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ABSTRACT OF THE THESIS 

 

A Three Dimensional Finite Difference 

Time Domain Sub-Gridding Method 

 

by 

 

Kevin Quy Tanh Luong 

 

Master of Science in Electrical and Computer Engineering 

University of California, Los Angeles, 2019 

Professor Yuanxun Ethan Wang, Chair 

 

The finite difference time domain method has long been one of the most widely used numerical 

methods for solving Maxwell’s equations due in part to its accuracy, explicit nature, and 

simplicity of implementation. Modern research interests have created a need for this method to 

be extended to handle multi-scale multi-physics problems where numerous physical phenomena 

are coupled with classical electrodynamics. These phenomena typically occur on vastly different 

spatial scales; however, the conventional finite difference time domain method requires a 

uniform spatial discretization across the entire simulation space. Additionally, the maximum 

time evolution that may be solved in a single iteration of the algorithm is proportional to the 

smallest discretization length. Consequently, properly resolving the smallest feature of a multi-

scale problem causes phenomena of a larger scale to be over-resolved, resulting in an 
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unnecessarily large amount of memory and often an impractical number of computations 

required for simulation. The development of a capability for sub-gridding, where local domains 

of fine resolution may be incorporated into a simulation space of coarser resolution, is imperative 

to treat this issue. This thesis proposes a new algorithm to implement sub-gridding. The results 

of comprehensive numerical evaluations show promise for this algorithm to be of general use in 

solving multi-scale multi-physics problems.
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CHAPTER 1 

Introduction 

 

1.1 Research Background 

1.1.1 Numerical Electromagnetics 

Electrostatic and magnetostatic phenomena were first observed in ancient Greece as 

curious behaviors of amber and lodestone respectively. Progress in understanding these 

phenomena was slow for a long time leading up to Charles-Augustin de Coulomb publishing his 

inverse-square law for the force between charged particles in 1785 [1]. Coulomb’s Law (1-1) 

marked the beginning of classical electromagnetic theory, which was further developed in the 

years to follow through a great deal of study among a large number of scientists and 

mathematicians. 

 
𝐹⃑ =

1

4πϵ

𝑞1𝑞2

𝑟2
𝑟̂ (1-1) 

 

All the research done was ultimately unified in 1864 by James Clerk Maxwell in his paper, A 

Dynamical Theory of the Electromagnetic Field [1]. This paper presented a single set of 

equations, known now as Maxwell’s Equations (1-2), completely describing the classical theory 

of electromagnetic fields.  

 
∇ × 𝐸⃑⃑ = −

𝜕𝐵⃑⃑

𝜕𝑡
 (1-2a) 

 
∇ × 𝐻⃑⃑⃑ =

𝜕𝐷⃑⃑⃑

𝜕𝑡
+ 𝐽 (1-2b) 
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 ∇ ∙ 𝐷⃑⃑⃑ = ρ (1-2c) 

 ∇ ∙ 𝐵⃑⃑ = 0 (1-2d) 

 

With the foundational physics established, application-oriented research blossomed, leading to 

unforetold developments that are now integral parts of modern life. Maxwell’s equations today 

are still just as significant as ever and constitute the core of electrical engineering; solving these 

equations for any given electrical system of interest provides virtually all that can be known 

regarding the electromagnetic fields and their behaviors. 

The completeness of Maxwell’s equations as well as their elegant form are misleading 

however, as it turns out that they are too complex to solve for most problems of practical interest. 

Workarounds for this issue were few until around the 1950s when high speed computing finally 

made numerical methods feasible [2]. Numerical methods are approximate means of solving the 

equations describing a given problem, involving computation to generate a numeric solution. 

This is in contrast to analytical methods which involve symbolic manipulation of equations to 

generate a symbolic solution. Numerical methods were not a new concept at the time; they were 

simply rarely used due to the fact that they involve an immense volume of computations. 

Developments in high speed computing caused a resurgence of interest however, allowing for 

such computations to be handled much more efficiently. Today the numerical evaluation of 

equations describing a practical problem, or in other words “simulation”, has become a mainstay 

in any research workflow. 

Numerical methods solving the frequency domain form of Maxwell’s equations were the 

first to see extensive application and development. Most prevalent were the finite element 

method, the usage of which began in the 1950s, and the method of moments, which was 
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introduced around the 1960s [3]. The finite element method is a means of computationally 

applying variational or weighted residual techniques to solve an equation. The method of 

moments is based on similar techniques, but typically refers specifically to the evaluation of 

integral equations involving Green’s functions [3]. These methods alone were not sufficient to 

treat all electromagnetic problems of interest however due to inherent limitations including 

difficulty in accounting for nonlinear phenomena or the need to solve large sets of linear 

equations. The gaps in applicability of these methods were addressed by the finite difference 

time domain (FDTD) method which, though first proposed in the 1960s, did not gain popularity 

until much later [4]. This method solves the time domain form of Maxwell’s equations using 

finite difference approximations for derivatives. The three methods introduced remain standards 

for electromagnetic simulation today. While no single method is superior to the others, the 

problems of interest in this thesis encourage a focus on the FDTD method. 

 

1.1.2 Multi-Scale Simulations 

One prevalent class of simulations frequently occurring in practice is that of “multi-scale 

simulations”, which derives its name from the fact that multiple spatial scales are required to 

model both small and large features simultaneously. The problems requiring electromagnetic 

multi-scale simulations have been widespread. Historically, these have included anything from 

the coupling of incident fields on aircraft to small scale internal circuitry [20], the operation of 

waveguides with discontinuity features that are small compared to the waveguide dimensions 

[21], or the absorption of fields in the human body due to small electronic radiators as part of 

body area networks [42]. Electromagnetic multi-scale problems will likely always continue to 

emerge, making this class of simulations of utmost importance. 
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The current state of technology and research has assigned an even greater significance to 

multi-scale simulations however. While the aforementioned problems have more or less involved 

solely electromagnetics, there is massive interest in what are known as “multi-physics” problems 

in which phenomena from multiple areas of physics are explicitly coupled. Typically, these 

different physical phenomena occur on disparate spatial scales, meaning that multi-scale and 

multi-physics problems go hand in hand. In photonics research for example, it is of vital 

importance to model as accurately as possible the interaction of light with materials. To 

accomplish this, quantum physics is often coupled with classical electrodynamics [5], requiring 

the resolution of very different spatial scales. One particular instance of such coupling is with 

simulations of surface enhanced Raman spectroscopy (SERS). As shown in Figure 1.1, this 

spectroscopy involves analyte molecules adsorbed onto metal nanoparticles and evaluated based 

on their interaction with incident light [6]. Modeling the SERS procedure is contingent upon the 

incorporation of both classical electrodynamics for the light-nanoparticle interaction as well as 

quantum theory for the light-molecule interaction [5]. The operation of devices based on 

magnetic materials is another multi-physics, multi-scale problem. Frequency selective limiters 

for example possess unique behaviors due to the phenomena of electromagnetic field coupling to 

magnetic spin waves [7]. While the electromagnetic wavelength of operation is typically on the 

order of centimeters, modeling the spin waves requires accounting for the exchange interaction 

between magnetic dipoles of the material, requiring resolution on the order of nanometers. Spin 

waves are visualized in Figure 1.2. 

Though the FDTD method lends itself well to the incorporation of physical phenomena 

beyond electromagnetics, it is not suited to handle multiple spatial scales. Attempts to run multi-

scale simulations applying this method tend to involve enormous amounts of memory and 
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Figure 1.1: Surface enhanced Raman spectroscopy. 

 

Figure 1.2: Spin wave. 

computation, due partially to the fact that uniform discretization of the simulation space is 

required. In other words, the FDTD method interprets continuous space as a set of discrete points 

according to a user defined mesh where the same mesh used to resolve small features must also 

be used for large features. This causes an over-resolution of the large features where, because the 

field value at each discrete point must be solved as well as stored, memory and computation are 

drastically increased. The FDTD method also involves discretization in the temporal domain 

with iterative solving to advance the solution in time. In order to maintain stability of the 

simulation, the distance between discrete time points is inherently limited to a maximum value 
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proportional to the smallest distance between discrete space points. Thus, the number of 

iterations to simulate a system to a given time evolution is inversely proportional to the smallest 

feature of interest. Clearly, with multi-scale problems this limitation further compounds the large 

computational requirement. 

 

1.2 Research Outline and Goals 

The most effective means of addressing the poor multi-scale capabilities of the FDTD 

method is with a modification of the method that allows for local domains possessing time and 

space discretizations independent from the rest of the simulation domain. Such a procedure is 

commonly referred to as “sub-gridding” and its benefits in terms of improving the suitability of 

the conventional FDTD method for a greater range of problems have been long recognized. 

Nevertheless, past attempts at implementation have all been lacking in a number of critical 

characteristics, preventing any particular sub-gridding algorithm from seeing widespread 

success. The goal of the research in this thesis is to formulate and assess a new sub-gridding 

algorithm that has greater potential for general applicability than those of past literature. 

In Chapter 2, the fundamental principles, advantages, and limitations of the FDTD 

method are presented. Several means of overcoming these limitations to allow for more efficient 

multi-scale simulations are then briefly discussed with a focus on why sub-gridding is the most 

appropriate. This is followed by a comprehensive examination of past attempts to realize a 

general sub-gridded FDTD method along with a discussion of why none of them have been 

widely adopted. In Chapter 3, a new sub-gridding algorithm is proposed, and the steps for its 

implementation are enumerated. In Chapter 4, various numerical tests are performed applying the 
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algorithm to validate its results and assess its capabilities. Finally, Chapter 5 presents future work 

that still needs to be done to obtain a further improved sub-gridded FDTD method. 
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CHAPTER 2 

The FDTD Method and Multi-Scale Simulations 

 

2.1 Introduction to the FDTD Method 

2.1.1 Overview of the Method 

The finite difference time domain method, proposed by Kane Yee in 1966 [8], is a 

numerical method for solving Maxwell’s equations. As implied by its name, this method 

involves solving the partial differential time domain Maxwell’s curl equations using a central 

finite difference approximation for the derivatives. The derivative for a function of one variable 

is defined in (2-1). A central finite difference approximates this derivative using a finite ∆x, 

where the values of the function used in the difference are centered about the original point at 

which the derivative is to be solved. 

 
𝑓′(𝑥) = lim

∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 (2-1) 

 

Considering an x-polarized, z-directed plane wave propagating in free space, the FDTD 

expressions can be derived from (1-2a) and (1-2b) and are given by (2-2a) and (2-2b). 

 
𝐸𝑥|𝑖

𝑛+1 = 𝐸𝑥|𝑖
𝑛 + (

∆𝑡

ϵ0∆𝑧
) (− (𝐻𝑦|𝑖+1/2

𝑛+1/2
− 𝐻𝑦|𝑖−1/2

𝑛+1/2
) − ∆𝑧𝐽𝑥|𝑖

𝑛+1/2
) (2-2a) 

 
𝐻𝑦|𝑖+1/2

𝑛+3/2
= 𝐻𝑦|𝑖+1/2

𝑛+1/2
+ (

∆𝑡

μ0∆𝑧
) (−(𝐸𝑥|𝑖+1

𝑛+1 − 𝐸𝑥|𝑖−1
𝑛+1)) (2-2b) 

 

In these equations ∆z and ∆t represent the distances between discrete points in the spatial and 

temporal domains at which the fields are solved. Additionally, i and n are integers used to 

represent specific points in time and space according to the shorthand given by (2-3).  
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 𝐸𝑥|𝑖
𝑛 = 𝐸𝑥(𝑖(∆𝑧), 𝑛(∆𝑡)) (2-3) 

 

The use of finite differences to approximate derivatives was in no way a novel concept and its 

origin can be traced as far back as Euler in 1768 [9]. The revolutionary idea of Yee’s method 

was that of staggering the discrete space and time points where the electric and magnetic field 

component values were solved such that they were not collocated. This is illustrated in Figure 

2.1 with a unit cell of the spatial mesh labeled with electric and magnetic field components. A 

general simulation space using the FDTD method would be comprised of a number of these cells 

stacked adjacent to each other, sharing faces and edges. The staggered locations at which the 

fields are solved in time are visualized in Figure 2.2. In this case it is not necessary to distinguish 

between different components as all are evaluated at the same points in time for a given field.  

 

Figure 2.1: Yee unit cell. 

 

Figure 2.2: Time staggering scheme. 
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Slowly, as the capabilities of computers continued to improve, Yee’s method grew in popularity. 

It is now the standard for time domain electromagnetic simulations. 

 

2.1.2 Advantages of the Method 

The irreplaceability of this method for solving Maxwell’s equations stems from several of 

its characteristics [4]. Most obviously, as compared to the method of moments or the finite 

element method, the FDTD method solves in the time domain. This allows for natural treatment 

of wideband solutions as well as nonlinear modeling. Another advantage is that this method is 

explicit, making it much more capable at handling problems involving a large number of 

unknowns without having to deal with the issues that come with matrix inversion. Furthermore, 

formulation and modification of the FDTD algorithm itself for a given problem is very simple 

and straightforward, making the method well suited for research applications. Not only is it 

almost trivial to alter the geometries of modeled objects, but also the incorporation other 

phenomena from frequency dependent materials to lumped elements to additional physics is 

readily accomplished. Unlike other methods, there is no need to modify Green’s functions or 

integral equations to account for these phenomena; rather, the finite difference nature of this 

method necessitates only the modification of algebraic equations. All of these advantages 

contribute to the focus on this method for multi-scale multi-physics problems. 

 

2.1.3 Limitations of the Method 

Though certainly possessing many advantageous characteristics, the FDTD method is not 

without its own drawbacks and limitations [10]. One of such drawbacks is the fact that the entire 

simulation space must be discretized according to some mesh regardless of whether field 
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component values at any given location are part of the desired solution or not. This results in an 

excessive increase in both computation and memory to solve for and store all these component 

values respectively. Figure 2.3 shows a two dimensional cross section of a microstrip patch 

antenna. In order to simulate the radiation from this antenna, all aspects of its structure as well as 

the free space surrounding it must be meshed. The amount of free space meshed is dependent on 

how the boundary of the simulation space is treated and what kind of results are desired. Another 

drawback of the FDTD method is the requirement of uniform meshing throughout the entire 

simulation space. This further increases the computational resource drain, as the mesh cannot be 

optimized to treat local regions of different characteristics more efficiently. Analogously, 

complete and uniform discretization of the temporal domain is required as well. Obtaining a 

certain time evolution in the simulation thus requires iteration to solve sequentially at each 

discrete time point, even if the value at a given point is not of interest. To further compound the 

added computational complexity due to this time discretization, there exists a condition to 

maintain stability of the method. This is known as the Courant-Friedrichs-Lewy (CFL) stability 

condition and it can be interpreted as an upper bound on the maximum time step, or distance 

between discrete time points of the simulation. This stability condition is given by (2-4a) for a 

general three dimensional space with unit cell dimensions ∆x×∆y×∆z and by (2-4b) for a one, 

two, or three dimensional space with cubic unit cells of side length ∆x. In these equation c is the 

speed of light in a vacuum. 

 

∆𝑡 ≤
1

𝑐
((

1

∆𝑥
)

2

+ (
1

∆𝑦
)

2

+ (
1

∆𝑧
)

2

)

−1/2

 (2-4a) 

 
∆𝑡 ≤

∆𝑥

𝑐√𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
 (2-4b) 
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The CFL condition essentially sets a lower limit on the number of time iterations that must be 

solved to obtain a solution. Surpassing this limit will cause spurious exponential growth in field 

values that quickly destroys any useful results. 

 

Figure 2.3: Meshing for microstrip patch antenna simulation. 

All the discussed limitations are intimately related with regards to the challenge of 

applying the FDTD method to multi-scale problems. A uniform spatial discretization results in 

unnecessarily inflated usage of computational resources as regions of large feature size will have 

the same discretization resolution as regions of small feature size. Each additional discretization 

point requires memory to store as well as computation to solve for. Contributing to the same 

issue is the requirement that the entire simulation space be discretized. If a structure is simulated 

in free space for example, the free space region must be discretized at the resolution of the 

smallest feature and the field values at every point solved for regardless of whether they are 

relevant to the solution of interest. The time discretization requirement along with the maximum 

time step limit come into play in further increasing the amount of computation. From (2-4a), a 

finer spatial discretization will result in a larger maximum time step. Consequently, the small 

features of a multi-scale simulation will greatly increase the number of time iterations that must 

be solved to reach some desired time evolution. In the best case scenario, the multi-scale 
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problem becomes very computationally expensive perhaps requiring hardware upgrades of the 

computing platform for faster processing or more memory, and in the worst case scenario, the 

simulation simply becomes unreasonable to run. 

 

2.2 Developments for Multi-Scale Simulations 

With multi-scale electromagnetic problems having long existed, there have of course 

been attempts to overcome the discussed issues via extensions of the conventional FDTD 

method. Unconditionally stable methods, contour path models, non-uniform grids, and 

unstructured grids will be briefly summarized as some of the more well-established of such 

extensions. It will be demonstrated that while they do have their own advantages in certain 

application spaces, they ultimately do not address all the issues associated with performing 

general multi-scale simulations. 

 

2.2.1 Unconditionally Stable Methods 

Unconditionally stable FDTD methods attempt to modify the conventional method such 

that the CFL limit on the maximum time step no longer applies. Any size time step may thus be 

chosen without rendering the simulation unstable, allowing for a reduction in the number of time 

iterations that need to be solved. Unconditionally stable methods represent a rather large 

category and include the alternating direction implicit method [11], the Crank Nicolson method 

[12], and the locally one dimensional method [13], among many others. With regards to 

application for multi-scale problems, while the large number of time iterations due to resolution 

of fine features is overcome, the excessive memory usage is still present as the entire simulation 

space must still be meshed uniformly. Aside from not addressing this limitation, unconditionally 
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stable methods additionally take away certain advantages of the conventional FDTD method. 

Most notably, the explicit nature of the method is typically lost. Matrix inversion and the 

complications that come with it such, as sparse matrices or ill conditioned matrices, must be 

introduced. Finally, while it is true that the time step may be chosen arbitrarily without 

instability, practically there are still limits due to the numerical dispersion typically increasing 

with the timestep [14]. 

 

2.2.2 Contour Path Models 

Another means of extending the conventional FDTD method to treat multi-scale 

problems is to use contour path models. These models are based on the concept of maintaining 

relatively larger unit cells as compared to those that would be required to rigorously resolve the 

fine features [4]. The effect of the fine features now occurring on a sub-cellular level is then 

accounted for indirectly by altering how the field values of the larger cells adjacent to the 

features are computed. Different models correspond to different means of altering the field 

values and depend on the fine feature being resolved, though they all have the similar 

characteristic of being derived from the contour integral form of Maxwell’s curl equations, hence 

the name “contour path models”. Figure 2.4 gives an example of modeling a thin sub-cellular 

material sheet. For the purposes of visualization, a two dimensional cross section of three 

dimensional space is shown. In this case the electric field Ey of the unit cells which contain the 

sheet is split into Ey,out and Ey,in outside and inside the material respectively to account for 

discontinuity at the material interface when formulating the integral expressions. In contrast to 

the conventional method of directly using an appropriately small unit cell to resolve the fine 

features, such models allow for improvements in both memory and computation requirements. 
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At first glance, this seems to solve the issues associated with performing FDTD multi-scale 

simulations; however, the derivation of these models introduces other issues. Again, while the 

conventional FDTD algorithm is derived from the differential form of Maxwell’s curl equations, 

these models are derived from the contour integral form. With general physical phenomena most 

often described in differential form, this shift to working with integral equations makes the 

creation of models that incorporate additional phenomena less straightforward. Thus, despite 

success of the contour path approach in modeling features such as thin slots [15], thin wires [16], 

material films [17], and many more, it is not appropriate for more general multi-scale problems. 

 

Figure 2.4: Contour path modeling of thin material sheet. 

2.2.3 Non-Uniform and Unstructured Grids 

While unconditionally stable methods overcome the excessive computation associated 

with having small unit cells and contour path models overcome the necessity to use small unit 

cells, probably the most intuitive means of approaching the multi-scale problem would be to 

modify the conventional FDTD algorithm such that uniform discretization is no longer needed. 

This would allow for the mesh to be optimized in terms of the system being modeled. This has 
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been accomplished through extensions that allow for non-uniform grids or unstructured grids. 

The difference between the two is that non-uniform grids allow for different sizes of orthogonal 

unit cells to be used in a single simulation [18] whereas unstructured grids allow for any 

configuration of arbitrary polyhedral cells [19]. In both cases the cells must still share common 

faces and edges. These grids seem to be quite attractive for use with multi-scale problems. Along 

with the reduction in memory requirements attributed from the fact that fine discretization may 

be used to represent small features whereas large discretization can be used for larger features, 

these grids also provide for a higher accuracy as compared to the contour path models [4]. 

Nevertheless, they are not appropriate for multi-scale simulations since the CFL limit remains. 

Consequently, the simulation time step is still limited by the smallest spatial dimension, and the 

number of time iterations that must be solved to reach a given time evolution is not increased 

from what it would have been using the conventional FDTD method. On top of this, the 

algorithm to implement these grids is derived from the integral form of Maxwell’s curl equations 

which inhibits incorporation of additional phenomena as discussed previously. Unstructured  

 

Figure 2.5: Unstructured grid cell. 
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grids have also been attempted by hybridizing the FDTD method and the finite element method 

[52], taking advantage of the fact that the finite element method inherently does not require 

structured meshing. However, the incorporation of a new computational method results in a loss 

of many of the advantages of the FDTD method discussed previously. A possible unstructured 

grid cell is visualized in Figure 2.5. These grids ultimately are suited more so towards 

conventional electromagnetic problems with geometries that cannot be accurately modeled using 

uniform orthogonal unit cells rather than multi-physics, multi-scale problems. 

 

2.3 Developments in Sub-Gridding 

2.3.1 Overview of Sub-Gridding 

One extension of the conventional FDTD method that was omitted previously for the 

sake of dedicating an individual section to it is sub-gridding methods. Sub-gridding refers to the 

procedure of embedding local regions of small orthogonal unit cells into a base simulation mesh 

of relatively larger orthogonal unit cells [22], as shown in Figure 2.6 in two dimensions. While 

seemingly similar in concept to non-uniform gridding, sub-gridding does not require cells to 

share faces and edges meaning the fine discretization region may be better localized. The more 

significant difference between this method and the previous ones discussed however is the fact 

that it mitigates the limitations of conventional FDTD towards being applied to multi-scale 

problems without inherently removing any of its advantages. Not only are memory requirements 

reduced by allowing for different sizes of unit cells in a single simulation, but also computational 

requirements are reduced by allowing for local time steps in regions of differently sized cells. 

The maximum time step in the base mesh is thus ideally unaffected by the incorporation of any 

embedded meshes. On top of this, the field values in both fine and coarse discretization regions 
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are solved using the conventional differential equation based FDTD algorithm. The only 

modification to the algorithm is an introduction of a means to couple the regions. Sub-gridding 

consequently shows promise in being an appropriate extension of conventional FDTD to handle 

general multi-scale problems efficiently. 

 

Figure 2.6: Sub-gridding mesh. 

2.3.2 Past Developments 

The concept of sub-gridding for the FDTD method had its origins in the “Expansion 

Technique” [20] where two separate conventional FDTD simulations were performed 

sequentially. The first simulation modeled the system on a large scale whereas the second 

modeled a local portion of the system containing fine details. Spatial and temporal interpolation 

of fields solved during the first simulation are used to obtain the fields on the simulation space 

boundary for the second simulation in order to couple the first simulation to the second. This 

work went rather unnoticed for some time until the 1990s where the number of publications 
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addressing the coupling of FDTD meshes of different spatial scales began to grow immensely. 

Rather than performing two separate simulations, [21] attempted to run a single simulation in 

which the simulation domain involved regions of both coarse and fine meshes. This would allow 

for coupling from both coarse to fine mesh as well as fine to coarse mesh simultaneously. The 

term “sub-gridding” was first used to describe such a concept in [22]. 

Initial means of sub-gridding more or less took the same approach. They all involved 

some general means of spatial and temporal interpolation in order to couple fields into the fine 

mesh region followed by some means of coarse mesh field correction using fine mesh fields to 

couple into the coarse mesh region. Interpolation based on a finite difference approximation to 

the second order wave equation was introduced in [22], efficiency was improved in [23], and the 

method was extended to three dimensions in [28]. Interpolation and correction based on an 

integral approach known as the finite integration technique was formulated in [24], a method 

involving time extrapolation and spline interpolation was used in [25], and a second order Taylor 

expansion based interpolation was used in [29].  

An important factor in making sub-gridding useful for general problems is the support for 

material traverse where simulation structures may cross through the coarse-fine mesh interface. 

The interpolation treatment in [26] allowed for both dielectric and perfect electric conductor 

(PEC) traverse of the interface. A current based method of coupling the fine and coarse meshes 

that also allowed for traverse of dielectrics and PECs was introduced in [31].  

Many of the methods to follow were quite similar to those that came before them with 

some minor adjustments [32, 35, 43, 47, 49]. Some of the more novel ideas however include 

coupling of the fine and coarse regions using the surface equivalence theorem [36, 41], coupling 

using finite element inspired concepts [38], and separated interfaces for temporal and spatial sub-
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gridding [40]. These sub-gridding methods have additionally inspired hybrid methods as well 

such as in [34] where the alternating direction implicit method is incorporated, [37] where the 

finite element method is incorporated, [45] where a model order reduction method is 

incorporated, or [46] where higher order FDTD is incorporated. 

A big problem with modifications to the FDTD method in general is that stability is often 

difficult to guarantee. Sub-gridding methods are no exception, and it is well known that most 

implementations suffer from what is often called “late time instability”. This type of instability 

has the distinguishing characteristic that it is not detectable until a large number of time 

iterations have been performed. The origins of late time instability are not clear due to the fact 

that it has been notoriously difficult to derive analytic stability conditions for sub-gridding 

methods [48]; however, a number of publications have attempted to tackle this problem. In [24, 

39, 40], the sub-gridding algorithm proposed was formulated as a set of matrix equations. While 

an explicit stability condition could not be developed, general guidelines in terms of properties of 

the matrices in terms of symmetry or being positive definite were derived. Maintaining these 

properties allows for guaranteed stability for some undetermined time step. In [27, 30], an 

interpretation of the sub-gridded FDTD algorithm using dual circuit equations was developed. It 

was postulated that in order to maintain stability of the algorithm, the dual circuit had to involve 

solely passive components. In [33], it was proposed that the source of late time instability is the 

differences in group velocity in the coarse and fine meshes. Spatial filtering was performed in 

order to ensure that only fields with wavenumbers such that the group velocity in each mesh was 

approximately the same remained to enhance stability. Spatial filtering for stability purposes 

with sub-gridding was performed again in [44], but not with the group velocity interpretation of 

instability, but rather with the CFL interpretation. In [38], finite element concepts were applied 
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to allow for stable coupling of meshes. Most recently, [48, 50] formulated the FDTD method in 

the form of a dynamical system. Conditions were then derived to ensure that such a system 

remained dissipative, allowing it to remain stable.  

 

2.3.3 Issues in Applicability 

From the previous section, it is clear that there has been, and still continues to be, 

extensive research on developing sub-gridded FDTD. Despite these developments, an accepted 

general sub-gridded FDTD method does not exist either in the academic community or in 

industry. The reasons for this have been hinted at in the previous section and will be explicitly 

discussed in detail here. Specifically, all previously developed sub-gridding methods have been 

lacking in a combination of stability, material traverse, and efficiency. 

The necessity of stability in a numerical method is obvious; without it, simulation results 

would be unphysical and useless. Unfortunately, late time instability is ubiquitous in nearly all 

sub-gridding algorithms. Reiterating from the previous section, this is a category of instability 

whose effects are not evident until a large number of time iterations have been solved. An 

example of a time domain field waveform of a simulation demonstrating late time instability is 

shown in Figure 2.7. It may be observed that in the early time iterations there is no detectable 

sign of instability. This characteristic of late time instability has introduced a gray area in terms 

of acceptability. In the time iterations prior to the emergence of this instability, fidelity of the 

simulation results is maintained; thus, some argue that late time instability is not a problem so 

long as it occurs after a large enough time iteration that practical simulations would not be 

affected. Often, researchers will even reduce generality of their algorithms by introducing 

empirical field averaging [25] or increase computational efficiency by spatial filtering [44] in 
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attempts to delay the onset of this late time instability. However, late time instability has another 

characteristic that is frequently overlooked—its obscurity. The inability to analytically describe 

this instability leads to a lack of understanding not only about its origin but also about its onset 

and how to prolong it. Though many researchers use methods that successfully suppress this 

instability in a specific scenario, its onset in general problems is extremely unpredictable [28], 

making algorithms that possess it unusable for the most part. There are few publications that 

attempt to present a sub-gridding algorithm that is stable by construction rather than simply one 

with a suppressed instability; these publications are mentioned in the previous section. 

Nevertheless, all of these are still plagued by other problems that prevent general applicability. 

 

Figure 2.7: Late time instability. 

One of these other problems is material traverse. Support for material traverse in a sub-

gridding algorithm is another necessary characteristic to allow general applicability and thus 

widespread acceptance. As briefly mentioned earlier, material traverse refers to the situation in 

which the fine-coarse interface is not fully located in a region of constant material properties. 

Support for this scenario allows for materials to extend from one mesh to the other across the 
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interface, as shown in Figure 2.8. Clearly, in a multi-scale simulation the features that are desired 

to be discretized at a finer resolution are not in general suspended in a region of homogeneous 

material such that a fine-coarse interface is fully located in a single material. A fair number of 

methods proposed in past literature have attempted to treat this problem as mentioned in the 

previous section. Among those that also have some degree of provable stability are [24, 39, 48]. 

Between these, [24] and [39] can handle only PEC traverse whereas [48] can handle dielectric 

and conductors but not PEC traverse. Yet even neglecting the issue of limited material traverse 

support, these algorithms are not acceptable for general use due to one more reason. 

 

 

Figure 2.8: Material traverse. 

Neglecting material traverse capabilities for the time being and considering all the sub-

gridding methods claiming to be stable by construction, there is also the problem of efficiency. 

As discussed previously, one of the most attractive features of sub-gridding is that it allows for 

local time steps. Thus, in accordance with the CFL limit, while the fine mesh would require a 

small time step due to its fine resolution, the coarse mesh may use a larger one due to its larger 
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spatial resolution. This improves efficiency as the number of computations required to achieve 

some final time evolution of the system is greatly reduced. In fact, this improvement in 

efficiency is one of the biggest factors separating sub-gridding methods from non-uniform grid 

or unstructured grid methods. Unfortunately however, none of the methods that are stable by 

construction have been able to realize this efficiency benefit. In [24, 39, 40] using the matrix 

form approach to have stability by construction, stable simulations either reported a time step 

that had to be reduced to that for which efficiency improvements were nonexistent, or the time 

step was not mentioned at all. In such cases where the time step was not mentioned explicitly, it 

is assumed that the same efficiency issues were experienced. In [38, 48, 50] which use various 

other methods to propose a stable sub-gridded method by construction, a global time step was 

assumed from the very beginning, thus efficiency benefits were never expected.
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CHAPTER 3 

A General Sub-Gridding Method 

 

3.1 Preliminary Information 

The new proposed means of sub-gridding spawned from a collective analysis of past 

literature as well as persisting issues in realization. Prior to delving into the implementation and 

details of the method however, the establishment of some preliminary information is in order. 

This information will facilitate understanding of key aspects of the algorithm as well as any 

accompanying figures. 

 

3.1.1 Spatial Domain 

For the proposed method, just as with sub-gridding methods in past literature, integration 

of the fine mesh locally into the coarse mesh is accomplished by directly replacing coarse mesh 

cells with fine mesh ones. In other words, the cells of each mesh do not share edges or faces and 

there is no structural change leading to non-uniformity or non-orthogonality existing in any 

individual region. In all subsequent figures and explanations, a unit cell with electric field edge 

components will be assumed as in Figure 2.1. Consequently, located on the interface between the 

fine and coarse mesh will be tangential electric field components and normal magnetic field 

components. A two dimensional visualization of a portion of the three dimensional interface is 

provided in Figure 3.1. For the remainder of this thesis, two dimensional visualizations of three 

dimensional FDTD meshes will be used primarily. Additionally, for the purpose of 

distinguishing between the two meshes, electromagnetic fields of the coarse mesh will be 
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denoted with upper case letters whereas fields of the fine mesh will be denoted with lower case 

letters. Specific components will be referenced using lower case letter subscripts. Subsequent 

explanations will additionally assume an odd refinement factor as in general, this allows for 

collocation of coarse and fine mesh interface field components and leads to a simpler algorithm. 

With this being said, there is nothing inherent about the algorithm that poses a barrier to  

 

Figure 3.1: Spatial domain of proposed method. 

 

Figure 3.2: Buffer region. 
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treatment of even refinements. Figures will specifically demonstrate the case of an odd 

refinement of three. Finally, the region corresponding to the coarse mesh unit cells located 

immediately adjacent to the coarse-fine interface will be referred to as the “buffer region”. This 

region is indicated as the shaded area in Figure 3.2 and is important in the coupling of fine and 

coarse regions as will be evident later. 

 

3.1.2 Temporal Domain 

Based on the CFL limit, the ratio of the maximum time step in the coarse mesh to that of 

the fine mesh must be equivalent to the spatial refinement factor. Thus, for the proposed method 

the time steps used in each mesh, whether chosen to be at the maximum or not, will have a ratio 

equal to the spatial refinement. In other words, the number of time iterations that must be 

performed in the fine mesh to have the same total time evolution as one time iteration of the 

coarse mesh is equal to the refinement. To reiterate, the subsequent algorithm overview will 

assume an odd refinement and the subsequent figures will assume a specific odd refinement of 

three. With the fine mesh fields essentially having a higher sampling frequency and being solved 

at more discrete time points as compared to the coarse mesh fields, it is chosen to have alignment 

of the electric field samples of each mesh in time as shown in Figure 3.3. This figure visualizes 

the temporal locations at which all the fields are solved and it may be seen that for an odd 

refinement, in aligning the electric field samples, the magnetic field samples will also turn out to  

 

Figure 3.3: Time locations of solved fields in the proposed method. 
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be aligned. Ultimately however, this behavior is irrelevant to implementation of the algorithm. 

 

3.1.3 Known Fields 

In performing any FDTD based simulation, there must be some arrangement of known 

field values in time at the beginning of each time iteration. Solving to move on to the next time 

iteration causes a uniform shift in all these known values forward one time step, thus their 

arrangement with respect to one another remains unchanged. For the proposed method, this 

arrangement of known fields relative to one another is indicated in Figure 3.4. All components 

for a given field are assumed to be known at their respective time location for all discretized 

spatial locations. After solving a time iteration to evolve one coarse mesh time step forward, the 

relative locations of the known values in time remains the same. One important thing to 

recognize here is that for a given initially known field value, it is inherently implied that all 

values occurring at past times are also known. Clearly, simulating up to some point in time then 

values from the beginning of the simulation up to that point should have been solved for and thus 

known; however, values at times prior to the start of the simulation are also taken to be known. 

No generality is lost with such an assumption as the vast majority of time domain 

electromagnetic simulations assume zero initial dynamic field everywhere in space. Field values 

are thus known for all times prior to any excitation, with spatial distributions typically chosen as 

part of the simulation setup. 

 

Figure 3.4: Initially known fields at the start of a time iteration. 
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3.2 Overview of the Algorithm 

 With the preliminary information taken care of, the proposed sub-gridding method can 

now be examined in greater depth. The steps of implementation will be enumerated followed by 

a detailed discussion of certain aspects of the method. This section then concludes with an 

analysis of how the issues in realization that have plagued past methods were treated. 

 

3.2.1 Steps of Implementation 

1) Magnetic field components in the coarse region are interpolated in time using the known value 

at both the current and previous timestep to obtain values at the currently known time location of 

the magnetic field components in the fine mesh region. This interpolation is described by (3-1) 

and visualized in Figure 3.5. 

 
𝐻𝑖𝑛𝑡 =

1

𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡
(𝐻|𝑛−1/2 (

𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 − 1

2
) + 𝐻|𝑛+1/2 (

𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 + 1

2
)) (3-1) 

 

This time interpolated magnetic field will be referred to as Hint. Following this interpolation, all 

the coarse mesh electric and magnetic field components are known at the same time locations as 

their corresponding fine mesh fields. 

 

Figure 3.5: Time interpolation in step 1. 

2) The necessary coarse and fine mesh electric fields as well as the necessary time interpolated  
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magnetic fields and fine mesh magnetic fields are used to spatially interpolate for electric and 

magnetic fields at locations within the buffer region. Trilinear interpolation is applied for most of 

the results later presented in Chapter 4. This interpolation method is described by (3-2) to obtain 

the value at a point within the general mesh cell shown in Figure 3.6.  

𝑘(𝑥, 𝑦, 𝑧) =
1

∆𝑥∆𝑦∆𝑧
[(∆𝑦 − 𝑦) 𝑦] [

(∆𝑥 − 𝑥) 𝑥 0 0

0 0 (∆𝑥 − 𝑥) 𝑥
] [

𝑘111 𝑘112

𝑘211 𝑘212

𝑘121 𝑘122

𝑘221 𝑘222

] [
(∆𝑧 − 𝑧)

𝑧
] (3-2) 

 

In this case k represents either an electric or magnetic field component in space, and the equation 

assumes k111 to be the origin for the sake of simplicity. 

 

Figure 3.6: Trilinear interpolation points. 

The locations of interpolated fields within the buffer region correspond to the spatial locations 

that would exist assuming the buffer region is composed of fine cells. In other words, after this 

interpolation it may essentially be interpreted that the fine mesh region has been extended into 

the buffer region. This combination of the fine mesh region with the spatially interpolated field 

values in the buffer region will be referred to as the “extended fine mesh region”. Figure 3.7 

visualizes the extended fine mesh region as well as indicates in gray the effective fine cells of the 
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buffer region. Figure 3.8 visualizes the known fields following the completion of this step, where 

eext and hext represent the fields within the extended fine mesh region. 

 

Figure 3.7: Spatially interpolated fields in buffer region. 

 

Figure 3.8: Known fields after step 2.  

3) Conventional FDTD is performed in the extended fine mesh region for a number of time 

iterations equal to the refinement. The known fields following the completion of all these time 

iterations are visualized in Figure 3.9. 

 

Figure 3.9: Known fields after step 3. 
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4) The field values of the buffer region are discarded as they are no longer of use. Figure 3.10 

visualizes the known fields after this step where the ‘ext’ subscripts have been dropped to 

represent the buffer region fields being discarded. 

 

Figure 3.10: Known fields after step 4. 

5) From here, the fine mesh electric field components collocated with those of the coarse mesh 

on the coarse-fine interface are seen to be exactly those coarse mesh values at the next timestep 

of the coarse mesh. The collocated interface coarse mesh electric fields are thus set to be equal to 

these fine mesh values. All other coarse mesh electric field values not located on the coarse-fine 

interface may then be solved for the next time step using the conventional FDTD algorithm. All 

coarse mesh magnetic field values can subsequently be solved for next time step likewise using 

the conventional FDTD algorithm. From Figure 3.11 it may be seen that the known field values 

have all evolved one coarse mesh time step from those initially known throughout all space. 

Consequently, the time iteration is complete. 

 

Figure 3.11: Known fields after step 5. 

6) Repeat steps 1-5 to continue solving for future times. 
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3.2.2 Discussion of Implementation 

With the steps to implement the algorithm laid out above, there are some details that are 

worth expanding upon to better appreciate how the proposed method works. With sub-gridding, 

the principal problem is how to treat the coarse-fine interface. This interface is not only where 

information is transferred back and forth between the fine mesh and the coarse mesh, but also it 

is where the conventional FDTD algorithm can no longer be applied. Specifically, it may be seen 

that on this interface and with the assumed known field values at the beginning of the time 

iteration there is no means of solving for the tangential electric fields at the next time step in 

either the fine or coarse meshes. This interface is the simulation space boundary of the coarse 

and fine mesh regions. Conventionally, simulation space boundaries can be defined to be either 

perfect electric conductors or perfect magnetic conductors. Alternatively, a boundary condition 

which absorbs incident fields may be implemented depending on the type of simulation being 

performed. Clearly, none of these are appropriate for this coarse-fine interface and some other 

treatment must be applied to obtain the boundary values and allow for FDTD simulation to 

proceed in each simulation space. Based on the arrangement of known field values at the 

beginning of the time iteration, in the coarse mesh region all electric field values can be solved 

for the next time step by conventional means except for the tangential components lying on the 

coarse-fine interface. Once these are found, all the coarse mesh magnetic field values can be 

solved to complete one time iteration in the coarse mesh. A similar issue exists in the fine mesh; 

however, due to the fact that a number of fine mesh time iterations equal to the refinement is 

required to evolve the fine mesh fields one coarse mesh time step, the problem becomes much 

more complicated. Values of tangential electric fields on the interface must be found now for 

multiple time instances instead of just one for a given coarse mesh time iteration. Finally, the 
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interface electric field values in both the coarse and fine regions must be ultimately be such that 

information may be transferred between the regions. All of these problems are treated using the 

concepts of the buffer and extended fine mesh regions.  

Fields in the buffer region are obtained by first performing a time interpolation of coarse 

mesh magnetic fields to obtain values at the same timestep as the known fine mesh magnetic 

fields. This time interpolation is required in order to have accurate subsequent spatial 

interpolation that uses field values all at the same time location. No time interpolation for electric 

field in the coarse region is necessary as there is time alignment assumed. Spatial interpolation is 

then performed to obtain electric and magnetic field values in the buffer region such that it can 

be combined with the fine mesh region to create the extended fine mesh region. Given that areas 

outside of the original fine mesh region should not need high spatial resolution to accurately 

model the field distribution or simulation structure, this spatial interpolation is justified in terms 

of accuracy. From here, conventional FDTD is performed in the extended fine mesh region a 

number of time iterations equal to the refinement. While there still exists the issue of unknown 

boundary field values in this extended region, the boundary has been extended beyond that of the 

original fine mesh region. Consequently, in a refinement number of timesteps the error due to 

whatever erroneous value the boundary fields may have will not affect the original fine mesh 

region. This is visualized in Figure 3.12 for an assumed refinement of three. The field 

components labeled in red indicate erroneous field values resulting from unknown boundary 

fields. It may be seen that though the error propagates as time iterations are solved, it will not 

affect the interface electric fields when a refinement number of time steps are solved. The values 

in the buffer region, on the other hand, will have been corrupted and are thus discarded 

accordingly. The fields in the original fine mesh region have now been time evolved one coarse 
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mesh time step. Additionally, the interface coarse mesh electric field values at the next timestep 

are exactly the new collocated fine mesh electric field values. Conventional FDTD can then be 

used to obtain the rest of the fields at the next time step in the coarse mesh and complete the 

coarse mesh time iteration. 

 

Figure 3.12: Corrupted fields on each time iteration. 

3.3 Treatment of Issues in Applicability 

The issues in applicability of past sub-gridding methods were stated to be stability, 

material traverse, and efficiency. In stability and efficiency, there is no direct treatment as of yet. 

Clearly, the algorithm is derived for the case of both co-located temporal and spatial sub-

gridding interfaces as well as local time steps in the coarse and fine meshes for maximum 

efficiency, but the lack of a formal stability analysis makes the benefit of these traits somewhat 
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hollow at this point. As with other sub-gridding methods that have stability analyses associated 

with them, ensuring stability may require reduction of efficiency, but this is unknown at this 

time. Nevertheless, this method lends itself well to a stability analysis. Unlike other sub-gridding 

algorithms that rely on second order and higher interpolation schemes for their accuracy, this 

algorithm is already quite accurate using just linear interpolations. This supports the usage of 

linear algebra in order to perform a stability analysis and derive conditions for stability.  

 In terms of material traverse, the proposed algorithm is theoretically well suited to handle 

dielectric traverse inherently with minimal modifications to the algorithm. For a dielectric 

traverse across the coarse-fine interface, based on the principle of the algorithm it is known that 

so long as accurate field interpolation in the buffer region can be accomplished, there should be 

no issues in accuracy and validity of the algorithm. Magnetic field interpolation in the buffer 

region may be performed with no special treatment as magnetic fields are continuous across the 

interface of a dielectric. Interpolation of tangential electric field components may also be 

accomplished with issues following the same reasoning. The only potential problem lies with 

interpolation of normal electric fields across the interface where it is known that they are 

discontinuous. However, this can be easily treated by first converting these components to 

components of electric displacement as defined in (3-3), where εr and εo are the relative and free 

space permittivity respectively.  

 𝐷⃑⃑⃑ = ϵ𝑟ϵ𝑜 𝐸⃑⃑ (3-3) 

 

It is well known from electromagnetic theory [51] that the normal components of electric 

displacement are continuous across a dielectric interface so long as no free surface charges exist. 

Thus, interpolation can now be performed after which the electric displacements are converted 
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back to electric fields. The conversion procedure prior to interpolation is visualized in Figure 

3.13. 

 Overall, the promise of this proposed method lies in the fact that it is different in 

approach as compared to methods of the past. It does not obtain the troublesome interface fields 

directly from interpolation or extrapolation or integral methods or equivalent source methods. 

Rather, it obtains then from the conventional FDTD algorithm itself. The consequences of such 

an approach are still in need of further analysis. 

 

Figure 3.13: Material traverse with the proposed method. 
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CHAPTER 4 

Numerical Results 

 

Various numerical tests were performed to assess the capabilities and characteristics of 

the proposed sub-gridding method. Among those discussed in this chapter include the simulation 

of an electric line source radiating in the presence of a conducting sphere. Results are compared 

with those found using the conventional FDTD method for the purposes of verification as well as 

investigation into the practicality of sub-gridding. A direct test of numerical reflection from the 

coarse-fine interface is also performed. Several parameters are varied in this case to evaluate 

accuracy of the coupling between coarse and fine meshes and the factors that contribute to 

improving it. Finally, the proposed method is analyzed in the late time through the simulation of 

a resonant cavity. A large number of time iterations are solved in an attempt to reveal any 

intrinsic instabilities or other spurious behaviors. 

 

4.1 Radiation in the Presence of a Conducting Sphere 

4.1.1 Motivation 

A good way to both verify that the proposed sub-gridding method in fact produces 

meaningful results as well as assess its application space is to directly compare it with the 

conventional FDTD method. After all, not only does the conventional method already have a 

well proven track record, but also the goal of the proposed method is ultimately to extend the 

range of applicability from that of the conventional method. With the specific application space 

of interest being multi-scale simulations, the comparison is made by simulating an electric line 
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source radiating in free space in the presence of a conducting sphere as shown in Figure 4.1. 

Such a scenario was chosen due to the fact that while a coarse mesh is sufficient to model the 

fields in free space where they will have relatively low spatial variation, a finer mesh is better 

able to model the sphere. It may be recalled that FDTD requires orthogonal rectangular cuboid 

unit cells and so curved surfaces are subject to a “staircase” approximation. With finer cells this 

approximation improves, allowing for more accurate modeling and thus more accurate results. A 

cross section of a sphere modeled using orthogonal cells is shown in Figure 4.2; as the cell size 

decreases the model is more accurate. Simulation is performed using each of a fully coarse mesh 

conventional FDTD method, a fully fine mesh conventional FDTD method, and the proposed 

sub-gridding method. The fully coarse mesh represents the case where the resolution is sufficient 

for fields in free space but crude in terms of modeling the sphere, whereas the fully fine mesh  

 

Figure 4.1: Radiation in the presence of conducting sphere simulation scenario. 

 

Figure 4.2: Staircasing approximation. 



40 
 
 

represents a more accurate modeling of the sphere. The sub-gridding is applied with fine and 

coarse meshes with the same resolution as the fully fine and fully coarse meshes respectively. 

 

4.1.2 Simulation Setup 

Going into the specifics of the scenario, the sphere is taken to have a diameter of 240 mm 

and a conductivity of 6e7 S/m. The electric line source is z directed, 75 mm long, and 

sinusoidally excited with a frequency of 1 GHz. In terms of location, the source is 105 mm away 

from the sphere and centered on an axis of symmetry of the sphere. The observation point at 

which fields are probed is located on the same axis, but on the opposite side of the sphere. This 

point is also 105 mm away from the sphere. Figure 4.3 illustrates some of these specifications as 

well as some characteristics of the simulation setup. Ultimately there were five separate 

simulations run for which results will be analyzed. One corresponds to a fully coarse mesh, two 

correspond to a fully fine mesh with refinements of three and five with respect to the fully coarse 

mesh, and two correspond to a sub-gridded mesh with similar refinements of three and five. For 

all simulations, the time step was chosen to be 0.99 of the maximum under the CFL limit. The 

fully coarse mesh used a simulation space composed of 60x60x60 cubic unit cells with the edge 

of a cell measuring 15 mm. The fully fine mesh used a simulation space of 140x140x140 and 

220x220x220 cubic unit cells with cell edges of 5 mm and 3 mm for the cases of a refinement of 

three and five respectively. Finally, the sub-gridded simulation space was the same as that of the 

fully coarse mesh with the exception of an inclusion of a fine mesh region of dimensions 

330x330x330 mm into the center. The unit cell size of this region is the same as that of the fully 

fine mesh for a given refinement. Linear interpolation was used in all sub-gridding cases to 
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determine the fields existing in the buffer region. Each simulation space included a ten cell thick 

perfectly matched layer to replicate the infinite extension of free space. 

 

Figure 4.3: Schematic of simulation setup for radiation in the presence of conducting sphere. 

4.1.3 Simulation Results 

Time domain results for the case of a refinement of three are shown in Figure 4.4 for the 

z component of the electric field probed at the observation point. With a quick glance it may be 

seen qualitatively that the discrepancy between the sub-gridding results and the fully fine mesh 

results is much smaller than that between the fully coarse mesh and the fully fine mesh. The 

charts of Figure 4.5 quantify this error for each refinement case well as list the runtimes of every 

simulation and verify that significantly improved accuracy is achieved using the sub-gridded 

method as opposed to the fully coarse mesh. The percent errors as displayed in these charts are 

calculated (4-1), where Ez refers to the z component of electric field for either the sub-gridded 

case or fully coarse mesh case and Ez,f refers to that of the fully fine mesh case. The summation 

is over all time samples solved for in the simulation. 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 = 100 ∙

∑ |𝐸𝑧(𝑛∆𝑡) − 𝐸𝑧,𝑓(𝑛∆𝑡)|𝑛

∑ |𝐸𝑧,𝑓(𝑛∆𝑡)|𝑛

 (4-1) 

 

With regards to runtime, the fully coarse mesh had the shortest. This is to be expected given the 

relatively small number unknowns solved for on each time iteration as well as the small number 

of total iterations required to achieve a given time evolution of the system. The fully fine mesh 

had the longest runtime, again to be expected for analogous reasons. The runtime of the sub-

gridded method was in between these two extremes but was nevertheless a substantial 

improvement over that of the fully fine mesh. For a refinement of three, the runtime of the sub-

gridding method was approximately 13% that of the fully fine mesh, and for a refinement of five 

this number decreased to approximately 10%. This demonstrates the ability of the sub-gridding 

method to treat multi-scale problems in a more computationally efficient way than using a fully 

fine mesh.  

 

Figure 4.4: Probed field for refinement of three. 

For the same simulations spatial domain plots are also generated along an observation line as 

shown in Figure 4.6 for various time instances. The intention of these plots is to demonstrate 
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Figure 4.5: Percent error and runtime for refinement of three (top) and five (bottom). 

that the distribution of fields in general agrees better with the fully fine mesh case when using 

the sub-gridded method as opposed to a conventional filly coarse mesh. The results are shown 

for a refinement of three in Figure 4.7 for time instances of 4.27ns, 4.39ns, 4.50ns, 4.62ns, and 

4.73ns corresponding to data points on a quarter wavelength of the fine mesh waveform going 

from peak to peak. Again, a qualitative examination shows that the spatial distribution of the z  

 

Figure 4.6: Observation line for spatial domain field plots. 
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Figure 4.7: Spatial distribution of field for a refinement of three for various time instances. 

component of the electric field are much improved using the proposed sub-gridding method as 

compared to using the conventional fully coarse mesh. Overall, this numerical test clearly shows 

the capabilities of the proposed method in increasing the accuracy of multi-scale simulations 

without suffering from the huge resource requirements of using a globally fine mesh. 

 

4.2 Interface Reflection 

4.2.1 Motivation 

While the previous section demonstrated well the capabilities of the sub-gridding method 

in comparison to the conventional method for a specific simulation scenario, it is desired to have 

a more application-independent analysis. Results from such an analysis do a better job of 

generally characterizing the method. Following this motivation, reflection from the interface 

between the coarse mesh and fine mesh will be examined to quantify the quality of coupling 

between meshes. In theory if the coupling were perfect, a wave propagating from one region to 
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another would experience no reflection at the interface. On the opposite extreme if there were no 

coupling whatsoever, for example if the interface was a perfect electric conductor sheet, then 

there would be complete reflection. The amount of reflection is consequently one potential figure 

of merit to describe coupling between meshes.  

 

4.2.2 Simulation Setup 

To obtain the reflection information, the proposed sub-gridding method is applied to 

model a free space region where half of the space is discretized with a coarse mesh and the other 

half with a fine mesh. The FDTD total-field/scattered-field (TF/SF) technique is then 

implemented in which a numerical boundary is introduced in the simulation space. Within this 

boundary both the incident field from excitations and the scattered field from any reflections will 

exist whereas outside the boundary only the scattered field remains. The application of this 

technique is critical as it allows for scattered reflections from the coarse-fine interface to be 

accurately extracted. A sinusoidal plane wave is excited in the total field region of the coarse 

mesh traveling towards the coarse-fine interface. When this wave is incident on the interface 

there is some numerical reflection, which then propagates back through the total field region 

toward the TF/SF boundary. Once it reaches this boundary, the reflected wave alone is 

transmitted and may be used to determine the reflection coefficient of the interface. This 

simulation scenario is visualized in Figure 4.8 where an x-polarized z-directed plane wave is 

assumed. The superscripts in this figure represent either incident, reflected, or transmitted waves. 

The reflection coefficient Γ is calculated according to (4-2), where Ex,amp represents the 

amplitude of the electric field wave. An analogous equation using the incident and reflected 

magnetic field amplitudes would be equally valid. 
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 Γ = 20𝑙𝑜𝑔(𝐸𝑥,𝑎𝑚𝑝
𝑟 /𝐸𝑥,𝑎𝑚𝑝

𝑖 ) (4-2) 

 

This simulation was performed varying the resolution of the coarse mesh, the refinement of the 

fine mesh, and the interpolation method used to obtain field values in the buffer region as per the 

sub-gridding algorithm. The resolution in terms of number of unit cells per wavelength of the 

plane wave in the coarse mesh is swept from ten to fifty. The lower limit of ten was chosen as 

this is the typical lower limit for conventional FDTD simulations to minimize numerical 

dispersion. The refinement of the fine mesh was swept among the values 3, 5, 7, and 9. The 

interpolation methods included linear, cubic, modified Akima cubic Hermite, and spline 

interpolation and were implemented using the MATLAB function interp1(). For all simulations a 

time step that was 0.99 times the maximum under the CFL limit was used. In terms of other 

simulation parameters such as the number of cells in each of the coarse mesh, fine mesh, or 

scattered field region, these were dependent on the number of unit cells per wavelength chosen, 

and care was taken to make sure that no other reflections corrupt the results of interest. 

 

Figure 4.8: Interface reflection simulation scenario. 
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4.2.3 Simulation Results 

The plots in Figures 4.9 and 4.10 show the results of this reflection test. In all cases it is 

seen that reflection from the coarse-fine interface decreases as the number of unit cells per 

wavelength increases. This is an expected result as a smaller unit cell relative to wavelength 

means that there is less spatial variation that could occur within the dimensions of a single unit 

cell. The process of interpolation for the buffer region would thus provide results more 

representative of the actual field variation, allowing for simulation within the extended fine mesh 

region to proceed with more accurate field values, making the overall coupling more accurate. In 

Figure 4.9, effects of sweeping the refinement are visualized. The trend in refinement and 

reflection coefficient is not obviously clear from these results. For example, a refinement of 

seven shows worse performance than a refinement of five for lower spatial resolutions, but better 

performance for higher resolutions. However, a refinement of nine undisputedly improves the 

reflection coefficient as compared to any of the smaller refinements. For each of these cases 

linear interpolation used for the buffer region. In Figure 4.10, a set refinement of five is chosen  

 

Figure 4.9: Reflection coefficient for various refinements. 
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Figure 4.10: Reflection coefficient for various interpolation methods. 

and the interpolation method is varied. It may be seen that spline interpolation allows for a 

universal improvement in terms of reducing reflection coefficient for all cases of spatial 

resolutions considered. Comparatively, the other interpolation methods applied have only 

marginal differences. Among them, linear interpolation would be the best choice in terms of 

accuracy with the highest computational efficiency. 

 

4.3 Late Time Behavior 

4.3.1 Motivation 

In making modifications to a time domain method often certain characteristics of the 

modified algorithm are not obvious in simulations that terminate in a relatively short number of 

time iterations. Most notoriously, instability in the late time may be exhibited where field values 

undergo exponential growth rendering the simulation results useless. In analyzing the late time 

behaviors of the proposed sub-gridding method an empty resonant cavity with perfect electrically 

conducting walls is modeled. An intra-cavity source is used to inject a finite amount of energy in 



49 
 
 

the form of dynamic fields which is then simulated over a large number of time iterations. Due to 

the lack of loss mechanisms in the cavity, these fields will eventually possess some nontrivial 

steady state behavior. Probing the fields at some point within the cavity will then allow for this 

behavior to be observed, where any deviation from expectations will represent a fault in the 

algorithm.  

 

4.3.2 Simulation Setup 

The simulation scenario is presented in Figure 4.11 where a cubic cavity is modeled with 

dimensions of 150x150x150mm. The portion of this cavity to be discretized with a fine mesh is 

chosen to be a cube located at the center with dimensions of 50x50x50mm while the rest of the 

space is discretized with a coarse mesh. Injection of energy is accomplished with an electric line 

source that is z directed, 17.5 mm long, and excited with a Gaussian pulse. The spectrum of the 

excitation is shown in Figure 4.12 and demonstrates a center frequency of 1 GHz with a full 

width at half maximum of approximately 620 MHz. The source is located at the center of an xz- 

 

Figure 4.11: Schematic of simulation setup for resonant cavity. 
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Figure 4.12: Spectrum of excitation for resonant cavity. 

plane wall of the cavity and distanced 12.5 mm from this wall. The z component of the electric 

field is probed at an observation point centered on the opposite xz-plane wall and similarly 

located 12.5 mm from this wall. In discretizing the simulation space the coarse mesh had the 

dimensions of 60x60x60 unit cells, whereas the fine mesh had the dimensions of 60x60x60 unit 

cells corresponding to a refinement of three. 

 

4.3.3 Simulation Results 

The results visualized in Figure 4.13 and 4.14 correspond to a time step that was 0.8 

times the maximum that would have been permitted by the CFL limit. Large time steps did in 

fact demonstrate the common problem of late time instability. However, with this empirical 

decrease it may be seen from Figure 4.13 that a large number of time iterations may be 

performed with no signs of instability. This specific plot visualizes the field value at the 

observation point for up to 150,000 time iterations performed. Despite the absence of late time 

stability, there does appear to be signs of numerical attenuation. This attenuation, while certainly 

a flaw of the algorithm that must be addressed in future work, is nevertheless not as catastrophic 



51 
 
 

a flaw as instability as fidelity of the waveform is maintained. To support this claim, the first 

5,000 and last 5,000 time samples were taken from the observed data from Figure 4.13. These 

are referred to as a “early time” and “late time” portions of the measured signal respectively. A  

 

 

Figure 4.13: Probed field of resonant cavity. 

 

Figure 4.14: Spectrum of early and late time windows of probed field. 
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Hanning window is applied to each portion and the results transformed to the frequency domain 

using an FFT algorithm. Plotting this in Figure 4.14 demonstrates that while attenuation does 

occur, the spectrum of the solution is otherwise relatively unaffected, and thus the late time 

solution is just an attenuated version of the correct solution. Late time instability, on the other 

hand, does not tend to maintain the quality of the late time solution. Overall, an empirical 

decrease in the maximum allowed time step does seem to suppress late time instability, though 

the algorithm is still affected by a numerical attenuation.



53 
 
 

CHAPTER 5 

Conclusion and Future Work 

 

 Multi-scale simulations are inherently problematic for the conventional FDTD method. 

The need to resolve both small and large features results in the consumption of copious amounts 

of computational resources due to the requirement of uniform spatial discretization as well as the 

existence of the CFL limit. Uniform discretization in space causes over-resolution of large 

features of modeled structures and regions of space that do not experience high spatial variation 

of fields as a consequence of the need to resolve smaller features also present in the simulation 

space. The CFL limit describes the maximum time step of the simulation in order to maintain 

stability and is proportional to the smallest spatial feature resolved. Thus, the number of time 

iterations required to achieve a given time evolution of the simulation is inversely proportional to 

the smallest spatial feature resolved. These problems may be overcome by sub-gridding, or the 

introduction of local domains of fine resolution into a base domain of coarser resolution in order 

to resolve regions with smaller features of interest. The non-uniformity of the mesh allows for 

reduced memory usage, and with independent time steps used in each domain, the greatest 

efficiency in terms of reducing the number of computations is achieved. Past methods of sub-

gridding have been consistently plagued by the lack of a combination of stability, material 

traverse support, and efficiency and thus none have ever been widely accepted. The proposed 

algorithm in this thesis represents a new approach to the sub-gridding problem. It differs from 

past methods primarily in its ability to obtain coarse-fine interface fields from the conventional 

FDTD. Numerical tests with the proposed method have validated its results and shown its 
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capabilities in offering improvement in the accuracy of simulating fine features while 

maintaining very reasonable levels of computational complexity. Testing has also shown low 

levels of reflection from the interface between the coarse and fine meshes that improve with 

overall resolution of the system. Finally, the numerical analysis of late time stability has shown 

that with a minor decrease in the time step with respect to the maximum according to the CFL 

limit, there is no late time instability evident up to 150,000 time steps.  

 Despite some of the successes of the proposed algorithm, there is still much future work 

to be done to improve its ability to be applied to general problems. For one, an analytical 

examination into the stability of the method is required. Without provable stability and 

conditions to maintain it, there is no way that the goal of a widely accepted standard sub-

gridding method can be achieved. Late time instability is not as simple in origin as CFL based 

stability and so without knowing its source for a given algorithm, there is no way to know if it is 

worth applying that algorithm to some general problem. Past literature regarding the stability for 

sub-gridded algorithms will guide the way for this effort. Another important development is the 

verification of material traverse support. In theory, support for dielectric traverse is possessed by 

the proposed algorithm, but this has yet to be implemented. A means of treating perfect electric 

conductor traverse has also been yet to be developed. 

 Modern research problems have evolved to become highly interdisciplinary, involving 

phenomena from various areas of physics, yet numerical methods have not kept up. In expanding 

the capabilities of the FDTD method to treat such problems, the biggest hurdle is the resolution 

of disparate spatial scales required by the multiple physical phenomena. An efficient and general 

sub-gridding method is a necessary development that will undoubtedly give rise to huge leaps in 

the advancement of numerical methods.
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