UC Berkeley

UC Berkeley Previously Published Works

Title

 $19F(\alpha,n)$ thick target yield from 3.5 to 10.0MeV

Permalink

https://escholarship.org/uc/item/9pn7j3nv

Authors

Norman, EB Chupp, TE Lesko, KT et al.

Publication Date

2015-09-01

DOI

10.1016/j.apradiso.2015.04.018

Peer reviewed

Addendum to "22Na production cross sections from the $^{19}F(\alpha,n)$ reaction"

Phys. Rev C 30, 1339 – Published 1 October 1984

E. B. Norman, T. E. Chupp, K. T. Lesko, P. J. Grant, and G. L. Woodruff

In 1984, we reported 22 Na production cross sections based on measurements of thick-target neutron yields from the 19 F(α ,n) reaction. Recently, there has interest in knowing the actual thick-target yields for applications such as assaying contents of UF₆ canisters using passive neutron counting techniques. 1,2 Here we report the results of our original thick-target neutron yield measurements over the energy range of $E_{\alpha} = 3.5 - 10.0$ MeV. As stated in our original paper and described in more detail in Ref. 3, we used several different techniques to determine our neutron detection efficiency to be 5.5 ± 0.3 % independent of neutron energy over the range we studied. One of these methods was to bombard a thick PbF₂ target with 10.0 MeV alpha particles. The neutron yield was measured during this bombardment and later the target was gamma counted to determine the 22 Na activity produced. The gamma-ray detection efficiency was determined using two different calibrated 22 Na sources. The neutron detection efficiency determined in this manner agreed to within \pm 3.5% with those obtained by our other techniques.

In Table I we report our thick-target neutron yields as measured from a PbF₂ target. We then used the stopping powers of Andersen and Ziegler⁴ to convert these yields into those expected from alpha bombardments of thick F_2 and UF_6 targets. Although we both used PbF₂ targets, our inferred results for F_2 are systematically higher than those of Bair and Gomez del Campo⁵ by amounts that range from 54% to 35% as E_{α} increases from 4 to 8 MeV. These differences could, at least in part, be due to differences in the stopping powers used. Note that Bair and Gomez del Campo did not report their measured PbF₂ yields or those expected from UF_6 . However, as pointed out by Heaton *et al.*⁶, our results are in good agreement with those of Feige *et al.*⁷, as well as those reported by Sampson⁸. We also checked our technique by measuring thick-target (p,n) yields from Cd, Ta, and Pb at proton energies ranging from 5.5 to 9.5 MeV and comparing our results to those of Elwyn *et al.*⁹. Our data agree with those of Elwyn *et al.* to within \pm 2.5%. We thus are confident of our results and believe that our thick-target neutron yield from UF₆ will be useful for assay applications.

References:

- 1. L.E. Smith, D.V. Jordan, A.C. Misner, E. Mace, C.R. Orton, *Enrichment Assay Methods for a UF6 Cylinder Verification Station*, IAEA-CN-184/125, (2011), IAEA, Vienna, Austria
- 2. H. O. Menlove, M. T. Swinhoe, and K. A. Miller, A More Accurate and Penetrating Method to Measure the Enrichment and Mass of UF6 Storage Containers Using Passive Neutron Self-Interrogation, (2010), LA-UR-10-03040, Los Alamos National Laboratory, Los Alamos, NM.
- 3. E. B. Norman et al., Phys. Rev C 27, 1728 (1983).
- 4. H. H. Andersen and J. F. Ziegler, *The Stopping Powers and Ranges of Ions in Matter* (Pergamon, New York, 1977), Vol. 4.
- 5. J. K. Bair and J. Gomez del Campo, Nucl. Sci. Eng. 71, 18 (1979).
- 6. R. Heaton et al., Nucl. Instrum. & Meth. A 276, 529 (1989).
- 7. Y. Feige, B. G. Oltman, and J. Kastner, J. Geophys. Res. **73**, 3135 (1968).
- 8. T. E. Sampson, Nucl. Sci. Eng. **54**, 470 (1974).
- 9. A. J. Elwyn, A. Marinov, and J. P. Schiffer, Phys. Rev. 145, 957 (1966).

Table I. Thick-target neutron yields from alpha-particle induced reactions in units of neutrons per 10^6 alphas. Uncertainties are estimated to be \pm 5%. Alpha energies are given in the laboratory frame. Note: $9.00E-2 = 9.00x10^{-2}$.

$\underline{\mathbf{E}_{\alpha}}$ (MeV)		<u>Target</u>	
	PbF ₂	<u>F</u> ₂	<u>UF</u> ₆
3.50	9.00E-2	2.65E-1	1.54E-1
3.75	2.08E-1	6.17E-1	3.58E-1
4.00	4.11E-1	1.23E+0	7.11E-1
4.25	6.17E-1	1.84E+0	1.07E+0
4.50	1.02E+0	3.06E+0	1.77E+0
4.75	1.50E+0	4.52E+0	2.61E+0
5.00	1.96E+0	5.92E+0	3.41E+0
5.25	2.66E+0	8.07E+0	4.64E+0
5.50	3.45E+0	1.05E+1	6.03E+0
5.75	4.37E+0	1.33E+1	7.62E+0
6.00	5.31E+0	1.62E+1	9.28E+0
6.25	6.68E+0	2.05E+1	1.17E+1
6.50	8.00E+0	2.46E+1	1.40E+1
6.75	9.40E+0	2.89E+1	1.65E+1
7.00	1.08E+1	3.34E+1	1.90E+1
7.25	1.28E+1	3.96E+1	2.25E+1
7.50	1.46E+1	4.51E+1	2.56E+1
7.75	1.66E+1	5.12E+1	2.91E+1
8.00	1.86E+1	5.76E+1	3.27E+1
8.25	2.05E+1	6.36E+1	3.60E+1
8.50	2.23E+1	6.90E+1	3.90E+1
8.75	2.43E+1	7.56E+1	4.27E+1
9.00	2.65E+1	8.24E+1	4.66E+1
9.25	2.90E+1	9.01E+1	5.09E+1
9.50	3.12E+1	9.73E+1	5.49E+1
9.75	3.42E+1	1.06E+2	6.00E+1
10.0	3.64E+1	1.13E+2	6.39E+1