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Optimizing Receiver Configurations
for Resolution of Equivalent Dipole Polarizabilities

In Situ

J Torquil Smith, H Frank Morrison
Lawrence Berkeley National Laboratory

Berkeley, California 94720

ABSTRACT

Equivalent dipole polarizabilities are a succinct
way to summarize the inductive response of an iso-
lated conductive body at distances greater than the
scale of the body. At any time lag or frequency,
an equivalent dipole polarizability response is com-
prised of 9 parameters; six specifying an equiva-
lent dipole polarizability matrix (which is symmet-
ric) and three specifying the apparent location of
the body center. Smith and Morrison (2002) give
equations for calculating uncertainties in equivalent
dipole polarizability and position based on analysis
of an iterative linearized inversion.

Here, the root mean squared uncertainty in po-
larizability is weighted and summed over a num-
ber of control points and minimized using an evo-
lutionary algorithm for a number of instrument de-
signs. Three families of designs are presented: sin-
gle transmitter systems for use on a 2-D grid of posi-
tions with negligible error in relative instrument lo-
cation, two transmitter systems for use on a line of
positions with negligible error in relative instrument
location, and three transmitter systems for stand
alone use. Results for the one and two transmitter
systems are strongly degraded by errors in instru-
ment position, whereas the three transmitter systems
are insensitive to instrument positioning errors.

INTRODUCTION

Equivalent dipoles have long been used for ap-
proximating potential fields in geophysics as well
other fields, and we will not attempt to outline the
history of their usage. Recently, they have been used
to model secondary magnetic fields arising from
currents induced in isolated conductive, and possi-
bly magnetic bodies, for discrimination between un-
exploded ordnance (UXO) and other materials, for

example, by Khadr et al. (1998), Bell et al. (2001),
Pasion and Oldenburg (2001), Smith and Morrison
(2002) or Baum (1999). In these examples, the in-
duced dipoles are modelled as linearly proportional
to the inducing magnetic fields at the body centers.
Since the inducing magnetic fields are, in general,
vector, and the induced dipoles may have compo-
nents in x, y and z directions, the two are related by a
matrix. Letting B(s)(r, t) be the secondary magnetic
fields due to currents induced in a body by a pri-
mary inducing field of nominal strength B(o) at the
center of the body (as it would be in the absence of
the body), and letting B(d)

x (r), B(d)
y (r), and B(d)

z (r),
be the fields of unit magnetic dipoles in the x, y, and
z direction placed at the body center, then an equiv-
alent dipole polarizability representation of the field
approximates the field as

B(s)(r, t) =
(

B(d)
x (r), B(d)

y (r), B(d)
z (r)

)

M(t) B(o) ,

(1)
where

M(t) ≡





mxx

myx

mzx

mxy

myy

mzy

mxz

myz

mzz



 , (2)

is the equivalent dipole polarizability matrix and is
3 x 3 and symmetric, with dimensions of magnetic
moment per magnetic induction. In time domain ap-
plications, typically, the fields are observed after the
primary magnetic fields due to currents in a trans-
mitter coil are extinguished, so the entire measured
fields are secondary fields B(s). In practice, the posi-
tion of the center of the body is generally not known,
and the origin of equivalent dipole fields ro is fit
to a set of data, yielding an effective object center
which may be displaced from the geometric center
of the object. Since the polarizability matrix con-
tains information about secondary magnetic fields
for any orientation of primary magnetic field Bo,
secondary magnetic field field measurements from
sources with primary fields in at least three different
(linearly independent) directions at the body center
are needed to estimate the polarizability matrix.

Assuming that the effective object center is inde-
pendent of time of field measurement after transmit-
ter shut-off, differentiating equation (1) gives

dB(s)(r, t)/dt =
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(

B(d)
x (r), B(d)

y (r), B(d)
z (r)

)

d M(t)/dt B(o) , (3)

where the polarizability change rate dM(t)/dt is
frequently also referred to as the polarizability ma-
trix.

In frequency domain applications, the same equa-
tions apply, with t replaced with ω, but M(ω) is
in general complex (and symmetric), and the sec-
ondary fields must be separated from the primary
fields of the inducing sources.

The eigenvectors of M (or dM/dt) give an empir-
ical set of principal directions for an object. For an
object with an axis of symmetry, the symmetry im-
plies that two eigenvalues are identical, and that the
eigenvector corresponding to the remaining eigen-
value is parallel to the axis of symmetry. For ob-
jects with spherical symmetry the three eigenvalues
are identical. The eigenvalues of M or dM/dt as
a function of time after transmitter current shut off
for a given transmitter wave form form the basis of
many identification schemes, such as that of Pasion
and Oldenberg (2001).

Smith and Morrison (2002) discuss fitting polar-
izability matrices and equivalent dipole positions to
data in detail. In an analysis of an iterative lin-
earized inversion for the non-redundant polarizabil-
ity matrix elements m11, m22, m33, m12, m23, and
m13, and changes ∆xo, ∆yo, ∆zo to a previous esti-

mate of equivalent dipole position r(q)
o , from n mea-

surements of secondary magnetic field components
with at least three different primary magnetic field
sources or source coil positions, they arrive at equa-
tions of the form

di =
(

a(q)
i , g̃(q)

i

)

·

(m11, m22, m33, m12, m23, m13, ∆xo, ∆yo, ∆zo)
t ,
(4)

for the i’th magnetic field component measurement
out of a set of n measurements, on the q’th iteration.
Writing equations (4) in matrix form as

d = F ·
(

m
∆ro

)

, (5)

and the covariance matrix for the measurement er-
rors in d as Cd , the squared uncertainties in the po-
larizabilities (elements of m) and in the components

of the equivalent dipole position ro lie on the diago-
nal of

cov((mt ,rt
o)) = (Ft C−1

d F)−1 . (6)

In this paper measurement errors σi are approx-
imated as uncorrelated between receivers, so the
measurement error covariance matrix Cd is diago-
nal with squared measurement errors σ2

i on its main
diagonal.

Since the structure of equations (1) and (3) is
identical, equations of form (4) (and 5) hold when
the data is magnetic field data (B) or time derivative
data (dB/dt), only in the latter case elements mi j

are replaced by their derivatives dmi j/dt in forming
equations (4) and (5). The coefficient matrix F is
identical in the two cases. Given identical covari-
ance matrices, the problem of optimizing a receiver
array with respect to polarizability uncertainties is
identical for the two cases.

Here a number of designs are presented for sys-
tems minimizing the squared uncertainty in polariz-
ability weighted and summed for objects at a num-
ber of points specified below the system (‘con-
trol points’). In this paper, instrument systems are
comprised of one or several rectangular transmitter
loops of fixed size, and a number of receiver coils
approximated as point measurements. Three fami-
lies of designs are presented: systems for use on a
2-D grid of positions with negligible error in rela-
tive instrument location, systems for use on a line
of positions with negligible error in relative instru-
ment location, and systems for stand alone use, in-
sensitive to instrument positioning errors. The min-
imizations are made using an empirical distribution
evolutionary algorithm.

MINIMIZATION USING AN EMPIRICAL
DISTRIBUTION EVOLUTIONARY

ALGORITHM

The general problem of minimizing an arbitrary
(objective) function of a considerable number of
variables remains a difficult problem. One princi-
pal difficulty is that the number of sample points
required to sample a parameter space uniformly in-
creases as the number of sample points for each pa-
rameter raised to the power of the number of vari-
ables. Sampling the entire space on a reasonably
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detailed grid becomes prohibitively time consum-
ing very quickly. A large number of algorithms
have been proposed which result in some initial
coarse sampling of the parameter space and later
denser resamplings in areas of low objective func-
tion. Among these are simulated annealing, evo-
lutionary algorithms, and genetic algorithms. Here
we use the empirical distribution evolutionary algo-
rithm of Smith, Allan, and Schultz (1994).

The empirical distribution evolutionary algorithm
is a real parameter genetic algorithm with arith-
metic recombination, with perturbations to recom-
bined population members based on differences of
retained population members and discarded popu-
lation members. (For an overview of evolution-
ary algorithms, see, for example, Deb, 2001, pp81-
164.) In slightly more detail, to find a minimum
of a function of p variables in a bounded domain,
the algorithm begins with a sampling of mpop points
x, each consisting of p variables distributed (uni-
formly) throughout bounded intervals. At each iter-
ation, the object function is evaluated at each sam-
ple point and a penalty term added to the function
at any points that fall outside the desired intervals.
The points are divided randomly into msave equal
size groups (e.g., mpop/2), and the point with the
lowest object function (plus penalty term) from each
group is collected into a set of msave points {xsave}
saved for use in the next iteration, the remaining
mpop − msave points to be discarded are collected
into another set {xdisc}. At the next iteration, in ad-
dition to the saved points, new sample points are
formed from the sum of the average of two ran-
domly selected saved points and the difference of
one discard point with a randomly selected saved
point;

x(k)
new ≡ (x(i)

save +x( j)
save)/2 + skα · (x(k)

disc −x(l)
save) ,

(7)
where sk = ±1 with random sign, and 0.59 ≤ α
1/
√

2. Each discard point is used in forming one
new sample point. This gives a new point distribu-
tion centered at the mean of the saved point distri-
bution. Generally, the new points are closer to the
mean of the saved points than the discarded points
were, and the cloud of sample points shrinks with
iteration. As the algorithm saves the better points
from the msave groups, it preserves the best point

found at any iteration. Occasionally, the algorithm
is caught by distributions straddling widely sepa-
rated minima. This is dealt with by reducing the
number of saved points on a schedule based on the
contraction expected for a quadratic object function.
As an alternative, when forming the k’th replace-
ment point, after randomly selecting the first saved
point x(i)

save used in forming the new sample point,
several (msuit ) more points are drawn randomly from
the set of saved points and the closest of these to the
first saved point x(i)

save is used as the second saved

point to be averaged x( j)
save. In this case, msuit ad-

ditional saved points are drawn and the closest of

these to the discard point is used as x(l)
save in equation

(7). In this variant, the amount of perturbation added
to the averaged saved points needs to be somewhat
larger (α ≥ 0.64, for msuit = 3). Experience has
shown this to eliminate the need for progressively
reducing the number of saved points msave to es-
cape distributions caught straddling widely sepa-
rated minima.

One can generally cannot afford to adequately
sample all of a parameter space of interest for
even moderate p, so guarantees of convergence to
the global minimum for adequate sampling by any
method are of limited value. For minimizations of
objective functions for problems of the sort consid-
ered in this paper, we have found the current method
to be more reliable than a simple implementation of
a simulated annealing method (as per Press et al.,
1986). Consequently, all minima presented in this
paper correspond to minima as found by the empir-
ical distribution evolutionary algorithm. As the rate
of convergence is fairly slow for moderate p due to
volume being proportional to p’th power of distance
in a p dimensional space, the empirical distribution
evolutionary algorithm is used to reduce the differ-
ence between the median sample point object func-
tion and the lowest value found to a small tolerance
and the resulting values improved using the down-
hill simplex method (Press et al., 1986).

OBJECTIVE FUNCTION

Generally, for polarizability matrix elements mi j

to be well determined, the equivalent dipole position
ro must also be well determined, so we concentrate
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on resolving elements mi j. The squared uncertain-
ties in the non-redundant polarizability elements are
given by the first six elements on the main diago-
nal of cov((mt ,rt

o)), and are denoted by var(mi j)
for i and j indexed appropriately. Because of sym-
metry of M, mi j = m ji, consequently var(mi j) =
var(m ji). For an object at a given position, given its
polarizability M equation (6) allows calculating the
squared uncertainties that would be present in esti-
mates of the polarizability elements mi j recovered
from inversion of data for any particular system of
transmitters and dipole receivers.

Generally, for small objects a given instrument
only has sensitivity to objects close to the instru-
ment, so it is futile to demand high precision for
objects very distant from the instrument. For small
objects closer to a system than the scale of the trans-
mitter loops uncertainty in mi j increases roughly as
z3, approaching a z6 (or larger) dependence at depths
greater than the transmitter loop scale (Smith et al.,
2002). Similarly, for ease in deployment (as on a
wheeled cart) it is common to allow some clear-
ance between an instrument and the zone contain-
ing possible objects (the ground). Defining the to-
tal squared polarizability uncertainty for an object at
depth z as

ε2(zi) ≡
3

∑
i=1

3

∑
j=1

var(mi j) , (8)

we weight the total squared uncertainty by w2(z)
= (z/zmax)

−7 and sum it for prospective objects at
ndepth evenly spaced depths to form objective func-
tion Φ in which the total squared uncertainties for
prospective objects at the different depths make ap-
proximately equal contributions;

Φ2 ≡
ndepth

∑
i=1

w2(zi) ε2(zi)/ndepth . (9)

For a multi-receiver system with identical re-
ceivers, interchanging receivers leads to a system
with identical characteristics. This means that for
design of a nrec receivered system, raw object func-
tion Φ, considered as a function of receiver coor-
dinates, has at least nrec! global minima. To reduce
the number of global minima, a penalty term of form

Ψ ·Φ is added to Φ. Numbering receivers from 1 to
nrec, Ψ is given a term of the form

30
nrec−1

∑
i=1

max(0,φi −φi+1) ·min(ri,ri+1) , (10)

to single out the minima of Φ that have receivers
ordered with φi increasing, where φi and ri are the
angular position in radians and the radius in meters
of the i’th receiver. Because of transmitter symme-
tries, there is commonly an ambiguity as to receiver
array orientation: penalty function Ψ is given a sec-
ond term constraining the receiver at greatest radius
to lie at an angular position between -π and -π/2
fixing the array orientation with respect to reflec-
tion in x and y axes. An addition term is added to
keep receivers within a prescribed region (e.g., in-
side a horizontal transmitter loop). When individ-
ual receiver orientations are allowed to vary, similar
terms are added to keep receiver orientations in the
upper hemisphere and to keep receiver orientation
azimuths between -π and π radians.

Computation of polarizability uncertainties for a
test object at some position requires specifying the
polarizability of the test object to within a scale fac-
tor (Smith and Morrison, 2002) (or determining M
through inversion of data). Each orientation of a
non-spherical test object results in a different M,
and thus, different uncertainties in its polarizabili-
ties. To avoid the need for multiple orientations of
the test object at the control points where ε is eval-
uated in quantity (9) in many cases we optimize the
receiver configurations for spherical targets at the
control points.

OPTIMIZATION OF STAND ALONE SYSTEMS

The most comprehensive instruments for deter-
mining object polarizability and location would
consist of three source coils operated independently
to generate source fields in three approximately or-
thogonal directions and an array of receivers. With
sufficient receivers to determine polarizability and
position from measurements at a single siting, such
a system has the advantage of allowing accurate lo-
cation and orientation of receivers relative to the
transmitter system, eliminating errors that result
from uncertainties in relative receiver locations and
orientation (e.g., Barrow and Nelson, 2001).
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Among the most obvious source coil configura-
tions are a horizontal loop and two vertical loops at
right angles with their bottom edges in the plane of
the horizontal loop, or, a simple horizontal loop and
two figure eight horizontal loops coincident with the
horizontal loop but rotated 90o relative to each other.
For both these configurations a limiting factor is the
horizontal magnetic field strengths achieved below
the system, as the horizontal fields are smaller than
the vertical fields at most locations below the coils
for loops and currents of identical size. Close to
the source, figure eight loops give greater horizontal
fields than a vertical loop of the same size, but figure
eight loop fields fall off faster with distance, with
a vertical loop giving greater horizontal fields by a
depth of 0.75 loop widths for loops with a square
perimeter. In this study, we adopt the three orthog-
onal loop configuration, with vertical loops crossed,
with their lower edges intersecting at the center of
the horizontal loop. To keep transmitters easily ma-
neuverable, we restrict the horizontal transmitter to
a 0.75 m x 1 m size, and vertical transmitters to a 1
m x 0.75 m loop and a 0.75 m x 0.75 m loop crossed
with lower edges intersecting at the center of the
horizontal loop. Each loop is assumed to be given a
moment of 180 A-m2 when transmitting. Receivers
are assumed to have a noise level of 2 nT/s when
vertical, simulating a noise level observed in an ex-
istent commercial transmitter receiver system at 610
µs (Geonics EM-61). For receivers oriented an an-
gle θ from vertical, the noise level is assumed to be
(cos θ + 3 sinθ) · 2 nT/s simulating the larger noise
levels found in off-vertical receivers. Of course, Φ
scales with the magnitude of receiver noise, and in-
versely with the magnitude of transmitter current,
so optimal receiver locations are independent of the
scale of these.

We minimize (1 + Ψ)Φ with the weighted
squared polarizability uncertainties for spherical ob-
jects averaged over 20 control positions between 0.2
m and 1.6 m depth directly below the center of the
transmitter system, with a sample population size
mpop twenty times the number of unknowns. Early
experience minimizing (1 + Ψ)Φ allowing receiver
positions to vary above the plane of the horizon-
tal transmitter has resulted in receivers negligibly
above this level, so in all cases shown, receivers

Number of Radius φ Scatter Φ/
√

3
Receivers (m) (o) (m) (Amp-m2/T/s)

4 0.702 -114.0 0.17 33432.
unconstrained 0.286 -10.3 0.15

0.701 66.2 0.19
0.285 169.7 0.13

4 0.625 -126.9 0.03 34132.
within loop 0.254 -28.3 0.08

0.625 53.1 0.05
0.246 152.0 0.08

5 0.879 -159.6 0.19 26741.
unconstrained 0.053 -87.3 0.15

0.415 -85.8 0.35
0.787 23.4 0.26
0.362 135.2 0.14

5 0.625 -126.9 0.01 28188.
within loop 0.509 -44.0 0.07

0.047 -44.0 0.06
0.625 53.1 0.03
0.624 127.0 0.09

6 0.854 -122.5 0.28 23425.
unconstrained 0.246 -85.3 0.18

0.827 -24.8 0.30
0.024 20.3 0.09
0.417 50.8 0.27
0.775 150.3 0.23

6 0.625 -126.9 0.02 24548.
within loop 0.550 -47.1 0.07

0.042 -31.5 0.05
0.625 53.1 0.04
0.625 126.9 0.07
0.074 134.2 0.06

Table 1: Receiver positions for optimized stand
alone systems with 3 orthogonal loop transmitter
system. Receivers vertical. Optimized for spheri-
cal objects.
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Figure 1: Rms polarizability uncertainty ε/
√

3 as
a function of object position relative to horizontal
transmitter loop center, for spheres below optimized
4 receiver array of Table (1) with receivers con-
strained to lie within the horizontal transmitter loop.
Configuration is diagrammed in corner.

have been constrained to lie in the plane of the hori-
zontal transmitter loop. For spherical test objects, in
our experience minimizing (1 + Ψ)Φ and allowing
receiver orientations to vary has resulted in receivers
aligned vertically, so in most cases shown, receiver
orientations have been fixed at vertical. This re-
duces the number of unknowns to two per receiver.
Results for 4, 5, and 6 receiver systems are given in
Table (1), for the case of receivers constrained to be
within a radius of 2.6 m (‘unconstrained’), and for
the case of receivers constrained to lie within the 1.0
x 0.75 m horizontal transmitter loop. For these sys-
tems, constraining the receivers to lie within the hor-
izontal transmitter loop increases the object func-
tion by less than 6%. Table (1) also lists the root
mean square (rms) scatter in receiver position cal-
culated for the best mpop/2 sample points at an it-
eration with the median object function value 10%
higher than the minimum value found. This gives
an indication of the range of receiver positions that
are allowable, but does not indicate how, when one
receiver position is altered, the other receiver posi-
tions must be adjusted to keep a low object function
value.

The receiver arrays listed in Table (1) have been

20 m
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Figure 2: Rms polarizability uncertainty as a func-
tion of object position, for spheres below optimized
5 receiver array of Table (1) with receivers con-
strained to lie within the horizontal transmitter loop.

optimized for resolving the polarizability elements
for spherical objects below the center of the trans-
mitter array. In Figures (1) and (2), the rms po-
larizability uncertainty ε/

√
3 is plotted as a func-

tion of object position for test spheres located in
cross sections below 4 and 5 receiver arrays. The
plots are marked with contours at the polarizability
magnitudes (at 610 µs after transmitter shut-off), for
spheres of varying diameter. For the 5 receiver sys-
tem, even at depths near the 0.35m, where lateral
gradients in uncertainties are greatest, the minimum
is broad laterally suggesting that the instrument can
be used on a grid with spacings on the order of 0.6
m laterally, and still result in fairly even coverage.
A plot for the 6 receiver system with receivers in-
side the horizontal loop (not shown) is very similar
to Figure (2), with marginally lower uncertainties.

Although the systems of Table (1) were op-
timized based on polarizability uncertainties that
would be obtained when the polarizability matrix
M and equivalent dipole position ro are estimated
from data for a spherical object, one can evaluate
the polarizability uncertainties that would arise for
data from other objects. As a magnetic (i.e., ferrous)
object becomes long and narrow the largest princi-
pal polarizability (eigenvalue of M), corresponding
to source magnetic fields aligned with the length
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Radius φ Scatter Declination Azimuth Φ/
√

3
(m) (o) (m) (o) (o) (Amp-m2/T/s)

0.318 -157.6 0.02 0.0 —– 123585.
0.625 -126.9 0.03 0.0 —–
0.621 -53.6 0.05 89.9 -58.7
0.318 22.4 0.02 0.0 —–
0.625 53.1 0.03 0.0 —–

0.625 -126.9 0.04 0.0 —– 90845.
0.550 -61.5 0.06 90.0 -49.3
0.330 -22.1 0.04 0.0 —–
0.625 53.1 0.04 0.0 —–
0.550 118.5 0.06 90.0 130.7
0.330 157.9 0.04 0.0 —–

Table 2: Receiver positions and orientations for optimized stand alone systems with 3 orthogonal loop
transmitter system and 5 or 6 receivers. Optimized for elongate objects (1:1:1000 polarizabilities). Sym-
metry imposed. Receivers constrained to be within horizontal transmitter loop.

of the object, becomes much larger than the other
two (e.g., Pasion and Oldenburg, 2001), and the un-
certainties in estimated polarizability are dependent
on object orientation as well as the ratios of prin-
cipal polarizabilities. In Figures (3), (4) and (5),
rms polarizability uncertainty is plotted as a func-
tion of object orientation for systems with 4, 5 and
6 receivers, for an elongate axially symmetric ob-
ject with a 1:1:1000 ratio of principal polarizabili-
ties one meter below the horizontal transmitter loop
center. Only the upper hemisphere of orientations
is shown as the lower hemisphere of orientations is
the same with azimuths rotated 180o. The rms po-
larizability uncertainties for vertical objects (at fig-
ure center) are about the same as those for spheri-
cal objects at 1 m depth shown in Figures (1) and
(2). A curve of orientations with very large uncer-
tainties occurs for the 4 receiver system, and similar
curves of orientations with very large uncertainties
have been seen in all such plots made for 4 receiver
3 transmitter systems at a single site, for objects
with such extreme ratios of principle moments. In
the same plot, for the 5 receiver system, the large
uncertainties occur for only a few orientations of
the elongate object, and are greatly reduced in the
plot for the 6 receiver system. In the plots for the 5

and 6 receiver systems, there is a background trend
towards lower uncertainties for vertical objects and
roughly three times greater uncertainties for hori-
zontal objects. This trend is exacerbated at greater
depth; by 1.6m depth (not shown) rms polarizability
uncertainties for vertical objects are 7 104 and 6 104

Amp-m2/T/s for the 5 and 6 receiver arrays, and are
on the order of 30 times larger for horizontal objects.

The polarizability uncertainties for deep horizon-
tal elongate objects can be ameliorated by modify-
ing the objective function to minimize the weighted
squared uncertainty for elongate objects in place of
spheres. To do this we minimize (1 + Ψ)Φ with
the weighted squared polarizability uncertainties for
elongate objects averaged over 10 control points be-
tween 0.2 m and 1.6 m depth directly below the
center of the transmitter system and averaged over
7 equally spaced object orientations at each control
point. Three orientations are in the x̂, ŷ and ẑ di-
rections, the others are in the directions of four cor-
ners a cube with the coordinate axes going through
the face centers. Because of symmetry with re-
spect to inversion in the origin, this covers directions
from the 8 corners and 6 face centers of the cube.
For simplicity, the test object is given a single non-
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Figure 3: Rms polarizability uncertainty as a func-
tion of object orientation (relative to vertical), for
an elongate object with principal polarizabilities in
a 1:1:1000 ratio, 1 m below 4 receiver array of Fig-
ure (1).
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Figure 4: Rms polarizability uncertainty as a func-
tion of object orientation, for an elongate object with
principal polarizabilities in a 1:1:1000 ratio, 1 m be-
low 5 receiver array of Figure (2).

zero principal moment. In contrast to the previ-
ous minimization in which receiver orientation was
held vertical, for elongate objects, a non-vertical re-
ceiver orientation may be desirable so it is allowed
to vary. To reduce the number of unknown param-
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Figure 5: Rms polarizability uncertainty as a func-
tion of object orientation, for an elongate object with
principal polarizabilities in a 1:1:1000 ratio, 1 m be-
low 6 receiver array of Table (1), with receivers con-
strained to lie within the horizontal transmitter loop.
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Figure 6: Rms polarizability uncertainty as a func-
tion of object orientation, for an elongate object with
principal polarizabilities in a 1:1:1000 ratio, 1.6 m
below 6 receiver array of Table (2).

eters, receivers are constrained to be in symmetric
pairs, with the second of each pair reflected through
the transmitter system center at equal radius. For an
even number of receivers, this keeps the number of
unknowns at 2 per receiver. Receiver positions and
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Figure 7: Rms polarizability uncertainty as a func-
tion of object position for horizontal elongate object
(1:1:1000 polarizability) pointing in the ŷ direction
below 6 receiver array of Table (2).

orientations are given in Table (2) for 5 and 6 re-
ceiver arrays. Receiver orientation azimuth has been
left blank for receivers that are vertical. Object func-
tion values are higher in Table (2) than in Table (1),
reflecting greater rms polarizability uncertainties for
some orientations of elongate objects.

In Figure (6) rms polarizability uncertainty is
plotted as a function of object orientation for the
6 receiver array of Table (2), for an object with a
1:1:1000 ratio of principal polarizabilities 1.6 m be-
low the horizontal transmitter loop center. The rms
uncertainty for vertical objects is about the same as
was for the 6 receiver array optimized for spheres
(of Table 1). For most horizontal orientations the
rms uncertainty is substantially smaller than it was
for the other array, with few orientations having
rms uncertainties near the maximum of 9 105 Amp-
m2/T/s. Rms uncertainties for this object at 1.6 m
depth below the 5 receiver array of Table (2) (not
shown) range from 1. 105 Amp-m2/T/s for vertical
objects to 6 105 Amp-m2/T/s for most horizontal
orientations, but with two patches of near horizontal
orientations with rms uncertainties over 2 106 Amp-
m2/T/s. In Figure (7) the rms polarizability uncer-
tainty is plotted as a function of object position for
a horizontal 1:1:1000 principal polarizability object
pointing in the ŷ direction (φ = 90o) in cross section
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Figure 8: Rms polarizability uncertainty as a func-
tion of object position for horizontal elongate object
(1:1:1000 polarizability) pointing in the ŷ direction
below 6 receiver array of Table (3), used at 8 sites
spaced 0.314 m apart along a line at y = z = 0 with
accurately known locations and orientations.

below the 6 receiver array of Table (2). Reducing
the polarizability ratios to 1:1:40, which is more re-
alistic for UXO at 610 µs, results in an almost iden-
tical plot (not shown).

The systems above are capable of estimating M
from measurements with the system at a single site.
When data from an object is recorded at more than
one siting of a system, estimates of M can be av-
eraged from adjacent sites to decrease their uncer-
tainties. Provided that system orientation is known,
different estimates of M can be rotated into a com-
mon coordinate system and weighted inversely by
their rms uncertainties. For such averaging, sys-
tem site locations need only be known well enough
to test whether the equivalent dipole positions from
two observations might correspond to a single ob-
ject.

OPTIMIZATION OF SYSTEMS FOR USE ON
LINES OF SITES

If instrument position and orientation are known
accurately, measurements from multiple instrument
sitings can be combined to estimate an object’s po-
larizability M directly. This has the advantage of
allowing using systems with fewer transmitters and
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∆x Radius φ Scatter Declination Azimuth Φ/
√

3
(m) (m) (o) (m) (o) (o) (Amp-m2/T/s)

0.378 0.265 -137.8 0.05 90.0 -34.7 691755.

0.337 0.368 -110.2 0.09 0.0 —- 40559.
0.366 68.9 0.09 0.0 —-

0.314 0.379 -98.0 0.09 0.0 —- 30272.
0.144 -62.7 0.10 0.0 —-
0.378 97.3 0.09 0.0 —-

Table 3: Site spacing, receiver positions and orientations for 2 orthogonal loop transmitter system oper-
ated at 8 sites in a line, with 1 to 3 receivers. Optimized for elongate objects (1:1:1000 polarizabilities).
Receivers constrained to be within horizontal transmitter loop.

receivers than in the previous section, but has the
disadvantage of requiring accurate system position-
ing and orientation. In this section, it is assumed that
a survey is carried out in lines with relative position
and orientation known accurately along sections of
survey line, but not between survey lines.

A horizontal loop source operated at a series of
sites along a line illuminates objects below that line
with magnetic fields oriented in the vertical plane
containing the line of sites. Adding a simple vertical
loop transmitter in that plane, or a horizontal figure
eight loop with one sub-loop on either side of the
line, illuminates objects below the line with mag-
netic fields normal to the vertical plane containing
the line of sites. In this study, we adopt the horizon-
tal plus vertical loop configuration, with a 0.75 m
wide by 1 m long horizontal loop and a 1 m long by
0.75 m high vertical loop with lower edge through
the horizontal loop center. The loops are oriented
lengthwise in the direction of the siting line. Trans-
mitters and receivers are assumed to have the same
moments and noise levels as in the previous section.

For simplicity we restrict our attention to using
data from 8 sites along a survey line, with the inter-
site spacing as a free parameter. As the rms polariz-
ability uncertainties for elongate objects tend to be
larger than for spheres, we minimize (1+Ψ)Φ with
the weighted squared polarizability uncertainties for

elongate objects (1:1:1000 polarizability) averaged
over 10 control points between 0.2 m and 1.6 m
depth below the middle of the survey line segment,
and averaged over 7 equally spaced object orienta-
tions at each control point. Results for 1, 2, and 3
receiver arrays are given in Table (3). Receiver ori-
entation was allowed to vary. Receiver orientation
azimuth has been left blank for vertical receivers.
The improvements in object function going from 1
to 3 receivers are better than the 1/

√
nrec improve-

ment to be expected solely from an increase in the
number of data. The two and three receiver arrays
operated on 8 sites result have quite good angular
coverage. For example, at 1.6m depth below the line
segment center, the 3 receiver array has a minimum
rms moment uncertainty of 4.6 104 Amp-m2/T/s for
horizontal elongate objects oriented normal to the
line, and a maximum of 1.4 105 Amp-m2/T/s for
horizontal elongate objects oriented parallel to the
line. Rms polarizability uncertainty for 1:1:1000
polarizability objects oriented parallel to the survey
line is plotted as function of position in cross sec-
tion through the segment center in Figure (8), for
the 3 receiver system. Of course, the three transmit-
ter systems of Table (2) also can be used with data
from more than one site, giving lower uncertainties
(not shown) than the two transmitter three receiver
system uncertainties shown here.
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∆x ∆y Radius φ Scatter Declination Φ/
√

3
(m) (m) (m) (o) (m) (o) (Amp-m2/T/s)

0.443 0.417 0.211 -128.3 0.08 0.0 58923.

0.511 0.456 0.587 -140.3 0.06 0.0 24729.
0.161 61.1 0.08 0.0

0.528 0.524 0.592 -140.7 0.07 0.0 18627.
0.000 22.7 0.17 0.0
0.586 39.8 0.13 0.0

Table 4: Site spacing, receiver positions and orientations for horizontal loop transmitter operated at 16
sites on a grid, with 1 to 3 receivers. Optimized for elongate objects (1:1:1000 polarizabilities). Receivers
constrained to be within horizontal transmitter loop.

OPTIMIZATION OF SYSTEMS FOR USE ON A
GRID

A horizontal loop moved about a two-
dimensional surface can illuminate any point
beneath the surface with a magnetic field in any
arbitrary direction, so, in principle, only one source
is needed for an instrument operated on a two
dimensional grid. We restrict our attention to data
from a 4 x 4 grid sub-section centered over an
object. We assume a 0.75 m wide by 1 m long
horizontal loop transmitter with a 180 Amp-m2

moment, sited on a rectangular grid with instrument
position and orientation known accurately. We
minimize (1 + Ψ)Φ with the weighted squared
polarizability uncertainties for elongate objects
(1:1:1000 polarizability) averaged over 10 control
points between 0.2 m and 1.6 m depth below the
middle of the grid sub-section and averaged over 7
equally spaced object orientations at each control
point. Results for 1, 2, and 3 receiver arrays are
given in Table (4). Receiver orientation was allowed
to vary. Receiver orientation azimuth has been
omitted as all receivers are vertical. Increasing the
number of receivers to four (not shown) improves
the object function only marginally better than the
improvement expected for an increased number of
data. The lower object function values reflect lower
rms polarizability uncertainties at all depths (not

shown) compared to the results of the previous two
sections. However, to achieve these results, system
location and orientation must be accurately known
at each site.

EFFECTS OF SYSTEM LOCATION ERRORS

The results of the previous two sections require
accurate instrument (relative) locations and orien-
tations. For any particular system and object, one
can estimate the effect of instrument location errors
by Monte Carlo methods: adding artificial noise to
synthetic data and adding random mislocations to
the system coordinates at each site, inverting for ob-
ject polarizabilities and location, and repeating to
develop statistics. In Figure (9), rms polarizability
errors are plotted as a function of system location
error for three systems from Tables (2), (3), and (4),
for a horizontal 22mm 1:8 aspect ratio ferrous shell
modelled as a magnetic conducting prolate spheriod
(7.0 103: 7.0 103: 2.6 105 Amp-m2/T/s principal
polarizabilities at 610 µs). In the simulations to pro-
duce this figure, Gaussian noise was added to the
system x, y and z coordinates at each site and the
abscissa site location uncertainties are total location
uncertainty (σ2

x + σ2
y + σ2

z )1/2. Results from the 3
transmitter 6 receiver system at a single site are un-
affected by instrument location errors. Results from
the other two systems are strongly affected by in-
strument location errors, and require instrument lo-
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Figure 9: Relative rms polarizability uncertainty as
a function of instrument location error, for a hori-
zontal 22 mm 8:1 aspect ratio shell at 0.75 m depth
at 610 µs after transmitter shut-off. (Horizontal) for
a 3 transmitter 6 vertical component receiver of Ta-
ble (2) at single site. (Dashed) for a 2 transmitter 3
vertical component receiver system of Table (3) at
8 sites in a line. (Solid) for a horizontal loop trans-
mitter three vertical component receiver system of
Table (4) on a 4x4 grid.

cation errors as small as 1 cm to give results compa-
rable to the single site system. This is smaller than
typical relative global positioning system errors of
2.5 cm currently available.

CONCLUSION

A weighted rms average of polarizability uncer-
tainties for objects at a series of depths below a sys-
tem is an objective measure of the discrimination ca-
pability of a system. For chosen transmitter configu-
rations, we have found receiver configurations min-
imizing the polarizability uncertainty using the em-
pirical distribution evolutionary algorithm. Three
transmitter, 5 or 6 receiver systems optimized for
use at a single site have the advantage that their es-
timates of object polarizabilities and relative posi-
tion are unaffected by errors in instrument location
and orientation. Systems used on a grid or line of
accurately known locations have the advantage of
only needing one or two transmitters, but polariz-
ability estimates from them are strongly degraded
when contaminated with small instrument location
errors.
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