(k) =:
1

f
LESS

N (Hf,p,Gf ,Rf ).

For closed-loop data, the signals Zf and Ef are correlated, which may introduce bias into

the estimates if all the parameters (Hf,p,Gf ,Rf ) are estimated simultaneously (Qin, 2006).

Noting that the future data coefficients Gf is simply a linear function of the ARX coefficients,

i.e. Gf = L(CCp), the future data term in the model (4.23) can be eliminated as follows,

Ỹf (k) := Yf (k)− ĜfZf (k) ≈ Hf,pZ−p(k) + EESS(k) (4.26)

where Ĝf := L(ĈCp), and EESS := L(EARX)Zf +Ef is zero-mean since EARX and Zf are inde-

pendent. Importantly, the signalsZ−p and EESS are uncorrelated, so the parameters (Hf,p,Rf )

can be estimated without bias. The corresponding likelihood function is

LESS

N (Hf,p, Ĝf ,Rf ) ∝ −
N − f − p+ 1

2
ln detRf −

1

2

N−f∑
k=p

|Ỹf (k)−Hf,pZ−p(k)|2R−1
f

and we have the following ML problem:

max
rankHf,p=n,Rf>0

LESS

N (Hf,p, Ĝf ,Rf ). (4.27)
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The ML problem (4.27) corresponds to a rank-reduced regression.
5
To solve it, consider

the following definitions,

SỸf ,Z−p
:=

1

N − f − p+ 1

N−f+1∑
k=p

Ỹf (k)[Z−p(k)]
⊤

SZ−p,Z−p :=
1

N − f − p+ 1

N−f+1∑
k=p

Z−p(k)[Z−p(k)]
⊤

SỸf ,Ỹf
:=

1

N − f − p+ 1

N−f+1∑
k=p

Ỹf (k)[Ỹf (k)]
⊤.

According to Larimore (1983); Anderson (1999), the ML problem (4.27) has a closed-form

solution,

Ĥf,p = SỸf ,Z−p
J⊤
n Jn

where Jn denotes the first n rows of

J = U⊤S−1/2
Z−p,Z−p

and U are the left singular vectors of the following full SVD,

S
−1/2
Z−p,Z−p

S⊤
Ỹf ,Z−p

S
−1/2

Ỹf ,Ỹf
= USV ⊤.

Given these estimates, we have the rank factorization Ĥf,p = Ôf Ĉp where

Ôf = SỸf ,Z−p
J⊤
n

and Ĉp = Jn. Moreover, the estimate Ĉp is a consistent and asymptotically normal estimator

5
The rank constraint is a consequence of (Of , Cp) showing up in the regression model as the product

Hf,p := OfCp, where we assume (Of , Cp) are both rank-n so the states come from a minimal realization.
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of Cp (up to similarity transformation) Anderson (1999). Therefore, we have consistent and

asymptotically normal estimates of the states,

x̃ := JnZ−p. (4.28)

4.3.3 Estimating the state-space parameters

In practice, we have found that the state estimates (4.28) may contain spurious, unwanted

dynamics, so we may regularize this objective in a similar manner to the ARX problem (4.24),

max
θ
LSS

N (X̃Ns+1(p), θ)−
µ1

2
tr(Q−1

w (AA⊤ +BB⊤))− µ2

2
tr(R−1

v CC⊤) (4.29)

where µ1, µ2 > 0. According to (Anderson, 2003, Thm. 8.2.1), the regularized estimates are

[
Â B̂

]
=

(
N−1∑
k=p

x̃(k + 1)[t(k)]⊤
)(

N−1∑
k=p

t(k)[t(k)]⊤ + µ1I

)−1

(4.30a)

Ĉ =

(
N−1∑
k=p

y(k)[x̃(k)]⊤
)(

N−1∑
k=p

x̃(k)[x̃(k)]⊤ + µ2I

)−1

(4.30b)

Q̂w =
1

Ns

N−1∑
k=p

x̃(k + 1)[x̃(k + 1)]⊤ − 1

Ns

(
N−1∑
k=p

x̃(k + 1)[t(k)]⊤
)

×

(
N−1∑
k=p

t(k)[t(k)]⊤ + µ1I

)−1(N−1∑
k=p

t(k)[x̃(k + 1)]⊤
)

(4.30c)

R̂v =
1

Ns

N−1∑
k=p

y(k)[y(k)]⊤ − 1

Ns

(
N−1∑
k=p

y(k)[x̃(k)]⊤
)

×

(
N−1∑
k=p

x̃(k)[x̃(k)]⊤ + µ2I

)−1(N−1∑
k=p

x̃(k)[y(k)]⊤
)
. (4.30d)

Since x̃ are consistent estimates and independent of the errors (w, v), the estimates (4.30) are

consistent. This completes the closed-loop subspace identification of the model (4.1) from an
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input-output sequence.
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Part II

Application
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Chapter 5

Case studies in combined identification
and offset-free control

In this chapter, we apply the methods of Part I to the identification and offset-free control

of two application systems: a benchmark temperature control laboratory, and an industrial-

scale chemical reactor at Eastman Chemical Company’s plant in Kingsport, TN. We remark

that these studies primarily use real-world data and experiments rather than simulated ex-

periments. This is important to validate the performance of our turnkey model predictive

control (MPC) design, as it ensures we have offset-free performance with regard to physically

relevant plant disturbances. Of course, we could simulate the plant and disturbance as a lin-

ear augmented disturbance model (LADM) Equation (1.4), but this is a fictitious disturbance

model, and the performance may have no relevance to real-world applications.

5.1 Systems of interest

5.1.1 TCLab: a benchmark temperature controller

The TCLab (Figure 5.1), an Arduino-based temperature control laboratory, serves as a

low-cost
1
benchmark for linear MIMO control Park et al. (2020). It is a prototypical system

1
The TCLab is available for under $40 from https://apmonitor.com/heat.htm and https://www.amazon.com

/gp/product/B07GMFWMRY.
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Figure 5.1: Benchmark temperature Control Laboratory (TCLab) Park et al. (2020).

of the form (1.4) with internal temperatures as plant states x =

[
T1 T2

]⊤
, heater voltages

as inputs u =

[
V1 V2

]⊤
, measured temperatures y =

[
Tm,1 Tm,2

]⊤
as outputs, and en-

vironmental temperatures d =

[
Ta,1 Ta,2

]⊤
as disturbances. The control objective is to

track setpoints in the measured temperatures, subject to environmental disturbances, such as

ambient temperature fluctuations, changes in air circulation, and curious pets.

5.1.2 Eastman industrial-scale chemical reactor

Experiments were also conducted on a reactor at Eastman Chemical’s plant in Kingsport,

Tennessee. The chosen process is similar to that used in Caveness and Downs (2005). The

process produces dimethyl terephthalate (DMT) by reacting terephthalic acid (TPA) with

methanol (MeOH). Water is a byproduct of the reaction. The primary equilibrium reaction

can be represented as

TPA + 2MeOH −⇀↽− DMT+ 2H2O

TPA is a solid and enters the reactor in a slurry with methanol, and additional methanol

enters as a vapor. The reactor has two phases. The reaction takes place in a liquid phase,

and the DMT product, water, excess methanol, and side products leave the reactor as a vapor
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Slurry
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Figure 5.2: Schematic of the DMT reactor and MPC control strategy.

and move forward to a DMT purification section. Xylene is added as reflux to minimize the

carryover of an impurity that results from the half reaction of TPA and methanol. Xylene

does not participate in the reaction. A schematic of the reactor is shown in Figure 5.2.

The reactor operates under pressure, which is controlled by manipulating a valve in the

vapor line. Heat is supplied to the reboiler by circulating hot oil through the shell side of the

exchanger. A temperature controller manipulates the flow of hot fluid supplying the circu-

lation loop to control the temperature of the heating fluid entering the reboiler. Liquid level

is controlled by manipulating the xylene reflux. Any change in the material balance that af-

fects the composition of methanol in the reactor has a large influence on reactor temperature.

Infinite-horizon MPC (2.18), (2.19), and (2.21) is used to control the reactor temperature, T ,

and the production rate (ultimately set by the slurry feed, F2) and to maintain the methanol

feed, F1, at a desired rate. The MPC also handles constraints on two quality-control vari-

ables, r1 and r2, and on the hot oil controller valve position (used to infer a temperature

pinch/constraint on hot oil temperature, TH ). The manipulated variables are the PID loop
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setpoints for the inlet flowrate and utility temperature controllers, denoted (F 1, F 2, TH ).

The control objectives are to achieve offset-free setpoint tracking and disturbance rejec-

tion and to avoid violating box constraints on the measured and manipulated variables. For

several decades the reactor has run on an MPC designed with a step response model (to be

referred to as the “previous MPCmodel”) and hand-tuned estimator, as described in Caveness

and Downs (2005). The inlet flowrate “measurements” are actually “wrap-around” variables,

that is, each flowrate “measurement” is generated by passing the corresponding PID setpoint

(the MPC’s actuator) through a first-order filter.
2
We refer to these fictitious flowrate “mea-

surements” as the “wrap-around” variables, and the actual flowrate data, collected from the

PID layer, as the raw sensor data. We refer to the complete dataset (3 inputs, 6 outputs)

formed with the “wrap-around” variables as the “MPC variables” and the complete dataset

formed with the sensor data as the “raw sensor data.” The MPC runs at a sample time of 5

seconds.

5.2 Maximum likelihood identification

In this section, we present two real-world case studies in which Algorithm 1 is used to

identify the LADM (3.7) and implement offset-free MPC. In the first case study, we consider

the TCLab (Figure 5.1). We identify the TCLab from open-loop data and use the resulting

model to design an offset-free MPC. We compare closed-loop control and estimation perfor-

mance of these models to that of offset-free MPCs designed with the identification methods

in Chapter 4. In the second case study, data from an industrial-scale chemical reactor is used

to design Kalman filters for the linear augmented disturbance model, and the closed-loop esti-

2
Given the clarity of hindsight, we would not design the MPC with these fictitious variables. However,

our objective in this paper is not to scrutinize the MPC organizational design (that is, the variable choices) but

to identify and validate a flexible replacement model via closed-loop experiments. It is worth pointing out that

practitioners and academics alike agree that a significant opportunity in MPC performance gains is in improving

the organizational structure of implementations (Darby and Nikolaou, 2012).
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mation performance is compared to that of models identified using the methods in Chapter 4.

Throughout these experiments, we use an ℓ2 regularization term in the transformed space,

− ln p0(β, L
IΣ) ∝ R0(β, L

IΣ) :=
ρ

2

(
|β − β|2 + ∥LΣ(β, L

IΣ)− LΣ(β, L
IΣ
)∥2F
)
. (5.1)

where ρ ≥ 0 is the regularization weight and (β, L
IΣ
, L

IA
) denote the initial guess for the

optimizer.
3,4
The variable LA is not regularized. With ρ = 0, the MAP problem (3.9) with the

regularizer (5.1) simplifies to the standard ML identification problem (3.8).

The initial guess for the ML and MAP problems is based on a nested ML estimation ap-

proach described in Chapter 4. The initial guess methods effectively augment standard iden-

tification methods (e.g., principal component analysis (PCA), Ho-Kalman (HK), canonical cor-

relation analysis (CCA) algorithms), so we refer to the initial guess models as “augmented”

versions of the standardmethod being used (e.g., augmented PCA, augmentedHK, augmented

CCA). Each optimization problem is formulated in CasADi via Algorithm 1 and solved with

IPOPT. Information about each model fit and configuration is presented in Table 5.1. Wall

times for a single-thread of an Intel Core i9-10850K processor are reported.

5.2.1 Benchmark temperature controller

Unless otherwise specified, the TCLab is modeled as a two-state, two-disturbance system

of the form (3.7), with internal temperatures as plant states s =

[
T1 T2

]⊤
, heater volt-

ages as inputs u =

[
V1 V2

]⊤
, and measured temperatures y =

[
Tm,1 Tm2

]⊤
as outputs.

Throughout, we choose nd = p to satisfy the offset-free necessary conditions in Muske and

Badgwell (2002); Pannocchia and Rawlings (2003), andwe consider output disturbancemodels

3
With LΣ(β, L

IΣ
) = 0, the last term of (5.1) becomes proportional to tr(LΣL

⊤
Σ) = tr(Σ) where LΣ =

LΣ(β, L
IΣ) and Σ = Σ(β, LIΣ).

4
With LJΣ(β, LIΣ) ≡ 0 (e.g., Σ is block diagonal and H(β) ≡ 0) the last term of (5.1) is proportional to

∥LIΣ − L
IΣ∥2F = |vecIΣ(L

IΣ − L
IΣ

)|2.

108



Case studies Chapter 5

−5

0

5

y1

Data Augmented PCA

Augmented ARX

Unregularized ML

Regularized ML 1

Regularized ML 2

Constrained ML 1

Constrained ML 2

Reg. & Cons. ML

−10

0

10

u1

0 1000 2000 3000 4000 5000

time (s)

−5

0

5

y2

0 1000 2000 3000 4000 5000

time (s)

−10

0

10

u2

Figure 5.3: TCLab identification data and noise-free responses ŷk =
∑k

j=1 ĈÂj−1B̂uk−j of

a few selected models.

Table 5.1: TCLab model fitting results.
∗
The augmented PCA/ARX identification methods

are not iterative.
∗∗

The maximum number of iterations was set at 500.

Model Results Configuration
Time (s) Iterations LN(θ̂) Method ρ D ε εi

Augmented PCA 0.02 N/A
∗

3823.4 Sec. 4.2 N/A N/A N/A N/A

Augmented ARX 0.03 N/A
∗

3807.3 see text N/A N/A N/A N/A

Unregularized ML 121.25 500
∗∗

-9430.9 Algo. 1 0 C 10
−6

N/A

Regularized ML 1 123.39 500
∗∗

-9431.7 Algo. 1 0.002 C 10
−6

N/A

Regularized ML 2 9.17 21 -9416.6 Algo. 1 0.005 C 10
−6

N/A

Constrained ML 1 72.21 97 -9347.2 Algo. 1 0 D1(0.3) ∩ D2(0.998, 0) 10
−6

0.03

Constrained ML 2 49.70 62 -9358.2 Algo. 1 0 D1(0.3) ∩ D2(0.999, 0) 10
−6

0.03

Reg. & Cons. ML 36.67 40 -9338.4 Algo. 1 0.001 D1(0.3) ∩ D2(0.998, 0) 10
−6

0.03

(Bd, Cd) = (02×2, I2). We use (As, Bs) fully parameterized and C = I2 to guarantee model

identifiability and make the states interpretable as internal temperatures. For the remaining

model terms, we have (Kx, Kd, Re) fully parameterized and (D, ŝ0, d̂0) = (0, 0, 0).

Eight TCLab models are presented.

1. Augmented PCA: the 6-state TCLab model used in Kuntz and Rawlings (2022), where

principle component analysis on a 400× 5100 data Hankel matrix is used to determine

the states in the disturbance-free model.

2. Augmented ARX: a VARX(1, 1)model, equivalent to a stochastic LTI model with pro-

cess noise but zero measurement noise.

3–5) Unregularized ML, Regularized ML 1 and 2: classic ML and MAP models.
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Figure 5.4: TCLab models open-loop and closed-loop (filter) eigenvalues.

6–8) Constrained ML 1 and 2, Reg. & Cons. ML: eigenvalue-constrained ML and MAP

models. LMI region constraints enforce filter stability and impose a lower bound on

the real part of the filter eigenvalues.

Each ML model uses Augmented ARX as the initial guess as it has the smallest number of

states. The augmented PCAmodel is, in effect, an unsupervised learner of the state estimates,

and therefore does not produce a parsimonious state description.

In Figure 5.3, the identification data is presented along with the noise-free responses

ŷk =
∑k

j=1 ĈÂ
j−1B̂uk−j of a few selected models. Computation times, numbers of IPOPT

iterations, and unregularized log-likelihood LN(θ̂) values are reported in Table 5.1. The open-

loop A and closed-loop AK := A−KC eigenvalues of each model are plotted in Figure 5.4.

Except for the augmented PCA model, all of the open-loop eigenvalues cluster around

the same region of the complex plane (Figure 5.4). The closed-loop filter eigenvalues are also

placed similarly, although the classic ML models (Unregularized ML, Regularized ML 1 and

2) suffer from slow or even unstable filter eigenvalues, despite achieving lower LN(θ̂) values

than their eigenvalue-constrained counterparts. The models with unstable eigenvalues fail

to converge (Table 5.1) as the unstable filter modes make the problem extremely sensitive to

changes in the parameter values. While sufficiently high ρ is sufficient to achieve filter stabil-
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Figure 5.5: TCLab setpoint tracking tests.
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Figure 5.6: TCLab disturbance rejection tests.

ity, there are no clear minimum value of ρ to achieve this. On the other hand, the constrained

ML models have stable filter eigenvalues without regularization, and have well-defined esti-

mator performance guarantees based on the applied constraints.

To test offset-free control performance, we performed two sets of closed-loop experiments

on offset-free MPCs designed with the models. In Figure 5.5, identical setpoint changes were

applied to a TCLab running at a steady-state power output of 50%. The setpoint changes were

tracked with the finite-horizon offset-free MPC design described in Chapter 2. In Figure 5.6,

step disturbances in the output pi and the inputmi are injected into a plant trying to maintain

a given steady-state temperature.
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Figure 5.7: TCLab test performance for the (top) setpoint tracking and (bottom) disturbance

rejection tests.

Control performance is quantified by the squared distance from the setpoint ℓk := |yk −

ysp,k|2. Estimation performance is quantified by the squared filter errors e⊤k ek. For any signal

ak, we define a T -sample moving average by ⟨ak⟩T := T−1
∑T−1

j=0 ak−j . Performance on the

setpoint tracking and disturbance rejection tests is reported in Figure 5.7. The worst perform-

ing models are those with unstable filters (Unregularized ML and Regularized ML 1). These

models shut off over the course of the experiment as the integrating disturbance estimates

grow unbounded. The remaining classic ML model (Regularized ML 2) has slow filter eigen-

values that contribute to poor control performance on the disturbance rejection test. The

augmented models (Augmented PCA/ARX) perform poorly in either control or estimation

aspect on both test. The best performance is achieved by the remaining ML models, which

all perform approximately the same across the tests.

To investigate the distributional accuracy of the models, we quantify performance with
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Figure 5.8: TCLab identification index data for (left) setpoint tracking and (right) disturbance

rejection tests.

the identification index q := e⊤R−1
e e. Recall the signal ek ∈ R2

is an i.i.d., zero-mean Gaus-

sian process, i.e., ek
iid∼ N(0, Re), and therefore the index qk is i.i.d. with a χ2

2 distribution.

Moreover, the moving average ⟨qk⟩T is distributed as χ2
2T/T , although it is no longer inde-

pendent in time. In Figure 5.8, histograms of ⟨q⟩T , T ∈ { 1, 10, 100 } are plotted against their

expected distribution for a few selected models (Augmented PCA/ARX, Unregularized ML,

and Reg. & Cons. ML). The extreme discrepancies between the augmented models’ perfor-

mance index ⟨q⟩T and the reference distribution χ2
2T/T are primarily due to the augmented

models significantly overestimating Re compared to the ML models,

R̂Aug. PCA

e = [ 0.5871 0.3365
0.3365 0.2878 ], R̂Aug. ARX

e = [ 0.5084 0.2198
0.2198 0.2980 ],

R̂Unreg. ML

e = [ 0.0106 0.0007
0.0007 0.008 ], R̂Reg. Cons. ML

e = [ 0.0107 0.0007
0.0007 0.008 ].

The reference distribution and the ML models’ ⟨q⟩T distribution diverge at large T since, due

to plant-model mismatch, the filter’s innovation errors are slightly autocorrelated. Frequent

right-tail errors from the unregularized ML model are due to filter instability.
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Figure 5.9: Training data and noise-free responses for the Eastman reactor models (Aug-

mented HK and ML models using Augmented HK as the initial guess).

5.2.2 Eastman reactor

As stated in Section 5.1.2, the control objective of the chemical reactor is to track three

setpoints (the output, a specified reactor temperature y = T , and the flowrates

[
u1 u3

]⊤
=[

F1 F2

]⊤
), without offset, by controlling the three inputs (the reactant flow rates and utility

temperatures u =

[
F1 TH F2

]⊤
).
5
See Section 5.1.2 for more details about the reactor

operation. As in Section 5.2.1, we choose nd = p and consider output disturbance models

(Bd, Cd) = (02×1, 1). This time, we use an observability canonical form Denham (1974) with

As = [ 0 1
a1 a2 ] and Cs =

[
1 0

]
. For the remaining model terms, we have (Bs, Kx, Kd, Re)

fully parameterized and (D, ŝ0, d̂0) = (0, 0, 0).

Eight reactor models were fit to closed-loop data (from Section 5.3):

1. AugmentedCCA: a CCAmodel Larimore (1990) augmentedwith a disturbancemodel,

as detailed in Section 4.3.
6

3–5) Unregularized ML, Regularized ML 1 to 3: classic ML and MAP models.

6–8) Constrained ML 1 to 3: eigenvalue-constrained ML and MAP models. LMI region

5
The flowrates are both manipulated variables and controlled variables. At steady state, we should reach

the setpoints in y = T and

[
u1 u3

]⊤
=
[
F1 F2

]⊤
, but u2 = TH will not reach a predefined setpoint.

6
This is not the same model used in Section 5.1.2, as a different input-output model is considered, although

the same data is used.

114



Case studies Chapter 5

Table 5.2: Eastman reactor model fitting results.
∗
The augmented identification methods

are not iterative.
∗∗

The maximum number of iterations was set at 500.

Model Results Configuration
Time (s) Iterations LN(θ̂) Method ρ D ε εi

Augmented CCA 0.09 N/A
∗

-11399.3 Sec. 4.2.2, 4.3 N/A N/A N/A N/A

Unregularized ML 5.59 19 -14383.1 Algo. 1 0 C 10
−6

N/A

Regularized ML 1 5.46 17 -14362.5 Algo. 1 0.0 C 10
−6

N/A

Regularized ML 2 5.75 20 -14346.7 Algo. 1 0.1 C 10
−6

N/A

Regularized ML 3 4.89 13 -14108.0 Algo. 1 1.0 C 10
−6

N/A

Constrained ML 1 19.89 92 -13944.9 Algo. 1 0 D1(0.3) 10
−6

0.01

Constrained ML 2 16.58 73 -13941.1 Algo. 1 0 D1(0.3) 10
−6

0.02

Constrained ML 3 14.01 58 -13928.5 Algo. 1 0 D1(0.3) 10
−6

0.04

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Re(λi(A))

−0.02

0.00

0.02

0.04

0.06

Im
(λ
i
(A

))

Unit circle

D1(0.3)

Augmented CCA

Unregularized ML

Regularized ML 1

Regularized ML 2

Regularized ML 3

Constrained ML 1

Constrained ML 2

Constrained ML 3

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Re(λi(AK))

−0.1

0.0

0.1

0.2

0.3

0.4

Im
(λ
i
(A
K

))

0.975 0.980 0.985
−0.002

0.000

0.002

0.95 1.00

−0.025

0.000

0.025

Figure 5.10: Eastman reactor models open-loop and closed-loop (filter) eigenvalues.
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Figure 5.11: Test performance for the Eastman reactor models on the test data sets from Section 5.3.

constraints impose a lower bound on the real part of the filter eigenvalues.

Each ML model uses the augmented CCA model as the initial guess. In Figure 5.9, the closed-

loop identification data and noise-free responses are presented. Computational details, the

unregularized log-likelihood value, and model configuration details are reported in Table 5.2.

The open-loop As and closed-loop AK eigenvalues are plotted in Figure 5.10.

The main difference between eigenvalues of the unconstrained ML models (Unregular-

ized ML and Regularized ML 1–3) and the constrained ML modelS (Constrained ML 1–3) are

faster open-loop eigenvalues and closed-loop eigenvalues with possibly negative real part

(Figure 5.10). For the constrained ML models, the real part of this fast filter eigenvalue is

bounded from below using the LMI region constraint D1(0.3). As in the TCLab case study,

sufficiently high ρ is sufficient to avoid the negative eigenvalue, but there is no clear cutoff to

achieve this.

The estimation performance for these filters are compared on two test data sets (from Sec-

tion 5.3) in Figure 5.11. While the unconstrained models appear to have the best test perfor-

mance, it is at a cost of undesirable estimate dynamics. In Figure 5.12, we plot the filter

response to an initial guess equal to the eigenvector corresponding to the smallest eigenvalue

of AK . Those filters with eigenvalues having negative real parts exhibit overshoot in the

estimate. The best performing filters without this behavior are the constrained ML models.
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sponding to the fastest eigenvalue.
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Figure 5.13: Eastman reactor models simulated closed-loop test performance.
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Control performance could not be compared on the real plant due to cost and safety

considerations. However, the closed-loop responses can be compared in simulation. In Fig-

ure 5.13, we plot simulated responses to a setpoint change. Each simulation considers the

nominal closed-loop response (i.e., plant as the model, no noise) using the infinite offset-free

MPC design in Chapter 2 with Qy = Qs = 1 and R = Rs = diag(0.01, 1, 0.01). The regular-

ized ML models exhibit significant overshoot in the response, whereas the unregularized ML

model and constrained ML models do not.

5.3 An industrial case study on the combined identifica-

tion and offset-free control of a chemical process

In this section, we present a closed-loop re-identification of the Eastman reactor (Fig-

ure 5.2). In this case study, a closed-loop identification experiment was conducted, a model

was identified using the algorithm of Section 4.3 and Section 4.2.2, and closed-loop tests were

conducted with MPCs designed with the newly identified model and the previously existing

model. Compared to the previous MPC design, a 38% reduction in setpoint tracking error is

achieved.

5.3.1 Identification

To identify the process, we used a closed-loop experimental design based on pulses to

the normal MPC setpoints. Eight setpoint pulses were applied, each lasting about 30 min-

utes, with 30 minute “rests” between the pulses to allow the process to settle back to the

normal operating point. The setpoint pulses correspond to a full factorial design of the three

controlled variables. The pulses were designed to keep the manipulated and measured vari-

ables within constraints, and they were checked against historical data to ensure production
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ŵd,6

MPC variables

−1

0

1

d̂1

−1

0

1
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ŵd,4

−1

0

1

d̂5

−1

0

1
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Figure 5.14: Disturbance estimates (4.20) and driving noise estimates ŵd = d̂+ − d̂ for

the unregularized models fit to (left) the MPC variables and (right) raw sensor data. To aid

readability, the disturbance estimates were rescaled to have a maximum absolute deviation

of 1.

would not be negatively affected. Throughout, models are fit with the algorithm of Section 4.3

and Section 4.2.2.

“Wrap-around” variables and sensor data Models were fit to two sets of process data.

The first dataset was constructed from the “wrap-around” variables used on the existingMPC,

and the correspondingmodel uses parametersn = 20, f = 5, and p = 50.7 The second dataset

was constructed from the raw sensor data, and the corresponding model uses parameters

n = 15, f = 5, and p = 50.

In Figure 5.15, for each dataset, we plot process data, setpoint changes, and long-range

predictions (4.17) of the previous and new models. The disturbance estimates (4.20) and driv-

ing noise ŵd = d̂+ − d̂ for each model is plotted in Figure 5.14. From Figure 5.14 (left), it

7
Here we violate the assumption, used in Section 4.3, that f ≥ n. This condition is only sufficient for

producing a rank-n Hankel matrix Hf,p. In practice, it is not necessary, so we used the smallest values of

(f, p, n) to accurately predict system behavior.
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Figure 5.15: Controlled variables (top three), other measured variables (middle three), and

manipulated variables (bottom three) for the closed-loop identification experiment using

(left) the MPC variables (n = 15, f = 5, p = 50) and (right) the raw sensor data (n = 15,
f = 5, p = 50). The dotted lines are MPC setpoints, the dot-dashed lines are the predictions

of the previous MPC model, and the dashed lines are the predictions of the new model.

Predictions are long-range projections based on a zero initial state (4.17).
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Figure 5.16: Disturbance estimates (4.20) and driving noise estimates ŵd = d̂+ − d̂ for the

(left) unregularized model and (right) regularized model. To aid readability, the disturbance

estimates were rescaled to have a maximum absolute deviation of 1.

is clear that the model fit to the MPC variables is not driven by white noise. This is to be

expected; the MPC variables contain outputs that are not constructed from sensor data and

therefore do not include upstream disturbances affecting, for example, the PID layer dynam-

ics and offset. As the assumptions of the augmented disturbance model (1.4) are violated, we

chose to continue with the model based on raw sensor data, which is clearly driven by white

noise (Figure 5.14, right). It is worth pointing out that, in the experiment, the temperature

failed to reach the second and fourth setpoints. This is due to plant-model mismatch in the

previous MPC model, as that model incorrectly predicts that the temperature will reach the

setpoint. The newly identified models do not make such predictions. Additionally, the first

flowrate F1 never reaches any of the setpoints because it has a low regulator weight relative

to that of the temperature. Despite the significant noise present in the raw sensor data, the

model fit to this data is no worse at predicting the outputs than the model fit to the MPC

variables.
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Figure 5.17: Controlled variables (top three), other measured variables (middle three), and

manipulated variables (bottom three) for the closed-loop identification experiment using the

(left) unregularizedmodel and (right) regularizedmodel. The dotted lines areMPC setpoints,

the dot-dashed lines are the predictions of the previous MPC model, and the dashed lines

are the predictions of the newmodel. Predictions are long-range projections based on a zero

initial state (4.17).
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Figure 5.18: Step responses of the (left) unregularized and (right) regularized models com-

pared to the step responses of the previous MPC model.
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Model regularization Regularization is a classic technique in statistics and linear algebra

used to avoid model over-fitting and ill-conditioning (Tikhonov, 1963; Hoerl and Kennard,

1970a,b). While it is less common in system identification, there is a history of its use for at

least three decades (Sjöberg et al., 1993; Johansen, 1997; Chen and Ljung, 2013; Chen et al.,

2014). To investigate the possibility of model over-fitting, we also used regularized estimates

to produce amodel. See Section 4.3 for a derivation of the regularized estimates and themean-

ing of the regularization parameters. A regularized model was fit to the raw measurement

data using parameters n = 15, f = 5, p = 50,

ρ = 10−4

∥∥∥∥∥
N−1∑
k=p

Z−p(k)[Z−p(k)]
⊤

∥∥∥∥∥
2

µ1 = 10−7

∥∥∥∥∥
N−1∑
k=p

Z−p(k)[Z−p(k)]
⊤

∥∥∥∥∥
2

µ2 = 10−4

∥∥∥∥∥
N−1∑
k=p

x̃(k)[x̃(k)]⊤

∥∥∥∥∥
2

.

Process data, setpoint changes, and long-range predictions (4.17), for both previous and new

models, are plotted in Figure 5.17. The disturbance estimates (4.20) and driving noise ŵd =

d̂+ − d̂ for each model is plotted in Figure 5.16.

As a sanity check of the model fits (and to tune the regularization parameters) we plotted

the step responses of the unregularized and regularized models (Figure 5.18). At a first glance,

the long-range predictions in Figure 5.15 (right) appear to be representative of the true process

dynamics. However, when looking at the step responses of the model (Figure 5.18, left) it

is clear that there are artifacts and spurious dynamics in the model fit that we speculate is

due to over-fitting of the plant model to the disturbance signal in the high frequency range.

Regularization takes care of these problems, creating a smoother step response (Figure 5.18,

right). As such, we chose to update the MPC on the process in Figure 5.2 with the regularized
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Figure 5.19: Kalman filtered disturbances from the closed-loop tests of the (left) previous

and (right) new models using the MPC variables as measurements.

model.

5.3.2 Closed-loop performance

To evaluate the performance of the new MPC model, we used a closed-loop experimental

design similar to the one carried out during identification. Again, eight setpoint pulses were

applied, each lasting about 30 minutes, with 30 minute “rests” between the pulses to allow

the process to settle back to the normal operating point. This time, however, the experiment

was carried out over two separate days, switching the MPC model between the two days.

Both experiments used the same infinite horizon MPC (2.18), (2.19), and (2.21) with the only

difference being the model and estimator gain. It is worth pointing out that, while the new

model was fit to the raw sensor data, the MPC uses the “wrap-around” variables in both

experiments. As a result, there is a risk the MPC does not respond to disturbances affecting

these measurements.

The MPC variables and raw sensor data from these experiments are plotted in Figure 5.21
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Figure 5.20: Closed-loop performance model of the previous and newmodels using the MPC

variables as measurements. (Top left) Output tracking error ℓ(k), (bottom left) running av-

erage of the tracking error ⟨ℓ(k)⟩k, (top right) histogram of the output tracking error ℓ(k),
(bottom right) histogram of the output tracking error moving average ⟨ℓ(k)⟩1000.

and Figure 5.22, respectively. From these plots, it appears that the F1 valve needed servicing.

However, because feedback was done with the “wrap-around” variables, there was no effect

on the closed-loop performance. It is also clear that the previous MPC model continues to

have difficulties reaching certain temperature setpoints, whereas the new model is confirmed

to alleviate these problems. In the new model, deviations from setpoints are zero mean, so

they are likely attributable to process noise and upstream disturbances. Again, both MPC

implementations fail to reach F1 setpoints as this variable has a low regulator weight relative

to that of the temperature. The Kalman filtered disturbance estimates (2.18) for the previous

and new models (using the MPC variables as feedback) are plotted in Figure 5.19. The new

model has a much quicker filter gain. This is particularly prevalent in the d̂4 Kalman filter

estimate (which corresponds to the TH measurement), which is slow for the previous model

but virtually instantaneous for the new model.

To quantify the performance of each MPC, we computed the controlled variable tracking

cost,

ℓ(k) := |Hy(k)− rsp(k)|2Qy
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Figure 5.21: Closed-loop comparison of the (left) previous and (right) new models using the

MPC variables.
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Figure 5.22: Closed-loop comparison of the (left) previous and (right) new models using the

raw process variables as measurements.
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where H =

[
I3 0

]
and Qy = diag(10−4, 1, 10−3), which is approximately the squared

error between T and its setpoint. Tighter control will exhibit a smaller tracking cost ℓ(k),

on average. It is known that for linear plants and linear controllers without constraints, the

tracking cost ℓ(k) has a generalized-χ2
distribution,

8
but if it is time-averaged, it will approach

a normal distribution (Zagrobelny et al., 2013). We define the T -lagged average at time k as

⟨ℓ(k)⟩T :=
1

T

T−1∑
j=0

ℓ(k − j).

We compare tracking costs ℓ(k) and time-averaged tracking costs ⟨ℓ(k)⟩1000 and ⟨ℓ(k)⟩k

for the previous and new models in Figure 5.20. It is immediately clear that the new model

performed better than the previous model; the total average tracking cost (Figure 5.20, bottom

left) is 38% lower in the newmodel experiment compared to that of the previous model experi-

ment. The cost ℓ(k) (Figure 5.20, top right) fits the linear control assumptions on generalized-

χ2
distribution. Moreover, the time-averaged cost ⟨ℓ(k)⟩1000 (Figure 5.20, bottom right) is

approaching a normal distribution, although there is some residual density near ℓ = 0 for

both experiments. These results suggest the applicability of a statistical performance moni-

toring scheme such as the one in Zagrobelny et al. (2013).

8
A generalized-χ2

random variable is generated by taking the quadratic form of a multivariate normal

random variable.
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Chapter 6

Indirect methods for linear control of
nonlinear systems

In a wide variety of control applications, including chemical processes (Westerlund, 1981;

Caveness and Downs, 2005; Raghavan et al., 2006), aerospace vehicles (Li et al., 2007; Taylor,

1985), combustion engines (Melgaard et al., 1990), nautical vehicles (Källström and Åström,

1979; Åström and Källström, 1976), and speech recognition (Digalakis et al., 1993), linear ap-

proximations of the nonlinear plant are beneficial for the convenience of linear identification

relative to that of nonlinear identification and the ability to meet strict computational con-

straints, e.g., for on-line optimal control. Linear black-box models are particularly useful

when first-principles knowledge of the plant dynamics is not available.

To show a linear controller stabilizes a nonlinear plant, the most straightforward option is

to demonstrate stability of a linearization of the plant. In this chapter, we present an indirect

method to show linear MPC is suitable for tracking constant setpoints for nonlinear systems.

Some authors have proposed provably stable and output-tracking linear MPC designs (Limon

et al., 2008; Betti et al., 2013; Falugi andMayne, 2013), but they typically consider linear plants.

In Berberich et al. (2022a), a linear MPC for nonlinear tracking was considered, although they

assume access to the plant dynamic equations from which linearizations are built. This work

differs in that only a bound on the linearization error is required to establish closed-loop
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stability of the nonlinear system.

We use the following elementary fact about quadratics throughout, andwithout reference.

Lemma 6.1. For each b, c > 0, we have x2 + 2bx − c > 0 for all x ∈ [0, c/(b +
√
b2 + c)).

Moreover, c/(b+
√
b2 + c) is decreasing in b > 0 and increasing in c > 0.

Proof. The roots of f(x) := x2 + 2bx− c are at x = −b±
√
b2 + c. Let

γ(b, c) := −b+
√
b2 + c =

c

b+
√
b2 + c

> 0. (6.1)

Since f is strictly convex, this means f(x) < 0 for all x ∈ (−b −
√
b2 + c,−b +

√
b2 + c).

But −b −
√
b2 + c < 0 and γ(b, c) > 0, so f(x) < 0 for all x ∈ [0, γ(b, c)). Finally, γ(b, c) is

clearly decreasing in b > 0 and increasing in c > 0 by the representations (6.1).

6.1 Lyapunov’s indirect method

Before we consider any control problems, let us consider a simpler problem: how can we

infer stability of a plant from a model of it and a bound on the residual error? To this end, we

consider the nonlinear system

x+ = f(x) (6.2)

and the linear system

x+ = Ax (6.3)

where f : Rn → Rn
and A ∈ Rn×n

.

6.1.1 Linear stability

A fundamental result in linear systems theory is the equivalence of Schur stability of the

matrixA and exponential (equivalently, asymptotic) stability of the linear system (6.3). Schur
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stability of the matrix A is closely tied to the existence and uniqueness of solutions to the

discrete-time Lyapunov equation

LA(P ) := P − A⊤PA = Q (6.4)

where LA : Sn
++ → Sn

++ is the Lyapunov operator. With A Schur stable and Q,P > 0

satisfying (6.4), the Lyapunov function V (x) := x⊤Px can be used to demonstrate global

exponential stability of the linear system (6.3):

σ(P )|x|2 ≤ V (x) ≤ σ(P )|x|2

V (Ax)− V (x) = x⊤(A⊤PA− P )x = −x⊤Qx ≤ −σ(Q)|x|2

for all x ∈ Rn
. The following propositions summarize well-known results on stability of

(6.3) and the discrete Lyapunov equation (6.4) (Anderson and Moore, 1979) and properties of

invertible Lyapunov operators (Gahinet et al., 1990, Prop. 2.1, Thm. 4.1, Ex. 2).

Proposition 6.2. For any A ∈ Rn×n, the following statements are equivalent.

(a) The linear system x+ = Ax is globally exponentially stable.

(b) A is Schur stable.

(c) The Lyapunov operator LA : Sn
++ → Sn

++ defined in (6.4) is invertible.

Moreover, if A is Schur stable, then L−1
A (Q) =

∑∞
k=0(A

⊤)kQAk for all Q > 0.

Proposition 6.3. For each Schur stable A ∈ Rn×n, we have

∥L−1
A ∥ := max

Q>0

∥L−1
A (Q)∥
∥Q∥

= ∥L−1
A (I)∥ = min

Q>0

∥L−1
A (Q)∥
σ(Q)

.
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6.1.2 Lyapunov’s indirect method

Assuming f is differentiable at the origin we can define A as the Jacobian of f evaluated

at the origin,

A :=
df

dx
(0). (6.5)

In Lyapunov’s indirect method, stability of the nonlinear system (6.2) is inferred from that

of the linearization (6.3) and (6.5). This can be preferable to direct stability analysis of (6.2)

because, assuming A is Schur stable, (6.3) has an easily defined Lyapunov function: V (x) :=

x⊤Px where Q,P ∈ Rn×n
are any positive definite matrices satisfying (6.4). The candidate

Lyapunov function V still has quadratic upper and lower bounds,

σ(P )|x|2 ≤ V (x) ≤ σ(P )|x|2 (6.6)

for all x ∈ Rn
, but rewriting V (f(x))− V (x) as

V (f(x))− V (x) = [f(x)]⊤Pf(x)− x⊤Px

= [Ax+ r(x)]⊤P [Ax+ r(x)]− x⊤Px

= x⊤(APA⊤ − P )x+ 2x⊤A⊤Pr(x) + [r(x)]⊤Pr(x)

= −x⊤Qx+ 2x⊤A⊤Pr(x) + [r(x)]⊤Pr(x)

where r(x) := f(x)− Ax, it is clear the cost decrease has ambiguous sign:

V (f(x))− V (x) ≤ −σ(Q)|x|2 + 2∥A∥∥P∥|x||r(x)|+ ∥P∥|r(x)|2 (6.7)

for all x ∈ Rn
.

In Lyapunov’s indirect method, we construct a positive invariant level set of V for which
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the cost decrease (6.7) is bounded above by a negative definite quadratic, under the addi-

tional assumptions that the linearized system (6.3) and (6.5) is stable and f is also continu-

ously differentiable at the origin. The proof is based on the continuous-time versions found

in (Khalil, 2002, Thm. 4.7), however, we avoid the ε-δ formalism for the limit in the definition

of the derivative and instead employ the following proposition to use K function arguments

throughout.

Proposition 6.4. Suppose the function f : Rn → Rm is continuously differentiable at the origin

and f(0) = 0. Then there exists b > 0 and γ ∈ K such that

|f(x)− Jx|
|x|

≤ γ(|x|) (6.8)

for all 0 < |x| ≤ b, where J := df
dx
(0).

See Appendix 6.A for a proof of Proposition 6.4. With Proposition 6.4, Lyapunov’s indirect

method of stability through the linearization is readily proven.

Theorem 6.5 (Lyapunov’s indirect method). Suppose f(0) = 0 and f is continuously differen-

tiable at the origin. LetA := (df/dx)(0). If x+ = Ax is stable, then x+ = f(x) is exponentially

stable in a neighborhood of the origin.

Proof. Denote r(x) := f(x) − Ax, let Q,P ∈ Rn×n
be positive definite matrices satisfying

(6.4), and take V (x) := x⊤Px as the candidate Lyapunov function. Again, we have the

global bounds (6.6) and (6.7). By Proposition 6.4, there exists b > 0 and γ ∈ K such that

|r(x)|/|x| ≤ γ(|x|) for all 0 < |x| ≤ b. Without loss of generality, assume γ ∈ K∞. For each

|x| ≤ b, the bound (6.7) gives

V (f(x))− V (x) ≤ −c(|x|)|x|2 (6.9)
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where c(·) := σ(Q)− (2γ(·)∥A∥+ [γ(·)]2)∥P∥. From Lemma 6.1,

γ(s) < γ :=
σ(Q)/∥P∥

∥A∥+
√
∥A∥2 + σ(Q)/∥P∥

implies c(s) > 0. Let δ := b if b < γ−1(γ), but choose δ ∈ (0, γ−1(γ)) otherwise. In either

case, we have c(δ) > 0, and since c(·) is monotonically decreasing, (6.9) implies

V (f(x))− V (x) ≤ −c(δ)|x|2 (6.10)

for all |x| ≤ δ. Next, let ρ := σ(P )δ2 > 0, and X := levρV . By (6.6), we have that |x| ≤√
ρ/σ(P ) implies V (x) ≤ ρ, which in turn implies |x| ≤ δ. Therefore X is a neighborhood

of the origin on which (6.10) holds. Moreover, V (f(x)) ≤ V (x)− c(δ)|x|2 ≤ ρ for all x ∈ X

(by (6.10)), so X is positive invariant. Finally, V is an exponential Lyapunov function on X ,

so x+ = f(x) is exponentially stable on X .

Remark 6.6. To achieve the largest domain of stability, it is useful to state the (Q,P ) pair

satisfying (6.4) that maximizes the upper bound

γ(Q,P ) :=
σ(Q)/∥P∥

∥A∥+
√
∥A∥2 + σ(Q)/∥P∥

.

By Proposition 6.3, we have ∥P∥/σ(Q) = ∥L−1
A (Q)∥/σ(Q) ≥ ∥L−1

A ∥ with equality when

Q = I , and ∥L−1
A ∥ = ∥L

−1
A (I)∥. Then

γ(Q,P ) ≤ γ1 :=
∥L−1

A ∥−1

∥A∥+
√
∥A∥2 + ∥L−1

A ∥−1

with equality when Q = I .
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6.2 General indirect methods

More generally, we can consider the follow arbitrary nonlinear model:

x+ = f̂(x) (6.11)

where f̂ : Rn → Rn
. We seek sufficient conditions for which stability of the model (6.11)

implies stability of the plant (6.2) in some neighborhood of the origin. A similar approach

to Lyapunov’s indirect method is taken: we start with a Lyapunov function V̂ for the model

(6.11) and show the perturbations let us construct a sublevel set of V̂ that is positive invariant

and on which V̂ is a Lyapunov function for the plant (6.2).

6.2.1 Exponential stability

Suppose the model (6.11) is exponentially stable in some positive invariant neighborhood

of the origin X̂ with an exponential Lyapunov function V̂ : X̂ → R≥0 such that

a1|x|2 ≤ V̂ (x) ≤ a2|x|2 (6.12a)

V̂ (f̂(x))− V̂ (x) ≤ −a3|x|2 (6.12b)

for all x ∈ X̂ and some constants a1, a2, a3 > 0. Exponential Lyapunov bounds of the form

(6.12) are found in both linear systems analysis and analysis of of MPC with quadratic costs.

The cost decrease inequality (6.12b) implies

V̂ (f(x))− V̂ (x) ≤ −a3|x|2 + V̂ (f(x))− V̂ (f̂(x)) (6.13)
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for all x ∈ X̂ . Often V̂ is a quadratic, in which case the following bound can be derived:

|V̂ (x)− V̂ (x̂)| ≤ a4|x̂||x− x̂|+ a5|x− x̂|2 (6.14)

for all x, x̂ ∈ X̂ and some a4, a5 > 0. The inequalities (6.12)–(6.14) will form the basis of the

indirect stability analysis.

Next, we provide upper bounds on |f(x)− f̂(x)| and |f̂(x)|. For |f̂(x)|, it follows straight-

forwardly from (6.12) that, for all x ∈ X̂ ,

|f̂(x)| ≤ L|x| (6.15)

where L :=
√

(a2 − a3)/a1 > 0.1 Suppose f and f̂ are continuously differentiable at the

origin. By triangle inequality,

|f(x)− f̂(x)| ≤ |f(x)− Ax|+ |f̂(x)− Âx|+ γ0|x|

for all x ∈ Rn
, where

γ0 := ∥A− Â∥, A :=
df

dx
(0), Â :=

df̂

dx
(0).

Moreover, by Proposition 6.4, there exist bf , b̂f > 0 and γf , γ̂f ∈ K for which

|f(x)− Ax|
|x|

≤ γf (|x|),
|f̂(x̂)− Âx̂|
|x̂|

≤ γ̂f (|x̂|)

1
From (6.12), we have |f̂(x)| ≤

√
V̂ (f̂(x))/a1 ≤

√
(V̂ (x)− a3|x|2)/a1 ≤

√
(1− a3/a2)V̂ (x)/a1 ≤

L|x|.
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for all 0 < |x| ≤ bf and 0 < |x̂| ≤ b̂f . Therefore, with γ := γf + γ̂f , we have

|f(x)− f̂(x)| ≤ [γ(|x|) + γ0]|x| (6.16)

for all |x| ≤ b := min { bf , b̂f }. Finally, combining (6.13)–(6.16), we have

V̂ (f(x))− V (x) ≤ −a6(|x|)|x|2 (6.17)

for all x ∈ X̂ such that |x| ≤ b, where a6(·) := a3 − a4L[γ(·) + γ0] − a5[γ(·) + γ0]
2
. This

time we cannot make the coefficient γ(δ) + γ0 > 0 arbitrarily small for some δ > 0 due to

the error between the linearizations |Ax− Âx|. Without loss of generality, assume γ ∈ K∞.

Then, so long as

γ0 < γ1 :=
−a4L+

√
a24L

2 + 4a3a5
2a5

we can take δ ∈ (0, γ−1(γ1− γ0)) such that δ ≤ b to achieve a6(δ) > 0, and (6.18) implies the

desired cost decrease

V̂ (f(x))− V (x) ≤ −a6(δ)|x|2 (6.18)

for all x ∈ X̂ such that |x| ≤ δ.

In the following proposition, we complete the analysis by showing, if γ0 < γ1, then (6.17)

shows exponential stability of x+ = f(x) in a positive invariant neighborhood of the origin.

Theorem 6.7. Suppose f and f̂ are continuously differentiable at the origin and X̂ is a neigh-

borhood of the origin such that (6.12), (6.14), and f̂(x) ∈ X̂ hold for all x ∈ X̂ . If γ0 < γ1 (as

defined above), then x+ = f(x) is exponentially stable in a neighborhood of the origin.

Proof. By assumption, we already have (6.12a) for all x ∈ X̂ . From the discussion above we

also have, for some b > 0 and γ ∈ K, the cost difference (6.17) for all x ∈ X̂ such that |x| ≤ b,

where a6(·) := a3 − a4L[γ(·) + γ0]− a5[γ(·) + γ0]
2
as before.
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Since X̂ is a neighborhood of the origin, there exists c > 0 such that |x| ≤ c implies

x ∈ X̂ . Let δ := min { b, c } if min { b, c } < γ−1(γ1 − γ0), but choose δ ∈ (0, γ−1(γ1 − γ0))

otherwise. Then |x| ≤ δ implies x ∈ X̂ , a6(δ) > 0, and we have that (6.18) achieves the

desired cost decrease for all |x| ≤ δ.

Let ρ := a1δ
2
and X := levρV̂ . Due to (6.12a), X is a neighborhood of the origin since it

is a sublevel set of V̂ . If x ∈ X , then V̂ (x) ≤ ρ = a1δ
2
, which implies |x| ≤ δ by (6.12a), and

therefore x ∈ X̂ by construction of δ. Therefore, we have (6.12a) and (6.17) for all x ∈ X .

Moreover, by the cost decrease, V̂ (f(x)) ≤ V (x) − a6(δ)|x|2 ≤ V (x) ≤ ρ for all x ∈ X , so

f(x) ∈ X and X is positive invariant. Finally, V̂ is an exponential Lyapunov function on X ,

so x+ = f(x) is exponentially stable on X .

Alternatively, suppose the exponential Lyapunov function takes the form

a1|x| ≤ V̂ (x) ≤ a2|x| (6.19a)

V̂ (f̂(x))− V̂ (x) ≤ −a3|x| (6.19b)

for all x ∈ X̂ and some constants a1, a2, a3 > 0. Moreover, assume V̂ is Lipschitz continuous,

i.e.,

|V̂ (x)− V̂ (x̂)| ≤ a4|x− x̂| (6.20)

for all x ∈ X̂ and some constant a4 > 0. The bounds (6.19) and (6.20) can be found in the

analysis of MPC with ℓ1-norm costs.

The bound (6.16) can still be constructed, and (6.15) holds with the alternate constant

L := (a2 − a3)/a1 > 0.2 Combining (6.15), (6.16), (6.19b), and (6.20), we have

V̂ (f̂(x))− V̂ (x) ≤ −a6(|x|)|x| (6.21)

2
From (6.19), we have |f̂(x)| ≤ V̂ (f̂(x))/a1 ≤ (V̂ (x)− a3|x|)/a1 ≤ (1− a3/a2)V̂ (x)/a1 ≤ L|x|.
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for all x ∈ X̂ such that |x| ≤ b, where a6(·) := a3 − a4L(γ(·) + γ0). So long as γ0 < γ1 :=

a3/(a4L), we can construct a neighborhood of the origin for which (6.21) implies the desired

cost decrease. This is done identically to the proof of Theorem 6.7. The result is stated in the

following proposition.

Proposition 6.8. Suppose f̂ and f are continuously differentiable at the origin, X̂ is a positive

invariant neighborhood of the origin for (6.11), and (6.19) and (6.20) hold for all x ∈ X̂ . If

γ0 < γ1 (as defined above), then x+ = f(x) is exponentially stable in a neighborhood of the

origin.

Proof. The proof is identical to that of Theorem 6.7, but with the alternate definitions L :=

(a2 − a3)/a1, γ1 := a3/(a4L), a6(·) := a3 − a4Lγ(·), and ρ := a1δ.

6.2.2 Asymptotic stability

Suppose the model is asymptotically stable in some positive invariant neighborhood of

the origin X̂ . Then there exists a Lyapunov function V̂ : X → R≥0 such that

α1(|x|) ≤ V̂ (x) ≤ α2(|x|) (6.22a)

V̂ (f̂(x))− V̂ (x) ≤ −α3(|x|) (6.22b)

for all x ∈ X̂ and some α1, α2 ∈ K∞ and continuous α3 ∈ PD.3 Then (6.22b) implies

V̂ (f(x))− V̂ (x) ≤ −α3(|x|) + V̂ (f(x))− V̂ (f̂(x)) (6.23)

for all x ∈ X̂ . Achieving the cost decrease bound requires α3(|x|) grow sufficiently faster

than |V̂ (f(x))− V̂ (f̂(x))| near the origin. To this end, we consider the following assumption

3
Due to (Jiang and Wang, 2002, Lem. 2.8), the function α3 can be made class-K∞ without loss of generality.

It is more convenient, however to construct a positive definite α3, so we use this approach throughout.

141



Linear control of nonlinear systems Chapter 6

on the continuity of f̂ and V̂ :

|f(x)− f̂(x)| ≤ α4(|x|) (6.24a)

|V̂ (x)− V̂ (x̂)| ≤ α5(|x− x̂|) (6.24b)

for all x, x̂ ∈ X̂ . Substituting (6.24) into (6.23), we have

V̂ (f(x))− V̂ (x) ≤ −α3(|x|) + α5(α4(|x|)) =: −α6(|x|) (6.25)

for all x ∈ X̂ . Again, the sign of the cost decrease is ambiguous. This time, there are no

exponents to inform us of the grow rate of the functions α3 and α5 ◦ α4 near the origin.

Instead, we simply require that α3 − α5 ◦ α4 is positive definite in a neighborhood of the

origin and construct a positive invariant sublevel set of V̂ within this neighborhood. We

prove this in the following proposition.

Proposition 6.9. Suppose X̂ is a neighborhood of the origin such that (6.22), (6.24), and f̂(x) ∈

X̂ hold for all x ∈ X̂ . If α6 := α3 − α5 ◦ α4 is positive definite in a neighborhood of the origin,

then x+ = f(x) is asymptotically stable in a neighborhood of the origin.

Proof. Since X̂ contains a neighborhood of the origin, there exists ε1 > 0 such that ε1Bn ⊆ X̂ .

Then we can use the lower bound (6.22a) to show V̂ (x) ≤ δ1 := α1(|ε1|) implies |x| ≤ ε1

and therefore x ∈ X̂ . Next, since α6 is positive definite in a neighborhood of the origin, there

exists ε2 > 0 such that α6(s) > 0 for all s ∈ (0, ε2]. Again, the lower bound (6.22a) shows

V̂ (x) ≤ δ2 := α1(ε2) implies |x| ≤ ε2, and therefore α6(|x|) ≥ 0 with equality only at the

origin.

Let δ := min { δ1, δ2 } and X := levδV̂ . The upper bound (6.23) gives that |x| ≤ α−1
2 (δ)

implies V̂ (x) ≤ δ and x ∈ X , so X is a neighborhood of the origin. Next, we have, for each
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x ∈ X ,

V̂ (f(x))− V̂ (x) ≤ −α3(|x|) + α5(α4(|x|)) = −α6(|x|).

But the above inequality means, for each x ∈ X , that V̂ (f(x)) ≤ δ since α6(|x|) ≥ 0 and

V̂ (x) ≤ δ, so f(x) ∈ X and X is positive invariant. Finally, V̂ is a Lyapunov function on X ,

so x+ = f(x) is asymptotically stable on X .

6.3 Unconstrained linear control of nonlinear systems

Theorems 6.5 and 6.7 can readily by applied to control of nonlinear systems via linear

approximations. In this section, we consider using LQR, LQG, and (constraint-free) offset-

free MPC to control nonlinear systems.

6.3.1 Linear quadratic regulator

Consider the nonlinear control system

x+ = f(x, u) (6.26)

and the linear system

x+ = Ax+Bu (6.27)

where f : Rn → Rn
is continuous, A ∈ Rn×n

, B ∈ Rn×m
, and (A,B) stabilizable. Then

there existsK ∈ Rm×n
such that AK := A+BK is Schur stable, and the closed-loop system

x+ = AKx is stable. Moreover, for each positive definite Q, there exists a positive definite P

that uniquely solves

P − A⊤
KPAK = Q. (6.28)
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With V (x) := x⊤Px, we have (6.6) and (6.7) for all x ∈ Rn
, so V is an exponential Lyapunov

function for x+ = AKx.

The following propositions apply Theorems 6.5 and 6.7 to analyze linear control of the

nonlinear system (6.26).

Proposition 6.10. Suppose f(0, 0) = 0, f is continuously differentiable at the origin, and (6.27)

is stabilizable withA := (∂f/∂x)(0, 0) andB := (∂f/∂u)(0, 0). For anyK ∈ Rm×n such that

AK := A + BK is Schur stable, the closed-loop system x+ = f(x,Kx) is exponentially stable

in a neighborhood of the origin.

Proof. Let fcl(x) := f(x,Kx). Then fcl(0) = 0 and, by the chain rule,

dfcl
dx

(0) =
∂f

∂x
(0, 0) +

∂f

∂u
(0, 0)K = AK

which is Schur stable by assumption. Then x+ = AKx is a stable linearization of x+ =

fcl(x) = f(x,Kx), and the result follows by Theorem 6.5.

Proposition 6.11. Suppose f(0, 0) = 0, f is continuously differentiable at the origin, and

(6.27) is stabilizable with A ∈ Rn×n and B ∈ Rn×m. Let A := (∂f/∂x)(0, 0) and B :=

(∂f/∂u)(0, 0), K ∈ Rm×n such that AK := A + BK is Schur stable, and AK := A + BK .

If γ0 := ∥AK − AK∥ < γ1 := −∥AK∥ +
√
∥AK∥2 + ∥L−1

AK
∥−1, then x+ = f(x,Kx) is

exponentially stable in a neighborhood of the origin.

Proof. Let fcl(x) := f(x,Kx). Then fcl(0) = 0 and (dfcl/dx)(0) = AK as in the proof of

Proposition 6.10. Let Q be positive definite and denote the unique positive definite solution

to (6.28) by P . Then we have (6.6) and (6.7), |AKx| ≤ ∥AK∥|x|, and

|V (fcl(x))− V (AKx)| = |2[fcl(x)− AKx]
⊤PAKx+ |fcl(x)− AKx|2P |

≤ 2∥P∥|AKx||fcl(x)− AKx|+ ∥P∥|fcl(x)− AKx|2
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for all x ∈ Rn
. By Theorem 6.7, if

γ0 < γ̃1(Q,P ) :=
σ(Q)/∥P∥

∥AK∥+
√
∥AK∥2 + σ(Q)/∥P∥

then x+ = f(x,Kx) is exponentially stable in a neighborhood of the origin. But, as discussed

in Remark 6.6, ∥P∥ = ∥L−1
A (Q)∥ ≥ σ(Q)∥L−1

A ∥ with equality when Q = I (Gahinet et al.,

1990). Therefore γ̃1(Q,P ) ≤ γ1, with equality whenQ = I , so we have stability at the origin

whenever γ0 < γ1.

Remark 6.12. While we could have started the proof of Proposition 6.11withQ = I , it would

not have been clear that this choice maximizes the allowed error margin γ1. It is also worth

pointing out that K ∈ Rm×n
can be designed to maximize γ1. If AK is diagonalizable, then

∥L−1
AK
∥ ≤ κ2(V )/(1− ρ2(AK)), where AK = V ΛV −1

is the eigenvalue decomposition of AK

(Gahinet et al., 1990, Thm. 5.4). Since the function ψ(a, b) := −a +
√
a2 + b−1

is decreasing

in both a and b, for all a, b > 0, it is clear that maximization of γ1 requires simultaneous

minimization of the spectral norm ∥AK∥, spectral radius ρ(AK), and condition number κ(V ).

6.3.2 Linear quadratic Gaussian regulator

In the absence of full-state observation, state estimation becomes necessary. Consider the

partially-observed nonlinear system

x+ = f(x, u), y = h(x) (6.29)

and its linear approximation

x+ = Ax+Bu, y = Cx. (6.30)
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The state is estimated with a linear filter

x̂+ = Ax̂+Bu+ L(y − Cx̂) (6.31)

where the observer gain L is chosen such that AL := A−LC is Schur stable. To stabilize the

system, we use the feedback law u = Kx̂ where K is chosen such that AK := A + BK is

Schur stable. With the error e := x− x̂, the joint linear estimate-error system is

[
x̂
e

]+
=

[
AK LC
0 AL

] [
x̂
e

]
(6.32)

which is exponentially stable because

A :=

[
AK LC
0 AL

]

is Schur stable.
4
Moreover, for each positive definite Q, there is a unique positive definite

solution P to the discrete Lyapunov equation

P−A⊤PA = Q. (6.33)

and V (x̂, e) :=

[
x̂⊤ e⊤

]
P

[
x̂⊤ e⊤

]⊤
is an exponential Lyapunov function for the linear

estimate-error system (6.32).

It is likely the plant andmodel states are poor approximations of each other, evenwhen the

input-output behavior is similar. To align the plant and model states, we consider invertible

linear transformations of the plant state, i.e., x̃ := Tx where T ∈ Rn×n
is nonsingular, which

4
A block triangular matrix with Schur stable diagonal blocks is itself Schur stable.
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gives

x̃+ = fT (x̃, u) := Tf(T−1x̃, u), y = hT (x̃) := h(T−1x̃). (6.34)

Combining (6.31) and (6.34) gives the joint estimate-error system

[
x̂+

e+

]
= fT (x̂, e) :=

[
AK x̂+ L(hT (x̂+ e)− Cx̂)

fT (x̂+ e,Kx̂)− AK x̂− L(hT (x̂+ e)− Cx̂)

]
(6.35)

where e := x̃− x̂. Then fT (0, 0) = (0, 0), and, by the chain rule, (dfT/d(x̂, e))(0, 0) = A(T )

where

A(T ) :=

[
AK + LCT−1 − LC LCT−1

TAT−1 + TBK − AK − LCT−1 + LC TAT−1 − LCT−1

]
(6.36)

and A := (∂f/∂x)(0, 0), B := (∂f/∂u)(0, 0), and C := (dh/dx)(0).

The following two corollaries specialize Theorems 6.5 and 6.7 to consider stability of the

estimate-error system (6.35) under certain similarity transformations T ∈ Rn×n
.

Proposition 6.13. Suppose the following conditions hold.

(a) f(0, 0) = 0, h(0) = 0, f and h are continuously differentiable at the origin.

(b) The system (6.30) is stabilizable and detectable.

(c) There exists T ∈ Rn×n nonsingular such that A = TAT−1, B = TB, and C = CT−1

(with (A,B,C) as defined above).

Then there exist K ∈ Rm×n and L ∈ Rn×p such that AK := A+ BK and AL := A− LC are

Schur stable, and the closed-loop system (6.35) is exponentially stable in a neighborhood of the

origin.

Proof. First, there exist a pair of gains (K,L) for which AK and AL are Schur stable due

to stabilizability and detectability of the linearization. From (6.35) and (6.36) and condition
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(c), we have fT (0, 0) = (0, 0) and (dfT/d(x̂, e))(0, 0) = A (as defined above) which is Schur

stable. Then (6.32) is a stable linearization of (6.35), and the result follows by Theorem 6.5.

Proposition 6.14. Suppose the following conditions hold.

(a) f(0, 0) = 0, h(0) = 0, f and h are continuously differentiable at the origin.

(b) (A,B) and (A,C) are stabilizable and detectable, respectively.

Then there exist K ∈ Rm×n and L ∈ Rn×p such that AK := A+ BK and AL := A− LC are

Schur stable, and if

γ0 := inf
T∈Rn×n,det(T )̸=0

∥A−A(T )∥ < γ1 := −∥A∥+
√
∥A∥2 + ∥L−1

A ∥−1

(with (A,A(T )) as defined above) then there exists T ∈ Rn×n nonsingular such that (6.35) is

exponentially stable in a neighborhood of the origin.

Proof. First, Schur stability ofAK andAL for some pair (K,L) follow from stabilizability and

detectability of the linear approximation. Let γ∗ ∈ (γ0, γ1) and T ∈ Rn×n
be a nonsingular

transformation such that γ∗ ≥ ∥A−A(T )∥.

Let x := (x̂, e) throughout. As in the proof of Proposition 6.13, we have, from (6.35) and

(6.36), that fT (0) = (0) and (dfT/dx)(0) = A(T ). Let (Q,P) be positive definite matrices

satisfying (6.33). Then, with the candidate Lyapunov function V (x) := x⊤Px for each x ∈

R2n
, we have |Ax| ≤ ∥A∥|x| and

σ(P)|x|2 ≤ V (x) ≤ σ(P)|x|2,

|V (fT (x))− V (Ax)| ≤ 2∥P∥|Ax||fT (x)−Ax|+ ∥P∥|fT (x)−Ax|2

as in the proof of Proposition 6.10. By Theorem 6.7, if

∥A−A(T )∥ < γ̃1(Q) := −∥A∥+
√
∥A∥2 + σ(Q)/∥P∥
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then x+ = fT (x) is exponentially stable in a neighborhood of the origin. But

∥P∥ = ∥L−1
A (Q)∥ ≥ σ(Q)∥L−1

A ∥

with equality when Q = I (Gahinet et al., 1990). Therefore γ̃1(Q) ≤ γ1 with equality when

Q = I , and we have stability at the origin since γ0 ≤ ∥A−A(T )∥ ≤ γ∗ < γ1.

Remark 6.15. Both Propositions 6.13 and 6.14 imply that |x̂(k)| → 0 and |x̃(k)| → 0 as

k → ∞. But this means |x(k)| → 0 because x = T−1x̃, so the plant is also stabilized to

the origin. In fact, we have convergence for any nonsingular transformation, not just the

one chosen in Propositions 6.13 and 6.14. In either proposition, the chosen transformation

simply minimizes the different between the plant linearization and approximate linear model

linearizations, making it easy to invoke Theorems 6.5 and 6.7.

Remark 6.16. It is unrealistic to expect the plant (6.29) states are adequately linearized as

written. Therefore, we should realistically consider all plant realizations

x+ = fφ(x, u) := φ(f(φ−1(x), u)), y = hφ := h(φ−1(x))

where φ : Rn → Rn
is any sufficiently smooth

5
function such that φ(0) = 0. But with

T := (dφ/dx)(0), we still have the derivative (dfT/d(x̂, e))(0, 0) = A(T ) where (6.36). So to

show stabilization in some neighborhood of the origin, it suffices to consider only linear trans-

formations φ(x) := Tx where T is nonsingular. While it is outside of the scope of this work,

a nonlinear φ satisfying (dφ/dx)(0) = T could be fine-tuned to maximize the guaranteed

size of the basin of attraction by shrinking the K-function bound implied by Proposition 6.4.

5
We conjecture that continuous differentiability at the origin is a sufficient smoothness condition for φ.

Then every pair (fφ, hφ) is continuously differentiable at the origin so long as the original pair (f, h) is.
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6.3.3 Linear offset-free MPC

In most control applications, we select a few input/output signals to track at steady state.

We do not necessarily know the steady state at which (6.29) achieves these reference sig-

nals, so the controller must correct for disturbances and plant-model mismatch to completely

eliminate offset from the reference signals. Consider the steady-state reference

rs =
[
Hy Hu

] [h(xs)
us

]
(6.37a)

where rs ∈ Rm
is the reference and (xs, us) ∈ Rn × Rm

are steady-state targets satisfying

xs = f(xs, us). (6.37b)

Typically the columns of

[
Hy Hu

]
are chosen as elementary vectors so that rs represents

a few of the system inputs and outputs. To ensure the setpoint rs is reachable, we make the

following assumption.

Assumption 6.17. The setpoint rs and input u have the same dimension, i.e., nr = m. Given

the setpoint rs ∈ Rm
, there exists a unique steady state (xs, us) ∈ Rn ×Rm

satisfying (6.37).

The nonlinear plant (6.29) is approximated by the augmented linear system

x+ = Ax+Bdd+Bu (6.38a)

d+ = d (6.38b)

y = Cx+ Cdd (6.38c)

where d ∈ Rnd
is a disturbance state intended to correct of the effect of plant-modelmismatch.

The following assumption guarantees, for the augmented system (6.38), detectability of the

states and disturbances, and reachability of the setpoints.
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Assumption 6.18. The unaugmented system (6.30) is detectable, nr = m, nd = p, and the

following rank conditions hold:

rank

[
A− I Bd

C Cd

]
= n+ p, (6.39)

rank

[
A− I B
HyC Hu

]
= n+m. (6.40)

In (Pannocchia and Rawlings, 2003, Lem. 1) it is shown that detectability of (6.38) requires

detectability of the unaugmented system (6.30) and a rank condition. We restate this lemma

below, and note that it shows Assumption 6.18 implies detectability of (6.38).

Lemma 6.19 ((Pannocchia and Rawlings, 2003, Lem. 1)). The augmented system (6.38) is de-

tectable if and only if the unaugmented system (6.30) is detectable and (6.39) holds.

Under Assumption 6.18, we have the existence of a unique steady state (xs, us) ∈ Rn×Rm

that solve [
A− I B
HyC Hu

] [
xs
us

]
=

[
−Bdd

−HyCdd+ rs

]
(6.41)

for any disturbance d ∈ Rnd
and setpoint rs ∈ Rnr

. Moreover, by Assumption 6.18 and

Lemma 6.19, there exist gains (K,Lx, Ld) such that AK := A+BK and

AL :=

[
A− LxC Bd − LxCd

−LdC I − LdCd

]
(6.42)

are Schur stable. We estimate the state and disturbance (x̂, d̂) with the following filter:

x̂+ = Ax̂+Bdd̂+Bu+ Lx(y − Cx̂− cdd̂) (6.43a)

d̂+ = d̂+ Ld(y − Cx̂− cdd̂). (6.43b)

To steer (6.38) to the setpoint rs, linear feedback will not do; instead we require an affine feed-
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back that stabilizes the steady state (xs, us) such that (6.41) is satisfied. With the disturbance

estimate d̂, we define the steady-state targets as

[
x̂t
ût

]
:=

[
A− I B
HyC Hu

]−1 [ −Bdd̂

−HyCdd̂+ rs

]
=

[
Tx
Tu

]
d̂+

[
Rx

Ru

]
rs (6.44)

where existence of the inverse follows from Assumption 6.17. With these targets, we use the

control law

u = K(x̂− x̂t) + ût. (6.45)

Combining (6.38) and (6.43)–(6.45) gives the joint system

∆x̂ex
ed

+

=

[
AK Lx

[
C Cd

]
0 AL

]∆x̂ex
ed

 (6.46)

where ∆x̂ := x̂− x̂t, ex := x− x̂ and ed := d− d̂. Similarly to the LQG, we have that (6.46)

is stable because

A :=

[
AK Lx

[
C Cd

]
0 AL

]
is Schur stable.

As in Section 6.3.2, the plant and model states are likely unaligned even when the input-

output behavior is similar. This time, even the steady states that reach the setpoint rs can be

different. We define (xs, us) ∈ Rn×Rm
as the unique steady state such that (6.37) holds, and

define (x̂s, d̂s) ∈ Rn × Rm
as a steady state satisfying

[
A− I Bd

C Cd

] [
x̂s
d̂s

]
=

[
−Bus

−h(xs) + rs

]
(6.47)

which exist and are unique under Assumption 6.18. Since (x̂s, d̂s) depend on (xs, us), there is

no way to know the state and disturbance (model) setpoints (x̂s, d̂s) beforehand. Instead, the
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disturbance estimate d̂ is intended to “integrate” the model error and converge to d̂s.

Consider affine transformations of the form x̃ := T (x − xs) + x̂s. Under such a trans-

formation, the steady state for the new system is always (x̂s, us). Define the family of (6.29)

realizations

x̃+ = fT (x̃, u) := T [(f(T−1(x̃− x̂s) + xs, u)− xs] + x̂s (6.48a)

y = hT (x̃) := h(T−1(x̃− x̂s) + xs). (6.48b)

Let ∆x̂ := x̂ − x̂t, ex := x̃ − x̂, and ed := d̂s − d̂ denote the state estimate in deviation

variables, the state estimate error, and the disturbance estimate error, respectively. Then we

have the closed-loop system

∆x̂ex
ed

+

= fT (∆x̂, ex, ed) :=

 AK∆x̂+ Lxε
fT (x̃, u)− x̂t − AK∆x̂− Lxε

ed − Ldε

 (6.49a)

with

x̂t = x̂s − Txed (6.49b)

x̃ = x̂s − Txed +∆x̂+ ex (6.49c)

u = us +K∆x̂− Tued (6.49d)

ε = hT (x̃)− h(xs)− C∆x̂+ (CTx + Cd)ed (6.49e)

and we have used the facts h(xs) = Cx̂s + Cdd̂s and

[
x̂s − x̂t
us − ût

]
=

[
Tx
Tu

]
(d̂s − d̂) =

[
Tx
Tu

]
ed. (6.50)

Then fT (0, 0, 0) = (0, 0, 0) by Assumption 6.17, and by liberal application of the chain rule,
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it can be shown that

dfT
d(∆x̂, ex, ed)

(0, 0, 0) = A(T ) (6.51)

where

A(T ) := A+

 Lx∆C(T ) Lx∆C(T ) −Lx∆C(T )Tx
∆AK(T )− Lx∆C(T ) ∆AL(T ) ∆A(T )Tx

∆C(T ) −Ld∆C(T ) ∆C(T )Tx

 (6.52a)

and

∆A(T ) := TAT−1 − A, ∆AK(T ) := ∆A(T ) + ∆B(T )K, (6.52b)

∆B(T ) := TB −B, ∆AL(T ) := ∆A(T )− L∆C(T ), (6.52c)

∆C(T ) := CT−1 − C (6.52d)

are the transform-dependent model parameters, and

A :=
∂f

∂x
(xs, us), B :=

∂f

∂u
(xs, us), C :=

dh

dx
(xs) (6.52e)

are the derivatives at the setpoint. While the expression (6.52) appears cumbersome, notice

that, for any nonsingular T for which A = TAT−1
, B = TB, and C = CT−1

, the second

term drops out entirely and we haveA(T ) = A, which is Schur stable. Thus, if this similarity

transformation holds or is sufficiently approximated, then the origin is stable.

Proposition 6.20. If the origin of (6.49) is stable, then, for sufficiently small (∆x̂, ex, ed), we

have

(x(k), u(k))→ (xs, us) (x̂(k), d̂(k))→ (x̂s, d̂s)

(x̂t(k), ût(k))→ (x̂s, us) r(k)→ rs

154



Linear control of nonlinear systems Chapter 6

as k →∞, where r(k) := Hyh(x(k)) +Huu(k).

Proof. Stability of the origin and (∆x̂, ex, ed) in its basin of attraction implies ∆x̂(k) → 0,

ex(k) → 0, and ed(k) → 0. The last limit implies d̂(k) → d̂s, so (x̂t(k), ût(k)) → (x̂s, us)

by (6.50). Moreover, x̂(k) = ∆x̂(k) + x̂t(k) → x̂s and x̃(k) = x̂(k) + ex(k) → x̂s by the

definitions of (∆x̂, ex), and x(k) = T−1(x̃(k)− x̂s) + xs → xs by the affine transformation.

Finally, by continuity of h at xs, we have r(k)→ Hyh(xs) +Huus = rs.

The following two propositions apply Theorems 6.5 and 6.7 to stability of the setpoint

tracking system (6.49).

Proposition 6.21. Let rs ∈ Rnr , suppose Assumptions 6.17 and 6.18 hold, and let T ∈ Rn×n

be a nonsingular matrix for which A = TAT−1, B = TB, and C = CT−1 (where (A,B,C)

are defined as above). Then there exist gains (K,Lx, Ld) ∈ Rm×n × Rn×p × Rnd×p such that

AK := A+BK and (6.42) are Schur stable, and (6.49) is exponentially stable in a neighborhood

of the origin.

Proof. By Assumption 6.18 and Lemma 6.19, the gains (K,Lx, Ld) such that AK and AL are

Schur stable exist. Moreover, by the assumptions and the discussion above, we have the

closed-loop system (6.49), for which fT (0, 0, 0) = (0, 0, 0) and by the chain rule (6.51). But,

by assumptionA(T ) = A, so (6.46) is a linearization of (6.49), and moreover, (6.46) is stable,

so (6.49) must be exponentially stable in a neighborhood of the origin by Theorem 6.5.

Proposition 6.22. Let rs ∈ Rnr , suppose Assumptions 6.17 and 6.18 hold. Then there exist

gains (K,Lx, Ld) ∈ Rm×n × Rn×p × Rnd×p such that AK := A + BK and (6.42) are Schur

stable, and if

γ0 := inf
T∈Rn×n,det(T )̸=0

∥A−A(T )∥ < γ1 := −∥A∥+
√
∥A∥2 + ∥L−1

A ∥−1
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(with (A,A(T )) as defined above) then there exists a nonsingular matrix T ∈ Rn×n such that

(6.49) is exponentially stable in a neighborhood of the origin.

Proof. Schur stability of AK and (6.42) for some (K,Lx, Ld) follow from Assumptions 6.17

and 6.18. Let γ∗ ∈ (γ0, γ1) and T ∈ Rn×n
be a nonsingular transformation such that γ∗ ≥

∥A−A(T )∥. The remainder of the proof follows identically to that of Proposition 6.14 with

the slight modification that x := (∆x̂, ex, ed) throughout.

6.4 Other considerations

Throughout we have assumed the plant and model have the same state dimension. How-

ever, it is important to note the prior results do not require this to be true. Consider the

plant

x+
P
= f(xP, u) y = h(xP) (6.53)

where xP ∈ RnP
is the plant state.

Under-modeled state Suppose n < nP. Then we can take

x̃ :=

[
x
0

]
∈ RnP , Ã :=

[
A

0

]
∈ RnP×nP , B̃ :=

[
B
0

]
∈ RnP×m, C̃ :=

[
C 0

]
∈ Rp×nP

and consider the extended linear model

x̃+ = Ãx̃+ B̃u, y = C̃x̃.

156



Linear control of nonlinear systems Chapter 6

Over-modeled state Suppose n > nP. Then we can take

x̃ :=

[
xP
0

]
∈ Rn, f̃(x̃, u) :=

[
f(xP, u)

0

]
∈ Rn, h̃(x̃) := h(xP)

and consider the extended plant

x̃+ = f̃(x̃, u), y = h̃(x̃).
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Appendices

6.A Derivatives and K-functions

In this appendix, we prove Proposition 6.4. It is a direct extension of (Rawlings and Ris-

beck, 2015, Props. 5, 13), who show the equivalence of ε-δ and K-function definitions of con-

tinuity. The results of Rawlings and Risbeck (2015) assume existence of the function value at

the limit point, which does not hold for the following definition of the Jacobian:

lim
|h|→0

|f(x0 + h)− f(x0)− Jh|
|h|

= 0

where J := df
dx
(x0) (Rudin, 1976, Defn. 9.11). Therefore it is necessary to modify the results

of Rawlings and Risbeck (2015) to accommodate Proposition 6.4. First, however, we borrow

the following K-function lower bounding result from (Rawlings and Risbeck, 2015, Prop. 4).

Proposition 6.23 ((Rawlings and Risbeck, 2015, Prop. 4)). Let δ : R>0 → R>0 be a nonde-

creasing function. Then there exists α ∈ K such that α(ε) ≤ δ(ε) for all ε > 0.

Then we can show the equivalence of ε-δ definition of the limit and a K-function over-

bound on an excluded neighborhood of the limit point.

Proposition 6.24. The function V : Rn → Rm has the limit V0 at x0 if and only if there exists

b > 0 and γ ∈ K such that

|V (x)− V0| ≤ γ(|x− x0|) (6.54)
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for all 0 < |x− x0| ≤ b.

Proof. Without loss of generality, assume x0 = 0 and V0 = 0.

(⇒) Suppose the limit exists. Then for each ε > 0, there exists δ(ε) > 0 such that |V (x)| ≤

ε for all 0 < |x| ≤ δ(ε). Clearly δ(ε) can be made a nondecreasing function (Rawlings

and Risbeck, 2015, Prop. 11), so by Proposition 6.23 there exists α ∈ K that lower bounds

δ, i.e., α(ε) ≤ δ(ε) for all ε > 0. Let γ := α−1
denote the inverse of α on [0, b] where

b := supε>0 δ(ε). For each ε > 0, choose x ∈ Rn
such that |x| ≤ α(ε). Then |x| ≤ δ(ε) by

construction of α, and |V (x)| ≤ ε = α−1(|x|).

(⇐) Suppose b > 0 and γ ∈ K exist such that (6.54) hold for all |x| ≤ b. Let δ := γ−1

denote the inverse of γ on [0, b]. Then, for each ε > 0, we have that |x| ≤ δ(ε) = γ−1(ε)

implies |V (x)| ≤ γ(|x|) ≤ γ(γ−1(ε)) = ε.

Proposition 6.24 differs from (Rawlings and Risbeck, 2015, Props. 5, 13) in that we do not

require V (x0) to equal V0, and in fact, we do not require a finite value for V at x0 at all. Finally,

we can prove Proposition 6.4 using Proposition 6.24.

Proof of Proposition 6.4. By the definition of the derivative, |f(x) − Jx|/|x| → 0 as |x| → 0.

By Proposition 6.24, there exist b > 0 and γ ∈ K satisfying (6.8) for all 0 < |x| ≤ b.
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Chapter 7

Stability of model predictive control
despite plant-model mismatch

Plant-model mismatch is an ever-present challenge in model predictive control (MPC) prac-

tice. In industrial implementations, themain driver ofMPC performance is model quality (Qin

and Badgwell, 2003; Darby and Nikolaou, 2012). There has been recent progress on improv-

ing model quality and MPC performance through disturbance modeling and estimator tun-

ing (Kuntz and Rawlings, 2022, 2024b; Simpson et al., 2024), simultaneous state and parameter

estimation (Baumgärtner et al., 2022; Muntwiler et al., 2023; Schiller and Müller, 2023), and

even direct data-driven MPC design (Berberich et al., 2021, 2022a,b), to name a few meth-

ods. However, there is not yet a sharp theoretical understanding of the robustness of MPC to

plant-model mismatch.

Before discussing MPC robustness, let us first define robustness. In the stability literature,

robust asymptotic stability has been used to refer to both (i) input-to-state stability (ISS) and

(ii) asymptotic stability despite disturbances. To avoid confusion, we reserve the term robust

asymptotic stability for (i) and use strong asymptotic stability to refer to (ii). The latter term

is borrowed from the differential inclusion literature (Clarke et al., 1998) (see Jiang and Wang

(2001); Kellett and Teel (2005) for discrete-time definitions). Note that some authors use the

term uniform asymptotic stability to refer to (ii) (Jiang and Wang, 2001), but we do not use
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this term to avoid confusion with the time-varying case. When such properties are given by a

nominal MPC,
1
we call it inherently robust or inherently strongly stabilizing. Robust and strong

exponential stability are defined similarly.

It is well-known that MPC is stabilizing under certain assumptions on the terminal in-

gredients (Rawlings et al., 2020, Ch. 2). To achieve robust stability in the presence of distur-

bances (parameter errors, estimation errors, exogenous perturbations), a disturbance model

can be included. The simplest manner of handling disturbances is with feedback. For MPC

this would require future knowledge of the disturbance trajectory, or at least a forecast of

it, to implement the controller. While this is a strong requirement, it would confer strong

stability rather than robust stability. Alternatively, a disturbance model may be included.

Several MPC variants include disturbance models in their design, such as offset-free (Pannoc-

chia et al., 2015), stochastic (McAllister, 2022), tube-based (Rawlings et al., 2020, Ch. 3), and

min-max MPC (Limon et al., 2006). For a survey of these methods, see (Rawlings et al., 2020,

Ch. 1, 3).

Even in the absence of a disturbance model, a wide range of nominal MPC designs are

inherently robust to disturbances. Continuity of the control law was first proven to be a

sufficient condition for inherent robustness (De Nicolao et al., 1996; Scokaert et al., 1997).

Later, Grimm et al. (2004) proved continuity of the optimal value function is sufficient for

inherent robustness, and stated MPC examples with discontinuous optimal value functions

that are nominally stable but otherwise not robust to disturbances. A special class of time-

varying terminal constraintswere proven to confer robust stability to nominalMPC byGrimm

et al. (2007), and to suboptimal MPC by Lazar and Heemels (2009). In Pannocchia et al. (2011);

Allan et al. (2017), the inherent robustness of optimal and suboptimal MPC, using a class

of time-invariant terminal constraints, was proven. With the same terminal constraints, the

1
By nominal MPC, we mean any MPC designed without a disturbance model, possibly admitting parameter

errors. This includes not only standard nonlinear MPC, but also suboptimal, offset-free, and (some) data-driven

MPC.
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inherent stochastic robustness (in probability, expectation, and distribution) of nominal MPC

was shown by McAllister and Rawlings (2022b,a, 2024). Lastly, direct data-driven MPC was

shown to be inherently robust to noisy data by Berberich et al. (2022a).

If the origin remains a steady state under mismatch (e.g., for some kinematic and inven-

tory problems), we might expect strong asymptotic stability. In unconstrained linear optimal

control problems (LQR/LQG), the margin of stability (maximum perturbation to the open-

loop gain that still gives a closed-loop system) is always nonzero. However, it is important

to note that there is no guaranteed relative value of this margin below which the closed loop

is stable, save a few exceptional cases such as a single input, or with diagonally-weighted

stage costs (Doyle, 1978; Lehtomaki et al., 1981; Zhang and Fu, 1996). Examples are shown

by Doyle (1978); Zhang and Fu (1996) in which arbitrarily small perturbations to the gain

matrix destabilize the system. These examples usemultiplicative disturbances that, while per-

sistent in the aforementioned papers, do not need to be time-invariant for the results to hold.

The disturbances treated in the MPC literature are typically additive disturbances entering the

states and measurements (Rawlings et al., 2020, Ch. 3). In the multiplicative case, borrowing

from knowledge of linear systems, we should expect strong exponential stability. However,

in the additive case, we should expect only robust exponential stability.

To the best of our knowledge, the inherent strong stability of nominal MPC to plant-model

mismatch has been discussed by only Santos and Biegler (1999); Santos et al. (2008). In these

papers, the magnitude of plant-model mismatch is assumed to be upper bounded by a power

law in the magnitude of the state, and for unconstrained systems exhibiting sufficiently small

error bounds, the nominal MPC is shown to stabilize the plant to the origin. While the papers

consider exact penalty functions for constraint handling, there is no guarantee of recursive

feasibility.

In this chapter, we extend the work of Santos et al. (2008) to include input constraints and

stabilizing terminal constraints. In Section 7.1, we define the system, state the MPC problem
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and assumptions, review nominal MPC stability, and present a motivating example exhibit-

ing both robust and strong stability under plant-model mismatch. In Section 7.2, we formally

define robust and strong stability and review the relevant Lyapunov theory. In Section 7.3,

we review inherent robustness of MPC. In Section 7.4, we present the main results. For MPC

with quadratic costs, it is shown that the closed loop is strongly exponentially stable under

(i) a fixed steady state, (ii) a mild differentiability condition, and (iii) the standard MPC as-

sumptions used by Pannocchia et al. (2011); Allan et al. (2017). For MPCwith general, positive

definite cost functions, we show a jointK-function bound holds on the increase in the optimal

value function, but strong stability is only implied if this bound decays sufficiently quickly

near the origin. To illustrate the main results, we present three examples in Section 7.5. The

first example is a continuous yet nondifferentiable system with a general cost MPC that is

not strongly stable, demonstrating inherent strong stability is not a guaranteed property of

nonlinear MPC. The second example is a nondifferentiable system for which the quadratic

cost MPC is strongly stabilizing. In the third and final example, we use the upright pendulum

problem to showcase several types of plant-model mismatch that are covered by the main re-

sults, namely, discretization errors, unmodeled dynamics, and errors in estimated parameters.

We conclude the chapter and discuss future work in Section 7.6.

7.1 Problem statement

7.1.1 System of interest

Consider the following discrete-time plant:

x+ = f(x, u, θ) (7.1)
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where x ∈ Rn
is the plant state, u ∈ Rm

is the plant input, and θ ∈ Rnθ
is an unknown

parameter vector. We denote the parameter estimate by θ̂ ∈ Rnθ
and the modeled system by

x+ = f(x, u, θ̂). (7.2)

We assume the parameter estimate is time-invariant, while the parameter vector itself may

be time-varying. For simplicity, let θ̂ = 0 and denote the model as

x+ = f̂(x, u) := f(x, u, 0). (7.3)

Let ϕ̂(k;x,u) denote the solution to (7.3) at time k, given an initial state x and a sufficiently

long input sequence u.

In this chapter, we study the behavior of anMPC designedwith themodel (7.2), but applied

to the plant (7.1). We adopt a user-oriented perspective in this analysis: while the model is

fixed (e.g., via system identification or prior knowledge), the plant behavior is unknown and

possibly changing over time as equipment or the environment changes. Under the assumption

θ̂ = 0, θ takes the role of an estimate residual. In the language of inherent robustness, the

model (7.3) is the nominal system, and the plant (7.1) is the uncertain system.

7.1.2 Nominal MPC and basic assumptions

We consider an MPC problem with control constraints u ∈ U ⊆ Rm
, a horizon length of

N ∈ I>0, a stage cost ℓ : Rn × Rm → R≥0, a terminal constraint Xf ⊆ Rn
, and a terminal

cost Vf : Rn → R≥0. For an initial state x ∈ Rn
, we define the set of admissible (x,u) pairs
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(7.4), admissible input sequences (7.5), and admissible initial states (7.6) by

ZN := { (x,u) ∈ Rn × UN | ϕ̂(N ;x,u) ∈ Xf } (7.4)

UN(x) := {u ∈ UN | (x,u) ∈ ZN } (7.5)

XN := {x ∈ Rn | UN(x) is nonempty } . (7.6)

For each (x,u) ∈ Rn+Nm
, we define the MPC objective by

VN(x,u) :=
N−1∑
k=0

ℓ(ϕ̂(k;x,u), u(k)) + Vf (ϕ̂(N ;x,u)) (7.7)

and for each x ∈ XN , we define the MPC problem by

V 0
N(x) := min

u∈UN (x)
VN(x,u). (7.8)

According to the convention of Rockafellar and Wets (1998) for infeasible problems, we take

V 0
N(x) :=∞ for all x ̸∈ XN .

Throughout, we use the standard assumptions for inherent robustness of MPC from Allan

et al. (2017).

Assumption 7.1 (Continuity). The functions f : Rn×Rm×Rnθ → Rn
, ℓ : Rn×Rm → R≥0,

and Vf : Rn → R≥0 are continuous and f̂(0, 0) = 0, ℓ(0, 0) = 0, and Vf (0) = 0.

Assumption 7.2 (Constraint properties). The set U is compact and contains the origin. The

set Xf is defined by Xf := levcfVf for some cf > 0.

Assumption 7.3 (Terminal control law). There exists a terminal control law κf : Xf → U

such that

Vf (f̂(x, κf (x))) ≤ Vf (x)− ℓ(x, κf (x)), ∀ x ∈ Xf .
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Assumption 7.4 (Stage cost bound). There exists a function α1 ∈ K∞ such that

ℓ(x, u) ≥ α1(|(x, u)|), ∀ (x, u) ∈ Rn × U. (7.9)

Quadratic stage and terminal costs are of particular interest in this work. Throughout, we

call an MPC satisfying the following assumption a quadratic cost MPC.

Assumption 7.5 (Quadratic cost). We have

ℓ(x, u) := |x|2Q + |u|2R, Vf (x) := |x|2Pf
(7.10)

for all (x, u) ∈ Rn × Rm
and positive definite Q, R, and Pf .

Under Assumptions 7.1 and 7.2, the existence of solutions to (7.8) follows from (Rawlings

et al., 2020, Prop. 2.4). We denote any such solution by u0(x) = (u0(0;x), . . . , u0(N − 1;x)),

denote the optimal state sequence by x̂0(k;x) := ϕ̂(k;x,u0(x)) for each k ∈ I0:N , and define

the MPC control law κN : XN → U by κN(x) := u0(0;x). It is also useful to define the

following suboptimal input sequence:

ũ(x) := (u0(1;x), . . . , u0(N − 1;x), κf (x̂
0(N ;x))).

Consider the modeled closed-loop system

x+ = f̂c(x) := f̂(x, κN(x)). (7.11)

From Assumptions 7.1 to 7.4, it can be shown x+ = f̂c(x) is asymptotically stable in XN with

the Lyapunov function V 0
N (Rawlings et al., 2020, Thm. 2.19). For completeness, we include a

sketch of the proof in Appendix 7.A.1.
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Theorem 7.6 (Thm. 2.19 of Rawlings et al. (2020)). Suppose Assumptions 7.1 to 7.4 hold. Then

(a) XN is positive invariant for x+ = f̂c(x);

(b) there exists α2 ∈ K∞ such that, for each x ∈ XN ,

α1(|x|) ≤ V 0
N(x) ≤ α2(|x|) (7.12a)

V 0
N(f̂c(x)) ≤ V 0

N(x)− α1(|x|); (7.12b)

(c) and x+ = f̂c(x) is asymptotically stable on XN .

Similarly, it is shown in (Rawlings et al., 2020, Sec. 2.5.5) that, under Assumptions 7.1 to

7.3 and 7.5, the quadratic cost MPC exponentially stabilizes the closed-loop system (7.11) on

any sublevel set of the optimal value function S := levρV
0
N . Note that, because V 0

N is only

defined on XN , we have S ⊆ XN by the definition of the sublevel set. For completeness, we

restate the conclusion of (Rawlings et al., 2020, Sec. 2.5.5) in the theorem below and include

a sketch of the proof in Appendix 7.A.1.

Theorem 7.7 (Sec. 2.5.5 of Rawlings et al. (2020)). Suppose Assumptions 7.1 to 7.3 and 7.5 hold.

Let ρ > 0 and S := levρV
0
N . Then

(a) S is positive invariant for x+ = f̂c(x);

(b) there exists a constant c2 > 0 such that

c1|x|2 ≤ V 0
N(x) ≤ c2|x|2 (7.13a)

V 0
N(f̂c(x)) ≤ V 0

N(x)− c1|x|2 (7.13b)

for each x ∈ S , where c1 := σ(Q); and

(c) x+ = f̂c(x) is exponentially stable on S .

To show strong stability of the MPC with mismatch, we eventually require one or both of

the following assumptions.
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Assumption 7.8 (Steady state). The origin is a steady state, uniformly in θ ∈ Rnθ
, i.e.,

f(0, 0, θ) = 0 for all θ ∈ Rnθ
.

Assumption 7.9 (Differentiability). The function f(·, ·, θ) is continuously differentiable for

each θ ∈ Rnθ
.

Remark 7.10. Assumption 7.8 limits our results to problems where the steady state is known

and fixed (e.g., path-planning and inventory problems). If the steady state depends on θ,

i.e., xs(θ) = f(xs(θ), us(θ), θ), we can still work with deviation variables (δx, δu) := (x −

xs(θ), u− us(θ)), but (i) we have to estimate the steady-state pair (xs(θ), us(θ)) (e.g., via an

integrating disturbance model (Rawlings et al., 2020, Ch. 1)), and (ii) we only achieve strong

stability in the case where the steady-state map is continuous, the parameters are asymptot-

ically constant, and the estimation errors converge.

7.1.3 Motivating example

We close this section with a motivating example exhibiting many types of stability under

persistent mismatch. Recall from the introduction we define robust stability as an ISS prop-

erty for parameter errors, and strong stability as convergence to the origin despite mismatch.

While precise definitions are given in Section 7.2, these informal definitions suffice for the

example.

Consider the scalar system

x+ = f(x, u, θ) := x+ (1 + θ)u. (7.14)

The plant (7.14) is a prototypical integrating system, such as a storage tank or vehicle on a

track, with an uncertain input gain. As usual the system is modeled with θ̂ = 0,

x+ = f̂(x, u) := f(x, u, 0) = x+ u. (7.15)
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We define a nominal MPCwithU := [−1, 1], ℓ(x, u) := (1/2)(x2+u2), Vf (x) := (1/2)x2,

Xf := [−1, 1], andN := 2. Notice that the terminal set can be reached inN = 2moves if and

only if |x| ≤ 3, so we have the steerable set X2 = [−3, 3]. Without the terminal constraint

(i.e., Xf = R), the optimal control sequence is

u0(x) =


(−3x/5,−x/5), |x| ≤ 5/3

(−sgn(x),−x/2 + sgn(x)/2), 5/3 < |x| ≤ 3

and the control law is κ2(x) := −sat(3x/5) (Rawlings et al., 2020, p. 104). However, the

optimal input sequence gives

x̂0(2;x) =


x/5, |x| ≤ 5/3

x/2− sgn(x)/2, 5/3 < |x| ≤ 3

so the terminal constraint Xf = [−1, 1] is automatically satisfied for all |x| ≤ 3. Therefore

κ2(x) = −sat(3x/5) is also the control law of the problem with the terminal constraint.

In Figure 7.1 we plot contours of the cost difference ∆V 0
2 (x, θ) := V 0

2 (f(x, κ2(x), θ)) −

V 0
2 (x), and in Figure 7.2, we plot closed-loop trajectories and the cost difference∆V 0

2 (·, θ) for

several values of θ. The system is strongly stable for all −1 < θ < 7/3 as the cost difference

is negative definite. When θ < −1, the entire cost difference curve is positive definite, so the

trajectories become unbounded. This is because the disturbance cancels out the effect of the

controller and drives the system in the opposite direction. On the other hand, when θ > 7/3,

the cost difference curve is only positive definite near the origin, but negative elsewhere, so

the trajectories remain bounded for all time, although they do not converge to the origin.

In this case, high parameter values push the system in the same direction as the input, and

input saturation moderates the effect of overshoot at high parameter values. We point out the
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Figure 7.1: Contours of the cost difference as a function of the initial state x and the parameter θ.
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existing literature on inherent robustness is not sufficient to predict strong stability whenever

−1 < θ < 7/3.

7.2 Robust and strong stability

Consider the closed-loop system

x+ = fc(x, θ) := f(x, κN(x), θ), θ ∈ Θ (7.16)

where Θ ⊆ Rnθ
. Let ϕc(k;x,θ) denote solutions to (7.16) at time k, given an initial state

x ∈ XN and a sufficiently long parameter sequence θ ∈ Θ. If Θ := { θ ∈ Rnθ | |θ| ≤ δ }, it is

convenient to write (7.16) as x+ = fc(x, θ), |θ| ≤ δ.

In this section, we review stability definitions and results for (7.16). For brevity, asymptotic

and exponential definitions and results are consolidated into the same statement. We define

robustly positive invariant (RPI) sets as follows.

Definition 7.11 (Robust positive invariance). A setX ⊆ Rn
is robustly positive invariant for

the system x+ = fc(x, θ), θ ∈ Θ if fc(x, θ) ∈ X for all x ∈ X and θ ∈ Θ.

7.2.1 Robust stability

We define robust asymptotic stability (RAS) similarly to input-to-state stability (ISS) from

Jiang and Wang (2001). Likewise, we define robust exponential stability (RES) similarly to

input-to-state exponential stability (ISES) from Grüne et al. (1999).

Definition 7.12 (Robust stability). A system x+ = fc(x, θ), θ ∈ Θ is robustly asymptotically

stable (in a RPI set X ⊆ Rn
) if there exists β ∈ KL and γ ∈ K such that

|ϕc(k;x,θ)| ≤ β(|x|, k) + γ(∥θ∥0:k−1) (7.17)
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for all k ∈ I≥0, x ∈ X , and θ ∈ Θk
. If, additionally, β(s, k) = csλk for some c > 0 and

λ ∈ (0, 1), we say x+ = fc(x, θ), θ ∈ Θ is robustly exponentially stable (in X).

Definition 7.13 (ISS/ISES Lyapunov function). A function V : X → R≥0 is an ISS Lyapunov

function (in an RPI setX ⊆ Rn
, for the system x+ = fc(x, θ), θ ∈ Θ) if there exists functions

α1, α2, α3 ∈ K∞ and σ ∈ K such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (7.18a)

V (fc(x, θ)) ≤ V (x)− α3(|x|) + σ(|θ|). (7.18b)

for all x ∈ X and θ ∈ Θ. If, additionally, αi(·) := ai(·)b for some ai, b > 0 and each

i ∈ { 1, 2, 3 }, we say V is an ISES Lyapunov function (in X , for x+ = fc(x, θ), θ ∈ Θ).

The result below is a generalization of (Allan et al., 2017, Prop. 19) to include general

disturbance sets and the exponential case. For completeness, we provide the proof of the

exponential case in Appendix 7.A.2.

Theorem 7.14 (ISS/ISES Lyapunov theorem). The system x+ = fc(x, θ), θ ∈ Θ is RAS (RES)

in an RPI set X ⊆ Rn if it admits an ISS (ISES) Lyapunov function in X .

Remark 7.15. Whereas (Allan et al., 2017, Prop. 19) only considers disturbance sets of the

form Θ := { θ ∈ Rnθ | |θ| ≤ δ } for some δ > 0, it is trivial to modify the proof to use a

general constraint set.

7.2.2 Strong stability

We take strong asymptotic stability (SAS) as a time-invariant version of the conclusion

of (Jiang and Wang, 2002, Prop. 2.2). Strong exponential stability (SES) is defined similarly.
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Definition 7.16 (Strong stability). A system x+ = fc(x, θ), θ ∈ Θ is strongly asymptotically

stable (in a RPI set X ⊆ Rn
) if there exists β ∈ KL such that

|ϕc(k;x,θ)| ≤ β(|x|, k)

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk
. If, additionally, β(s, k) := csλk for all s ≥ 0 and k ∈ I≥0,

and some c > 0 and λ ∈ (0, 1), we say x+ = fc(x, θ), θ ∈ Θ is strongly exponentially stable

(in X).

Definition 7.17 (Lyapunov function). A function V : X → R≥0 is a Lyapunov function (in

a RPI set X ⊆ Rn
, for the system x+ = f(x, θ), θ ∈ Θ), if there exist functions α1, α2 ∈ K∞

and a continuous function σ ∈ PD such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (7.19a)

V (fc(x, θ)) ≤ V (x)− σ(|x|) (7.19b)

for all x ∈ X and θ ∈ Θ. If, additionally, αi(·) := ai(·)b for some ai, b > 0 and each i ∈ I1:3,

we say V is an exponential Lyapunov function (in X , for x+ = fc(x, θ), θ ∈ Θ).

The following Lyapunov theorem combines from (Allan et al., 2017, Prop. 13) and (Pan-

nocchia et al., 2011, Lem. 15).

Theorem 7.18. The system x+ = fc(x, θ), θ ∈ Θ is SAS (SES) in a RPI setX ⊆ Rn if it admits

a Lyapunov function (an exponential Lyapunov function) in X .

Remark 7.19. In (Allan et al., 2017, Prop. 13), the Lyapunov function requires a class-K∞

bound rather than a continuous class-PD bound. However, it is shown in (Jiang and Wang,

2002, Lem. 2.8) that a continuous function σ ∈ PD suffices.
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7.3 Inherent robustness of MPC

Assumptions 7.1 to 7.4 are in fact sufficient to show inherent robustness of the nominal

MPC. The theorem below can be viewed as a minor generalization of the results in (Rawlings

et al., 2020, Sec. 3.2.4), or as a special case of (Allan et al., 2017, Thm. 21).

Theorem 7.20 (Sec. 3.2.4 of Rawlings et al. (2020)). Suppose Assumptions 7.1 to 7.4 hold. Let

ρ > 0 and S := levρV
0
N . Then there exist δ > 0, α2 ∈ K∞, and σ ∈ K such that

α1(|x|) ≤ V 0
N(x) ≤ α2(|x|) (7.20a)

V 0
N(fc(x, θ)) ≤ V 0

N(x)− α1(|x|) + σ(|θ|) (7.20b)

for all x ∈ S and |θ| ≤ δ, and the system x+ = fc(x, θ), |θ| ≤ δ is RAS in the RPI set S .

For completeness, we include a proof of Theorem 7.20 in Appendix 7.A.3. Before moving

on, we note that a key step of the proof of Theorem 7.20 and the main results is to establish

the following robust descent property:

V 0
N(fc(x, θ)) ≤ V 0

N(x)− ℓ(x, κN(x)) + VN(fc(x, θ), ũ(x))− VN(f̂c(x), ũ(x)). (7.21)

In (Rawlings et al., 2020, Sec. 3.2.4), it is shown that (7.21) can be achieved on any sublevel

set of V 0
N and a sufficiently small neighborhood |θ| ≤ δ. We restate this in the following

proposition.

Proposition 7.21 (Sec. 3.2.4 of Rawlings et al. (2020)). Suppose Assumptions 7.1 to 7.4 hold.

Let ρ > 0 and S := levρV
0
N . Then there exists δ > 0 such that (7.21) holds for all x ∈ S and

|θ| ≤ δ and S is RPI for x+ = fc(x, θ), |θ| ≤ δ.

With quadratic costs (Assumption 7.5), Assumptions 7.1 to 7.3 also imply inherent expo-

nential robustness of MPC. This can also be ascertained from (Rawlings et al., 2020, Sec. 3.2.4),
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or considered as a special case of (Pannocchia et al., 2011, Thm. 18). A proof of Theorem 7.22,

which follows similarly to that of Theorem 7.20, is included in Appendix 7.A.3.

Theorem 7.22 (Sec. 3.2.4 of Rawlings et al. (2020)). Suppose Assumptions 7.1 to 7.3 and 7.5

hold. Let ρ > 0 and S := levρV
0
N . There exist δ, c2 > 0 and σ ∈ K such that

c1|x|2 ≤ V 0
N(x) ≤ c2|x|2 (7.22a)

V 0
N(fc(x, θ)) ≤ V 0

N(x)− c1|x|2 + σ(|θ|) (7.22b)

for all x ∈ S and |θ| ≤ δ, where c1 := σ(Q), and the system x+ = fc(x, θ), |θ| ≤ δ is RES in

the RPI set S .

7.4 Stability of MPC despite mismatch

In this section, we investigate two approaches to guarantee strong stability of the closed-

loop system (7.16). First, we take a direct approach and assume the existence of an ISS Lya-

punov function that achieves a certain maximum increase due to mismatch. In general, an

additional scaling condition is equired for the mismatch term, although it is automatically

satisfied for quadratic cost MPC. Second, we construct error bounds that imply the maximum

Lyapunov increase for V 0
N via the standard MPC assumptions (Assumptions 7.1 to 7.5) and

one or both of Assumptions 7.8 and 7.9.

7.4.1 Maximum Lyapunov increase

We begin with the direct approach. The goal here is not (necessarily) to provide the means

to check if a given MPC is strongly stabilizing, but to (i) identify a set of conditions for which

an ISS Lyapunov function also guarantees strong stability and (ii) provide a path towards

proving certain classes of nominal MPCs are strongly stabilizing.
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Asymptotic case

For inherent robustness, a maximum increase of the form (7.20b) is proven for the optimal

value function V 0
N . However, since the perturbation term σ(|θ|) is uniform in |x|, strong

stability is not demonstrated for nonzero θ. Under Assumption 7.8, we might assume the

perturbation vanishes in either of the limits |x| → 0 or |θ| → 0. In this sense, the perturbation

should be class-K in |x| whenever |θ| is fixed, and vice versa. We call these functions joint

K-functions or K2-functions and define them as follows.

Definition 7.23 (Class K2
). The class of joint K-functions, denoted K2

is the class of contin-

uous functions γ : R2
≥0 → R≥0 such that γ(s, ·), γ(·, s) ∈ K for all s > 0.

To achieve strong stability, we assume the existence of an ISS Lyapunov function with a

K2
-function perturbation term, rather than the standardK-function perturbation term. More-

over, we require the perturbation to decay faster than the nominal cost decrease in the limit

|x| → 0 so that the descent property of Definition 7.17 is achieved for sufficiently small θ.

Assumption 7.24 (Maximum Lyapunov increase). There exists a l.s.c. function V : Rn →

R≥0 such that, for each ρ > 0, there exist δ0 > 0, α1, α2, α3 ∈ K∞, and γV ∈ K2
such that

(a) S := levρV ⊆ XN ;

(b) for each x ∈ S and |θ| ≤ δ0, we have

α1(|x|) ≤ V (x) ≤ α2(|x|) (7.23a)

V (fc(x, θ)) ≤ V (x)− α3(|x|) + γV (|x|, |θ|); (7.23b)

(c) and there exists τ > 0 such that

lim sup
s→0+

γV (s, τ)

α3(s)
< 1. (7.24)
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With Assumption 7.24, we have our first main result.

Theorem 7.25. Suppose Assumption 7.24 holds with V : Rn → R≥0. For each ρ > 0, there

exists δ > 0 for which x+ = fc(x, θ), |θ| ≤ δ is SAS in the RPI set S := levρV .

To prove Theorem 7.25, we require a preliminary result related to the ability of a given

K2
-function to lower bound another given K-function (see Appendix 7.A.4 for proof).

Proposition 7.26. Let α ∈ K∞ and γ ∈ K2. If there exists τ > 0 such that

lim sup
s→0+

γ(s, τ)

α(s)
< 1

then, for each σ > 0, there exists δ > 0 such that γ(s, t) < α(s) for all s ∈ (0, σ] and t ∈ [0, δ].

Finally, we prove Theorem 7.25.

Proof of Theorem 7.25. By Assumption 7.24(a,b) there exists δ0 > 0, α1, α2, α3 ∈ K∞, and

γV ∈ K2
such that S ⊆ XN and (7.23) holds for each x ∈ S and |θ| ≤ δ0. Let ε0 :=

supx∈S |x| > 0.2 By Assumption 7.24(c) and Proposition 7.26, there exists δ1 > 0 such that

α3(s) > γV (s, t) for all s ∈ (0, ε0] and t ∈ [0, δ1]. With δ := min { δ0, δ1 }, the function

σ(s) :=


α3(s)− γV (s, δ), 0 ≤ s ≤ ε0

α3(ε0)− γV (ε0, δ), s > ε0

is both class-PD and continuous. By (7.23b), we have

V (fc(x, θ))− V (x) ≤ −α3(|x|) + γV (|x|, δ) = −σ(|x|)
2
If S = { 0 }, the conclusion would hold trivially, so we can assume S ≠ { 0 } without loss of generality.
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for all x ∈ S and |θ| ≤ δ. Moreover, V (x) ≤ ρ implies

V (fc(x, θ)) ≤ V (x)− σ(|x|) ≤ ρ

so S = levρV must be RPI. Finally, x+ = fc(x, θ), |θ| ≤ δ is SAS in S by Theorem 7.18.

Remark 7.27. One might naïvely assume that the closed-loop system (7.16) is SAS under

only Assumption 7.24(a,b). However, if the scaling condition Assumption 7.24(c) does not

hold, then it may be the case that we cannot shrink t small enough to make α3(·) − γV (·, t)

positive definite in a sufficiently large neighborhood of the origin, let alone any neighborhood

at all. Thus Assumption 7.24(a,b) alone are insufficient to show V is a Lyapunov function for

the closed-loop system (7.16). This is illustrated in the example of Section 7.5.1 and in the

following examples.

Example 7.28. Let α3(s) := s2, γV (s, t) := st, and L := lim sups→0+
γV (s,t)
α3(s)

. Then α3 ∈ K∞

and γV ∈ K2
, but L = lims→0+ t/s = ∞ for each t > 0. In fact, since σt(s) := α3(s) −

γV (s, t) = s2 − st, σt is negative definite near the origin for each t > 0.

Example 7.29. Let α3(s) := s, γV (s, t) :=
2st
s+t

, and L := lim sups→0+
γV (s,t)
α3(s)

. Then α3 ∈ K∞

and γV ∈ K2
, but L = lims→0+

2t
s+t

= 2 for each t > 0. Moreover, since σt(s) := α3(s) −

γV (s, t) = s− 2st
s+t

= s2−st
s+t

, σt is negative definite near the origin for each t > 0.

Remark 7.30. While Assumption 7.4 implies (7.23) can be satisfied with α3 := α1, it may

be the case that (7.24) is not satisfied. For example, suppose in some neighborhood of the

origin, that ℓ(x, u) := |x|2 + |u|, κN(x) := −x, and (f, ℓ, Vf ) are Lipschitz on compact

sets. Then γV (s, t) := Lst, α1(s) := s2, and α3(s) := s2 + s satisfy (7.9), (7.23b), and

(7.32) for some L > 0. While lim sups→0+ γV (s, t)/α1(s) = ∞ for each t > 0, we have

lim sups→0+ γV (s, t)/α3(s) = Lt and therefore (7.24) holds for any τ ∈ [0, 1/L).
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Remark 7.31. To achieve Assumption 7.24(a), it is necessary to have V (x) = ∞ for all

x ̸∈ XN . Under Assumptions 7.1 to 7.4, this is automatically achieved by the optimal value

function V 0
N , since, according to the convention of Rockafellar and Wets (1998), we have

V 0
N(x) =∞ for infeasible problems.

Remark 7.32. A restricted version of Assumption 7.8 is automatically satisfied under As-

sumption 7.24(b). To see this, we set x = 0 in (7.23) to give fc(0, θ) = f(0, κN(0), θ) = 0 for

all |θ| ≤ δ and some δ > 0. If, additionally, Assumptions 7.1, 7.2, and 7.4 are satisfied, we

have

α̃1(|(x, κN(x))|) ≤ α̃1(|(x, κN(x))|) ≤ V 0
N(x) ≤ α̃2(|x|)

for some α̃1, α̃2 ∈ K∞, which implies κN(0) = 0, so f(0, 0, θ) = 0 for all |θ| ≤ δ.

Exponential case

To achieve strong exponential stability, Assumption 7.24 is strengthened to require power

law versions of the bounds in (7.23). Since identical exponents are required, the scaling con-

dition Assumption 7.24(c) is automatically satisfied.

Assumption 7.33 (Max. Lyapunov incr. (exp.)). There exists a l.s.c. function V : Rn → R≥0

such that, for each ρ > 0, there exist δ0, a1, a2, a3, b > 0 and σV ∈ K∞ satisfying

(a) S := levρV ⊆ XN ; and

(b) for each x ∈ S and |θ| ≤ δ0, we have

a1|x|b ≤ V (x) ≤ a2|x|b (7.25a)

V (fc(x, θ)) ≤ V (x)− a3|x|b + σV (|θ|)|x|b. (7.25b)

With Assumption 7.33, we have our second main result.
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Theorem 7.34. Suppose Assumption 7.33 holds with V : Rn → R≥0. For each ρ > 0, there

exists δ > 0 for which x+ = fc(x, θ), |θ| ≤ δ is SES in the RPI set S := levρV .

Proof. Assumption 7.33 gives δ0, a1, a2, a3, b > 0 such that S ⊆ XN and (7.25) holds for each

x ∈ S and |θ| ≤ δ0. Let δ1 ∈ (0, σ−1
V (a3)) and δ := min { δ0, δ1 } > 0. Then, by (7.25b),

V (fc(x, θ))− V (x) ≤ −[a3 − σV (δ)]|x|b = −a4|x|b

for all x ∈ S and |θ| ≤ δ, where a4 := a3 − σV (δ) ≥ a3 − σV (δ1) > 0. But this means that

V (x) ≤ ρ implies

V (fc(x, θ)) ≤ V (x)− a4|x|b ≤ ρ

so S = levρV must be RPI. Finally, x+ = fc(x, θ), |θ| ≤ δ is SES in S by Theorem 7.18.

Remark 7.35. Remark 7.31 also applies to Assumption 7.33(a): we require V (x) =∞ for all

x ̸∈ XN .

Remark 7.36. A restricted version of Assumption 7.8 is automatically satisfied under As-

sumption 7.33(b). Setting x = 0 in (7.25) gives fc(0, θ) = f(0, κN(0), θ) = 0 for all |θ| ≤ δ

and some δ > 0. If, additionally, Assumptions 7.1, 7.2, and 7.5 are satisfied, we have

c1|(x, κN(x))|2 ≤ c1|(x, κN(x))|2 ≤ V 0
N(x) ≤ c2|x|2

for some c1, c2 > 0, which implies κN(0) = 0, so f(0, 0, θ) = 0 for all |θ| ≤ δ.

7.4.2 Error bounds

While the maximum Lyapunov increases (7.23b) and (7.25b) are difficult to verify directly,

they are in fact satisfied for the optimal value function (i.e., V := V 0
N ) under fairly general

conditions. To show this, however, we require bounds on the error due to mismatch.
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Model error bounds

Stability of MPC under mismatch was first investigated by Santos and Biegler (1999); San-

tos et al. (2008), who considered, for a fixed parameter θ ∈ Rnθ
, the following power law

bound:

|f(x, u, θ)− f̂(x, u)| ≤ c|x| (7.26)

for some c > 0 and all (x, u) ∈ Rn × Rm
. However, the bound (7.26) does not account for

changing or unknown θ ∈ Rnθ
and is uniform in u ∈ Rm

, thus ruling out the motivating

example from Section 7.1.3. To handle the former issue, we can take c = σf (|θ|) for some

σf ∈ K∞. For the latter issue, it suffices to either replace |x| with |(x, u)|, i.e.,

|f(x, u, θ)− f̂(x, u)| ≤ σf (|θ|)|(x, u)| (7.27)

or consider a bound on the closed-loop error, i.e.,

|fc(x, θ)− f̂c(x)| ≤ σ̃f (|θ|)|x| (7.28)

for all x ∈ S , u ∈ U, and θ ∈ Rnθ
, where σf , σ̃f ∈ K∞ and S ⊆ Rn

is an appropriately

chosen compact set.

For illustrative purposes, consider the following examples of the bounds (7.27). Note that,

for a robustly exponentially stabilizing MPC with quadratic costs (satisfying (7.22)), the con-

trol law satisfies |κN(x)| ≤
√
c2/σ(R)|x|, so (7.27) implies (7.28).

Example 7.37. The linear system x+ = Ax + Bu achieves (7.27) with θ defined as the

vectorization of

[
A B

]
and σf (·) = (·) ∈ K∞. More generally, we could consider arbitrary

parameterizations of (A,B) that are continuous at θ = 0, i.e., x+ = A(θ)x + B(θ)u where

σ(

[
A(θ) B(θ)

]
−
[
A(0) B(0)

]
) ≤ σf (|θ|) and σf ∈ K∞ is guaranteed by Proposition 7.49
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in Appendix 7.A.1.

Example 7.38. Consider the discretized pendulum system

x+ = f(x, u, θ) :=

[
x1 +∆x2

x2 +∆(θ1 sinx1 − θ2x2 + θ3u)

]

where θ ∈ R3
>0 is a vector of lumped parameters and ∆ > 0 is the sample time. For a real

pendulum system, the discretization will introduce numerical errors, but since the errors are

O(∆2), we may assume ∆ > 0 is sufficiently small so that they can be safely ignored. For

this system we have

|f(x, u, θ)− f̂(x, u, θ̂)| ≤ ∆|θ − θ̂||(x, u)|.

where θ̂ ∈ R3
>0. Shifting θ by −θ̂ gives the bound (7.27).

In the following propositions, we derive the bounds (7.27) and (7.28) using Taylor’s theo-

rem and Assumptions 7.1 to 7.3, 7.5, 7.8, and 7.9 (see Appendix 7.A.4 for proofs).

Proposition 7.39. Suppose Assumptions 7.1, 7.2, 7.8, and 7.9 hold. For each compact set S ⊆

Rn, there exists σf ∈ K∞ such that (7.27) holds for all x ∈ S , u ∈ U, and θ ∈ Rnθ .

Proposition 7.40. Suppose Assumptions 7.1 to 7.3, 7.5, 7.8, and 7.9 hold. For each compact set

S ⊆ XN , there exists σ̃f ∈ K∞ such that (7.28) holds for all x ∈ S and θ ∈ Rnθ .

More generally, we could consider K2
-function bounds,

|f(x, u, θ)− f̂(x, u)| ≤ γf (|(x, u)|, |θ|) (7.29)

|fc(x, θ)− f̂c(x)| ≤ γ̃f (|x|, |θ|) (7.30)

for all x ∈ S and θ ∈ Θ, where γf , γ̃f ∈ K2
, and S ⊆ Rn

and Θ ⊆ Rnθ
are appropriately
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chosen compact sets. In the following propositions, we derive the bounds (7.29) and (7.30)

using Assumptions 7.1 to 7.3, 7.5, and 7.8 (see Appendix 7.A.4 for proofs).

Proposition 7.41. Suppose Assumptions 7.1, 7.2, and 7.8 hold. For any compact sets S ⊆ Rn

and Θ ⊆ Rnθ , there exists γf ∈ K2 satisfying (7.29) for all x ∈ S , u ∈ U, and θ ∈ Θ.

Proposition 7.42. Suppose Assumptions 7.1 to 7.4 and 7.8 hold. For any compact sets S ⊆ XN

and Θ ⊆ Rnθ , there exists γ̃f ∈ K2 satisfying (7.30) for all x ∈ S and θ ∈ Θ.

Suboptimal cost error bounds

Ultimately, we require a maximum Lyapunov increase of the form (7.23b) or (7.25b). The

robust descent property (7.21) suggests a path through imposing an error bound on the sub-

optimal cost function VN(fc(x, θ), ũ(x)), i.e.,

|VN(fc(x, θ), ũ(x))− VN(f̂c(x), ũ(x))| ≤ σV (|θ|)|x|2 (7.31)

where σV ∈ K∞. In Proposition 7.43, we establish (7.31) under Assumptions 7.1 to 7.3, 7.5,

7.8, and 7.9 (see Appendix 7.A.4 for proof).

Proposition 7.43. Suppose Assumptions 7.1 to 7.3, 7.5, 7.8, and 7.9 hold and let S ⊆ XN be

compact. Then there exists σV ∈ K∞ such that (7.31) holds for all x ∈ S and θ ∈ Rnθ .

Similarly, we can derive a K2
-function version of (7.31) under Assumptions 7.1 to 7.4 and

7.8 (see Appendix 7.A.4 for proof).

Proposition 7.44. Suppose Assumptions 7.1 to 7.4 and 7.8 hold. Let S ⊆ XN and Θ ⊆ Rnθ be

compact. Then there exists γV ∈ K2 such that, for each x ∈ S and θ ∈ Θ,

|VN(fc(x, θ), ũ(x))− VN(f̂c(x), ũ(x))| ≤ γV (|x|, |θ|). (7.32)
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7.4.3 Stability despite mismatch

General costs

Finally, we are in a position to construct a maximum Lyapunov increase (7.23b) or (7.25b).

For general costs, this is accomplished in the following proposition.

Proposition 7.45. Suppose Assumptions 7.1 to 7.4 and 7.8 hold. Then Assumption 7.24(a,b)

hold with V := V 0
N .

Proof. Let ρ > 0, S := levρV
0
N , and V := V 0

N . Then S ⊆ XN trivially. Since V 0
N is l.s.c. (Bert-

sekas and Shreve, 1978, Lem. 7.18), S is closed. By Theorem 7.20, there exists α2 ∈ K∞

satisfying (7.23a) for all x ∈ S . Then |x| ≤ α−1
1 (V (x)) ≤ α−1

1 (ρ) for all x ∈ S , so S is

compact.

By Proposition 7.21, there exists δ0 > 0 such that S is RPI for x+ = fc(x, θ), |θ| ≤ δ0 and

(7.21) holds for all x ∈ S and |θ| ≤ δ0. Moreover, for each x ∈ S and |θ| ≤ δ0, (7.32) holds

for some γV ∈ K2
by Proposition 7.44. Finally, combining (7.9), (7.21), and (7.32) gives (7.23b)

with α3 := α1.

Assumption 7.24(a,b) alone do not guarantee strong stability. However, we can strengthen

the hypothesis of Proposition 7.45 with a scaling requirement to guarantee strong stability.

Corollary 7.46. Suppose Assumptions 7.1 to 7.4 and 7.8 hold. Let ρ > 0 and S := levρV
0
N .

Then (7.23) holds for all x ∈ S and |θ| ≤ δ0 with V := V 0
N and some δ0 > 0, α1, α2, α3 ∈ K∞,

and γV ∈ K2. If, additionally, there exists τ > 0 satisfying (7.24), then there exists δ > 0 such

that x+ = fc(x, θ), |θ| ≤ δ is SES in the RPI set S .

Proof. The first part follows from Proposition 7.45, and the second part follows from Theo-

rem 7.25.
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Quadratic costs

For quadratic costs, we construct (7.25b) in the following proposition.

Proposition 7.47. Suppose Assumptions 7.1 to 7.3, 7.5, 7.8, and 7.9 hold. Then Assumption 7.33

holds with b := 2 and V := V 0
N .

Proof. Let ρ > 0, V := V 0
N , and S := levρV . Since Assumption 7.5 implies Assumption 7.4,

we have from the first paragraph of the proof of Proposition 7.45 that S is compact.

Theorem 7.22 also implies (7.25a) holds for all x ∈ S , with a1, a2 > 0 and b := 2. By

Proposition 7.21, there exists δ0 > 0 such that S is RPI for x+ = fc(x, θ), |θ| ≤ δ0 and (7.21)

holds for all x ∈ S and |θ| ≤ δ0. Moreover, for each x ∈ S and |θ| ≤ δ0, (7.31) holds for some

σV ∈ K∞ by Proposition 7.44, and combining (7.21) and (7.32) gives (7.25b).

Our third and final main result is an immediate corollary to Theorem 7.25 and Proposi-

tion 7.47.

Corollary 7.48. Suppose Assumptions 7.1 to 7.4, 7.8, and 7.9 holds. For each ρ > 0, there exists

δ > 0 for which x+ = fc(x, θ), |θ| ≤ δ is SES in the RPI set S := levρV
0
N .

Proof. By Proposition 7.47, Assumption 7.33 holds with V := V 0
N , and by Theorem 7.34, there

exists δ > 0 for which S is RPI and x+ = fc(x, θ), |θ| ≤ δ is SES in S .

7.5 Examples

In this section, we illustrate the nuances of Assumptions 7.24 and 7.33 through several ex-

amples. First, we consider a non-differentiable system that satisfies Assumption 7.24(a,b) but

not Assumption 7.24(c), and is not SAS. Second, we consider a non-differentiable example that

nonetheless satisfies Assumption 7.33 and is therefore SES. Finally, we consider the inverted

pendulum system to showcase how the nominal MPC handles different types of mismatch.
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Figure 7.3: Contours of the cost difference for the MPC of (7.33).

Notably, we consider (i) discretization errors, (ii) unmodeled dynamics, and (iii) incorrectly

estimated input gains.

7.5.1 Strong asymptotic stability counterexample

Consider the scalar system

x+ = f(x, u, θ) := σ(x+ (1 + θ)u) (7.33)

where σ is the signed square root defined as σ(y) := sgn(y)
√
|y| for each y ∈ R. We define a

nominal MPC withU := [−1, 1], ℓ(x, u) := x2+u2, Vf (x) := 4x2,Xf := [−1, 1], andN := 1.

In Appendix 7.B, it is shown the closed-loop system x+ = f(x, κ1(x), θ), |θ| ≤ 3 is RES

on X1 = [−2, 2] with the nominal control law κ1(x) := −sat(x). Additionally, it is shown
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Figure 7.4: For (left) nonnegative and (right) nonpositive values of θ, the (top) closed-loop
trajectories for the MPC of (7.33) with initial state x = 2, and (bottom) cost differences of

the same MPC as a function of x.

Assumption 7.24(a,b) is satisfied with V := V 0
1 , and (7.23b) holds for all x ∈ S := lev2V

0
1 =

[−1, 1] and |θ| ≤ δ0 := 3 with α3(s) := 2s2, and γV (s, t) := st + 4
√
st. But this implies

lims→0+ γV (s, t)/α3(s) =∞ for each t > 0, so Assumption 7.24(c) is not satisfied.

However, Assumption 7.24 is only sufficient, not necessary, for establishing strong stabil-

ity. But we have V 0
1 (x) = 2x2 and

∆V 0
1 (x, θ) := V 0

1 (f(x, κ1(x), θ))− V 0
1 (x)

= 2[σ(θx)]2 − 2x2 = 2(|θ| − |x|)|x| > 0.

for each 0 < |x| < |θ| ≤ 1, so the state always gets pushed out of (−|θ|, |θ|) unless it starts at

the origin or θ = 0. In other words, the MPC only provides inherent robustness, not strong

stability, even though Assumption 7.24(a,b) is satisfied.

In Figure 7.3, we plot contours of the cost difference∆V 0
1 (x, θ), and in Figure 7.4 we plot

closed-loop trajectories and the cost difference curve ∆V 0
1 (·, θ) for several values of θ. Only

with θ = 0 does the trajectory converge to the origin and the cost difference curve remain
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Figure 7.5: Contours of the cost difference for the MPC of (7.34).

negative definite. For each θ ̸= 0, the cost difference is positive definite near the origin, and

the trajectory does not converge to the origin.

7.5.2 Non-differentiable yet strongly exponential stable

Consider the scalar system

x+ = f(x, u, θ) := x+ (1/2)γ(x) + (1 + θ)u (7.34)

where γ : R→ R is defined as

γ(x) :=


0, x = 0,

|x| sin(2π/x), x ̸= 0.
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trajectories for the MPC of (7.34) with initial state x = 2, and (bottom) cost differences of

the same MPC as a function of x.

While the function γ is continuous, it is not differentiable at the origin. We define a nominal

MPC with U := [−1, 1], ℓ(x, u) := x2 + u2, Vf (x) := 4x2, Xf := [−1, 1], and N := 1.

In Appendix 7.B.2, we show the closed-loop system x+ = f(x, κ1(x), θ), |θ| ≤ 1 is RES on

X1 = [−2, 2]with the nominal control law κ1(x) := −sat((4/5)x+(2/5)γ(x)). Moreover, it is

shown that Assumption 7.33 is satisfied, and by Theorem 7.34 (and its proof), the closed-loop

system x+ = f(x, κ1(x), θ), |θ| ≤ δ := 0.5 is SES on X1 = [−2, 2].

To establish a clearer picture of robust and strong stability for the closed-loop, we plot in

Figure 7.5 contours of the cost difference ∆V 0
1 (x, θ) := V 0

1 (f(x, κ1(x), θ)) − V 0
1 (x), and in

Figure 7.6 closed-loop trajectories and the cost difference curve ∆V 0
1 (·, θ) for several values

of θ. For θ between θ0 ≈ 0.57 and θ1 ≈ 1.08, the closed-loop system is strongly stable, with

trajectories converging to the origin, and a negative definite cost difference curve. Outside

of this range but with θ ∈ [−1, 1.5], the closed-loop system is still robustly stable, with a

cost difference curve of ambiguous sign but trajectories converging to a neighborhood of the

origin. Finally, for θ < −1, trajectories are unbounded because X1 is not RPI.
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7.5.3 Upright pendulum

Consider the nondimensionalized pendulum system

ẋ = F (x, u, θ) :=

[
x2

sinx1 − θ21x2 + (k̂ + θ2)u

]
(7.35)

wherex1, x2 ∈ R are the angle and angular velocity, u ∈ [−1, 1] is the (signed and normalized)

motor voltage, θ1 ∈ R is an air resistance factor, k̂ > 0 is the estimated gain of the motor,

and θ2 ∈ R is the error in the motor gain estimate. Let ψ(t;x, u, θ) denote the solution to the

differential equation (7.35) at time t ≥ 0 given an initial condition x(0) = x, constant input

signal u(t) = u, and parameters θ. We model the continuous-time system (7.35) as

x+ = f(x, u, θ) := x+∆F (x, u, θ) + θ3r(x, u, θ) (7.36)

where r is a residual function given by

r(x, u, θ) :=

∫ ∆

0

[F (ψ(t;x, u, θ), u, θ)− F (x, u, θ)]dt.

Assuming a zero-order hold on the input u, the system (7.35) is discretized (exactly) as (7.36)

with θ3 = 1. Since we model the system with θ = 0 as

x+ = f̂(x, u) := f(x, u, 0) = x+∆

[
x2

sinx1 + k̂u

]
(7.37)

we do not need access to r to design the nominal MPC.

For the following simulations, let the model gain be k̂ = 5 rad/s2, the sample time be

∆ = 0.1 s, and define a nominal MPC with N := 20, U := [−1, 1], ℓ(x, u) := |x|2 + u2,

Vf (x) := |x|2Pf
, Xf := levcfVf , and cf := σ(Pf )/8, where Pf = [ 31.133... 10.196...10.196... 10.311... ] is shown,

in Appendix 7.B.3, to satisfy Assumption 7.3 with the terminal law κf (x) := −2x1 − 2x2.
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Figure 7.7: Simulated closed-loop trajectories for the MPC of (7.35) from the resting position

x(0) = (π, 0) to the upright position xs = (0, 0) for various values of (θ1, θ2) ∈ R2
.
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Assumptions 7.1, 7.2, 7.5, and 7.8 are satisfied trivially, and Assumption 7.9 is satisfied since

continuous differentiability of F implies continuous differentiability of ψ (and therefore also

r and f ) (Hale, 1980, Thm. 3.3). Thus, the conclusion of Corollary 7.48 holds for some δ > 0,

and if we can take δ > 1, the nominal MPC is inherently strongly stabilizing with

[
θ1 θ2

]
sufficiently small.

In Figure 7.7, we simulate the closed-loop system x+ = f(x, κ20(x), θ) for some fixed[
θ1 θ2 1

]⊤
∈ R3

. Note that all of these simulations include discretization errors. Fig-

ure 7.7a showcases the ability of MPC to handle unmodeled dynamics (i.e., a missing air re-

sistance term). In Figure 7.7b, the gain of the motor is increased until the nominal controller

is severely underdamped. In Figure 7.7c, the gain of the motor is decreased until the motor

cannot overcome the force of gravity and strong stability is not achieved. In Figure 7.7d, we

plot cases where the errors as made so extreme as to prevent stability.

7.6 Conclusion

We establish conditions under whichMPC is strongly stabilizing despite plant-model mis-

match in the form of parameter errors. Namely, it suffices to assume the existence of a Lya-

punov function with amaximum increase, suitably bounded level sets, and a scaling condition

(Assumptions 7.24 and 7.33). While we are not able to show the assumptions hold in general,

when the MPC has quadratic costs it is possible to show that continuous differentiability of

the dynamics implies strong stability (Theorem 7.34). When the K2
-function bound is not

properly scaled, the MPC may not be stabilizing, as illustrated in the examples. In this sense,

while MPC is not inherently stabilizing under mismatch in general, there is a common class

of cost functions (quadratic costs) for which nominal MPC is inherently stabilizing under

mismatch.

Several questions about the strong stability of MPC remain unanswered. While quadratic
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costs are used in many control problems, it may be possible to generalize Corollary 7.48 to

other useful classes of stage costs, such as q-norm costs, or costs with exact penalty func-

tions for soft state constraints. We propose the direct approach to strong exponential sta-

bility (Assumption 7.33 and Theorem 7.34) provides a path to generalizing Corollary 7.48 to

other classes of stage costs, output feedback, or semidefinite costs. We note that the Assump-

tions 7.24 and 7.33 are dependent on the horizon length. This leaves the possibility that some

MPC problems are strongly stabilizing at smaller horizon lengths but only inherently robust

at longer horizon lengths, or vice versa. However, this remains to be seen. Nonlinear MPC

is computationally difficult to implement online. Therefore it would be worth extending this

work to include the suboptimal MPC algorithm from Allan et al. (2017) using the approach

therein.

While systems with fixed and known setpoints are a useful and interesting class of prob-

lems, many systems have setpoints that must be tracked that may change based on the value

of the parameters. Offset-free MPC may be used to accommodate the effect of mismatch on

the setpoints. As we discussed in Chapter 2, theory on nonlinear offset-free MPC is fairly

limited, typically relying on stability of the closed-loop system to guarantee offset-free per-

formance (Pannocchia et al., 2015). In the subsequent chapter, we use the tools developed in

this chapter to extend the offset-free MPC theory by establishing closed-loop stability and

guaranteed offset-free performance for tracking random, asymptotically constant setpoints

subject to plant-model mismatch.
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Appendices

7.A Additional proofs

7.A.1 Nominal MPC stability

In this appendix, we provide sketches of the MPC stability results Theorems 7.6 and 7.7.

First, the lower bound V 0
N(x) ≥ α1(|x|) follows immediately from Assumption 7.4. Next,

consider the following proposition from Allan et al. (2017).

Proposition 7.49 (Prop. 20 of Allan et al. (2017)). LetC ⊆ D ⊆ Rn, withC compact,D closed,

and f : D → Rm continuous. Then there exists α ∈ K∞ such that |f(x)− f(y)| ≤ α(|x− y|)

for all x ∈ C and y ∈ D.

Under Assumptions 7.1 to 7.4, we can establish the following bounds via Proposition 7.49,
3

Vf (x) ≤ αf (|x|), ∀x ∈ Xf (7.38)

V 0
N(x) ≤ α2(|x|), ∀x ∈ XN (7.39)

for some αf , α2 ∈ K∞. To establish the cost difference bound, first note that, under Assump-

3
Equation (7.38) follows immediately from Proposition 7.49 and Assumptions 7.1 and 7.2. For (7.39), see

(Rawlings et al., 2020, Prop. 2.16).
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tions 7.2 and 7.3, we have

Vf (f̂(x, κf (x))) ≤ Vf (x)− ℓ(x, κf (x)) ≤ cf

for all x ∈ Xf . Therefore Xf is positive invariant for x+ = f̂(x, κf (x)). But this means XN

is positively invariant because, for each x ∈ XN , ũ(x) steers the system into Xf in N − 1

moves and keeps it there, meaning f̂c(x) ∈ XN . Finally, Assumption 7.3 implies

V 0
N(f̂c(x)) ≤ VN(f̂c(x), ũ(x)) ≤ V 0

N(x)− ℓ(x, κN(x)) (7.40)

for all x ∈ XN (Rawlings et al., 2020, pp. 116–117). Therefore V 0
N(f̂c(x)) ≤ V 0

N(x) − α1(|x|)

by Assumption 7.4.

Let ρ > 0 and S := levρV
0
N . As noted in the main text, we have S ⊆ XN by definition of

the sublevel set. Assumptions 7.2 and 7.5 implies σ(Pf )|x|2 ≤ Vf (x) ≤ cf for all x ∈ Xf , so

we have |x| ≤ ε :=
√
cf/σ(Pf ) for all x ∈ Xf . Then with c2 := max {σ(Pf ), ρ/ε

2 }, we can

write

V 0
N(x) ≤


Vf (x) ≤ σ(Pf )|x|2 ≤ c2|x|2, |x| ≤ ε,

ρ ≤ c2ε
2 ≤ c2|x|2, |x| ≥ ε.

for each x ∈ S . Finally, V 0
N is an exponential Lyapunov function in S for x+ = f̂c(x).

7.A.2 Lyapunov proofs

In this appendix, we prove some of the Lyapunov results of Section 7.2.

Proof of Theorem 7.14 (exponential case). The case where an ISS Lyapunov function implies

RAS for a system is covered by (Allan et al., 2017, Prop. 19), so we only consider the ISES/RES

case.
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Let X ⊆ Rn
be RPI and suppose V : X → R≥0 is an ISES Lyapunov function, both for

the system x+ = fc(x, θ), θ ∈ Θ. Then there exist a1, a2, a3, b > 0 satisfying (7.18) for all

x ∈ X , where αi(·) := ai(·)b for each i ∈ { 1, 2, 3 }. Suppose, without loss of generality, that

a3 < a2. Then (7.18) can be rewritten

V (fc(x, θ)) ≤ V (x)− a3|x|b + σ(|θ|)

≤ V (x)− a3
a2
V (x) + σ(|θ|)

= λ0V (x) + σ(|θ|)

for all x ∈ X and θ ∈ Θ, where λ0 := 1− a3
a2
∈ (0, 1). Since X is RPI, this implies

V (ϕc(k;x,θ0:k−1)) ≤ λk0V (x) +
k∑

i=1

λi−1
0 σ(|θ(k − i)|)

≤ λk0V (x) +

(
k∑

i=1

λi−1
0

)
max

i∈I0:k−1

σ(|θ(i)|)

≤ λk0V (x) +
maxi∈I0:k−1

σ(|θ(i)|)
1− λ0

= λk0V (x) +
σ(∥θ0:k−1∥)

1− λ0

= a2|x|bλk0 +
σ(∥θ0:k−1∥)

1− λ0

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk
. If b ≥ 1, then, by the triangle inequality for the b-norm,
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we have

|ϕc(k;x,θ0:k−1)| ≤
(
V (ϕc(k;x,θ0:k−1)

a1

)1/b

≤ 1

a
1/b
1

(
a2|x|bλk0 +

σ(∥θ0:k−1∥)
1− λ0

)1/b

≤
(
a2
a1

)1/b

|x|(λb0)k +
(
σ(∥θ0:k−1∥)
a1(1− λ0)

)1/b

≤ c|x|λk + γ(∥θ0:k−1∥)

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk
, where λ := λ

1/b
0 ∈ (0, 1), c :=

(
a2
a1

)1/b
> 0, and

γ(·) :=
(

σ(·)
a1(1−λ0)

)1/b
∈ K. On the other hand, if b ∈ (0, 1), then 1/b ≥ 1, so by convexity of

(·)1/b, we have

|ϕc(k;x,θ0:k−1)| ≤
(

2

a1

)1/b(
1

2
a2|x|bλk0 +

1

2

σ(∥θ0:k−1∥)
1− λ0

)1/b

≤ 1

2

(
2a2
a1

)1/b

|x|(λb0)k +
1

2

(
2σ(∥θ0:k−1∥)
a1(1− λ0)

)1/b

≤ c|x|λk + γ(∥θ0:k−1∥)

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk
, where λ := λ

1/b
0 ∈ (0, 1), c := 1

2

(
2a2
a1

)1/b
> 0, and

γ(·) := 1
2

(
2σ(·)

a1(1−λ0)

)1/b
∈ K. In either case, (7.17) is satisfied with β(s, k) := csλk and γ ∈ K

for some c > 0 and λ ∈ (0, 1).

7.A.3 Proofs of inherent robustness results

This appendix contains proofs of the inherent robustness results from Section 7.3. From

Proposition 7.49, we have the following proposition.

Proposition 7.50. Suppose Assumptions 7.1 and 7.2 holds and let Ṽf (·, ·) := Vf (ϕ̂(N ; ·, ·)).

Then, for any compact set S ⊆ XN , there exist αa, αb, αθ ∈ K∞ such that, for each x ∈ S and
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θ ∈ Rnθ ,

|Ṽf (x+, ũ(x))− Ṽf (x̂+, ũ(x))| ≤ αa(|x+ − x̂+|) (7.41)

|VN(x+, ũ(x))− VN(x̂+, ũ(x))| ≤ αb(|x+ − x̂+|) (7.42)

|fc(x, θ)− f̂c(x)| ≤ αθ(|θ|) (7.43)

where x+ := fc(x, θ) and x̂+ := f̂c(x).

Proof. Assumptions 7.1 and 7.2 guarantee ũ(x) is well-defined for all x ∈ XN (Rawlings et al.,

2020, Prop. 2.4). Define C0 := S ×U×{ 0 } and C1 := S ×UN
. Then C0 and C1 are compact,

f is continuous, and Ṽf and VN are continuous as they are finite compositions of continuous

functions. By Proposition 7.49, there exist αa, αb, αθ ∈ K∞ such that

|Ṽf (x+,u)− Ṽf (x̂+, û)| ≤ αa(|(x+ − x̂+,u− û)|)

|VN(x+,u)− VN(x̂+, û)| ≤ αb(|(x+ − x̂+,u− û)|)

|f(x, u, θ)− f̂(x̂, û)| ≤ αθ(|(x− x̂, u− û, θ)|)

for all (x̂, û, 0) ∈ C0, (x̂
+, û) ∈ C1, (x, u, θ) ∈ Rn+m+nθ

, and (x+,u) ∈ Rn+Nm
. Specializing

the above inequalities to x = x̂, x̂+ = f̂c(x), x
+ = fc(x, θ), u = û = κN(x), and u = û =

ũ(x) gives (7.41)–(7.43) for all x ∈ S and θ ∈ Rnθ
.

Next, we can prove Proposition 7.21.

Proof of Proposition 7.21. First, we have α1, α2, αf ∈ K∞ satisfying the bounds (7.9), (7.12),

and (7.38)–(7.40) from the assumptions and Theorem 7.6 (and its proof). Next, we let x ∈

S and θ ∈ Rnθ
, and define Ṽf (·, ·) := Vf (ϕ̂(N ; ·, ·)), x+ := fc(x, θ), and x̂

+ := f̂c(x),

throughout. By Proposition 7.50, there exist αa, αb, αθ ∈ K∞ satisfying the bounds (7.41)–

(7.43).
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(a)—Robust feasibility: By nominal feasibility, we have x̂0(N ; x̂+) ∈ Xf and therefore

Vf (x̂
0(N ;x)) ≤ cf . But ϕ̂(N ;x+, ũ(x)) = f̂(x̂0(N ;x), κf (x̂

0(N ;x))) and therefore

Ṽf (x̂
+, ũ(x)) = Vf (ϕ̂(N ; x̂+, ũ(x)))

= Vf (f̂(x̂
0(N ;x), κf (x̂

0(N ;x))))

≤ Vf (x̂
0(N ;x))− α1(|x̂0(N ;x)|)

where the inequality follows from Assumptions 7.3 and 7.4. If Vf (x̂
0(N ;x)) ≥ cf/2, then

|x̂0(N ;x)| ≥ α−1
f (cf/2) and Ṽf (x̂

+, ũ(x)) ≤ cf − α1(α
−1
f (cf/2)). On the other hand, if

Vf (x̂
0(N ;x)) < cf/2, then Ṽf (x̂

+, ũ(x)) < cf/2. In summary,

Ṽf (x̂
+, ũ(x)) ≤ cf − γ1

where γ1 := min { cf/2, α1(α
−1
f (cf/2) } > 0. Combining the above inequality with (7.41)

and (7.43) gives

Ṽf (x
+, ũ(x)) ≤ cf − γ1 + αa(αθ(|θ|)).

Therefore, so long as |θ| ≤ δ1 := α−1
θ (α−1

a (γ1)), we have

Vf (ϕ̂(N ;x+, ũ(x))) = Ṽf (x
+, ũ(x)) ≤ cf

which implies ϕ̂(N ;x+, ũ(x)) ∈ Xf , and therefore (x+, ũ(x)) ∈ ZN .

(b)—Descent property: Suppose |θ| ≤ δ1. Then (x+, ũ(x)) ∈ ZN by part (a), so the in-

equality V 0
N(x

+) ≤ VN(x
+, ũ(x)) follows by optimality. Combining this inequality with the

nominal descent property (7.40) gives the robust descent property (7.21).

(c)—Positive invariance of S : Suppose again that |θ| ≤ δ1. Then the inequality (7.43) holds
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from part (b), and combining it with (7.21) and (7.42) gives

V 0
N(x

+) ≤ V 0
N(x)− α1(|x|) + αb(αθ(|θ|)). (7.44)

If V 0
N(x) ≥ ρ/2, then |x| ≥ α−1

2 (ρ/2) and V 0
N(x

+) ≤ ρ−α1(α
−1
2 (ρ/2))+αb(αθ(|θ|)). On the

other hand, if V 0
N(x) < ρ/2, then V 0

N(x
+) < ρ/2 + αb(αθ(|θ|)). Then

V 0
N(x

+) ≤ ρ− γ2 + αb(αθ(|θ|))

where γ2 := min { ρ/2, α1(α
−1
2 (ρ/2) } > 0. Therefore V 0

N(x
+) ≤ ρ and x+ ∈ S so long as

|θ| ≤ δ := min { δ1, δ2 } where δ2 := α−1
θ (α−1

b (γ2)).

Finally, Theorem 7.20 follows from Propositions 7.21 and 7.50 by combining the inequal-

ities (7.21), (7.42), and (7.43).

Proof of Theorem 7.20. From Theorem 7.6, there exists α2 ∈ K∞ such that (7.12a) holds for

all x ∈ S ⊆ XN , where α1 ∈ K∞ is from Assumption 7.4. By Proposition 7.50, there exist

αb, αθ ∈ K such that (7.42) and (7.43) hold for all x ∈ S and θ ∈ Rnθ
. By Proposition 7.21,

there exists δ > 0 such that (7.21) holds for all x ∈ S and |θ| ≤ δ, and S is RPI for x+ =

fc(x, θ), |θ| ≤ δ. As in the proof of Proposition 7.21, we can combine (7.21), (7.42), and (7.43)

to give (7.44) for all x ∈ S and |θ| ≤ δ, which is the desired cost decrease bound with

σ := αb ◦ αθ ∈ K. Thus, part (a) is established, and part (b) follows by Theorem 7.14.

Proof of Theorem 7.22. All the conditions of Theorems 7.7 and 7.20 are satisfied. Thus, there

exists c2 > 0 such that (7.13) holds for all x ∈ S with c1 := σ(Q) > 0. Moreover, we can

substitute α1(·) := c1| · |2 and α2(·) := c2| · |2 into the proof of Theorem 7.20 to construct

δ > 0 and σ ∈ K such that (7.22) holds for all x ∈ S and |θ| ≤ δ. Therefore, by Theorem 7.14,

x+ = fc(x, θ), |θ| ≤ δ is ISES in S .
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7.A.4 Proofs of strong stability results

In this appendix we prove strong stability results from Section 7.3.

Quadratic cost MPC

We first consider results pertaining to strong stability of the quadratic cost MPC (Propo-

sitions 7.39, 7.40 and 7.43). Note that several preliminary results are required.

Proposition 7.51. Suppose Assumptions 7.1 to 7.3 and 7.5 hold. Let ρ > 0 and S := levρV
0
N .

There exist cx, cu > 0 such that

|x̂0(k;x)| ≤ cx|x|, ∀x ∈ S, k ∈ I0:N . (7.45)

|u0(k;x)| ≤ cu|x|, ∀x ∈ S, k ∈ I0:N−1. (7.46)

Proof. By Theorem 7.22, we have the upper bound (7.22a) for all x ∈ S and some c2 > 0.

Moreover, since Q,R, Pf are positive definite, we can write, for each x ∈ S and k ∈ I0:N−1,

σ(Q)|x̂0(k;x)|2 ≤ |x̂0(k;x)|2Q ≤ V 0
N(x) ≤ c2|x|2

σ(Pf )|x̂0(N ;x)|2 ≤ |x̂0(N ;x)|2Pf
≤ V 0

N(x) ≤ c2|x|2

σ(R)|u0(k;x)|2 ≤ |u0(k;x)|2R ≤ V 0
N(x) ≤ c2|x|2.

Thus, with cx := max {
√
c2/σ(Q),

√
c2/σ(Pf ) } and cu :=

√
c2/σ(R), we have (7.45) and

(7.46).

Proof of Proposition 7.39. Let z := (x, u). By Proposition 7.49, for each i ∈ I1:n, there exists

σi ∈ K∞ such that ∣∣∣∣∣∂fi∂z
(z, θ)− ∂f̂i

∂z
(z̃)

∣∣∣∣∣ ≤ σi(|(z − z̃, θ)|) (7.47)
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for all z, z̃ ∈ S × U and θ ∈ Rnθ
. Next, let Z denote the convex hull of S × U. Then tz ∈ Z

for all t ∈ [0, 1] and z ∈ Z . By Taylor’s theorem (Apostol, 1974, Thm. 12.14), for each i ∈ I1:n

and (z, θ) ∈ Z ×Θ, there exists ti(z, θ) ∈ (0, 1) such that

fi(z, θ)− f̂i(z) =

(
∂fi
∂z

(ti(z, θ)z, θ)−
∂f̂i
∂z

(ti(z, θ)z)

)
z. (7.48)

Combining (7.47) and (7.48) gives, for each (z, θ) ∈ S × U× Rnθ
,

|f(z, θ)− f̂(z)| ≤
n∑

i=1

|fi(z, θ)− f̂i(z)| ≤
n∑

i=1

σi(|θ|)|z|

and therefore (7.27) holds with σf :=
∑n

i=1 σi.

Proof of Proposition 7.40. By Proposition 7.51, there exists cu > 0 such that

|κN(x)| = |u0(0;x)| ≤ cu|x|

for all x ∈ S . Moreover, by Proposition 7.39, there exists σf ∈ K∞ such that

|fc(x, θ)− f̂c(x)| ≤ σf (|θ|)|(x, κN(x))| ≤ σf (|θ|)(|x|+ |κN(x)|)

≤ σf (|θ|)(|x|+ cu|x|) = σ̃f (|θ|)|x|

for all x ∈ S and θ ∈ Rnθ
, where σ̃f := σf (1 + cu) ∈ K∞.

Proposition 7.52. Suppose Assumptions 7.1 to 7.3, 7.5, and 7.8 hold and assume f̂ is Lipschitz

continuous on bounded sets. Let ρ > 0, S := levρV
0
N , and Θ ⊆ Rnθ be compact. There exist

cb,1, cb,2 > 0 such that, for each x ∈ S and θ ∈ Θ,

|VN(x+, ũ(x))− VN(x̂+, ũ(x))| ≤ 2cb,1|x||x+ − x̂+|+ cb,2|x+ − x̂+|2 (7.49)
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where x̂+ := f̂c(x) and x+ := fc(x, θ).

Proof. First, we seek to prove following bound on the incurred terminal penalty Ṽf (·, ·) :=

Vf (ϕ̂(N ; ·, ·)): for each x ∈ S and θ ∈ Θ,

|Ṽf (x+, ũ(x))− Ṽf (x̂+, ũ(x))| ≤ ca,1|x||x+ − x̂+|+ ca,2|x+ − x̂+|2 (7.50)

where x+ := fc(x, θ) and x̂
+ := f̂c(x).

Using the identity |y|2M − |ŷ|2M = |y − ŷ|2M + 2(y − ŷ)⊤Mŷ for any positive definiteM

and y, ŷ of appropriate dimensions, we have, for each x ∈ S and θ ∈ Θ,

Ṽf (x
+, ũ(x))− Ṽf (x̂+, ũ(x)) = |ϕ̂(N ;x+, ũ(x))− ϕ̂(N ; x̂+, ũ(x))|2Pf

+ 2(ϕ̂(N ;x+, ũ(x))− ϕ̂(N ; x̂+, ũ(x)))⊤Pf × ϕ̂(N ; x̂+, ũ(x)). (7.51)

where x+ := fc(x, θ) and x̂
+ := f̂c(x). By Proposition 7.51, there exists cx > 0 such that

|x̂0(k;x)| ≤ cx|x| and therefore

|ϕ̂(k; f̂c(x), ũ(x))| = |x̂0(k + 1;x)| ≤ cx|x| (7.52)

for each k ∈ I0:N−1 and x ∈ S . By Assumptions 7.3 and 7.5, we have, for each x ∈ Xf ,

σ(Pf )|f̂(x, κf (x))|2 ≤ Vf (f̂(x, κf (x))) ≤ Vf (x)− σ(Q)|x|2 ≤ [σ(Pf )− σ(Q)]|x|2

and therefore

|f̂(x, κf (x))| ≤ γf |x|

where γf :=
√

[σ(Pf )− σ(Q)]/σ(Pf ). Then, since x̂0(N ;x) ∈ Xf and Xf is positively
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invariant for x+ = f̂(x, κf (x)), we have

|ϕ̂(N ; f̂c(x), ũ(x))| = |f̂(x̂0(N ;x), u0(N ;x))| ≤ γf |x̂0(N ;x)| ≤ γfcx|x| (7.53)

for each x ∈ S . Since (S,U,Θ) are each bounded and f is continuous, S0 := f(S,U,Θ) is

bounded. But this means Sk+1 := f̂(Sk,U) is bounded for each k ∈ I≥0 (by induction), so

S :=
⋃N

k=0 Sk is also bounded. Since f̂ is Lipschitz continuous on bounded sets, there exists

Lf > 0 such that |f̂(x, u)− f̂(x̃, ũ)| ≤ Lf |(x− x̃, u− ũ)| for all x, x̃ ∈ S and u, ũ ∈ U. Then,

for each θ ∈ Θ, we have

|ϕ̂(k + 1;x+, ũ(x))− ϕ̂(k + 1; x̂+, ũ(x))|

= |f̂(ϕ̂(k;x+, ũ(x)), u0(k;x))− f̂(ϕ̂(k; x̂+, ũ(x)), u0(k;x))|

≤ Lf |ϕ̂(k;x+, ũ(x))− ϕ̂(k; x̂+, ũ(x))|

for each k ∈ I0:N−1, and therefore

|ϕ̂(k;x+, ũ(x))− ϕ̂(k; x̂+, ũ(x))| ≤ Lk
f |x+ − x̂+|, (7.54)

for each k ∈ I0:N , where x̂+ := f̂c(x) and x
+ := fc(x, θ). Finally, combining (7.51), (7.53),

and (7.54), we have (7.50) for all x ∈ S and θ ∈ Θ, where ca,1 := 2LN
f γfcxσ(Pf ) and ca,2 :=

L2N
f σ(Pf ).
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Moving on to the proof of (7.49), we have, for each x ∈ S and θ ∈ Θ,

VN(x
+, ũ(x))− VN(N ; x̂+, ũ(x)) =

N−1∑
k=0

|ϕ̂(k;x+, ũ(x))− ϕ̂(k; x̂+, ũ(x))|2Q

+ 2(ϕ̂(k;x+, ũ(x))− ϕ̂(k; x̂+, ũ(x)))⊤Qϕ̂(k; x̂+, ũ(x))

+ Ṽf (x
+, ũ(x))− Ṽf (x̂+, ũ(x)) (7.55)

where x̂+ := f̂c(x) and x
+ := fc(x, θ), and combining (7.50), (7.52), (7.54), and (7.55), we have

(7.49) with cb,1 := ca,1 + 2σ(Q)
∑N−1

k=0 L
k
fcx and cb,2 := ca,2 + σ(Q)

∑N−1
k=0 L

2k
f .

Proof of Proposition 7.43. By Proposition 7.39, there exists σ̃f ∈ K∞ such that (7.28) for all

x ∈ S . Moreover, by Proposition 7.52, there exist cb,1, cb,2 > 0 such that (7.49) for all x ∈ S

and θ ∈ Rnθ
, where x+ := fc(x, θ) and f̂c(x). Finally, (7.28) and (7.49) imply (7.31) for all

x ∈ S and θ ∈ Rnθ
, where σV (·) := cb,1σ̃f (·) + cb,2[σ̃f (·)]2 ∈ K∞.

General nonlinear MPC

Next, we move on to the general nonlinear MPC results (Propositions 7.26, 7.41, 7.42

and 7.44). Again, several preliminary results are required.

Proposition 7.53. For each α ∈ K and γ ∈ K2, let γ1(s, t) := α(γ(s, t)), γ2(s, t) :=

γ(α(s), t), and γ3(s, t) := γ(s, α(t)) for each s, t ≥ 0. Then γ1, γ2, γ3 ∈ K2.

Proof. This fact follows directly from the closure of K under composition (Kellett, 2014). For

example, for each s ≥ 0, we have γ2(·, s) = γ(α(·), s) ∈ K by closure under composition,

γ2(s, ·) = γ(α(s), ·) ∈ K trivially, and γ2 is continuous as it is a composition of continuous

functions.

Proof of Proposition 7.41. Without loss of generality, assume S and Θ contain the origin. By

assumption, C := S ×U×Θ is compact, and by Proposition 7.49, there exists σf ∈ K∞ such
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that

|f(x, u, θ)− f(x̃, ũ, θ̃)| ≤ σf (|(x, u, θ)− (x̃, ũ, θ̃)|) (7.56)

for all (x, u, θ), (x̃, ũ, θ̃) ∈ C . Specializing (7.56) to (x̃, ũ, θ̃) = (x, u, 0) ∈ C gives

|f(x, u, θ)− f̂(x, u)| ≤ σf (|θ|) (7.57)

for all (x, u, θ) ∈ C . On the other hand, specializing (7.56) to (x̃, ũ, θ̃) = (0, 0, θ) ∈ C gives

|f(x, u, θ)| = |f(x, u, θ)− f(0, 0, θ)| ≤ σf (|(x, u)|)

and therefore

|f(x, u, θ)− f̂(x, u)| ≤ |f(x, u, θ)|+ |f̂(x, u)| ≤ 2σf (|(x, u)|) (7.58)

for all (x, u, θ) ∈ C . Combining (7.57) and (7.58) gives

|f(x, u, θ)− f̂(x, u)| ≤ min{2σf (|(x, u)|), σf (|θ|)}

for all (x, u, θ) ∈ C , which is an upper bound that is clearly continuous, nondecreasing in each

|x| and |θ|, and zero if either |x| or |θ| is zero. To make the upper bound strictly increasing,

pick any σ1, σ2 ∈ K and let γf (s, t) := min { 2σf (s), σf (t) } + σ1(s)σ2(t) for each s, t ≥ 0.

Then γf ∈ K2
, and (7.29) holds for all (x, u, θ) ∈ C .

Proof of Proposition 7.42. First, we have γf ∈ K2
satisfying (7.29) for all x ∈ S , u ∈ U, and

θ ∈ Θ by Proposition 7.41. Using the bounds (7.9) and (7.20a) with u = κN(x), we have, for

each x ∈ XN ,

α1(|κN(x)|) ≤ ℓ(x, κN(x)) ≤ V 0
N(x) ≤ α2(|x|)
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and thus |κN(x)| ≤ ακ(|x|), where ακ := α−1
1 ◦ α2 ∈ K∞. Then, for each x ∈ S and θ ∈ Θ,

|fc(x, θ)− f̂c(x)| ≤ γf (|(x, κN(x))|, |θ|)

≤ γf (|x|+ |κN(x)|, |θ|)

≤ γf (|x|+ ακ(|x|), |θ|) = γ̃f (|x|, |θ|).

where γ̃f (s, t) := γf (s+ ακ(s), t) for each s, t ≥ 0. Then (·) + ακ(·) ∈ K∞, and γ̃f ∈ K2
by

Proposition 7.53. Finally, (7.30) holds for all x ∈ S and θ ∈ Θ.

Proof of Proposition 7.44. By Proposition 7.49, there exists αb ∈ K∞ such that

VN(x1,u1)− VN(x2,u2) ≤ αb(|(x1 − x2,u2 − u2)|) (7.59)

for all (x,u), (x̃, ũ) ∈ f(S,U,Θ) × UN
. Specializing (7.59) to x1 = x+ := fc(x, θ), x2 =

x̂+ := fc(x), and u1 = u2 = ũ(x) gives

|VN(x+, ũ(x))− VN(x̂+, ũ(x))| ≤ αb(|x+ − x̂+|) (7.60)

for each x ∈ S and θ ∈ Θ. By Proposition 7.42 there exists γ̃f ∈ K2
satisfying (7.30) for all

x ∈ S and θ ∈ Θ. Finally, combining (7.30) and (7.60) gives (7.32) with γV (s, t) := αb(γ̃f (s, t))

for all s, t ≥ 0, where γV ∈ K2
by Proposition 7.53.

Proof of Proposition 7.26. Let

γ̃(s, t) := sup
s̃∈(0,s)

γ(s̃, t)

α(s̃)

for each s, t > 0, so that

L := lim sup
s→0+

γ(s, τ)

α(s)
= lim

s→0+
γ̃(s, τ).
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Suppose L < 1. Then there exists δ0 > 0 such that |γ̃(s, τ) − L| < 1 − L for all s ∈ (0, δ0].

But γ̃(s, t) ≥ 0 and L ≥ 0 for all s, t > 0, so γ̃(s, τ) < 1 for all s ∈ (0, δ0] by the reverse

triangle inequality. Therefore

γ(s, t)

α(s)
≤ γ(s, τ)

α(s)
≤ γ̃(s, τ) < 1

and γ(s, t) < α(s) for all s ∈ (0, δ0] and t ∈ [0, τ ].

If δ0 ≥ ρ, the proof is complete with δ := τ . Otherwise, we must enlarge the interval in s

by shrinking the interval in t. For each t ∈ (0, τ ], let

γ0(t) := inf { s > 0 | γ(s, t) ≥ α(s) } .

Since γ(s, t) ≤ γ(s, τ) < α(s) for each s ∈ (0, δ0] and t ∈ [0, τ ], we have γ0(t) > 0. Then,

by continuity of α and γ, γ0(t) must be equal to the first nonzero point of intersection if it

exists. Otherwise γ0(t) is infinite. Note that γ0 is a strictly decreasing function since, for

any t ∈ (0, τ ], we have γ(γ0(t), t
′) < γ(γ0(t), t) = α(γ0(t)) for all t

′ ∈ (0, t). Moreover,

limt→0+ γ0(t) = ∞ since, if γ0 was upper bounded by some γ > 0, we could take γ(γ, t) ≥

α(γ) > 0 for all t ∈ (0, τ ], a contradiction of the fact that γ(s, ·) ∈ K for all s > 0. Then

there must exist δ > 0 such that γ0(δ) > ρ and therefore γ(s, t) < α(s) for all s ∈ (0, ρ] and

t ∈ [0, δ].

7.B Additional examples details

7.B.1 Strong asymptotic stability counterexample

Consider the plant (7.33) and MPC defined in Section 7.5.1. We aim to show the closed-

loop system x+ = f(x, κ1(x), θ), |θ| ≤ δ is RES with δ = 3, but not inherently strongly
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stabilizing for any δ > 0. By Lipschitz continuity of x2 on bounded sets and 1/2-Hölder

continuity of

√
|x|,

|x2 − y2| ≤ 4|x− y|, ∀ x, y ∈ [−2, 2], (7.61)

|σ(x)− σ(y)| ≤ 2
√
|x− y|, ∀ x, y ∈ R. (7.62)

To show (7.61), note that, for each δ > 0, we have

|x2 − y2| = |x+ y||x− y| ≤ 2δ|x− y|

for all x, y ∈ [−δ, δ], and take δ = 2 to give (7.61). For (7.62), we first show
√

(·) is 1/2-Hölder

continuous on R≥0:

|
√
x−√y| = |x− y|√

x+
√
y
≤ |x− y|√

x+
√
y
=
√
|x− y|

√
|x− y|√
x+
√
y
≤
√
|x− y|

for all x, y ≥ 0, where the last inequality follows by the triangle inequality. Then we auto-

matically get |σ(x) − σ(y)| ≤
√
|x− y| if x, y ≥ 0. On the other hand, if x ≥ 0 and y ≤ 0,

we have

|σ(x)− σ(y)| = |
√
x+
√
y| ≤

√
x+
√
−y ≤ 2

√
x− y.

Finally, flipping the signs of the prior arguments gives (7.62).

First, we derive the control law. The terminal set can be reached in a single move if and

only if |x| ≤ 2, so we have the steerable set X1 = [−2, 2]. Consider the problem without the

terminal constraint. The objective is

V1(x, u) = x2 + u2 + 4|x+ u|
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Figure 7.8: For the MPC of (7.33), plots of (top left) the open-loop dynamics and control law,

(bottom left) the terminal cost difference, (top right) the optimal value function, and (bottom

right) the cost difference, each with the relevant (nominal) bounds from Assumption 7.3

and (7.22).

which is increasing in u if x > 1 and |u| ≤ 1, and decreasing in u if x < −1 and |u| ≤ 1.

Thus V1(x, ·) is minimized (over |u| ≤ 1) by u0(x) = −sgn(x) for all x ̸∈ [−1, 1]. On the

other hand, if |x| ≤ 1, then V1(x, ·) is decreasing on [−1,−x) and increasing on (−x, 1]. Thus

V1(x, ·) is minimized (over |u| ≤ 1) by u0(x) = −x so long as |x| ≤ 1. In summary, we have

the control law κ1(x) := −sat(x). But

|f̂(x, κ1(x))| =


0, |x| ≤ 1

|x− sgn(x)| = |x| − 1, 0 < |x| ≤ 2

so u = κ1(x) drives each state in X1 = [−2, 2] to the terminal constraint Xf = [−1, 1].

Therefore κ1 is also the control law of the problem with the terminal constraint. The control

law κ1 is plotted, along with the unforced dynamics f̂(·, 0), against x ∈ X1 in Figure 7.8 (top

left).

Assumptions 7.1 and 7.4 are satisfied by definition, Assumption 7.2 is satisfied with cf :=

210



Stability despite mismatch Chapter 7

8, and Assumption 7.3 is satisfied with κf (x) := −x since f̂(x, κf (x)) = 0 and

∆Vf (x) := Vf (f̂(x, κf (x)))− Vf (x) = −4x2 ≤ −2x2 = −ℓ(x, κf (x))

for all x ∈ Xf . See Figure 7.8 (bottom left) for plots of ∆Vf and −ℓ(·, κf (·)). Therefore, by

Theorem 7.20, the closed-loop system x+ = f(x, κ1(x), θ), |θ| ≤ δ is RAS on X1 = [−2, 2]

with ISS Lyapunov function V 0
1 for some δ > 0. Our next goal is to find such a δ > 0.

First, however, let us establish that V 0
1 is a Lyapunov function for the modeled closed-loop

x+ = f̂(x, κ1(x)) in X1 = [−2, 2]. We already have V 0
1 (x) ≥ x2 for all |x| ≤ 2. For the upper

bound, we have

V 0
1 (x) = V1(x, κ1(x)) =


2x2, |x| ≤ 1,

x2 + 4|x| − 3, 1 < |x| ≤ 2

for each |x| ≤ 2. But the polynomials −2x2 ± 4x − 3 have no real roots, so 4|x| − 3 < 2x2,

and the above inequality gives V 0
1 (x) ≤ 3x2 for all |x| ≤ 2. Moreover, by (7.40), we have

∆V 0
1 (x, θ) ≤ −x2, so x+ = f̂(x, κ1(x)) is in fact exponentially stable on X1 = [−2, 2]. We

plot V 0
1 and ∆V 0

1 (·, 0) := V 0
1 (f̂(·, κ1(·))) − V 0

1 (·), along with their exponential Lyapunov

bounds, in Figure 7.8 (right).

For robust positive invariance, let |x| ≤ 2, θ ∈ R, x+ := f(x, κ1(x), θ), x̂
+ := f̂(x, κ1(x))

and note that

x+ = σ(σ−1(x̂+)− θsat(x))

where σ−1(x) = sgn(x)|x|2, and therefore

|x+| ≤
√
|x̂+|2 + |θ||sat(x)| ≤

√
1 + |θ|.
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Then |x+| ≤ 2 so long as |δ| ≤ 3, so X1 = [−2, 2] is RPI for x+ = f(x, κ1(x), θ), |θ| ≤ 3.

By continuity of f , V 0
1 , and κ1 and Proposition 7.49, there exists σ ∈ K∞ such that

|V 0
1 (x

+)−V 0
1 (x̂

+)| ≤ σ(|θ|) and therefore V 0
1 (x

+) ≤ V 0
1 (x̂

+)+|V 0
1 (x

+)−V 0
1 (x̂

+)| ≤ V 0
1 (x)−

x2 + σ(|θ|) for all |x| ≤ 2 and |θ| ≤ 3, where x+ := f(x, κ1(x), θ) and x̂
+ := f̂(x, κ1(x)).

Therefore x+ = f(x, κ1(x), θ), |θ| ≤ 3 is not only RAS, but RES on X1 by Theorem 7.14.

We now aim to show strong stability is not achieved. For simplicity, we consider S :=

lev2V
0
1 = [−1, 1] = Xf as the candidate basin of attraction. Let |x| ≤ 1, |θ| ≤ 3, x+ :=

f(x, κ1(x), θ), and x̂
+ := f̂(x, κ1(x)). Moreover, ℓ(x, κ1(x)) ≥ 2|x|2 =: α3(|x|). Next, we

have κ1(x) = −x, x+ = σ(xθ), and x̂+ = 0. Therefore

|V1(x+, ũ(x))− V1(x̂+, ũ(x))| = |(x+)2 + 4|x+|| ≤ |x+|2 + 4|x+|

≤ |x||θ|+ 4
√
|x||θ| =: γV (|x|, |θ|)

where γV ∈ K2
. For each t > 0, we have γV (s,t)

α3(s)
= (st + 4

√
st)/(2s2) = t/(2s) + 2

√
t/s3/2,

so lims→0+
γV (s,t)
α3(s)

=∞ for all t > 0, and (7.24) is not satisfied.

Asmentioned in themain text, (7.24) is sufficient but not necessary. But the cost difference

curve is positive definite, as

∆V 0
1 (x, θ) = 2[σ(θx)]2 − 2x2 = 2(|θ| − |x|)|x| > 0

for any 0 < |x| < |θ| ≤ 1. In other words, θ can be arbitrarily small but nonzero, and the cost

difference curve will remain positive definite near the origin.

7.B.2 Nonlinearizable yet inherently strongly stabilizing

Consider the plant (7.34) and MPC defined in Section 7.5.2. We aim to show the closed-

loop system x+ = f(x, κ1(x), θ), |θ| ≤ δ is RES in X1 with δ = 1, and SES with δ = 1/2.
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To derive the control law, we first consider the problem without the terminal constraint

(i.e., Xf = R). We have the objective

V1(x, u) = x2 + u2 + 4 (x+ (1/2)γ(x) + u)2 .

Taking the partial derivative in u,

∂V1
∂u

(x, u) = 8x+ 4γ(x) + 10u

and setting that to zero gives the optimal input

u0(x) = −g(x) := −(4/5)x− (2/5)γ(x)

whenever |g(x)| ≤ 1. Otherwise the solution saturates at u0(x) = −sgn(g(x)), so we have

u0(x) = κ1(x) := −sat(g(x)) for all |x| ≤ 2.

To see where the control law κ1(x) saturates, first note

d2g

dx2
(x) =

2

5

d2γ

dx2
(x) = −8π2 sin(2π/x)

5|x|3

for all x ̸= 0, so g(x) is strictly concave on x ∈ [1/(n − 1/2), 1/n] and strictly convex

on x ∈ [1/n, 1/(n + 1/2)] for each n ∈ I. Therefore g(x) achieves a local maximum on

each x ∈ [1/(n − 1/2), 1/n], and the maximum is strictly decreasing with n. The last, and

greatest, of these local maxima on |x| ≤ 2 is achieved on 2/3 ≤ x ≤ 1. Through numerical

optimization, we find max0≤x≤1 g(x) = max2/3≤x≤1 g(x) ≈ 0.9849. By strict convexity of

g(x) on x ∈ [1, 2], g(1) = 4/5, and g(2) = 8/5, we have max1≤x≤2 g(x) = g(2) = 8/5.

Therefore g(x) intersects the horizontal line at u = 1 exactly once over x ∈ [−2, 2], and it

does so at some x∗ ∈ [1, 2], which we can numerically verify is x∗ ≈ 1.6989. By symmetry,
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g(x) intersects u = −1 at −x∗. Finally, because g(x) is strictly convex (concave) on [1, 2]

([−2,−1]), it saturates on (x∗, 2] (and [−2,−x∗)) and we have

κ1(x) =


−(4/5)x− (2/5)γ(x), |x| ≤ x∗,

−sgn(x), x∗ < |x| ≤ 2.

For the problem with the terminal constraint, we have

|f̂(x, κ1(x))| = |(1/5)x+ (3/5)γ(x)| ≤ (1/5)x+ (3/5)|γ(x)| ≤ 4/5

for each x ∈ [0, 1],

|f̂(x, κ1(x))| = |(1/5)x+ (3/5)γ(x)| ≤ |(1/5)x− (3/5)|γ(x)|| ≤ (2/5)|x| ≤ 4/5

for each x ∈ [1, x∗], and

|f̂(x, κ1(x))| = |x+ (1/2)γ(x)− 1| ≤ |x| − 1− (1/2)|γ(x)| ≤ |x| − 1 ≤ 1

for each x ∈ [x∗, 2], where we have used the fact that γ(x) ≤ 0 for all x ∈ [1, 2]. Therefore

|f̂(x, κ1(x))| ≤ 1 for all x ∈ [0, 2], and the same holds for all x ∈ [−2, 0] by symmetry.

Therefore the terminal constraintXf = [−1, 1] is automatically satisfied by the unconstrained

control law, so κ1(x) is also the control law for the MPC with the terminal constraint. In

Figure 7.9 (top left), we plot κ1 and f̂(·, 0) on X1.

Assumptions 7.1 and 7.5 are satisfied by definition, and Assumption 7.2 is satisfied with

cf := 4. Let κf (x) := −(1/2)(x+ γ(x)) for all |x| ≤ 1. Then

|κf (x)| ≤ (1/2)(|x|+ |γ(x)|) ≤ |x| ≤ 1
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Figure 7.9: For the MPC of (7.34), we plot as a function of x (top left) the open-loop dynam-

ics and control law, (bottom left) the terminal cost difference, (top right) the optimal value

function, and (bottom right) the cost difference, each with the relevant (nominal) bounds

from Assumption 7.3 and (7.22).

for all |x| ≤ 1, so u = κf (x) is feasible in the terminal constraint. Moreover, f̂(x, κf (x)) =

(1/2)x, so

∆Vf (x) := Vf (f̂(x, κf (x)))− Vf (x) + ℓ(x, κf (x)) = −2x2 + |κf (x)|2 ≤ −x2 ≤ 0

and Assumption 7.3 is satisfied. See Figure 7.9 (bottom left) for plots of∆Vf and−ℓ(·, κf (·)).

By Theorem 7.22, the closed-loop system x+ = f(x, κ1(x), θ), |θ| ≤ δ is RES on X1 with the

ISS Lyapunov function V 0
1 for some δ > 0. Our next aim is to find such a δ > 0.

Let |x| ≤ 2, θ ∈ R, x+ := f(x, κ1(x), θ), and x̂
+ := f̂(x, κ1(x)). Then x

+ = x̂++ θκ1(x),

and we have

|x+| ≤ |x̂+|+ |θ||κ1(x)| ≤ 1 + |θ|

for all θ ∈ R. But thismeans |x+| ≤ 2 for all |θ| ≤ 1, soX1 is RPI for x
+ = f(x, κ1(x), θ), |θ| ≤

1. Continuity of f , ℓ, Vf , and κ1 implies continuity of V 0
1 (fc(·, ·)), at least for all |x| ≤ 2

and |θ| ≤ 1 on which the function is well-defined. Then, by Proposition 7.49, there exists
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σ ∈ K∞ such that, if |θ| ≤ 1, we have |V 0
1 (x

+)− V 0
1 (x̂

+)| ≤ σ(|θ|), and therefore V 0
1 (x

+) ≤

V 0
1 (x̂

+) + |V 0
1 (x

+)− V 0
1 (x̂

+)| ≤ V 0
1 (x)− x2 + σ(|θ|). Finally, x+ = f(x, κ1(x), θ), |θ| ≤ 1 is

RES in X1 = [−2, 2] by Theorem 7.14.

Next, we aim to show the MPC is inherently strongly stabilizing via Assumption 7.33

and Theorem 7.34. Consider the candidate Lyapunov function V (x) := x2 for all |x| ≤ 2

and V (x) := ∞ otherwise, and let ρ ≥ 4, S := levρV = [−2, 2] = X1, and δ0 := 1. If

we can show Assumption 7.33(a,b) hold with these ingredients, then Assumption 7.33 will

hold for all ρ > 0. Assumption 7.33(a) and (7.25a) are already satisfied with |θ| ≤ δ0 = 1,

and S is RPI, but it remains to construct the bound (7.25b). Throughout this derivation, let

x+ := f(x, κ1(x), θ) and x̂
+ := f̂(x, κ1(x)).

First, suppose |x| ≤ x∗ and |θ| ≤ 1. Then the controller does not saturate, i.e., κ1(x) =

−0.8x− 0.4γ(x), and we have in the nominal case x̂+ = 0.2x+ 0.1γ(x), |x̂+| ≤ 0.3|x|, and

V (x̂+)− V (x) = |x̂+|2 − |x|2 ≤ −0.91|x|2. (7.63)

Next, consider the identity

y2 − z2 = 2z(y − z) + (y − z)2 (7.64)

for all y, z ∈ R. We have x+ = (0.2 − 0.8θ)x + (0.1 − 0.4θ)γ(x), so |x+ − x̂+| = |0.8θx +

0.4θγ(x)| ≤ 1.2|θ||x|, and (7.64) implies

|V (x+)− V (x̂+)| ≤ 0.72|θ||x|2 + 1.44|θ|2|x|2. (7.65)

Next, suppose x∗ < x ≤ 2 and |θ| ≤ 1. Then the controller always saturates, i.e., κ1(x) =

−1. Since γ(x̃) ≤ 0 for all 1 ≤ x̃ ≤ 2, we have 0 ≤ 0.5x + 0.5γ(x) ≤ 0.5x ≤ 1 and

x̂+ = x + 0.5γ(x) − 1 ≤ 0.5x. Moreover, x − 1 > x∗ − 1 > 0, so x̂+ = x + 0.5γ(x) − 1 >
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0.5γ(x) ≥ −0.5x. Then we have |x̂+| ≤ 0.5|x| and

V (x̂+)− V (x) = |x̂+|2 − |x|2 ≤ −0.75|x|2. (7.66)

Moreover, |x+ − x̂+| = |θ| and (7.64) implies

|V (x+)− V (x̂+)| ≤ (1/x∗)|θ||x|2 + (1/x∗)2|θ|2|x|2 (7.67)

where we have used the fact that |x|/x∗ > 1. By symmetry, (7.66) and (7.67) also hold for

−2 ≤ x < −x∗.

Combining (7.63), (7.66), (7.67), and (7.68), we have

V (x+) ≤ V (x)− a3|x|2 + σV (|θ|)|x|2 (7.68)

for all x ∈ XN , where a3 := 0.75 and σV (t) := max { 0.72t+ 1.44t2, (2/x∗)t+ (1/x∗)2t2 }

and Assumption 7.33 is satisfied. Finally, by Theorem 7.34 (and its proof), the closed-loop

system x+ = f(x, κ1(x), θ), |θ| ≤ δ is SES in XN = [−2, 2] for any δ ∈ (0, σ−1
V (a3)). Thus, it

suffices to take |θ| ≤ δ = 0.5 since

σV (0.5) = max { 0.72, 0.3809 . . . } = 0.72 < 0.75 = a3.

7.B.3 Upright pendulum

Consider the plant (7.36) and MPC defined in Section 7.5.3. It is noted in the main text

that Assumptions 7.1, 7.2, 7.5, 7.8, and 7.9 are automatically satisfied. To design Pf and show
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Assumption 7.3 holds, consider the linearization

x+ = [ 1 0.1
0.1 1 ]︸ ︷︷ ︸
=:A

x+ [ 05 ]︸︷︷︸
=:B

u (7.69)

and the feedback gain K :=

[
2 2

]
, which stabilizes (7.69) because AK := A − BK =

[ 1 0.1
−0.9 0 ] has eigenvalues of 0.9 and 0.1. Numerically solving the Lyapunov equation

A⊤
KPfAK − Pf = −2QK

where QK := Q + K⊤RK = [ 5 4
4 5 ], we have a unique positive definite solution Pf :=

[ 31.133... 10.196...10.196... 10.311... ]. Using the inequality | sinx1 − x1| ≤ (1/6)|x1|3 for all x1 ∈ R, we have

|Vf (f̂(x,−Kx))− Vf (AKx)|

= 2x⊤A⊤
KPf

[
0

∆(sinx1−x1)

]
+ [Pf ]22∆

2(sinx1 − x1)2

≤ b|x|4 + a|x|6

for all x ∈ R2
, where a :=

[Pf ]22∆
2

36
= 2.8643 . . .× 10−3

and b :=
∆|A⊤

KPf [ 01 ]|
3

= 0.045675 . . ..

Moreover, σ(QK) = 1, so

Vf (f̂(x,−Kx))− Vf (x) + ℓ(x,−Kx)

= −|x|2QK
+ Vf (f̂(x,−Kx))− Vf (AKx)

≤ −[1− b|x|2 − a|x|4]|x|2

for all x ∈ R2
. The polynomial inside the brackets has roots at x∗ = −1.0231 . . . and x∗ =

0.9774 . . . and is positive in between. Recall cf := σ(Pf )/8. Then σ(Pf )|x|2 ≤ Vf (x) ≤

cf = σ(Pf )/8 implies |x| ≤ 1
2
√
2
< x∗ and |u| = |Kx| = 2(|x1| + |x2|) ≤ 2

√
2|x| ≤ 1, so
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Assumption 7.3 is satisfied with κf (x) := −Kx = −2x1 − 2x2, and Pf and Xf as defined.
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Chapter 8

Stability of offset-free MPC despite
plant-model mismatch

Despite over twenty years of applied use and active research, there are no general results

on the stability of offset-free MPC with respect to tracking errors. Sufficient conditions for

which linear offset-free MPC stability implies offset-free performance were first established

by Muske and Badgwell (2002); Pannocchia and Rawlings (2003). While Muske and Badgwell

(2002); Pannocchia and Rawlings (2003) do not explicitly mention control of nonlinear plants,

the results are widely applicable to both linear and nonlinear plants with asymptotically con-

stant disturbances, as controller stability is assumed rather than explicitly demonstrated. In

fact, Pannocchia and Rawlings (2003) demonstrate offset-free control on a highly nonlinear,

non-isothermal reactor model.

Offset-free MPC designs with nonlinear models and tracking costs were first considered

by Morari and Maeder (2012). For the special case of state feedback, Pannocchia et al. (2015)

give a disturbance model and estimator design for which the offset-free MPC is provably

asymptotically stable and offset-free. In Pannocchia et al. (2015), the state-feedback observer

design is generalized to economic cost functions, and convergence to the optimal steady state

is demonstrated. A general, output-feedback offset-free economic MPC was first proposed

by Vaccari and Pannocchia (2017), who use gradient correction strategies to ensure the eco-
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nomic MPC, if it converges, achieves the optimal steady-state performance. For further devel-

opments of offset-free economic MPC, we refer the reader to Pannocchia (2018); Faulwasser

and Pannocchia (2019); Vaccari et al. (2021).

The results discussed thus far have assumed closed-loop stability rather than proven

it. Some authors have proposed provably stable and output-tracking nonlinear MPC de-

signs (Falugi, 2015; Limon et al., 2018; Köhler et al., 2020; Berberich et al., 2022b; Galuppini

et al., 2023; Soloperto et al., 2023), but they all assume access to the plant dynamic equations,

and none consider process and measurement disturbances.

In this chapter, we propose a nonlinear offset-free MPC design that has offset-free per-

formance and asymptotic stability subject to plant-model mismatch, persistent disturbances,

and changing references. Based on the results in Chapter 7, we use positive definite quadratic

costs and assume differentiability of the plant and model equations to ensure the plant-model

mismatch does not prevent stability with respect to the steady-state targets. To ensure the

controller is robustly feasible, we soften any output constraints in the regulator using an exact

penalty method, and to guarantee nominal regulator stability, we apply constraint backoffs

to the steady-state target problem. Lipschitz continuity of the steady-state target problem

solutions is required to guarantee robustness to estimate errors and setpoint and disturbance

changes.

We outline the chapter as follows. In Section 8.1, the offset-free MPC design is presented.

In Section 8.3, we establish asymptotic stability of the nominal system. In Section 8.4, we

establish robust performance with respect to estimate errors, setpoint changes, and distur-

bance changes. In Section 8.5, we extend these results to the mismatched system using the

approach from Chapter 7. Finally, in Section 8.7, we conclude the chapter with a discussion

of limitations and future work.
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8.1 Problem statement

8.1.1 System of interest

Consider the following discrete-time plant:

x+
P
= fP(xP, u, wP) (8.1a)

y = hP(xP, u, wP) (8.1b)

where xP ∈ X ⊆ Rn
is the plant state, u ∈ U ⊆ Rnu

is the input, y ∈ Y ⊆ Rny
is the output,

and wP ∈W ⊆ Rnw
is the plant disturbance. The functions fP and hP are not known. Instead,

we assume access to a model of the plant,

x+ = f(x, u, d) (8.2a)

y = h(x, u, d) (8.2b)

where x ∈ X ⊆ Rn
is the model state and d ∈ D ⊆ Rnd

is the model disturbance. Without

loss of generality, we assume the nominal plant and model functions are consistent, i.e.,

f(x, u, 0) = fP(x, u, 0), h(x, u, 0) = hP(x, u, 0) (8.3)

for all (x, u) ∈ X × U. The plant disturbance wP may include process and measurement

noise, exogenous disturbances, parameter errors, discretization errors, and even unmodeled

dynamics. The purpose of the model disturbance d is to align the plant and model outputs

at steady state. The model disturbance d may include any of the plant disturbances and/or

fictitious signals accounting for the effect of the plant disturbances on the steady-state output.
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Example 8.1. Consider a single-state linear plant with parameter errors,

fP(xP, u, wP) = (â+ (wP)1)xP + (b̂+ (wP)2)u

hP(xP, u, wP) = xP + (wP)3

and a single-state linear model with an input disturbance:

f(x, u, d) = âx+ b̂(u+ d), h(x, u, d) = x.

For this example, the plant disturbance wP includes both parameter errors and measurement

noise, whereas the model disturbance only provides the means to shift the model steady states

in response to plant disturbances.

The control objective is to drive the reference signal,

r = g(u, y) (8.4)

to the setpoint rsp using only knowledge of the model (8.2), past (u, y) data, and auxiliary

setpoints (usp, ysp) (to be defined). The setpoints ssp := (rsp, usp, ysp) are possibly time-

varying, but only the current value is available at a given time. The controller should be

offset-free when the setpoint and plant disturbances are asymptotically constant, i.e.,

(∆ssp(k),∆wP(k))→ 0 ⇒ r(k)− rsp(k)→ 0

where ∆ssp(k) := ssp(k) − ssp(k − 1) and ∆wP(k) := wP(k) − wP(k − 1). Otherwise, the

amount of offset should be robust to setpoint and disturbance increments (∆ssp,∆wP).

Remark 8.2. To achieve nominal consistency (8.3) and track the reference (8.4), we typically

need the dimensional constraints ny ≤ nd and nr ≤ nu, respectively. Otherwise their are
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insufficient degrees of freedom to manipulate the output and reference at steady state with

the disturbance and input, respectively.

Remark 8.3. We do not strictly require an asymptotically constant disturbance. For exam-

ple, if rsp(k) = sin(1/k) and wP ≡ 0, then the setpoint increments go to zero ∆rsp(k) =

sin(1/k) − sin(1/(k − 1)) = O(1/k2). But the setpoint signal becomes approximately con-

stant as k →∞, so we should expect the offset-free MPC to be approximately offset-free.

Throughout, we make the following assumptions on plant, model, and reference func-

tions.

Assumption 8.4 (Continuity). The functions g : U×Y→ Rnr
, (fP, hP) : X×U×W→ X×Y,

and (f, h) : X×U×D→ X×Y are continuous, and f(0, 0, 0) = 0, h(0, 0, 0) = 0, g(0, 0) = 0,

and (8.3) holds for all (x, u) ∈ X× U.

8.1.2 Constraints

The sets (X,Y,D,W) are physical constraints (e.g., nonnegativity of chemical concentra-

tions, temperatures, pressures, etc.) that the systems (8.1), (8.2), and (8.3) automatically satisfy.

These are hard constraints enforced only during state estimation. On the other hand, we en-

force the hard constraint u ∈ U during both regulation and target selection. Additionally, we

enforce soft joint input-output constraints of the form

Zy := { (u, y) ∈ U× Y | ci(u, y) ≤ 0 ∀ i ∈ I1:nc }

where c : U × Y → Rnc
is the soft constraint function. Having active constraints at steady

state is problematic, so the constraints are sometimes tightened as follows:

Zy := { (u, y) | ci(u, y) + bi ≤ 0 ∀ i ∈ I1:nc }
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where b ∈ Rnc
>0 is the vector of back-off constants. No such constraint tightening is required

for the input constraints. We assume the constraints and the back-off constant satisfy the

following properties throughout.

Assumption 8.5 (Constraints). The sets (X,Y) are closed, (U,W,D) are compact, and all

contain the origin. The soft constraint function c : U× Y→ Rnc
is continuous and

0 < bi < −ci(0, 0), ∀ i ∈ I1:nc .

8.1.3 Offset-free model predictive control

Offset-free MPC consists of three parts or subroutines: target selection, regulation, and

state estimation.

Steady-state target problem

Given a model disturbance d ∈ D and setpoint rsp ∈ Rnr
, we define the set of offset-free

steady-state pairs by

ZO(rsp, d) := { (x, u) ∈ X× U | x = f(x, u, d), y = h(x, u, d), (u, y) ∈ Zy, rsp = g(u, y) } .

(8.5)

To pick the best steady-state pair among members of ZO(rsp, d), it is customary to optimize

the steady state with respect to some auxiliary setpoint pair zsp := (usp, ysp) ∈ Zy (typically

chosen such that rsp = g(usp, ysp)). For each (rsp, usp, ysp, d) ∈ Rnr × Zy × D, we define the

steady-state target problem (SSTP) by

V 0
s (β) := min

(x,u)∈ZO(rsp,d)
ℓs(u− usp, h(x, u, d)− ysp) (8.6)
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where β := (rsp, usp, ysp, d) are the SSTP parameters and ℓs : Rnu × Rny → R≥0 is a steady-

state cost function, typically a positive definite quadratic. We define the set of feasible SSTP

parameters as

B := { (rsp, zsp, d) ∈ Rnr × Zy × D | ZO(rsp, d) is nonmpety } . (8.7)

To guarantee the existence of solutions to the SSTP (8.6), the following assumption is required.

Assumption 8.6. The function ℓs : Rnu × Rny → R≥0 is continuous and, for each β =

(rsp, usp, ysp, d) ∈ B, at least one of the following properties holds:

(i) ZO(rsp, d) is compact;

(ii) with Vs(x, u, β) := ℓs(u − usp, h(x, u, d) − ysp), the function Vs(·, ·, β) is coercive in

ZO(rsp, d), i.e., for any sequence (xk, uk) ∈ ZO(rsp, d) such that |(xk, uk)| → ∞, we

have Vs(xk, uk, β)→∞.

Under Assumptions 8.4 to 8.6,B is nonempty and the SSTP (8.6) has solutions for all β ∈ B.

The solution to (8.6) may not be unique. Throughout, we assume some selection rule has been

applied and denote the functions returning solutions to (8.6) by zs(·) := (xs(·), us(·)) : B →

X× U.

Regulator

Given the SSTP parameters β ∈ B, the regulator is defined as a finite horizon opti-

mal control problem (FHOCP) with the steady-state targets (xs(β), us(β)). We consider a

FHOCP with a horizon length N ∈ I>0, stage cost ℓ : X × U × B → R≥0, terminal

cost Vf : X × B → R≥0, and terminal constraint Xf (β) ⊆ X (to be defined). For each

β = (rsp, usp, ysp, d) ∈ B, we define the terminal constraint (8.8), feasible initial state and in-

put sequence pairs (8.9), feasible input sequences at x ∈ X (8.10), feasible initial states (8.11),
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and feasible state-parameter pairs (8.12) by the sets

Xf (β) := levcfVf (·, β) (8.8)

ZN(β) := { (x,u) ∈ X× UN | ϕ(N ;x,u, d) ∈ Xf (β) } (8.9)

UN(x, β) := {u ∈ UN | (x,u) ∈ ZN(β) } (8.10)

XN(β) := {x ∈ X | UN(x, β) is nonmpety } (8.11)

SN := { (x, β) ∈ X× B | UN(x, β) is nonmpety } (8.12)

where cf > 0 and ϕ(k;x,u, d) denotes the solution to (8.2a) at time k given an initial state

x, constant disturbance d, and sufficiently long input sequence u. For each (x,u, β) ∈ X ×

UN × B, we define the FHOCP objective by

VN(x,u, β) := Vf (ϕ(N ;x,u, d), β) +
N−1∑
k=0

ℓ(ϕ(k;x,u, d), u(k), β). (8.13)

For each (x, β) ∈ SN , we define the FHOCP by

V 0
N(x, β) := min

u∈UN (x,β)
VN(x,u, β). (8.14)

As in Chapter 7, we take V 0
N(x, β) :=∞ for all infeasible pairs (x, β) ̸∈ SN , according to the

convention of Rockafellar and Wets (1998).

To guarantee closed-loop stability and robustness, we consider the following assumptions.

Assumption 8.7 (Terminal control law). There exists a function κf : X× B → U such that

Vf (f(x, κf (x, β), d), β)− Vf (x, β) ≤ −ℓ(x, κf (x, β), β)

for all x ∈ Xf (β) and β := (rsp, usp, ysp, d) ∈ B.
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Assumption 8.8 (Quadratic costs). The stage and terminal costs take the form

ℓ(x, u, β) = |x− xs(β)|2Q + |u− us(β)|2R +
nc∑
i=1

wimax { 0, ci(u, h(x, u, d)) }

Vf (x, β) = |x− xs(β)|2Pf (β)

for each (x, u) ∈ X × U and β := (rsp, usp, ysp, d) ∈ B, where Q, R, and Pf (β) are positive

definite matrices for each β ∈ B, the function Pf is continuous, and wi > 0 for each i ∈ I1:nc .

Remark 8.9. With β = (ssp, d) ∈ B, Assumption 8.7 and the terminal set definition (8.8)

imply Vf (f(x, κf (x, β), d), β) ≤ Vf (x, β) ≤ cf for all x ∈ Xf (β) and therefore Xf (β) is

positive invariant for x+ = f(x, κf (x, β), d).

Assumptions 8.4 to 8.6 and 8.8 guarantee the existence of solutions to (8.14) for all (x, β) ∈

SN (Rawlings et al., 2020, Prop. 2.4). We denote any such solution by u0(x, β) = (u0(0;x, β),

. . . , u0(N − 1;x, β)), and define the corresponding optimal state sequence by x0(x, β) :=

(x0(0;x, β), . . . , x0(N ;x, β))where x0(k;x, β) := ϕ(k;x,u0(x, β), d). We define the FHOCP

control law by κN(x, β) := u0(0;x, β).

Remark 8.10. Given Assumptions 8.4 to 8.6 and 8.8, it may be impossible to satisfy Assump-

tion 8.7 without constraint back-offs, i.e., b = 0. This is because the terminal cost difference

Vf (f(x, κf (x, β), d)) − Vf (x) is, at best, negative definite with quadratic scaling (regardless

of the target value), whereas the stage cost ℓ(x, κf (x, β), β) has quadratic scaling when the

soft constraint is satisfied but linear scaling when the soft constraint is violated. Thus, if the

constraints are active at the targets, the stage cost will always exceed the decrease in terminal

cost if the state violates the constraints and is sufficiently small.

Example 8.11. Consider the scalar linear system x+ = x + u + d, y = x, and r = y with

stage costs of the form Assumption 8.8 and the soft constraint function c(u, y) = y − 1. Let
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b = 0 and β = (1, 0, 1, 0). Clearly the target is reachable, and we can take the SSTP (8.6)

solution (xs(β), us(β)) = (1, 0). Then we have stage costs of the form ℓ(x, u, β) = q(x −

1)2 + ru2 +wmax { 0, x− 1 } and Vf (x, β) = pfx
2
, where q, r, w, pf > 0. Assumption 8.7 is

not satisfied if there exists x ∈ R such that

F(x, u) := pf (x+ u− 1)2 − pf (x− 1)2 + q(x− 1)2 + ru2 + wmax { 0, x− 1 } > 0

for all u ∈ R. Completing the squares gives

F(x, u) = (ãu+ b̃(x− 1))2 + c̃(x− 1)2 + wmax { 0, x− 1 }

≥ c̃(x− 1)2 + wmax { 0, x− 1 }

for all x ∈ R and u ∈ R, where ã :=
√
r + pf , b̃ :=

pf
2ã
, and c̃ := q − b̃2. Ideally, we would

have chosen (q, r, pf ) so that c̃ < 0. But this means we can still take 0 < x− 1 <
√

w
c̃
to give

F(x, u) ≥ c̃(x− 1)2 + w(x− 1) > 0

for all u ∈ R, no matter the chosen w > 0.

On the other hand, let b = 1 and β = (0, 0, 0, 0). Again, the target is reachable and we can

take the SSTP solution (xs(0), us(0)) = (0, 0). Notice that for both problems the backed-off

constraint c(u, y) + b is active at the solution. This time, however, we have

F(x, u) := pf (x+ u)2 − pfx2 + qx2 + ru2 + wmax { 0, x− 1 }

= (ãu+ b̃x)2 + c̃x2 + wmax { 0, x− 1 }
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and with κf (x, 0) := − b̃
ã
x, we have

F(x, κf (x, 0)) = c̃x2 + wmax { 0, x− 1 }

for all x ∈ R. Let cf = pf and suppose c̃ < 0. Then, for each x ∈ Xf (0), we have |x| ≤ 1 and

therefore

F(x, κf (x, 0)) = c̃x2 ≤ 0.

State estimation

In practice, the SSTP and FHOCP are implemented with state and disturbance estimates

rather than the true values. To this end, we consider any estimator that estimates both plant

and disturbance states.

Definition 8.12. A joint state and disturbance estimator is a sequence of functions Φk : X×

D × Uk × Yk → X × D defined for each k ∈ I≥0. For each k ∈ I≥0, we define the state and

disturbance estimates by

(x̂(k), d̂(k)) := Φk(x, d,u0:k−1,y0:k−1) (8.15)

where (x, d) ∈ X×D is the initial guess at time k = 0, u ∈ U∞
is the input data, and y ∈ Y∞

is the output data.

Remark 8.13. Since the regulator requires a state estimate to compute, and the input directly

affects the output, the current state and disturbance estimates (x̂(k), d̂(k))must be functions

of past data, not including the current measurement y(k). Therefore, at time k = 0, there is

no data available to update the prior guess, and most estimator designs will take Φ0 as the

identity map, i.e.,

(x̂(0), d̂(0)) := Φ0(x, d) = (x, d).
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However, we can also consider models without direct feedthrough effects (i.e., y = h(x, d))

in which case Definition 8.12 can be modified so the estimator functions also take y(k) as an

argument.

The estimator (8.15) is designed according to the model (8.2) and thus has no knowledge of

the plant state xP or plant disturbance wP. To analyze its performance and state the assump-

tions needed to establish offset-free performance, we consider the following noise model:

x+ = f(x, u, d) + w (8.16a)

d+ = d+ wd (8.16b)

y = h(x, u, d) + v (8.16c)

where w̃ := (w,wd, v) ∈ W̃(x, u, d) ⊆ Rnw̃
are the process, disturbance, and measurement

noises, nw̃ := n+ nd + ny, and

W̃(x, u, d) := { (w,wd, v) | (x+, d+, y) ∈ X× D× Y, (8.16) }

is a constraint set that ensures all quantities remain physical. We define the set of feasible

trajectories by

Z̃e := { (x,u,d,y, w̃) ∈ X∞ × U∞ × D∞ × Y∞ × (Rnw̃)∞ |

(8.16) and w̃ = (w,wd, v) ∈ W̃(x, u, d) }.
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Finally, denoting the state, disturbance, and errors by

ex(k) := x(k)− x̂(k), ed(k) := d(k)− d̂(k), (8.17a)

e(k) :=

[
ex(k)
ed(k)

]
, e :=

[
x(0)− x
d(0)− d

]
, (8.17b)

we define robust stability of the estimator (8.15) as follows.

Definition 8.14. The estimator (8.15) is robustly globally exponentially stable (RGES) for the

system (8.16) if there exist constants ce,1, ce,2 > 0 and λe ∈ (0, 1) such that

|e(k)| ≤ ce,1λ
k
e |e|+ ce,2

k∑
j=1

λj−1
e |w̃(k − j)|

for each k ∈ I≥0, prior guess (x, d) ∈ X × D, and trajectories (x,u,d,y, w̃) ∈ Z̃e, given

definitions (8.15) and (8.17).

For the case with plant-model mismatch, the estimator (8.15) is not only assumed to be

RGES for the system (8.16), but is also assumed to admit a robust global Lyapunov function.

Assumption 8.15. The initial estimator Φ0 is the identity map. There exists a function Ve :

X× D× X× D→ R≥0 and constants c1, c2, c3, c4, δw > 0 such that

c1|e(k)|2 ≤ Ve(k) ≤ c2|e(k)|2 (8.18a)

Ve(k + 1) ≤ Ve(k)− c3|e(k)|2 + c4|w̃(k)|2 (8.18b)

for all (x, d) ∈ X × D, (x,u,d,y, w̃) ∈ Z̃e, and k ∈ I≥0, where (8.15), (8.17), and Ve(k) :=

Ve(x(k), d(k), x̂(k), d̂(k)).

The following theorem establishes that Assumption 8.15 implies RGES of the estima-

tor (8.15) for the system (8.16) (see Appendix 8.A.1 for proof).
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Theorem 8.16. Suppose the estimator (8.15) for the system (8.16) satisfies Assumption 8.15.

Then the estimator is RGES under Definition 8.14.

Remark 8.17. In Assumption 8.15, we assumeΦ0 is the identity map, and therefore e(0) = e.

However, as mentioned in Remark 8.13, if we consider models without direct input-output

effects (i.e., y = ĥ(x, d)), then the estimator functions Φk may become a function of the

current output y(k) and it is no longer reasonable to assume Φ0 is the identity map. Then

e(0) ̸= e in general. However, we can modify Definition 8.12 to include robustness to the

current noise ñ(k), and we can modify Assumption 8.15 to include a linear bound of the form

|e(0)| ≤ a1|e|+ a2|w̃(0)|, for some a1, a2 > 0, to again imply RGES of the estimator.

While Assumption 8.15 is satisfied for stable full-order observers of (8.16),
1
we know of

no nonlinear results that guarantee a Lyapunov function characterization of stability (i.e., As-

sumption 8.15) for the full information estimation (FIE) or moving horizon estimation (MHE)

algorithms. FIE and MHE were shown to be RGES for exponentially detectable and stabiliz-

able systems by Allan and Rawlings (2021), but they use a Q-function to demonstrate stabil-

ity. To the best of our knowledge, the closest construction is the N -step Lyapunov function

of Schiller et al. (2023). If we treat the disturbance as a parameter, rather than an uncon-

trollable integrator, there are FIE and MHE algorithms for combined state and parameter

estimation that could also be used to estimate the states and disturbances (Muntwiler et al.,

2023; Schiller and Müller, 2023).
2

1
A full-order state observer of (8.16) is a dynamical system, evolving in the same state space as (8.16),

stabilized with respect to x by output feedback.

2
The estimation algorithms of Muntwiler et al. (2023) produce RGES state estimates, but it is not shown the

parameter estimates are RGES. The estimation algorithm of Schiller and Müller (2023) produces RGES state and

parameter estimates, but only under a persistence of excitation condition.
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8.2 Robust stability for tracking and estimation

In this section, we consider stabilization of the system,
3

ξ+ = F (ξ, u, ω), ω ∈ Ω(ξ, u). (8.19)

The system (8.19) represents the evolution of an extended plant state ξ ∈ Ξ ⊆ Rnξ
subject to

the input u ∈ U and extended disturbance ω ∈ Ω(ξ, u) ⊆ Rnω
(to be defined). Greek letters

are used for the extended state and disturbance (ξ, ω) to avoid confusion with the states and

disturbances of (8.1), (8.2), and (8.16). Throughout, we assume Ξ is closed and 0 ∈ Ω(ξ, u)

and F (ξ, u, ω) ∈ Ξ for all (ξ, u) ∈ Ξ× U and ω ∈ Ω(ξ, u).

8.2.1 Robust stability with respect to two outputs

We first consider stabilization of (8.19) under state feedback,

ξ+ = Fc(ξ, ω), ω ∈ Ωc(ξ) (8.20)

where κ : Ξ → U is the control law, Fc(ξ, ω) := F (ξ, κ(ξ), ω), and Ωc(ξ) := Ω(ξ, κ(ξ)). We

define robust positive invariance for the system (8.20) as follows.

Definition 8.18 (Robust positive invariance). Aclosed setX ⊆ Ξ is robustly positive invariant

(RPI) for the system (8.20) if ξ ∈ X and ω ∈ Ωc(ξ) imply Fc(ξ, ω) ∈ X .

Robust target- and setpoint-tracking stability are defined under the umbrella of input-to-

state stability (ISS) with respect to two measurement functions (Tran et al., 2015). We slightly

modify their definition by considering measurement functions of (ξ, ω) (rather than just ξ)

3
To ensure unphysical states are not produced by additive disturbances, we let the disturbance set be a func-

tion of the state and input. However, we can convert (8.19) to a standard form by taking ξ+ = F̃ (ξ, u, ω), ω ∈ Ω
where F̃ (ξ, u, ω) = F (ξ, projΩ(ξ,u)(ω)), Ω :=

⋃
(ξ,u)∈Ξ×U Ω(ξ, u), and projΩ(ξ,u)(ω) = argminω′∈Ω(ξ,u) |ω −

ω′|.
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and structuring the measurement functions as norms of the outputs ζ1 ∈ Rnζ1 and ζ2 ∈ Rnζ2 ,

where

ζ1 = G1(ξ, ω), ζ2 = G2(ξ, ω). (8.21)

The definition of Tran et al. (2015) can be reconstructed by takingG1 andG2 as scalar-valued,

positive semidefinite functions of ξ.

Definition 8.19 (Robust stability w.r.t. two outputs). We say the system (8.20) (with out-

puts (8.21)) is robustly asymptotically stable (RAS) (on a RPI setX ⊆ Ξ) with respect to (ζ1, ζ2)

if there exist βζ ∈ KL and γζ ∈ K such that

|ζ1(k)| ≤ βζ(|ζ2(0)|, k) + γζ(∥ω∥0:k) (8.22)

for each k ∈ I≥0 and trajectories (ξ,ω, ζ1, ζ2) satisfying (8.20), (8.21), and ξ(0) ∈ X . We

say (8.20) is robustly exponentially stable (RES) w.r.t. (ζ1, ζ2) if it is RAS w.r.t. (ζ1, ζ2) with

βζ(s, k) := cζλ
k
ζs for some cζ > 0 and λζ ∈ (0, 1).

For the nominal case (i.e., Ω(ξ, u) ≡ { 0 }), we drop the word robust from Definitions 8.18

and 8.19 and simply write positive invariant, asymptotically stable (AS), and exponentially sta-

ble (ES). Moreover, if (8.20) is RAS (RES) w.r.t. (ζ, ζ), where ζ = G(ξ, ω), we simply say it is

RAS (RES) w.r.t. ζ .

In Sections 8.3 and 8.4, we use Definition 8.19 demonstrate nominal stability and robust-

ness to estimate error, noise, and SSTP parameter changes. The following cases of the sys-

tem (8.19), control law u = κ(ξ), and outputs (8.21) are considered.

1. Nominal stability: Let ξ := x, u = κ(ξ) := κN(x, β), ω := 0, ζ1 := g(u, h(x, u, d))−rsp,

and ζ2 := x − xs(β). Then, for each fixed β = (rsp, usp, ysp, d) ∈ B, the closed-loop
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system has dynamics (8.20) and outputs (8.21) with

F (ξ, ω) := f(x, κN(x, β), β)

G1(ξ) := g(x, h(x, κN(x, β), d))− rsp

G2(ξ) := x− xs(β)

for each ξ ∈ X ρ
N := levρV

0
N and ω = 0. AS (ES) w.r.t. ζ2 corresponds to (exponen-

tial) target-tracking stability, and AS (ES) w.r.t. (ζ1, ζ2) corresponds to (exponential)

setpoint-tracking stability.

2. Robust stability (w.r.t. estimate error, noise, SSTP parameter changes): Let ξ := (x̂, β̂),

κ(ξ) := κN(ξ), ω := (e, e+,∆ssp, w̃), ζ1 := r − rsp, ζ2 := x̂ − xs(β̂), where r :=

g(u, h(x̂ + ex, u, d̂ + ed) + v) and β̂ := (ssp, d̂). Then the closed-loop system has

dynamics (8.20) and outputs (8.21) with

F (ξ, ω) :=

f(x̂+ ex, κN(x̂, β̂), d̂+ ed) + w − e+x
ssp +∆ssp

d̂+ ed + wd − e+d


G1(ξ) := g(x, h(x̂+ ex, κN(x̂, β̂), d̂+ ed) + v)− rsp,

G2(ξ) := x̂− xs(β̂)

for each ξ = (x̂, β̂) in a to-be-defined RPI set Ŝρ
N and ω ∈ Ωc(ξ) (to be defined). RAS

(RES) of (8.20) w.r.t. ζ2 alone corresponds to robust (exponential) target-tracking stabil-

ity, and RAS (RES) w.r.t. (ζ1, ζ2) corresponds to robust (exponential) setpoint-tracking

stability.

Remark 8.20. If (8.20) is RAS on X ⊆ Ξ w.r.t. (ζ1, ζ2), then ω(k)→ 0 implies ζ1(k)→ 0 so

long as ξ(0) ∈ X .

Remark 8.21. Definition 8.19 generalizes many ISS and input-to-output stability (IOS) defi-
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nitions originally posed for continuous-time systems by Sontag and Wang (1995, 1999, 2000).

However, only Definition 8.19 is suitable for analyzing both target- and setpoint-tracking per-

formance of the offset-free MPC. ISS is not appropriate as the SSTP parameters β are often

part of the extended state ξ. IOS and robust output stability allow the tracking performance

to degrade with the magnitude of the SSTP parameters. While state-independent IOS (SIIOS)

coincides with the special case of ζ = G1(ξ) ≡ G2(ξ) (e.g., for target-tracking), we find the

setpoint-tracking error is more tightly bounded by the initial target-tracking error.

Next, we define an (exponential) ISS Lyapunov function with respect to the noise-free

outputs

ζ1 = G1(ξ), ζ2 = G2(ξ) (8.23)

and show its existence implies RAS (RES) of (8.20) with respect to (ζ1, ζ2) (see Appendix 8.A.2

for proof).

Definition 8.22. Consider the system (8.20) with outputs (8.23). We call V : Ξ→ R≥0 an ISS

Lyapunov function (on a RPI set X ⊆ Ξ) with respect to (ζ1, ζ2) if there exist αi ∈ K∞, i ∈ I1:3

and σ ∈ K such that, for each ξ ∈ X and ω ∈ Ωc(ξ),

α1(|G1(ξ)|) ≤ V (ξ) ≤ α2(|G2(ξ)|) (8.24a)

V (Fc(ξ, ω)) ≤ V (ξ)− α3(V (ξ)) + σ(|ω|). (8.24b)

We say V is an exponential ISS Lyapunov function with respect to (ζ1, ζ2) if it is an ISS Lya-

punov function with respect to (ζ1, ζ2) with αi(·) = ai(·)b for some ai, b > 0, i ∈ I1:3.

Theorem 8.23. If the system (8.20) with outputs (8.23) admits an (exponential) ISS Lyapunov

function V : Ξ → R≥0 on an RPI set X ⊆ Ξ with respect to (ζ1, ζ2), then it is RAS (RES) on X

with respect to (ζ1, ζ2).
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Similarly to Definitions 8.18 and 8.19, we call V a Lyapunov function or exponential Lya-

punov function w.r.t. (ζ1, ζ2) if it satisfies Definition 8.22 in the nominal case (i.e., Ω(ξ, u) ≡

{ 0 }). Moreover, we note that the proof of Theorem 8.23 trivially extends to the nominal case

by setting ω = 0 throughout.

Remark 8.24. If ζ = G1(ξ) ≡ G2(ξ), then it suffices to replace (8.24b) with V (Fc(ξ, ω)) ≤

V (ξ)− α̃3(|G1(ξ)|) + σ(|ω|) to establish ISS with respect to ζ , where α̃3 ∈ K∞. Then (8.24b)

holds with α3 := α̃3 ◦ α−1
2 .

8.2.2 Combined controller-estimator robust stability

In applications without plant-model mismatch, it suffices to consider RES of each of the

controller and estimator subsystems to establish RES of the combined system. This is because

the controller and estimator error systems are connected sequentially, with the target- and

setpoint-tracking errors having no influence on the estimation errors. However, as we show

in Section 8.5, plant-model mismatch makes this a feedback interconnection, with the tracking

errors influencing the state estimate errors and vice versa. Therefore it is necessary to analyze

stability of the combined system.

We define the extended sensor output υ ∈ Υ ⊆ Rnυ
by

υ = H(ξ, u, ω). (8.25)

Assume Υ is closed and H(ξ, u, ω) ∈ Υ for all (ξ, u) ∈ Ξ× U and ω ∈ Ω(ξ, u). We consider

the extended state estimator

ξ̂(k) := Φξ
k(ξ,u0:k−1,υ0:k−1) (8.26)

where ξ ∈ Ξ̂ ⊆ Rnξ̂ is the prior guess and Φξ
k : Ξ̂ × Uk × Υk → Ξ̂, k ∈ I≥0. The set Ξ̂ is
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closed but is not necessarily the same, let alone of the same dimension, as Ξ. We consider

stabilization via state estimate feedback,

u = κ̂(ξ̂) (8.27)

where κ̂ : Ξ̂→ U. Finally, we define a RPI set as follows.

Definition 8.25. A closed set S ⊆ Ξ × Ξ̂ is RPI for the system (8.19) and (8.25)–(8.27) if

(ξ(k), ξ̂(k)) ∈ S for all k ∈ I≥0 and (ξ,u,ω,υ) satisfying (8.19), (8.25), (8.26), and (8.27), and

(ξ(0), ξ) ∈ S .

With plant-model mismatch, the extended plant and model states to evolve on different

spaces. Thus, we define the estimator error ε ∈ Rnξ̂ as the deviation of the estimate ξ̂ from

an arbitrary function Gε : Ξ→ Ξ̂ of the state ξ,

ε(k) = Gε(ξ(k))− ξ̂(k), ε := Gε(ξ(0))− ξ. (8.28)

Finally, we define robust stability with respect to the outputs

ζ1 = G1(ξ, ξ̂, u, ω), ζ2 = G2(ξ, ξ̂, u, ω) (8.29)

similarly to Definition 8.19.

Definition 8.26. The system (8.19) and (8.25)–(8.27) (with outputs (8.29)) is RAS in a RPI set

S ⊆ X× X̂ with respect to (ζ1, ζ2) if there exist functions βζ , γζ ∈ KL such that

|(ζ1(k), ε(k))| ≤ βζ(|(ζ2(0), ε)|, k) +
k∑

i=0

γζ(|ω(k − i)|, i) (8.30)

for all k ∈ I≥0 and all trajectories (ξ,u,ω,υ, ε, ζ1, ζ2) satisfying (8.19), (8.25)–(8.28) and
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(8.29), and (ξ(0), ξ) ∈ S . We say (8.19) and (8.25)–(8.27) is RES w.r.t. (ζ1, ζ2) if it is RAS

w.r.t. (ζ1, ζ2) with βζ(s, k) := cζλ
k
ζs and γζ(s, k) := λkζσζ(s) for some cζ > 0, λζ ∈ (0, 1), and

σζ ∈ K.

As in Section 8.2.1, we say (8.19) and (8.25)–(8.27) is RAS (RES) w.r.t. ζ = G(ξ, ω) if it is

RAS (RES) w.r.t. (ζ, ζ).

In Section 8.5, we establish robustness of offset-free MPC with plant-model mismatch in

terms of Definition 8.26, using the following definition of the system (8.19) and (8.25)–(8.27),

estimate errors (8.28), and outputs (8.29):

3. With mismatch: Let ξ := (xP, α), ξ̂ := (x̂, β̂), u := κN(ξ̂), ω := (∆ssp,∆wP), υ :=

(y,∆ssp), ε := (xP+∆xs(α), ssp, ds(α))− ξ̂, ζ1 := r− rsp, ζ2 := x̂−xs(β̂), where r :=

g(u, hP(x, u, wP)), α := (ssp, wP), β̂ := (ssp, d̂), and (∆xs(α), ds(α)) are to be defined.

Then the closed-loop system has dynamics (8.19) and (8.25)–(8.27), errors (8.28), and

outputs (8.29) with

F (ξ, u, ω) :=

fP(xP, u, wP)
ssp +∆ssp
wP +∆wP

 , H(ξ, u, ω) :=

[
hP(ξ, u, wP)

∆ssp

]
,

Φξ
k(ξ,u0:k−1,υ0:k−1) := (x̂(k), ssp(k), d̂(k)), Gε(ξ) :=

[
xP +∆xs(α)

ds(α)

]
G1(ξ, u, ω) := g(u, hP(xP, u, wP))− rsp, G2(ξ̂) := x̂− xs(β̂)

for each (ξ, ξ̂) = (x, β, x̂, β̂) in a to-be-defined RPI set Sρ,τ
N and ω ∈ Ωc(ξ) (to be

defined), where (x̂(k), d̂(k)) := Φk(x, d,u0:k−1,y0:k−1) as in Definition 8.12.

As in Section 8.2.1, RAS (RES) w.r.t. ζ2 corresponds to robust (exponential) target-tracking

stability, and RAS (ES) w.r.t. (ζ1, ζ2) corresponds to robust (exponential) setpoint-tracking

stability.

Remark 8.27. If (8.19) and (8.25)–(8.27) is RAS on a RPI set S ⊆ Ξ × Ξ̂ w.r.t. (ζ1, ζ2), then
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ω(k) → 0 implies (ζ1(k), ε(k)) → 0 so long as (ξ(0), ξ) ∈ S (cf. (Allan and Rawlings, 2021,

Prop. 3.11)).

To analyze stability of the system (8.19), (8.25), (8.26), and (8.27), we use the following

theorem (see Appendix 8.A.3 for proof).

Theorem 8.28. Consider the system (8.19) and (8.25)–(8.27) with errors (8.28) and output ζ =

G(ξ̂). Suppose Φξ
0 is the identity map and there exist constants ai, bi > 0, i ∈ I1:4, a RPI set

S ⊆ X× X̂, and functions V : Ξ̂→ R≥0, Vε : Ξ× Ξ̂→ R≥0, and σ, σε ∈ K such that a4c4
a3c1

< 1,

a4c4
a3c3

< c1
c1+c2

, and, for all trajectories (ξ, ξ̂,u,ω,υ, ε, ζ) satisfying (8.19) and (8.25)–(8.28),

ζ = G(ξ̂), and (ξ(0), ξ) ∈ S , we also satisfy

a1|ζ|2 ≤ V (ξ̂) ≤ a2|ζ|2 (8.31a)

V (ξ̂+) ≤ V (ξ̂)− a3|ζ|2 + a4|(ε, ε+)|2 + σ(|ω|) (8.31b)

c1|ε|2 ≤ Vε(ξ, ξ̂) ≤ c2|ε|2 (8.31c)

Vε(ξ
+, ξ̂+) ≤ Vε(ξ, ξ̂)− c3|ε|2 + c4|ζ|2 + σε(|ω|). (8.31d)

Then the system (8.19) and (8.25)–(8.27) is RES in S w.r.t. ζ .

8.3 Nominal offset-free performance

In this section, we consider the application of offset-free MPC to the model (8.2) in the

nominal case (i.e., without estimate errors or setpoint and disturbance changes). Consider the
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following modeled closed-loop system:

x+ = fc(x, β) := f(x, κN(x, β), d) (8.32a)

y = hc(x, β) := h(x, κN(x, β), d) (8.32b)

r = gc(x, β) := g(κN(x, β), hc(x, β)) (8.32c)

where (x, β) := (x, rsp, usp, ysp, d) ∈ SN . For each ρ > 0 and β ∈ B, we define the candidate

domain of stability

X ρ
N(β) := levρV

0
N(·, β). (8.33)

In the following theorem, we establish nominal stability and offset-free performance of the

modeled closed-loop system (8.32), under Assumptions 8.4 to 8.8 and with constant, known

setpoints ssp = (rsp, usp, ysp) and disturbance d.

Theorem 8.29. Suppose Assumptions 8.4 to 8.8 hold. Let ρ > 0.

(a) For each compact Bc ⊆ B, there exist constants a1, a2, a3 > 0 such that

a1|x− xs(β)|2 ≤ V 0
N(x, β) ≤ a2|x− xs(β)|2 (8.34a)

V 0
N(fc(x, β), β) ≤ V 0

N(x, β)− a3|x− xs(β)|2 (8.34b)

for all x ∈ X ρ
N(β) and β ∈ Bc.

(b) For each β ∈ B, the system (8.32a) is ES onX ρ
N(β) with respect to the target-tracking error

δx := x− xs(β).

(c) For each β = (rsp, usp, ysp, d) ∈ B, the system (8.32a) is AS on X ρ
N(β) with respect to

(δr, δx), where δr := gc(x, β)− rsp is the setpoint-tracking error.

(d) If g and h are Lipschitz continuous on bounded sets, then part (c) can be upgraded to ES.

We include a proof of Theorem 8.29 in Appendix 8.B.1. Two details of the proof are re-
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quired for the subsequent results. First, from (Rawlings et al., 2020, Prop. 2.4), we have

VN(fc(x, β), ũ(x, β), β) ≤ V 0
N(x, β)− ℓ(x, κN(x, β), β) (8.35)

for all (x, β) ∈ SN , where

ũ(x, β) := (u0(1;x, β), . . . , u0(N − 1;x, β), κf (x
0(N ;x, β), β)) (8.36)

is a suboptimal sequence for x+ := fc(x, β). Second, for each (x, β) ∈ SN , the suboptimal

sequence ũ(x, β) steers the system from fc(x, β) to the terminal constraint Xf (β) in N − 1

moves and keeps it there (by Assumption 8.7). Therefore ũ(x, β) ∈ UN(fc(x, β), β) and

fc(x, β) ∈ XN(β).

Remark 8.30. Theorem 8.29(a) provides Lyapunov bounds that are uniform in the SSTP pa-

rameters β on compact subsets Bc ⊆ B. This implies a guaranteed decay rate λ ∈ (0, 1) for

the deviation of the state from its target x−xs(β), although this guaranteed rate may become

arbitrarily close to 1 as we expand the size of the compact set Bc.

8.4 Offset-free performance without mismatch

In this section, we show offset-free MPC (without plant-model mismatch) is robust to

estimate errors and setpoint and disturbance changes. We assume the actual plant evolves

according to the noisy model equations (8.16). We assume the setpoints evolve according to

s+sp = ssp +∆ssp (8.37)

where ssp := (rsp, usp, ysp) and ∆ssp := (∆rsp,∆usp,∆ysp). At each time, we define β :=

(ssp, d) and ∆β := (∆ssp, wd) and sometimes write β+ = β + ∆β. Taking the approach
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of (Rawlings et al., 2020, Sec. 4.6), the estimate error system evolves as

x̂+ = f(x̂+ ex, u, d̂+ ed) + w − e+x (8.38a)

d̂+ = d̂+ ed + wd − e+d (8.38b)

y = h(x̂+ ex, u, d̂+ ed) + v. (8.38c)

We lump the perturbation terms from (8.37) and (8.38) into a single disturbance variable,

defined as d̃ := (e, e+,∆ssp, w̃). To ensure the noise does not result in unphysical states,

disturbances, or measurements, we define the set of admissible perturbations as

D̃(x̂, u, d̂) := { d̃ = (ex, ed, e
+
x , e

+
d ,∆ssp, w̃) | (8.38),

(x̂+, d̂+) ∈ X× D, w̃ ∈ W̃(x̂+ ex, u, d̂+ ed) }

for each (x̂, u, d̂) ∈ X×U×D. The closed-loop estimate error system, defined by (8.6), (8.14),

(8.15), (8.37), and (8.38), evolves as

x̂+ = f̂c(x̂, β̂, d̃) := f(x̂+ ex, κN(x̂, β̂), d̂+ ed) + w − e+x (8.39a)

β̂+ = f̂β,c(β̂, d̃) :=

[
ssp +∆ssp

d̂+ ed + wd − e+d

]
(8.39b)

y = ĥc(x̂, β̂, d̃) := h(x̂+ ex, κN(x̂, β̂), d̂+ ed) + v

r = ĝc(x̂, β̂, d̃) := g(κN(x̂, β̂), hc(x̂, β̂, d̃))

where β̂ := (ssp, d̂).
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8.4.1 Steady-state target problem assumptions

Even with bounds on the estimate errors and setpoint and disturbance changes, there are

no guarantees the SSTP (8.6) is feasible at all times. Moreover, there is no guarantee the SSTP

solutions themselves are robust to disturbance estimate errors. To guarantee robust feasibility

of the SSTP (8.6) and robustness of the targets themselves, wemake the following assumption.

Assumption 8.31. There exists a compact set Bc ⊆ B and constant δ0 > 0 such that

(i) B̂c := { (s, d̂) | (s, d) ∈ Bc, |ed| ≤ δ0, d̂ := d− ed ∈ D } ⊆ B; and

(ii) zs is continuous on B̂c.

Assumption 8.31(i) guarantees robust feasibility of the SSTP so long as β ∈ B∞
c and

∥ed∥ ≤ δ0. Whenever Assumption 8.31(i) is satisfied, it is convenient to define

D̃c(x̂, β̂) := { d̃ ∈ D̃(x̂, κN(x̂, β̂), β̂) | f̂β,c(β̂, d̃) ∈ B̂c }

for each (x̂, β̂) ∈ SN . As long as the disturbance always lies in D̃(x̂, β̂), the SSTP is feasible

at all times.

In the following lemma, we show Assumption 8.31 holds for some Bc = δBnβ
when a

rank condition is satisfied by the system linearized at the origin (see Appendix 8.C for proof).

Lemma 8.32. Suppose Assumptions 8.4 and 8.5 hold, each of the setsX,U,D contain neighbor-

hoods of the origin, the functions f, g, h, ℓs are twice continuously differentiable, ℓs(0, 0) = 0,

∂(u,y)ℓs(0, 0) = 0, ∂2(u,y)ℓs(0, 0) is positive definite,

M1 :=

[
A− I B
HyC HyD +Hu

]
(8.40a)
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is full row rank, and (A,C) is detectable, where

A := ∂xf(0, 0, 0), B := ∂uf(0, 0, 0), (8.40b)

C := ∂xh(0, 0, 0), D := ∂uh(0, 0, 0), (8.40c)

Hy := ∂yg(0, 0), Hu := ∂ug(0, 0). (8.40d)

Then there exists a compact set Bc ⊆ B and a function zs : B → X × U satisfying all parts

of Assumption 8.31. Moreover, zs(β) uniquely solves (8.6) for all β ∈ B̂c.

8.4.2 Robust stability

In Proposition 8.33, we establish recursive feasibility of the FHOCP given feasibility of

the SSTP at each time for sufficiently small d̃ ∈ D̃c(x̂, β̂). For brevity, we defer the proof to

Appendix 8.B.2. However, we sketch the proof as follows. First, we show the suboptimal input

sequence ũ(x, β̂) is recursively feasible. Second, we establish a cost decrease of the form

VN(x̂
+, ũ(x̂, β̂), β̂+) ≤ V 0

N(x̂, β̂)− a3|δx̂|2 + σr(|d̃|) (8.41)

where a3 > 0, σr ∈ K∞, and δx̂ := x̂− xs(β̂) is the target-tracking error. Third, we use this

cost decrease to show the FHOCP is recursively feasible.

Proposition 8.33. Suppose Assumptions 8.4 to 8.8 and 8.31 hold and let ρ > 0. There exists

σr ∈ K∞ and a3, δ > 0 such that

(a) ũ(x̂, β̂) ∈ UN(x̂+, β̂+),

(b) (8.41) holds, and

(c) x̂+ ∈ X ρ
N(β̂

+),

for all β̂ ∈ B̂c, x̂ ∈ X ρ
N(β̂) and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ , where (x̂+, β̂+) are defined as in (8.39).
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Finally, we present the main result of this section.

Theorem 8.34. Suppose Assumptions 8.4 to 8.8 and 8.31 hold and let ρ > 0. There exists δ > 0

such that

(a) the following set is RPI for the closed-loop system (8.39) with disturbance d̃ ∈ D̃c(x̂, β̂) ∩

δBnd̃ :

Ŝρ
N := { (x̂, β̂) ∈ SN | x̂ ∈ X ρ

N(β̂), β̂ ∈ B̂c } ; (8.42)

(b) there exist ai > 0, i ∈ I1:3 and σr ∈ K∞ such that

a1|δx̂|2 ≤ V 0
N(x̂, β̂) ≤ a2|δx̂|2 (8.43a)

V 0
N(x̂

+, β̂+) ≤ V 0
N(x̂, β̂)− a3|δx̂|2 + σr(|d̃|) (8.43b)

for all (x̂, β̂) ∈ Ŝρ
N and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ , given (8.39) and δx̂ := x̂− xs(β̂);

(c) the closed-loop system (8.39) with disturbance d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ is RES on Ŝρ
N with

respect to the target-tracking error δx̂ := x̂− xs(β̂);

(d) the closed-loop system (8.39) with disturbance d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ is RAS on Ŝρ
N with

respect to (δr, δx̂), where δr := ĝc(x̂, β̂, d̃) − rsp is the setpoint-tracking error and β̂ =

(rsp, usp, ysp, d̂); and

(e) if g and h are Lipschitz continuous on bounded sets, then part (d) can be upgraded to RES.

To prove Theorem 8.34(d,e), we require the following proposition (see Appendix 8.B.3 for

proof).

Proposition 8.35. Let Assumptions 8.4 to 8.8 hold, ρ, δ > 0, and Bc ⊆ B be compact. There

exist σr, σg ∈ K∞ such that

|gc(x̂, β̂)− rsp| ≤ σr(|x̂− xs(β̂)|) (8.44a)

|ĝc(x̂, β̂, d̃)− rsp| ≤ |gc(x̂, β̂)− rsp|+ σg(|d̃|) (8.44b)
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for all x̂ ∈ X ρ
N(β), β̂ = (rsp, zsp, d) ∈ Bc, and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ . If g and h are Lipschitz on

bounded sets, then we can take σr(·) := cr(·) and σg(·) := cg(·) for some cr, cg > 0.

Proof of Theorem 8.34. (a)—If (x̂, β̂) ∈ ŜN and d̃ ∈ D̃c(x̂, β̂), then β̂
+ := f̂β,c(β̂, d̃) ∈ B̂c

by construction of D̃c(x̂, β̂), and by Proposition 8.33(c), there exists δ > 0 such that x̂+ :=

f̂c(x̂, β̂, d̃) ∈ X ρ
N(β̂) so long as |d̃| ≤ δ.

(b)—Theorem 8.29 gives (8.43a), and Proposition 8.33(a,b) and the principle of optimality

give (8.43b).

(c)—This follows from part (b) due to Theorem 8.23.

(d)—Let (x̂, β̂, d̃, r) satisfy (8.39), (x̂(0), β̂(0)) ∈ Ŝρ
N , d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ , and r =

ĝc(x̂, β̂, d̃). Define δr := r − rsp and δr̂ = gc(x̂, β̂)− rsp where β̂ = (rsp, zsp, d̂). Then

α1(|δr̂|) := a1[σ
−1
r (|δr̂|)]2 ≤ a1|δx̂|2 ≤ V 0

N(x̂, β̂)

by Proposition 8.35 and part (b). Moreover, V 0
N is an ISS Lyapunov function on Ŝρ

N with

respect to (δr̂, δx̂), and RAS on Ŝρ
N with respect to (δr̂, δx̂) follows by Theorem 8.23. Then

RAS w.r.t. (δr̂, δx̂) and (Rawlings and Ji, 2012, Eq. (1)) gives

|δr(k)| ≤ σr(|δr̂(k)|) + σg(|d̃(k)|)

≤ σr(cλ
k|δx̂(0)|+ γ(∥d̃∥0:k−1)) + σg(|d̃(k)|)

≤ σr(2cλ
k|δx̂(0)|) + σr(2γ(∥d̃∥0:k−1)) + σg(|d̃(k)|)

≤ σr(2cλ
k|δx̂(0)|) + (σr ◦ 2γ + σg)(∥d̃∥0:k)

=: βr(|δx̂(0)|, k) + γr(∥d̃∥0:k) (8.45)

for all k ∈ I≥0 and some c > 0, λ ∈ (0, 1), and γ ∈ K.

(e)—If g and h are Lipschitz continuous on bounded sets, then by Proposition 8.35, we can

repeat part (d) with σr(·) := cr(·) and some cr > 0.
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8.5 Offset-free MPC under mismatch

In this section, we show offset-free MPC, despite (sufficiently small) plant-model mismatch,

is robust to setpoint and disturbance changes. We consider the plant (8.1), setpoint dynam-

ics (8.37), and plant disturbance dynamics

w+
P
= wP +∆wP. (8.46)

With α := (ssp, wP) and ∆α := (∆ssp,∆wP), we have the relationship α
+ = α + ∆α. The

SSTP and regulator are designed with the model (8.2), and the estimator is designed with the

noisy model (8.16).

8.5.1 Target selection under mismatch

With plant-model mismatch, the connection between the steady-state targets and plant

steady states becomes more complicated. To guarantee there is a plant steady state providing

offset-free performance and that we can align the plant and model steady states using the

disturbance estimate, we make the following assumptions about the SSTP.

Assumption 8.36. There exist compact setsAc ⊆ Rnr ×Zy×W and Bc ⊆ B containing the

origin, continuous functions (xP,s, ds) : Ac → X× D, and a constant δ0 > 0 for which

(a) B̂c (as defined in Assumption 8.31) is contained in B;

(b) zs is Lipschitz continuous on B̂c;

(c) for each α = (ssp, wP) ∈ Ac, the pair (xP,s, ds) = (xP,s(α), ds(α)) is the unique solution

to

xP,s = fP(xP,s, us(ssp, ds), wP) (8.47a)

ys(ssp, ds) := hP(xP,s, us(ssp, ds), wP) (8.47b)
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where ys(ssp, ds) := h(xs(ssp, ds), us(ssp, ds), ds);

(d) (ssp, ds(ssp, wP)) ∈ Bc for all (ssp, wP) ∈ Ac; and

(e) (ssp, 0) ∈ Ac for all (ssp, wP) ∈ Ac.

For each α = (ssp, wP) ∈ Ac, Assumption 8.36 guarantees there is a unique model dis-

turbance ds(α) to estimate and the SSTP (8.6) is robustly feasible at β = (ssp, ds(α)). Of

course, the system cannot be stabilized for unbounded plant-model mismatch. Given As-

sumption 8.36, we define

Ac(δw) := { (ssp, wP) ∈ Ac | |wP| ≤ δw }

Ac(α, δw) := {∆α ∈ Rnα | α +∆α ∈ Ac(δw) } .

Then Ac(δw) is RPI for the system α+ = α + ∆α,∆α ∈ A(α, δw), and if ∥ed∥ ≤ δ0, then

β̂ = (ssp, ds(α)− ed) ∈ B̂c and the SSTP is feasible at all times.

Assumption 8.36 can be verified through a linearization analysis that is similar to the

standard linear offset-free conditions (Muske and Badgwell, 2002; Pannocchia and Rawlings,

2003) (see Appendix 8.C for proof).

Lemma 8.37. Suppose the conditions of Lemma 8.32 hold, fP, hP are twice continuously differ-

entiable, and

M2 :=

[
A− I Bd

C Cd

]
(8.48)

is invertible, given the definitions (8.40), Bd := ∂df(0, 0, 0), and Cd := ∂dh(0, 0, 0). Then

there exist compact sets Ac ⊆ Rnr × Zy ×W and Bc ⊆ B containing neighborhoods of the

origin and functions zs : B → X × U and (xP,s, ds) : Ac → X × D satisfying all parts

of Assumption 8.36. Moreover, zs(β) and (xP,s(α), ds(α)) are the unique solutions to (8.6) and

(8.47) for all α = (ssp, wP) ∈ Ac and β := (ssp, ds(α)).
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8.5.2 State estimation and regulation under mismatch

Given Assumption 8.36, we can define a “true” model state as x := xP − ∆xs(α) where

∆xs := xP,s(α) − xs(ssp, ds(α)) and α = (ssp, wP). Then the plant (8.1) can be rewritten in

terms of the model state x as

x+ = fP(x+∆xs(α), u, wP)−∆xs(α
+) (8.49a)

y = hP(x+∆xs(α), u, wP). (8.49b)

Alternatively, the plant can be written as (8.16), where

w := fP(x+∆xs(α), u, wP)− f(x, u, ds(α))−∆xs(α
+) (8.50a)

wd := ds(α
+)− ds(α) (8.50b)

v := hP(x+∆xs(α), u, wP)− h(x, u, ds(α)). (8.50c)

Clearly w̃ := (w,wd, v) ∈W(x, u, d) by construction. Under Assumption 8.15, the state and

disturbance estimator (8.15) is RGES for the constructed model state x and noise vector w̃.

The noise vector w̃ is still a function of themodel state x, input u, and steady-state parame-

ters α. Therefore, we bound it by more manageable variables, i.e., the tracking error z−zs(β),

estimate errors e, plant disturbance wP, and changes to the plant steady-state parameters∆α.

To this end, the following differentiability assumption is required.

Assumption 8.38. The derivatives ∂(x,u)fP and ∂(x,u)hP exist and are continuous on X×U×

W. The functions f, h and g are continuously differentiable on X× U× D and U× Y.

Remark 8.39. Assumption 8.38 implies f, h are Lipschitz continuous on bounded sets.
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Consider the closed-loop system

x+ = fP(x+∆xs(α), κN(x̂, β̂), wP)−∆xs(α
+) (8.51a)

α+ = α +∆α (8.51b)

y = hP(x+∆xs(α), κN(x̂, β̂), wP). (8.51c)

In the following propositions, we establish cost decreases for estimator and regulator Lya-

punov functions for (8.51) (see Appendices 8.B.4 and 8.B.5 for proofs).

Proposition 8.40. Suppose Assumptions 8.4 to 8.8, 8.15, 8.36, and 8.38 hold. Let ρ > 0. There

exist ĉ3, δw > 0 and σ̂w, σ̂α ∈ K∞ such that

V +
e ≤ Ve − ĉ3|e|2 + σ̂w(|wP|)|δx̂|2 + σ̂α(|∆α|) (8.52)

so long as (x̂, β̂) ∈ Ŝρ
N , x ∈ X, α = (ssp, wP) ∈ Ac(δw), ∆α = (∆ssp,∆wP) ∈ Ac(α, δw), and

|e|, |e+| ≤ δ0, where Ve(k) := Ve(x(k), ds(α(k)), x̂(k), d̂(k)), (8.17), (8.50), and (8.51).

Proposition 8.41. Let Assumptions 8.4 to 8.8, 8.36, and 8.38 hold and ρ > 0. There exist

ã3, ã4, δ, δw > 0 and σ̃α ∈ K∞ such that

V 0
N(x̂

+, β̂+) ≤ V 0
N(x̂, β̂)− ã3|δx̂|2 + ã4|(e, e+)|2 + σα(|∆α|) (8.53)

so long as (x̂, β̂) ∈ Ŝρ
N , x ∈ X, α = (ssp, wP) ∈ Ac(δw), ∆α = (∆ssp,∆wP) ∈ Ac(α, δw), and

|d̃| ≤ δ, where d̃ := (e, e+,∆ssp, w̃), (8.17), (8.50), and (8.51).

8.5.3 Main result

Finally, we state the main result of this section.
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Theorem 8.42. Suppose Assumptions 8.4 to 8.8, 8.15, 8.36, and 8.38 hold and let ρ > 0. There

exists τ, δw, δα > 0 such that, with

Sρ,τ
N := { (x, α, x̂, β̂) ∈ X×Ac × Ŝρ

N | Ve(x, ds(α), x̂, d̂) ≤ τ, α = (ssp, wP), β̂ = (ssp, d̂) }

the following statements hold:

(a) the set Sρ,τ
N is RPI for the closed-loop system (8.15) and (8.51) with the disturbance ∆α ∈

Ac(α, δw) ∩ δαBnα ;

(b) the closed-loop system (8.15) and (8.51) with the disturbance ∆α ∈ Ac(α, δw) ∩ δαBnα is

RES on Sρ,τ
N with respect to the target-tracking error δx̂ := x̂− xs(β̂); and

(c) the closed-loop system (8.15) and (8.51) with the disturbance ∆α ∈ Ac(α, δw) ∩ δαBnα is

RES on Sρ,τ
N with respect to (δr, δx̂), where δr := r − rsp is the setpoint-tracking error,

α = (rsp, usp, ysp, wP), r = g(κN(x̂, β̂), y), and (8.51c).

Proof. (a)—We already have that (x̂, β̂) ∈ Ŝρ
N and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd

implies (x̂+, β̂+) ∈

Ŝρ
N for some δ > 0. To keep the trajectory of (x, α, x̂, β̂) in Sρ,τ

N at all times, it suffices

to show there exist τ, δw, δα > 0 such that α ∈ Ac(δw), ∆α ∈ Ac(α, δw) ∩ δαBnα
, and

Ve := Ve(x, ds(α), x̂, d̂) ≤ τ implies V +
e := Ve(x

+, x̂+) ≤ τ and |(e, e+, w)| ≤ δ.

By Propositions 8.40 and 8.49 (in Appendix 8.B.5), there exist constants ĉ3, c̃e, δw > 0 and

functions σ̂w, σ̂α, σ̃w, σ̃α ∈ K∞ satisfying (8.52) and

|d̃|2 ≤ c̃e|(e, e+)|2 + σ̃w(|wP|)|δx̂|2 + σ̃α(|∆α|) (8.54)

so long as α = (ssp, wP) ∈ Ac(δw) and ∆α ∈ Ac(α, δw).

Assume, without loss of generality, that δw < ( 4c2c̃3
a1c1ĉ3

σ̂w + σ̃w)
−1(a1δ

2

ρ
), which implies
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2c2σ̂w(δw)ρ
a1ĉ3

<
(
δ2 − σ̃w(δw)ρ

a1

)
c1
2c̃e

and
σ̃w(δw)ρ

a1
< δ2. Then we can take

τ ∈
(
2c2σ̂w(δw)ρ

a1ĉ3
,

(
δ2 − σ̃w(δw)ρ

a1

)
c1
2c̃e

)

which implies
τ ĉ3
2c2

> σ̂w(δw)ρ
a1

and δ2 > 2c̃eτ
c1

+ σ̃w(δw)ρ
a1

.

From (8.52), we have

V +
e ≤


τ
2
+ σ̂w(δw)ρ

a1
+ σ̂α(|∆α|), Ve ≤ τ

2

τ − τ ĉ3
2c2

+ σ̂w(δw)ρ
a1

+ σ̂α(|∆α|), τ
2
< Ve ≤ τ.

But ĉ3 ≤ c2 (otherwise we could show Ve < 0 with wP = 0, ∆α = 0, and e ̸= 0) so

τ
2
≥ τ ĉ3

2c2
> σ̂w(δw)ρ

a1
and we have V +

e ≤ τ so long as |∆α| ≤ δα,1 := σ̂−1
α ( τ ĉ3

2c2
− σ̂w(δw)ρ

a1
), which

is positive by construction. Moreover, Ve, V
+
e ≤ τ implies |(e, e+)|2 = |e|2 + |e+|2 ≤ 2τ

c1
and

by (8.54),

|d̃|2 ≤ c̃e|(e, e+)|2 + σ̃w(|wP|)|x̂− xs(β̂)|2 + σ̃α(|∆α|)

≤ 2c̃eτ

c1
+ σ̃w(δw)ρ

2 + σ̃α(δα)

≤ δ2

so long as |∆α| ≤ δα,2 := σ̃−1
α (δ2− 2c̃eτ

c1
− σ̃w(δw)ρ

a1
), which exists and is positive by construction.

Finally, we can take δα := min { δα,1, δα,2 } to achieve (x, α, x̂, β̂) ∈ Sρ,τ
N at all times.

(b)—From part (a), we already have τ, δw, δα > 0 such that Sρ,τ
N is RPI. By Assumption 8.15

and Theorem 8.34 we have (8.18a) and (8.43a) at all times for some a1, a2, c1, c2 > 0. By

Propositions 8.40 and 8.41, there exist ĉ3, ã3, ã4 > 0 and σ̂w, σ̂α, σα ∈ K∞ such that (8.52) and

(8.53) at all times. Assume, without loss of generality, that δw < σ̂−1
w (min { c1ã3

ã4
, a3ĉ3

a4

c1
c1+c2

}).

By Theorem 8.28, the system is RES on Sρ,τ
N w.r.t. δx̂.
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(c)—By Proposition 8.35, there exist cr, cg > 0 such that |δr| ≤ cr|δx̂| + cg|d̃| where

d̃ := (e, e+,∆ssp, w̃). Combining this inequality with (8.18a), (8.52), and (8.54) gives

|δr| ≤ cr,x|δx̂|+ cr,e|e|+ γ̃r(|∆α|)

where cr,x := cr + cg(
√
σ̃α(δw) +

√
c̃eσ̂α(δw)), cr,e := cg

√
c̃e(1 +

√
c2 − ĉ3), and γ̃r :=

cg(
√
σ̃α +

√
c̃eσ̂α). Then

|(δr, e)| ≤ c̃r|(δx̂, e)|+ γ̃r(|∆α|)

where c̃r := cr,x + cr,e + 1. Finally, RES w.r.t. δx̂ gives

|(δx̂(k), e(k))| ≤ c̃λk|(δx̂(0), e)|+
k∑

j=0

λj γ̃(|∆α(k − j)|)

for some c̃ > 0, λ ∈ (0, 1), and γ̃ ∈ K, and therefore

|(δr(k), e(k))| ≤ c̃r|(δx̂(k), e(k))|+ γ̃r(|∆α(k)|)

≤ cλk|(δx̂(0), e)|+
k∑

j=0

λjγ(|∆α(k − j)|)

where c := c̃rc̃ > 0 and γ := c̃rγ̃ + γ̃r ∈ K∞.

8.6 Examples

In this section, we illustrate the main results using the example systems depicted in Fig-

ure 8.1. We compare two MPCs in our experiments.
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θ = 0

ℓ

m

θ

FT

Fg

(a) Simple pendulum

F0, T0, c0

Fc, Tc

F0 T, c

(b) Continuous stirred-tank reactor

Figure 8.1: Example systems.

Offset-free MPC The offset-free MPC (OFMPC) uses (8.6) and (8.14) and the following

MHE problem:

min
(x,d)∈XTk+1×DTk+1

V MHE

T (x,d,u,y) (8.55)

where Tk := min { k, T }, T ∈ I>0, and

V MHE

T (x,d,u,y) :=

Tk−1∑
j=0

|xj+1 − f(xj, u(j), dj)|2Q−1
w

+ |dj+1 − dj|2Q−1
d

+ |y(j)− h(xj, u(j), dj)|2R−1
v
. (8.56)

For simplicity, a prior term is not used. Let x̂(j;u,y) and d̂(j;u,y) denote solutions to the

above problem, and define the estimates by

x̂(k) := x̂(k;uk−Tk:k−1,yk−Tk:k−1), d̂(k) := d̂(k;uk−Tk:k−1,yk−Tk:k−1).
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Tracking MPC The nominal tracking MPC (TMPC) uses (8.6) and (8.14) and the following

MHE problem:

min
x∈XTk+1

V MHE

T (x, 0,uk−Tk:k−1,yk−Tk:k−1) (8.57)

With solutions denoted by x̂(j;u,y), we define the estimates by

x̂(k) := x̂(k;uk−Tk:k−1,yk−Tk:k−1), d̂(k) := 0.

We also construct, in the proof of the following lemma, terminal ingredients satisfying

Assumption 8.7.

Lemma 8.43. Suppose Assumptions 8.4 to 8.6 and 8.31 hold with B = B̂c and nc = 0, let

Q ∈ Rn×n and R ∈ Rnu×nu be positive definite, and ∂2(x,u)fi, i ∈ I1:n exist and are bounded on

X× U× D. For each β = (rsp, usp, ysp, d) ∈ B, let

A(β) := ∂xf(zs(β), d), B(β) := ∂uf(zs(β), d).

If (A(β), B(β)) is stabilizable for each β ∈ B, then there exist functions κf : X × B and

Pf : B → Rn×n, and a constant cf > 0 satisfying Assumptions 8.7 and 8.8.

Proof. Throughout this proof, we let β = (rsp, usp, ysp, β) ∈ B. Since (A(β), B(β)) is stabiliz-

able, there exists a positive definite P (β) that uniquely solves the following discrete algebraic

Riccati equation,

P = A⊤PA+Q− A⊤PB(B⊤PB +R)−1B⊤PA

where dependence on β has been suppressed for brevity. The solution P is continuous at

each (A,B,Q,R) such that (A,B) is stabilizable and (Q,R) are positive definite (Sun, 1998).4

4
In fact, Sun (1998) only needed (A,Q1/2) detectable to derive perturbation bounds. But Assumption 8.8
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Moreover, since f is twice differentiable and (xs, us) are continuous on B, then (A,B) must

be continuous on B. Therefore P is continuous on B and Assumption 8.8 holds for Pf (β) :=

2P (β).

Next, withK := PB(B⊤PB+R)−1
, AK := A−BK , andQK := Q+K⊤RK , we have

A⊤
KPfAK − Pf = −2QK , where dependence on β has been suppressed for brevity. Then

Vf (x
+, β)− Vf (x, β) ≤ −2|δx|2QK(β) (8.58)

where x+ := AK(β)δx+xs(β) and δx := x−xs(β). Since the second derivatives ∂2(x,u)fi, i ∈

I1:n are bounded, there exists c > 0 (independent of β) such that |x+ − x+| ≤ c|δx|2 where

x+ := f(x, κf (x, β), d) and κf (x, β) := −K(β)δx + us(β).
5

Therefore, with a(β) :=

2cσ([AK(β)]
⊤Pf (β)) and b(β) := c2σ(Pf (β)), we have

|Vf (x+, β)− Vf (x+, β)| ≤ a(β)|δx|3 + b(β)|δx|4 (8.59)

and combining (8.58) with (8.59), we have

Vf (x
+, β)− Vf (x, β) + ℓ(x, κf (x, β), β)

≤ −|δx|2QK(β) + Vf (x
+, β)− Vf (x+, β)

≤ −[c(β)− b(β)|δx| − a(β)|δx|2]|δx|2 (8.60)

where c(β) := σ(QK(β)). The polynomial pβ(s) = c(β) − b(β)s − a(β)s2 has roots at

s±(β) =
−b(β)±

√
[b(β)]2+4a(β)c(β)

2a(β)
and is positive in between. Moreover, s± are continuous

over B because (a, b, c) are as well, and s±(β) are positive and negative, respectively. Define

cf := minβ∈B σ(Pf (β))[s+(β)]
2
which exists and is positive due to continuity and positiv-

guarantees positive definiteness of Q, so we get this automatically.

5
This follows by applying Taylor’s theorem to e(x, β) := x+ − x+

at (xs(β), d) and noting the intercept

and first derivative (in x) is zero.
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ity of x+ and σ(Pf (·)) and compactness of B. Finally, we have that Vf (x, β) ≤ cf implies

σ(Pf (β))|δx|2 ≤ Vf (x, β) ≤ cf and therefore |δx| ≤
√

cf
σ(Pf (β))

≤ s+(β) and (8.60) implies

Assumption 8.7 with Pf (β) and cf > 0 as constructed.

8.6.1 Simple pendulum

Consider the following nondimensionalized pendulum system (Figure 8.1a):

ẋ = FP(x, u, wP) :=

[
x2

sinx1 − (wP)
2
1x2 + (k̂ + (wP)2)u+ (wP)3

]
(8.61a)

y = hP(x, u, wP) := x1 + (wP)4 (8.61b)

r = g(u, y) := y (8.61c)

where (x1, x2) ∈ X := R2
are the angle and angular velocity, u ∈ U := [−1, 1] is the

(dimensionless) motor voltage, k̂ = 5 rad/s2 is the estimated motor gain, (wP)1 is an air

resistance factor, (wP)2 is the error in the motor gain estimate, (wP)3 is an externally applied

torque, and (wP)4 is the measurement noise. Let ψ(t;x, u, wP) denote the solution to (8.61) at

time t given x(0) = x, u(t) = u, and wP(t) = wP. We model the discretization of (8.61) by

x+ = fP(x, u, wP) := x+∆FP(x, u, wP) + (wP)5rd(x, u, wP) (8.62a)

where (wP)5 scales the discretization error, rd is a residual function given by

rd(x, u, wP) :=

∫ ∆

0

[FP(x(t), u, wP)− FP(x, u, wP)]dt (8.62b)

and x(t) = ψ(t;x, u, wP). Assuming a zero-order hold on the input u and disturbance wP,

the system (8.61) is discretized (exactly) as (8.62) with (wP)5 ≡ 1. We model the system with
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wP = w(d) := (0, 0, d, 0, 0), i.e.,

x+ = f(x, u, d) := fP(x, u, w(d)) = x+∆

[
x2

sinx1 + k̂u+ d

]
(8.63a)

y = h(x, u, d) := hP(x, u, w(d)) = x1 (8.63b)

and therefore we do not need access to the residual function rd to design the offset-free MPC.

For the following simulations, assume wP ∈W := [−3, 3]3 × [−0.05, 0.05]× { 0, 1 }, and

let the sample time be∆ = 0.1 s. Regardless of objective ℓs, the SSTP (8.6) is uniquely solved

by

xs(β) :=

[
rsp
0

]
, us(β) := −

1

k̂
(sin rsp + d)

for each β = (rsp, usp, ysp, d) ∈ Bc, where

Bc := { (r, u, y, d) ∈ R4 | | sin r + d|, | sin y + d| ≤ k̂, |u| ≤ 1 }

and δ0 > 0. Likewise, the solution to (8.47) is

xP,s(α) :=

[
rsp
0

]
, ds(α) :=

k̂(wP)3 − (wP)2 sin rsp

k̂ + (wP)2
(8.64)

for each α = (rsp, usp, ysp, wP) ∈ Ac, where

Ac := { (r, u, y, w) ∈ R3 ×W | | sin r + (wP)3|, | sin y + (wP)3| ≤ k̂ + (wP)2, |u| ≤ 1 } .

Notice that Ac and Bc are compact and satisfy Assumption 8.36. We define a regulator with

N := 20, U := [−1, 1], ℓs(u, y) = |u|2 + |y|2, ℓ(x, u,∆u, β) := |x − xs(β)|2 + 10−2(u −
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us(β))
2 + 102(∆u)2,6 Vf (x, β) := |x − xs(β)|2Pf (β)

, and Xf := levcfVf , where Pf (β) and

cf ≈ 0.4364 are chosen according to the proof of Lemma 8.43 to satisfy Assumptions 8.7

and 8.8. Assumption 8.5 is satisfied trivially and Assumptions 8.4, 8.36, and 8.38 are satisfied

since smoothness of F implies that ψ, r, and f are smooth (Hale, 1980, Thm. 3.3). Finally,

we use MHE designs (8.55) and (8.57) for the offset-free MPC and tracking MPC, respectively,

where T = 5, Qw :=
[
10−3

10−6

]
, and Qd := Rv := 1. While the estimators defined by

(8.55) and (8.57) should be RGES (Allan and Rawlings, 2021), it is not known if they satisfy

Assumption 8.15. If Assumption 8.15 is satisfied, then Theorem 8.42 gives robust stability

with respect to the tracking errors.

We present the results of numerical experiments in Figure 8.2. To ensure numerical accu-

racy, the plant (8.61) is simulated by four 4th-order Runga-Kutta steps per sample time. Unless

otherwise specified, we consider, in each simulation, unmodeled air resistance (wP)1 ≡ 1, mo-

tor gain error (wP)2 ≡ 2, an exogenous torque (wP)3(k) = 3H(k − 240), the discretization

parameter (wP)4 ≡ 1, no measurement noise (wP)5 ≡ 0, and a reference signal rsp(k) =

πH(5 − k) + π
2
H(k − 120), where H denotes the unit step function. The setpoint brings

the pendulum from the resting state x1 = π, to the upright position x1 = 0, to the half-way

position x1 =
π
2
.

In the first experiment, we consider the case without plant-model mismatch, i.e., (wP)1 ≡

0 and (wP)2 ≡ 0 (Figure 8.2a). Both offset-free and tracking MPC remove offset after the

setpoint changes. However, only offset-free MPC removes offset after the disturbance is in-

jected. Without a disturbance model, the tracking MPC cannot produce useful steady-state

targets, and the pendulum drifts far from the setpoint. Moreover, the tracking MPC produces

pathological state estimates, with nonzero velocity at steady state.

The second experiment considers the case with plant-model mismatch, i.e., (wP)1 ≡ 1

6
The∆u(k) := u(k)− u(k− 1) penalty is a standard generalization used by practitioners to “smooth” the

closed-loop response in a tuneable fashion.
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(b) Mismatch: (wP)1 ≡ 1 and (wP)2 ≡ 2.
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(c) Noise and mismatch: (wP)
+
3 = (wP)3 + (∆wP)3,

(∆wP)3 ∼ N(0, 10−2), and (wP)4 ∼ N(0, 10−4).
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(d) Oscillating disturbance and mismatch: (wP)3(k) =
1− cos( 2πk50 ) and rsp(k) ≡ π.

Figure 8.2: Simulated closed-loop trajectories for the offset-free MPC and tracking MPC of

(8.61). Solid blue and dot-dashed orange lines represent the closed-loop estimates and inputs

(x̂, d̂, u) for the offset-free MPC and tracking MPC. Dashed blue and dotted orange lines

represent the closed-loop plant states xP for the offset-free MPC and tracking MPC. Dotted

black lines represent the intended steady-state targets and disturbance values (xP,s, ds, us)
found by solving (8.6) and (8.47). We set (wP)1 ≡ 1, (wP)2 ≡ 2, (wP)3(k) = 3H(k − 240),
(wP)4 ≡ 1, (wP)5 ≡ 0, and rsp(k) = πH(5−k)+ π

2H(k−120), unless otherwise specified.
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and (wP)2 ≡ 2 (Figure 8.2b). As in the first experiment, both the tracking MPC and offset-free

MPC bring the pendulum to the upright position x1 = 0, without offset. However, only the

offset-free MPC brings the pendulum to the half-way position x1 =
π
2
. The tracking MPC, not

accounting for motor gain errors, provides an insufficient force and does not remove offset.

Note the intended disturbance estimate ds =
13
7
is a smaller value that the actual injected dis-

turbance (wP)3 = 3, as underestimation of the motor gain necessitates a smaller disturbance

value to be corrected. Again, the tracking MPC produces pathological state estimates.

The third experiment follows the second, except the exogenous torque is an integrating

disturbance (wP)
+
3 = (wP)3 + (∆wP)3 where (wP)3 ∼ N(0, 10−2) and we have measurement

noise (wP)5 ∼ N(0, 10−4) (Figure 8.2c). In this experiment, we see the remarkable ability

of offset-free MPC to track a reference subject to random disturbances. While the tracking

MPC is robust to the disturbance (wP)3, it is not robust to the disturbance changes (∆wP)3

and wanders far from the setpoint as a result. On the other hand, offset-free MPC is robust

to both and exhibits practically offset-free performance. We remark that, while the example

is mechanical in nature, we are illustrating a behavior that is often desired in chemical pro-

cess control, where process specifications must be met despite constantly, but slowly varying

upstream conditions.

In the fourth and final experiment, the pendulum maintains the resting position rsp(k) ≡

π subject to an oscillating torque (wP)3(k) = 1 − cos(2πk
50

) (Figure 8.2d). Tracking MPC

wanders away from the setpoint, whereas offset-free MPC oscillates around it with small

amplitude. We note the disturbance estimate d̂ does not ever “catch” the intended value ds

as the disturbance model has no ability to match its velocity or acceleration. More general

integrator schemes (e.g., double or triple integrators) could provide more dynamic tracking

performance at the cost of a higher disturbance dimension (c.f., Maeder and Morari (2010)

or (Zagrobelny, 2014, Ch. 5)).
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Figure 8.3: Nominal steady states for the CSTR (8.65).

8.6.2 Continuous stirred-tank reactor

Consider the following nonisothermal continuous stirred-tank reactor (CSTR) (Hicks and

Ray, 1971; Kameswaran and Biegler, 2006) (Figure 8.1b):

ẋ = FP(x, u, wP)

:=

[
θ−1(1 + (wP)1 − x1)− ke(wP)2−M/x2x1

θ−1(xf − x2) + ke(wP)2−M/x2x1 − γu(x2 − xc − (wP)3)

]
(8.65a)

y = hP(x, u, wP) := x2 + (wP)4 (8.65b)

r = g(u, y) := y (8.65c)

where (x1, x2) ∈ X := R2
≥0 are the dimensionless concentration and temperature, u ∈ U :=

[0, 2] is the dimensionless coolant flowrate, θ = 20 s is the residence time, k = 300 s−1
is

the rate coefficient, M = 5 is the dimensionless activation energy, xf = 0.3947 and xc =

0.3816 are dimensionless feed and coolant temperatures, γ = 0.117 s−1
is the heat transfer

coefficient, (wP)1 is a kinetic modeling error, (wP)2 is a change to the coolant temperature,
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and (wP)4 is the measurement noise. Again, we discretize the system (8.65) via the equations

(8.62), where the continuous system is recovered with (wP)5 = 1 and zero-order holds on u

and wP. The system is modeled with wP = w(d) := (0, d, 0, 0, 0), i.e.,

x+ = f(x, u, d) := x+∆

[
θ−1(1− x1)− ke−M/x2x1

θ−1(xf − x2) + ke−M/x2x1 − γu(x2 − xc − d)

]
(8.66a)

y = h(x, u, d) := x2. (8.66b)

The goal in the following simulations is to control the CSTR (8.65) from a nominal steady

state (x(0), u(−1)) ≈ (0.9831, 0.3918, 0.8305) to a temperature setpoint rsp ∈ [0.6, 0.7]. In

this range the nominal steady states are unstable. Moreover, there is a Hopf bifurcation at

(xHopf , uHopf) ≈ (0.1728, 0.7009, 0.6973). We plot the nominal steady states (i.e., wP = 0)

along with the initial steady state x(0) and the Hopf bifurcation xHopf in Figure 8.3.

For the following simulations, assume disturbance set is wP ∈ W := [−0.05, 0.05]4 ×

{ 0, 1 }, and let the sample time be ∆ = 1 s. Regardless of objective ℓs, the SSTP (8.6) is

uniquely solved by

xs(β) :=

[
1

1+θke−M/r

rsp

]
, us(β) :=

xf − r + 1− (xs(β))1
θγ(r − xc − d)

for each β = (rsp, usp, ysp, d) ∈ Bc, where

Bc := [0.6, 0.7]× U× [0.6, 0.7]× [−0.1, 0.1]

and δ0 > 0. Likewise, the solution to (8.47) is

xP,s(α) :=

[
rsp
0

]
, ds(α) (8.67)
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for each α = (rsp, usp, ysp, wP) ∈ Ac, where

Ac := [0.6, 0.7]× U× [0.6, 0.7]×W.

It is straightforward to verify Ac and Bc are compact and satisfy Assumption 8.36.

We define a regulator withN := 150, ℓ(x, u,∆u, β) := |x−xs(β)|2Q+10−3(u−us(β))2+

(∆u)2,Q =
[
10−3

1

]
, Vf (x, β) := |x−xs(β)|2Pf (β)

, and Xf := levcfVf , where Pf (β) and cf ≈

6.7031× 10−16
are chosen according to the proof of Lemma 8.43 to satisfy Assumption 8.7.

7

Finally, we use MHE designs (8.55) and (8.57) for the offset-free MPC and tracking MPC,

respectively, where T := N , Qw := 10−4I , Qd := 10−2
, and Rv := 1. As in the simple

pendulum example, if Assumption 8.15 is satisfied, then Theorem 8.42 implies the offset-free

MPC can robustly track setpoints despite plant-model mismatch.

The results of the CSTR experiments are presented in Figure 8.4. Throughout these ex-

periments, the plant (8.65) is simulated by ten 4th-order Runga-Kutta steps per sample time.

Unless otherwise specified, each simulation is carried out with error in the feed concentration

(wP)1 ≡ −0.05, error in the activation energy (wP)2 ≡ −0.05, a step in the coolant temper-

ature (wP)3(k) = −0.05H(k − 300), no measurement noise (wP)4 ≡ 0, the discretization

parameter (wP)5 ≡ 1, and a constant reference signal rsp ≡ 0.65.

In the first experiment, we consider the case without plant-model mismatch, i.e., (wP)1 ≡

0 and (wP)2 ≡ 0 (Figure 8.4a). As in the pendulum experiment, both offset-free and tracking

MPC remove offset after the setpoint changes, but only offset-free MPC removes offset after

the disturbance is injected. We also note that, after the disturbance is injected, the tracking

MPC state estimates are slightly different than the plant states.

We consider plant-model mismatch (wP)1 ≡ −0.05 and (wP)2 ≡ −0.05 in the second

7
While cf was chosen near machine precision, the CSTR tends to evolve to the nearest stable steady state,

and the horizon is chosen long enough to easily achieve this steady state to a high degree of precision. Thus,

the system remains robust despite the tight terminal constraint.
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(b) Mismatch: (wP)1 ≡ −0.05 and (wP)2 ≡ −0.05.
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(c) Noise and mismatch: (wP)
+
3 = (wP)3 + (∆wP)3,

(∆wP)3 ∼ N(0, 10−6), and (wP)4 ∼ N(0, 10−4).
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(d) Oscillating setpoint: rsp(k) = 0.05 sin( 2πk90 )+0.65.

Figure 8.4: Simulated closed-loop trajectories for the offset-free MPC and tracking MPC of

the CSTR (8.65). Solid blue and dot-dashed orange lines represent the closed-loop estimates

and inputs (x̂, d̂, u) for the offset-free MPC and tracking MPC. Dashed blue and dotted or-

ange lines represent the closed-loop plant states xP for the offset-free MPC and tracking

MPC. Dotted black lines represent the intended steady-state targets and disturbance values

(xP,s, ds, us) found by solving (8.6) and (8.47). We set (wP)1 ≡ −0.05, (wP)2 ≡ −0.05,
(wP)3(k) = −0.05H(k − 300), (wP)4 ≡ 0, (wP)5 ≡ 1, and rsp ≡ 0.65 unless otherwise

specified.
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experiment (Figure 8.2b). The offset-free MPC is able to track the reference and reject the

disturbance despite mismatch, this time at the cost of a significant temperature spike around

k = 170. On the other hand, the tracking MPC fails to bring the temperature above x2 = 0.5,

far from the setpoint rsp = 0.65.

In the third experiment, the coolant temperature is an integrating disturbance (wP)
+
3 =

(wP)3 + (∆wP)3, (∆wP)3 ∼ N(0, 10−6), and we have measurement noise (wP)4 ∼ N(0, 10−4)

(Figure 8.4c). As in the corresponding pendulum experiment, offset-free MPC tracks the ref-

erence despite the randomly drifting disturbance. Here we are illustrating a behavior that is

often desired in chemical process control, where process specifications must be met despite

constantly, but slowly varying upstream conditions. We remark that, while the pendulum

example is mechanical in nature, it illustrated the same property. The tracking MPC, on the

other hand, still cannot handle the plant-model mismatch and fails to bring the temperature

up to the setpoint.

In the fourth and final experiment, the setpoint follows an oscillating pattern rsp(k) =

0.05 sin(2πk
90

) + 0.65. Tracking MPC again fails bring the temperature up to the setpoint.

Offset-free MPC closely follows the setpoint, substantially deviating from it only at the start-

up phase and when the coolant temperature disturbance is injected. Again, we note that a

precise tracking of this disturbance and reference signal could be accomplished by more gen-

eral integrator schemes. (c.f., Maeder and Morari (2010) or (Zagrobelny, 2014, Sec. 5.3, 5.4)).

8.7 Conclusions

In this chapter, we presented a nonlinear offset-free MPC design that is robustly stable

with respect to setpoint- and target-tracking errors, despite persistent disturbances and plant-

model mismatch. Our results are significantly stronger than the standard offset-free sufficient

conditions that can be found in the literature. Notably, we do not assume stability of the
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closed-loop system to guarantee offset-free performance. The results are illustrated in nu-

merical experiments.

These results form a foundation on which offset-free performance guarantees can be es-

tablished on a wider class of MPC designs and applications. The results without mismatch

(Theorem 8.34) should also extend to the control of plants with parameter drifts. A few lim-

itations of this work, notably the requirement of a Lyapunov function for the estimator (As-

sumption 8.15), and the necessity of quadratic costs (Assumption 8.8), are also possible areas

of future research.

269



Appendices

8.A Proofs of robust estimation and tracking stability

8.A.1 Proof of Theorem 8.16

Proof of Theorem 8.16. First, note that c3 ≤ c2, as otherwise, this would imply Ve(k + 1) ≤ 0

whenever w̃(k) = 0. We combine the upper bound (8.18a) and bound on the difference (8.18b)

to give

Ve(k + 1) ≤ λVe(k) + c4|w̃(k)|2

where λ := 1− c3
c2
∈ (0, 1). Recursively applying the above inequality gives

Ve(k) ≤ λkVe(0) +
k∑

j=1

c4λ
j−1|w̃(k − j)|2

≤ c2λ
k+1|e|2 +

k∑
j=1

c4λ
j−1|w̃(k − j)|2

noting that e(0) = e because Φ0 is the identity map. Finally,

|e(k)| ≤

√
Ve(k)

c1
≤ ce,1λ

k
e |e|+ ce,2

k+1∑
j=1

λj−1
e |w̃(k − j)|

where ce,1 :=
√

c2
c1
, ce,2 :=

√
c4
c1
, and λe :=

√
λ.
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8.A.2 Proof of Theorem 8.23

Proof of Theorem 8.23. Suppose X ⊆ Ξ is RPI for (8.20). Let the functions V : Ξ → R≥0 and

αi, σ ∈ K∞, i ∈ I1:3 satisfy (8.24) for all ξ ∈ X and ω ∈ Ωc(ξ). Let (ξ,ω, ζ1, ζ2) satisfy (8.20)

and ξ(0) ∈ X .

Asymptotic case. The proof of this part follows similarly to (Jiang and Wang, 2001,

Lem. 3.5) and (Tran et al., 2015, Thm. 1). We start by noting (8.24b) can be rewritten

V (Fc(ξ, ω)) ≤ (id− α4)(V (ξ)) + σ(|ω|) (8.68)

where α4 := α3 ◦ α−1
2 ∈ K∞. Without loss of generality, we can assume id− α4 ∈ K (Jiang

and Wang, 2001, Lem. B.1). Let ρ ∈ K∞ such that id− ρ ∈ K∞.

Let b := α−1
4 (ρ−1(σ(∥ω∥))) and D := { ξ ∈ Ξ | V (ξ) ≤ b }. The following intermediate

result is required.

Lemma 8.44. If there exists k0 ∈ I≥0 such that ξ(k0) ∈ D, then ξ(k) ∈ D for all k ≥ k0.

Proof. Suppose k ≥ k0 and ξ(k) ∈ D. Then V (ξ(k)) ≤ b and by (8.68),

V (ξ(k + 1)) ≤ (id− α4)(V (ξ(k))) + σ(∥ω∥)

≤ (id− α4)(b) + σ(∥ω∥)

= −(id− ρ)(α4(b))︸ ︷︷ ︸
≤0

+b−ρ(α4(b)) + σ(∥ω∥)︸ ︷︷ ︸
=0

≤ b.

The result follows by induction.

Next, let j0 := min { k ∈ I≥0 | ξ(k) ∈ D }. The above lemma gives V (ξ(k)) ≤ γ(∥ω∥)

for all k ≥ j0, where γ := α−1
4 ◦ ρ−1 ◦ σ. On the other hand, if k < j0, then we have
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ρ(α4(V (ξ(k)))) > σ(∥ω∥) and therefore

V (ξ(k + 1))− V (ξ(k)) ≤ −α4(V (ξ(k))) + σ(∥ω∥)

= −α4(V (ξ(k))) + ρ(α4(V (ξ(k))))− ρ(α4(V (ξ(k)))) + σ(∥ω∥)

≤ −α4(V (ξ(k))) + ρ(α4(V (ξ(k)))).

By (Jiang and Wang, 2002, Lem. 4.3), there exists β ∈ KL such that

α1(|ζ1(k)|) ≤ V (ξ(k)) ≤ β(V (ξ(0)), k) ≤ β(α2(|ζ2(0)|), k).

Combining the above inequalities gives

|ζ1(k)| ≤ max{βζ(|ζ2(0)|, k), γζ(∥ω∥)} ≤ βζ(|ζ2(0)|, k) + γζ(∥ω∥)

where βζ(s, k) := α−1
1 (β(α2(s), k)) and γζ := α−1

1 ◦ γ. Finally, causality lets us drop future

terms of ω from the signal norm in the above inequality and simply write (8.22).

Exponential case. Suppose, additionally, that αi(·) := ai(·)b, i ∈ I1:3. Without loss of

generality, we can assume λ := 1− a3 ∈ (0, 1). Recursively applying (8.24b) gives

V (ξ(k)) ≤ λkV (ξ(0)) +
k∑

i=1

λi−1σ(|ω(k − i)|)

≤ λka2|ζ2(0)|b +
σ(∥ω∥0:k−1)

1− λ
.

Applying (8.24a), we have

|ζ1(k)| ≤
(
a2
a1
λk|ζ2(0)|b +

σ(∥ω∥0:k−1)

a1(1− λ)

)1/b

.
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If b ≥ 1, the triangle inequality gives

|ζ1(k)| ≤ cζλ
k
ζ |ζ2(0)|+ γζ(∥ω∥0:k−1) (8.69)

with cζ :=
(

a2
a1

)1/b
, λζ := λ1/b, and γζ(·) :=

(
σ(·)

a1(1−λ)

)1/b
. Otherwise, if b < 1, then convexity

gives (8.69) with cζ :=
1
2

(
2a2
a1

)1/b
, λζ := λ1/b, and γζ(·) := 1

2

(
2σ(·)

a1(1−λ)

)1/b
.

8.A.3 Proof of Theorem 8.28

Proof of Theorem 8.28. Throughout, we fix k ∈ I≥0 and drop dependence on k when it is

understood from context. Let the trajectories (ξ, ξ̂,u,ω,υ, ε, ζ) satisfy (8.19) and (8.25)–

(8.28), ζ = G(ξ̂), and (ξ(0), ξ) ∈ S , where S is RPI. Suppose Φξ
0 is the identity map. Let

ai, bi > 0, i ∈ I1:4, V : Ξ̂ → R≥0, Vε : Ξ × Ξ̂ → R≥0, and σ, σε ∈ K satisfy
a4c4
a3c1

< 1,

a4c4
a3c3

< c1
c1+c2

, and (8.31).

Joint Lyapunov function Combining the fact |(ε, ε+)|2 = |ε|2 + |ε+|2 with the inequali-

ties (8.31), we have

V (ξ̂+)− V (ξ̂)
(8.31b)

≤ −a3|ζ|2 + a4|ε|2 + a4|ε+|2 + σ(|ω|)
(8.31c)

≤ −a3|ζ|2 + a4|ε|2 +
a4
c1
Vε(ξ

+, ξ̂+) + σ(|ω|)

(8.31d)

≤ −ã3|ζ|2 + a4

(
1− c3

c1

)
|ε|2 + a4

c1
Vε(ξ, ξ̂) + σ̃(|ω|)

(8.31c)

≤ −ã3|ζ|2 + ã4|ε|2 + σ̃(|ω|)

where ã3 := a3 − a4c4
c1

, ã4 := a4

(
1 + c2−c3

c1

)
, and σ̃ := a4

c1
σε + σ ∈ K. Note that ã3 =

a3

(
1− a4c4

a3c1

)
> 0 by assumption, and ã4 > 0 since c2 > c3.

Let W (ξ, ξ̂) := V (ξ̂) + qVε(ξ, ξ̂) where q > 0. With b1 := min { a1, qc1 }, we have the
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lower bound,

b1|(ζ, ε)|2 = b1|ζ|2 + b1|ε|2 ≤ a1|ζ|2 + qc1|ε|2 ≤ V (ξ̂) + qVε(ξ, ξ̂) =: W (ξ, ξ̂). (8.70)

With b2 := max { a2, qc2 }, we have the upper bound

W (ξ, ξ̂) := V (ξ̂) + qVε(ξ, ξ̂) ≤ a2|ζ|2 + qc2|ε|2 ≤ b2|ζ|2 + b2|ε|2 = b2|(ζ, ε)|2. (8.71)

For the cost decrease, we first note that
a4c4
a3c3

< c1
c1+c2

implies

ã4c4 = a4

(
c1 + c2
c1

− c3
c1

)
c4 < a4

(
a3c3
a4c4

− c3
c1

)
c4 = a3c3 −

a4c3c4
c1

= ã3c3

and therefore
ã4
c3
< ã3

c4
. With q ∈

(
ã4
c3
, ã3
c4

)
, we have

W (ξ+, ξ̂+) ≤ V (ξ̂+) + qVε(ξ
+, ξ̂+) ≤ W (ξ, ξ̂)− b3|(ζ, ε)|2 + σW (|ω|) (8.72)

where b3 := min { ã3 − qc4, qc3 − ã4 } > 0 and σW := σ̃ + qσε ∈ K by construction.

Robust exponential stability Substituting (8.71) into (8.72) gives

W (ξ+, ξ̂+) ≤ λW (ξ, ξ̂)− b3|(ζ, ε)|2 + σW (|ω|) (8.73)

where λ := 1− b3
b2

and we can assume λ ∈ (0, 1) since

b2 ≥ qc2 > qc3 > qc3 − ã4 ≥ b3.
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Recursively applying (8.73) gives

W (ξ(k), ξ̂(k)) ≤ λkW (ξ(0), ξ̂(0)) +
k∑

i=1

λi−1σ(|ω(k − i)|)

≤ b2λ
k|(ζ(0), ε(0))|2 +

k∑
i=1

λi−1σ(|ω(k − i)|)

where the second inequality follows from (8.71). Finally, by (8.70) and the triangle inequality,

we have

|(ζ(k), e(k))| ≤ cζλ
k
ζ |(ζ(0), ε(0))|+

k∑
i=1

γζ(|ω(k − i)|, i)

where cζ :=
√

b2
b1
, λζ :=

√
λ, and γζ(s, k) := λk−1

ζ

√
σ(s)
b1

.

8.B Proofs of offset-free MPC stability

8.B.1 Proof of Theorem 8.29

We begin by proving Theorem 8.29(a,b).

Proof of Theorem 8.29(a,b). (a)—Suppose x ∈ X ρ
N(β) and β ∈ Bc. From the main text, ũ(x, β)

is feasible, so

V 0
N(fc(x, β), β) ≤ VN(fc(x, β), ũ(x, β), β)

and, applying the inequality (8.35), we have

V 0
N(fc(x, β), β) ≤ V 0

N(x, β)− ℓ(x, κN(x, β), β).

But

σ(Q)|x− xs(β)|2 ≤ ℓ(x, κN(x, β), β) ≤ V 0
N(x, β)
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so the lower bound (8.34a) and the cost decrease (8.34b) both hold with a1 = a3 = σ(Q).

To establish the upper bound of (8.34a), we first note that since Pf is continuous and

positive definite, and Bc is compact, the maximum γ := maxβ∈Bc σ(Pf (β)) > 0 exists. Then

|x− xs(β)| ≤ ε :=
√

cf
γ
implies

Vf (x, β) ≤ σ(Pf (β))|x− xs(β)|2 ≤ γ|x− xs(β)|2 ≤ cf

and therefore x ∈ Xf (β). By monotonicity of the value function (Rawlings et al., 2020,

Prop. 2.18) we have V 0
N(x, β) ≤ Vf (x, β) whenever x ∈ Xf (β), and therefore

V 0
N(x, β) ≤ Vf (x, β) ≤ γ|x− xs(β)|2

whenever |x− xs(β)| ≤ ε. On the other hand, if |x− xs(β)| > ε, then

V 0
N(x, β) ≤ ρ ≤ ρ

ε2
|x− xs(β)|2.

Finally, we have the upper bound (8.34a) with a2 := max { γ, ρ
ε2
}.

(b)—Let β ∈ B. We already have that V 0
N(·, β) is a Lyapunov function (for the system

(8.32), on X ρ
N(β)) with respect to x − xs(β), and fc(x, β) ∈ XN(β) for all x ∈ X ρ

N(β) by

recursive feasibility. We can choose any compact set Bc ⊆ B containing β to achieve the

descent property (8.34b). Then, for each x ∈ X ρ
N(β), we have

V 0
N(fc(x, β), β) ≤ V 0

N(x, β)− a1|x− xs(β)|2 ≤ ρ

and therefore fc(x, β) ∈ X ρ
N(β). In other words, X ρ

N(β) is positive invariant for the sys-

tem (8.32a). Finally, ES in X ρ
N(β) w.r.t. x− xs(β) follows from Theorem 8.23.

To prove Theorem 8.29(c,d), we need a few preliminary results.
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Proposition 8.45. Suppose Assumptions 8.4 to 8.8 hold. Let ρ > 0 and Bc ⊆ B be compact.

There exist cx, cu > 0 such that

|x0(j;x, β)− xs(β)| ≤ cx|x− xs(β)| (8.74a)

|u0(k;x, β)− us(β)| ≤ cu|x− xs(β)| (8.74b)

for each x ∈ X ρ
N(β), β ∈ Bc, j ∈ I1:N , and k ∈ I1:N−1.

Proof. Throughout, we fix x ∈ X ρ
N(β) and β ∈ Bc. Unless otherwise specified, the con-

structed constants and functions are independent of (x, β). By Theorem 8.29(a), there exists

a2 > 0 satisfying the upper bound (8.43a). Since Pf is continuous and positive definite and

Bc is compact, the minimum γ := minβ∈Bc σ(Pf (β)) exists and is positive. Moreover, since

Q,R are positive definite, we have σ(Q), σ(R) > 0. For each k ∈ I0:N−1,

σ(Q)|x0(k;x, β)− xs(β)|2 ≤ |x0(k;x, β)− xs(β)|2Q

≤ V 0
N(x, β) ≤ a2|x− xs(β)|2

γ|x0(N ;x, β)− xs(β)|2 ≤ |x0(N ;x, β)− xs(β)|2Pf (β)

≤ V 0
N(x, β) ≤ a2|x− xs(β)|2

σ(R)|u0(k;x, β)− us(β)|2 ≤ |u0(k;x, β)− us(β)|2R

≤ V 0
N(x, β) ≤ a2|x− xs(β)|2.

Thus, (8.74) holds for all j ∈ I1:N and k ∈ I1:N−1 with cx := max {
√

a2
σ(Q)

,
√

a2
γ
} and

cu :=
√

a2
σ(R)

.

Proposition 8.46. Suppose Assumptions 8.4 to 8.8 hold. Let ρ > 0, Bc ⊆ B be compact. There
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exists σr ∈ K∞ such that

|gc(x, β)− rsp| ≤ σr(|x− xs(β)|) (8.75)

for each x ∈ X ρ
N(β) and β = (rsp, zsp, d) ∈ Bc. Moreover, if g and h are Lipschitz continuous

on bounded sets, then (8.75) holds on the same sets with σr(·) := cr(·) and some cr > 0.

Proof. By Proposition 7.49, there exists σ̃r ∈ K∞ such that

|g(u, h(x, u, d))− g(ũ, h(x̃, ũ, d̃))| ≤ σ̃r(|(x− x̃, u− ũ, β − β̃)|)

for all x, x̃ ∈ X ρ
N , u, ũ ∈ U, and β = (r, z, d), β̃ = (r̃, z̃, d̃) ∈ Bc. Fix x ∈ X ρ

N(β) and

β ∈ Bc. The following constructions are independent of (x, β) unless otherwise specified.

By Proposition 8.45, there exists cu > 0 such that

|κN(x, β)− us(β)| ≤ cu|x− xs(β)|

Combining these inequalities gives

|gc(x, β)− rsp| ≤ σ̃r(|(x− xs(β), κN(x, β)− us(β))|)

≤ σ̃r((1 + cu)|x− xs(β)|)

≤ σr(|x− xs(β)|)

where σr(·) := σ̃r((1 + cu)(·)) ∈ K∞. If we also have that g and h are Lipschitz on bounded

sets, then we can take σr(·) := cr(·) and cr := Lr(1 + cu) > 0, where Lr > 0 is the Lipschitz

constant for g(u, h(x, u, d)) over X ρ
N × U× Bc.

Proof of Theorem 8.29(c,d). Fix x ∈ X ρ
N(β) and β ∈ B. Let Bc ⊆ B be compact, containing β.
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Define δr := gc(x, β)− rsp and δx := x− xs(β).

(c)—By Proposition 8.46, there exists σr ∈ K∞ such that (8.75) holds. Then

α1(|δr|) := a1[σ
−1
r (|δr|)]2 ≤ a1|δx|2 ≤ V 0

N(x, β)

so V 0
N(·, β) is a Lyapunov function on X ρ

N(β) w.r.t. (δr, δx), and AS on X ρ
N(β) w.r.t. (δr, δx)

follows by Theorem 8.23.

(d)—If g and h are Lipschitz continuous on bounded sets, then by Proposition 8.46, we

can repeat part (c) with α1(·) := a1c
−2
r (·)2 and some cr > 0. Then V 0

N(·, β) is an exponen-

tial Lyapunov function on X ρ
N(β) w.r.t. (δr, δx), and ES on X ρ

N(β) w.r.t. (δr, δx) follows by

Theorem 8.23.

8.B.2 Proof of Proposition 8.33

To establish Proposition 8.33, we require the following result.

Proposition 8.47. Suppose Assumptions 8.4 to 8.8 and 8.31 hold and let ρ > 0. The set

X̂ ρ
N :=

⋃
β̂∈B̂c

X ρ
N(β̂)

is compact, where B̂c is defined as in Assumption 8.31(i).

Proof. Consider the lifted set

F := { (x̂,u, β̂) ∈ X× UN × B̂c | Vf (ϕ(N ; x̂,u, β̂)) ≤ cf , VN(x̂,u, β̂) ≤ ρ } .

Notice X̂ ρ
N is equivalent to the projection of F onto the first coordinate, i.e., X̂ ρ

N = P (F)

where P (x̂,u, β̂) = x̂. Since P is continuous, the image X̂ ρ
N = P (F) is compact whenever

F is compact. Thus, it suffices to show F is compact.
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The set F is closed because (X,U, B̂c) are closed, and continuity of (f, xs, us, ℓ, Vf ) im-

plies continuity of Vf (ϕ(N ; ·, ·, ·)) and VN(·, ·, ·). Next, we show F is bounded. Since xs is

continuous and B̂c is compact, the maximum ρs := maxβ̂∈B̂c
|xs(β̂)| exists and is finite. For

each (x̂,u, β̂) ∈ F , we have V 0
N(x̂, β̂) ≤ VN(x̂,u, β̂) ≤ ρ by construction. But V 0

N(x̂, β̂) ≥

σ(Q)|x̂− xs(β̂)|2, so this implies |x̂− xs(β̂)| ≤
√

ρ
σ(Q)

and therefore |x̂| ≤
√

ρ
σ(Q)

+ ρs. But

u and β̂ always lie in compact sets, so F must be bounded.

Proof of Proposition 8.33. Let β̂ ∈ B̂c, x̂ ∈ X ρ
N(β̂), and |d̃| ≤ δ0 such that β̂+ := f̂β,c(β̂, d̃) ∈

B̂c. For brevity, let

x+ := fc(x̂, β̂), x+(N) := ϕ(N ;x+, ũ(x̂, β̂), d̂), x(N) := x0(N ; x̂, β̂),

x̂+ := f̂c(x̂, β̂, d̃), x̂+(N) := ϕ(N ; x̂+, ũ(x̂, β̂), d̂+).

Recall d̃ := (e, e+,∆β, w, v), e := (ex, ed), e
+ := (e+x , e

+
d ), and ∆β := (∆, wd).

From Proposition 8.47, the set X̂ ρ
N is compact. Since the functions (f, xs, us, Pf ) are con-

tinuous, so are (Vf , VN). By Proposition 7.49, there exist σf , σVf
, σVN

∈ K∞ such that

|f(x1, u1, d̂1)− f(x2, u2, d̂2)| ≤ σf (|(x1 − x2, u1 − u2, d̂1 − d̂2)|) (8.76)

|Vf (ϕ(N ;x1,u1, d̂1), β̂1)− Vf (ϕ(N ;x2,u2, d̂2), β̂2)| ≤ σVf
(|(x1 − x2,u1 − u2, β̂1 − β̂2)|)

(8.77)

|VN(x1,u1, β̂1)− VN(x2,u2, β̂2)| ≤ σVN
(|(x1 − x2,u1 − u2, β̂1 − β̂2)|) (8.78)

for all x1 ∈ X, x2 ∈ X̂ ρ
N , u1, u2 ∈ U, u1,u2 ∈ UN

, and β̂1 = (s1, d̂1), β̂2 = (s2, d̂2) ∈ B̂c.

Substituting x1 = x̂ + ex, x2 = x̂, u1 = u2 = κN(x̂, β̂), d̂1 = d̂ + ed, and d̂2 = d̂ into

(8.76), we have |x̂+ − x+| ≤ σf (|e|) + |w|+ |e+x |. But |β̂+ − β̂| ≤ |∆β|+ |ed|+ |e+d |, so

|(x̂+ − x+, β̂+ − β̂)| ≤ σf (d̃) + 5|d̃|. (8.79)
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Substituting x1 = x̂+, x2 = f̂c(x̂, β̂), u1 = u2 = ũ(x̂, β̂), β̂1 = β̂+
, and β̂2 = β̂ into (8.77) and

(8.78) gives

|Vf (x̂+(N), β̂+)− Vf (x+(N), β̂)| ≤ σVf
(|(x̂+ − x+, β̂+ − β̂)|)

≤ σ̃Vf
(|d̃|) (8.80)

|VN(x̂+, ũ(x̂, β̂), β̂+)− VN(x+, ũ(x̂, β̂), β̂)| ≤ σVN
(|(x̂+ − x+, β̂+ − β̂)|)

≤ σr(|d̃|) (8.81)

where σ̃Vf
(·) := σVf

(σf (·) + 5(·)) ∈ K∞, σr(·) := σVN
(σf (·) + 5(·)) ∈ K∞, and the second

and fourth inequalities follow from (8.79).

Part (a). By definition (8.9) and (8.10), we have ũ(x̂, β̂) ∈ UN(x̂+, β̂+) if and only if

Vf (x̂
+(N), β̂+) ≤ cf . Thus, it suffices to construct δ1 > 0 (independently of β̂ and d̃)

for which x̂ ∈ XN(β̂) implies Vf (x̂
+(N), β̂+) ≤ cf . Since x̂ ∈ XN(β̂), we already have

Vf (x(N), β̂) ≤ cf , and by Assumptions 8.7 and 8.8,

Vf (x
+(N), β̂) ≤ Vf (x(N), β̂)− ℓ(x(N), κf (x(N), β̂), β̂)

≤ Vf (x(N), β̂)− σ(Q)|x(N)− xs(β̂)|2.

Since B̂c is compact and σ, Pf are continuous functions, the maximum

af,2 := max
β̂∈B̂c

σ(Pf (β̂))

exists and is finite, so

cf
2
≤ Vf (x(N), β̂) ≤ af,2|x(N)− xs(β̂)|2.
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Then |x(N)− xs(β̂)| ≥
√

cf
2af,2

and

Vf (x
+(N), β̂) ≤ cf −

cfσ(Q)

2af,2
. (8.82)

On the other hand, if Vf (x(N), β̂) ≤ cf
2
, then we have

Vf (x
+(N), β̂) ≤ cf

2
. (8.83)

Finally, combining (8.80), (8.82), and (8.83), we have

Vf (x̂
+(N), β̂+) ≤ cf − γf + σ̃Vf

(|d̃|)

where γf := min { cf
2
,
cfσ(Q)

2af,2
} was defined independently of (β̂, d̃). Finally, taking δ1 :=

min { δ0, σ̃−1
Vf
(γf ) }, we have Vf (x̂+(N), β̂+) ≤ cf and ũ(x̂, β̂) ∈ UN(x̂+, β̂+).

Part (b). By (8.35), we have

VN(x
+, ũ(x̂, β̂), β̂) ≤ V 0

N(x̂, β̂)− ℓ(x̂, κN(x̂, β̂), β̂)

≤ V 0
N(x̂, β̂)− σ(Q)|x(N)− xs(β̂)|2. (8.84)

Combining (8.81) and (8.84) gives (8.41) with a3 := σ(Q), which is positive sinceQ is positive

definite.

Part (c). The proof of this part follows similarly that of part (a). Since x̂ ∈ X ρ
N(β̂), we

have V 0
N(x̂, β̂) ≤ ρ. If V 0

N(x̂, β̂) ≥
ρ
2
, then, by Theorem 8.29(a), we have

ρ

2
≤ V 0

N(x̂, β̂) ≤ a2|x̂− xs(β̂)|2
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for some a2 > 0. Therefore |x̂− xs(β̂)| ≤
√

ρ
2a2

and

VN(x
+, ũ(x̂, β̂), β̂) ≤ ρ− ρσ(Q)

2a2
. (8.85)

On the other hand, if V 0
N(x̂, β̂) ≤

ρ
2
, then

VN(x
+, ũ(x̂, β̂), β̂) ≤ ρ

2
. (8.86)

Combining (8.41), (8.85), and (8.86) gives

VN(x̂
+, ũ(x̂, β̂), β̂) ≤ ρ− γ + σ̃VN

(|d̃|)

where γ := min { ρ
2
, ρσ(Q)

2a2
}. But ũ(x̂, β̂) is feasible by part (a), so by optimality, we have

V 0
N(x̂

+, β̂+) ≤ VN(x̂
+, ũ(x̂, β̂), β̂) ≤ ρ− γ + σ̃VN

(|d̃|).

Thus, as long as |d̃| ≤ δ := min { δ1, σ̃−1
VN

(γ) }, we have V 0
N(x̂

+, β̂+) ≤ ρ and x̂+ ∈ X ρ
N(β̂

+).

8.B.3 Proof of Proposition 8.35

Proof of Proposition 8.35. Proposition 8.46 gives (8.44a). By Proposition 7.49, there exists σg ∈

K∞ such that

|g(u1, h(x1, u1, d1) + v1)− g(u2, h(x2, u2, d2) + v2)|

≤ σg(|(x1 − x2, u1 − u2, d1 − d2, v1 − v2)|) (8.87)
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for all x1, x2 ∈ X ρ
N(β), u1, u2 ∈ U, d1, d2 ∈ Dc, v1 ∈ Vc(x1, u1, d1), and v2 ∈ Vc(x2, u2, d2),

where

Dc := { d ∈ D | (ssp, d) ∈ Bc }

Vc(x, u, d) := { v ∈ δBny | h(x, u, d) + v ∈ Y }

Fix x̂ ∈ X ρ
N(β̂), β̂ = (ssp, d̂) ∈ Bc, and d̃ = (e, e+,∆ssp, w̃) ∈ D̃c(x̂, β̂) ∩ δBnd̃ , where

e = (ex, ed) and w̃ = (w,wd, v). Substituting x1 = x̂ + ex, x2 = x̂, u1 = u2 = κN(x̂, β̂),

d1 = d̂+ ed, d2 = d̂, v1 = v, and v2 = 0 into (8.87) gives, independently of (x̂, β̂, d̃),

|ĝc(x̂, β̂, d̃)− gc(x̂, β̂)| ≤ σg(|(ex, ed, v)|) ≤ σg(|d̃|).

Then (8.44b) follows by the triangle inequality. Finally, if g and h are Lipschitz continuous

on bounded sets, we can take σg(·) := cg(·) where cg > 0 is the Lipschitz constant for

g(u, h(x, u, d) + v).

8.B.4 Proof of Proposition 8.40

To prove Proposition 8.40, we derive a bound on |w̃|.

Proposition 8.48. Suppose Assumptions 8.4 to 8.6, 8.36, and 8.38 hold. For any compactX ⊆ X

and Ac ⊆ Rnr × Zy ×W such that (ssp, wP) ∈ Ac implies (ssp, 0) ∈ Ac, there exist functions

σw, σα ∈ K∞ for which

|w̃| ≤ σw(|wP|)|z − zs(β)|+ σα(|∆α|) (8.88)

for all z ∈ X × U and α = (ssp, wP), α
+ ∈ Ac, where β := (ssp, ds(α)), w̃ := (w,wd, v),

∆α := α+ − α, and (8.50).
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Proof. For ease of notation, we let z = (x, u) ∈ X×U, α = (ssp, wP) ∈ Ac, β := (ssp, ds(α)),

w̃ := (w,wd, v), and

∆w̃(x, u, α) :=

[
fP(x+∆xs(α), u, wP)− f(x, u, d̂s(α))−∆xs(α)

hP(x+∆xs(α), u, wP)− h(x, u, d̂s(α))

]

throughout. We also note that, by definition of the SSTP (8.6) and the nominal model assump-

tion (8.3), we have

∆w̃(zs(β), α) = 0, ∂z∆w̃(z, ssp, 0) = 0. (8.89)

Assume all functions continuously differentiable on X × U have been extended continu-

ously differentiable functions on all of Rn+nu
using appropriately defined partitions of unity

(cf. (Lee, 2012, Lem. 2.26)).

Let Zc denote the convex hull of X × U. For each i ∈ I1:n+ny , ∂z∆w̃i is continuous, and

by Proposition 7.49, there exists σi ∈ K∞ such that

|∂z∆w̃i(z1, α1)− ∂z∆w̃i(z2, α2)| ≤ σi(|(z1 − z2, α1 − α2)|)

for all z1, z2 ∈ Zc and α1, α2 ∈ Ac. Substituting z1 = z2 = z, α1 = α, and α2 = (ssp, 0) into

the above inequality, we have

|∂z∆w̃i(z, α)| = |∂z∆w̃i(z, α)− ∂z∆w̃(z, ssp, 0)| ≤ σi(|wP|) (8.90)

where the equality follows by (8.89). By Taylor’s theorem (Apostol, 1974, Thm. 12.14), for

each i ∈ I1:n+ny , there exist zi(z, α) ∈ Zc and ti(z, α) ∈ (0, 1) such that

∆w̃i(z, α) = ∂z∆w̃i(z̃i(z, α), α)(z − zs(β)) (8.91)
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where z̃i(z, α) := ti(z, α)zs(β) + (1 − ti(z, α))zi(z, α) ∈ Zc by convexity of Zc, and the

zero-order term drops by (8.89). Combining (8.90) and (8.91),

|∆w̃(z, α)| ≤
n+ny∑
i=1

|∆w̃i(z, α)| ≤
n+ny∑
i=1

σi(|wP|)|z − zs(β)| = σw(|wP|)|z − zs(β)| (8.92)

where σw :=
∑n+ny

i=1 σi. By Proposition 7.49, since xP,s, xs, ds are continuous, there exist

σx, σd ∈ K∞ such that

|∆xs(α1)−∆xs(α2)| ≤ σx(|α1 − α2|) (8.93a)

|ds(α1)− ds(α2)| ≤ σd(|α1 − α2|) (8.93b)

for all α1, α2 ∈ Ac. Finally, using (8.92) and (8.93) with α1 = α and α2 = α+
gives

|w̃| ≤ |∆w̃(z, α)|+ |∆xs(α+)−∆xs(α)|+ |ds(α+)− ds(α)|

≤ σw(|wP|)|z − zs(β)|+ σα(|∆α|)

with σα := σx + σd ∈ K∞.

Proof of Proposition 8.40. With δw ∈ (0, σ−1
w (
√

c3
4c4L2

s
)), we can combine (8.18b), (8.74b), and

(8.88) (from Assumption 8.15 and Propositions 8.45 and 8.48, respectively) and the identity

(a+ b)2 ≤ 2a2 + 2b2 to give

|w̃|2 ≤ [σw(|wP|)|z − zs(β)|+ σα(|∆α|)]2

≤ 2[σw(|wP|)]2|z − zs(β)|2 + 2[σα(|∆α|)]2

≤ 2[σw(|wP|)]2[(1 + cu)|x̂− xs(β̂)|+ Ls|e|]2 + 2[σα(|∆α|)]2

≤ 4[σw(|wP|)]2(1 + cu)
2|x̂− xs(β̂)|2 + 4[σw(|wP|)]2L2

s|e|2 + 2[σα(|∆α|)]2
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and therefore (8.52), where ĉ3 := c3 − 4c4[σw(δw)]
2L2

s > 0, σ̂w(·) := 4c4[σw(·)]2(1 + cu)
2
,

σ̂α(·) := 2c4[σα(·)]2, and Ls > 0 is the Lipschitz constant for zs.

8.B.5 Proof of Proposition 8.41

To establish Proposition 8.41, we require two preliminary results.

Proposition 8.49. Suppose Assumptions 8.4 to 8.8, 8.36, and 8.38 hold. Let ρ, δw > 0. There

exist c̃e > 0 and σ̃w, σ̃α ∈ K∞ such that

|d̃|2 ≤ c̃e|(e, e+)|2 + σ̃w(|wP|)|x̂− xs(β̂)|2 + σ̃α(|∆α|) (8.94)

so long as α = (ssp, wP) ∈ Ac(δw), ∆α = (∆ssp,∆wP) ∈ Ac(α, δw), (x̂, β̂) ∈ Ŝρ
N , d̃ =

(e, e+,∆ssp, w̃) ∈ D̃c(x̂, β̂) ∩ δ0Bnd̃ , and β̂ = (ssp, d̂), given (8.17) and (8.50).

Proof. From Propositions 8.45 and 8.48 and (Rawlings and Ji, 2012, Eq. (1)),

|w̃|2 ≤ [σw(|wP|)|z − zs(β)|+ σα(|∆α|)]2

≤ [σw(|wP|)|z − zs(β̂)|+ Lsσw(|wP|)|e|+ σα(|∆α|)]2

≤ [σw(|wP|)|x− xs(β̂)|+ σw(|wP|)|u− us(β̂)|+ Lsσw(|wP|)|e|+ σα(|∆α|)]2

≤ [(1 + cu)σw(|wP|)|x̂− xs(β̂)|+ (Ls + 1)σw(|wP|)|e|+ σα(|∆α|)]2

≤ 9(1 + cu)
2[σw(|wP|)]2|x̂− xs(β)|2 + 9(Ls + 1)2[σw(|wP|)]2|e|2 + 9[σα(|∆α|)]2

where Ls > 0 is the Lipschitz constant for zs and cu > 0 and σw, σα ∈ K∞ satisfy (8.74b) and
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(8.88). Therefore

|d̃|2 = |(e, e+)|2 + |∆ssp|2 + |w̃|2

≤ 9(1 + cu)
2(σw(|wP|))2|x̂− xs(β)|2

+ (1 + 9(Ls + 1)2(σw(δw))
2)|(e, e+)|2 + |∆α|2 + 9σα(|∆α|))2

so (8.94) holds with c̃e := 1 + 9(Ls + 1)2[σw(δw)]
2 > 0 and σ̃w := 9(1 + cu)

2σ2
w, σα :=

id
2 + 9σα ∈ K∞.

Proposition 8.50. Suppose Assumptions 8.4 to 8.8, 8.36, and 8.38 hold and let ρ > 0. There

exist aVN ,1 ∈ (0, σ(Q)) and aVN ,2, δ > 0 and σVN
∈ K∞ such that

|VN(x̂+, ũ(x̂, β̂), β̂+)− VN(x+, ũ(x̂, β̂), β̂)| ≤ aVN ,1|x̂− xs(β̂)|2 + aVN ,2|d̃|2 (8.95)

for all (x̂, β̂) ∈ Ŝρ
N and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ , where x+ := fc(x̂, β̂), x̂+ := f̂c(x̂, β̂, d̃), and

β̂+ := f̂β,c(β̂, d̃).

Proof. By continuity of Pf , there exists σPf
∈ K∞ such that

∥Pf (β1)− Pf (β2)∥ ≤ σPf
(|β1 − β2|) (8.96)

for all β1, β2 ∈ B̂c. Moreover, since B̂c is compact and Pf is continuous and positive def-

inite, the maximum γ := maxβ̂∈B̂c
σ(Pf (β̂)) exists and is finite and the minimum γ0 :=

maxβ̂∈B̂c
σ(Pf (β̂)) exists and is positive. Let Ls > 0 denote the Lipschitz constant for zs

on B̂c. Throughout, we let (x̂, β̂) ∈ Ŝρ
N , δx̂ := x̂ − xs(β̂), d̃ ∈ D̃c(x̂, β̂), x

+ := fc(x̂, β̂),

x̂+ := f̂c(x̂, β̂, d̃), β̂
+ := f̂β,c(β̂, d̃), ũ := ũ(x̂, β̂), x+(k) := ϕ(k;x+, ũ, β̂), and x̂+(k) :=

ϕ(k; x̂+, ũ, β̂+).
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By Assumption 8.38, we have

|x+ − x̂+| ≤ Lf |e|+ |w|+ |e+x | ≤ L′
f |d̃| (8.97)

where Lf > 0 is the Lipschitz constant for f and L′
f := Lf + 2, by Assumption 8.36(b), we

have

|zs(β̂+)− zs(β̂)| ≤ Ls|β̂+ − β̂| ≤ Ls(|∆β|+ |ed|+ |e+d |) ≤ 3Ls|d̃| (8.98)

and by Proposition 8.45, we have cx, cu > 0 such that

|x+(j)− xs(β̂)| ≤ cx|δx̂| (8.99)

|ũ(k)− us(β̂)| ≤ cu|δx̂| (8.100)

for each j ∈ I0:N−1 and k ∈ I0:N−2.

By Assumptions 8.7 and 8.8, we have

γ0|x+(N)− xs(β̂)|2 ≤ Vf (x
+(N − 1), β̂)

≤ Vf (x
+(N − 1), β̂)− σ(Q)|x+(N − 1)− xs(β̂)|2

≤ [γ − σ(Q)]|x+(N − 1)− xs(β̂)|2

(8.99)

≤ [γ − σ(Q)]c2x|δx̂|2.

Therefore

|x+(N)− xs(β̂)| ≤ γfcx|δx̂| (8.101a)
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where γf :=
√

γ−σ(Q)
γ0

. Similarly, using the fact that Vf (x
+(N), β̂) ≥ 0, we have

σ(R)|ũ(N − 1)− us(β̂)|2 ≤ Vf (x
+(N − 1), β̂)− σ(Q)|x+(N − 1)− xs(β̂)|2

≤ (γ − σ(Q))|x+(N − 1)− xs(β̂)|2

(8.99)

≤ (γ − σ(Q))c2x|δx̂|2

and therefore

|ũ(N − 1)− us(β̂)| ≤ cu,f |δx̂| (8.101b)

with cu,f := cx

√
γ−σ(Q)
σ(R)

.

Due to continuous differentiability of f , we have

|x̂+(k)− x+(k)| = |f(x̂+(k − 1), ũ(k), d̂+)− f(x+(k − 1), ũ(k), d̂)|

≤ Lf |x̂+(k − 1)− x+(k − 1)|+ Lf |d̂+ − d̂|

where Lf > 0 is the Lipschitz constant for f . Applying this inequality recursively, for all

k ∈ I0:N , we have

|x̂+(k)− x+(k)| ≤ Lk
f |x̂+ − x+|+ Lf (k)|d̂+ − d̂| ≤ L′

f (k)|d̃| (8.102)

where Lf (k) :=
∑k

i=1 L
i
f and L

′
f (k) := Lk

fL
′
f +3Lf (k), and we have used (8.97) and the fact

that |d̂+ − d̂| ≤ |wd|+ |ed|+ |e+d | ≤ 3|d̃|. Moreover,

|x̂+(k)− xs(β̂)|
(8.99),(8.102)

≤ cx|δx̂|+ L′
f (k)|d̃| (8.103)

and

|x̂+(N)− xs(β̂)|
(8.101),(8.102)

≤ cxγf |δx̂|+ L′
f (N)|d̃|. (8.104)
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Using the inequalities, ||ξ|2M1
− |ξ|2M2

| ≤ ∥M1 −M2∥|ξ|2, (8.96), and |β̂+ − β̂| ≤ |∆β| +

|ed|+ |e+d | ≤ 3|d̃|, we have

Vf (x̂
+(N), β̂+) ≤ |x̂+(N)− xs(β̂+)|2

Pf (β̂)
+ σPf

(3|d̃|)|x̂+(N)− xs(β̂+)|2.

Using the identity |ξ1 + ξ2|2 ≤ 2|ξ1|2 + 2|ξ2|2, we have

Vf (x̂
+(N), β̂+) ≤ |x̂+(N)− xs(β̂+)|2

Pf (β̂)
+ σPf ,x(|d̃|)|δx̂|2 + σPf ,d(|d̃|)|d̃|2. (8.105)

where σPf ,x(·) := 2c2xγ
2
fσPf

(3(·)) and σPf ,d(·) := 2(L′
f (N))2σPf

(3(·)).

For the remainder of this part, we let λ > 0 (to be defined) and use the identity 2ab ≤

λa2 + λ−1b2. Expanding quadratics and using the identities (8.98)–(8.100), we have

||x̂+(N)− xs(β̂+)|2
Pf (β̂)

− |x̂+(N)− xs(β̂)|2Pf (β̂)
|

≤ 6γLs|x̂+(N)− xs(β̂)||d̃|+ 9γL2
s|d̃|2

≤ 6γLscxγf |δx̂||d̃|+ (6γLsL
′
f (N) + 9γL2

s)|d̃|2

≤ 3γλLscxγf |δx̂|2 + (6γLsL
′
f (N) + 9γL2

s + 3λ−1γLscxγf )|d̃|2

≤ λL̂1(N)|δx̂|2 + L̂2(N, λ)|d̃|2 (8.106)

where L̂1(N) := 3γLscxγf and L̂2(N, λ) := 6γLsL
′
f (N) + 9γL2

s + 3λ−1γLscxγf . Similarly,
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for each k ∈ I0:N−1,

||x̂+(k)− xs(β̂+)|2Q − |x̂+(k)− xs(β̂)|2Q|

≤ 6σ(Q)Ls|x̂+(k)− xs(β̂)||d̃|+ 9σ(Q)L2
s|d̃|2

≤ 6σ(Q)Lscx|δx̂||d̃|+ (6σ(Q)LsL
′
f (k) + 9σ(Q)L2

s)|d̃|2

≤ 3λσ(Q)Lscx|δx̂|2 + (6σ(Q)LsL
′
f (k) + 9σ(Q)L2

s + 3λ−1γLscx)|d̃|2

≤ λL̂1(k)|δx̂|2 + L̂2(k, λ)|d̃|2 (8.107)

where L̂1(k) := 3σ(Q)Lscx and L̂2(k, λ) := 6σ(Q)LsL
′
f (k) + 9σ(Q)L2

s + 3λ−1γLscx, and

||ũ(k)− us(β̂+)|2R − |ũ(k)− us(β̂)|2R|

≤ 6σ(R)Ls|ũ(k)− us(β̂)||d̃|+ 9σ(R)L2
s|d̃|2

≤ 6σ(R)Lscu(k)|δx̂||d̃|+ 9σ(R)L2
s|d̃|2

≤ 3λσ(R)Lscu(k)|δx̂|2 + (9σ(R)L2
s + 3λ−1σ(R)Lscu(k))|d̃|2

≤ λL̃1(k)|δx̂|2 + L̃2(k, λ)|d̃|2 (8.108)

where L̃1(k) := 3σ(R)Lscu(k), L̃2(k, λ) := 9σ(R)L2
s + 3λ−1σ(R)Lscu(k), and cu(k) = cu if

k ∈ I0:N−2 and cu(N − 1) = cu,f .
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For the uniform β̂ bound, we have

|VN(x̂+, ũ, β̂)− VN(x+, ũ, β̂)|

≤
N−1∑
k=0

2σ(Q)|x̂+(k)− x+(k)||x+(k)− xs(β̂)|+ σ(Q)|x̂+(k)− x+(k)|2

+ 2γ|x̂+(N)− x+(N)||x+(N)− xs(β̂)|+ γ|x̂+(N)− x+(N)|2

≤
N−1∑
k=0

2σ(Q)cxL
′
f (k)|δx̂||d̃|+ σ(Q)(L′

f (k))
2|d̃|2

+ 2γcxγfL
′
f (N)|δx̂||d̃|+ γ(L′

f (N))2|d̃|2

≤
N−1∑
k=0

λσ(Q)cxL
′
f (k)|δx̂|2 + (σ(Q)(L′

f (k))
2 + λ−1σ(Q)cxL

′
f (k))|d̃|2

+ λγcxγfL
′
f (N)|δx̂|2 + (γ(L′

f (N))2 + λ−1γcxγfL
′
f (N))|d̃|2

≤
N−1∑
k=0

λL1(k)|δx̂|2 + L2(k, λ)|d̃|2 + λL1(N)|δx̂|2 + L2(N, λ)|d̃|2

where L1(k) := σ(Q)cxL
′
f (k) and L2(k, λ) := σ(Q)(L′

f (k))
2 + λ−1σ(Q)cxL

′
f (k) for each

k ∈ I0:N−1, and L1(N) := γcxγfL
′
f (N) and L2(N, λ) := γ(L′

f (N))2 + λ−1γcxγfL
′
f (N).

Finally, we compile the above results,

∣∣∣|x̂+(N)− xs(β̂+)|2
Pf (β̂+)

− |x+(N)− xs(β̂)|2Pf (β̂)

∣∣∣
(8.105)

≤
∣∣∣|x̂+(N)− xs(β̂+)|2

Pf (β̂)
− |x+(N)− xs(β̂)|2Pf (β̂)

∣∣∣+ σPf ,x(|d̃|)|δx̂|2 + σPf ,d(|d̃|)|d̃|2

(8.106)

≤
∣∣∣|x̂+(N)− xs(β̂+)|2

Pf (β̂)
− |x+(N)− xs(β̂)|2Pf (β̂)

∣∣∣
+ (σPf ,x(|d̃|) + λL̂1(N))|δx̂|2 + (σPf ,d(|d̃|) + L̂2(N, λ))|d̃|2 (8.109)
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and therefore

|VN(x̂+, ũ, β̂+)− VN(x̂+, ũ, β̂)|

(8.107)–(8.109)

≤
N−1∑
k=0

λ(L̂1(k) + L̃1(k))|δx̂|2 + (L̂2(k, λ) + L̃2(k, λ))|d̃|2

+ (σPf ,x(|d̃|) + λL̂1(N))|δx̂|2 + (σPf ,d(|d̃|) + L̂2(N, λ))|d̃|2

Finally (8.95) holds so long as |d̃| ≤ δ, with

aVN ,1 := σPf ,x(δ) + λ

(
L1(N) + L̂1(N) +

N−1∑
k=0

L1(k)

)

aVN ,2 := σPf ,d(δ) + L2(N, λ) + L̂2(N, λ) +
N−1∑
k=0

L2(k, λ)

where L1(k) := L1(k) + L̂1(k) + L̃1(k) and L2(k, λ) := L2(k, λ) + L̂2(k, λ) + L̃2(k, λ).

To ensure aVN ,1 < σ(Q), we can simply choose λ ∈
(
0,

σ(Q)−σPf ,x(δ)

L1(N)+L̂1(N)+
∑N−1

k=0 L1(k)

)
and δ ∈

(0, σ−1
Pf ,x

(σ(Q))).

Proof of Proposition 8.41. For convenience, we define ũ := ũ(x̂, β̂). From Propositions 8.49

and 8.50, we have aVN ,1 ∈ (0, σ(Q)), aVN ,2, c̃e, δ, δw > 0, and σ̃w, σ̃α ∈ K∞ such that

|VN(x̂+, ũ, β̂+)− VN(x+, ũ, β̂)| ≤ (aVN ,1 + σ̃w(|wP|))|δx̂|2 + aVN ,2ce|(e, e+)|2 + σ̃α(|∆α|)

so long as d̃ ∈ D̃c(x̂, β̂)∩ δBnd̃ , α ∈ Ac(δw), and∆α ∈ Ac(α, δw). Without loss of generality,

assume δw < σ̃−1
w (σ(Q) − aVN ,1). By Proposition 8.33, we can choose δ > 0 such that ũ ∈
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UN(x̂+, β̂+), so

V 0
N(x̂

+, β̂+) ≤ VN(x̂
+, ũ, β̂+)

≤ VN(x
+, ũ, β̂) + (aVN ,1 + σ̃w(δw))|δx̂|2 + aVN ,2ce|(e, e+)|2 + σ̃α(|∆α|)

≤ V 0
N(x̂, β̂)− (σ(Q)− aVN ,1 − σ̃w(δw))|δx̂|2 + aVN ,2ce|(e, e+)|2 + σ̃α(|∆α|).

where the first inequality follows by optimality and the third inequality follows by (8.35).

Thus, (8.53) holds with ã3 := σ(Q)− aVN ,1 − σ̃w(δw) > 0 and ã4 := aVN ,2ce > 0.

8.C Steady-state target problem assumptions

In this appendix, we prove Lemmas 8.32 and 8.37.

8.C.1 Proof of Lemma 8.32

Proof of Lemma 8.32. First, note thatM1 full row rank implies nr ≤ nu. Consider the function

f1(zs, β) :=

[
f(xs, us, d)− xs

g(u, h(xs, us, d))− rsp

]

and define the objective and Lagrangian

ϕ(zs, β) := ℓs(us − usp, ys(zs, β)− ysp)

L(zs, β, λ) := ϕ(zs, β) + λ⊤f1(zs, β)
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where zs := (xs, us), ys(zs, β) := h(xs, us, d), and β := (rsp, usp, ysp, d). The first-order

derivatives of the Lagrangian are

∂zsL(zs, β, λ) = ∂zsϕ(zs, β) + [∂zsf1(zs, β)]
⊤λ

∂λL(zs, β, λ) = f1(zs, β).

The goal of the proof is to use the implicit function theorem on ∂(zs,λ)L(zs, β, λ) to establish

Lipschitz continuity of the SSTP solution map zs(·). We already have ∂(zs,λ)L(0, 0, 0) = 0

by assumption. Next, we aim to show ∂(zs,λ)L(zs, β, λ) = 0 is a necessary and sufficient

condition for solving (8.6).

First, we have the partial derivatives ∂zsf1(0, 0) =M1, which is full row rank by assump-

tion. By continuity of ∂zsf1, there exist constants ε1, δ1 > 0 such that ∂zsf1(zs, β) is full row

rank for all |zs| ≤ ε1 and |β| ≤ δ1. Then, so long as (zs, β) are kept sufficiently small, the

linear independence constraint qualification holds, and ∂(zs,λ)L(zs, β, λ) = 0 is a necessary

condition for solving (8.6).

Consider the following second-order derivatives:

∂2zsL(0, 0, 0) =M⊤
3 ∂

2
(u,y)ℓs(0, 0)M3

∂zs∂λL(0, 0, 0) = ∂zsf1(0, 0) =M1

∂2λL(0, 0, 0) = 0

whereM3 := [ 0 I
C D ].8 We have ∂(zs,λ)L(zs, β, λ) = 0 is a sufficient condition for solving (8.6)

if

d⊤∂2zsL(zs, β, λ)d > 0

8
The second-order derivatives of ys(zs, β) and f1(zs, β) vanish since ∂(u,y)ℓs(0, 0) and ys(0, 0) = 0 (by

assumption) and we have set λ = 0.
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for all d ∈ N (∂zsf1(zs, β)) \ { 0 }. We require the following intermediate result.

Lemma 8.51. For each A = A⊤ ∈ Rn×n and B ∈ Rm×n, we have x⊤Ax > 0 for all x ∈

N (B) \ { 0 } if and only if [ AB ] is full column rank.

Proof. First, note that N (A + B⊤B) = N ([ AB ]), so [ AB ] is full column rank is equivalent to

A+B⊤B being positive definite.

(⇒) Suppose x⊤Ax > 0 for all x ∈ N (B) \ { 0 }. Then x⊤(A+B⊤B)x ≥ x⊤Ax > 0 for

all x ∈ N (B) \ { 0 } and x⊤(A+B⊤B)x ≥ x⊤B⊤Bx > 0 for all x ̸∈ N (B), so A+B⊤B is

positive definite.

(⇐) Suppose A + B⊤B is positive definite. Then x⊤Ax = x⊤(A + B⊤B)x > 0 for all

x ∈ N (B) \ { 0 }.

Thus, it suffices to show [
∂2zsL(zs, β, λ)
∂zsf1(zs, β)

]
(8.110)

is full column rank. Since ∂2(u,y)ℓs(0, 0) is positive definite, N (∂2zsL(0, 0, 0)) = N (M3). Then

withM4 :=
[
∂2
zs

L(0,0,0)
∂zs f1(0,0)

]
we have

N (M4) = N (∂2zsL(0, 0, 0)) ∩N (∂zsf1(0, 0))

= N (M3) ∩N (M1)

= N
([
M3

M1

])
= { 0 }

where the last equality follows from the fact that

[
M3

M1

]
=

[
0 I
C D

A−I B
HyC Hu+HyD

]

is full column rank, as it is the row permutation of a block triangular matrix with full col-
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umn rank diagonal blocks I and

[
A−I
C

]
.
9
Therefore M4 is full column rank, and because

(8.110) is continuous, there exist ε2, δ2, γ2 > 0 for which (8.110) is full column rank for all

|zs| ≤ ε2, |β| ≤ δ2, and |λ| ≤ γ2. Therefore, so long as (zs, β, λ) are kept sufficiently small,

∂(zs,λ)L(zs, β, λ) = 0 is in fact a necessary and sufficient condition for solving (8.6).

Now we are able to solve (8.6). We have the derivatives

∂2(zs,λ)L(0, 0, 0) =
[
M⊤

3 ∂
2
(u,y)ℓs(0, 0)M3 M⊤

1

M1 0

]
.

According to (Magnus and Neudecker, 2019, Thm. 3.21), we have the nullspace relationship

N (∂2(zs,λ)L(0, 0, 0)) = N
([
V0

W0

])
(8.111)

where

V0 :=M⊤
3 ∂

2
(u,y)ℓs(0, 0)M3 +M⊤

1 M1 =

[
M3

M1

]⊤ [
∂2(u,y)ℓs(0, 0)

I

] [
M3

M1

]
W0 :=M1V

+
0 M

⊤
1 .

Recall

[
M3
M1

]
is full column rank and ∂2(u,y)ℓs(0, 0) is invertible, so V0 is invertible. Likewise,

M1 full row rank and V0 invertible implies thatW0 is invertible. Finally,
[
V0

W0

]
is invertible,

and by (8.111), ∂2(zs,λ)L(0, 0, 0) is invertible. By the implicit function theorem (Rudin, 1976,

Thm. 9.24) there exist δ3 > 0 and continuously differentiable functions g1 : Rnβ → Rn+nu

and gλ : Rnβ → Rn+nr
such that g1(0) = 0, gλ(0) = 0, and ∂(α,λ)L(g1(β), β,gλ(β)) = 0 for

all |β| ≤ δ3.

9
Full column rank of

[
A−λI

C

]
for all |λ| ≥ 1 follows from detectability of (A,C).
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For convenience, we define the functions

g1(β) =: (xs(β), us(β))

c̃(β) := max
1≤i≤nc

ci(us(β), h(xs(β), us(β), d)) + bi

for each β = (rsp, zsp, d) ∈ B, which are continuous because g1, h, and c are continu-

ous. Moreover, X,U contain neighborhoods of the origin and c̃(0) < 0 by assumption,

so there exists δ3 > 0 for which zs(β) ∈ X × U and c̃(β) ≤ 0 for all |β| ≤ δ3. Let

δ < δ4 := min { δ1, δ2, δ3 }, δ0 := δ4 − δ, Bc := δBnβ
, and Bc := δ4Bnβ

. Defining B̂c as

in Assumption 8.31(i), we have |β̂| ≤ |β| + |ed| ≤ δ + δ0 = δ4 for each β̂ = (ssp, d̂) ∈ B̂c,

and therefore Bc ⊆ B̂c ⊆ Bc ⊆ B. Moreover, (xs(β̂), us(β̂)) ∈ ZO(rsp, d̂) and (xs(β̂), us(β̂))

uniquely solve (8.6) and are continuously differentiable for each β̂ = (ssp, d̂) ∈ B̂c. Finally,

Assumption 8.31 is satisfied by zs, Bc ⊆ B, and δ0 > 0.

8.C.2 Proof of Lemma 8.37

Proof of Lemma 8.37. Recall from the proof of Lemma 8.32 thatM1 full row rank implies nr ≤

nu. Moreover,M2 invertible implies nd = ny. Consider the functions

f2(zs,xs, α) :=

[
fP(xP,s, us, wP)− xP,s

hP(xP,s, us, wP)− h(xs, us, ds)

]
f(zs,xs, α) :=

[
f1(zs, β)

f2(zs,xs, α)

]

where zs := (xs, us), xs := (xP,s, ds), α := (rsp, usp, ysp, wP), β := (rsp, usp, ysp, ds), and f1 is

defined in the proof of Lemma 8.32. Defining ϕ and L as in the proof of Lemma 8.32, we seek
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to use the implicit function theorem on

h(zs,xs, λ, α) :=

[
∂(zs,λ)L(zs,xs, β, λ)

f2(zs,xs, β)

]
=

[
∂zsϕ(zs,xs, β) + [∂zsf1(zs,xs, β)]

⊤λ
f(α, β)

]

which is the combination of the stationary point condition for the Lagrangian of (8.6) with

the steady-state disturbance problem (8.47). We already have h(0, 0, 0, 0) = 0 by assump-

tion. From the proof of Lemma 8.32, there exists δ1 > 0 such that, for all |(xs, α)| ≤ δ1,

∂(zs,λ)L(zs,xs, α, λ) = 0 is a necessary and sufficient condition for solving (8.6). Thus, if we

keep |(xs, α)| ≤ δ1 sufficiently small, then h(zs,xs, λ, α) = 0 is necessarily and sufficient for

simultaneously solving (8.6) and (8.47).

Defining the invertible matrices

T1 :=

[
In 0 0 0
0 Inr 0 0
In 0 −In 0
0 0 0 Iny

]
, T2 :=

[
In 0 0 0
0 Inu 0 0
In 0 −In 0
0 0 0 Ind

]
,

We have

T1∂(zs,xs)f(0, 0, 0)T2 =

[
M1 ∗
0 M2

]
.

We can write the derivatives

∂(zs,xs,λ)h(0, 0, 0, 0) =

[
M⊤

3 ∂
2
(u,y)ℓs(0, 0)M5 M⊤

1

∂(zs,xs)f(0, 0, 0) 0

]

whereM3 is defined as in the proof of Lemma 8.32, andM5 :=
[

0 I 0 0
C D 0 Cd

]
. Note thatM5T2 =

M5 andM5 =

[
M3 ∗

]
. Define the invertible matrices

T3 :=
[
In+nu

T1

]
, T4 :=

[
T2

In+nd

]
, P :=

[
In+nu 0 0

0 0 In+nd
0 In+nr 0

]
.
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Then we can write

T3∂(zs,xs,λ)h(0, 0, 0, 0)T4P =

[
M⊤

3 ∂2
(u,y)

ℓs(0,0)M3 M⊤
1 ∗

M1 0 ∗
0 0 M2

]
. (8.112)

ButM2 is invertible by assumption, and

[
M⊤

3 ∂2
(u,y)

ℓs(0,0)M3 M⊤
1

M1 0

]
was shown to be invertible in

the proof of Lemma 8.32, so ∂(zs,xs,λ)h(0, 0, 0, 0) must be invertible. By the implicit function

theorem (Rudin, 1976, Thm. 9.24) there exist δ2 > 0 and continuously differentiable functions

g : Rnα → R2n+nu+nd
and gλ : Rnα → R2n+nr+ny

(where A := Rnr × Zy ×W) such that

g(0) = 0, gλ(0) = 0, and ∂(zs,xs,λ)L(g(α), α,gλ(α)) = 0 for all |α| ≤ δ2.

As in the proof of Lemma 8.32, we define the functions

g(α) =: (xs(α), us(α), xP,s(α), ds(α))

c̃(α) := max
1≤i≤nc

ci(us(α), hP(xP,s(α), us(α), wP)) + bi

for each α = (rsp, zsp, wP) ∈ Rnα
, which are continuous because g, hP, and c are contin-

uous. From Lemma 8.32, we already have a set Bc ⊆ B containing a neighborhood of the

origin and continuously differentiable functions (with a slight abuse of notation) (xs, us) :

B → X × U that uniquely solve (8.6) (and satisfies Assumption 8.31). Since X,U,D,Bc

contain neighborhoods of the origin, there must exist δ3 > 0 such that g(α) ∈ X × U ×

X × D, β = (rsp, zsp, ds(α)) ∈ Bc, |(xs(α), α)| ≤ δ2, and c̃(β) ≤ 0 for all |α| ≤ δ3.

Therefore (xs(α), us(α)) are also the unique solutions to (8.6) with β = (rsp, zsp, ds(α)),

i.e., (xs(α), us(α)) = (xs(β), us(β)), and all parts of Assumption 8.36 are satisfied with

(xs, us) : B → X×U, (xP,s, ds) : Ac → X×D,Ac := δBnα
, and δ := min { δ1, δ2, δ3 } > 0.
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Conclusion

When we purchase a new piece of technology, our expectation and reality is that the product

works perfectly, right out of the box, in a “turnkey” fashion. For plant operators dealing

with control systems, this is less of a reality and more of a distant dream. The deployment

of control systems of all types—from simple PID loops, to high-level production scheduling

with model predictive control—is plagued with time-consuming tuning steps that use ad hoc

methods to produce suboptimal performance. This work has been driven by the philosophy

that data-based design is themost rigorous and optimal way to acquire an estimator, including

for offset-free control.

9.1 Summary

Part I: Identification

In Part I, we presented methods for identifying models with integrating disturbances. In

Chapter 3 we developed maximum likelihood identification for offset-free control applica-

tions. We contributed two key improvements upon the prior methodology. First, we incor-

porated high-level design and modeling constraints by way of LMI region-based eigenvalue

constraints and sparsity structuring. Second, we convert the constraints into a well-posed
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nonlinear program by introducing constraint back-offs to strict inequalities, and substituting

positive semidefinite matrices for their Cholesky factors. These methods rigorously approx-

imate the maximum likelihood problem for the ill-posed constraint set. In Chapter 4, we

extend a broad class of standard linear identification methods to allow for disturbance model

identification. We focus on simplemethods with closed-form solutions and provide a straight-

forward method for industrial practitioners to adopt data-driven estimator tuning methods.

Part II: Application

In Part II, we apply the methods presented in the previous two chapters to the offset-free

control of two systems: a benchmark temperature controller, and an operational, industrial-

scale chemical reactor at Eastman Chemical’s plant in Kingsport, TN. All of the case studies

in this part use real-world data collected from these systems. We show that the eigenvalue

constraints of Chapter 3 can improve estimator performance, and prevent the identification

of unstable or otherwise poorly tuned estimators. We establish that superior closed-loop per-

formance can be achieved by data-driven estimator designs, even over well-designed MPCs

(in this case, the MPC was on-line for at least 20 years Caveness and Downs (2005)). Our

data-based tuning achieved a 38% reduction in setpoint tracking error on Eastman’s chemical

reactor.

Part III: Theory

In Part III, we advance the theory on stability of MPC subject to plant-model mismatch.

We start with a simple analysis of unconstrained linear optimal control for nonlinear systems

in Chapter 6. We consider nonlinear standard MPC with multiplicative errors in Chapter 7.

Finally, we extend the theory to the general, nonlinear offset-free MPC in Chapter 8. This

theory is the first of its kind in establishing closed-loop stability and offset-free performance
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of nonlinear MPCs with integrating disturbances, and of MPCs of all kinds subject to plant-

model mismatch.

9.2 Future work

Data-driven control

The approach of Parts I and II is indirect data-driven control, where model parameters are

first estimated, and a controller designed based on it. A potential alternative is the direct data-

driven control approach, where the controller itself is designed according to data (Berberich

et al., 2021; Dorfler et al., 2022; Berberich et al., 2022a; Yuan and Cortés, 2022; Bianchin

et al., 2023). Data-driven model predictive controllers have been suggested by some au-

thors (Berberich et al., 2021, 2022a), and while the designs are generally robust to distur-

bances, there are no designs that can boast, rigorously, the kind of offset-free performance

we are afforded by offset-free MPC. The main limitation to these approaches is the reliance

on Willem’s Fundamental Lemma (Willems et al., 2005), which assumes the data is generated

from a plant of the model class and does not allow structured models. We also remark the

models considered in this thesis have far more general noise models than those considered in

direct data-driven control works. Despite these limitations, there is still a possibility of im-

proving the theory with designs based on likelihood functions (Yin et al., 2023) or by bridging

direct and indirect methodologies (Dorfler et al., 2022).

Performance monitoring

A promising area of future research is on the monitoring of MPC performance, model

updating, and fault diagnosis. With maximum likelihood estimates of the system parameters,

we are in good shape to continue developing the statistical performancemonitoring algorithm
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of Zagrobelny et al. (2013). Model fault diagnosis for offset-free MPC has mostly relied on

heuristic methods to detect and diagnose problems (Harrison and Qin, 2009; Pannocchia and

De Luca, 2012). The first steps towards rigorous re-identification are likely case studies on

real processes with poorly behaving controllers. A simple application for such an algorithm

is the self-tuning PID loop, where the on-line acquisition of a simple process model enables

the real-time tuning of the PID loop to new disturbance information.

Economic model predictive control

Wemostly ignored the cross-over between economic and offset-freeMPC designs Pannoc-

chia (2018); Faulwasser and Pannocchia (2019); Vaccari et al. (2021). However, this literature

addresses some important concerns about applying “optimal” control algorithms to real-world

systems. We put “optimal” in quotes here due to the futility of the situation for real-world

systems: due to plant-model mismatch, we can never hope to achieve optimal performance,

only to achieve some level of suboptimality. This is exacerbated on complex systems such

as chemical plants, where unknown physics and black-box modeling is routine. Pannocchia

(2018) originally suggested a gradient-updating scheme to allow for asymptotically optimal

performance. However, these approaches are plagued by the same theoretical limitations as

was offset-free MPC (before this work). Another option is to consider linear approximations

of the nonlinear economic MPC (Zanon et al., 2016, 2017). While this simplifies the approach

and makes it more attractive to a practical audience, it does not address plant-model mis-

match.

A simpler and more comprehensive theory

Our stability results are similar but different to the standard inherent robustness results of

the control literature (De Nicolao et al., 1996; Scokaert et al., 1997; Grimm et al., 2004; Pannoc-
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chia et al., 2011; Allan et al., 2017). We have found the theory of Chapters 7 and 8 considerably

narrower in terms of the allowed class of MPC designs. Of course, inherent robustness is a

much weaker requirement than stability despite persistent disturbances. However, our anal-

ysis is limited to the quadratic cost case, whereas inherent robustness holds in general for

coercive cost functions. There may be additional conditions on the cost functions that pro-

vide the kind of dissipation inequality we require to demonstrate stability despite mismatch.

A drawback of the theory of Chapter 8 is the reliance on Lyapunov functions for the es-

timator. We know of no approaches that guarantee the existence of Lyapunov functions for

optimization-based estimators, although some authors have provided close alternatives, such

as the so-called Q function and related incremental input-output-to-state stability (i-IOSS)

notion (Allan and Rawlings, 2019, 2021; Allan et al., 2021), andN -step-ahead Lyapunov func-

tions (Schiller et al., 2023). Moreover, the nature of uncontrollable integrating disturbances

invalidates most i-IOSS assertions. Disturbances have been handled separately (usually in the

form of parameter drift) by Muntwiler et al. (2023); Schiller and Müller (2023).
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