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ABSTRACT OF THE DISSERTATION 

Stream Channel Erosion in a Rapidly Urbanizing Semi-Arid 

Region: Channel Dynamics of Los Laureles Canyon 

Watershed in Tijuana, Mexico 

 

by 

 

Kristine Teru Taniguchi 

 

 

 Urbanization can lead to stream channel erosion and ecological degradation.  The 

majority of studies have focused on the impacts of urban development on channel 

morphology in developed regions, such as the United States and Europe, where urbanization 

is typically characterized by watershed-scale land alterations, such as the conversion of 

undeveloped land to impervious urban areas. This dissertation focuses on a rapidly 

developing, semi-arid region, Los Laureles Canyon watershed (LLCW), located in Tijuana, 

Mexico, which is characterized by steep slopes and highly erodible material.  Urban 

development in Tijuana has led to excessive hillslope and channel erosion, and subsequent 

infrastructure failure of homes, water main pipes, and unpaved roads and sedimentation of 

the downstream Tijuana Estuary in San Diego, CA. The main objectives of this dissertation 

are to investigate the impact of urbanization and in-channel alterations on stream channel 

evolution, highlight channel sources and sinks of sediment, and evaluate the overall 

importance of channel erosion on the sediment budget of LLCW for future sediment 

mitigation plans. First, traditional geomorphic survey methods and Structure-from-Motion 

(SfM) photogrammetry techniques were utilized to describe the spatial patterns in stream 
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channel geometry in LLCW and to provide a regional comparison of channel erosion in 

Tijuana, MX to reference and urbanized watersheds in southern California.  Channels in 

Tijuana are statistically larger than urban and reference channels in southern California and 

major hotspots of erosion are located downstream of hardpoints, or non-erodible features.  

Second, to quantitatively evaluate channel evolution and to determine the driving 

mechanisms to channel instability downstream of hardpoints, field data were used to develop 

a computational model of channel evolution, CONCEPTS (CONservational Channel 

Evolution and Pollutant Transport System), for LLCW.  A scenario analysis was conducted 

to quantitatively assess the impact of urban channel alterations, including hardpoint 

installation, slope alteration, bed composition change, and vegetation removal, on channel 

incision, widening, and sediment load.  Hardpoints prevented incision in the upstream 

direction by serving as grade control, and only caused local channel instabilities downstream.  

Channel erosion is caused mainly by the destruction of the natural channel, including channel 

burial, straightening, steepening, and removal of riparian vegetation, often performed in the 

process of turning channels into roads.  Reformation of an enlarged river reach that is 

disconnected from the floodplain, leads to higher flow depths constrained in the channel, 

larger shear stresses, and accelerated channel incision.  Lastly, a watershed-scale model of 

hillslope processes, AnnAGNPS, integrated with CONCEPTS was developed for LLCW to 

determine the spatial pattern of channel sources and sinks of sediment in the watershed and 

evaluate the overall importance of channel processes on the sediment budget for future 

sediment mitigation plans.  Channel erosion contributes approximately 60% of the total 

sediment budget and only a third of the entire stream channel network is generating 90% of 

the channel-derived sediment load.  This indicates that channel erosion is a dominant source 
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of sediment in LLCW and targeted stream stabilization measures could potentially reduce a 

large proportion of sediment load to the Tijuana Estuary.  However, coarsening of the bed 

alone may not decrease mean annual channel-derived sediment yield, as armoring of the bed 

can decrease channel incision but channel widening may be exacerbated.  Overall, 

urbanization of the valley floor and alterations to the stream channel have led to constrained 

and enlarged stream channels.  This dissertation provides an example of the use of a variety 

of geomorphic field methods, including traditional topographic survey methods and 

Structure-from-Motion (SfM) photogrammetry techniques, paired with a comprehensive 

modelling framework to provide an understanding of the driving mechanisms of channel 

instability and the overall importance of channel processes on the sediment budget to support 

local and federal sediment management plans in a rapidly developing, semi-arid region. 
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CHAPTER 1 

INTRODUCTION 

 Urbanization can lead to stream channel erosion through the increase in total and 

peak runoff and a decrease in hillslope sediment supply (Wolman, 1967; Hammer, 1972; 

Trimble, 1997; Hawley & Bledsoe, 2011).  Wolman (1967) developed a conceptual model on 

urban processes, sediment production, and channel erosion for developed countries.  The 

Wolman model includes an initial pre-disturbance phase with highly vegetated surfaces and 

low upstream sediment production, followed by a one to three-year construction phase 

characterized by high amounts of exposed soil, high sediment yield, and channel aggradation, 

and a final stage where the bare soil is replaced by impervious cover and landscaped 

vegetation with low sediment production, higher discharges, and stream channel erosion.   

With an increase in discharge and decrease in sediment supply, channels adjust to establish a 

dynamic equilibrium or a point in time where the sediment supply transported to the stream 

is approximately equal to the rate at which sediment is carried away by the stream (Lane, 

1955).   

Conceptual channel evolution models (CEMs) are used to describe the evolution of 

stream channel morphology over time in response to a disturbance in developed countries 

(Schumm et al., 1984; Thorne & Osman, 1988; Simon, 1989; Bledsoe et al., 2012; Booth & 

Fischenich, 2015).  The traditional CEM for incised, single-thread streams include 

evolutionary stages of (I) a pre-disturbed stable channel followed by a disturbance that leads 

to (II) degradation via downcutting, (III) bank failure and widening, (IV) aggradation, and 

(V) an establishment of a quasi-equilibrium state (Schumm et al., 1984).  Although CEMs 

can be used to predict the likely response of the channel to a disturbance, a single observation 

of channel condition can rarely predict the evolutionary trajectory of every stream channel 

due to differences in local geomorphic and/or hydrologic settings (Booth & Fischenich, 

2015). Conceptual models developed by Wolman (1967) and Schumm et al. (1984) provide a 
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valuable foundation in understanding urban processes and channel evolution, however, these 

models may not apply to rapidly urbanizing, developing countries.   

 The process of urbanization can differ in developed and developing countries in ways 

that can impact stream channel morphology, including the patterns and rates of establishment 

of impervious surfaces (Biggs et al., 2010), the construction sequence of channelization, and 

complete removal of riparian buffers. Unauthorized developments account for a large 

fraction of the urban surface in many developing countries, including those within Latin 

America, Africa, and Asia (Davis, 2006).  Unauthorized developments may have less access 

to resources for infrastructure development, and the lack of a city-wide planning authority 

which can lead to spatially discontinuous infrastructure (Balbo, 1993), and highly altered 

stream systems.   

Despite decades of research on urbanization and stream channel erosion, primarily in 

humid environments (see reviews by Chin, 2006; Gregory, 2006) and more recently in arid 

environments (Chin & Gregory, 2001; Coleman et al., 2005; Hawley & Bledsoe, 2011; 

Hawley et al., 2012; Taniguchi & Biggs, 2015), very few studies have been conducted in 

semi-arid climates in developing countries that experience rapid urban growth, unregulated 

urban development on erodible soils, and variable enforcement of environmental regulations.  

Moreover, there are no conceptual or computational models of urban impacts on stream 

channel morphology in such contexts.  The US-Mexico border presents a unique setting for 

investigating the impact of urban development on channel evolution, as such impacts can be 

quantified for cities in the United States (San Diego, CA) and Mexico (Tijuana, BC).   

In Tijuana, Mexico, rapid urbanization has led to excessive erosion of the exposed 

soils and erodible stream channels during rainfall events (Figure 1), which contributes to 

sediment deposition that buries native vegetation, blocks tidal channels, and negatively alters 

the estuarine ecosystem in the Tijuana Estuary in San Diego, California (Zedler & Norby, 

1986). Erosion also leads to a lower quality of life for people residing in Tijuana through the 

damage of homes built adjacent to alluvial stream channels, gully formation in dirt roads 

(Biggs et al., 2010), and deposition of solid waste (Grover, 2011).  In the United States, large 

sedimentation basins were built at the outlet of Los Laureles Canyon watershed (LLCW), a 

small watershed (11.6 km2) whose main channel flows from Tijuana, Mexico, under the 

U.S.-Mexico border through culverts, and empties into the southern arm of the Tijuana 
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Estuary, to try to capture the sediment and trash before it enters into the estuary, but millions 

of dollars are spent annually on basin excavation and the problem of erosion persists.  Little 

is known about the dynamics of urbanization, hillslope and channel erosion processes, and 

sediment loadings to the Tijuana Estuary and in semi-arid developing countries in general.  

In response to this concern, the US Environmental Protection Agency (EPA), US Department 

of Agriculture (USDA) and various institutions are investigating the impact of land use 

changes in Tijuana, Mexico on the hydrology and sediment supply of LLCW to the Tijuana 

Estuary.  Los Laureles Canyon watershed serves as a classic example of a hydrologically-

flashy watershed in semi-arid southern California, but is located in a developing nation that 

has unregulated urban development adjacent to the stream channel and uncoordinated in-

channel structure development, including concrete-lined reaches and culverts, mixed with 

highly erodible earthen channels. 

 A sediment budget for LLCW is vital for proper sediment mitigation plans, including 

a greater understanding of both hillslope and stream channel geomorphic processes.  This 

dissertation focuses on the stream channel dynamics of Los Laureles Canyon, in 

collaboration with a Mexican doctoral candidate who is focusing his research on the hillslope 

processes (see Figure 2 for a conceptual sediment budget schematic).  A sediment budget 

provides a valuable framework for managers to identify key erosional sources, whether from 

the hillslope or channel, and to make informed decisions about upstream sediment reduction 

practices (Owens, 2005; Walling & Collins, 2008).  Understanding the role of channel 

processes in watershed sediment budgets is vital for proper sediment management and 

mitigation (Walling & Collins, 2008), especially in regions where the channel contribution is 

dominant (Trimble, 1997).   

 

Figure 1.   Field pictures depicting the sequence of events following rainfall in Tijuana, 

Mexico:  A) Erosion from rainfall on unpaved roads; B) Flow carries sediment and 

trash across the U.S.-Mexico border; C) Sediment buries vegetation; D) Millions of 

dollars are spent on sediment removal in the Tijuana Estuary. 
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Figure 2. Conceptual sediment budget for Los Laureles Canyon in Tijuana, Mexico 

draining to the Tijuana Estuary in San Diego, California.  This dissertation focuses on 

stream channel erosion. 

Overview of Chapters 

This dissertation is structured around three separate papers (Chapters 2-4) that investigates 

the impacts of urbanization and in-channel alterations on stream channel evolution in semi-

arid Tijuana, Mexico. 

Chapter 2, Stream channel erosion in a rapidly urbanizing region of the US-Mexico 

Border: Documenting the importance of channel hardpoints with Structure-from-Motion 

photogrammetry, describes the spatial patterns in stream channel geometry in a rapidly 

urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico and provides a 

regional comparison of channel erosion in Tijuana to reference and urbanized watersheds in 

southern California.  This paper highlights the prevalence of channel instability downstream 

of hardpoints, or in-channel structures such as culverts and concrete flumes, and provides a 
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foundation for examining the effect of urban development on channel erosion in semi-arid, 

developing countries.  However, the mechanisms driving channel instability downstream of 

hardpoints are unknown.  To quantitatively evaluate channel evolution and determine the 

driving mechanisms to channel instability, field data collected in Chapter 2, serves as input 

data to the numerical model utilized in Chapters 3 and 4.  

Chapter 3, titled Quantifying the Relative Effects of Compounded Channel Alterations 

on Stream Channel Evolution in a Rapidly Urbanizing, Semi-Arid Region, uses field data 

collected in Chapter 2 and CONCEPTS (CONservational Channel Evolution and Pollutant 

Transport System), a computational model of channel evolution developed by the USDA, to 

provide a mechanistic explanation of channel evolution downstream of hardpoints in Tijuana, 

Mexico to determine what mechanisms are driving channel instability.  A scenario analysis 

was conducted to quantitatively assess the impact of urban channel alterations, including 

hardpoint installation, slope alteration, bed composition change, and vegetation removal, on 

channel incision, widening, and sediment load.  This paper provides a quantitative 

understanding of the processes that contribute to downstream instability from urban channel 

alterations in semi-arid, developing countries.   

Chapter 4 is titled Modeling channel sources and sinks of sediment in a semi-arid 

urbanizing environment: CONCEPTS-AnnAGNPS integrated model for Los Laureles Canyon 

watershed and uses a watershed-scale model of hillslope processes, AnnAGNPS, integrated 

with a computational channel evolution model, CONCEPTS to determine the spatial pattern 

of channel sources and sinks of sediment in LLCW and evaluate the overall importance of 

channel processes on the sediment budget for future sediment mitigation plans. This paper 

demonstrates the utility of integrating an empirically-based watershed scale model of 

hydrology and hillslope processes with a physically-based channel evolution model to 

evaluate watershed sediment budgets in a rapidly developing, semi-arid region.   

This research contributes to an EPA Regional Applied Research Effort (RARE) 

Project, Sediment Load Estimation of the Tijuana River Watershed Under Existing 

Conditions and the Future Alternative Scenarios for Best Management Practice 

Implementation (Interagency Agreement ID # DW-12-92390601-0) in collaboration with the 

US Department of Agriculture (USDA, Agreement # 58-6408-4-015), San Diego State 

University (SDSU), Centro de Investigación Científica y de Educación Superior de Ensenada 
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(CICESE), and University of Córdoba (Spain).  This dissertation provides insight to 

management on the impacts of urbanization and in-channel alterations on stream channel 

erosion in semi-arid, rapidly developing nations.  This insight will allow for a better 

understanding of the driving mechanisms to channel instability in such environments, and to 

identify hotspots of erosion for targeted sediment and erosion mitigation practices.   
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CHAPTER 2 

Stream channel erosion in a rapidly urbanizing region of the US-Mexico 

border: documenting the importance of channel hardpoints with Structure-from-

Motion photogrammetry 

ABSTRACT 

Urbanization can lead to accelerated stream channel erosion, especially in areas 

experiencing rapid population growth, unregulated urban development on erodible soils, and 

variable enforcement of environmental regulations.  A combination of field surveys and 

Structure-from-Motion (SfM) photogrammetry techniques were used to document spatial 

patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon 

(LLCW), in Tijuana, Mexico. Ground-based SfM photogrammetry was used to map channel 

dimensions with 1 to 2 cm vertical mean error for four stream reaches (100-300 m long) that 

were highly variable and difficult to survey with differential GPS.  Regional channel 

geometry curves for LLCW had statistically larger slopes and intercepts compared to 

regional curves developed for comparable, undisturbed reference channels.  Cross-sectional 

areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 

64 times greater than reference channels, with enlargement persisting, in some cases, up to 

230 m downstream.  Percent impervious cover was not a good predictor of channel 

enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation 

paired with highly erodible bed and bank materials may account for the instability of the 

highly enlarged and unstable cross-sections.  Channel erosion due to urbanization accounts 

for approximately 25-40% of the total sediment budget for the watershed, and channel 

erosion downstream of hardpoints accounts for one third of all channel erosion. Channels 

downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the 

Tijuana Estuary and local hazards near the structures, especially in areas with urban 

settlements near the stream channel.   
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1. INTRODUCTION 

Following urbanization and an increase in impervious cover, watersheds typically 

experience an increase in total and peak runoff and a decrease in hillslope sediment supply, 

resulting in stream channel erosion (Wolman, 1967; Hammer, 1972; Trimble, 1997; Hawley 

& Bledsoe, 2011).  Channel erosion can lead to physical damage to the stream channel, 

mobilization of excess sediment, and ecological harm to aquatic ecosystems and downstream 

habitats (Trimble, 1997; Walsh et al., 2016).  Unstable channels and subsequent 

infrastructure failure can also incur significant financial costs and threaten human safety 

(Gregory, 2006).   

Many studies have documented the impact of urbanization on stream channel erosion 

and its relationship to watershed characteristics, such as percent impervious cover (Hawley & 

Bledsoe, 2013, Taniguchi & Biggs, 2015) and geology, slope, and land cover (Booth et al., 

2010; Splinter et al., 2010).  Although watershed characteristics may predict channel 

enlargement in many cases, they may not be the only factor in causing stream channel 

erosion.  Local factors, such as proximity to hardpoints like road crossings or bridges, may 

also play an important role in channel erosion (Takken et al., 2008; Katz et al., 2014) and can 

lead to spatial variability in morphological adjustment (Chin & Gregory, 2001).   Road 

crossings can cause channel scour immediately downstream in watersheds in arid climates 

due to increased runoff from the road surface (Chin & Gregory, 2001) and increased flood 

peak flows from channelization have caused channel instability for over 100 m downstream 

of such hardpoints (Brookes, 1987).  A mix of local factors such as channel realignment, 

concrete-lined channelization of some stream reaches, addition of culverts, and an input of 

anthropogenic coarse particles into the channel, including wood, car parts, and pipes, have 

also contributed to the spatial variability in channel response to urbanization (Grable & 

Harden, 2006).   

 Urbanization processes in developing countries may differ from those in developed 

countries in ways that have greater impact on stream channel erosion, including the patterns 

and rates of establishment of impervious surfaces (Biggs et al., 2010) and the types and 

construction sequence of channelization and drainage infrastructure. Unauthorized or 

“irregular” developments account for a large fraction of the urban surface in many 

developing countries, including those within Latin America, Africa, and Asia (Davis, 2006).  
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Irregular developments may have less access to resources for infrastructure development, and 

the lack of a city-wide planning authority in such developments can cause spatially 

discontinuous infrastructure development (Balbo, 1993), including channelization and 

drainage.   Despite decades of research on urbanization and stream channel erosion, primarily 

in humid environments (see reviews by Chin, 2006; Gregory, 2006) and more recently in arid 

environments (Chin & Gregory, 2001; Coleman et al., 2005; Hawley & Bledsoe, 2011; 

Hawley et al., 2012; Taniguchi & Biggs, 2015), very few studies have been conducted in 

semi-arid climates in developing countries experiencing rapid population growth, 

unregulated urban development on erodible soils, and variable enforcement of environmental 

regulations.  The US-Mexico border presents a laboratory for investigating the impact of 

development level on stream channel response to urbanization, as such impacts can be 

quantified for cities in the United States (San Diego, CA) and Mexico (Tijuana, BC).  Los 

Laureles Canyon watershed (LLCW) in Tijuana, Mexico, serves as a classic example of a 

hydrologically-flashy watershed in semi-arid southern California, but is located in a 

developing nation that has unregulated urban development adjacent to the stream channel and 

uncoordinated in-channel structure development, including concrete-lined reaches and 

culverts, mixed with highly erodible earthen channels.  

 Traditional surveys of stream channels measure channel geometry at discrete 

locations, but such surveys are time consuming and may not adequately document the 

geometry of complex channels that change rapidly over short distances.  Remote sensing 

techniques including three-dimensional (3-D) photo-reconstruction and Structure-from-

Motion (SfM) photogrammetry can be used to create detailed digital elevation models 

(DEMs) with open-source, or freely available, software packages and require little training 

and equipment (James & Robson, 2012; Castillo et al., 2015).  Systematic errors such as 

vertical doming or the ‘dome effect’ can occur in SfM-derived DEMs, typically from near-

parallel images acquired from unmanned aerial vehicles (UAVs) or inaccurate correction of 

radial lens distortion (Wackrow & Chandler, 2008, 2011; James & Robson, 2014).  Doming 

errors can be mitigated by including more oblique images in the image network, the inclusion 

of additional ground control points, and/or utilization of a reliable camera model (Wackrow 

& Chandler, 2008, 2011; James & Robson, 2014). SfM photogrammetry techniques have 

been utilized in various geomorphic studies (James & Robson, 2012; Turner et al., 2012; 
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Westoby et al., 2012; Gómez-Gutiérrez et al., 2014; Micheletti et al., 2014) and can be used 

to map and extract stream channel (Javernick et al., 2014; Dietrich, 2015; Prosdocimi et al., 

2015) and gully dimensions (Castillo et al., 2012). 

 Understanding the role of channel processes in watershed sediment budgets is vital 

for proper sediment management and mitigation (Walling & Collins, 2008).  A sediment 

budget provides a valuable framework for managers to identify key erosional sources, 

whether from the hillslope or channel, and to make informed decisions about upstream 

sediment reduction practices (Owens, 2005; Walling & Collins, 2008).  Detailed channel 

evaluations, such as that conducted in this study, can be used to identify the most vulnerable 

stream reaches and the magnitude and type of future instabilities for proper, sediment 

mitigation practices (Andrew Simon & Downs, 1995).  

 This study investigates urbanization and stream channel erosion in Tijuana, Mexico, 

through a mix of field topographic survey methods, including SfM photogrammetry and 

differential GPS, and a comparison of channel geometry to undeveloped and urbanized 

watersheds in southern California.  The overall goal of this study is to quantify how channels 

respond to rapid urbanization and in-channel infrastructure development in a semi-arid 

region and developing country.  More specifically, our research objectives are to: 1) utilize 

and validate Structure-from-Motion photogrammetry techniques to map channel morphology 

of highly enlarged stream reaches; 2) investigate how the type and magnitude of channel 

response to urbanization in Tijuana compare with urbanized areas in a neighboring developed 

country (San Diego, CA); 3) identify factors that impact channel change, including watershed 

characteristics such as impervious surface cover and local channel characteristics such as 

hardpoints; and 4) quantify the impact of channel erosion, including erosion downstream of 

hardpoints, on the sediment budget.  

2. STUDY AREA 

Los Laureles Canyon watershed (LLCW) is a bi-national watershed (11.6 km2) whose 

main channel flows from Tijuana, Mexico, under the U.S.-Mexico border through culverts, 

and empties into the southern arm of the Tijuana Estuary (Figure 1).  The Tijuana Estuary is 

located entirely in the United States, is one of the largest estuarine wetlands left in California, 

and provides vital habitat to an array of species (Weis et al., 2001).  The watershed 



 

 13 

contributing flow and sediment to the estuary includes the LLCW, two additional small 

watersheds, and the larger Tijuana River watershed (4,400 km2), which is approximately 

two-thirds in Mexico.  Excessive erosion in LLCW has accelerated the rate of sedimentation 

in the Tijuana Estuary (Webber, 2010), altering the natural ecosystem through the burial of 

vegetation, negatively affecting the native species and allowing exotic species to invade and 

thrive (Zedler & Norby, 1986).  Two large sediment traps were built at the outlet of LLCW 

in the Tijuana Estuary to try to prevent sediment from entering into the estuary (Figure 1), 

but millions of dollars are spent annually on trap excavation and on extreme wet years, traps 

can fill up and overflow.  Excessive erosion in LLCW also poses a threat to the infrastructure 

and people living in the watershed, many of which live adjacent to unstable stream channels 

or on steep, erodible slopes.    

 LLCW is hydrologically similar to many semi-arid watersheds in southern California 

with Mediterranean climate.  The 30-year mean annual precipitation is 238 mm (PRISM 

Climate Group, Oregon State University, http://prism.oregonstate.edu, created 7 July 2010) 

and the flow regime is flashy with infrequent but geomorphically-significant large flow 

events.  LLCW lies on the highly erodible San Diego Formation, which consists of fine- to 

medium-grained, poorly indurated and loosely consolidated sandstone and cobbly 

conglomerate (Kennedy & Peterson, 1975).  Soils in the LLCW are classified as “highly 

erodible” according to Hanson’s soils classification diagram (Pinettes et al., 2011), with 

critical shear stress ranging from 0.001 to 4.6 Pa and erodibility (k) ranging from 103 to 879 

cm3 N-1 s-1 (Biggs et al., 2018a). The stream channel network includes concrete-lined and 

earthen reaches with ten in-channel structures or hardpoints, including concrete flumes and 

culverts. The channel network includes one main channel (“Main”) and two tributaries in the 

southwest (SW) and southeast (SE) (Figure 1).  During urban development in the watershed, 

vegetation on the hillslopes, floodplain, and the channel is routinely cleared, leaving large 

proportions of exposed, erodible soils.  During road grading, smaller channels are often filled 

in completely and reform during large flow events. 

 Reference or minimally disturbed channels were surveyed at Spring Canyon to serve 

as a baseline comparison to LLCW. Spring Canyon is located just north of the US-Mexico 

border near San Ysidro, approximately 8 km northeast of LLCW, and is the only minimally 

developed (<3% impervious) watershed entirely on the San Diego Formation (Figure 1).   
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Figure 1. Study area of Los Laureles Canyon watershed and survey locations on 

earthen stream reaches. The Los Laureles stream channel is composed of earthen and 

concrete reaches and has three tributaries (SW, Main, and SE). There is a total of ten 

hardpoints, four hardpoint locations are labeled: a) SW metal culvert; b) SW concrete 

flume; c) SE hardpoint; and d) Main culvert (San Bernardo). Reference channels were 

surveyed at Spring Canyon. 

3. METHODS 

Channel cross-sectional area at capacity was surveyed at representative stream 

reaches using a mix of field methods including channel surveys utilizing a differential GPS 

(DGPS) and Structure-from-Motion (SfM) photogrammetry techniques.  The combined 

dataset was used to develop regional channel geometry relationships and compared to 

regional relationships developed for southern California (Modrick & Georgakakos, 2014) 

and San Diego County (K. Taniguchi & Biggs, 2015).  The following subsections provide a 

further description of the methodology utilized in this study.  
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3.1 Channel cross-sections with differential GPS 

 The earthen stream channel network in LLCW was surveyed using differential GPS 

(Trimble Geo7X) at 39 representative locations, which were chosen based on changes in 

channel geometry, channel condition, and/or bed and bank composition over space.  

Although portions of the stream network were channelized with concrete, only the earthen, 

alluvial channels were included in this analysis.  At each location, the channel cross-sectional 

area was surveyed with a differential GPS with sub-centimeter to 5 cm vertical accuracy, and 

cross-sectional area at channel capacity (A) was defined by the major break in slope between 

the defined channel and floodplain (Leopold, 1994).   The particle size distribution of the 

surficial bed material was measured using the Wolman (1954) pebble count method and 

channel stability was qualitatively assessed.   

3.2 Structure-from-Motion photogrammetry surveys 

Structure-from-Motion (SfM) photogrammetry was utilized to create detailed digital 

elevation models (DEMs) (Westoby et al., 2012; Castillo et al., 2015) for three highly 

enlarged stream reaches (hardpoint locations a, b, and c; see Figure 1) that were difficult to 

survey and had complex channel dimensions.  The SW concrete flume reach was relatively 

long (400 m), and was split into two reconstructions.  The reconstructed length of each reach 

is approximately 200 m (SW metal culvert), 300 m (SW concrete flume, downstream), 100 m 

(SW concrete flume, upstream) and 155 m (SE hardpoint). A minimum of ten 20 x 20 cm 

colored and numbered control markers were placed along the bed and banks of the channel 

for the entire reach length, including at minimum four error control points (ECPs), whose 

locations were surveyed with the differential GPS. A modified GoPro Hero3+ camera with a 

non-distortion lens with 4.14 mm focal length and f/3.0 aperture (Peau Productions, CA, 

USA, http://www.peauproductions.com/) was mounted to a telescoping painter’s pole 

approximately 2-3 m long.  The camera was set to time-lapse capture mode (1 image per 

second) and images were acquired by slowly walking up and down the stream reach two 

times, first with the camera facing upstream and second with the camera facing downstream 

to ensure high degree of overlap between images and to minimize topographic shading 

effects (Castillo et al., 2015).    
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 The series of overlapping images was post-processed with freely available software 

packages to produce a 10 cm DEM: VisualSfM (Wu, 2013, 2015), SfM_Georef (James & 

Robson, 2012), and CloudCompare (“CloudCompare v2.5.5.2,” 2015).  VisualSfM uses SfM 

and Multiview stereo (MVS) to automatically match image texture in various images and 

determine the 3-D geometry of a static environment (James & Robson, 2012) and was used 

to create the dense point clouds.  For a subset of three out of four stream reaches, to account 

for potential doming effects, camera calibration was conducted using the Fraser distortion 

model on a calibration dataset in a freely available software package called MicMac 

(Deseilligny & Clery, 2011; Stöcker, 2015) and dense point clouds were reconstructed using 

the camera model and PMVS2 software (Furukawa & Ponce, 2010; James & Robson, 2012; 

Castillo et al., 2015).  The point clouds were georeferenced using SfM_Georef by manually 

identifying the GCPs in various images and transforming the point clouds from a relative 

coordinate system to the coordinate system of the GCPs (Castillo et al., 2015). Each control 

point needs to be visible and identified in at least two images and a minimum of 3 GCPs are 

needed to georeference the entire point cloud.  The ECPs were used only for the error 

analysis.   

 Following Castillo et al. (2015), the georeferenced point clouds were filtered, merged, 

and converted to a 10 cm DEM using CloudCompare.  A total of eighteen cross-sections 

were extracted from the four DEMs in ESRI ArcMap 10.2 by drawing lines perpendicular to 

the channel centerline, and extracting the elevation from each DEM cell. Cross-sectional area 

at channel capacity was identified by plotting each cross-section and identifying the major 

change in slope between the channel bank and the floodplain.  All extracted cross-sections 

had well-defined banks, making channel capacity easily identifiable.  

3.3 Structure-from-Motion error analysis 

The mean error (ME) and standard deviation of error were calculated for the 

horizontal (x and y) and vertical (z) dimensions for each point cloud (Table 1).  The mean 

error (ME) at the ECPs ranges from -14 to 7 cm in the horizontal x-y dimensions and 1 to 2 

cm in the vertical z dimension, with overall model mean error in the x-y-z dimensions from -

2 to 2 cm (Table 1).  The standard deviation of error for the ECPs ranges from 5 to 26 cm in 

the horizontal x-y dimensions and 3 to 13 cm in the vertical z dimension, with overall 
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standard deviation of error in the x-y-z dimensions from 12 to 25 cm (Table 1).  The subset 

of three camera calibrated models have lower mean error (-0.5 to -0.9 cm) and standard 

deviation of error (2 to 7 cm) compared to the uncalibrated models, but all sixteen extracted 

cross-sections from the uncalibrated and calibrated models have near identical cross-sectional 

shape and areas, indicating that there are little to no systematic deformations or “doming” in 

the uncalibrated SfM-derived DEMs.  Areas showing elevation changes greater than ±0.5 m 

were typically located on the floodplain near the periphery of the models (Figure 2). Two 

cross-sections extracted from the camera calibrated models had a slightly larger cross-

sectional area (2 and 5% increase) compared to the uncalibrated extracted cross-sections, but 

the channel shape was the same for both.  

Table 1. Mean error (ME) and standard deviation of error in the x, y, and z dimensions 

at the error control points (ECPs) and comparison of cross-sectional areas from SfM 

and GPS from the SW reaches.  ASfM is the DEM extracted cross-sectional area, ADGPS is 

the surveyed cross-sectional area, and Absolute Diff. is the absolute difference between 

ASfM and ADGPS. Locations a-c are labeled in Figure 1. 

Location SfM Reach 
Total 

ECPs 

Mean Error (cm) 

Standard Deviation of 

Error (cm) 
Cross Section (m2) 

X Y Z XYZ X Y Z XYZ ASfM ADGPS 
Absolute 

Diff. 

% 

Diff. 

a 
SW Metal 

Culvert 
6 1 4 2 2 5 16 3 14 32.4 33.7 -1.3 -4 

b1 

 

SW 

Concrete 

Flume, 

downstream 

10 -11 6 1 -1 31 26 13 25 33.1 39.4 -7.5 -16 

b2 

 

SW 

Concrete 

Flume, 

upstream 

6 -1 0.4 2 1 11 13 8 12 14.9 15.8 -0.9 -6 

c 

 

SE 

Hardpoint 

4 -14 7 1 -2 8 24 12 17 - - -  
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Figure 2. Digital elevation model (DEM) difference maps based on the uncalibrated and 

camera calibrated SfM-derived models.  Mean elevation change ranged from 3 to 13 

cm, with elevation changes greater than ±0.5 m located on the floodplain near the 

periphery of the models. 

 

Figure 3. Comparison of surveyed cross-sections with a differential GPS (DGPS) and 

SfM derived DEM extracted cross-sections near two hardpoint locations in the SW 

channel: a) SW metal culvert; b1) SW concrete flume, downstream; and b2) SW 

concrete flume, upstream.  Portions of steep banks may be cut off using a DGPS, 

leading to an overestimation in cross-sectional area (b2). 
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The overall shape of the channel and cross-sectional area from the SfM-derived and 

differential GPS surveyed cross-sections match well, from -4% to -16% difference, and show 

that ‘A’ derived from the uncalibrated SfM DEMs can be utilized with confidence (Figure 3).  

At the three SW locations having both SfM and GPS derived cross-sections, ‘A’ from SfM is 

smaller than ‘A’ from the GPS, but errors are relatively small, with a mean percent difference 

of -8%.  Cross-sections extracted from SfM-derived DEMs may be more accurate than cross-

sectional surveys with a differential GPS due to a higher density of topographic points 

represented in the 3-D models (Figure 3).  When surveying the stream channel with a 

differential GPS, elevation points were taken at major changes in the slope, but topographic 

features may be smoothed over and portions of the steep banks may be cut off (i.e. cut off left 

and right banks in Figure 3 b2) resulting in an overestimation in the cross-sectional area using 

a differential GPS or traditional survey methods.  The cross-sectional comparison for the SE 

hardpoint was not made due to limited image overlap near the upstream end of the reach 

where the GPS cross-section was taken.  

The largest errors in the 3-D models were found at the channel perimeter, due to the 

lower overlap between images and poorer convergence of perspectives. For future studies, if 

greater accuracies were pursued with a similar methodology, utilizing a low-cost pole with a 

camera and walking-pace photography, it would be advisable to calibrate the camera for each 

field survey with a specific image set (see recommendations in MicMac´s manual, IGN 

2017) and collect the images along both channel margins to ensure better overlap and 

perspectives on the periphery, preferably along the upstream direction where there is better 

perspectives of the channel.  

 SfM-derived DEMs in this study results in similar or lower errors in comparison to 

other studies on SfM applications of rivers and gullies, despite being a highly time- and cost-

efficient approach.  Riverscape mapping using SfM photogrammetry and overlapping 

imagery from an unmanned aerial vehicle (UAV) resulted in errors from 10 cm to 1 m in the 

horizontal and vertical dimensions (Dietrich, 2015) and with a helicopter as low as 10 cm 

vertical error (Javernick et al., 2014). Ground-based SfM techniques used in this study may 

have lower errors due to the additional oblique camera angles in comparison to the near-

parallel flight lines and viewing angles from UAV or aerial acquired images, which can lead 

to systematic deformations or vertical doming in the resulting DEMs (James & Robson, 
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2014; Dietrich, 2015).  UAV and ground-based methods have been combined to create low-

error topographic models of gullies with accuracy of 1 cm (Stöcker, 2015).  Ground-based 

SfM photogrammetry techniques are a cost effective and accurate way to map river reaches 

that are free of vegetation, highly variable in channel dimensions, and difficult to survey with 

the traditional survey-level and rod or GPS.   

3.4 Regional channel geometry curves and impervious 

surface cover 

 Studies investigating the impact of urbanization on stream channel geometry should 

ideally compare channel dimensions at discrete locations before, during, and after 

urbanization (Leopold, 1973), but in many cases channel dimensions prior to urbanization are 

unknown.  A space-for-time substitution method is used in this study to compare channels in 

urbanized watersheds (LLCW) to channels in undeveloped watersheds (San Diego and 

southern California) using regional channel geometry curves (Hammer, 1972;  Chin & 

Gregory, 2001; Navratil et al., 2013; Taniguchi & Biggs, 2015). Regional channel geometry 

curves (regional curves) were developed for LLCW using the surveyed cross-sectional data 

(N=39) and the SfM-derived cross-sections (N=18) combined.  Regional curves relate 

channel cross-sectional area at capacity (A) to watershed area (Aw):  

 A = α Aw 
β          (1) 

where ‘A’ is in m2, Aw is in km2, and α and β are coefficients (Dunne & Leopold, 1978).   

Regional reference curves, which served as the baseline under non-urban reference 

conditions for comparison to the LLCW channel survey, were taken from the literature for 

southern California (Modrick & Georgakakos, 2014) and San Diego County (K. Taniguchi & 

Biggs, 2015) and supplemented by additional field surveys.  Due to potential geological 

differences between the LLCW and the streams in the literature (Modrick & Georgakakos, 

2014; K. Taniguchi & Biggs, 2015), an additional reference curve was developed from a 

field survey conducted in Fall 2016 in Spring Canyon, which drains the same erodible San 

Diego Formation as LLCW (Figure 1).  In Spring Canyon, 10 channel cross-sections were 

surveyed with a differential GPS and had watershed areas ranging from 0.12 to 1.3 km2.  For 

the San Diego County regional curves, watershed area ranged from 0.3 to 1,847 km2 (K. 

Taniguchi & Biggs, 2015).  
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The channel enlargement ratio (ER) was calculated as ‘A’ observed at LLCW divided 

by ‘A’ predicted from the regional reference curves.  The impact of the regional reference 

curve on the ER was determined by using both the San Diego County curve from Taniguchi 

and Biggs (2015) and the curve from Spring Canyon to calculate the ER for each cross-

section in LLCW. 

 Percent impervious cover (IC) was calculated for the watersheds draining to the 

surveyed cross-sections in LLCW from an updated 2003 vegetation-impervious-soil (VIS) 

map by Biggs et al. (2010). To account for the potential increase in impervious surfaces since 

2003, Google Earth imagery from 2012 (Google Earth, 11/11/2012, 2016 DigitalGlobe) was 

used to update the 2003 VIS map.  To do this, a land use map for 2012 was first generated by 

visual interpretation, on-screen digitizing and classification of the 2012 imagery into seven 

land use categories (agriculture, rangeland, paved urban, dispersed unpaved urban, urban 

unpaved, unpaved levelled land, and sediment trap).  Land cover validation points (N=1000) 

were randomly generated within LLCW and the land cover from the 2012 imagery at each 

point was classified as either vegetation, impervious, or soil.  IC for 2012 (IC2012) was 

calculated as the percent of validation points that were classified as impervious for each of 

the seven land use categories. IC for 2003 (IC2003) for each of the seven land use categories 

was tabulated from the 2003 VIS map.  IC2003 and IC2012 were plotted and a linear regression 

equation was developed (IC2012 = 2.2 IC2003 – 11.2; r2 = 0.89).  Impervious cover has 

increased by 2-fold over the 9-year period.  For each surveyed cross-section, the IC2003 

draining the upstream watershed was calculated from the 2003 VIS map, and IC2012 was 

calculated from the regression equation and used in this study.  

To analyze the impact of hardpoints on downstream cross-sectional area, the cross-

sectional area was plotted versus distance downstream from the watershed divide and 

stratified into two groups: within hardpoint influence (HP) and not within hardpoint influence 

(NHP).  Cross-sections that were downstream of a hardpoint and enlarged were considered 

“within hardpoint influence”.  Downstream channel recovery distance, or the downstream 

distance of hardpoint-induced enlargement, was defined as the distance in which the channel 

recovers to the ‘A’ upstream of the hardpoint and/or becomes stable, and was identified 

visually on the plot of downstream distance versus ‘A’.  Downstream of the ten hardpoints, 

there were twenty-one survey locations that were within hardpoint influence (HP).  In the 
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SW channel, the four downstream-most cross-sections near the confluence with the Main 

channel had high errors in the GPS and were excluded from the analysis.  Channel surveys 

conducted in 2009 were used instead of the high error cross-sections to determine 

downstream recovery distance for that reach, but were excluded from all other analyses.  

Based on field interpretation and image comparison of the four cross-sections between 2009 

and 2014, there were no signs of channel erosion and no substantial change in cross-sectional 

area.  

Regional curves were developed for both HP and NHP cross-sections using linear 

regressions on the log-transformed variables. Statistical significance of the difference in 

slopes (β) and intercepts (α) of the HP, NHP, and reference regional curves were tested using 

analysis of covariance (ANCOVA) (Chaplin, 2005; Johnson & Fecko, 2008; K. Taniguchi & 

Biggs, 2015).  The San Diego County and southern California regional reference curves 

included channels from a wide range of drainage areas compared to the smaller drainage 

areas from LLCW.  Channels draining larger watersheds could potentially alter the α and β 

values in the regional curves.  A subset of channels with smaller drainage areas (Aw < 15 

km2) from both San Diego County and southern California reference data was also used in 

the ANCOVA analysis to control for the potential impact of larger watersheds on the 

regional regression parameters. 

3.5 Relative sediment contribution from channel 

erosion 

The mass of sediment (tons) generated from channel erosion due to urbanization 

(Murban) was calculated for the 57 earthen cross-sections as: 

Murban= ∑  ρ
b
(ALLCW i - Aref i)

57

i=1

Li 

           (2) 

where ALLCW i is the cross-sectional area (m2) at LLCW survey location i, Aref i is the predicted 

cross-sectional area (m2) prior to urbanization for survey location i, Li is the reach length for 

survey location i (m), ρ
b
 is the estimated bulk density of the soil (1.67 tons/m3), and 57 is the 

total number of earthen cross-sections, including those surveyed with GPS and SfM. Aref i 
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was estimated using both the reference curve from Spring Canyon, and from the reference 

curve for San Diego County for the given watershed area at survey location i (K. Taniguchi 

& Biggs, 2015).   

 The mass of sediment (tons) generated from the ten hardpoints (MHP) was calculated 

as: 

MHP= ∑   ∑ ρ
b
(AHP i, j - ANHP i, j)

ni

j=1 Li, j
10
i=1     (3) 

where 10 is the total number of hardpoints (i) and ni is the total number of HP survey 

locations (j) at hardpoint i, AHP i, j is the cross-sectional area (m2) for HP i at HP survey 

location j, ANHP i, j is the estimated cross-sectional area (m2) not within hardpoint influence for 

HP i at HP survey location j, Li,j is the reach length (m) for HP i at HP survey location j, 

and ρ
b
 is the estimated bulk density of the soil (1.67 tons/m3).  The total number of hardpoint 

survey locations is 21.  ANHP i, j was locally estimated by linearly interpolating the nearest 

upstream ANHP to the nearest downstream ANHP. Murban and MHP were divided by the 

watershed mean time since the start of urbanization, to get the sediment yield (t y-1) due to 

urbanization and hardpoints.  

 The sediment supply from channel erosion (Murban) may be underestimated due to 

additional sediment supplied to the channel directly by residents of LLCW (Figure 4).  

Residents fill in channels with sediment and construction debris following rainfall events to 

try to prevent the channel from eroding their property.  The added sediment is from grading 

of new development zones and debris from construction sites within LLCW and nearby 

areas. There is large uncertainty about the volume of fill sediment added to the channel, but 

field observation suggests that approximately 5-10% of the channel volume is filled with 

sediment annually, primarily in highly eroded stream reaches downstream of channel 

hardpoints.    
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Figure 4. Residents fill in the channel with loose sediment and construction debris to 

prevent the channel from eroding into their homes. Picture taken in the SW channel. 

Uncertainty may arise in the calculation of Murban and MHP due to potential errors in 

the surveyed cross-sections, volume estimation using the upstream cross-sectional area and 

reach length, mass of sediment added due to channel fill, and the regional curves used to 

estimate Aref and ANHP.  Similar to Zhang et al. (2014), cumulative probable error (PE) can be 

calculated to reflect the variabilities of all components used to estimate the mass of sediment 

generated due to urbanization and hardpoints: 

PE = {(
MDGPS

MLLCW
)

2

EDGPS
2 + (

MSfM

MLLCW
)

2

ESfM
2 + (

Mcurve

MLLCW
)

2

Ecurve
2}

1

2

 (4) 

 

where MDGPS and MSfM are the mass of sediment (tons) calculated from cross-sections 

surveyed with a DGPS and SfM photogrammetry, respectively, MLLCW is the total mass of 

sediment (tons) generated from LLCW, Mcurve is the mass of sediment (tons) estimated from 



 

 25 

the regional curves (SD reference for Murban or NHP curve for MHP), EDGPS is the error for the 

mass calculation from cross-sections surveyed with a DGPS, ESfM is the error for the mass 

calculation from SfM-derived cross-sections, and Ecurve is the standard error from the regional 

curve (SD reference or NHP) divided by the mean.  Ecurve for the SD reference and NHP 

regional curves are 1.06 and 0.53, respectively. 

Three components of error associated with the DGPS derived mass (EDGPS) were 

squared and summed together, including the error from channel fill (0.05), relative error in 

the measurement of ADGPS (0.08), from the cross-sectional comparison of DGPS and SfM-

derived cross-sections, and relative error in the reach volume calculation (0.01).  Errors in the 

reach volume calculation primarily arise if there is sinuosity between surveyed cross-sections 

and/or cross-sectional variation within a given reach (Castillo et al., 2012). Following 

Castillo et al. (2012), relative error in the reach volume (Evol) was calculated for a 

representative stream reach in the SW channel that was 60 m long where SfM 

photogrammetry was conducted, as: 

Evol = 
Vp- Vo

Vo
   (5)  

where Vp is the predicted reach volume calculated as the upstream cross-sectional area 

multiplied by reach length, and Vo is the observed reach volume from the SfM-derived DEM 

using the cut and fill function in ArcGIS 10.5.  In this study, the value for Evol was relatively 

low (0.01) because cross-sections were surveyed at representative stream reaches to 

minimize the impact of cross-sectional variation between survey locations and reach 

sinuosity is minimal. Similarly, ESfM included error from channel fill (0.05) and relative error 

in the reach volume calculation (0.01).  The final values used for EDPGS and ESfM were 0.009 

and 0.0026, respectively. 

 The mass of sediment generated by channel erosion was compared to mean annual 

sediment yield from LLCW, based on annual tons of sediment excavated from the sediment 

traps at the outlet of LLCW in the Tijuana Estuary from 2006 to 2012.  The total sediment 

yield from LLCW includes sediment retained in the trap, and sediment that was lost through 

the trap and entered into the estuary. The trap efficiency, or the proportion of the total 

sediment yield that is retained in the sediment trap, for medium sand, fine sand, silt, and clay 

was estimated by following the guidelines for sedimentation under turbulent, non-ideal 
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conditions (Morris & Fan, 1998). See Biggs et al. (2017) for trap efficiency equations and 

methods used to correct the annual total sediment yield from LLCW.   

4. RESULTS AND DISCUSSION 

4.1 Regional hydraulic geometry curve comparison 

Regional hydraulic geometry curves were developed for Spring Canyon reference 

channels and LLCW and compared to curves from the literature (Table 2).  The regional 

curve for Spring Canyon is not statistically significant (p > 0.1; r2 = 0.13) due to the small 

number of survey sites (n = 10) and small range of watershed sizes (0.1 to 1 km2) but the 

curve has a statistically similar slope and intercept to southern California and San Diego 

County reference curves (Figure 5; Table 2).  Channels in Spring Canyon are geomorphically 

stable, with no signs of incision or instability of the banks.  The regional curve for all cross-

sections at LLCW is statistically significant (p < 0.001; r2 = 0.22).  The α value from the 

regional curve for LLCW (6.97) is significantly larger than all reference regional curves (p < 

0.001), suggesting that channel cross-sectional area is significantly larger in Los Laureles 

Canyon than in reference channels for a given watershed area. All cross-sections surveyed in 

LLCW are larger than the predicted regional reference cross-sectional areas for southern 

California (Modrick & Georgakakos, 2014), San Diego County (Taniguchi & Biggs, 2015), 

and Spring Canyon for a given watershed area.  The slope (β) from Los Laureles regional 

curve (0.76) is significantly larger (p < 0.01) than the β value from San Diego County (0.16) 

reference curve, but not significantly different (p > 0.1) from Spring Canyon (0.29) and 

southern California (0.387) reference curve β values. 

 LLCW cross-sections were split into two groups (HP and NHP) based on downstream 

recovery distance (Figure 6) and regional curves were developed for each group (Table 2).  

Twenty-one cross-sections are within hardpoint influence, with downstream channel 

recovery distance varying from 50 to 230 m downstream of the channel hardpoint.  Regional 

curves for HP and NHP locations (Table 2; Figure 5) are statistically significant (p < 0.01) 

and the HP α value is statistically larger than the NHP α value (p < 0.05), indicating that 

channels downstream of hardpoints are significantly larger than channels that are not within 

the hardpoint influence distance downstream. Additionally, both HP and NHP curves have 
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statistically larger α values (p < 0.001) compared to all reference curves.  The α and β of the 

NHP regional curve for LLCW are statistically larger than the San Diego County reference 

curve, indicating that urbanization has led to channel erosion even without the downstream 

impact of hardpoints.  In comparison to the San Diego County urban curve, the HP curve has 

statistically larger α (p < 0.01) and β (p < 0.05) values, while the NHP curve has a 

significantly larger β (p < 0.05).  All ANCOVA results were the same using the subset of 

channels draining watersheds less than 15 km2 for San Diego County and southern California 

reference regional datasets.  This indicates that the range of drainage area does not 

significantly impact the slope or intercept of the reference regional curves. 

Table 2. Regional curves for Los Laureles Canyon (this study), Spring Canyon (this 

study), San Diego County (Taniguchi & Biggs, 2015) and southern California (Modrick 

& Georgakakos, 2014). ‘A’ is cross-sectional area (m2) and Aw is watershed area (km2) 

Location Equation r2 p-value N 

Los Laureles Canyon: 

      All 

      Within hardpoint influence 

      Not within hardpoint influence 

Reference Channels: 

      Spring Canyon 

      San Diego County 

      Southern California 

 

A = 6.97 Aw 0.76 

A = 11.26 Aw 1.05 

A = 4.60 Aw 0.84 

 

A = 0.81 Aw 0.29 

A = 0.76 Aw 0.16 

A = 0.53 Aw 0.39 

 

0.22 

0.42 

0.36 

 

0.13 

0.08 

0.29 

 

<0.001 

<0.001 

<0.001 

 

>0.1 

0.04 

 

 

 

57 

21 

36 

 

10 

46 

54 
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Figure 5. Regional curve comparison of surveyed cross-sections at LLCW stratified by: 

within hardpoint influence distance (HP) and not within hardpoint influence distance 

(NHP); and regional curves developed for San Diego County urban watersheds (San 

Diego Urban) (Taniguchi & Biggs, 2015) and minimally developed watersheds in San 

Diego County (San Diego Reference) (Taniguchi & Biggs, 2015), southern California 

(S.CA Reference) (Modrick & Georgakakos, 2014), and the surveyed Spring Canyon 

reference cross-sections.   
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Figure 6. Distance downstream and cross-sectional area for the SW and SE tributaries 

and the Main channel.  Open circles fall within hardpoint influence distance. Four 

hardpoint locations are labeled: a) SW metal culvert; b) SW concrete flume; c) SE 

hardpoint; and d) Main culvert (San Bernardo). The SW concrete flume (b) caused the 

most enlargement downstream. The GPS had high degree of error for the four 

downstream-most points in SW, so cross-sections surveyed in 2009 were plotted instead, 

but were not used in the regression analysis. NHP interpolated cross-sections are shown 

as the grey dashed line. 

4.2 Spatial variability of downstream effects from 

hardpoints 

Channel enlargement tends to decrease with increasing distance downstream from channel 

hardpoints in the SW and SE tributaries (Figure 6) and varies spatially (Figure 7).  The SW 
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concrete flume is a 50 m long concrete-lined rectangular stream reach, 3 m deep by 1.3 m 

wide, and shows a downstream channel recovery distance of 230 m with the channel 

stabilizing downstream of this distance threshold (Figure 6).   This stream reach is the most 

enlarged in the watershed with approximately 5 m of incision (Figure 7 b) and a scour hole 

immediately downstream of the structure.  Incision and widening occurred beyond the 

dimensions of the concrete flume, which caused portions of the concrete sides to collapse 

(Figure 8).  The small width-to-depth ratio of the structure may have created large water 

depths, which would have normally spread overbank but are now confined in the channel, 

causing higher channel velocities and downstream channel enlargement (Brookes, 1987).  

The SW metal culvert also caused over 2 m of incision downstream (Figure 7 a).  

Downstream of the SE hardpoint there is over 1 m of incision with little channel widening, 

but the incision is confined to within a few meters of the hardpoint and did not propagate 

downstream (Figure 7 c).   

 

Figure 7. Channel cross-sections upstream and downstream of hardpoints for: a) SW 

metal culvert; b) SW concrete flume; c) SE hardpoint; and d) Main culvert (San 

Bernardo). 

 The most enlarged cross-sections are downstream of channel hardpoints, but not 

every hardpoint causes downstream instability.  The upstream-most hardpoints in Main and 

SE are concrete-lined and drain into earthen channels but show little or no signs of 
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downstream channel erosion.  Due to the small drainage area (< 0.7 km2) and potentially 

lower amounts of runoff to these non-enlarged cross-sections, the downstream impacts of 

hardpoints may be negligible.  In the Main channel, two culverts beneath roads in San 

Bernardo, a neighborhood with massive gully erosion of the sandy dirt roads, show little 

signs of enlargement downstream of them (Figure 7 d).  High amounts of sediment supply 

from the hillslopes may account for the lack of channel erosion downstream of hardpoints in 

San Bernardo, but the mechanisms resulting in the stable cross-sections are unknown.   

 

Figure 8. SW concrete flume facing upstream where portions of the concrete sides and 

bottom collapsed due to excess incision and widening. Fallen concrete pieces labelled 

(A). 

 Many studies on the impacts of hardpoints on channel morphology focus on the 

upstream migration of headcuts (Schumm et al., 1984) or local scour holes downstream of 

hydraulic structures (Bormann & Julien, 1991; Hoffmans & Pilarczyk, 1995). For the 

channel evolution model developed for southern California urban streams (Hawley et al., 

2012), the importance of hardpoints and upstream propagation of headcuts were highlighted, 



 

 32 

but did not stress the downstream impact of hardpoints, although they acknowledge that 

downstream scour may occur. Road crossings have caused downstream channel scour in 

ephemeral stream channels in Arizona, resulting in channels that were deeper and narrower 

than channels upstream of the road crossings (Chin & Gregory, 2001).  Hardpoints in LLCW, 

in contrast, cause both incision and widening in the downstream direction for up to 230 m, 

creating persistent enlargement beyond the local scour holes.  Brookes (1987) documented 

similar downstream impacts of hardpoints and found that the downstream effects from 

channelization varied between 120 and 1952 m, but downcutting was mainly observable 

immediately downstream of the channelization (i.e. within 135 m).  Hardpoints in highly 

erodible, hydrologically flashy environments have the potential to cause major downstream 

enlargement, especially in areas with urban settlements adjacent to the stream channel.   

4.3 Impervious cover and channel enlargement 

Channel enlargement varied widely for a given watershed impervious cover 

percentage (IC) (Figure 9), indicating that IC may not be a good predictor of enlargement and 

is not the main factor contributing to spatial variability in channel enlargement. Although an 

increase in IC typically results in a decrease in sediment supply to the stream system, this 

may not always be the case in developing countries.  In LLCW, some areas that had the 

highest impervious cover (IC>30%) also contained large proportions of unpaved roads and 

bare hillslopes.  Despite the increase in IC during urbanization, channels can stay the same or 

even aggrade if there is sufficient sediment supply from upstream or from hillslopes. In 

Tijuana, only the oldest urban areas (>40 years) have a high percentage of impervious cover 

(Biggs et al., 2010). The developed areas near the outlet of LLCW that have been urbanized 

for more than 45 years have a significantly larger proportion of paved roads in comparison to 

newly urbanized areas.  However, channel erosion is not a problem in the older urban areas, 

despite the higher proportions of impervious cover, because the stream channels have also 

been channelized and paved over with concrete for nearly 4 km of stream length (Figure 1).   

 Channel cross-sectional area downstream of hardpoints is up to 64 times larger than 

the predicted cross-sectional area under reference conditions for LLCW and  

up to 32 times larger than the enlargement predicted for San Diego County urban streams. 

All of the cross-sections that have enlargement ratios larger than 25 (n = 9) are impacted by 
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hardpoints. Although hillslope sediment supply rates were not quantified in this study, 

hardpoints may cause the most enlargement in areas where the unpaved roads are compacted 

and cobbly and therefore generate less sediment (i.e. the SW and SE). The cobbly, 

compacted roads may also have lower infiltration rates and could potentially generate higher 

volume and velocity of runoff compared to the less-consolidated, sandy dirt roads in San 

Bernardo.    

 

Figure 9. Percent impervious versus channel enlargement ratio for Los Laureles 

Canyon, stratified by points within hardpoint influence and points not within the 

hardpoint influence downstream distance. 

  Channels in Tijuana may start to erode with lower proportions of impervious cover 

compared to San Diego County urban channels (Taniguchi & Biggs, 2015), despite similar 

rainfall patterns, due to the lack of riparian and bank vegetation in urban areas of LLCW.  

Urbanization in Tijuana is characterized by the clearing and levelling of land, but in contrast 
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to developed countries, urban settlements are often built within meters of the stream channel, 

leaving little, if any, room for a riparian buffer zone between the channel and the urban 

development.  Locally, riparian and bank vegetation can create added roughness to the 

channel boundary and floodplain, which increases flow resistance and decreases near-bank 

velocities and shear stresses exerted on the banks, promoting sediment deposition and 

channel accretion (Hickin, 1984; Clifton, 1986; Rhoads, 1992; Friedman et al., 1996).  The 

lack of a riparian zone and bank vegetation can lead to stream channel erosion, as well as 

degradation to the ecological well-being of the river system (Boothroyd et al., 2004).   

4.4 Sediment generation from channel erosion 

The amount of sediment generated from urban-induced channel erosion is 

approximately 143,000 and 144,000 tons, or 8,400 to 8,500 t y-1, based on the mean time 

since the start of urbanization for the entire watershed (17 years). The estimate of urban-

induced channel erosion is based on the assumption that the pre-development cross-sections 

at LLCW followed the same regional reference curves as those from San Diego County (K. 

Taniguchi & Biggs, 2015) and Spring Canyon.  This channel erosion estimate does not 

account for the timing and interactions among storm events, urbanization, and channel 

erosion, and instead represents the long-term mean rate of erosion from channels that we use 

to compare with rates of total sediment load observed at the outlet of the watershed. Channel 

erosion due to hardpoints (~3,000 t y-1), accounts for more than 1/3 of the total sediment 

contribution from channel erosion.    Cumulative probable error (PE) for Murban and MHP are 

0.11 and 0.09, respectively. 

 The channel contribution (Murban) based on a channel survey conducted in 2009 was 

approximately 183,000 tons, which is larger than what we estimated from this study (143,000 

– 144,000 tons), primarily due to the fact that a large portion of the Main channel that was 

earthen and highly eroded in 2009 was channelized and lined with concrete by the time of the 

2014 survey.  Concrete lined channels, although they may have supplied sediment prior to 

channelization, are excluded from this analysis and assumed to have zero contribution to the 

overall sediment budget.  If we assume that 5-10% of the entire channel volume gets filled by 

residents and eroded away every year, we estimate an added sediment supply of 
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approximately 7,000 to 14,000 t y-1, which more than doubles the channel erosion rate to 

15,400 to 22,500 t y-1. 

 The average annual sediment yield from the entire LLCW, based on measured annual 

sediment excavated from the Los Laureles sediment traps at the outlet from 2006-2012 and 

corrected for trap efficiency, is approximately 58,000 t y-1 or 5,000 t km-2 y-1.  Depending on 

the estimate of channel fill, channel erosion accounts for 25 to 40 percent of the total 

sediment budget for the watershed, which implies that the contribution of hillslope sediment 

supply is substantial (60-75%) in LLCW.  Infrastructure failure, such as broken water main 

pipes, cause large gullies to form on the hillslopes and could be a significant source of 

sediment in LLCW.  Trimble (1997) found that channel erosion accounted for more than 2/3 

of the total sediment budget in an urbanized watershed in southern California, which may be 

due to high amounts of impervious surfaces and low hillslope sediment supply.  In 

developing countries, large fractions of bare soil persist for decades following urbanization, 

and the soil fraction decreases only slightly from newly urbanized areas to areas that have 

been urbanized for up to 40 years (Biggs et al., 2010).  Given that LLCW has only been 

urbanized for 17 years on average, hillslope sediment supply from unpaved roads may be the 

dominant source of sediment for decades to come.   

5. CONCLUSION 

Urbanization and channel structures have led to extreme channel enlargement in the 

rapidly urbanizing Los Laureles Canyon watershed in Tijuana, Mexico.  Channel cross-

sectional area for a given watershed area were significantly larger in Los Laureles Canyon 

compared to reference channels.  Impervious cover in the watershed doubled within a 9-year 

time period.  Although percent impervious cover is typically a good indicator of channel 

enlargement (Coleman et al., 2005; Hawley & Bledsoe, 2013), impervious cover was a poor 

predictor of channel enlargement in LLCW and is not the only variable for explaining spatial 

variability in channel enlargement in a rapidly developing watershed like Los Laureles 

Canyon.  Local channel hardpoints have caused channel enlargement of up to 64 times the 

predicted cross-sectional area under reference conditions and have caused enlargement for up 

to 230 m downstream.  Additionally, the lack of a riparian buffer zone and bank vegetation in 

urbanized areas could decrease flow resistance and reduce channel stability. 
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 Channel erosion accounts for approximately 25-40% of the total sediment yield from 

Los Laureles Canyon, with erosion downstream of channel hardpoints contributing more than 

one third of all channel erosion.  Channels downstream of hardpoints should be stabilized to 

prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the 

structures, especially in areas with urban settlements near the stream channel.  If the erosion 

is allowed to continue, bank failure can cause homes or bridges to collapse, channels can 

erode into adjacent dirt roads, and infrastructure damage, such as water main breaks, can 

occur. Future studies on the sediment budget of the watershed and modelling the impact of 

land use changes and management practices, such as road paving, on flooding, channel 

erosion, and sediment loadings to downstream ecosystems can help managers make informed 

decisions on erosion and sediment mitigation practices.  
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CHAPTER 3 

Quantifying the Relative Effects of Compounded Channel Alterations on Stream 

Channel Evolution in a Rapidly Urbanizing, Semi-arid Region 

ABSTRACT 

 The process of urbanization in developing regions, such as Tijuana, Mexico, often 

involves direct manipulation of the stream channel, installation of hardpoints, and subsequent 

channel enlargement.  Spatial and temporal trends of channel evolution were simulated for 

the period of 2001 to 2048 to evaluate the impact of in-channel alterations of a highly 

enlarged stream reach upstream and downstream of a concrete flume in Tijuana, Mexico.  

The analysis was conducted to identify which processes generated the observed channel 

instabilities, and to determine if the channel can be stabilized under current land cover 

conditions.  Seven model simulations representing an incremental naturalization of the 

stream system were assessed: 1) ‘actual’ (2001) channel conditions; 2) larger concrete flume 

geometry; 3) no concrete flume; 4) historical slope downstream of the flume; 5) coarsening 

the bed downstream of the flume; 6) vegetated stream banks and floodplain; and 7) all cross 

sections reverted to an estimated reference channel geometry.  Overall, the concrete flume 

caused enlargement immediately downstream, but prevented channel enlargement upstream.  

Channel erosion is caused mainly by the destruction of the natural channel, including channel 

burial, straightening, steepening, and removal of riparian vegetation, often performed in the 

process of turning channels into roads.  Reformation of an enlarged river reach that is 

disconnected from the floodplain, leads to higher flow depths constrained in the channel, 

larger shear stresses, and accelerated channel incision. The largest reduction in sediment 

yield at the outlet of the watershed was achieved by reverting the enlarged cross sections 

back to the reference channel geometry (5,700 tons year-1).  Although channel incision was 

estimated to cease after 2020, channel widening is estimated to continue beyond the year of 

2050 if bank stabilization measures are not implemented.   



 

 44 

1. INTRODUCTION 

 Stream channels evolve based on the balance between sediment load and sediment 

size to a river’s slope and discharge (Lane, 1955).  A state of equilibrium can be achieved if 

sediment discharge balances stream power.  However, changes to the sediment or discharge 

can cause the channel to aggrade or degrade and may alter the driving or resisting forces to 

erosion.  The driving forces of channel instability include an increase in discharge and slope 

and a decrease in sediment load from the watershed.  Resisting forces include cohesion, 

roughness, and armoring of the bed and banks, decrease in the slope or discharge, and an 

increase in sediment load to the channel.  Human activities can alter both the resisting or 

driving forces to channel erosion by altering the land surface and/or the stream channel 

characteristics. 

Urbanization impacts both the discharge and sediment supply of a watershed in ways 

that can lead to stream channel erosion.  The theory describing the impact of urbanization on 

stream morphology is based on field sites in developed countries, where urbanization 

typically involves watershed-scale land cover changes, such as an increase in impervious 

surfaces, which leads to an increase in total and peak discharge and a decrease in hillslope 

sediment supply (Wolman, 1967; Trimble, 1997; Hawley & Bledsoe, 2011).  Alterations in 

the discharge and sediment supply in urban watersheds, also referred to as 

hydromodification, can lead to stream channel erosion (Hammer, 1972; Trimble, 1997; 

Booth & Henshaw, 2001; Hawley et al., 2011; Hawley & Bledsoe, 2013; Taniguchi & Biggs, 

2015). However, channel morphology can be impacted by direct channel and floodplain 

alterations including channelization (Brookes, 1987), road crossings (Chin & Gregory, 2001), 

and in-channel structures (Segura & Booth, 2010).  The process of urbanization in 

developing countries typically involves direct manipulation of the stream channel which can 

lead to changes in the resisting and driving forces to erosion and subsequent channel 

instabilities, independent of watershed land cover.  For example, the process of urbanization 

in Tijuana, Mexico involves complete vegetation removal of the hillslopes, and riparian 

buffer, and stream channels are often filled in with loose sediment, graded, and turned into 

unpaved roads.  After the landscape is graded, straightened, steeper channels re-form along 

the unpaved roads during the wet season.  The newly formed channels are typically 
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composed of highly erodible, unconsolidated sediment with little to no vegetation protecting 

the banks and a steeper slope, all of which favor further incision and widening.  Additionally, 

stream reaches located downstream of hardpoints or non-erodible features, such as concrete 

flumes and culverts, were statically larger than reaches located away from hardpoints in 

Tijuana (Taniguchi et al., 2018).  However, it remains unclear whether the geometry and 

flow characteristics of the hardpoints themselves were generating the instabilities, or if the 

urban channel alterations led to excess enlargement.  It is necessary to gain a mechanistic 

understanding of channel evolution in such areas, including the driving mechanisms of 

channel instabilities, to ensure proper sediment and erosion mitigation practices are 

implemented to reduce excess sedimentation of downstream ecosystems.    

 Channel evolution models (CEMs) have been developed to qualitatively describe the 

sequence of channel changes over time in response to a disturbance (Schumm et al., 1984; 

Thorne & Osman, 1988; Simon, 1989; Bledsoe et al., 2012; Booth & Fischenich, 2015).  The 

classic CEM for incised, single-thread streams include evolutionary stages of a pre-disturbed 

stable channel (stage I) followed by a disturbance that leads to degradation via incision (stage 

II), bank failure and widening (stage III), aggradation (stage IV), and an establishment of a 

quasi-equilibrium state (stage V) (Schumm et al., 1984).  CEMs can be used to predict the 

likely response of the channel to a disturbance or to diagnose the sequence of events leading 

to the current channel condition (Booth & Fischenich, 2015).  Although CEMs can provide a 

valuable foundation in understanding urban processes and channel evolution, these models 

cannot be used to quantitively assess channel evolution over time, nor predict the timescales 

of the evolutionary stages.   

 With an increase in computing power and better knowledge on fluvial hydraulics, 

computer models can be utilized to investigate how channels evolve over long periods of 

time (FISRWG, 1998; Langendoen & Alonso, 2008).  Additionally, scenario analyses using 

alluvial channel models and numerical simulations can evaluate the impact of various 

boundary conditions on channel morphology (Darby & Thorne, 1996; Simon & Darby, 1997) 

and the impact of in-channel disturbances on channel evolution over time (Niezgoda & 

Johnson, 2005, 2006; Simon & Rinaldi, 2006; Rowley & Hotchkiss, 2014). Although there 

are a range of advanced alluvial channel models that can simulate hydraulics, sediment 



 

 46 

transport, and channel evolution, including HEC-6 (USACE, 1993), FLUVIAL-12 (Chang, 

2006), SRH-1D (Huang & Greimann, 2010) and CONCEPTS (CONservational Channel 

Evolution and Pollutant Transport System; Langendoen & Alonso, 2008; Langendoen & 

Simon, 2008), a majority of models do not consider channel width adjustment via mass 

wasting, which can be the primary source of sediment in many stream systems (Simon & 

Rinaldi, 2006). The CONCEPTS model accounts for bank failure via mass wasting, is the 

only model that uses actual bank geometry, as opposed to idealized bank geometry 

(Langendoen & Simon, 2008), and can simulate flow processes influenced by in-stream 

grade stabilization structures (Langendoen & Alonso, 2008). 

  This study utilizes CONCEPTS to quantitatively describe the channel evolution of a 

highly enlarged stream reach following the installation of a concrete flume to assess the 

impacts of urban channel alterations, identify the processes governing channel adjustment, 

and determine if a highly unstable stream reach can be stabilized under current land cover 

conditions in a semi-arid developing watershed in Tijuana, Mexico, Los Laureles Canyon 

watershed (LLCW). The overarching management goal is to understand mechanisms driving 

channel erosion to ultimately reduce sediment load to the aggrading Tijuana Estuary. The 

research question to be addressed in this paper is: 

What mechanisms drive channel enlargement in a rapidly developing watershed, 

including hardpoint characteristics, slope alteration, bed composition change, vegetation 

removal, and floodplain storage removal?  

The primary hypotheses tested are: 1) the size and geometry of hardpoint structures 

impact downstream incision and widening, with the deep and narrow concrete flume causing 

more channel enlargement due concentrated flows with large flow depths compared to a 

wider concrete flume; 2) channel incision downstream of hardpoints is dependent on channel 

boundary materials of the bed; and 3) channel alterations during the process of urbanization 

including vegetation removal and channel straightening impact channel enlargement and can 

disconnect the channel from the floodplain. 
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2. STUDY SITE 

This study focuses on a highly erodible tributary (SW channel; drainage area of 2.5 

km2) of the semi-arid Los Laureles Canyon watershed (LLCW; drainage area of 11.6 km2) 

located in Tijuana, Mexico (Figure 1).  The LLCW lies on the San Diego formation, which 

includes marine and fluvial sediment deposits of conglomerate, sandy-conglomerate, and 

siltstone geologic units.  Erosion in LLCW has led to accelerated sedimentation of the 

Tijuana Estuary, one of the largest estuarine habitats left in California, and millions of dollars 

are spent annually on excavation of sediment basins at the outlet of LLCW.  Channel 

instabilities, in particular, can impact residents of LLCW through infrastructure failure of 

homes and bridges.  Taniguchi et al. (2018) found that the major hotspots of channel erosion 

in LLCW were located downstream of two hardpoints in the SW channel: 1) a circular metal 

culvert in the central portion of the watershed and 2) a concrete flume in the northern portion 

of the watershed. This paper focuses on the channel evolution of the reach upstream and 

downstream of the concrete flume because it is representative of typical urban channel 

alterations in Tijuana, Mexico and potentially other semi-arid developing countries.   

The valley floor of the SW watershed is primarily composed of erodible, sandy-

conglomerate. In the southern half of the watershed, the mesa tops and steep hillsides are 

comprised of coarser conglomerate “red caps” with weathered rock and soils, which are often 

underlain by sandy-conglomerate sediment.  The coarser material that are embedded in the 

valley fill sediment likely originated from the conglomerate hillslopes and mesa tops.  

Detailed channel stability surveys conducted in 2014 indicate that there are spatial 

differences in bed composition and riparian woody vegetative cover in the SW watershed, 

which coincide with the spatial arrangement of urban development.  The northern portion of 

the watershed is densely urbanized, with urban development extending from the steep mesa 

tops all the way to the stream channel.  Unpaved roads in the northern watershed border both 

the left and right banks of the stream channel, leaving a less than 10 m distance between the 

banks and the homes.  Subsequently, woody riparian vegetative cover is low (category of 0-

10%) and the median grain size of the channel bed (D50) is 5.4 mm (fine gravel).  In the 

central portion of the watershed, the right valley margin has been cleared and graded but 

urban development is relatively sparse and riparian vegetative cover is relatively low.  The 
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southern third of the watershed is primarily undeveloped, except for the mesa tops, and 

riparian vegetative cover is higher (categories of 11-25% to 50-75%). In both the central and 

southern watershed, bed composition is coarser (D50 = 32 mm, or coarse gravel) than in the 

northern watershed. 

Historical Google Earth imagery of the northern watershed from 1994 (Google Earth, 

5/30/1994, U.S. Geologic Survey), 2000 (Google Earth, 4/1/2000, 2018 DigitalGlobe), 2001 

(Google Earth, 7/9/2001, 2018 DigitalGlobe), 2008 (Google Earth, 6/25/2008, 2018 

DigitalGlobe), and 2014 (Google Earth, 12/22/2014, 2018 DigitalGlobe) portray the typical 

sequence of urban development and channel alterations in Tijuana, Mexico (Figure 2).  In 

1994, prior to the construction of the concrete flume, the stream reach was undisturbed with a 

slightly meandering and vegetated stream channel and vegetated hillslopes.  Urban 

development started in spring of 2000, with complete vegetation removal, grading of the 

hillslopes and filling of the stream channel.  By July 2001, the channel reformed along the 

unpaved road, with a straighter planform and steeper slope compared to the pre-altered 1994 

condition, and the concrete flume was constructed to provide a road crossing.  The flume is 

approximately 50 m long with a top width of 1.5 m and vertical sides of 3 m.  The top width 

of the channel in July 2001 was approximately 4.5 m.  Aerial photographs from 2008 and 

2014 show a fairly straight, re-formed channel compared to the 1994 digitized stream and 

enlargement of the stream reach downstream of the flume, with a top width of approximately 

11 m.   
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Figure 1. Study area map showing a) Tijuana River watershed, b) Los Laureles Canyon 

Watershed (LLCW) with AnnAGNPS tributaries and cells, CONCEPTS channel, and 

red watershed boundary of SW, c) SW watershed aerial basemap with indication of the 

CONCEPTS model reach and cross sections, flume reach that this study focuses on, 

concrete flume, metal culvert, and road crossing (downstream of culvert), and d) 

pictures of channel enlargement downstream of concrete flume and metal culvert.  
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Figure 2. Aerial imagery showing the reach downstream of the concrete flume.  Image 

from 1994 shows the pre-urban channel digitized in red, 2000 shows the initial start of 

urbanization with vegetation removal, grading of land and filling in the channel with 

loose sediment, 2001 shows the re-formation of a straight channel along the unpaved, 

graded road and concrete flume installed for a road crossing, and 2008 and 2014 show 

the straightened and enlarged channel downstream of the flume. 
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3. METHODS 

A channel hydraulic model (CONCEPTS) linked to a watershed model, annualized 

agricultural nonpoint source pollutant loading model (AnnAGNPS; Bingner & Theurer, 

2001), was developed for the entire LLCW and calibrated for discharge and sediment yield at 

the outlet of the watershed (Figure 1b).  The CONCEPTS model was used to gain insight on 

the mechanisms driving channel instability and to simulate the impact of urban channel 

alterations on channel morphology. A channel sub-model for the SW watershed based on 

channel conditions in 2001, the time the concrete flume was installed, was developed to 

simulate channel evolution from 2001 to 2014 and was validated with the longitudinal bed 

elevation surveyed in 2014 and a surveyed cross section downstream of the concrete flume.  

An extended simulation period from 2001 to 2048 was conducted to determine if and/or 

when the SW channel will reach a steady-state condition.  Finally, a scenario analysis was 

conducted to determine the impact of various factors on channel instability, including 

hardpoint geometry, steepening of the channel slope, changes in bed composition through 

grading, removal of vegetation, and feedbacks resulting from initial channel enlargement. 

3.1 CONCEPTS Model Overview 

CONCEPTS is a one-dimensional computational hydraulic and channel evolution 

model that uses a distributed flow routing scheme where the flow is computed as a function 

of time simultaneously at all cross-sections in the model (Langendoen & Alonso, 2008). 

Unsteady, one-dimensional flow is calculated using the Saint Venant equations (Chaudhry, 

2008), which include continuity and momentum equations.  Sediment transport and bed 

erosion are based on the conservation of sediment mass by size class, entrainment rate for 

each size class, and a sediment mass balance is calculated at each cross-section (Langendoen 

& Alonso, 2008).  Entrainment of bed and bank materials via fluvial erosion is based on the 

critical boundary shear stress and the shear stress exerted on the bed or bank materials.  

CONCEPTS calculates bank erosion for both fluvial erosion and mass failure. For mass 

failure, the banks are treated as potential failure blocks and divided into slices; the factor of 

safety is estimated through a limit-equilibrium method (e.g., Morgenstern & Price, 1965), 

which accounts for soil pore-water effects on soil shear strength and the hydrostatic force 

exerted by the surface water on the bank face.  The CONCEPTS bank erosion algorithms are 
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widely accepted and have recently been incorporated into various computer models such as 

HEC-RAS v5 (Gibson et al., 2015), SRH-2D (Lai et al., 2015), and TELEMAC2D v7p3 

(Langendoen et al., 2016).    

3.2 CONCEPTS Input Data and Setup 

Required input data for CONCEPTS includes: channel geometry, channel boundary 

roughness (Manning’s n) of the bed, banks, and floodplain, grain size distribution of the bed 

and bank materials, critical shear stress (τc) and erodibility of bed and bank material, and 

water and sediment inflows.  A CONCEPTS channel model was first developed for the entire 

LLCW, based on field data collected in 2014 (Taniguchi et al., 2018) at 57 earthen and 32 

concrete channel locations, including stream channel geometry, particle size distribution of 

the channel bed (D50 ranging from 5.4 mm to 32 mm), and jet-test erodibility measurements 

of cohesive banks following Hanson (1990). In the CONCEPTS model, critical shear stress 

was set as 6 Pa and erodibility (k) was 1.0E-7 m s-1 Pa-1.  Concrete flume roughness was set 

to 0.015 and earthen, sandy-gravel channel roughness was set to 0.035, which are typical 

values for the observed channel conditions (e.g., Chow, 1959; Barnes & Barnes Jr., 1987).   

To simulate hydraulics and channel evolution of the model reach, hydrographs and 

sedigraphs from all storm events of the simulation period need to be imposed at the upstream 

boundary (river km 0) and at the mouths of all minor tributaries.  Hydrographs and 

sedigraphs were not available for the SW watershed, and were only available at the outlet of 

LLCW for thirteen storm events from 2014 to 2017.  Therefore, a watershed-scale model, 

AnnAGNPS (Bingner & Theurer, 2001), was developed for LLCW to provide sediment and 

hydrologic inflow to the CONCEPTS channel model.  AnnAGNPS provides event-wise 

runoff volume, peak discharge, and sediment load (clay, silt, and sand) for 462 reaches and 

1,142 cells draining into the CONCEPTS channel model (Figure 1b).  The transition from 

AnnAGNPS reaches to the CONCEPTS reach was determined by the cross-sectional survey 

from 2014, along the main stem of the channel network extending to the channel head. For 

the SW watershed, the channel head was inaccessible due to restricted access, so the 

upstream-most model cross section started at the upstream-most surveyed location.  

Triangular hydrographs were constructed for the downstream end of each cell or reach using 
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the event total runoff, peak discharge and time-to-peak. AnnAGNPS outputs the event total 

sediment load of sand (including very coarse sand to very fine sand), silt, and clay.  The sand 

load is reported as one value per event and is not split by size class.  Therefore, the total sand 

reported by AnnAGNPS was parsed into fine sand (90%), medium and coarse sand (8%) and 

very coarse sand (2%) categories, based on the hillslope average particle size distribution of 

sand from the Los Flores soil (Biggs et al., 2018b).  The AnnAGNPS daily sediment mass 

delivered to the channel for sand, silt, and clay were converted to triangular sedigraphs based 

on time to peak, total storm duration, and total sediment load.  The peak sediment discharge 

was assumed to occur at the time of peak discharge.   

Rainfall data were collected at one station on the Mexican side of the border from 

2014-2016 but were not available for the whole simulation period (2001-2016), so rain 

gauges in the US were analyzed for their correlation with the Mexico rain gauge (Biggs et al, 

2018a).  The measured daily precipitation at the Brownfields climate station in San Diego 

was applied uniformly over the entire watershed using a type-II, 24-hour rainfall distribution 

(TR-55).  The storm type-II was determined by comparing cumulative rainfall observed at 

the rain gauge in Mexico (Biggs et al., 2018a) with the cumulative distribution functions 

from TR-55. 

The LLCW AnnAGNPS model was first calibrated and validated for discharge at the 

outlet of the LLCW based on thirteen observed rainfall events from 2014 to 2017 (Biggs et 

al., 2018a).  Then the AnnAGNPS model was calibrated for sediment production and 

validated against gully surveys following storm events (Gudino-Elizondo et al., 2018) and 

total annual sediment yield calculated from the tons of sediment excavated from the sediment 

traps at the outlet of LLCW from 2009 to 2012, corrected for trap efficiency (Biggs et al., 

2018a).  A sensitivity analysis was conducted to determine the most sensitive parameters on 

sediment load, constrain parameter values, and to develop the most suitable parameter 

combinations for the watershed (Gudino-Elizondo et al., 2018).  Model calibration and 

validation were conducted for the entire LLCW, but discharge and sediment yield were not 

available to do so for the SW watershed. 
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A CONCEPTS sub-model of the SW tributary was developed and utilized in this 

study (Figure 1c) with a focus on the concrete flume reach, including 311 m upstream and 

662 m downstream of the flume (Figure 1c).  The concrete flume reach study extent starts at 

the upstream-most stable cross section and ends at the downstream-most stable cross section 

from the flume.  In order to simulate channel evolution following straightening and initial 

channel formation along the flume reach (year 2001, Figure 2), a 2001 initial model was 

constructed using estimated channel conditions from 2001. The SW model contained 57 

cross sections with an average spacing of 49 m. Initial channel geometry from 2001 was 

determined for all cross-section locations in the model.  Upstream of the flume reach (Figure 

1c), the initial channel geometry was linearly interpolated between the surveyed stable cross-

sections that showed little to no signs of enlargement. For the flume reach, the initial 2001 

thalweg elevation for each cross-section was linearly interpolated based on the thalweg 

elevation of the stable cross-section upstream of the flume to the thalweg elevation of the 

stable cross-section downstream of the flume. For the initial channel geometry of the flume 

reach, “historical” channel geometry from 2001 was utilized with an estimated top width of 

4.5 m measured from historical imagery from 2001, bottom width of 1.5 m (width of the 

flume), and depth of 3 m (depth of the flume). The initial trapezoidal channel geometry was 

inserted at the interpolated thalweg elevation for each cross-section location along the flume 

reach. The two most downstream cross sections are located at a concrete-lined channel that 

stabilizes the confluence with the main stem of LLCW. It is assumed that the bed and bank 

material of these cross sections are not erodible, though deposition could occur. 

3.3 CONCEPTS Model Simulation Period 

The concrete flume and metal culvert were installed between April 2000 and July 

2001.  Model scenario for the SW channel starts after the hardpoints were installed and the 

channel reformed (2001) and ends at the time of the channel survey in 2014.  Channel cross-

sectional geometry and thalweg longitudinal elevation surveyed in 2014 are utilized as model 

validation and compared to simulated channel geometry and thalweg elevation in 2014 for 

the reach downstream of the concrete flume.  Additionally, an extended timeseries from 2001 

to 2048 was simulated to determine if and how long it will take for the channel to reach a 

steady-state condition.  The AnnAGNPS time series of rainfall, runoff, and sediment yield 
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from 2001 to 2016 was extended by 32 years by copying the 16-year period and pasting it to 

the end of the time series two times to get an extended scenario period of 2001 to 2048.  

A total of 323 rainfall events were simulated between 2001 and 2014.  Total annual 

rainfall ranged from 76 mm to 450 mm for the scenario period, with mean annual rainfall of 

198 mm.  The scenario period included one 10-year event (~60 mm daily total), one 5-year 

event (~50 mm daily total), and three 2-year events (~40 mm daily total), with the majority 

(98%) of the storm events smaller than the 2-year storm (ranging from 36 mm to 0.3 mm; 

mean of 8 mm).  The extended timeseries, which included observed rainfall from 2001 to 

2016, had relatively low rainfall with total annual of 196 mm and 177 mm, respectively.  

However, one additional 5-year storm occurred in 2016. The entire extended 2001-2048 

scenario period included 24 storm events between the 2-year to 10-year recurrence intervals. 

3.4 CONCEPTS Scenario Analysis 

Seven CONCEPTS model scenarios were conducted to test the impact of various 

channel alterations on channel stability, under current land cover conditions for the scenario 

period of 2001 to 2048. The analysis was conducted to identify what processes generated the 

instability observed in the channel, and to determine if the SW channel can be stabilized 

under current land cover conditions.  Therefore, the focus was on in-channel alterations as 

opposed to returning the watershed back to natural conditions.  

The first scenario represents current channel conditions from 2001 described in 

section 3.2, and every subsequent scenario represents an incremental “naturalization” of the 

stream system towards historical channel conditions.  We hypothesized that a combination of 

hardpoint characteristics and reach characteristics led to channel instability, including 

hardpoint geometry, hardpoint prevention of upstream incision, steepening of the channel 

slope, changes in bed composition through grading, removal of vegetation and feedbacks 

resulting from initial channel enlargement. The seven scenarios build upon the previous 

scenario and are as follows: 1) observed (2001) channel conditions; 2) larger concrete flume 

geometry; 3) no concrete flume; 4) historical slope downstream of the flume; 5) coarsening 

the bed downstream of the flume; 6) vegetated stream banks and floodplain; and 7) reference 

channel geometry based on the reference regional geometry curve for an undisturbed 

watershed with similar lithology (Spring Canyon, Taniguchi et al., 2018).  Scenario 2 was 
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conducted to test if the 2001 concrete flume geometry (rectangular, narrow and deep) 

impacts downstream channel instability, so the flume geometry in scenario 2 was set as the 

historical 2001 channel geometry (trapezoidal, with bottom width of 1.5 m and top width of 

4.5 m).  Scenario 3 represents a scenario without the concrete flume, which allows channel 

incision and widening at the flume reach with bed and bank boundary conditions set as the 

boundary conditions at the cross-section upstream of the flume.  Scenario 4 tests if 

straightening and subsequent increase in slope impacted channel enlargement.  Historical 

channel elevation data were not available for 1994, therefore historical valley-averaged 

channel slope in 1994 (S1994) was estimated for the reach downstream of the flume based on 

historical aerial imagery from 1994 as: 

S1994 = S2001×
Lvalley,1994

Lchannel,1994
  (1) 

where S2001 is the estimated slope from initial 2001, Lchannel,1994/Lvalley,1994 is the 1994 channel 

sinuosity, Lvalley,1994 is the straight-lined valley length in m from 1994, and Lchannel,1994 is the 

channel length along the stream reach in m from 1994 (red line, Figure 2). The channel 

gradient of the reach downstream of the concrete flume was adjusted to S1994 (0.0327) for 

scenario 4.  

For scenario 5, the bed of the reach downstream of the flume (D50 = 5.4 mm) was 

coarsened and set to the bed composition upstream of the flume (D50 = 32 mm), which is 

assumed to reflect the historic bed composition. To simulate vegetated stream banks for 

scenario 6, bank and floodplain roughness downstream of the metal culvert to the end of the 

concrete flume reach were increased from 0.035 to 0.07 (Chow, 1959) and cohesion of the 

banks was increased from 1 kPa to 10 kPa (Bankhead et al., 2013).   The final scenario (7) 

represents channel conditions close to “reference”, including reference channel geometry 

width (3.5 m) and depth (0.5 m) based on hydraulic width and depth equations from an 

undisturbed channel on similar lithology (Spring Canyon; Taniguchi et al., 2018).   

 The results of the modeled scenarios were analyzed by plotting cumulative bed 

change and top width change over the scenario period for each scenario at the cross-sections 

immediately upstream and downstream of the concrete flume. Cumulative channel-derived 

sediment load (tons) over the scenario period at the outlet of the SW watershed was 
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compared across the seven scenarios.  Cumulative channel-derived sediment load was 

calculated by subtracting the total cumulative daily hillslope contribution from AnnAGNPS, 

from the cumulative daily sediment load simulated by CONCEPTS. 

4. RESULTS AND DISCUSSION 

4.1 Hillslope Coarse Sediment Uncertainty 

A major uncertainty in this study is the relative contribution of coarse sediment from 

the hillslopes (>0.25 mm), given that AnnAGNPS only simulates hillslope-derived fine 

sediments (silt and clay) and reports a single value for sand.  The estimation of coarser 

sediment added to the hillslope timeseries may differ from the actual coarse sediment load 

delivered to the channel and was based on two assumptions. The first assumption was that 

the coarsest sediment size that gets delivered to the stream channel is 2 mm.  Although 

particles coarser than sand may get delivered to the stream channel, it is assumed that gravel 

that has accumulated in the valley fill alluvium has been transported from the hillslopes 

during large, episodic flow events.  The simulation period includes relatively dry water years 

where this assumption may be more valid.  The second assumption was that hillslope-derived 

sand reflect the hillslope soil texture of the sand size classes, including very coarse to very 

fine sand, from the non-cobbly Los Flores soil.  Using the sand texture from Los Flores alone 

may not capture the heterogeneity of soil texture in the SW watershed.  There are coarser, 

cobbly soils in LLCW, but field observation suggests that the majority of the coarse sediment 

from the hillslopes gets transported to the channel via gullies that form almost exclusively on 

the Los Flores soil formation.    

 Simulated thalweg elevation from 2001 to 2014 for the reach downstream of the 

concrete flume was compared to surveyed thalweg elevation in 2014 for two model 

simulations: 1) assuming all of the sand from AnnAGNPS is fine sand (or washload) and 2) 

partitioning the AnnAGNPS sand to reflect the hillslope soil texture (Figure 3).  Simulated 

thalweg elevation from 2014 with coarser sand added from the hillslopes (dotted line) 

matched the 2014 surveyed thalweg elevation (grey line), while simulated 2014 thalweg 

elevation without coarser sand added overpredicted incision (red line).  Therefore, the model 

with the coarser sand added was utilized in this study. 
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Figure 3. Thalweg elevation plot for the reach downstream of the concrete flume. 

Simulated thalweg elevation from 2014 with coarser sand added from the hillslopes 

(dotted line) matched the 2014 surveyed thalweg elevation (grey line), while simulated 

2014 thalweg elevation without coarser sand added overpredicted incision (red line).  

Channel incision continues slightly until 2048 (solid black line). The 2001 initial (dashed 

line) represents the estimated thalweg elevation at the start of the simulation, soon after 

the flume was installed and the channel reformed. Arrows indicate cross-sectional 

locations immediately upstream (XSU1) and downstream (XSD1) of the concrete flume. 

4.2 Simulated Channel Evolution 

CONCEPTS accurately simulated bed incision from 2001 to 2014 for the reach 

downstream of the concrete flume (Figure 3).  Mean absolute error in the simulated and 

surveyed thalweg elevations for seven cross sections downstream of the flume and one cross 

section immediately upstream of the flume was 0.09 m.  In January 2001, bed incision was 

initiated following a series of four consecutive rainfall events, all less than the 2-year flood.  

Maximum incision was located at river km 2.3. As the channel bed downstream of the flume 

incised, the channel gradient decreased until it matched the approximate historical 1994 slope 

(0.0327 m/m).  Downstream of the flume, from XSD1 to river km 2.4, the channel gradient 

decreased from the initial 2001 slope of 0.044 m/m to 0.0367 m/m (2014 simulated, 0.037 
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m/m observed) and finally to 0.033 m/m in 2048.  As the slope declined, coarse particles 

started to deposit and the D50 of the bed increased from 6 mm to 70 or 90 mm.   

The incision relaxation distance downstream of the flume (291 m) observed in the 

field survey and model scenario occur at river km 2.4 (Figure 3).  Incision relaxation distance 

refers to the downstream reach length from the hardpoint (i.e. concrete flume) in which there 

is no incision.  A scenario turning off an AnnAGNPS tributary that drains into river km 2.4 

was conducted to determine if the source of coarse sediment depositing at this location was 

the adjacent hillslope or the incising channel.  Simulated results indicated that channel 

deposition was due to excess coarse sediment generated from upstream channel erosion that 

deposits downstream at river km 2.4.  The relaxation distance is therefore governed by the 

distance in which coarse sediment from channel erosion is in equilibrium with local transport 

capacity of the stream.    

Simulated channel cross-sectional geometry 15 m downstream of the flume (XSD1) 

in 2014 matched observed cross sections surveyed in 2014 using a combination of a 

differential GPS and a 10 cm digital elevation model created using structure-from-motion 

(SfM) photogrammetry techniques (Figure 4).  The 2014 surveyed cross-section includes 

road fill near the banks and floodplain (dotted area); the pre-road bank is identifiable in the 

field and in the cross section (Figure 4). Channel cross sectional area matched well between 

simulated and observed, with 2.8% difference.  Model results from 2014 to 2048 indicate that 

incision will continue after 2014 for 0.7 m and failure of the banks will occur. There was 

observed channel widening at XSD1 in 2016, but residents and city officials fill in the 
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channel with loose debris following bank failure to protect the unpaved road and adjacent 

homes. 

 

 
Figure 4. Cross-sectional geometry comparison downstream of the concrete flume at 

XSD1 from modelled output geometry from 2014 and 2048 compared to surveyed cross-

section from 2014.  Surveyed 2014 cross-section includes road fill that was added to the 

floodplain (dotted area).  Arrow indicates true initial bank elevation.  By 2048, there 

was simulated bed incision, bank failure, and subsequent widening. 

Cumulative bed elevation and top width changes were plotted over a 48-year 

simulation period following the installation of the concrete flume to determine the 

approximate timescale of incision and widening at XSD1 (Figure 5).  Bed incision 

exponentially increases for 20 years, reflective of the incision CEM stage II, after which the 

bed slope declines, deposition of coarse particles occurs, and the channel bed stabilizes.  

After 10 years of simulation, incision of 1.8 m causes the banks to become unstable and to 

collapse, leading to channel widening, or CEM stage III.  Although bed elevation stabilized 

after 20 years, the channel continues to widen exponentially, without apparent stabilization.  
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Future model runs will include an additional 20 years of simulation to determine the time in 

which channel widening starts to decline.  

 

Figure 5. Cumulative bed elevation change and width change downstream of the flume 

under 2001 conditions.  Bed lowering occurs rapidly for the first twenty years after the 

hardpoint was installed in 2001, with stabilization and deposition following.  The 

channel continues to widening throughout the simulation period. 
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4.3 Scenario Analysis 

4.3.1 BED ELEVATION ADJUSTMENT 

The hardpoint geometry only had a minor impact on bed incision, while the 

alterations to the resisting forces, including the bed particle size and bank cohesion and 

roughness from vegetation, had the largest impact on bed incision.  The cross-section 15 m 

downstream of the current concrete flume (XSD1) incised less with each modeled scenario 

(Figure 6a). Note that each subsequent scenario represents a stepwise return to estimated 

historic (pre-1994) conditions. Under 2001 channel conditions (scenario1), ~2 m of incision 

occurred within the first 5 years of the scenario period, and incision exponentially decreased 

as the scenario period extended to 2048.  Total incision from the 2001 conditions was 2.5 m. 

Scenario 2 indicates that with a larger flume, incision will only be reduced by 0.1 m at 

XSD1, suggesting that the narrow and deep current geometry of the flume is not governing 

downstream instability, and that alterations of this geometry would not be sufficient to 

stabilize the channel.  Under scenario 3, where the larger flume is removed, the incision 

propagates upstream, but incision is reduced by <0.5 m at the downstream XSD1, and the 

channel bed reaches a relatively steady-state condition 3 years sooner than scenario 1.  The 

concrete flume has caused an increase in incision at XSD1, but has also prevented the reach 

upstream of the flume from incising.  For scenario 4 (no flume and with the historical slope 

from 1994), 2.2 m of incision occurs by the end of the scenario period and there is only a 

minimal reduction in incision (-0.04 m) compared to scenario 3.  Altering the slope back to 

historical conditions, however, caused the initial rate of incision to decrease.   

The largest reduction in incision occurred by altering the resisting forces to erosion.  

Coarsening the bed downstream of the flume to pre-disturbed conditions (scenario 5) has led 

to 0.5 m of deposition by 2048.  This indicates that filling the channel with highly erodible, 

fine sediment during the process of urbanization has caused a reduction in the bed armoring 

and played a large role on downstream incision.  Adding bank vegetation (scenario 6) 

through increased bank cohesion and roughness has led to 1 m of deposition downstream of 

the flume.  However, throughout the simulation period, the channel bed was actively 

adjusting with incision and deposition occurring following a large storm that occurs every 20 

years.  Returning to the reference channel geometry (scenario 7), all cross-section locations 
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in the SW model experienced relatively stable beds for the entire scenario period.  The 

shallower reference channel geometry may experience less channel instability due to a 

smaller channel capacity and more frequent inundation of the floodplain compared to an 

enlarged channel geometry.  In enlarged channels, flows that have formerly inundated the 

floodplain may be confined in the channel, leading to larger flow depths, excess energy and 

stream channel enlargement (Brookes, 1987).  Channel enlargement has therefore 

disconnected the stream channel from the floodplain storage. 

In contrast to downstream of the concrete flume, the bed elevation 12 m upstream of 

the concrete flume at XSU1 remained relatively stable throughout the entire scenario under 

the initial 2001 channel conditions (scenario 1), with incision ranging from 0.04 m to 0.35 m 

(Figure 6b). However, with a larger flume slightly more incision occurred at XSU1 (~0.2 m) 

due to a decrease in water depth at the downstream wider flume and thus a local increase in 

friction slope. A comparison of scenarios 2 and 3 show that the concrete flume also serves as 

grade control and prevents upstream migration of a knickpoint into the upstream reach; 

without the concrete flume (scenario 3), the XSU1 incises a total of 1.4 m.  Without the 

concrete flume and with the 1994 historical slope (scenario 5), cumulative incision is reduced 

by 67% at XSU1.  The reduction in channel slope reduces the available stream power for a 

given discharge.  Coarsening the bed, adding vegetation, and reverting back to the natural 

channel geometry all caused net deposition by 2048.  At both XSU1 and XSD1, reverting 

back to a natural geometry caused less deposition compared to solely vegetating the banks.  

Floodplain inundation will be more frequent with smaller channel geometries, and therefore 

sediment that may have deposited in the channel with a larger geometry, can be deposited on 

the floodplain.   
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Figure 6. Cumulative bed elevation changes over the model scenario time period (2001-

2048) for seven scenarios at two cross-sectional locations: a) 15 m downstream of the 

concrete flume (XSD1) and b) 12 m upstream of the concrete flume (XSU1). Scenarios 

2-5 relate to in-channel changes to the reach downstream of the concrete flume and 

scenarios 6 (added vegetation) and 7 (natural geometry) relate to the reach downstream 

of the metal culvert to the downstream most earthen cross section in the SW channel. 
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Figure 7. Cumulative change in top width over the model simulation time period (2001-

2048) for seven scenarios at two cross-sectional locations: a) downstream of the concrete 

flume (XSD1) and b) upstream of the concrete flume (XSU1). 

4.3.2 CHANNEL WIDENING 

Although the bed is actively incising during the simulation period, bank failure 

upstream and downstream of the concrete flume occurs less frequently (Figure 7).  With a 

larger flume and without the flume (scenarios 2 and 3), widening at the downstream XSD1 

increased by 4 and 4.5 m, respectively, compared to the 2001 conditions (scenario 1).  All 

scenarios excluding revegetating the banks (scenario 6) and reverting to a natural channel 

geometry (scenario 7) show that XSD1 may still be actively widening throughout the 
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simulation period.  Channel width upstream of the flume remained relatively stable across all 

scenarios except removal of the concrete flume (scenario 3). Without the presence of the 

concrete flume, channel widening at XSU1 increased by ~5 m compared to scenario 1.  This 

indicates that the concrete flume has prevented both incision and widening in the upstream 

direction. 

4.3.3 SEDIMENT LOAD 

The long-term cumulative channel-derived sediment load at the outlet of the SW 

watershed decreased with every scenario except for altering the flume geometry (Figure 8).  

Although each scenario caused a reduction in sediment load, the magnitude of reduction from 

scenarios 2 to 6 remained relatively the same (range of 26,000 tons to 38,000 tons) and the 

largest reduction (~150,000 tons) was caused by reverting to reference channel geometries 

(scenario 7). Although coarsening the bed, adding bank vegetation, and reverting to reference 

geometries (scenarios 5 to 7) caused relatively little changes in the channel geometry 

upstream and downstream of the flume (Figure 6 and 7), sediment load reduction was 

greatest for scenario 7 because the entire channel was connected to the floodplain storage. 

Figure 6 and 7 reflect change in width and depth plots at two cross section locations (XSU1 

and XSD1) and do not portray how the majority of stream reaches in the channel network 

stabilized following scenario 7.  With a smaller channel capacity and cross-sectional area, 

floodplain inundation is more likely to occur and sediment is able to deposit on the 

floodplain, all of which can lead to more stable channels and a reduction in sediment load to 

the outlet.   

Although reverting to reference channel geometries and reconnecting the channel to 

the floodplain storage shows the largest reduction in sediment load to the outlet, this is a 

highly infeasible management practice that would require alterations of extensive reach 

lengths, subsequent high costs and may lead to frequent flooding of homes adjacent to the 

stream channel. Aside from reverting back to a natural channel geometry, the largest 

reduction in cumulative channel-derived sediment load was from removing the flume (38,000 

tons) and coarsening the bed downstream of the flume (35,000 tons).  Coarse gravel 

augmentation can be implemented to prevent or reduce incision of incising streams (Arnaud 
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et al., 2017), including downstream reaches below dams (Ock et al., 2013), and may be the 

most cost-effective and feasible management practice in the study watershed.   

Sediment is collected in two traps at the outlet of LLCW in the Tijuana Estuary in the 

United States and excavated annually prior to the wet season (i.e. the fall).  Total annual 

sediment excavated from the traps and corrected for trapping efficiency are available from 

2006 to 2012 (Biggs et al., 2018a).  From 2006 to 2012, the corrected mean annual sediment 

excavated from the traps of 52,190 tons yr-1. The mean annual sediment load from the SW 

watershed based on the integrated CONCEPTS-AnnAGNPS model was approximately 

36,686 tons yr-1, which implies that the SW watershed supplied about 70% of the total 

sediment to the Tijuana Estuary from 2006 to 2012.  Channel erosion accounted for 73 to 

83% of the total sediment load from the SW watershed. If the SW channel had not incised, 

mean annual sediment load from the SW watershed would have reduced by 5,700 tons year-1, 

estimated from the natural channel scenario 7.     

 

Figure 8. Cumulative channel-derived sediment load at the outlet of the SW watershed 

for 7 scenarios.  Scenarios 1-3 show similar sediment load.  Coarsening the bed 

downstream of the flume, adding vegetation along the bed and floodplain, and reverting 

back to a natural channel geometry all served to progressively lower channel-derived 

sediment load at the outlet of the watershed. 
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4.4.  Spatial Patterns of Erosion and Deposition 

 Complex spatial patterns of erosion and deposition were observed in this study 

(Figure 9).  Downstream of the concrete flume, degradation of the channel bed flattens the 

channel gradient and reduces the available stream power for a given discharge, similar to the 

channel evolution model described by Simon and Hupp (1986).  The channel downstream of 

the flume, which has altered bed material of unconsolidated loose sediment and lacks 

vegetation along the channel banks, incises until it reaches the historical valley averaged 

slope from 1994 by scenario year 2048.  As bank heights are increased and bank angles are 

steepened by fluvial undercutting, banks become unstable and channel widening via mass 

wasting occurs.  Coarse sediment is mobilized from the banks and deposits downstream (i.e. 

at river km 2.4) where the channel becomes stable and incision diminishes.  

A slightly different spatial pattern of erosion and deposition is observed downstream 

of the metal culvert and the road crossing.  Both the metal culvert and the road crossing serve 

as artificial grade control and promote upstream deposition, similar to the concrete flume.  

These structures have disrupted the downstream transmission of bed materials, which leads 

to an increase in channel degradation downstream of the structures, similar to the findings of 

Simon and Darby (2002) and Chin & Gregory (2001).  The incision relaxation distance 

downstream of the metal culvert is governed by the downstream road crossing, which 

promotes deposition of the coarse material from channel erosion downstream of the culvert.   

Although incision is exacerbated downstream of the metal culvert and concrete flume, 

these structures are not the sole reason for channel instabilities.  Scenarios with and without 

both structures indicate that downstream incision would still occur without the presence of 

both structures, although downstream incision is reduced.  The process of urbanization, 

which includes complete development of the valley floor that oftentimes extends to the 

stream channel, have created enlarged channels that are completely removed from floodplain 

storage. Moreover, vegetation removal and grading of the channel into an unpaved road 

during the process of urbanization have decreased the resistance to erosion.     
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Figure 9. Bed elevation changes for the entire SW channel model. Observed patterns of 

incision downstream of three channel disturbances: culvert, road crossing, and concrete 

flume. 

5. CONCLUSIONS 

CONCEPTS was used to quantitively assess channel evolution following the 

installation of a concrete flume and to assess the relative importance of compounded channel 

alterations on stream channel instability in a rapidly urbanizing, semi-arid region.  Model 

simulations from 2001 to 2048 indicate that the reach downstream of the flume actively 

incised from 2001 to 2020, until the slope decreased and coarse material deposited on the 

bed.  Channel widening, in contrast, has not diminished and is predicted to continue beyond 

the year 2048.  However, local channel filling of loose sediment is implemented following 

large storm events to prevent damage of the adjacent unpaved road and failure of homes and 

can limit channel widening. 
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The geometry and presence of the flume only accounted for local downstream scour. 

The concrete flume, instead, prevented incision in the upstream direction by serving as grade 

control.  Channel erosion is caused mainly by the destruction of the natural channel, 

including channel burial, straightening, steepening, and removal of riparian vegetation, often 

performed in the process of turning channels into roads.  Enlarged, unprotected channels 

reform and are subsequently disconnected from the floodplain storage.   

Urban development of the valley floor, including direct manipulation of the stream 

channels and channel confinement, have caused excessive channel enlargement and 

subsequent floodplain storage removal.  Although the largest reduction in sediment yield at 

the outlet of the SW watershed was achieved by reverting the enlarged cross sections back to 

the reference channel geometry, this management practice would likely cause more frequent 

floodplain inundation of the homes adjacent to the stream channel.  Gravel augmentation 

downstream of the flume may be a cost-effective management practice that can stabilize the 

incising bed and reduce sediment load to the Tijuana Estuary. 

Future research needs to be conducted on better characterizing the medium-coarse 

sediment load off of the hillslopes to add confidence in the model results.  Although model 

results with and without the addition of coarser sediment was conducted, a sensitivity 

analysis utilizing the area-weighted spatial distribution of hillslope soil texture would greatly 

improve model uncertainty.  Additionally, model scenarios at the watershed scale for LLCW 

need to be conducted to fully understand the contribution of the sediment supplied from the 

SW watershed on the overall sediment budget to the Tijuana Estuary.   
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CHAPTER 4 

Modeling Channel Sources and Sinks of Sediment in a Semi-arid Urbanizing 

Environment: CONCEPTS-AnnAGNPS Integrated Model for Los Laureles 

Canyon Watershed 

ABSTRACT 

Channel erosion may be a dominant source of sediment following urbanization in semi-arid 

regions that are characterized by steep terrain and highly erodible soils. This study 

investigates a rapidly developing, semi-arid watershed in Tijuana, Mexico, Los Laureles 

Canyon watershed (LLCW), where channel erosion contributes to the excessive 

sedimentation of a downstream estuary.  A linked watershed-scale hillslope model, 

AnnAGNPS, and channel evolution model, CONCEPTS, are used to document the spatial 

pattern of channel sources and sinks of sediment and to evaluate the overall importance of 

channel processes on the sediment budget for future sediment mitigation plans.  Channel 

erosion in LLCW accounts for approximately 60% of the total sediment budget to the 

Tijuana Estuary.  About one third of the entire earthen channel network contributes 90% of 

the channel-derived sediment load.  This indicates that if effective channel stabilization 

measures are implemented on a third of the river network length, it could provide up to a 

90% reduction in channel-derived sediment yield, or a 54% reduction on the total sediment 

yield for the watershed.  Coarsening the bed alone reduces incision but may not be efficient 

in reducing annual channel-derived sediment load as it increases channel widening.  With 

high discharges, enlarged channels that are disconnected to the floodplain storage, and 

subsequent high transport capacity in stream reaches, both the channel bed and bank must be 

stabilized and discharge from urban areas should be reduced to effectively decrease channel 

erosion. 

1. INTRODUCTION 

Identifying erosional processes that contribute to sediment yield is vital for 

implementing erosion mitigation plans to reduce sediment yield and decrease degradation of 

downstream ecosystems.  Watershed scale mitigation plans require knowledge of the basin-
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wide sediment budget, including sediment sources and sinks, and how the sediment is 

transported across the landscape and through the river network (Reid & Dunne, 1996).  A 

sediment budget provides a valuable framework for managers to identify key erosional 

sources, whether from hillslopes or channels, and to make informed, targeted decisions about 

upstream sediment reduction practices (Owens, 2005; Walling & Collins, 2008).  Although 

human activities on hillslopes, such as agricultural practices and removal of vegetation, can 

lead to increased sediment load to the channel, it is important to understand the sediment 

transport and erosional processes of the river network, as riverine deposition and stream bank 

erosion may be critical factors in determining catchment sediment budgets (Prosser et al., 

2001).  Sediment budgets can shed light on the importance of channel erosion on the total 

sediment yield, especially in urban settings where enhanced peak discharges increase channel 

scour (Trimble, 1997). 

 Traditional watershed assessments that document the spatial pattern of erosion and 

sediment transport often require extensive field data, which can be costly and time-

consuming.  Measuring suspended sediment flux at multiple stream reaches in the 

downstream direction is an effective way to understand the downstream patterns of sediment 

yield (Singer & Dunne, 2001), but the spatial extent of such a study may be limited by the 

availability of funds.  Additionally, in semi-arid regions or during times of drought, there 

may be limited rainfall events or opportunities to collect suspended sediment samples during 

the period of study.  Sediment tracers for identifying source areas and key erosional 

processes have been used in a variety of studies (see review by Collins et al., 2017), but can 

be expensive to implement and possess key uncertainties in the current methodological 

techniques.   

 Computer modeling can be used to map spatial patterns in the sources and sinks of 

sediment and sediment yield at the watershed scale (Wilkinson et al., 2009).  In many 

watershed scale models, hillslope erosion is based on empirical relationships that require 

calibrated input parameters and oftentimes the channel erosion component is excluded (de 

Vente & Poesen, 2005).  Integration of an empirically-based watershed model of hillslope 

erosion with a physically-based channel evolution and sediment transport model can be 

useful for studying areas where both hillslope and channel erosional processes are dominant.  

The U.S. Department of Agriculture (USDA) has developed various computer models to 
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evaluate the impact of hillslope erosion and restoration measures on stream morphology and 

downstream sediment loads (Shields et al., 2006).  Two of these models, AnnAGNPS 

(Annualized Agricultural Non-Point Source; Bingner & Theurer, 2001; Bingner et al., 2015) 

and CONCEPTS (CONservational Channel Evolution and Pollutant Transport System; 

Langendoen & Alonso, 2008; Langendoen & Simon, 2008), simulate pollutant loading from 

the hillslopes (AnnAGNPS) and channel evolution of incising streams (CONCEPTS). 

AnnAGNPS simulated hydrology has served as inflow to the CONCEPTS channel model in 

watersheds where discharge measurements were unavailable and the linked models can 

accurately simulate channel hydraulics, sediment transport, and stream channel evolution 

within a stream system (Langendoen et al., 2002; Langendoen & Simon, 2008).  However, 

no studies have utilized both the hydrology and sediment load simulated from AnnAGNPS as 

input into the CONCEPTS channel model.  In rapidly developing regions, such as Tijuana, 

Mexico and similar environments, ephemeral gully erosion of unpaved roads and stream 

channel erosion are dominant sources of sediment at the watershed scale.  The CONCEPTS-

AnnAGNPS linked model may be appropriate in such regions because there is a strong 

connectivity between hillslopes and stream channels due to floodplain vegetation removal 

(Bracken et al., 2015) during the process of urbanization.   

In highly altered environments, where human activities that impact hillslopes and 

channels may be unpredictable and implemented at various spatial scales, the fate of 

sediment may be harder to model because sediment may move in and out of storage in ways 

that cannot be predicted with physics alone (Meade, 1982).  Many models do not incorporate 

socio-geomorphic processes (Urban, 2002; Ashmore, 2015), such as human intervention at 

the resident-scale (i.e. channel stabilization measures at highly eroded, discrete locations) or 

community-scale (i.e. construction of check dams or bank stabilization of stream reaches). 

Such practices may decrease channel erosion and lead to a reduction in sediment load to the 

outlet of the watershed, leading to an overestimation of simulated channel erosion on the 

sediment budget.  In socio-hydrology, the community sensitivity loop describes how human 

behavior and water management decisions are directly driven by a community’s social and 

environmental values, local action, and lobbying and all reflect on community sensitivity to 

hydrologic or geomorphic change (Elshafei et al., 2014).  The community sensitivity state 

variable, refers to a community’s perceived level of threat to the community’s quality of life 
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(Elshafei et al., 2014) and provides the key linkage between human intervention or action to 

hydrologic and/or geomorphic changes.  In tightly coupled human-environmental systems, 

computational models may be improved with the utilization of socio-geomorphic processes, 

such as implementation of sediment reduction practices, via the community sensitivity state 

variable. 

This study investigates a rapidly developing, semi-arid watershed in Tijuana, Mexico, 

Los Laureles Canyon watershed (LLCW), where hillslope and channel erosion contribute to 

the excessive sedimentation of a downstream estuary.  An understanding of the overall 

sediment budget is necessary for management action in LLCW and sediment reduction to the 

Tijuana Estuary.  A linked watershed-scale hillslope model, AnnAGNPS, and channel 

evolution model, CONCEPTS, are used to answer the following research questions:  

(i) Where are the channel sources and sinks of sediment for Los Laureles Canyon 

watershed and;  

(ii) What is the overall importance of channel processes on the sediment budget? 

The overall objectives of this study are to: 1) document channel changes from repeat surveys 

conducted from 2009 and 2014; 2) develop a spatially-linked watershed scale model of 

hillslope and channel erosion to determine the spatial pattern of channel sources and sinks of 

sediment; 3) evaluate the overall importance of channel processes on the sediment budget for 

future sediment mitigation plans; and 4) discuss limitations of the integrated modeling 

scheme for a rapidly developing, semi-arid region.  

2. STUDY AREA 

Los Laureles Canyon watershed (LLCW) is a binational semi-arid watershed (11.6 

km2) whose main channel drains from Tijuana, Mexico under the US-Mexico border through 

culverts and empties into the Tijuana Estuary, one of the largest estuarine habitats left in 

California (Weis et al., 2001).  In LLCW, rapid urbanization on steep, erodible slopes has led 

to excessive hillslope and stream channel erosion during rainfall events and issues of 

sedimentation in the Tijuana Estuary (Gudino-Elizondo et al., 2018; Taniguchi et al., 2018).  

During the process of urbanization, the floodplain is fully developed, stream channels are 

stripped of vegetation and oftentimes filled with unconsolidated sediment and converted into 

unpaved roads, and an enlarged stream channel reforms following rain events.  With a 

constrained stream channel and developed floodplain, floodplain storage is removed, flow 
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depths increase, and channel erosion is exacerbated.  Additionally, large ephemeral gullies 

form on unpaved roads in urban areas located on the highly erodible Los Flores soil unit 

(Gudino-Elizondo et al., 2018).  The large inputs of sediment transported to the Tijuana 

Estuary alter the natural ecosystem through the conversion of lowlands to uplands, impacting 

inundation and salinity levels, and negatively affecting the native species and allowing exotic 

species to thrive (Zedler & Norby, 1986).  Hillslope and stream channel erosion in the 

watershed also impact the quality of life for the upstream residents of LLCW due to 

infrastructure failure of homes, buildings, water/sewage mains, and unpaved roads (Gudino-

Elizondo et al., 2018).   

LLCW is a semi-arid watershed with Mediterranean climate and a flashy flow 

regime.  Long-term mean annual precipitation is 238 mm (PRISM Climate Group, Oregon 

State University, http://prism.oregonstate.edu, created 7 July 2010).  LLCW is located on the 

erodible San Diego Formation which is comprised of fine-to medium-grained, loosely 

consolidated sandstone and cobbly conglomerate.  According to maps from the Mexican 

Geological Survey, there are four main geologic units in LLCW, which includes marine and 

fluvial sediment deposits of conglomerate, sandy conglomerate, and a small fractional 

coverage of a silt unit and alluvial unit that is mostly paved or channelized.  The 

conglomerate occurs in the southern end of the watershed, mainly on the upper parts of 

hillslopes and along interfluves.  Conglomerates often have “red caps” of weathered rock and 

soil, which are sometimes underlain by sandy conglomerate unit.  The valley floor of LLCW 

and the northern portion of the watershed are comprised primarily of the sandy conglomerate 

unit.  Soils in LLCW have critical shear stress ranging from 0.001 to 4.6 Pa and erodibility 

(k) ranging from 103 to 879 cm3 N-1 s-1 (Biggs et al., 2018b).   

There are two minor tributaries that drain into the mainstem (Main) of LLCW: 

southwest (SW) and southeast (SE) tributaries.  The upper reaches of Main drains a primarily 

sparsely urbanized, unpaved and levelled land that was cleared for future development with a 

predominantly paved southern-most portion of the watershed.  The central reaches of Main 

pass through primarily dense and a small portion of sparsely urbanized, unpaved areas of 

land.  Large gullies form in several neighborhoods along the steep, unpaved roads.  The 

lower reaches of Main are channelized with concrete and drain through densely urbanized 

and paved land. The land use in the SE watershed is dominated by unpaved urban areas, with 
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a concrete channel in the upper portion of the watershed.  Soils in the SE watershed are 

cobbly, which prevents gullies from forming in the unpaved roads, and D50 of the bed ranges 

from 32 to 45 mm.  The lower portion of the SW watershed is primarily characterized by 

unpaved urban land and the upper portion is primarily undeveloped.  The major hotspots of 

channel enlargement are located in the SW watershed downstream of a concrete flume and 

metal culvert (Chapter 2, and Taniguchi et al., 2018).  Although cross sections were 

statistically larger downstream of in channel hardpoints, hardpoints only caused local 

downstream incision and prevented enlargement in the upstream direction (Chapter 3). 
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Figure 1. Los Laureles Canyon Watershed (LLCW) with AnnAGNPS cells and reaches 

and spatially-linked CONCEPTS channel model and cross sections. Eighteen earthen 

cross sections were resurveyed from 2009 to 2014.   

3. METHODS 

3.1 Channel Changes from 2009 to 2014 

Stream channel geometry surveys were conducted in the summer of 2009 at 38 

earthen locations along the Main, SE, and SW tributaries of LLCW.  In the summer of 2014, 
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19 earthen locations were resurveyed with a differential GPS and a total of 71 cross sections 

were surveyed at representative stream reaches, which were chosen based on along-stream 

changes in channel geometry, channel condition, and/or bed and bank composition 

(Taniguchi et al., 2018). The 2014 survey included cross sections on both earthen (n=39) and 

concrete reaches (n=32).  A total of 18 additional earthen cross sections were extracted from 

Structure-from-Motion (SfM) derived digital elevation models (DEMs) (Taniguchi et al., 

2018).  Repeat survey locations were based on GPS points surveyed in 2009, in addition to 

field notes and field pictures used for location indicators (i.e. using proximity to homes and 

features that did not change).   

 Changes in bankfull width and depth from 2009 to 2014 were calculated from the 

repeat surveys.  At locations showing the largest changes in width, historical aerial imagery 

from 2009 and 2014 was used to validate changes in width at locations where the banks were 

clearly identifiable in both images.  The observed change in width and depth and mass of 

erosion from channel change were used as validation of the changes in bed elevation and top 

width simulated by the CONCEPTS model. Root mean square error (RMSE) between 

simulated and observed changes in width and depth were calculated. 

3.2 CONCEPTS Model Set-up 

3.2.1 CONCEPTS CHANNEL EVOLUTION MODEL 

CONCEPTS is a numerical computer model that simulates unsteady, one-dimensional 

flow, sediment transport by size class, and channel incision and widening (Langendoen & 

Simon, 2008). CONCEPTS uses a distributed flow routing scheme where discharge is 

calculated simultaneously at all cross sections along the stream network using the Saint 

Venant equations (Cunge et al., 1980), including the continuity and momentum equations.  

The governing equations are solved using the generalized Preissman scheme.  Sediment 

transport is calculated for 14 predefined sediment size classes, ranging from 10 μm to 64 

mm, with a corresponding transport equation for each class: Laursen (1958) for silts; Yang 

(1973) for sands; and Meyer-Peter & Mueller (1948) for gravels. Width adjustment is 

simulated via fluvial erosion and bank mass failure (Langendoen & Simon, 2008).  Required 

input data include channel and floodplain geometry and hydraulic roughness at specified 

cross sections, water and sediment inflows to the channel cross sections, grain size 
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distribution and stratigraphy of bed and bank material, and critical shear stress and erodibility 

of bed and bank material. 

Field data collected in 2014 (Taniguchi et al., 2018) at 89 channel cross sections (57 

earthen and 32 concrete) were used as input for the LLCW CONCEPTS model, including 

stream channel geometry, particle size distribution of the earthen channel bed, and jet-test 

erodibility measurements of cohesive banks (Hanson, 1990). Eighteen of the earthen cross 

sections were extracted from an SfM-derived DEM and 39 of the earthen cross sections were 

surveyed with a differential GPS (Taniguchi et al., 2018).  Manning’s roughness of concrete 

was set to 0.015 and of earthen, sandy, gravel-bedded channels was set to 0.035, which are 

typical values for the observed channel conditions (e.g., Chow, 1959; Barnes, & Barnes Jr., 

1987).  The median grain size of the bed (D50) ranged from 2 mm to 45 mm.  A total of 195 

cross sections are used in the CONCEPTS model; 89 cross sections were surveyed in the 

field in 2014 and 106 cross sections were spatially interpolated between surveyed cross 

sections in order to maintain consistent cross section spacing throughout the model.  Average 

cross section spacing was 63 m.  The floodplain topography at each cross section was 

extracted from a 2007 USGS National Elevation Dataset (NED) 3 m DEM.   

To simulate channel hydraulics and morphological change in CONCEPTS, 

hydrographs of all runoff events between 2009 and 2014 for SE and Main and between 2001 

and 2014 for SW were imposed at the upstream boundary (model km 0) and at the mouths of 

major tributaries and lateral inflow cells.  Observed hydrographs were available at the outlet 

of the watershed for 13 storms from 2014 to 2017 but were not available at the upstream 

boundaries.  Therefore, AnnAGNPS was used to generate the water and sediment inflow 

from the cells and reaches draining into the CONCEPTS channels for the simulation time 

period.   See section 3.2.2 for a description of the AnnAGNPS model.   

Channel bed particle counts and sieve analyses of four cross section locations and in 

the sediment trap at the outlet (TJE sediment trap in Figure 1) indicate that about 70-90% of 

the bed material is coarser than fine sand, and fine sand comprises a large proportion (40%) 

of the sediment delivered to and deposited in the sediment traps at the outlet of LLCW 

(Figure 2).  Therefore, all particles <0.25 mm (fine sand and finer) were treated as washload 

in CONCEPTS.  Critical shear stress was set to 6 Pa and erodibility (k) was set as 1e-7 m/(s 

Pa). 
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Figure 2. Percent finer by particle diameter size (mm) from 4 samples of the bed, 

average from 36 samples in the Tijuana Estuary sediment traps, and average from 4 

hillslope soil samples (2 from cobbly soils and 2 from non-cobbly soils).  Dashed vertical 

lines indicate upper boundaries of CONCEPTS size classes of sand, silt, and clay, with 

darker dashed line indicating the upper boundary for washload. Bed samples include 

proportion of particles coarser than sand (>2mm) from D50 pebble counts 

characterizing the coarse particles and particles <2 mm from a sieve analysis. 

To simulate channel changes from 2009 to 2014, the stream channel cross sectional 

geometry surveyed in 2009 was inserted into the CONCEPTS cross section locations for the 

SE and Main tributaries, and the 2014 surveys were used for validation.  The 2009 survey 

was conducted with a total station and only contained relative elevation, so it was assumed 

that the top bank elevation between survey dates remained the same, and the channel 

geometry from 2009 was inserted at the 2014 bank elevation.  Cross sections were linearly 

interpolated between the 2009 survey locations.  In concrete reaches and areas that were not 

surveyed in 2009 but showed little signs of enlargement in aerial comparisons between dates, 

cross sectional geometry from 2014 was utilized for the 2009 model geometry.  For the SW 

sub-watershed, channel hardpoints, including a concrete flume and metal culvert, were 
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installed in 2001.  In Chapter 3, a CONCEPTS model was developed for 2001 conditions that 

uses estimated historical channel geometry from 2001 based on historical aerial imagery.  For 

the SW sub-model, both the 2009 and 2014 surveyed channel geometry were used as 

validation. 

To test the sensitivity of channel boundary conditions of the bed and banks on 

simulated long-term mean annual sediment load, a scenario removing all cobble from the 

banks and a scenario coarsening the bed of all cross sections to predominantly coarse gravel, 

as observed in the SE channel (D50 of 45 mm), were conducted and compared to model runs 

using observed channel conditions.   

3.2.2 ANNAGNPS HILLSLOPE MODEL 

 AnnAGNPS is a continuous, daily time-step, watershed-scale model that simulates 

water and sediment loads from discretized sub-watersheds, or cells, of homogenous land use, 

soils, and topography.  AnnAGNPS simulates the contribution of different erosion processes, 

including sheet, rills, gullies, and channel erosion, but does not simulate mass wasting 

processes, which may be important watersheds with steep hillslopes like the LLCW.  

Ephemeral gullies form on unpaved roads in LLCW and are filled in with sediment following 

rain events.  AnnAGNPS is utilized in this study because of its ability to simulate ephemeral 

gully formation and management practices on the hillslope.  Runoff processes in AnnAGNPS 

are predominantly infiltration excess overland flow, which is the dominant runoff process in 

this semi-arid, urban watershed.  AnnAGNPS uses the Natural Resources Conservation 

Service (NRCS) curve number (NRCS, 1972) to calculate runoff and the NRCS Technical 

Release 55 (TR-55) to compute peak discharge (Bingner & Theurer, 2001).  Triangular 

hydrographs were constructed for the downstream end of each cell or reach using the event 

total runoff, peak discharge and time-to-peak, which is based on topography and roughness 

of the landscape.  For this study, the hydrology and hillslope generated sediment load from 

sheet, rills, and gullies were linked to the CONCEPTS model channels.  

 Los Laureles Canyon watershed was discretized into 1,142 cells and 462 reaches 

using the TOPAGNPS tool based on the 2007 USGS NED 3m DEM.  Cell size ranged from 

9E-6 to 0.1 km2.  Soil properties were taken from the SSURGO database (NRCS, 2018) for 

soils near the US/Mexico border, and soils in LLCW were sampled and analyzed for particle 
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size (Biggs et al., 2018b).  A land use map was generated by visual interpretation using the 

GoogleEarthTM imagery (11 November 2012, 2017 DigitalGlobe) into seven land use 

categories: (agriculture, rangeland, paved urban, dispersed unpaved urban (5-15% 

urbanized), urban unpaved (15-30% urbanized), unpaved graded land, and sediment trap).  

The land use map was validated by comparing aerial imagery with ground-based 

photography and field surveys.  Curve number values were determined based on the percent 

impervious cover by (Biggs et al., 2010) and updated by Taniguchi et al. (2018) for each land 

use category (Gudino-Elizondo et al., 2018).  Eight samples of cohesive soils were collected 

in the field to estimate critical shear stress (τc) and soil erodibility (k) using a mini-jet erosion 

test following Hanson (Hanson, 1990).  Rainfall data were collected at one station on the 

Mexican side of the border from 2014-2016 but were not available for the whole simulation 

period (2009-2014), so rain gauges in the US were analyzed for their correlation with the 

Mexico rain gauge (Biggs et al, 2018a).  The measured daily precipitation at the Brownfields 

climate station in San Diego was applied uniformly over the entire watershed using a type-II, 

24-hour rainfall distribution (TR-55).  The storm type-II was determined by comparing 

cumulative rainfall observed at the rain gauge in Mexico (Biggs et al., 2018a) with the 

cumulative distribution functions from TR-55.  For a complete description of AnnAGNPS 

model set-up and input parameters see (Gudino-Elizondo et al., in prep.). 

3.2.3 CONCEPTS-ANNAGNPS MODEL INTEGRATION, CALIBRATION, AND 

VALIDATION 

AnnAGNPS cells and reaches were linked to the CONCEPTS model channels 

(Figure 1).  The CONCEPTS channel represents the main stem of the stream channel 

network, where cross sections were surveyed, and AnnAGNPS reaches are sub-tributaries 

that drain into the main stem. For the SW watershed, the channel head was inaccessible due 

to restricted access, so the upstream-most cross section started at the upstream-most surveyed 

location. AnnAGNPS outputs of daily discharge were converted to triangular hydrographs 

based on daily event peak discharge, time to peak, and total discharge, and served as either 

upstream or lateral inflow into the CONCEPTS model.  The AnnAGNPS daily sediment 

mass delivered to the channel for sand, silt, and clay were converted to triangular sedigraphs 

based on time to peak, total storm duration, and total sediment load.  It was assumed that the 

peak sediment discharge occurred at the time of peak discharge.  AnnAGNPS outputs the 
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event total sediment load of sand (including very coarse sand to very fine sand), silt, and 

clay.  Sediment load for sand is reported as one value per event and is not split by size class.  

The total sand reported by AnnAGNPS was parsed into fine sand (90%), medium and coarse 

sand (8%) and very coarse sand (2%) categories, based on the average particle size 

distribution of sand from the hillslope non-cobbly soil, Los Flores (Figure 2).  Simulated 

sediment yield was compared for scenarios with and without the addition of coarser sand 

(including very coarse, coarse, and medium sand) from the hillslopes.  For discussion of 

limitations and assumptions of this study, see Section 5.2.   

The AnnAGNPS integrated model was first calibrated for hydrology (total and peak 

runoff) using observed data collected at the outlet of LLCW during 13 storm events from 

2014 to 2017.   Then the AnnAGNPS model was calibrated for sediment production and 

validated against a combination of a) ground-based and Unmanned Aerial Vehicle (UAV) 

gully surveys following storm events (Gudino-Elizondo et al., 2018), and b) total annual 

sediment yield calculated from the tons of sediment excavated from the sediment traps at the 

outlet of LLCW from 2009 to 2012, corrected for trap efficiency (Biggs et al., 2018a).  The 

trap efficiency, or the proportion of the total sediment yield that is retained in the sediment 

basin, for medium sand, fine sand, silt, and clay was estimated by following the guidelines 

for sedimentation under turbulent, non-ideal conditions (Morris & Fan, 1998) and was 

estimated as a function of the settling velocity ratio for each size class (Urbonas & Stahre, 

1993).  A sensitivity analysis was conducted on the LLCW AnnAGNPS sub-model to 

determine the most sensitive parameters on sediment load, constrain AnnAGNPS parameter 

values, and develop the most suitable parameter combinations or “behavioral models” for the 

watershed (Gudino-Elizondo et al., 2018).   Although extensive calibration was necessary for 

the AnnAGNPS model, calibration of CONCEPTS was not necessary because unknown 

parameters for erodibility and critical shear stress were based on field measurements.  

However, Manning’s n was adjusted from 0.035 to 0.025 at a few depositional earthen cross 

sections. The channel geometry survey from 2014 was used as CONCEPTS model validation 

for the SE and Main tributaries, and geometry surveys from 2009 and 2014 were used as 

validation for the SW tributary.   

The watershed sediment budget was calculated using simulated hillslope contribution 

from AnnAGNPS and total sediment yield at the outlet from CONCEPTS.  Simulated 
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sediment yield between excavation dates in 2010 to 2012 were compared to observed total 

excavated sediment.  To include the full range of excavation data (2006 to 2012), an 

extended model simulation from WY 2006 to 2012 was also used for model validation.  

Comparison between simulated sediment yield from 2010 to 2012 were compared between 

the extended model simulation and the model starting in 2010. The long-term mean annual 

sediment contributions for hillslope and channel erosion were calculated for the entire 

simulation period (11/28/2009 to 02/26/2017, or WY 2010 to 2017) and compared to the 

observed mean annual sediment excavated from the sediment traps from (2006 to 2012).   

Sediment sources and sinks were mapped using ArcGIS by first segmenting the 

CONCEPTS modeled stream channel into reach segments at cross section locations.  Then, 

cross sectional area was calculated at each cross section from the start of the simulation 

(11/28/2009) and at the approximate date of the 2014 channel survey (07/14/2014).  Change 

in cross-sectional area was calculated for each cross section.  The mean change in cross 

sectional area for the upstream and downstream cross section of every reach was multiplied 

by the reach length to get volume of sediment (m3).  Volume of sediment, either eroded or 

deposited, was multiplied by the estimated bulk density of soil (1.67 tons m-3) to get total 

tons of sediment for each stream reach. 

4. RESULTS 

4.1 Observed Channel Changes from 2009 to 2014 

Changes in channel width and depth were observed between 2009 and 2014 (Table 

1).  The Main and SE tributaries experienced the largest bankfull channel changes.  The 

maximum changes in width for the Main and SE cross sections were 10 m and 12 m, 

respectively, and 5 m in the SW tributary.  The maximum changes in depth, or incision, for 

the Main and SE cross section locations were 1.4 m and 2.4 m, respectively, and 0.7 m for 

the SW cross sections.  Four cross-section locations, all located in the SW channel, 

experienced deposition from 0.2 m to 0.5 m.  This indicates that the Main and SE tributaries 

may have been in adjustment phase during 2009 to 2014, while the SW channel may have 

been in an aggradational or stabilization phase.   
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Table 1. Observed channel changes in bankfull width (m) and depth (m) from 2009 to 

2014. River KM indicates the distance downstream from the channel head of the 

corresponding reach (Main, SE, or SW). 

Site 
River 

KM 
Reach 

Width (m) Depth (m) 
Width Change 

(m) 

Depth Change 

(m) 

2009 2014 2009 2014 2009 to 2014 2009 to 2014 

Main1 1.1 Main 8.2 7.6 2.0 2.3 -0.6 0.3 

Main2 1.0 Main 5.2 3.7 1.0 1.4 -1.5 0.4 

Main8 1.7 Main 1.8 12.1 1.0 1.6 10.3* 0.7 

Main9 3.6 Main 9.0 9.0 0.8 2.2 0.0 1.4 

Main10 2.5 Main 7.0 6.2 3.9 4.0 -0.8 0.1 

SEC1 3.0 SE 3.0 5.3 1.4 2.0 2.3 0.6 

SEC2 2.7 SE 5.6 6.1 1.3 1.5 0.5 0.2 

SEC101 2.4 SE 4.4 7.0 1.4 1.4 2.7 0.0 

SEC103 2.0 SE 3.5 4.7 0.5 1.0 1.2 0.4 

SEC104 1.9 SE 5.6 4.2 1.5 1.9 -1.4 0.4 

SEC105 1.5 SE 11.5 10.7 2.6 3.7 -0.8 1.2 

SEC107 1.3 SE 3.4 15.4 1.0 3.3 12.0 2.4 

SW305 2.4 SW 13.6 18.5 4.0 3.6 4.9 -0.4 

SW306 2.1 SW 20.0 19.3 5.3 4.7 -0.8 -0.5 

SW307 2.0 SW 8.1 7.4 3.4 2.9 -0.7 -0.4 

3.xs3 1.24 SW 8.5 9.1 5.0 4.8 0.6 -0.2 

SW308 1.18 SW 5.8 6.3 2.1 2.7 0.5 0.6 

SW310 0.7 SW 3.0 3.9 0.4 1.1 0.9 0.7 

SW311 0.5 SW 4.3 5.3 0.5 0.8 1.1 0.4 

SW312 0.0 SW 3.5 4.3 1.0 1.0 0.8 0.0 

*Difference in survey location between dates. Width change from aerial imagery is 2.2 m. 

To validate the change in width at the cross sections with the most observed widening 

(Main8, SEC107, and SW305), historical aerial imagery was used to measure and compare 

the top width from 2009 to that of 2014 (Figure 3).  The 10 m of widening observed at Main8 

was due to differences in survey location in 2009 and 2014. Based on aerial imagery and 

field notes from 2014, the elevation of the left bank at Main8 in 2014 was artificially raised 

to prevent flooding into the adjacent home, so the cross-section survey in 2014 for Main 8 

was located 10 m upstream from the 2009 survey location.  Based on aerial imagery and 

visible changes in vegetation and soil along the right bank and floodplain, the top width of 

Main 8 in 2014 is approximately 4 m.  Change in width from 2009 to 2014 at Main 8 using 

the same location was ~2.2 m.  At SEC107, surveyed (12 m) and image-extracted (12.3 m) 
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change in width match.  At SW305 surveyed (4.7 m) and image-extracted (4.9 m) change in 

width match. 

 

 

 

Figure 3. Color aerial imagery indicating channel width for a) Main8, b) SEC107, and 

c) SW305.  Although surveyed bankfull width in 2014 at Main 8 was estimated to be 12 

m, 2015 aerial imagery indicates that bankfull width was ~4m. Bankfull width in 2014 

was incorrectly estimated because it was based on matching the top elevation a 

structure on the left bank (white polygon), which was artificially raised, to the right 

bank elevation.  At SEC107 and SW305, change in width from aerial imagery validates 

that there was approximately 12 m (SEC107) and 5 m (SW305) of widening. 
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4.2 Simulated Hydrology and Channel Changes 

Simulated event peak discharge (m3 s-1 or cms) and total event discharge (mm) were 

compared to observed values (Figure 4).  Peak discharge tended to be underpredicted for 

peak discharges up to 20 cms.  One storm event that had an observed peak of 5 cms, was 

overpredicted by 5-fold (~25 cms).  The r2 value of the peak discharge trendline is 0.12 and 

p-value is 0.25.  In contrast, simulated and observed total event discharge had higher 

agreement (r2 = 0.84, p-value <0.001).  Differences in simulated versus observed peak 

discharges may be attributed to rain events that had rainfall intensities different than the 

utilized TR-55 storm type-II or storm events that had high temporal variations in rainfall 

intensity.  AnnAGNPS uses a daily time step, so it cannot model temporal variations in 

rainfall intensity.   

  

Figure 4. Comparison of observed and simulated storm event peak discharge and total 

discharge from 13 storms in 2014 to 2017.  Solid line is the line of perfect agreement.   

Changes in bed elevation, including incision and deposition, were simulated in 

CONCEPTS from 2009 to 2014 and were compared to surveyed bed elevation changes for 

the Main, SE, and SW tributaries.  CONCEPTS was able to simulate the general pattern of 

incision and deposition during this time period.  The RMSE between observed and simulated 

bed elevation changes was 0.74 m.  For the Main channel (Figure 5a), the largest observed 

change in bed elevation (-1.37 m observed, -0.09 m simulated) occurred at Main9, a cross 

section downstream of a concrete-lined channel at the SE-Main confluence.  At Main8, 
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CONCEPTS simulated 1.7 m of deposition, although there were only slight differences in the 

cross-sectional locations between surveys and no observed signs of deposition in that reach.  

Simulated deposition was due to the narrow culvert geometry upstream of Main8 (<1 m 

width) draining into the wider geometry (>10 m width) at Main8, which allowed the flow to 

spread across the channel and for deposition to occur.  For the SE channel (Figure 5b), 

CONCEPTS simulated the major hotspot of incision downstream of a concrete-lined reach at 

SEC107.  Observed incision at SEC107 was 2.36 m compared to simulated incision of 2.39 

m. 
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Figure 5. Observed versus simulated bed elevation changes from 2009 to 2014 for the a) 

Main, b) SE, and c) SW tributaries. 

For the SW channel, bed elevation change from two time periods was compared to 

simulated changes: a) 2001 to 2009 (Figure 6) and b) 2009 to 2014 (Figure 5c).  From 2001 

to 2009, two major hotspots of incision were observed downstream of a metal culvert (3.xs3) 
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and downstream of a concrete flume (SW306).  At 3.xs3, there was 2.2 m of observed 

incision and 1.5 m of simulated incision.  At SW306, simulated incision (1.7 m) matched 

observed incision (1.6 m).  Upstream of the concrete flume and metal culvert, less than 1 m 

of deposition and less than 1 m of incision was observed, respectively, but both locations 

showed less than 1 m of deposition during the simulation period. During the period of 2009 

to 2014, observed and simulated bed elevation change indicate that there is less than 1 m of 

deposition and/or incision throughout the stream network.  Simulated results indicate that 

three upstream cross sections (SW311 SW 310, and SW308) incise, while the three 

downstream cross sections (SW307, SW306, SW305) aggrade.  The majority of simulated 

bed incision occurred during the period of 2001-2009, with smaller magnitudes of incision or 

deposition occurring in 2009 to 2014.  This indicates that the majority of channel changes 

occurred during the first eight years following the start of urban development in 2001. 

  

Figure 6. Estimated versus simulated bed elevation changes for the SW tributary from 

2001 to 2009.   
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Figure 7. Observed versus simulated changes in top width from 2009 to 2014 for the a) 

Main, b) SE, and c) SW tributaries. 

Simulated changes in width from 2009 to 2014 (Figure 7) were less accurate 

compared to simulated changes in depth.  The RMSE from observed and simulated changes 

in width was 2.6 m. At Main8, channel widening was observed, but was not simulated in 
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CONCEPTS due to deposition and local stabilization of the channel, as discussed previously. 

At SEC107, CONCEPTS simulated bank failure and channel widening of 3.5 m, but 

widening was underestimated compared to the observed change (12 m).   

4.3 Sediment Budget and Channel Sources and Sinks 

Simulated sediment load at the outlet of LLCW was compared to sediment excavated 

from the sediment traps at the Tijuana Estuary and corrected for trapping efficiency from an 

extended model simulation time period of WY 2006 to 2012 (Figure 8, Table 2) and from the 

model simulation starting at WY 2010 (grey dots, Figure 8).  The extended model simulation 

(WY 2006 to 2010) showed a relatively small reduction in sediment yield (reduction ranging 

from 1% to 5%) compared to the 3-year simulation.  Overall, simulated sediment load tended 

to be overestimated during the wetter years and underestimated during lower rainfall years. 

Simulated sediment load was greater than trapped sediments by >2.5-fold for excavation 

years 2010 and 2011. Trapping efficiency was calculated for each size class and was used to 

estimate the amount of fine sediment that does not deposit in the trap, but the trapping 

efficiency may decrease as the sediment trap fills, resulting in underestimation of the 

observed sediment load.  The excavation period from 2010 and 2011 experienced higher 

precipitation (302 and 326 mm) compared to 2012 (235 mm), and therefore the sediment 

traps may have filled.  The apparent overestimation from the simulation model suggests that 

the AnnAGNPS model may be overestimating sediment load to the channel during higher 

rainfall years, requiring joint calibration of the combined AnnAGNPS-CONCEPTS model.  

The simulated channel contribution from the excavation periods ranged from 58-66% of the 

sediment budget. 
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Figure 8. Comparison of observed sediment excavated from the sediment traps at the 

Tijuana Estuary and simulated sediment load to the outlet of LLCW between 

excavation dates.  Two model simulations are compared: three water years of 

simulation (2010-2012) and an extended simulation with seven water years of 

simulation (2006-2012) to include additional excavation data.  
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Table 2. Observed sediment excavated from sediment traps at the Tijuana Estuary 

(corrected for trapping efficiency), simulated sediment load between excavation dates, 

and simulated channel and hillslope contribution on the sediment budget on the 

extended simulation time period of WY 2006 to 2012. 

 

For the long-term mean annual sediment contribution from water years 2010 to 2017, 

channel erosion contributes 59%, or 6,482 tons km-2 yr-1, and the hillslope contributes 41%, 

or 3,758 tons km-2 yr-1 (Table 3).  Total mean annual sediment contribution, normalized by 

drainage area, is 10, 240 tons km-2 yr-1 for LLCW.  Mean annual sediment excavated from 

traps and corrected for trapping efficiency from 2006 to 2012 is 5,719 tons km-2 yr-1, which 

may be lower than the 2010 to 2017 period because of a drought occurring from 2007 to 

2009.  Additionally, the simulation period includes 3 relatively wet water years (2010, 2011, 

and 2017).   

The model scenario without cobble in the banks indicates that long-term mean annual 

sediment contribution from channel erosion is 60%, which is only a 1% increase from the 

scenario with bank cobble present (observed conditions).  Similarly, the scenario coarsening 

the bed in all cross sections to predominantly coarse gravel shows no change in channel 

contribution (59%) compared to the scenario of observed conditions.  This indicates that the 

proportion of channel-derived sediment is insensitive to coarsening the bed and bank 

materials (channel boundary conditions), despite a reduction in channel-derived sediment 

load by coarsening the bed in the SW watershed (Chapter 3).  The steep channel slopes and 

high discharge from urban areas, create a large enough transport capacity to erode and 

transport coarse particles from the stream and to the outlet of the watershed.        

Year 

Excavated 

Rainfall 

(mm) 

Observed 

(tons) 

Simulated 

(tons) 

Channel 

Contribution 

(tons) 

Hillslope 

Contribution 

(tons) 

2006 208 34,642 28,290 18,563 9,727 

2007 139 33,079 74,630 53,932 20,698 

2008 155 64,580 23,300 13,463 9,837 

2009 219 68,949 130,000 84,603 45,397 

2010 303 78,935 178,400 118,114 60,286 

2011 326 70,965 192,000 122,814 69,186 

2012 235 58,513 52,400 30,390 22,010 
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Table 3. Simulated total sediment yield at the outlet of LLCW and hillslope and channel 

contribution by water year with model simulation period of WY 2010 to 2017. 

Water Year 

Total 

Rainfall 

Total Sediment 

Yield  

Channel 

Contribution 

Hillslope 

Contribution 

  mm  tons tons % tons % 

2010 302 180,771 120,485 67 60,286 33 

2011 322 200,900 131,715 66 69,185 34 

2012 232 53,400 31,390 59 22,010 41 

2013 182 101,100 66,216 65 34,884 35 

2014 94 3,800 1,539 41 2,261 60 

2015 214 102,200 65,393 64 36,807 36 

2016 198 42,900 24,199 56 18,701 44 

2017 317 153,100 89,663 59 63,437 41 

Mean Annual: 

(tons yr-1)  104,771 65,325 59 38,446 41 

 (tons km-2 yr-1)   10,240 6,482 - 3,758 - 

 



 

 101 

 

Figure 9. Channel sources and sinks of sediment based on the model simulation from 

2009 to 2014.  Triangles indicate locations of hardpoints that drain into erodible reaches 

downstream. 
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Channel sources and sinks in tons of sediment were calculated and mapped along the 

river reaches based on simulated channel changes from 2009 to 2014 (Figure 9).  All of the 

reaches that experienced relatively low net channel changes, classified as -50 tons to +50 

tons, were concrete-lined except the upstream reach of the SW channel (thin lines, Figure 8).  

The upstream headwaters of the SW channel is the only undeveloped region of the 

watershed.  Although significant channel changes occurred downstream of HP.SW.1 and 

HP.SW.2 during 2001 to 2009, the channel at HP.SW.1 at the start of 2009 was already 

enlarged and appears to be stabilizing during 2009 to 2014. Although incision downstream of 

HP.SW.2 has ceased during the period of 2009 to 2014, CONCEPTS simulated channel 

widening during this time period.   

The largest magnitude of channel changes for the simulation period were in the Main 

and SE tributaries. A major source of sediment includes the Salva Tierra stream reach, 

downstream of HP.M.1, where urban development occurred, including complete vegetation 

removal, grading of the land surface, and filling in of the channel with loose sediment.  

Stream reaches in the upper watershed of Main should be stabilized to prevent future 

instabilities, especially as urbanization continues.  

Stream reaches mapped as channel sinks are primarily located where large 

AnnAGNPS tributaries drain into the CONCEPTS channel.  These reaches also correspond 

to some of the high frequency bed forms observed in Figure 5.  Because CONCEPTS is a 

one-dimensional model, when tributaries drain into a specified cross section, the model 

spreads the flow and sediment evenly across the bed.  In reality, the sediment supplied at 

confluences oftentimes forms bars that can narrow the channel width and create more 

concentrated flows that could focus flow against channel banks and intensify erosion locally.  

Bars at major tributaries were observed in the field at some locations.  Additionally, at the 

confluences there may be backwater effects that may lead to upstream deposition. Deposition 

occurs at HP.M.3 because the channel geometry changes along-stream from a relatively 

narrow culvert to a wide cross section at Main8, causing the flow to spread out across the 

broad channel bed and deposit sediment in the reach downstream.  Similar depositional 

processes occur at the sinks downstream of HP.SE.2 and HP.SE.3.  Deposition was observed 

at the concrete reach downstream of the Main-SW confluence near the outlet of the 

watershed.  Culverts at the outlet of LLCW that convey flow from the Main channel to the 
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Tijuana Estuary and may cause backwater effects and increased upstream deposition along 

this reach.  These culverts are not simulated in CONCEPTS, and may be the reason why we 

are not simulating deposition in this reach.  

 

Figure 10. Cumulative channel-derived sediment load versus cumulative earthen 

channel length.  Only 12% of the channel length contributes 50% of the sediment load 

and 37% of the channel length contributes 90% of the sediment load. 

Although channel contribution on the sediment budget is large, only a small 

proportion of the river network generates the majority of the channel-derived sediment 

(Figure 10).  Fifty percent of the channel-derived sediment load is generated from only 12% 

of the entire channel network.  Additionally, only 37% of the entire earthen channel network 

contributes 90% of the channel-derived sediment load.  This indicates that effective channel 

stabilization could be implemented on a third of the earthen river network length to provide a 

90% reduction in channel-derived sediment yield, or a 54% reduction on the total sediment 

yield for the watershed. 

5. DISCUSSION 

5.1 Channel Processes and the Sediment Budget 

Rapid urbanization in Los Laureles Canyon has led to stream channel erosion and 

high loads of sediment to the Tijuana Estuary. Simulated channel evolution from 2001 to 

2017 and observed channel changes from 2009 to 2014 indicate that the majority of channel 
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incision occurred during the initial period of 2001 to 2009, following urban development 

which was initiated in 2001 and a relatively large storm event (10-year recurrence interval) in 

2004.  Although the reach downstream of the metal culvert showed little channel changes 

from 2009 to 2014, the reach downstream of the concrete flume was actively widening.  In 

the Main channel, portions of the channel are actively evolving, including the newly 

developed urban area of Salva Tierra near the upper portion of the watershed.  As urban 

development increases in this area, channels should be stabilized prior to excessive channel 

enlargement and disconnection of the channel from floodplain storage, as seen in the SW 

watershed (Chapter 3).  The SE watershed is composed of cobbly conglomerate soils and 

coarser bed material compared to the Main and the lower SW watersheds.  Although channel 

incision was relatively low in the SE watershed due to bed armoring, except for the reach 

immediately downstream of a concrete-lined channel, channel widening was observed.  

Moreover, model scenarios coarsening the bed showed no change in the relative proportion 

of channel-derived sediment at the watershed scale, but there was a shift in dominant 

erosional processes.  Coarsening the bed has caused a reduction in overall incision, but an 

increase in bank erosion.  This indicates that coarsening the bed alone will not be sufficient 

in reducing the long-term channel-derived sediment at the watershed scale.  With steep 

slopes both in the hillslopes and channel, increased hydraulic connectivity of the hillslopes to 

the stream channel via roads and drainages, and a removal of hillslope and riparian 

vegetation, discharge should be decreased from urban areas and the stream channel should be 

protected from erosion.   

Over 2009-2017, the stream channel of LLCW contributed about 60% of the total 

sediment load to the outlet of the watershed.  Trimble (1997) found that channel erosion 

accounted for two-thirds of the sediment yield from the San Diego Creek watershed.  

Although the proportion of channel contribution in LLCW is slightly smaller compared to 

San Diego Creek, the long-term channel-derived sediment yield of San Diego Creek from 

1968-1998 (368 tons km-2 yr-1) was 17 times smaller than LLCW (6,411 tons km-2 yr-1).  A 

major difference between urban regions of Tijuana and southern California is that in Tijuana 

there are large proportions of erodible, unpaved roads and open lots that generate large 

amounts of sediment and may remain unpaved for over 40 years (Biggs et al., 2010).  In 

developed countries, the construction phase lasts only a few years, before exposed soil is 
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replaced with impervious, or at least stabilized, surfaces (Wolman, 1967).  Although the 

“construction phase” is associated with channel aggradation, in Tijuana, the process of 

urbanization includes complete vegetation removal, filling the channel, and converting the 

stream channel into an unpaved road.  A new stream channel forms in highly erodible 

construction fill and is oftentimes straighter, steeper, and more unstable than its unaltered 

condition (Chapter 3).  With an enlarged and confined channel, floodplain storage is 

completely removed from the stream channel, which leads to larger flow depths, higher shear 

stresses, and further channel enlargement.  

Taniguchi et al. (2018) estimated that channel erosion accounted for approximately 

25 to 40% of the total sediment budget.  However, this paper suggests that channel erosion 

may be the dominant (60%) source of sediment at the watershed scale.  The sediment budget 

from Taniguchi et al. (2018) did not include major sediment producing stream reaches that 

were included in the CONCEPTS model.  At the time of the 2014 survey, some sediment 

producing reaches, including downstream of HP.M1 and reaches in the SE channel near the 

confluence of Main were filled in with sediment and therefore not included in the sediment 

budget calculation by Taniguchi et al. (2018), which could lead to an underestimation of 

channel contribution on the sediment budget.   

 Model overestimation in total sediment yield at the outlet of LLCW may be explained 

by various factors.  One factor is that the total amount of sediment excavated from the 

sediment traps is an underestimation of total sediment delivered to the trap because the 

amount of fine sediments that make it out of the trap and into the estuary is unknown.  This 

would lead to a lower bound estimate of total annual sediment delivery to the estuary, despite 

utilizing trap efficiency equations to estimate the fine particles not captured.  A second factor 

is that the AnnAGNPS model was calibrated for total annual sediment yield from 2006 to 

2012, under the assumption that channel erosion contributes about 25% of the total sediment 

budget (Taniguchi et al., 2018).  This paper suggests that channel erosion may contribute a 

larger proportion of sediment load to the outlet of LLCW.  Future model calibrations of the 

AnnAGNPS model should assume that channel erosion contributes at least 50% of the total 

sediment budget. 

In order to gain a full understanding of human impacts on fluvial geomorphology, 

studies need to go beyond the physical sciences and focus on linkages between social and 
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environmental processes that interact and shape the landscape (Urban, 2002; Ashmore, 

2015).   Socio-hydrology (Sivapalan et al., 2012) explores interactions, feedbacks, and co-

evolution of human behavior with the hydrologic system, and serves as the basis for socio-

geomorphology, which provides a hybrid framework for understanding socio-natural systems 

of landforms (Ashmore, 2015).  Socio-geomorphic processes are not considered in 

computational models, such as CONCEPTS, due to the highly unpredictable nature of such 

practices.  In LLCW, human intervention at the local scale may play a large part in 

temporarily stabilizing some of the highly eroded stream reaches in the SW channel (Figure 

11).  However, these stabilization methods are oftentimes temporary and the types of human 

action depend on the availability of funds at an individual basis.   

 

Figure 11. Human intervention at the local-resident scale, including bank stabilization 

with (a) loose construction fill and (b) more intricate stabilization designs using tires 

and blocks, which are not incorporated into the CONCEPTS model. 

5.2 Model Uncertainties and Limitations 

This study is the first to link the AnnAGNPS simulated hillslope sediment to the 

CONCEPTS channel evolution in a semi-arid region and therefore, model output adjustments 

need to be implemented.  AnnAGNPS was originally developed to simulate the impact of 

agricultural practices on sediment and pollutant loading in regions in the mid-western United 

States.  Soils on hillslopes in the Midwest typically consist of fine sediments, with minimal 

proportions of coarse and medium sand.  In tectonically active, semi-arid regions in the 

Western U.S. and along the U.S.-Mexico border, higher proportions of particles coarser than 

fine sand are found on hillslopes and valley sedimentary fills.  AnnAGNPS simulates 

sediment transport of various sizes of sand particles, but only reports total sand generated for 

each storm event.  In areas with coarser sediment on the hillslopes, such as LLCW, accurate 

a) b) 
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sediment routing requires partitioning the total sand supply to channels into the various sand 

size classes (very coarse, coarse-medium, and fine-very fine sand).  This study utilizes the 

hillslope sand particle size distribution to partition out the AnnAGNPS total sand into the 

three size classes.  Scenarios treating all hillslope-derived sand as fine-sand, or washload, 

indicate that the mean annual channel contribution is 61% of the sediment budget, as 

opposed to 59%.  The magnitude of channel incision and widening was larger when there 

was no coarser sand supplied from the hillslopes, but the spatial pattern of sources and sinks 

remained the same compared to the results reported in this paper.    

Additionally, no hillslope derived sediments coarser than 2 mm was simulated for this 

analysis.  It is assumed that the majority of coarse sediment delivered to the sediment traps 

are channel-derived and coarser sediment from the hillslopes are minimal or stored as 

colluvium.  Gravel that has accumulated in the valley fill alluvium is assumed to have been 

transported from the hillslopes during large, episodic flow events.  Although landslides and 

mass movement may supply coarse material to the channel, hillslope sediment supply of 

gravel and coarser was not included in this paper for multiple reasons.  As previously stated, 

gravel comes in episodically and gets transported relatively short distances compared to the 

watershed length and is mixed with the sand load through scour and fill in either the current 

bed material (i.e. bed and bars) or the older valley fill during high flow events. Our 

simulation period does not include an extreme wet year when gravel from the hillslopes may 

have been transported and/or when mass movements are more likely to occur.  The exclusion 

of hillslope-gravel supply may be invalid during large events in our simulation period, but 

the relatively dry water years being simulated allows for the assumption that relatively few 

coarse particles are delivered to the channel.  Secondly, we have not observed landslides or 

debris flows that contained coarse materials that were transported to the stream network 

during our field observations.  A landslide did occur in LLCW due to a water main failure 

but this type of event cannot be simulated in the modeling scheme because it was not caused 

by rainfall.  Lastly, the residents often stabilize the hillslopes in the cobbly portions of the 

watershed with tires and other features, which would reduce the amount of coarse sediment 

supplied to the channel. 
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6. CONCLUSION 

This paper demonstrates the utility of linking an empirically-based watershed scale 

model of hydrology and hillslope processes, AnnAGNPS, with a physically-based channel 

evolution model, CONCEPTS, in a rapidly developing, semi-arid region.  The integrated 

model was able to realistically simulate the general pattern of incision for three stream 

reaches in Tijuana, Mexico, and was used to determine the channel sources and sinks of 

sediment, and the overall sediment budget for the watershed.  Channel erosion in LLCW 

accounts for approximately 60% of the total sediment budget to the Tijuana Estuary.  

Approximately 37% of the entire earthen channel network contributes 90% of the channel-

derived sediment load.  This indicates that if effective channel stabilization measures are 

implemented on a third of the river network length, it could provide up to a 90% reduction in 

channel-derived sediment yield, or a 54% reduction on the total sediment yield for the 

watershed.  Moreover, model scenarios coarsening the bed did not reduce the long-term 

mean annual channel-derived sediment yield at the watershed scale.  Coarsening the bed 

caused channel incision to reduce, but increased channel widening.  In addition to targeted 

channel stabilization on the highest sediment producing stream reaches, a reduction in 

discharge from urban areas will need to be implemented to lead to a substantial reduction of 

sediment yield to the Tijuana Estuary.  
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CHAPTER 5 

CONCLUSION 

 Few studies have been conducted on the impacts of urban development on stream 

channel dynamics and sediment transportation in semi-arid, developing countries.  This 

dissertation provides an example of the use of a variety of geomorphic field methods, 

including traditional topographic survey methods and Structure-from-Motion (SfM) 

photogrammetry techniques, paired with a comprehensive modelling framework to provide 

an understanding of the driving mechanisms of channel instability and the overall importance 

of channel processes on the sediment budget to support local and federal sediment 

management plans in a rapidly developing, semi-arid region.   

 Chapter 2 showed that stream channels in Tijuana, Mexico were statistically larger 

than reference and urban channels in southern California and that major hotspots of channel 

erosion were located downstream of hardpoints, or non-erodible features.  Chapter 3 

determined that hardpoints prevented incision in the upstream direction by serving as grade 

control, and only caused local channel instabilities downstream.  Channel erosion is caused 

mainly by the destruction of the natural channel, including channel burial, straightening, 

steepening, and removal of riparian vegetation, often performed in the process of turning 

channels into roads.  Reformation of an enlarged river reach that is disconnected from the 

floodplain, leads to higher flow depths constrained in the channel, larger shear stresses, and 

accelerated channel incision.  Chapter 4 utilized a watershed-scale model to spatially map 

channel sources and sinks of sediment and determine the role of channel processes on the 

overall sediment budget.   Channel erosion contributes approximately 60% of the total 

sediment budget and only a third of the entire stream channel network is generating 90% of 

the channel-derived sediment load.  This indicates that channel erosion is a dominant source 

of sediment in LLCW and targeted stream stabilization measures could potentially reduce a 

large proportion of sediment load to the Tijuana Estuary.   However, coarsening of the bed 

alone, may not decrease mean annual channel-derived sediment yield, as channel incision is 

reduced but channel widening is exacerbated.  

 This dissertation provides a regional comparison of stream morphology of developing 

and developed semi-arid watersheds and characterization of the sources and sinks of 
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sediment and mechanisms of stream channel evolution to understand the overall sediment 

budget of a rapidly developing, semi-arid region.  This study provides a greater 

understanding of channel dynamics and the sediment budget in a rapidly urbanizing semi-

arid region for future sediment management plans.   

FUTURE RESEARCH 

Major uncertainties arise in modeling highly altered and tightly linked socio-

geomorphic systems, such a Los Laureles Canyon watershed.  This dissertation discusses 

some of the uncertainties of the physical assumptions used in the integrated AnnAGNPS-

CONCEPTS model, such as the uncertainty in the coarse sediment supplied from the 

hillslopes, but also the limitations of using physically based data and equations alone to 

predict sediment loadings.  Socio-geomorphic processes, such as human intervention, need to 

be implemented into the modeling scheme to improve the overall understanding of the 

system. The community sensitivity loop used in socio-hydrology models, which describes 

how human behavior and management decisions are directly driven by a community’s social 

and environmental values, local action, and lobbying and all reflect on community sensitivity 

to hydrologic or geomorphic change (Elshafei et al., 2014), can be implemented in the 

modeling framework used in this dissertation.  The community sensitivity state variable, 

which refers to a community’s perceived level of threat to the community’s quality of life 

(Elshafei et al., 2014), can be quantified and used to provide the key linkage between human 

intervention or action to geomorphic changes expressed in the models.  Future research can 

incorporate the socio-geomorphic processes to help improve the predictability of sediment 

loadings in such watershed models and the overall understanding of the highly altered 

systems. 

Additionally, future research can utilize the integrated CONCEPTS-AnnAGNPS 

watershed model to determine the impact of land use changes and best management 

practices, such as revegetation of the hillslopes and road paving, on stream channel evolution 

in Tijuana, Mexico and in other semi-arid regions.  Both managers and researchers can 

implement the methods and modeling framework from this dissertation, to improve 

understanding of geomorphic processes and create more informed sediment management 

plans.   
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