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Lapses in perceptual decisions reflect exploration1

Sashank Pisupati*1,2, Lital Chartarifsky-Lynn*1,2, Anup Khanal1 & Anne K. Churchland3
2

1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA3

2Watson School of Biological Sciences, Cold Spring Harbor, New York, USA4

3University of California, Los Angeles, Los Angeles, California5

ABSTRACT6

Perceptual decision-makers often display a constant rate of errors independent of evidence strength.7

These “lapses” are treated as a nuisance arising from noise tangential to the decision, e.g. inattention8

or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these9

explanations cannot account for lapses’ stimulus dependence. We propose a novel explanation:10

lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring11

uncertain ones. We tested this model’s predictions by selectively manipulating one action’s reward12

magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses13

associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-14

related computations to neural structures based on disruption experiments (here, posterior striatum15

and secondary motor cortex). These results suggest that lapses reflect an integral component of16

decision-making and are informative about action values in normal and disrupted brain states.17
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INTRODUCTION18

Perceptual decisions are often modeled using noisy ideal observers (e.g., Signal detection theory,19

Green, Swets, et al., 1966; Bayesian decision theory, Dayan and Daw, 2008) that explain subjects’20

errors as a consequence of noise in sensory evidence. This predicts an error rate that decreases21

with increasing sensory evidence, capturing the sigmoidal relationship often seen between evidence22

strength and subjects’ decision probabilities (i.e. the psychometric function).23

Human and non-human subjects often deviate from these predictions, displaying an additional24

constant rate of errors independent of the evidence strength known as “lapses”, leading to errors25

even on extreme stimulus levels (Wichmann and Hill, 2001; Busse et al., 2011; Gold and Ding,26

2013; Carandini and Churchland, 2013). Despite the knowledge that ignoring or improperly fitting27

lapses can lead to serious mis-estimation of psychometric parameters (Wichmann and Hill, 2001;28

Prins and Kingdom, 2018), the cognitive mechanisms underlying lapses remain poorly understood.29

A number of possible sources of noise have been proposed to explain lapses, typically tangential to30

the decision-making process.31

One class of explanations for lapses relies on pre-decision noise added due to fluctuating32

attention, which is often operationalized as a small fraction of trials on which the subject fails to33

attend to the stimulus (Wichmann and Hill, 2001). On these trials, it is assumed that the subject34

cannot specify the stimulus (i.e. sensory noise with infinite variance, Bays, Catalao, and Husain,35

2009) and hence guesses randomly or in proportion to prior beliefs. This model can be thought of as36

a limiting case of the Variable Precision model, which assumes that fluctuating attention has a more37
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graded effect of scaling the sensory noise variance (Garrido, Dolan, and Sahani, 2011), giving rise38

to heavy tailed estimate distributions, resembling lapses in the limit of high variability (Shen and39

Ma, 2019; Zhou et al., 2018). Temporal forms of inattention have also been proposed to give rise to40

lapses, where the animal ignores early or late parts of the evidence (impulsive or leaky integration,41

Erlich et al., 2015).42

An alternative class of explanations for lapses relies on a fixed amount of noise added after a43

decision has been made, commonly referred to as “post-categorization” noise (Erlich et al., 2015)44

or decision noise (Law and Gold, 2009). Such noise could arise from errors in motor execution45

(e.g. finger errors, Wichmann and Hill, 2001), non-stationarities in the decision rule arising from46

computational imprecision (Findling et al., 2018), suboptimal weighting of choice or outcome47

history (Roy et al., 2018; Busse et al., 2011) or random variability added for the purpose of48

exploration (eg.“ε-greedy” decision rules).49

A number of recent observations have cast doubt on fixed early- or late-stage noise as50

satisfactory explanations for lapses. For instance, many of these explanations predict that lapses51

should occur at a constant rate, while in reality, lapses are known to reduce in frequency with52

learning in non-human primates (Law and Gold, 2009; Cloherty et al., 2019). Further, they can53

occur with different frequencies for different stimuli even within the same subject (in rodents,54

Nikbakht et al., 2018; and humans, Mihali et al., 2018; Bertolini et al., 2015; Flesch et al., 2018),55

suggesting that they may reflect task-specific, associative processes that can vary within a subject.56

Lapse frequencies are even more variable across subjects and can depend on the subject’s57
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age and state of brain function. For instance, lapses are significantly higher in children and patient58

populations than in healthy adult humans (Roach, Edwards, and Hogben, 2004; Witton, Talcott,59

and Henning, 2017; Manning et al., 2018). Moreover, a number of recent studies in rodents have60

found that perturbing neural activity in secondary motor cortex (Erlich et al., 2015) and striatum61

(Yartsev et al., 2018; Guo et al., 2018) has dramatic, asymmetric effects on lapses in auditory62

decision-making tasks. Because these perturbations were made in structures known to be involved63

in action selection, an intriguing possibility is that lapses reflect an integral part of the decision-64

making process, rather than a peripheral source of noise. However, because these studies only tested65

auditory stimuli, they did not afford the opportunity to distinguish sensory modality-specific deficits66

from general decision-related deficits. Taken together, these observations point to the need for a67

deeper understanding of lapses that accounts for effects of stimulus set, learning, age and neural68

perturbations.69

Here, we leverage a multisensory decision-making task in rodents to reveal the inadequacy70

of traditional models. We challenge a key assumption of perceptual decision-making theories,71

i.e. subjects’ perfect knowledge of expected rewards (Dayan and Daw, 2008), to uncover a72

novel explanation for lapses: uncertainty-guided exploration, a well known strategy for balancing73

exploration and exploitation in value-based decisions. We test predictions of the exploration model74

for perceptual decisions by manipulating the magnitude and probability of reward under conditions75

of varying uncertainty. Finally, we demonstrate that suppressing secondary motor cortex or posterior76

striatum unilaterally has an asymmetric effect on lapses that generalizes across sensory modalities,77

but only in uncertain conditions. This can be accounted for by an action value deficit contralateral78
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to the inactivated side, reconciling the proposed perceptual and value-related roles of these areas79

and suggesting that lapses are informative about the subjective values of actions, reflecting a core80

component of decision-making.81

RESULTS82

Testing ideal observer predictions in perceptual decision-making83

We leveraged an established decision-making task (Raposo, Sheppard, et al., 2012; Raposo, Kauf-84

man, and Churchland, 2014; Sheppard, Raposo, and Churchland, 2013; Licata et al., 2017) in which85

freely moving rats judge whether the fluctuating rate of a 1000 ms series of auditory clicks and/or86

visual flashes (rate range: 9 - 16 Hz) is high or low compared with an abstract category boundary87

of 12.5 Hz (Fig. 1a - c). Using Bayesian decision theory, we constructed an ideal observer for our88

task that selects choices that maximize expected reward (See Methods: Modelling). To test whether89

behavior matches ideal observer predictions, we presented multisensory trials with matched visual90

and auditory rates (i.e., both modalities carried the same number of events/sec; Fig. 1c, bottom)91

interleaved with visual-only or auditory-only trials. This allowed us to separately estimate the92

sensory noise in the animal’s visual and auditory system, and compare the measured performance93

on multisensory trials to the predictions of the ideal observer.94

Performance was assessed using a psychometric curve, i.e. the probability of high-rate95

decisions as a function of stimulus rate (Fig. 1f). The ideal observer model predicts a relationship96

between the slope of the psychometric curve and noise in the animal’s estimate: the higher the97
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standard deviation (σ) of sensory noise, the more uncertain the animal’s estimate of the rate and98

the shallower the psychometric curve. On multisensory trials, the ideal observer should have a99

more certain estimate of the rate (Fig. 1e, visual [blue] and auditory [green] σ values are larger100

than multisensory σ [red]), driving a steeper psychometric curve (Fig. 1f, red curve is steeper than101

green and blue curves). Since this model does not take lapses into account, it would predict perfect102

performance on the easiest stimuli on all conditions, and thus all curves should asymptote at 0 and 1103

(Fig 1f).104
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Figure 1 Testing ideal observer predictions in perceptual decision-making. (a) Schematic drawing of106

rate discrimination task. Rats initiate trials by poking into a center port. Trials consist of visual stimuli107

presented via a panel of diffused LEDs, auditory stimuli presented via a centrally positioned speaker or108

multisensory stimuli presented from both. Rats are rewarded with a 24 µl drop of water for reporting high109

rate stimuli (greater than 12.5 Hz) with rightward choices and low rate stimuli (lower than 12.5 Hz) with110
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leftward choices. (b) Timeline of task events. (c) Example stimulus on auditory (top), visual (middle) and111

multisensory trials (bottom). Stimuli consist of a stream of events separated by long (100 ms) or short (50112

ms) intervals. Multisensory stimuli consist of visual and auditory streams carrying the same underlying113

rate. Visual, auditory and multisensory trials were randomly interleaved (40% visual, 40% auditory, 20%114

multisensory). (d) Schematic outlining the computations of a Bayesian ideal observer. Stimulus belonging to115

a true category c, with a true underlying rate s gives rise to noisy observations xA and xV , which are then116

integrated with each other and with prior beliefs to form a multisensory posterior belief about the category,117

and further combined with reward information to form expected action values QL, QR. The ideal observer118

selects the action â with maximum expected value. Lightning bolts denote proposed sources of noise that can119

give rise to (red) or exacerbate (grey) lapses, causing deviations from the ideal observer. (e) Posterior beliefs120

on an example trial assuming flat priors. Solid black line denotes true rate, blue and green dotted lines denote121

noisy visual and auditory observations, with corresponding unisensory posteriors shown in solid blue and122

green. Solid red denotes the multisensory posterior, centered around the maximum a posteriori rate estimate123

in dotted red. Shaded fraction denotes the probability of the correct choice being rightward, with µ denoting124

the category boundary. (f) Ideal observer predictions for the psychometric curve, i.e. proportion of high rate125

choices for each rate. Inverse slopes of the curves in each condition are reflective of the posterior widths126

on those conditions, assuming flat priors. The value on the abscissa corresponding to the curve’s midpoint127

indicates the subjective category boundary, assuming equal rewards and flat priors.128

Lapses cause deviations from ideal observer and are reduced on multisensory trials129

In practice, the shapes of empirically obtained psychometric curves do not perfectly match the ideal130

observer (Fig. 2) since they asymptote at values that are less than 1 or greater than 0. This is a131
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well known phenomenon in psychophysics (Wichmann and Hill, 2001), requiring two additional132

lapse parameters to precisely capture the asymptotes. To account for lapses, we fit a four-parameter133

psychometric function to the subjects’ choice data (Fig. 2a - red, Equation 1 in Methods) with the134

Palamedes toolbox (Prins and Kingdom, 2018). γ and λ are the lower and upper asymptotes of135

the psychometric function, which parameterize lapses on low and high rates respectively; φ is a136

sigmoidal function, in our case the cumulative normal distribution; x is the event rate, i.e. the average137

number of flashes or beeps presented during the one second stimulus period; µ parameterizes the138

midpoint of the psychometric function and σ describes the inverse slope after correcting for lapses.139

How can we be sure that the asymptotes seen in the data truly reflect non-zero asymptotes140

rather than fitting artifacts or insufficient data at the asymptotes? To test whether lapses were truly141

necessary to explain the behavior, we fit the curves with and without lapses (Fig. 2b) and tested142

whether the lapse parameters were warranted. The fit without lapses was rejected in 15/17 rats by143

the Bayes Information Criterion (BIC), and in all rats by the Akaike Information Criterion (AIC).144

Fitting a fixed lapse rate across conditions was not sufficient to capture the data, nor was fitting a145

lapse rate that was constrained to be less than 0.1 (Wichmann and Hill, 2001). Both data pooled146

across subjects and individual subject data warranted fitting separate lapse rates to each condition147

(“variable lapses” model outperforms “fixed lapses”, “restricted lapses” or “no lapses” in 13/17148

individuals based on BIC, all individuals based on AIC and in pooled data based on both, Fig. 2g).149

Multisensory trials offer an additional, strong test of ideal observer predictions. In addition150

to perfect performance on the easiest stimuli, the ideal observer model predicts the minimum151
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possible perceptual uncertainty achievable on multisensory trials through optimal integration (Ernst152

and Bulthoff, 2004; Equation 9 in Methods). By definition, better-than-optimal performance is153

impossible. However, studies in humans, rodents and non-human primates performing multisensory154

decision-making tasks suggest that in practice, performance occasionally exceeds optimal predic-155

tions (Raposo, Sheppard, et al., 2012; Nikbakht et al., 2018; Hou et al., 2018), seeming, at first, to156

violate the ideal observer model. Moreover, in these datasets, performance on the easiest stimuli157

was not perfect and asymptotes deviated from 0 and 1. As in these previous studies, when we fit158

performance without lapses, multisensory performance was significantly supra-optimal (p=0.0012,159

paired t-test), i.e. better than the ideal observer prediction (Fig. 2c, black points are above the160

unity line). This was also true when lapse probabilities were assumed to be fixed across conditions161

(p =0.0018, Fig. 2c purple) or when they were assumed to be less than 0.1 (p=0.0003, Fig. 2c162

yellow). However, when we allowed lapses to vary freely across conditions, performance was163

indistinguishable from optimal (Fig. 2d, data points are on the unity line). This reaffirms that proper164

treatment of lapses is crucial for accurate estimation of perceptual parameters and offers a potential165

explanation for previous reports of supra-optimality.166

Using this improved fitting method, we replicated previous observations (Raposo, Sheppard, et167

al., 2012; Raposo, Kaufman, and Churchland, 2014) showing that animals have improved sensitivity168

(lower σ) on multisensory vs. unisensory trials (Fig. 2e, red curve is steeper than green/blue curves;169

Fig. 2f, top). Interestingly, we observed that animals also had a lower lapse probability (λ + γ)170

on multisensory trials (Fig. 2e, asymptotes for red curve are closer to 0 and 1; n=17 rats, 347537171

trials). This was consistently observed across animals (Fig. 2f bottom, the probability of lapses on172
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multisensory trials was 0.06 on average, compared to 0.17 on visual, p=1.4e-4 and 0.21 on auditory,173

p=1.5e-5). We also noticed that compared to unisensory trials, multisensory trials were slightly174

biased towards high rates. This bias may reflect that animals’ decisions do not exclusively depend175

on the rate of events, but are additionally weakly influenced by the total event count, as has been176

previously reported on a visual variant of the task (Odoemene et al., 2018).177
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Figure 2 Deviations from ideal observer reflect lapses in judgment. (a) Schematic psychometric per-179

formance of an ideal observer (black) vs. a model that includes lapses (red). The ideal observer model180

includes two parameters: midpoint (µ) and inverse slope (σ). The four-parameter model includes µ, σ, and181
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lapse probabilities for low rate (γ) and high rate choices (λ). Dotted line shows the true category boundary182

(12.5 Hz). (b) Subject data was fit with an two-parameter model without lapses (black) and a four-parameter183

model with lapses (red). (c,d) Ideal observer predictions vs. measured multisensory sigma for fits with184

and without variable lapses across conditions. (c) Multisensory integration seems supra-optimal if lapses185

are not accounted for (No lapses, black), fixed across conditions (Fixed lapses, purple) or assumed to be186

less than 0.1 (Restricted lapses, yellow). (d) Optimal multisensory integration is restored when allowing187

lapses to vary freely across conditions. (n = 17 rats. Points represent individual rats. Data points that lie188

on the unity line represent cases in which the measured sigma was equal to the optimal prediction). (e)189

Rats’ psychometric curves on auditory (green), visual (blue) and multisensory (red) trials. Points represent190

data pooled across 17 rats, lines represent separate four-parameter fits to each condition. (f) Fit values of191

sigma (top) and lapse parameters (bottom) on unisensory and multisensory conditions. Both parameters192

showed significant reduction on the multisensory conditions (paired t-test, p<0.05); n=17 rats (347537 trials).193

(g) Model comparison using BIC (pink) and AIC (blue) for fits to pooled data across subjects (top) and to194

individual subject data (bottom). Lower scores indicate better fits. Both metrics favor a model where lapses195

are allowed to vary freely across conditions (“Variable lapse”) over one without lapses (“No lapses”), one196

with a fixed probability of lapses (“Fixed lapse”) or where the lapses are restricted to being less than 0.1197

(“Restricted lapse”).198

Uncertainty-guided exploration offers a novel explanation for lapses where traditional expla-199

nations fail200

What could account for the reduction in lapse probability on multisensory trials? While adding201

extra parameters to the ideal observer model fit the behavioral data well and accurately captured the202

12



reduction in inverse-slope on multisensory trials, this success does not provide an explanation for203

why lapses are present in the first place, nor why they differ between stimulus conditions.204

To investigate this, we examined possible sources of noise that have traditionally been invoked205

to explain lapses (Fig. 1d). The first of these explanations is that lapses might be due to a fixed206

amount of noise added once the decision has been made. These sources of noise could include207

decision noise due to imprecision (Findling et al., 2018) or motor errors (Wichmann and Hill,208

2001). However, these sources should hinder decisions equally across stimulus conditions (Fig.209

3-Supplementary Fig. 1b), which cannot explain our observation of condition-dependent lapse rates210

(Fig. 2f).211

A second explanation is that lapses arise due to inattention on a small fraction of trials.212

Inattention would drive the animal to guess randomly, producing lapse rates whose sum should213

reflect the probability of not attending (Fig. 3a, Methods). According to this explanation, the lower214

lapse rate on multisensory trials could reflect increased attention on those trials, perhaps due to their215

increased bottom-up salience (i.e. two streams of stimuli instead of one). To examine this possibility,216

we leveraged a multisensory condition that has been used to manipulate perceptual uncertainty217

without changing salience in rats and humans (Raposo, Sheppard, et al., 2012). Specifically, we218

interleaved standard matched-rate multisensory trials with “neutral” multisensory trials for which219

the rate of the auditory stimuli ranged from 9-16 Hz, while the visual stimuli was always 12 Hz. This220

rate was so close to the category boundary (12.5 Hz) that it did not provide compelling evidence for221

one choice or the other (Fig. 3d, left), thus reducing the information in the multisensory stimulus and222
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increasing perceptual uncertainty on “neutral” trials. However, since both “neutral” and “matched”223

conditions are multisensory, they should be equally salient, and since they are interleaved, the animal224

would be unable to identify the condition without actually attending to the stimulus. According to225

the inattention model, matched and neutral trials should have the same rate of lapses, only differing226

in their inverse-slope σ (Fig. 3a, Fig. 3-Supplementary Fig. 1c).227

Contrary to this prediction, we observed higher lapse rates in the “neutral” condition, where228

trials had higher perceptual uncertainty on average, compared to the “matched” condition (Fig. 3d).229

This correlation between the average perceptual uncertainty in a condition and its frequency of230

lapses was reminiscent of the correlation observed while comparing unisensory and multisensory231

trials (Fig. 2e,f; Fig. 3-Supplementary Fig. 1e).232

Having observed that traditional explanations of lapses fail to account for the behavioral233

observations, we re-examined a key assumption of ideal observer models used in perceptual234

decision-making - that subjects have complete knowledge about the rules and rewards (Dayan and235

Daw, 2008). In general, this assumption may not hold true for a number of reasons - even when236

the stimulus category is known with certainty, subjects might have uncertainty about the values of237

different actions because they are still in the process of learning (Law and Gold, 2009), because238

they incorrectly assume that their environment is non-stationary (Yu and Cohen, 2009), or because239

they forget over time (Gershman, 2015; Drugowitsch and Pouget, 2018). In such situations, rather240

than always “exploiting” (i.e. picking the action currently assumed to have the highest value), it241

is advantageous to “explore” (i.e. occasionally pick actions whose value the subject is uncertain242
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about), in order to gather more information and maximize reward in the long term (Dayan and Daw,243

2008). Exploratory choices of the lower value action for the easiest stimuli would resemble lapses,244

and the sum of lapses would reflect the overall degree of exploration.245

Choosing how often to explore is challenging, and requires trading off immediate rewards for246

potential gains in information - random exploration would reward subjects at chance, but would247

reduce uncertainty uniformly about the value of all possible stimulus-action pairs, while a greedy248

policy (i.e. always exploiting) would yield many immediate rewards while leaving lower value249

stimulus-action pairs highly uncertain (Fig. 3-Supplementary Fig. 2a,b). Policies that explore250

randomly on a small fraction of trials (e.g. “ε-Greedy” policies) do not make prescriptions about251

how often the subject should explore, and are behaviorally indistinguishable from motor errors252

when the fraction is fixed (Fig. 3b). One elegant way to automatically balance exploration and253

exploitation is to explore more often when one is more uncertain about action values. In particular,254

a form of uncertainty-guided exploration called Thompson sampling is asymptotically optimal255

in many general environments (Leike et al., 2016), achieving lower regret than other forms of256

exploration (Fig. 3-Supplementary Fig. 2c). This can be thought of as a dynamic “softmax” policy257

(Fig. 3c), whose “inverse temperature” parameter (β) scales with uncertainty (Gershman, 2018).258

This predicts a lower β when values are more uncertain, encouraging more exploration and more259

frequent lapses, and a higher β when values are more certain, encouraging exploitation. The limiting260

case of perfect knowledge (β →∞) reduces to the reward-maximizing ideal observer.261

Subjects’ uncertainty about stimulus-action values is compounded by perceptual uncertainty -262
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on trials where the stimulus category is not fully known, credit cannot be unambiguously assigned to263

one stimulus-action pair when rewards are obtained and value uncertainty is only marginally reduced.264

Hence conditions where trials have higher perceptual uncertainty on average (e.g. unisensory or265

neutral trials) will have more overlapping value beliefs, encouraging more exploration and giving266

rise to more frequent lapses (Fig. 3-Supplementary Fig. 2d).267

As a result, on neutral multisensory trials, the uncertainty-guided exploration model predicts268

an increase not only in the inverse slope parameter σ, but also in the rate of lapses, just as we269

observed (Fig. 3d). In fact, this model predicts that both slope and lapse parameters on neutral trials270

should match those on auditory trials, since these conditions have comparable levels of perceptual271

uncertainty. The data was well fit by the exploration model (Fig. 3e, bottom) and satisfied both272

predictions (Fig. 4-Supplementary source data, Neutral has higher σ and lower β than Multisensory,273

and matched σ and β to Auditory) . By contrast, the inattention model predicts that both conditions274

would have the same lapse rates, with the neutral condition simply having a larger inverse slope275

σ. This model provided a worse fit to the data, particularly missing the data at extreme stimulus276

values where lapses are most clearly apparent (Fig. 3e, top). Model comparison using BIC and AIC277

favored the exploration model over the inattention model, both for fits to pooled data across subjects278

(Fig. 3f top) and fits to individual subject data (Fig. 3f bottom, Fig. 3-Supplementary Fig. 3 , for279

the 3/5 subjects rejected by ideal observer model i.e. with sizable lapses. Both predictions of the280

exploration model were confirmed using unconstrained descriptive fits to individuals, and held up281

for 4/5 subjects)282
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To further understand the precise relationship between perceptual uncertainty and lapses under283

this form of exploration, we simulated learning in a Thompson sampling agent for various levels of284

sensory noise, and found a roughly linear relationship between sensory noise and average lapse rate.285

Hence we fit a constrained version of the exploration model to the multisensory data from 17 rats,286

where the degree of exploratory lapses was constrained to be a linear function of that condition’s287

sensory noise (with 2 free parameters - slope and intercept, rather than 3 free parameters for the 3288

conditions). This model yielded lower BIC than the unconstrained exploration model in all 14/17289

rats that were rejected by the ideal observer model (Fig. 3-Supplementary Fig. 3c), and yielded290

similar slope and intercept parameters across animals (Fig. 3-Supplementary Fig. 2e).291
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Figure 3 Uncertainty-guided exploration offers a novel explanation for lapses. Models of lapses in293

decision-making: (a) Inattention model of lapses. Left panel: Observer’s posterior belief about rate. On a294

large fraction of trials given by pattend, the observer attends to the stimulus, and has a peaked belief about295

the rate whose width reflects perceptual uncertainty (red curve on matched trials, orange curve on neutral296

trials), but on a small fraction of trials given by 1 − pattend, the observer does not attend to the stimulus297

(black curve), leading to equal posterior beliefs of rates being high or low (Shaded, clear regions of curves298

respectively) and guesses according to the probability bias, giving rise to lapses (right panel). The sum of299
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lapse rates then reflects 1− pattend, while their ratio reflects the bias. Since matched and neutral trials are300

equally salient, they are expected to have the same pattend and hence similar overall lapse rates. (b) Fixed301

error model of lapses. Lapses could arise due to motor errors ocurring on ε fraction of trials, or from decision302

rules that explore on a fixed proportion ε of trials (black), rather than always maximizing reward (blue). The303

sum of lapses reflects ε while their ratio reflects any bias in motor errors or exploration, leading to a fixed304

rate of lapses across conditions. (c) Uncertainty-guided exploration model. Lapses can also arise from more305

sophisticated exploratory decision rules such as the “softmax” decision rule. Since the difference in expected306

value from right and left actions (QR−QL) is bounded by the maximum reward magnitudes rRight and rLeft,307

even when the stimulus is very easy, the maximum probability of choosing the higher value option is not 1,308

giving rise to lapses. Lapse rates on either side are then proportional to the reward magnitude on that side, and309

to a “temperature” parameter β that is modulated by the uncertainty in action values. Conditions with higher310

overall perceptual uncertainty (eg. neutral, orange) are expected to have higher value uncertainty, and hence311

higher lapses. (d) Left: multisensory stimuli designed to distinguish between attentional and non-attentional312

sources of lapses. Standard multisensory stimuli with matched visual and auditory rates (top) and “neutral”313

stimuli where one modality has a rate very close to the category boundary and is uninformative (bottom).314

Both stimuli are multisensory and designed to have equal bottom-up salience, and can only be distinguished315

by attending to them and accumulating evidence. Right: rat performance on interleaved matched (red) and316

neutral (orange) trials. (e) Model fits (solid lines) overlaid on average data points. Deviations from model fits317

are denoted with arrows. The exploration model (bottom) provides a better fit than the inattention model (top),318

since it predicts higher lapse rates on neutral trials (orange). (f) Model comparison using BIC (pink) and AIC319

(blue) both favor the uncertainty-guided exploration model for pooled data (top) as well as individual subject320
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data (bottom).321

Reward manipulations confirm predictions of exploration model322

One of the key claims of the uncertainty-guided exploration model is that lapses are exploratory323

choices made with full knowledge of the stimulus, and should therefore depend only on the expected324

rewards associated with that stimulus category (Fig. 3-Supplementary Fig. 2). This is in stark325

contrast to the inattention model and many other kinds of disengagement (Fig. 4-Supplementary326

Fig. 1), according to which lapses are caused by the observer disregarding the stimulus, and hence327

lapses at the two extreme stimulus levels are influenced by a common underlying guessing process328

that depends on expected rewards from both stimulus categories. This is also in contrast to fixed329

error models such as motor error or ε-greedy models in which lapses are independent of expected330

reward (Fig. 3b).331

Therefore, a unique prediction of the exploration model is that selectively manipulating ex-332

pected rewards associated with one of the stimulus categories should only change the explore-exploit333

tradeoff for that stimulus category, selectively affecting lapses at one extreme of the psychome-334

tric function. Conversely, inattention and other kinds of disengagement predict that both lapses335

should be affected, while fixed error models predict that neither should be affected (Fig. 4a, Fig.336

3-Supplementary Fig. 1, Fig. 4-Supplementary Fig. 1).337

To experimentally test these predictions, we tested rats on the rate discrimination task with338

asymmetric rewards (Fig. 4b, top). Instead of rewarding high and low rate choices equally, we339

increased the water amount on the reward port associated with high-rates (rightward choices) so it340
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was 1.5 times larger than before, without changing the reward on the the low-rate side (leftward341

choices). In a second rat cohort we did the opposite: we devalued the choices associated with342

high-rate trials by decreasing the water amount on that side port so it was 1.5 times smaller than343

before, without changing the reward on the low-rate side.344
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Figure 4 Reward manipulations match predictions of the exploration model. (a) The inattention, fixed346

error and exploration models make different predictions for increases and decreases in the reward magnitude347

for rightward (high-rate) actions. The inattention model (left panel) predicts changes in lapses for both high348

21



and low rate choices, while fixed error models such as motor error or ε-greedy (center) predict changes in349

neither lapse, and the uncertainty-dependent exploration model (right) predicts changes in lapses only for350

high rate choices. Black line denotes equal rewards on both sides; green, increased rightward reward; red,351

decreased rightward reward. (b) Schematic of rate discrimination trials and interleaved “sure bet” trials. The352

majority of the trials (94%) were rate discrimination trials as described in Figure 1. On sure-bet trials, a pure353

tone was played during a 0.2 second fixation period and one of the side ports was illuminated once the tone354

ended to indicate that reward was available there. Rate discrimination and sure-bet trials were randomly355

interleaved, as were left and right trials, and the rightward reward magnitude was either increased (36 µl) or356

decreased (16 µl) while maintaining the leftward reward at 24 µl (c) Rats’ behavior on rate discrimination357

trials following reward magnitude manipulations. High rate lapses decrease when water reward for high-rate358

choices is increased (left panel; n=3 rats, 6976 trials), while high-rate lapses increase when reward on that359

side is decreased (right panel; n=3 rats, 11164 trials). Solid curves are exploration model fits with a single360

parameter change accounting for the manipulation. (d) Rats show nearly perfect performance on sure-bet361

trials, and are unaffected by reward manipulations on these trials. (e) Reward probability manipulation. (Left)362

Schematic of probabilistic reward trials, incorrect (leftward) choices on high rates were rewarded with a363

probability of 0.5, and all other rewards were left unchanged. (Right) Rats’ behavior and exploration model364

fits showing a selective increase in high-rate lapses (n=5 rats, 34292 trials). (f) Rats’ behavior on equal reward365

trials conditioned on successes (green) or failures (red) on the right on the previous trials resembles effects366

of reward size manipulations. (g) Model comparison showing that AIC and BIC both favor the exploration367

model on data from all 3 manipulations.368

The animals’ behavior on the asymmetric-reward task matched the predictions of the explo-369
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ration model. Increasing the reward size on choices associated with high-rates led to a decrease370

in lapses for the highest rates and no changes in lapses for the lowest rates (Fig. 4c, left; n=3 rats,371

6976 trials). Decreasing the reward of choices associated with high-rates led to an increase in lapses372

for the highest rates and no changes in lapses for the lower rates (Fig. 4c, right; n=3 rats, 11164373

trials). This shows that both increasing and decreasing the value of actions associated with one of374

the stimulus categories selectively affects lapses on that stimulus category, unlike the predictions of375

the inattention model.376

A key claim of the uncertainty-guided exploration model is that the effects of reward manipu-377

lations on lapses arise from a selective shift in the trade-off between exploiting the most rewarding378

action and exploring uncertain ones, rather than from a non-selective bias towards the side with379

bigger rewards. Importantly, the model predicts that in the absence of uncertainty, decisions should380

be perfectly exploitative and unaffected by reward imbalances, since subjects would always be381

comparing perfectly certain, non-zero rewards to zero. To determine whether the effects that we382

observed were truly driven by uncertainty, we examined performance on randomly interleaved383

“sure bet” trials on which the uncertainty was very low (Fig. 4b, bottom). On these trials, a pure384

tone was played during the fixation period, after which an LED at one of the side ports was clearly385

illuminated, indicating a reward. Sure-bet trials comprised 6% of the total trials, and as with the rate386

discrimination trials, left and right trials were interleaved. Owing to the low perceptual uncertainty387

and consequently low value uncertainty, the model predicts that that animals would quickly reach388

an “exploit” regime, achieving perfect performance on these trials. Importantly, our model predicts389

that performance on these “sure-bet” trials would be unaffected by imbalances in reward magnitude,390
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since the “exploit” action remains unchanged.391

In keeping with this prediction, performance on sure-bet trials was near perfect (rightward392

probabilities of 0.003 [0.001,0.01] and 0.989 [0.978,0.995] on go-left and go-right trials respec-393

tively), and unaffected following reward manipulations (Fig. 4d: Rightward probabilities of394

0.004 [0.001, 0.014] and 0.996 [0.986,0.999] on increased reward, 0.006 [0.003,0.012] and 0.99395

[0.983,0.994] on decreased reward). This suggests that the effects of reward manipulations that396

we observed (Fig. 4C) are not a default consequence of reward imbalance, but a consequence of a397

reward-dependent trade-off between exploitation and uncertainty-guided exploration.398

As an additional test of the model, we manipulated expected rewards by probabilistically399

rewarding incorrect choices for one of the stimulus categories. Here, leftward choices on high400

rate (“go right”) trials were rewarded with a probability of 0.5, while leaving all other rewards401

unchanged (Fig. 4e left). The exploration model predicts that this should selectively increase the402

value of leftward actions on high rate trials, hence shifting the trade-off towards exploration on high403

rates and increasing high rate lapses. Indeed, this is what we observed (Fig. 4e right, n=5 animals,404

347537 trials), and the effect was strikingly similar to the decreased reward experiment, even though405

the two manipulations affect high rate action values through changes on opposite actions. This406

experiment in particular distinguishes the exploration model from motivation-dependent models407

of disengagement or inattention in which overall reward modulates the total lapse rate through408

a non-specific process that averages over stimulus categories (Fig. 4-Supplementary Fig. 1 a-c,409

f). Moreover, this suggests that lapses reflect changes in stimulus-specific action value caused by410
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changing either reward magnitudes or reward probabilities, as one would expect from the exploration411

model. Across experiments (Fig. 4-Supplementary source data) and individuals, these changes were412

captured by selectively changing the relevant baseline action value in the model, despite variability413

in these baselines.414

An added consequence of uncertainty in action values is that it should encourage continued415

learning even in the absence of explicit reward manipulations. This means that animals should416

continue to use the outcomes of previous trials to update the values of different actions as long as417

this uncertainty persists. Such persistent learning has been observed in a number of studies (Busse418

et al., 2011; Lak et al., 2018; Mendonca et al., 2018; Odoemene et al., 2018; Pinto et al., 2018; Scott419

et al., 2015). The uncertainty-dependent exploration model predicts that the effect of recent outcome420

history on action values should manifest as changes in lapse rates, rather than as horizontal biases421

caused by irrelevant, non-sensory evidence as is often assumed (Busse et al., 2011). For example,422

the action value of rightward choices should increase following a rightward success, producing423

similar changes to lapses as increased rightward reward magnitude. As predicted, trials following424

rewarded and unrewarded rightward choices showed decreased and increased lapses, respectively425

(Fig. 4f; same rats and trials as in Fig. 2e). Taken together, manipulations of value confirm the426

predictions of the uncertainty-dependent exploration model (Fig. 4g).427

Lapses are a powerful tool for assigning decision-related computations to neural structures428

based on disruption experiments429

The results of the behavioral manipulations (above) predict that unilateral disruption of neural430
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regions that leads to a one-sided scaling of learnt stimulus-action values should affect lapse rates431

asymmetrically. In contrast, disruptions to areas that process sensory evidence would lead to432

horizontal biases without affecting action values or lapses, and disruptions to motor areas that433

make one of the actions harder to perform irrespective of the stimulus would affect both lapses434

(Fig. 4-Supplementary Fig. 2a top, middle). Crucially, in the absence of lapses, all three of435

these disruptions would drive an identical behavioral effect, a horizontal shift of the psychometric436

function (Fig. 4-Supplementary Fig. 2a bottom). Indeed, the same reward manipulations that437

gave rise to distinct value biases in rats with sizeable lapses (Fig. 4-Supplementary Fig 2b top)438

led to horizontal shifts indistinguishable from sensory biases in highly trained rats with negligible439

lapses on multisensory trials (Fig. 4-Supplementary Fig 2b bottom). This suggests that lapses are440

actually informative about decision-making computations and can be used as a tool to determine441

which computations are affected by disruptions of a candidate brain region. To demonstrate this,442

we identified two candidate areas, secondary motor cortex (M2) and posterior striatum (pStr), that443

receive convergent input from primary visual and auditory cortices (Fig. 5-Supplementary Fig.444

1, results of simultaneous anterograde tracing from V1 and A1; also see Jiang and Kim, 2018;445

Barthas and Kwan, 2017). In previous work, disruptions of these areas had effects on auditory446

decisions, including changes in lapses (Erlich et al., 2015; Guo et al., 2018). However, considerable447

controversy remains as to which computations were affected by those disruptions. The effects were448

largely interpreted in terms of traditional ideal observer models (see Siniscalchi, H. Wang, and449

Kwan, 2019 for a notable exception), and thus attributed to perceptual biases (Guo et al., 2018),450

leaky accumulation (Erlich et al., 2015) or post categorization biases (Piet et al., 2017; Erlich et al.,451
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2015). Notably, the asymmetric effects on lapses seen in these studies resembled the effects of the452

reward manipulations in our task, hinting that they may actually arise from action value changes.453

Importantly, these existing studies used only auditory stimuli, so were limited in their ability to454

distinguish sensory-specific deficits from action value deficits.455

Here, we used analyses of lapses to determine the decision-related computations altered by456

unilateral disruption of M2 and pStr. If these disruptions affected action values, the exploration457

model makes three strong predictions. First, because action values are computed late in the decision-458

making process, the model predicts that the effects should not depend on the modality of the stimulus.459

We therefore performed disruptions in animals doing interleaved auditory, visual and multisensory460

trials. If pStr and M2 indeed compute action value, then following unilateral disruption of these461

areas, our model should capture changes to all three modalities by a single parameter change to462

the contralateral action value. Second, these disruptions should selectively affect lapses on stimuli463

associated with contralateral actions, irrespective of the stimulus-response contingency. To test464

this, we performed disruptions on animals trained on standard and reversed contingencies. Finally,465

because altered action values should have no effect when there is no uncertainty and consequently466

no exploration, disruption to pStr and M2 should spare performance on sure-bet trials (Fig. 4b,467

bottom).468

We suppressed activity of neurons in each of these areas using muscimol, a GABAA agonist,469

during our multisensory rate discrimination task. We implanted bilateral cannulae in M2 (Fig. 5a,470

Fig. 5-Supplementary Fig. 2b; n = 5 rats; +2 mm AP 1.3 mm ML, 0.3 mm DV) and pStr (Fig.471
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5a, Fig. 5-Supplementary Fig. 2a; n = 6 rats; -3.2 mm AP, 5.4 mm ML, 4.1 mm DV). On control472

days, rats were infused unilaterally with saline, followed by unilateral muscimol infusion the next473

day (M2: 0.1-0.5 µg, pStr 0.075-0.125 µg). We compared performance on the multisensory rate474

discrimination task for muscimol days with preceding saline days. Inactivation of the side associated475

with low-rate choices biased the animals to make more low-rate choices (Fig. 5b; left 6 panels:476

empty circles, inactivation sessions; full circles, control sessions), while inactivation of the side477

associated with high-rates biased them to make more high-rate choices (Fig. 5b, right 6 panels).478

The inactivations largely affected lapses on the stimulus rates associated with contralateral actions,479

while sparing those associated with ipsilateral actions (Fig. 5c). These results recapitulated previous480

findings, and were strikingly similar to the effects we observed following reward manipulations (as481

seen in Fig. 4c, right panel). These effects were seen across areas (Fig. 5b, top, M2; bottom, pStr)482

and modalities (Fig. 5b; green, auditory; blue, visual and red, multisensory).483

Fitting averaged data across rats with the exploration model revealed that, in keeping with484

the first model prediction, the effects on lapses in all modalities could be captured by scaling the485

contralateral action value by a single parameter (Fig. 5b, joint fits to control [solid lines] and486

inactivation trials [dotted lines] across modalities with the “biased value” model, differing only by a487

single parameter), similar to the reward manipulation experiments. Animals that were inactivated488

on the side associated with high rates showed increased lapses on low-rate trials (Fig. 5c, bottom489

right; data points are above the unity line; n=9 rats), but unchanged lapses on high-rate trials (Fig.490

5c, top right; data points are on the unity line). This was consistent across areas and modalities (Fig.491

5c; M2, triangles; pStr, circles; blue, visual; green, auditory; red, multisensory). Similarly, animals492
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that were inactivated on the side associated with low rates showed the opposite effect: increased493

lapses on high-rate trials (Fig. 5c, top left; n=10 rats), while lapses did not change for low-rate trials494

(Fig. 5c bottom left). Fits to individual animals revealed that the majority of animals were best495

fit by the “biased value” model (6/8 rats in M2 - Fig. 5-Supplementary Fig. 3, 7/11 in pStr - Fig.496

5-Supplementary Fig. 4), and the remaining animals were best fit by the “biased effort” model.497

In keeping with the second prediction, when we compared the effects of the disruptions498

in animals trained on standard and reversed contingencies (low rates rewarded with leftward or499

rightward actions respectively), the effects were always restricted to lapses on the stimuli associated500

with the side contralateral to the inactivation (Fig. 5-Supplementary Fig. 5), always resembling a501

devaluation of contralateral actions (Fig. 5-Supplementary Fig. 6).502

A model comparison across rats revealed that a fixed multiplicative scaling of contralateral503

value captured the inactivation effects much better than a fixed reduction in contralateral sensory504

evidence or a fixed addition of contralateral motor effort, both for M2 (Fig. 5e top) and pStr (Fig.505

5e bottom). In uncertain conditions, this reduced contralateral value gives rise to more exploratory506

choices and hence more lapses on one side (Fig. 5f top).507

The final prediction of the exploration model is that changes in action value will only affect508

trials in which there was uncertainty about the outcome. In keeping with that prediction, performance509

was spared on sure-bet trials (Fig. 5d): rats made correct rightward and leftward choices regardless510

of the side that was inactivated. This observation provides further reassurance that the changes511

we observed on more uncertain conditions did not simply reflect motor impairments that drove a512

29



tendency to favor ipsilateral movements. Additional movement parameters such as wait time in the513

center port and movement times to ipsilateral and contralateral reward ports were likewise largely514

spared (Fig. 5-Supplementary figure 7), suggesting that effects on decision outcome were not due515

to an inactivation-induced motor impairment.516

Together, these results demonstrate that lapses are a powerful tool for interpreting behavioral517

changes in disruption experiments. For M2 and pStr disruptions, our analysis of lapses and518

deployment of the exploration model allowed us to reconcile previous inactivation studies. Our519

results suggest that M2 and pStr have a lateralized, modality-independent role in computing the520

expected value of actions (Fig. 5f bottom).521
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Figure 5 Inactivation of secondary motor cortex and posterior striatum affects lapses, suggesting a523

role in action value encoding. (a) Schematic of cannulae implants in M2 (top) and pStr (bottom) and524

representative coronal slices. For illustration purposes only, the schematic shows implants in the right525

hemisphere, however, the inactivations shown in panel (b) were performed unilaterally on both hemispheres.526

(b) Unilateral inactivation of M2 (top) and pStr (bottom). Left 6 plots: inactivation of the side associated527

with low-rates shows increased lapses for high rates on visual (blue), auditory (green) and multisensory528

(red) trials (M2: n=5 rats; 10329 control trials, full line; 6174 inactivation trials, dotted line; pStr: n=5529

rats; 10419 control trials; 6079 inactivation trials). Right 6 plots: inactivation of the side associated with530

high-rates shows increased lapses for low rates on visual, auditory and multisensory trials (M2: n=3 rats;531

5678 control trials; 3816 inactivation trials; pStr: n=6 rats; 11333 control trials; 6838 inactivation trials).532

Solid lines are exploration model fits, accounting for inactivation effects across all 3 modalities by scaling all533

contralateral values by a single parameter. (c) Increased high rate lapses following unilateral inactivation of534

the side associated with low-rates (top left); no change in low rate lapses (bottom left) and vice versa for535

inactivation of the side associated with high-rates (top, bottom right). Control data on the abscissa is plotted536

against inactivation data on the ordinate. Same animals as in b. Green, auditory trials; blue, visual trials; red,537

multisensory trials. Abbreviations: posterior striatum (pStr), secondary motor cortex (M2). (d) Sure bet trials538

are unaffected following inactivation. Pooled data shows that rats that were inactivated on the side associated539

with high rates make near perfect rightward and leftward choices Top, M2 (3 rats); bottom, pStr (6 rats). (e)540

Model comparison of three possible multisensory deficits - reduction of contralateral evidence by a fixed541

amount (left), reduction of contralateral value by a fixed amount (center), or an increased contralateral effort542

by a fixed amount (right). Both AIC and BIC suggest a value deficit (f) Proposed computational role of M2543
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and Striatum. Lateralized encoding of left and right action values by right and left M2/pStr (bottom) explains544

the asymmetric effect of unilateral inactivations on lapses (top).545

DISCUSSION546

Perceptual decision-makers have long been known to display a small fraction of errors even on easy547

trials. Until now, these “lapses” were largely regarded as a nuisance and lacked a comprehensive,548

normative explanation. Here, we propose a novel explanation for lapses: that they reflect a strategic549

balance between exploiting known rewarding options and exploring uncertain ones. Our model550

makes strong predictions for lapses under diverse decision-making contexts, which we have tested551

here. First, the model predicts more lapses on conditions with higher perceptual uncertainty, such552

as unisensory (Fig. 2) or neutral (Fig. 3), compared to matched multisensory or sure-bet conditions.553

Second, the model predicts that stimulus-specific reward manipulations should produce stimulus-554

specific effects on lapses, sparing decisions about un-manipulated or highly certain stimulus-action555

pairs (Fig. 4). Finally, the model predicts that lapses should be affected by perturbations to brain556

regions that encode action value. Accordingly, we observed that inactivations of secondary motor557

cortex and posterior striatum affected lapses similarly across auditory, visual and multisensory558

decisions, and could be accounted for by a one-parameter change to the action value (Fig. 5). Taken559

together, our model and experimental data argue strongly that far from being a nuisance, lapses are560

informative about animals’ subjective action values and reflect a trade-off between exploration and561

exploitation.562
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Considerations of value have provided many useful insights into aspects of behavior that563

seem sub-optimal at first glance from the perspective of perceptual ideal observers. For instance,564

many perceptual tasks are designed with accuracy in mind - defining an ideal observer as one565

who maximizes accuracy, in line with classical signal detection theory. However, in practice, the566

success or failure of different actions may be of unequal value to subjects, especially if reward or567

punishment is delivered explicitly, as is often the case with non-human subjects. This may give568

rise to biases that can only be explained by an observer that maximizes expected utility (Dayan569

and Daw, 2008). Similarly, outcomes on a given trial can influence decisions about stimuli on570

subsequent trials through reinforcement learning, giving rise to serial biases. These biases occur571

even though the ideal observer should treat the evidence on successive trials as independent (Lak572

et al., 2018; Mendonca et al., 2018). When subjects can control how long they sample the stimulus,573

subjects maximizing reward rate may choose to make premature decisions, sacrificing accuracy574

for speed (Bogacz et al., 2006; Drugowitsch, DeAngelis, et al., 2014). Finally, additional costs of575

exercising mental effort could lead to bounded optimality through “satisficing” or finding good576

enough solutions (Mastrogiorgio and Petracca, 2018; Fan, Gold, and Ding, 2018).577

Here, we take further inspiration from considerations of value to provide a novel, normative578

explanation for lapses in perceptual decisions. Our results argue that lapses are not simply accidental579

errors made as a consequence of attentional “blinks” or motor “slips”, but can reflect a deliberate,580

internal source of behavioral variability that facilitates learning and information gathering when581

the values of different actions are uncertain. This explanation connects a well known strategy582

in value-based decision making to a previously mysterious phenomenon in perceptual decision583

33



making.584

Although exploration no longer yields the maximum utility on any given trial, it is critical for585

environments in which there is uncertainty about expected reward or stimulus-response contingency,586

especially if these need to be learnt or refined through experience. By encouraging subjects to587

sample multiple options, exploration can potentially improve subjects’ knowledge of the rules of588

the task, helping them to increase long-term utility. This offers an explanation for the higher rate589

of lapses seen in humans on tasks with abstract (Raposo, Sheppard, et al., 2012), non-intuitive590

(Mihali et al., 2018) or non-verbalizable (Flesch et al., 2018) rules.Exploration is also critical for591

dynamic environments in which rules or rewards drift or change over time. Subjects adapted to such592

dynamic real-world environments might entertain the possibility of non-stationarity even in tasks593

or periods where rewards are truly stationary, and such mismatched beliefs predict residual levels594

of exploration even in well-trained subjects (Fig. 3-Supplementary Fig. 2g middle). Such beliefs595

could be probed by challenging subjects with unsignalled changes in rewards and measuring how596

quickly they recover from these change-points. For instance, primates with higher levels of tonic597

exploration on cognitive set-shifting tasks (Ebitz et al., 2019) are more flexible and make fewer598

perseverative errors at change-points, at the cost of more lapses in rule adherence during stable599

periods.600

Balancing exploration and exploitation is computationally challenging, and the mechanism601

we propose here, Thompson sampling, is an elegant heuristic for achieving this balance. This602

strategy has been shown to be utilized by humans in value-based decision making tasks (Wilson603
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et al., 2014; Speekenbrink and Konstantinidis, 2015; Gershman, 2018) and is asymptotically optimal604

even in partially observable environments involving perceptual uncertainty such as ours (Fig. 3-605

Supplementary Fig. 2c, Leike et al., 2016). It can be naturally implemented through a sampling606

scheme where the subject samples action values from a learnt distribution and then maximizes with607

respect to the sample. This strategy predicts that conditions with higher perceptual uncertainty608

and consequently higher value uncertainty should have more exploration, and consequently higher609

lapse rates, explaining the pattern of lapse rates we observed on unisensory vs. multisensory trials610

as well as on neutral vs. matched trials. A lower rate of lapses on multisensory trials has also611

been reported on a visual-tactile task in rats (Nikbakht et al., 2018) and a vestibular integration612

task in humans (Bertolini et al., 2015) and can potentially account for the apparent supra-optimal613

integration that has been reported in a number of rodent, non-human primate and human studies614

(Nikbakht et al., 2018; Hou et al., 2018; Raposo, Sheppard, et al., 2012). A strong prediction of615

uncertainty guided exploration is that the animal should quickly learn to exploit on conditions with616

little or no uncertainty, as we observed on sure-bet trials (Fig. 4d, 5d).617

Uncertainty-guided exploration also predicts that exploratory choices, and consequently618

lapses, should decrease with training as the animal becomes more certain of the rules and expected619

rewards, explaining training-dependent effects on lapses in our rats (Fig. 3-Supplementary Fig 2g620

right) and similar effects reported in primates (Law and Gold, 2009; Cloherty et al., 2019). This621

can also potentially explain why children have higher lapse rates (Witton, Talcott, and Henning,622

2017; Manning et al., 2018), as they have been shown to be more exploratory in their decisions than623

adults (Lucas et al., 2014).624
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A unique prediction of the exploration model is that one-sided reward manipulations should625

have one-sided effects on lapses, unlike the inattention or motor error models. These predictions626

are borne out in our data (Fig. 4c), moreover they offer a principled, theoretically grounded way to627

distinguish between different sources of lapses. This approach can be extended to connect richer628

statistical descriptions of behavior to psychological variables such as evidence and action value.629

For instance, some authors have proposed that some of the variance attributed to lapses can be630

accounted for by allowing psychometric parameters to drift across trials (Roy et al., 2018) or switch631

between different settings (Ashwood et al., 2019). Whether this parametric non-stationarity arises632

from non-stationary evidence weighting across trials caused by inattention, variable attention (Shen633

and Ma, 2019) or attention to irrelevant evidence (Busse et al., 2011), or whether it arises from634

non-stationary beliefs about action values that encourage continued learning (Lak et al., 2018) and635

bouts of exploration (Ebitz et al., 2019) can be tested using one-sided reward manipulations, and636

by extending our model to include trial-by-trial updates of action value based on the history of637

evidence and outcomes (Pisupati et al., 2019). By decoupling the values of different actions on the638

two stimulus categories, one-sided reward manipulations distinguish between incorrect decisions639

made due to a lack of knowledge about the stimulus category (i.e. inattention) and those made640

despite this knowledge, due to uncertainty about action values (i.e. exploration). An alternative641

way to decouple these two kinds of errors would be to offer subjects additional actions, for e.g. by642

adding explicit “opt-out” actions (Zatka-Haas et al., 2019), or by adding task-irrelevant actions that643

subjects need to learn to avoid (Mihali et al., 2018), affording more opportunities to distinguish644

exploratory and inattentive decisions than tasks with two alternative actions.645
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In addition to diagnosing or remedying lapses, the exploration model can be used to har-646

ness lapses to pinpoint decision-making computations in the brain. Our model suggests that the647

asymmetric effects on lapses seen during unilateral inactivations of prefrontal and striatal regions648

(Fig. 5b) arise from a selective devaluation of learnt contralateral stimulus-action values. This649

interpretation reconciles a number of studies that have found asymmetric effects of inactivating650

these areas during perceptual decisions (Erlich et al., 2015; Zatka-Haas et al., 2019; L. Wang et al.,651

2018; Guo et al., 2018) with their established roles in encoding action value (Sul et al., 2011)652

during value-based decisions , and strengthens previous proposals that these areas arbitrate between653

perceptual and value-based influences on decisions.(Lee et al., 2015; Barthas and Kwan, 2017;654

Siniscalchi, H. Wang, and Kwan, 2019) The effects of inactivation in these studies is consistent with655

a “devaluation” deficit, or multiplicative scaling of learnt stimulus-action values, resembling the656

majority of our inactivations (6/8 rats in M2, 7/11 in pStr) and selectively affecting lapses on stimuli657

strongly associated with the devalued actions. However, inactivations sometimes resembled additive658

deficits in action value (2/8 rats in M2, 4/11 in pStr), akin to an added “effort” in performing the659

associated action irrespective of its learnt value, consistent with some reports in striatum (Tai et al.,660

2012).Further work will be needed to precisely understand the nature of value representations in661

these regions and why they are sometimes multiplicatively and sometimes additively impacted by662

inactivations.663

An open question that remains is how the brain might tune the degree of exploration in664

proportion to uncertainty. An intriguing candidate for this is dopamine, whose phasic responses have665

been shown to reflect state uncertainty (Starkweather et al., 2017; Babayan, Uchida, and Gershman,666
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2018; Lak et al., 2018), and whose tonic levels have been shown to modulate exploration in mice on667

a lever-press task (Beeler et al., 2010), and context-dependent song variability in songbirds (Leblois,668

Wendel, and Perkel, 2010). Dopaminergic genes have been shown to predict individual differences669

in uncertainty-guided exploration in humans (Frank et al., 2009), and dopaminergic disorders such670

as Parkinson’s disease have been shown to disrupt the uncertainty-dependence of lapses across671

conditions on a multisensory task (Bertolini et al., 2015), while L-Dopa, a Parkinson’s drug and672

dopamine precursor, has been shown to attentuate uncertainty-guided exploration (Chakroun et al.,673

2019). Patients with ADHD, another disorder associated with dopaminergic dysfunction, have been674

shown to display both increased perceptual variability and increased task-irrelevant motor output, a675

measure that correlates with lapses (Mihali et al., 2018). Finally, tonic exploration and lapses of676

rule adherence are reduced in non-human primates that are administered cocaine (Ebitz et al., 2019),677

which interferes with dopamine transport. A promising avenue for future studies is to leverage the678

informativeness of lapses and the precise control of uncertainty afforded by multisensory tasks,679

in conjunction with perturbations or recordings of dopaminergic circuitry, to further elucidate the680

connections between perceptual and value-based decision making systems.681

METHODS682

Behavior683

Animal Subjects and Housing All animal procedures and experiments were in accordance with684

the National Institutes of Healths Guide for the Care and Use of Laboratory Animals and were685

approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee. Experiments686
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Table 1: Key Resources

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

strain, strain background (Rattus norvegicus
domestica, male and female)

Long-Evans Rat Taconic Farms SimTac:LE TAC: LONGEV-M, TAC: LONGEV-F

recombinant DNA reagent AAV2.CB7.CI.EGFP.WPRE.RBG UPenn Vector Core Obtained from the laboratory of Dr.
Partha Mitra at CSHL

recombinant DNA reagent AAV2.CAG.tdTomato.WPRE.SV40 UPenn Vector Core Obtained from the laboratory of Dr.
Partha Mitra at CSHL

chemical compound, drug Muscimol abcam ab120094

software, algorithm PALAMEDES toolbox Prins & Kingdom 2018 doi: 10.3389/fpsyg.2018.01250
software, algorithm MATLAB The Mathworks, Inc.

were conducted with 34 adult male and female Long Evans rats (250-350g, Taconic Farms) that687

were housed with free access to food and restricted access to water starting from the onset of688

behavioral training. Rats were housed on a reversed light-dark cycle; experiments were run during689

the dark part of the cycle. Rats were pair-housed during the whole training period.690

Animal training and behavioral task Rats were trained following previously established methods691

(Raposo 2012, Sheppard 2013, Raposo 2014, Licata 2017). Briefly, rats were trained to wait in692

the center port for 1000 ms while stimuli were presented, and to associate stimuli with left/right693

reward ports. Stimuli for each trial consisted of a series of events: auditory clicks from a centrally694

positioned speaker, full-field visual flashes, or both together. Stimulus events were separated by695

either long (100 ms) or short (50 ms) intervals. For the easiest trials, all inter-event intervals were696

identical, generating rates that were 9 events/s (all long intervals) or 16 events/s (all short intervals).697

More difficult trials included a mixture of long and short intervals, generating stimulus rates that698

were intermediate between the two extremes and therefore more difficult for the animal to judge.699

The stimulus began after a variable delay following when the rats snout broke the infrared beam700

in the center port. The length of this delay was selected from a truncated exponential distribution701

(λ = 30 ms, minimum = 10 ms, maximum = 200 ms) to generate an approximately flat hazard702
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function. The total time of the stimulus was usually 1000 ms. Trials of all modalities and stimulus703

strengths were interleaved. For multisensory trials, the same number of auditory and visual events704

were presented (except for a subset of neutral trials). Auditory and visual stimulus event times were705

generated independently, as our previous work has demonstrated that rats make nearly identical706

decisions regardless of whether stimulus events are presented synchronously or independently707

(Raposo, Sheppard, et al., 2012). For most experiments, rats were rewarded with a drop of water708

for moving to the left reward port following low-rate trials and to the right reward port following709

high rate trials. For muscimol inactivation experiments, half of the rats were rewarded according710

to the reverse contingency. Animals typically completed between 700 and 1,200 trials per day.711

Most experiments had 18 conditions (3 modalities, 8 stimulus strengths), leading to 29-50 trials per712

condition per day.713

To probe the effect of uncertainty on lapses, rats received catch trials consisting of multisensory714

neutral trials, where only the auditory modality provided evidence for a particular choice, whereas715

the visual modality provided evidence that was so close to the category boundary (12 Hz) that it did716

not support one choice or the other (Raposo, Sheppard, et al., 2012).717

To probe the effect of value on lapses, we manipulated either reward magnitude or reward718

probability associated with high rates, while keeping low rate trials unchanged. To increase or719

decrease reward magnitude associated with high rates, the amount of water dispensed on the right720

port was increased or decreased to 36 µl or 16 µl respectively, while the reward on the left port721

was maintained at 24 µl. To manipulate reward probability, we occasionally rewarded rats on the722
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(incorrect) left port on high rate trials with a probability of 0.5. The right port was still rewarded723

with a probability of 1 on high rates, and reward probabilities on low rate trials were unchanged (1724

on the left port, 0 on the right).725

Analysis of behavioral data.726

Psychometric curves. Descriptive four-parameter psychometric functions were fit to choice data us-727

ing the Palamedes toolbox (Prins and Kingdom, 2018). Psychometric functions were parameterized728

as:729

ψ(x;µ, σ, γ, λ) = φ(x;µ, σ)(1− λ− γ) + γ (1)

where γ and λ are the lower and upper asymptote of the psychometric function, which parametrize730

the lapse rates on low and high rates, respectively. φ is a cumulative normal function; x is the731

event rate, i.e. the number of flashes or beeps presented during the one second stimulus period; µ732

parametrizes the x-value at the midpoint of the psychometric function and σ describes the inverse733

slope. 95% Confidence intervals on these parameters were generated via bootstrapping based on734

1000 simulations.735

Our definition of lapses is restricted to strictly asymptotic errors following Wichmann and736

Hill, 2001, and not simply errors on the easiest stimuli tested. Errors on the easiest stimuli could in737

general arise not just from lapses (strictly defined) but also from perceptual errors caused by low738

sensitivity to the stimulus, an insufficient stimulus range or non-stationary weights (Busse et al.,739

2011; Roy et al., 2018). However we do not consider easy errors alone to be evidence of lapses and740

only consider asymptotic errors. To confirm the necessity of including the lapse parameters, we fit741
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the following variants of the model above, including lapse parameters when warranted by model742

comparison using AIC/BIC:743

No lapses: This model forces λ = γ = 0 for all conditions (visual, auditory, multisensory) and only744

allows σ and µ parameters to vary across conditions.745

Fixed lapses: This model allows for a fixed λ and γ (which may be unequal) across all conditions.746

Restricted lapses: This model allows λ and γ to vary across conditions, but restricts λ+ γ to be747

less than 0.1. This corresponds to an often used prior over total lapse rates, embodying the belief748

that lapse trials are infrequent. (Wichmann and Hill, 2001; Prins and Kingdom, 2018)749

Variable lapses: This model allows both λ and γ to vary freely across conditions, allowing them750

each to take any value between 0 and 1 (as long as their sum also lies between 0 and 1).751

Modeling752

Ideal observer model753

We can specify an ideal observer model for our task using Bayesian Decision Theory (Dayan and754

Daw, 2008). This observer maintains probability distributions over previously experienced stimuli755

and choices, computes the posterior probability of each action being correct given its observations756

and picks the action that yields the highest expected reward.757

Let the true category on any given trial be ctrue, the true stimulus rate be strue and the animal’s758

noisy visual and auditory observations of strue be xV and xA, respectively. We assume that the two759

sensory channels are corrupted by independent gaussian noise with standard deviation σA and σV ,760

42



respectively, giving rise to conditionally independent observations.761

p(xA|strue) = N (strue, σA), p(xV |strue) = N (strue, σV ),

p(xA, xV |strue) = p(xA|strue)p(xV |strue)
(2)

The ideal observer can use this knowledge to compute the likelihood of seeing the current trial’s762

observations as a function of the hypothesized stimulus rate s. This likelihood L is a gaussian763

function of s with a mean given by a weighted sum of the observations xA and xV ,:764

L(s) = p(xA, xV |s) = p(xA|s)p(xV |s)

∝ N (µM , σM)

µM = wAxA + wV xV

σM = (σ−2
A + σ−2

V )−
1
2

wA =
σ2
M

σ2
A

, wV =
σ2
M

σ2
V

(3)

The likelihood of seeing the observations as a function of the hypothesized category c, is given765

by marginalizing over all possible hypothesized stimulus rates. Let the experimentally imposed766

category boundary be µ0, such that stimulus rates are considered high when s > µ0 and low when767
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s < µ0. Then,768

L(c = High) = p(xA, xV |c = High)

=

∫
s

p(xA, xV , s|c = High)ds

=

∫
s

p(xA, xV |s)p(s|c = High)ds ∵ xA, xV ⊥ c|s

=

∫
s>µ0

p(xA, xV |s)ds

∝ 1− Φ(µ0;µM , σM)

(4)

where Φ is the cumulative normal function. Using Bayes’ rule, the ideal observer can then compute769

the probability that the current trial was high or low rate given the observations, i.e. the posterior770

probability.771

p(c|xA, xV ) =
p(xA, xV |c)p(c)
p(xA, xV )

=⇒ p(c = High|xA, xV ) ∝ pHigh(1− Φ(µ0;µM , σM))

=⇒ p(c = Low|xA, xV ) ∝ pLowΦ(µ0;µM , σM)

(5)

where pHigh and pLow are the prior probabilities of high and low rates respectively. The expected772

value Q(a) of choosing right or left actions (also known as the action values) is obtained by773

marginalizing the learnt value of state-action pairs q(c, a) over the unobserved state c.774

Q(a = R) = p(High|xA, xV )q(High,R) + p(Low|xA, xV )q(Low,R)

Q(a = L) = p(High|xA, xV )q(High, L) + p(Low|xA, xV )q(Low,L)

(6)

44



Under the standard contingency, high rates are rewarded on the right and low rates on the left,775

so for a trained observer that has fully learnt the contingency, q(High,R) → rR, q(High, L) →776

0, q(Low,R) → 0, q(Low,L) → rL, with rR and rL being reward magnitudes for rightward and777

leftward actions. This simplifies the action values to:778

Q(R) = p(High|xA, xV )rR ∝ pHigh(1− Φ(µ0;µM , σM))rR

Q(L) = p(Low|xA, xV )rL ∝ pLowΦ(µ0;µM , σM)rL

(7)

The max-reward decision rule involves picking the action â with the highest expected reward:779

â = argmaxQ(a)

i.e. â = R ⇐⇒ Q(R) > Q(L)

⇐⇒ pHigh(1− Φ(µ0;µM , σM))rR > pLowΦ(µ0;µM , σM))rL

⇐⇒ Φ(µM ;µ0, σM)) >
1

1 +
pHighrR
pLowrL

⇐⇒ wAxA + wV xV > Φ−1(
1

1 +
pHighrR
pLowrL

;µ0, (σ
−2
A + σ−2

V )−
1
2 )

(8)

In the special case of equal rewards and uniform stimulus and category priors, this reduces to780

choosing right when the weighted sum of observations is to the right of the true category boundary,781

i.e. wAxA + wV xV > µ0. Note that this is a deterministic decision rule for any given observations782

xA and xV , however, since these are noisy and gaussian distributed around the true stimulus rate783

strue, the likelihood of making a rightward decision is given by the cumulative gaussian function Φ:784
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785

For pHigh = pLow, rR = rL

p(â = R|s) = p(wAxA + wV xV > µ0|s)

= Φ(strue;µ0, σ)

σ =



σA on auditory trials

σV on visual trials

(σ−2
A + σ−2

V )
1
2 on multisensory trials

(9)

786

We can measure this probability empirically through the psychometric curve. Fitting it with a two787

parameter cumulative gaussian function yields µ and σ which can be compared to ideal observer788

predictions. The σ parameter is then taken to reflect sensory noise; and with the assumption of789

uniform priors and equal rewards, the µ parameter is taken to reflect the subjective category bound-790

ary. For the purpose of assessing optimality of integration, σ was individually fit to each condition791

and compared to ideal observer predictions, but for the purpose of comparing theoretical models792

of lapses, σ on multisensory conditions was constrained to be optimal for all models. Although µ793

should equal µ0 for the ideal observer, in practice it is treated as a free parameter in all models, and794

deviations of µ from µ0 could reflect any of three possible suboptimalities: 1) a subjective category795

boundary mismatched to the true one, possibly arising from the use of irrelevant features such as796

total event count (Odoemene et al., 2018), 2) mismatched priors, or 3) unequal subjective rewards797

rR and rL of the two actions.798

799
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Inattention model800

The traditional model for lapse rates assumes that on a fixed proportion of trials, the animal fails to801

pay attention to the stimulus, guessing randomly between the two actions. We can incorporate this802

suboptimality into the ideal observer above as follows: Let the probability of attending be pattend.803

Then, on 1 − pattend fraction of trials, the animal does not attend to the stimulus (i.e. receives804

no evidence), effectively making σsensory → ∞ and giving rise to a posterior that is equal to the805

prior. On these trials, the animal may choose to maximize this prior (always picking the option806

that’s more likely a-priori, guessing with 50-50 probability if both options are equally likely), or807

probability-match the prior (guessing in proportion to its prior). Let us call this guessing probability808

pbias. Then, the probability of a rightward decision is given by marginalizing over the attentional809

state:810

811

p(â = R|s) = p(â = R|s, attend)p(attend) + p(â = R|s,∼ attend)p(∼ attend)

= p(â = R|s)pattend + pbias(1− pattend)
(10)

Comparing this with the standard 4-parameter sigmoid used in psychometric fitting, we obtain812

p(â = R|strue) = γ + (1− γ − λ)Φ(strue;µ0, σ)

=⇒ γ + λ = 1− pattend,
γ

γ + λ
= pbias

(11)

where γ and λ are the lower and upper asymptotes respectively, collectively known as “lapses”.813

In this model, the sum of the two lapses depends on the probability of attending, which could be814

modulated in a bottom up fashion by the salience of the stimulus; their ratio depends on the guessing815
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probability, which in turn depends on the observer’s priors and subjective rewards rR and rL.816

817

Motor error/ε greedy model818

Lapses can also occur if the observer doesn’t always pick the reward-maximizing or “exploit”819

decision. This might occur due to random errors in motor execution on a small fraction of trials820

given by ε, or it might reflect a deliberate propensity to occasionally make random “exploratory”821

choices to gather information about rules and rewards. This is known as an ε-greedy decision rule,822

where the observer chooses randomly (or according to pbias) on ε fraction of trials. Both these823

models yield predictions similar to those of the inattention model:824

p(â = R|s) = p(â = R|s)(1− ε) + εpbias

=⇒ γ + λ = ε,
γ

γ + λ
= pbias

(12)

825

Uncertainty guided exploration model826

A more sophisticated form of exploration is the “softmax” decision rule, which explores options in827

proportion to their expected rewards, allowing for a balance between exploration and exploitation828

through the tuning of a parameter β known as inverse temperature. In particular, in conditions of829

greater uncertainty about rules or rewards, it is advantageous to be more exploratory and have a830

lower β. This form of uncertainty-guided exploration is known as Thompson sampling. It can831

be implemented by sampling from a belief distribution over expected rewards and maximizing832

with respect to the sample, reducing to a softmax rule whose β depends on the total uncertainty in833

48



expected reward (Gershman, 2018).834

p(â = R|Q(a)) =
exp βQ(R)

exp βQ(L) + exp βQ(R)

=
1

1 + exp(−β(Q(R)−Q(L)))

(13)

The proportion of rightward choices conditioned on the true stimulus rate is then obtained835

by marginalizing over the latent action values Q(a), using the fact that the choice depends on s836

only through its effect on Q(a), where ρ is the animal’s posterior belief in a high rate stimulus,837

i.e. ρ = p(c = High|xA, xV ). ρ is often referred to as the belief state in reinforcement learning838

problems involving partial observability such as our task.839

p(â = R|s) =

∫
Q(a)

p(â = R,Q(a)|s)dQ

=

∫
Q(a)

p(â = R|Q(a))p(Q(a)|s)dQ ∵ â ⊥ s|Q(a)

=

∫
ρ

1

1 + exp−β(ρ(rR + rL)− rL)

N (Φ−1(1− ρ, 0, σpost), µ0 − s, σpost)
N (Φ−1(1− ρ, 0, σpost), 0, σpost))

dρ

(14)

Since lapses are the asymptotic probabilities of the lesser rewarding action at extremely easy840

stimulus rates, we can derive them from this expression by setting ρ→ 1 or ρ→ 0. This yields841

γ =
1

1 + exp(βrL)
, λ =

1

1 + exp(βrR)
(15)

Critically, in this model, the upper and lower lapses are dissociable, depending only on the842
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rightward or leftward rewards, respectively. In practice since β can only be specified up to an843

arbitrary scaling of reward magnitudes, we either fix rL=1 and fit β and a reward bias rR
rL

in units844

of rL (for conditions with different expected β), or fix β = 1 and fit rL and rR in units of β (for845

conditions with the same β where one of the rewards is expected to change).846

Such a softmax decision rule has been used to account for suboptimalities in value based847

decisions (Dayan and Daw, 2008), however it has not been used to account for lapses in perceptual848

decisions. Other suboptimal decision rules described in perceptual decisions, such as generalized849

probability matching or posterior sampling (Acerbi, Vijayakumar, and Wolpert, 2014; Drugowitsch,850

Wyart, et al., 2016; Ortega and Braun, 2013) amount to a softmax on log-posteriors or log-expected851

values, rather than on expected values, and do not produce lapses since in these decision rules, when852

the posterior probability goes to 1, so does the decision probability: .853

p(â = R|Q(a)) =
exp β logQR

exp β logQL + exp β logQR

=
Qβ
R

Qβ
L +Qβ

R

⇒


ρ→ 1⇒ p(R)→ 1

ρ→ 0⇒ p(R)→ 0

(16)

854

Inactivation modeling855

Inactivations were modeled using the following 1-parameter perturbations to the decision making856

process, while keeping all other parameters fixed:857

Biased evidence: A fixed amount of evidence was added to all modalities. This corresponds to858

adding a rate bias ofK ∗σi for a condition with sensory noise σi withK > 0 fixed across modalities,859

leading to bigger biases for conditions with higher sensory noise.860
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Biased value: The expected values of one of the actions was scaled down by a fixed factor of861

K < 1 across all modalities. For instance, QLi → K ∗QLi produced a rightward biased value for862

a condition with baseline leftward expected value QLi. This led to a stimulus-dependent bias in863

action value and consequently lapses, since QLi is large and heavily affected for low rate trials, and864

close to zero and largely unaffected for high rate trials.865

Biased effort: A fixed “effort” cost (i.e. negative value) K < 0 was added to the expected values of866

one of the actions for all modalities. This added a stimulus-independent bias in action values, since867

the difference in expected values was biased away from the effortful action by the same amount868

irrespective of the stimulus rate.869

Model fitting870

Model fits were obtained from custom maximum likelihood fitting code using MATLAB’s fmincon,871

by maximizing the marginal likelihood of rightward choices given the stimulus on each trial as872

computed from each model. Confidence intervals for fit parameters were generated using the hessian873

obtained from fmincon. Fits to multiple conditions were performed jointly, taking into account any874

linear or nonlinear (eg. optimality) constraints on parameters across conditions. Model comparisons875

were done using AIC and BIC. For comparisons of fits to data pooled across subjects, AIC/BIC876

values were computed with respect to the best fit model, so that the best model had an AIC/BIC of 0.877

For comparisons of fits to individual subject data, AIC/BIC values for each subject were computed878

with respect to the best fit model for each subject, so that the best model for that subject had an879

AIC/BIC of 0, and then summed across subjects.880
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Surgical procedures881

All rats subject to surgery were anesthetized with 1%-3% isoflurane. Isoflurane anesthesia was882

maintained by monitoring respiration, heart rate, oxygen and CO2 levels, as well as foot pinch883

responses throughout the surgical procedure. Ophthalmic ointment was applied to keep the eyes884

moistened throughout surgery. After scalp shaving, the skin was cleaned with 70% ethanol and 5%885

betadine solution. Lidocaine solution was injected below the scalp to provide local analgesia prior886

to performing scalp incisions. Meloxicam (5mg/ml) was administered subcutaneously (2mg/kg)887

for analgesia at the beginning of the surgery, and daily 2-3 days post-surgery. The animals were888

allowed at least 7 days to recover before behavioral training.889

Viral injections- 2 rats, 15 weeks of age, were anesthetized and placed in a stereotaxic apparatus890

(Kopf Instruments). Small craniotomies were made in the center of primary visual cortex (V1;891

6.9mm posterior to Bregma, 4.2mm to the right of midline) and primary auditory cortex (A1;892

4.7mm posterior to Bregma, 7mm to the right of midline). Small durotomies were performed893

at each craniotomy and virus was pressure injected at depths of 600, 800, and 1000 µm below894

the pia (150 nL/depth). Virus injections were performed using Drummond Nanoject III, which895

enables automated delivery of small volumes of virus. To minimize virus spread, the Nanoject896

was programmed to inject slowly: fifteen 10 nL boluses, 30 seconds apart. Each bolus was897

delivered at 10 nL/sec. 2-3 minutes were allowed following injection at each depth to allow for898

diffusion of virus. The AAV2.CB7.CI.EGFP.WPRE.RBG construct was injected in V1, and the899

AAV2.CAG.tdTomato.WPRE.SV40 construct was injected in A1. Viruses were obtained from the900

University of Pennsylvania vector core.901
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Cannulae implants Rats were anesthetized and placed in the stereotax as described above. After902

incision and skull cleaning, 2 skull screws were implanted to add more surface area for the dental903

cement. For striatal implants, two craniotomies were made, one each side of the skull (3.2mm904

posterior to Bregma; 5.4mm to the right and left of midline). Durotomies were performed and a905

guide cannula (22 gauge, 8.5 mm long; PlasticsOne) was placed in the brain, 4.1mm below the pia906

at each craniotomy. For secondary motor cortex implants, one large craniotomy spanning the right907

and left M2 was performed (∼5mm x ∼2mm in size centered around 2mm anterior to Bregma and908

3.1mm to the right and left of midline). A durotomy was performed and a double guide cannula909

(22 gauge, 4mm long; PlasticsOne) was placed in the brain, 300µm below the pia. The exposed910

brain was covered with sterile Vaseline and cannulae were anchored to the skull with dental acrylic911

(Relyx). Single or double dummy cannulae protruding 0.7 mm below the guide cannulae were912

inserted.913

Inactivation with muscimol914

Rats were lightly anesthetized with isoflurane. Muscimol was unilaterally infused into pStr or M2915

with a final concentration of 0.075-0.125 µg and 0.1-0.5 µg, respectively. A single/double-internal916

cannula (PlasticsOne), connected to a 2 µl syringe (Hamilton microliter syringe, 7000 series), was917

inserted into each previously implanted guide cannula. Internal cannulae protruded 0.5mm below918

the guide. Muscimol was delivered using an infusion pump (Harvard PHD 22/2000) at a rate of 0.1919

µl/minute. Internal cannulae were kept in the brain for 3 additional minutes to allow for diffusion920

of muscimol. Rats were removed from anesthesia and returned to cages for 15 minutes before921

beginning behavioral sessions. The same procedure was used in control sessions, where muscimol922
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was replaced with sterile saline.923

Histology924

At the conclusion of inactivation experiments, animals were deeply anesthetized with Euthasol925

(pentobarbital and phenytoin). Animals were perfused transcardially with 4% paraformaldehyde.926

Brains were extracted and post-fixed in 4% paraformaldehyde for 24-48 hours. After post-fixing,927

50-100 µm coronal sections were cut on a vibratome (Leica) and imaged.928
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Figure 3 Supplement 1: Uncertainty-dependent exploration is the only model that accounts for be-931

havioral data from all three manipulations Columns: data/predictions for three experimental manipula-932
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tions. Left: unisensory (blue, green) vs. multisensory (red). Middle: matched (red) vs. neutral (orange)933

multisensory. Right: Increased (green) or decreased (red) rightward reward vs. equal reward (black)934

on auditory trials. a-d: Four candidate models. (a) Ideal observer model predicts no lapses and only935

changes in sensitivity/bias across conditions. (b) Fixed motor error model predicts a constant rate of936

lapses across conditions in addition to changes in sensitivity/bias predicted from the ideal observer. (c)937

Inattention model predicts that the overall lapse rate (sum of lapses on both sides) depends on the level938

of bottom-up attentional salience, allowing for different rates for unisensory and multisensory trials. It939

also predicts that the lapse rate on neutral trials should be equal to that on multisensory trials, and that940

manipulating rightward reward should affect both lapse rates. (d) Uncertainty-dependent exploration model941

predicts that overall lapse rate depends on the level of exploratoriness and hence uncertainty associated942

with that condition, allowing for different lapse rates on unisensory and multisensory trials. It also predicts943

that the lapse rate on neutral trials should be equal to that on auditory trials and manipulating rightward944

reward should only affect high rate lapses. (e) Data from an example rat on all three manipulations.945
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Figure 3 Supplement 2: Thompson sampling, which balances exploration and exploitation, predicts947

lapses that increase with perceptual noise Schematic illustrating the explore-exploit tradeoff in perceptual948

two-alternative tasks. (a) Formulation of perceptual decision making task as a partially observable contextual949

bandit. To solve this task, an observer needs to infer the true category of the stimulus (Low or High) based950

on noisy observations, and pick the best action given the inferred category (Left for Low, Right for High).951
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This requires accurately learning the expected rewards from all 4 state-action pairs. (b) Leftward state-action952

value beliefs i.e. expected reward from leftward actions (L) performed in different states (Hi, Lo) showing953

different levels of uncertainty depending on policy. Beliefs are updated based on outcomes using a Bayesian954

update rule that takes into account uncertainty in state estimation. A greedy policy (top left) that always955

picks the best action maximizes reward and learns well about the preferred state-action pairs (i.e. Lo-L)956

but has high uncertainty about the non-preferred pairs (Hi-L). A random policy (top right) earns reward at957

chance, but learns equally well about all state-action pairs. An ε-greedy policy (bottom left) learns well958

about the non-preferred pair, but leaves the choice of ε unspecified, and continues exploring even after it has959

learnt the values well, continuing to forego rewards. Thompson sampling (bottom right) tunes the amount of960

exploration to the current uncertainties in each value, and balances immediately reward-maximizing decisions961

with decisions that reduce uncertainty, maximizing average reward in the long term. (c) Cumulative regret i.e.962

foregone reward accrued by different policies on the rate discrimination task as a function of training, with963

lower regret being more desirable. Black - random exploration, Pink - greedy, Purple - ε-greedy and Yellow-964

Thompson sampling. Thompson sampling outperforms all other policies, by achieving the minimum regret965

(d) Learnt beliefs about expected reward with Thompson sampling at various levels of perceptual uncertainty.966

Low levels of sensory noise (left top) produce more separable beliefs, while higher levels of sensory noise967

(left bottom) lead to large perceptual uncertainty, yielding highly overlapping belief distributions owing to968

a reduced ability to assign obtained rewards to one of the states. (right) Simulated performance averaged969

across 2000 trials of the Bayesian observer, under a Thompson sampling policy. The observer makes fewer970

exploratory choices for lower levels of sensory noise (orange) owing to the more separable value beliefs,971

giving rise to lower lapse rates. (e) Session-averaged lapse rates as a function of sensory noise in simulations972
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(left, center) and multisensory rat data (right). Simulations were done under increasing levels of sensory noise973

(colors going from hot to cold) under beliefs that action values are stationary (left) or non-stationary (center),974

solid lines indicate linear best-fit. Individual rat data was fit with a constrained version of the exploration975

model where total lapse rate was constrained to be linearly related to sensory noise across all modality976

conditions (auditory - green, multisensory - red, visual - blue). Lines indicate best fit linear constraints977

for each rat. (f) Learnt beliefs about expected reward with Thompson sampling during early (left top) and978

late (left bottom) stages of training. Training reduces uncertainty about expected rewards, producing more979

separable beliefs and yielding less exploration and lower lapse rates over time (right - simulated average980

performance). (g) Session-wise lapse rates in simulated (left, center) and rat data (right) as a function of981

both training and sensory noise. Simulations show decreasing lapse rates over training that asymptote at zero982

under stationary beliefs (left) and to non-zero values dictated by sensory noise under non-stationary beliefs983

(center). Rat data was separated by session starting from the earliest day of training with all 3 modalities, and984

combined across rats to produce session-wise fits, and the resulting lapse rates were fit with an exponential985

curve for each modality (solid lines indicate best-fit curves for multisensory - red, visual-blue, auditory -986

green))987
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Figure 3 Supplement 3: Uncertainty guided exploration outperforms competing models for average989

and individual data (a) Fits of the four models (ideal observer, fixed motor error, inattention and exploration)990

to average rat data on unisensory (blue-visual, green-auditory) and multisensory (red) trials. (b) Exploration991

model fits to unisensory and multisensory data for 17 individual animals (c) Model comparison for individual992

animals using BIC (left), AIC (right) of the four aforementioned models, plus a constrained version of the993

exploration model corresponding to Thompson sampling. Darker colors are lower BICs/AICs, denoting a994

better fit. (d) Summed model comparison metrics across animals, showing that inattention and exploration995

models fit the data equally well, and much better than the ideal observer or fixed error models. Thompson996
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sampling is preferred by BIC, since it fits as well as exploration model but with fewer effective parameters997

(e) Fits of the four models to average data including neutral trials (orange) provide a stronger test of the998

inattention model. (f) Exploration model fits to multisensory data including neutral trials for 5 individual999

animals. (g) Model comparison for individual animals. (h) Summed model comparison metrics across1000

animals shows that the uncertainty-guided exploration model performs better than other models.1001

1002
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Figure 4 Supplement 1: Alternative models of inattentional lapses. Predictions of alternative models of1004

lapses. (a) Effort-dependent disengagement model: In this model, there is an additional cost or mental effort1005
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to being engaged in the task which could vary with condition, and an additional random guessing action.1006

If the net payoff of engagement is not greater than the average value of a guess, then it guesses randomly.1007

Such a model does not produce lapses if the effort is fixed across trials (left), but could produce lapses if the1008

effort fluctuates from trial to trial (center). (b) Proportion of trials on which the animal withdrew prematurely1009

doesn’t vary between matched and neutral trials, suggesting that rats are not disengaging preferentially on1010

neutral trials. (c) Predictions of the effort-dependent disengagement model. The model accurately predicts1011

increased lapses on unisensory trials (left panel, green/blue traces) and neutral multisensory trials (middle left1012

panel, orange trace). However, for asymmetric reward manipulations (middle right - reward magnitude, right1013

- reward probability), the model fails to predict our behavioral observation (Fig. 4d) that only lapses on the1014

manipulated side are affected. (d) Temporal inattention model: in this model, temporal weighting of evidence1015

differs between matched and neutral trials. To test this, we compared psychophysical kernels on matched and1016

neutral trials. The temporal dynamics of attention are unchanged between the two kinds of trials, arguing1017

against the temporal inattention model. (e) Variable precision model: in this model, the sensory noise (or its1018

inverse, precision) fluctuates from trial to trial, producing heavy tailed performance curves with apparent1019

”lapses”. The model accurately predicts increased apparent lapses on unisensory trials (left panel, green/blue1020

traces) and neutral multisensory trials (middle left panel, orange trace). However, for asymmetric reward1021

manipulations (middle right, right), the model fails to predict our behavioral observation (Fig. 4d) that lapses1022

only on the manipulated side are affected. Like other models of inattention, it predicts that manipulating1023

reward on one side should affect both lapses. (f) Motivation+salience-dependent inattention: in this model,1024

inattention is determined not just by salience, but also motivation, which in turn depends on average reward.1025

This model’s predictions on unisensory, multisensory (left) and neutral (middle left) trials are identical to the1026
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inattention model, but on asymmetric reward manipulations, it predicts that total lapse rate should change as1027

a function of total reward. As a result, when reward magnitude on one side is increased or decreased (middle1028

right), total lapse rate also increases or decreases, in addition to the vertical shifts predicted by inattention.1029

However on the reward probability manipulation (right), it predicts a *decrease* in total lapse rate owing to1030

the overall higher average reward, in addition to a downward shift predicted by inattention, unlike the rat data1031

(Fig. 4e) where overall lapse rate *increases* as a consequence of high rate lapses selectively *increasing*.1032
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Figure 4 Supplement 2: Psychometric functions with lapses make it possible to assign perturbations1034

effects to specific stages of decision-making (a) (Top row) Model predictions for biased sensory1035

evidence (left), enhanced rightward action value (center) and reduced effort in performing right-1036

ward movements (right) in an exploratory regime where lapses are sizeable. The three kinds of1037

perturbations affect decisions at the sensory, value, or motor stages and predict different effects1038
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on lapses. (Middle row) Effects of the three manipulations on the four stimulus-action value pairs.1039

Biasing rightward evidence (left) leaves stimulus-action value pairs unchanged, while biasing the1040

learnt rightward values (center) selectively affects rightward action values on high rates and biasing1041

rightward effort (right) affects both high- and low-rate action values equally. (Bottom row) All three1042

perturbations reduce to the same effect (horizontal shift) in the absence of lapses i.e. in the exploit1043

regime. (b) Example data from 2 rats that experienced the same perturbation: increased rewards1044

on the right port. The rats differ in the extent to which their psychometric functions have lapses.1045

Top: In a psychometric function with lapses, the perturbation (green trace) leads to an interpretable1046

change: the asymmetric change in lapses is only consistent with the explanation that the perturbation1047

enhanced the value of rightward choices (as in (a), top, middle). The perturbation did not drive a1048

change consistent with biased evidence or biased effort. Bottom: In a psychometric function with1049

negligible lapses, the perturbation (red trials) lead to a cryptic change in the psychometric function:1050

the observed shift could equivalently have been driven by biased evidence, value, or effort (as in (a),1051

bottom 3 panels). Therefore, although the perturbation likely caused the same change in the two1052

rats, an experimenter is only able to accurately explain this change in a rat with lapses.1053
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Figure 4 Source data 1: Fit parameters to pooled data across rats

BEHAVIORAL MANIPULATIONS

Multisensory (descriptive: no optimality constraint)
Condition No lapse Fixed lapse Restricted lapse Variable lapse

µ σ µ σ plapse biaslapse µ σ plapse biaslapse µ σ plapse biaslapse
Auditory 12.46 3.43 12.59 3.13 0.06 0.69 12.46 3.43 1E-09 0.05 12.70 2.23 0.25 0.04
Multisensory 12.01 1.87 12.10 1.58 0.06 0.69 11.98 1.82 0.01 0.10 12.13 1.57 0.07 0.03
Visual 12.82 2.94 12.94 2.65 0.06 0.69 12.46 2.56 0.09 0.10 12.54 2.16 0.18 -0.06

Multisensory (theoretical: includes optimality constraint)
Ideal observer Fixed motor error Inattention Exploration
µ σ µ σ perror biaserror µ σ pinattention biasguess µ σ β biasreward

Auditory 12.46 3.28 12.61 3.21 0.02 0.03 12.70 2.25 0.24 0.58 12.86 1.85 4.26 0.55
Multisensory 12.00 2.12 12.11 2.06 0.02 0.03 12.14 1.57 0.07 0.75 12.39 1.30 6.93 0.58
Visual 12.81 2.78 12.95 2.70 0.02 0.03 12.54 2.18 0.17 0.34 12.26 1.82 5.16 0.42

Neutral (theoretical: includes optimality constraint)
Auditory 12.82 2.95 13.14 2.62 0.07 0.06 12.83 2.58 0.11 0.49 12.69 1.71 4.56 0.48
Multisensory 12.13 2.19 12.35 1.95 0.07 0.06 12.33 1.44 0.11 0.76 12.57 1.17 6.13 0.60
Neutral 12.29 2.95 12.60 2.62 0.07 0.06 12.83 2.58 0.11 1.00 13.17 1.71 4.56 0.63
Visual 13.02 3.29 13.36 2.92 0.07 0.06 12.62 1.73 0.36 0.39 12.47 1.60 3.55 0.41

Increased reward (Auditory, theoretical)
µ σ µ σ perror biaserror µ σ pinattention biasguess µ σ βrL βrR

Equal reward 13.47 2.86 13.47 2.86 4E-08 0.27 13.95 2.35 0.09 1.00 13.12 1.63 2.33 1.70
increased rR 12.43 2.86 12.43 2.86 4E-08 0.27 12.76 2.35 0.09 0.93 13.12 1.63 2.33 3.74

Decreased reward (Auditory, theoretical)
Equal reward 12.46 3.51 12.91 2.69 0.14 0.82 12.91 2.80 0.11 0.90 13.23 1.85 1.94 3.07
decreased rR 13.24 3.51 13.76 2.69 0.14 0.82 13.88 2.80 0.11 1.00 13.23 1.85 1.94 1.84

Probabilistic reward (Visual, theoretical)
µ σ µ σ perror biaserror µ σ pinattention biasguess µ σ β(rLoL − rLoR) β(rHiR − rHiL)

p(rHiL) = 0 12.38 2.73 12.00 1.97 0.16 0.27 12.38 2.73 5E-09 0.97 11.79 1.60 3.28 2.25
p(rHiL) = 0.5 12.90 2.73 12.52 1.97 0.16 0.27 12.90 2.73 5E-09 0.31 11.79 1.60 3.28 1.63

NEURAL MANIPULATIONS
Exploration - biased evidence (kSaline = 0) Exploration - biased value (kSaline = 1) Exploration - biased effort (kSaline = 0)
µ σ βrL βrR kmuscimol µ σ βrL βrR kmuscimol µ σ βrL βrR kmuscimol

M2 - high rate side inactivation
Auditory 11.51 2.50 5.49 2.03 -0.90 13.26 1.83 2.74 2.44 0.24 15.00 2.43 2.66 5.88 1.66
Multisensory 12.55 1.68 2.80 4.61 -0.90 12.53 1.25 2.39 4.48 0.24 13.25 1.70 2.95 10.00 1.66
Visual 10.67 2.27 7.44 2.15 -0.90 12.25 1.71 3.22 2.28 0.24 15.00 2.39 2.63 8.96 1.66

M2 - low rate side inactivation
Auditory 14.00 2.67 2.30 3.59 0.44 13.16 2.15 2.21 2.35 0.51 12.87 2.39 2.32 2.28 -0.76
Multisensory 11.63 1.77 4.38 3.50 0.44 12.10 1.40 3.14 3.71 0.51 11.62 1.57 4.05 3.03 -0.76
Visual 11.87 2.36 4.11 2.51 0.44 11.87 1.85 3.57 2.10 0.51 10.80 2.08 5.94 1.86 -0.76

pStr - high rate side inactivation
Auditory 12.83 1.97 2.15 2.02 -0.57 12.90 2.08 2.43 2.33 0.49 15.00 3.04 3.18 8.20 1.06
Multisensory 13.28 1.72 1.31 3.90 -0.57 12.60 1.61 1.98 3.67 0.49 12.43 2.37 3.68 5.83 1.06
Visual 4.92 3.49 98.06 1.67 -0.57 12.20 2.55 2.77 1.86 0.49 14.76 3.80 2.97 5.11 1.06

pStr - low rate side inactivation
Auditory 15.45 3.88 4.50 16.20 0.50 14.36 2.26 1.69 4.46 0.29 11.98 2.86 2.91 2.53 -1.17
Multisensory 15.92 2.92 3.52 28.47 0.50 12.93 1.62 2.24 3.99 0.29 10.50 2.14 7.78 2.64 -1.17
Visual 13.41 4.45 12.22 10.64 0.50 13.24 2.32 2.67 2.12 0.29 10.00 3.24 7.77 1.68 -1.17
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1054

Figure 5 Supplement 1: pStr and M2 receive direct projections from visual and auditory cortex (a)1055

Schematic of tracing experiments. AAV2.CB7.CI.EGFP.WPRE.RBG and AAV2.CAG.tdTomato.WPRE.SV401056

constructs were injected unilaterally to primary visual (V1) and auditory (A1) cortices, respectively (V11057

coordinates: 6.9 mm posterior to Bregma; 4.2 mm to the right of midline; A1 coordinates: 4.7 mm posterior1058

to Bregma; 7 mm to the right of midline). (b) Secondary motor cortex (M2) receives inputs from V1 and A11059

as shown by green and red fluorescence. (c) Posterior striatum (pStr) receives direct inputs from V1 and A11060

as shown by green and red fluorescence. Yellow signal medial to pStr reflects overlapping passing fibers.1061
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1062

Figure 5 Supplement 2: Histological slices of implanted rats Representative coronal slices of all rats1063

implanted with cannulae for muscimol inactivation experiments. (a) 6 rats were bilaterally implanted in1064

posterior striatum (pStr). (b) 5 rats were implanted in secondary motor cortex (M2).1065

1066
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Figure 5 - Supplement 3
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1067

Figure 5 Supplement 3: Single rat performance following M2 inactivation Left: inactivation of the1068

low-rate associated side. Rat shows increased lapses on high-rate trials on all sensory modalities. Right:1069

inactivation of the high-rate associated side. Rat shows increased lapses on low-rate trials on all sensory1070

modalities. Auditory (green), visual (blue) and multisensory (red).1071

1072
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pStr - low rate side inactivation pStr - high rate side inactivation

Figure 5 - Supplement 4
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Figure 5 Supplement 4: Single rat performance following pStr inactivation Left: inactivation of the1074

low-rate associated side. Rat shows increased lapses on high-rate trials on all sensory modalities. Right:1075

inactivation of the high-rate associated side. Rat shows increased lapses on low-rate trials on all sensory1076

modalities. Auditory (green), visual (blue) and multisensory (red).1077
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Figure 5 Supplement 5: Unilateral inactivation of M2 or pStr biases performance ipsilaterally and1079

increases contralateral lapses Performance of the same rats shown in Figure 5b depicted as a function of the1080

inactivated side (right or left) and the rate-contingency in which they were trained (standard or reverse), along1081

with fits from the biased value model (Solid lines - Saline, Dotted lines - muscimol). Standard contingency:1082

high rate = go right, low rate = go left; reverse contingency: high rate = go left, low rate = go right. Each1083

quadrant shows 4 plots: 3 psychometrics for rate discrimination trials and one for performance on sure-bet1084

trials. auditory (green), visual (blue) and multisensory (red). (a)-(d) M2 inactivation. (e)-(h) pStr inactivation.1085

(a), (d) Rats trained on the standard contingency and inactivated on the left hemisphere show increased lapses1086

on the high rates (i.e., fewer rightward choices on high rates). No effect on sure-bet trials. (b), (f) Rats1087

trained on the standard contingency and inactivated on the right hemisphere show increased lapses on the1088

low rates (i.e., fewer leftward choices on low rates). No effect on sure-bet trials. (c), (g) Rats trained on the1089

reverse contingency and inactivated on the left hemisphere show increased lapses on the low rates (i.e., fewer1090
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rightward choices on low rates). No effect on sure-bet trials. No data for this condition for M2 inactivation.1091

(d), (h) Rats trained on the reverse contingency and inactivated on the right hemisphere show increased lapses1092

on the high rates (i.e., fewer leftward choices on high rates). No effect on sure-bet trials for pStr inactivated1093

animals; no data for M2 inactivated animals.1094
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Figure 5 Supplement 6: Inactivations devalue contralateral actions irrespective of associated stimulus1097

(a) Model predictions for rightward inactivations on standard (top) and reversed (bottom) stimulus-response1098

contingencies - in both cases, the model predicts that reduced leftward action values should only affect1099

lapses on the side associated with leftward movements. (b) Inactivation data on visual trials from M21100

(left) or pStr (Right) along with fits from the biased value model (Solid lines - Saline, Dotted lines - mus-1101

cimol) shows a pattern of effects consistent with action value deficits, irrespective of the contingency.1102
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Figure 5 Supplement 7: No significant effect on movement parameters following muscimol inactiva-1104

tion (a) Mean movement times from the center port to the side ports were not significantly different following1105

muscimol inactivation of M2 (left; p = 0.9554 for contralateral, 0.9852 for ipsilateral movements; n=5 rats) or1106

pStr (right; p = 0.6629 for contra, p =0.2615 for ipsi, n=6 rats). Control data on the abscissa is plotted against1107

inactivation data on the ordinate. Purple, movement toward the side ipsilateral to the inactivation site; blue,1108

movement toward the side contralateral to the inactivation site; Error bars (s.e.m.) are not visible because1109

they were obscured by the markers in all cases. (b) Mean wait times in the center port were not significantly1110
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different following muscimol inactivation of M2 (left; p = 0.7612 for contra, p =0.8896 for ipsi, n=5 rats) or1111

pStr (right; p = 0.9128 for contra, p =0.9412 for ipsi, n=6 rats). All p-values were computed from paired1112

t-tests. Error bars (s.e.m.) are not visible because they were obscured by the markers in all cases.1113
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