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On the evolution of hoarding, risk-taking, and wealth
distribution in nonhuman and human populations
Theodore C. Bergstrom1

Economics Department, University of California, Santa Barbara, CA 93106

Edited by John C. Avise, University of California, Irvine, CA, and approved May 7, 2014 (received for review February 12, 2014)

This paper applies the theory of the evolution of risk-taking in the
presence of idiosyncratic and environmental risks to the example
of food hoarding by animals and explores implications of the
resulting theory for human attitudes toward risk.

evolutionary bet hedging | storage | gambling | geometric mean |
squirrel’s dilemma

Fabulists, from Aesop to Disney, have used animal characters to
play human-like roles in their tales. The popularity of these fables

suggests that readers arewilling to take a sharper look at the foibles of
their own species if they pretend to see them inother creatures. In this
paper, I confess a similar motivation. The paper is motivated by the
evolutionof food-hoardingbehaviorof rats and squirrels, but thinking
along these lines may help us to take a fresh look at human prefer-
ences toward wealth acquisition and risk-taking. Unlike the fables of
Aesop and Disney, this paper is inspired by the work of behavioral
ecologists who have studied real animals,† and I hope it may be of
interest to those who study animal behavior as well as to economists.
This paper examines the implications of evolutionary bet hedg-

ing by organisms that store food supplies during periods of abun-
dance to survive through periods of scarcity. Individuals face
idiosyncratic predation risks as they accumulate food supplies,
while the entire population faces environmental risks that the
winter or the dry season may last so long as to exhaust their stored
supplies. The theory leads to interesting predictions about the
distribution across the population of stocks of stored food and
about the relation between survival rates in harsh conditions to
the frequency of such conditions.
Evolutionary biologists are aware that in a stochastically var-

iable environment, natural selection is likely to favor a gene that
randomizes its phenotypic expression. Because reproduction is
multiplicative, the long-term average rate of reproduction of
a gene will be the geometric mean of the reproduction rates of
the generations that carry this gene. If an entire population is
affected by environmental effects that vary over time, a genotype
that induces random variation in the phenotypes who carry it will
have a higher expected long-run growth rate than one that
produces a single type. Seger and Brockmann describe this effect
as “bet-hedging.” In their words, “a bet-hedging strategy must be
realized as the variable phenotypic expression of a single geno-
type, not as a genetic polymorphism” (ref. 2, p. 186).
Cooper and Kaplan (3) use a story of an animal seeking cam-

ouflage to illustrate this effect, which they call “adaptive coin-flip-
ping.” The animal must decide whether to grow a white or a brown
coat for winter. If the winter is snowy, white is the better color, but
if there is no snow, brown is better. They show that a gene that
randomizes the colors of the animals that carry it has a higher
expected long-run reproductive rate than one that mandates
either single color. Cohen (4) developed a simple bet-hedging
model to explain delayed seed germination, while Levins (5)
explored applications of this theory to sexual versus asexual eggs
in rotifera, the period of dormancy in seed plants, the production
of winged and wingless aphids, and clutch size in birds. Childs
et al. (6) survey recent theoretical contributions and empirical
evidence of evolutionary bet hedging by plants and animals.‡

Robson (8) draws on a branch of probability theory known as
branching theory (9) to develop this theory thoroughly and rigor-
ously. In Robson’s model, natural selection operates on types that
are committed to specific strategies. These strategies may either be
pure strategies that dictate a specific response to one’s environ-
ment or mixed strategies that randomize among two or more pure
strategies. The number of offspring of an individual of given type is
a random variable that depends partly on statistically-independent,
idiosyncratic risks and partly on environmental risks that affect all
individuals of the same type uniformly. In this model, parents give
birth to offspring that are most likely be of their own type, but there
is a small probability that any type can mutate to any other type. In
each period, the state of the environment is an independent and
identically distributed (i.i.d.) random variable, drawn from a fixed
finite set of possible states ð1; . . . ; SÞ, where the probability of state
s is πs. The number of surviving offspring of a type i individual in
environmental state s is a random variable with expected value
miðsÞ. Robson shows that if mutation rates are small, in the long
run the population will consist predominantly of individuals of the
type i that has the highest value of

X
s

πs lnmiðsÞ: [1]

Thus, evolution selects for a type that maximizes the log of the
geometric mean across environmental states of the arithmetic
mean number of descendants within each state.

A Squirrel’s Dilemma: Simple Model
A squirrel must store nuts to survive through the winter, but does
not know how long the winter will be. Collecting and storing food is
costly because it exposes the animal to predation. However, col-
lecting too few nuts to last the winter is fatal. There are two possible
lengths of winter: short and long. The probability of a short winter is
p1 and that of a long winter is p2 = 1− p1. A squirrel must choose
either to gather enough nuts for a short winter or enough for a long
winter. A squirrel that uses the short-winter strategy will avoid
predators with probability v1, and will survive a short winter, but not
a long winter. Thus, a short-winter strategist has survival prob-
ability v1p1. Storing enough nuts for a long winter rather than
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a short winter exposes a squirrel to additional hazard h of being
eaten by predators. Therefore, a long-winter strategist will avoid
predators with probability v2 = v1ð1− hÞ. If not eaten by predators,
the long-winter strategist will survive a winter of either length.
Hence the probability that a long-winter strategist avoids pre-
dation and survives through the winter is v2 = v1ð1− hÞ.
Can we expect natural selection to result in a population of

squirrels with strategies that maximize their survival probabili-
ties? Suppose that all squirrels who survive through the winter
reproduce at the same positive rate. The survival probability of
a short-winter strategist will exceed that of a long-winter strat-
egist if v1p1 > v1ð1− hÞ, or equivalently, if h> 1− p1 = p2.
Although a short-winter squirrel is more likely to survive than

a long-winter squirrel, if a squirrel’s offspring must behave as its
parent did, then whenever there is a long winter, the entire pop-
ulation of short-winter strategists will be wiped out. Thus, natural
selection would produce a population consisting almost entirely
long-winter strategists, despite the fact that they have lower survival
probability than short-winter strategists. This would be the case,
even if long winters are rare, and the hazard incurred in gathering
a long winter’s supply is great. CanMother Nature improve on such
an inefficient outcome?
The paradoxical conclusion that short-winter squirrels would

eventually lose the evolutionary race, even though they have higher
survival probability than long-winter squirrels, is a consequence of
the fact that winter’s length is an environmental risk that affects all
squirrels in the same way, while the risk of being eaten by predators
is faced independently by each squirrel. If all risks were in-
dependent, it would indeed be true that the strategy with higher
survival probability would eventually dominate the population.
However, with the correlated risks resulting from weather, this is
not the case. In the long run, a gene that “puts all of its eggs in one
basket” by dictating a single pure strategy will, in general, re-
produce less rapidly than a gene that diversifies its portfolio of
phenotypes by inducing some of its carriers to use one pure
strategy and others to use another.
Suppose that the genes that regulate squirrel behavior can in-

duce squirrels to randomize their behavior, using a mixed strategy
π = ðπ1; π2Þ, such that with probability π1, they attempt to gather
enough nuts for a short winter and with probability π2 = 1− π1 they
attempt to gather enough nuts for a long winter. Let S1ðπÞ and S2ðπÞ
be the conditional probabilities that a squirrel that carries a gene that
induces themixed strategy π will survive, respectively, through a short
winter anda longwinter. If thewinter is long, a squirrel that carries the
gene for mixed strategy π will survive only if it selects the long-winter
strategy and is not eaten by predators. This happens with probability

S2ðπÞ= π2v2: [2]

If the winter is short, the squirrel will survive as long as it is not
eaten by predators. This probability is

S1ðπÞ= π1v1 + π2v2: [3]

Maximizing Expected Long-Run Growth Rate
Suppose that the annual reproduction rate of all squirrels that
survive the winter is ρ and suppose that over a time period of T
years, there are T1 short winters and T2 long winters. Because
reproduction is multiplicative, it must be that the average annual
growth rate of the population of π-strategists is

�
ρTS1ðπÞT1S2ðπÞT2

�1=T
= ρS1ðπÞT1=TS2ðπÞT2=T : [4]

Then by the strong law of large numbers, for a sufficiently long
time interval T, the random variables T1=T and T2=2 almost

certainly converge to the probabilities p1 and p2. Therefore,
the logarithm of the average annual growth rate is close to

ln ρ+ p1 ln S1ðπÞ+ p2 ln S2ðπÞ: [5]

The mixed strategy that has the highest long-run average growth
rate will therefore be the solution to the constrained maximiza-
tion problem here below.
Maximization Problem 1. Find π = ðπ1; π2Þ to maximize

p1 ln S1ðπÞ+ p2 ln S2ðπÞ;

subject to the constraints that

π1 + π2 = 1; and π1 ≥ 0; and π2 ≥ 0:

A convenient way to solve Maximization Problem 1 is to make
a change of variables that restates the problem entirely in terms
of the survival rates S1 and S2. From Eqs. 2 and 3, it follows that

π1 =
S1ðπÞ− S2ðπÞ

v1
and π2 =

S2ðπÞ
v2

: [6]

The constraint π1 + π2 = 1 can be expressed as

S1
v1

+ S2

�
1
v2

−
1
v1

�
= 1: [7]

Since v2 = ð1− hÞv1, simple algebra shows that Eq. 7 is equivalent
to

S1 + S2
h

1− h
= v1: [8]

Therefore, Maximization Problem 1 can be reformulated as the
following.
Maximization Problem 2. Find S1; S2 to maximize

p1 ln S1 + p2 ln S2;

subject to

S1 + S2
h

1− h
= v1; with S2 ≥ 0 and S1 − S2 ≥ 0:

The Mixed Strategy Solution. If constrained Maximization Problem
2 has an interior solution ðS1; S2Þ, such that S1 > S2 > 0, then it
must be that

S1 = p1v1 and S2 = p2v1
ð1− hÞ

h
[9]

and

ðπ1; π2Þ=
�
S1 − S2

v1
;
S2
v2

�
=
�
1−

p2
h
;
p2
h

�
: [10]

The inequality constraints S1 > S2 > 0 needed for an interior so-
lution will be satisfied if and only p2 < h.
If p2 ≥ h, then the constraint S1 ≥ S2 is binding and the solution

to Maximization Problem 2 is S1 = S2 = v2, with π1 = 0 and π2 = 1.
In this case growth is maximized if all squirrels pursue the long-
winter strategy.
This simple example reveals patterns that will reappear in

more general environments. If long winters are sufficiently rare,
evolution will favor genes that pursue a bet-hedging strategy,
such that some squirrels save only enough nuts for a short winter

2 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.1400817111 Bergstrom

www.pnas.org/cgi/doi/10.1073/pnas.1400817111


and some save enough for a long winter. This is true despite the
fact that short-winter strategists have higher survival probability
than long-winter strategists. We also see that in the equilibrium
population, the fraction of squirrels using the long-winter strat-
egy will be proportional to the probability of a long winter.

A Squirrel’s Dilemma: More Generally
Additional interesting patterns emerge when we allow for many
possible lengths of winter. Suppose that the number of days of
winter is a random variable, statistically independent of the
length of previous winters, with the longest possible winter
lasting for W days. Let pt be the probability that the winter lasts
for exactly t days and let Pt =

Pt
i=0 pi be the probability that the

winter is no longer than t days.
A squirrel will survive through a winter of length t if and only if

it is not eaten by predators and collects enough nuts to last at
least t days. A squirrel that has gathered j− 1 days’ worth of nuts
and attempts to collect one more day’s supply is exposed to an
additional hazard hj of being eaten by predators. Thus, a squirrel
that attempts to gather sufficient nuts to last through a winter of
length t will survive predation with probability

vt = v0∏
t

j=1

�
1− hj

�
: [11]

Let π = ðπ0; . . . ; πW Þ be the mixed strategy, such that with
probability πt, a squirrel attempts to gather enough nuts to last
through a winter of exactly t days. If the winter is of length w,
then a squirrel that is not eaten by predators will survive to re-
produce if it has saved at least w days’ worth of nuts. This implies
that, conditional on the event that the winter is of length w,
a squirrel that uses mixed strategy π will survive and reproduce
with probability

SwðπÞ=
XW
t=w

πtvt: [12]

The geometric mean growth rate across environmental states
for a gene that uses strategy π is

V ðπÞ= ρ∏
W

t=1
StðπÞpt : [13]

If mixed strategies breed true and the environmental state is
determined by an i.i.d. random process over a long period, then
the population will be dominated by the genotype that uses the
mixed strategy π that maximizes the geometric mean V ðπÞ.
Maximization of V ðπÞ is equivalent to maximization of lnV ðπÞ
and hence π must be a solution to the following constrained
maximization problem.
Maximization Problem 3. Find π = π0; . . . ; πW to maximize

XW
t=0

pt ln StðπÞ; [14]

subject to

XW
t=0

πt = 1 and πt ≥ 0 for t= 0; . . . ;W : [15]

A transformation of variables allows us to restate the constraints
of Maximization Problem 3 in terms of the contingent survival
probabilities St. As is shown in Appendix, there is a one-to-one
correspondence between mixed strategy vectors π and the

resulting vector of survival probabilities S= ðS1; . . . ; SW Þ, such
thatMaximization Problem 3 is equivalent to the following problem.
Maximization Problem 4. Find S= ðS1; . . . ; SW Þ to maximize

XW
t=0

pt ln St; [16]

subject to

S0
v0

+
XW
t=1

ht
vt
St = 1 and 0≤ St ≤ St−1 for t= 1; . . . ;W : [17]

In general, the solution to Maximization Problem 4 may have
complicated patterns of time intervals during which the in-
equality constraints St+1 ≤ St bind and do not bind. Given some
reasonable assumptions on the distribution of winter lengths and
on the hazard rates of collecting additional nuts, the solution is
greatly simplified. This paper will use two properties of discrete
distributions: strict unimodality and a stronger condition, log
concavity, which is also known as strong unimodality.§

A discrete strictly unimodal distribution is single-peaked in the
sense that there is some modal value m, such that the proba-
bilities pt are strictly increasing in t when t<m and strictly de-
creasing in t when t≥m. Thus
Definition 1: A discrete probability distribution p defined on

the set of integers is strictly unimodal about mode m if pt > pt−1
for t≤m and pt < pt−1 for t≥m+ 1.
Definition 2: A discrete probability distribution p with support

S, where S is a connected set of integers is log concave if the
sequence fpt=pt+1; t∈ Sg is nonincreasing in t. It is strictly log
concave if the sequence fpt=pt+1; t∈ Sg is decreasing in t.
An (11) and Balabdaoui et al. (12) show that the class of

discrete log-concave distributions is very large and includes most
of the familiar discrete parametric distributions, including the
binomial, negative binomial, geometric, hypergeometric, uniform,
Poisson, and Skellam distributions.
Assumption 1: Where pt is the probability that winter lasts for

exactly t days, the distribution of winter length is strictly log
concave, with support equal to the integers from 0 toW, and with
mode m where 0<m<W .
Assumption 2: The probability that a squirrel survives preda-

tion while gathering t days’ supply of nuts is vt = v0ð1− hÞt, where
p1=ðp1 + p0Þ> h and pW < h.
A squirrel that attempts to collect t days’ supply of nuts will

survive the winter if it is not eaten by predators and if the winter
is no longer than t days. Thus, the survival probability of a squirrel
that attempts to collect t days’ supply of nuts is vtPt. From
Assumptions 1 and 2, it follows that there is a unique effort level k
that maximizes the survival probability for any squirrel. Thus, we
define the following.
Definition 3: The privately optimal storage quantity is k, such

that vkPk ≥ vtPt for all t, such that 0≤ t≤W .
Lemma 1, which is proved in Appendix, shows that under our

assumptions, the privately optimal storage quantity is uniquely
determined and the distribution of winter’s length has the prop-
erties listed.
Lemma 1: Given Assumptions 1 and 2, there exists a unique

privately optimal storage quantity k, such that

i) pt=Pt ≥ h for all t≤ k and pt=Pt < h for all t> k.
ii) For all t≥ k,

§A probability distribution is said to be strongly unimodal if it is unimodal and its convo-
lution with any unimodal distribution is unimodal. Keilson and Gerber (10) show that for
discrete distributions, strong unimodality is equivalent to log concavity of the probability
mass function, pt .
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pt+1
pt

<
1

1− h
:

Our assumptions imply that in the mixed strategy, which
maximizes a gene’s expected long-term growth rate, every squirrel
seeks to gather at least the privately optimal storage quantity. The
following lemma is proved in Appendix.
Lemma 2: Given Assumptions 1 and 2, where k is the privately

optimal storage quantity, if S solves Maximization Problem 4, it
must be that St = S0 for all t≤ k.
In the mixed strategy that maximizes long-run expected growth

rates, some squirrels will attempt to gather more nuts than the
privately optimal storage quantity. Where k is the privately op-
timal quantity, the number of squirrels who gather exactly t days’
supply of nuts for t> k is proportional to the product of the
probability of a winter of exactly t days and the probability vt of
escaping predation for those who attempt to collect exactly t
days’ supply nuts.
Proposition 1. If the distribution function of winter length satisfies
Assumption 1 and probabilities of evading predators satisfy As-
sumption 2, then the privately optimal storage quantity k is uniquely
determined and the solution to constrained Maximization Problem
4 is S where for t≤ k,

S0 = St = Sk =Pkv0ð1− hÞk;

while for k< t≤W, St is strictly decreasing in t with

St =
v0
h
ptð1− hÞt:

While Proposition 1 describes the predicted survival rates
for winters of each possible length, we can find the corre-
sponding probability mix of strategies by invoking the trans-
formations shown in expression 23. This leads us to the fol-
lowing result.
Corollary 1. The distribution of effort levels that maximizes the
expected long-run growth rate is π = ðπ0; . . . ; πW Þ, where πt = 0 for
t< k, πk =Pk+1 − ðpk+1=hÞ, and πt = pt + ðð1=hÞ− 1Þðpt − pt+1Þ for
k< t<W, and πW = pW=h.
Proposition 1 and its corollary tell us that if the distribution

of winter length is log concave and the hazard rate for gathering
additional nuts is constant, then the mixed strategy that max-
imizes long-run expected growth rate has a simple and inter-
esting structure. There is a privately efficient level of food supply
k, such that squirrels who attempt to gather k days’ food supply
have higher survival probabilities than those who attempt to
gather any other quantity. No squirrel will attempt to gather
less than this quantity, however some squirrels will gather enough
nuts for each possible winter’s length. In equilibrium, the sur-
vival rate of squirrels diminishes with the length of winter so
that the expected survival rate for a winter of t days is the pro-
duct of the frequency of winters of t days and the probability
of avoiding predators if one stores exactly enough nuts for a
t-day winter.

Redistribution by Lottery or Theft
In the discussion so far, each squirrel could consume only the
nuts that it has gathered. The only way to achieve diversity of
resource holdings was to have individuals collect different
amounts. In this section we consider the possibility that resources,
once acquired, can be redistributed. Redistributionmight take the
form of theft, accidental redistribution, or of voluntary partici-
pation in a lottery process.
Let us consider a process in which all squirrels who survive

predation collect the same amount of nuts. Each squirrel de-
posits these nuts in a central cache, from which a redistributive

lottery determines the allotment of each squirrel. The resulting
income distribution will determine the survival rates for each
possible winter’s length. Here we determine the income distri-
bution that maximizes the expected long-run growth rate of
the population.
Suppose that the length of winter is a random variable that

ranges from 1 toW days, where the probability that winter lasts for
exactly t days is pt, and the probability that winter is no longer than
t days is Pt =

Pt
i=0pi. Consider a population of N squirrels, each of

which has collected Y days’worth of food. The total supply of food
is reallocated among theN squirrels in such a way thatNt squirrels
receive t days’ worth of food, for each t= 0; . . . ;W . Since the total
number of days’ supply of nuts collected is NY , it must be that for
a feasible allocation,

XW
t=0

tNt =NY : [18]

Let λt =Nt=N be the fraction of squirrels that receive t days’
worth of food. Then this feasibility condition can be written as

XW
t=0

λtt=Y : [19]

A squirrel will survive a winter of t days if it receives at least t
days’ worth of food. Therefore, the fraction of the population
that survives a winter of t days is

StðλÞ=
XW
i=t

λi: [20]

The distributional lottery that maximizes the geometric mean
of survival probability is the probability distribution of income
measured in days’ supply of food that solves the following con-
strained maximization problem.
Maximization Problem 5. Find λ= ðλ0; λ1; . . . ; λW Þ to maximize

XW
t=0

pt ln StðλÞ;

subject to

XW
t=0

λtt=Y ;
XW
t=0

λt = 1 and λt ≥ 0; for   all t= 1; . . .W :

Maximization Problem 5 can be restated in terms of the sur-
vival rates St by means of a one-to-one transformation. We have

λt = St − St+1 for t= 0; . . . ;W − 1 and λW = SW : [21]

Then

XW
t=0

tλt =
XW−1

t=1

tðSt − St+1Þ+WSW =
XW
t=1

St: [22]

Our constraints require that S0 =
PW

i=0λi = 1. Thus, ln S0 = ln 1= 0
and

PW
t=0 pt ln St =

PW
t=1 pt ln St. Therefore, Maximization Problem

5 is equivalent to the following.
Maximization Problem 6. Find S= ðS1; . . . ; SW Þ to maximize

XW
t=1

pt ln St;

4 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.1400817111 Bergstrom

www.pnas.org/cgi/doi/10.1073/pnas.1400817111


subject to

XW
t=1

St =Y ;

with St+1 ≤ St for t= 1; . . . ;W − 1 and S1 ≤ 1.
We assume that the distribution of winter’s length is strictly

unimodal and that winters of the longest possible length are less
likely than they would be if the distribution of winter lengths
were uniform on ½0;W �. Assumption 3 states this formally.
Assumption 3: The distribution of winter length is strictly uni-

modal, with modal length m<W and with pW < 1=W .
A squirrel that is allotted t days’ worth of food will survive

all winters that are no longer than t days and hence has a
survival probability of Pt. The average food cost per unit of
survival probability for a squirrel that receives t days’ food
supply is therefore t=Pt. If one views food as an input into the
production of survival probability, the following definition
is natural.
Definition 4: The food supply that minimizes average cost

per unit of survival probability is v, where v=Pv ≤ t=Pt for all
t= 1; . . .W .
Lemma 3, which is proved in SI Appendix, relates average and

marginal costs of survival probability in a way that is reminiscent
of the familiar U-shaped cost curves in economists’ theory of
the firm. In particular, average cost per unit of survival prob-
ability is decreasing in the number of days’ storage and exceeds
the marginal cost of increased survival probability for t< v,
while these inequalities are reversed for t> v. Lemma 3 states
this formally.
Lemma 3: If the distribution of winter length satisfies As-

sumption 3 with mode m, there is a unique average-cost-mini-
mizing food supply v>m that minimizes the average cost, t=PðtÞ.
For 1≤ t< v, Pt − tpt < 0 and for v< t≤W , Pt − tpt > 0.
Much as a profit-maximizing competitive firm will never pro-

duce output in quantities, such that average cost exceeds marginal
cost, an income distribution that solves Maximization Problem 6
will not assign positive probability to incomes in the range between
0 and v. Thus, squirrels will receive either no food or enough food
to survive a winter of at least v days. The following result is proved
in SI Appendix.
Lemma 4: Where v is the average-cost-minimizing food supply

and S solves Maximization Problem 6, it must be that St = S1 for
all t≤ v.
In SI Appendix we show that Lemmas 3 and 4 can be used to

prove the following.
Proposition 3. If the distribution of winter length is strictly uni-
modal and v is the average-cost-minimizing food supply, then the
solution S of Maximization Problem 6 is as follows:

i) If Y < v=Pv, then St = ðPv=vÞY < 1, where 1≤ t≤ v, and St =
ptY , where v< t≤W.

ii) If Y ≥ v=Pv, then for some r≥ v, St = 1, where t≤ r and

St =
pt

1−Pr
ðY − rÞ;

where r< t≤W.
Applying the correspondence between solutions to Maximi-

zation Problems 5 and 6, we have the following.
Corollary 2. Given the assumptions of Proposition 3, the distri-
bution of income λ= ðλ0; . . . ; λW Þ that maximizes the expected long-
term growth of a population is as follows:

i) If Y < v=Pv, then λ0 = 1− ðPv=vÞ, λt = 0 for 0< t< v, λv =ðPv
v − pv+1YÞ and λt = ðpt − pt+1ÞY for v< t≤W .

ii) If v=Pv ≤Y <W, then for some r≥ v, λt = 0 for all t≤ r and

λt = ðpt − pt+1Þ
�
Y − r
1−Pr

�

for all t, such that r< t≤W.
Proposition 3 and its corollary imply that if the distribution of

winters’ length is univalent, then the structure of the income dis-
tribution that maximizes the expected long-run reproduction rate
has the following profile. There is some number of days’ food
supply v that minimizes food cost per unit of survival probability.
In an optimal distribution, no individual receives a positive amount
of food smaller than v. If the amount of food Y available per
squirrel is small, so that PvY < v, then in this optimal distribution,
some individuals will receive no wealth at all and will surely starve.
Of the remainder, some receive exactly v units and for each t,
such that v< t≤W , some will receive exactly t days’ supply, where
the number receiving t days’ supply is proportional to the proba-
bility of a winter of length t. Where Y is large enough so that
PvY ≥ v, there is some quantity r≥ v, such that all individuals re-
ceive at least r days’ food supply, while for any number of days,
t> r, the fraction receiving exactly t days’ supply is proportional
to the probability of a winter of length t.

Discussion
Storage with Predation Hazard. Our treatment of the squirrel’s di-
lemma illustrates the principle that when a population is subjected
to a common environmental hazard, a gene maximizes its long-run
reproduction rate by diversifying the portfolio of phenotypes who
carry it. Assuming a log-concave distribution of winter’s length and
constant hazard rates for gathering additional food, no squirrel
would collect less than the privately optimal stock of r days’ supply
of food. Those who collect exactly r days’ supply of food will have
higher survival probability than squirrels who consume any other
amount. Nevertheless, some squirrels would collect enough food
to last for more than r days. For a winter of any length greater
than r days, the survival rate of the squirrel population will be
proportional to the frequency of winters of that length, multiplied
by the probability of avoiding predation if one attempts to store
enough food for such a winter.
This theory suggests that natural selection would favor the

emergence of a gene that randomizes the behavior of its carriers
with the same probabilities persisting in every generation. In their
survey of empirical evidence for evolutionary bet hedging, Childs
and coworkers (6) state that

we believe there is now abundant empirical evidence for the role of
bet-hedging in simple plant systems. . . . Numerous theoretical models
also predict that bet-hedging should evolve in more complex life
histories but at the moment empirical evidence for this is almost
completely lacking.

Vander Wall (1) reports wide variation in the amount of food
stored by animals of the same species in the wild.

The hoarding performance of animals in both the wild and in con-
trolled experiments is typified by great phenotypic variability. Pika
(Ochotona princeps){ hay piles at one site in the Rocky Mountains
ranged in size from 400–6,000 grams . . . and red squirrel middens
contained from 280–4,360 cones . . . Individual laboratory rats and
Syrian golden hamsters differ so greatly in their propensity to store
food that subjects often have been categorized as hoarders and
nonhoarders . . .” (ref. 1, p. 112).

While some of the diversity in the size of food caches may be
the result of differences in availability, Vander Wall reports that
similar diversity of cache size is found in laboratory experiments
where availability is under control of investigators.

{These are guinea pig-like animals that store food in small haystacks.

Bergstrom PNAS Early Edition | 5 of 8

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400817111/-/DCSupplemental/pnas.1400817111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400817111/-/DCSupplemental/pnas.1400817111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400817111/-/DCSupplemental/pnas.1400817111.sapp.pdf


The studies reported by Vander Wall do not offer decisive ev-
idence that the observed diversity in storage behavior is a conse-
quence of evolutionary bet hedging as defined by Seger and
Brockmann (2), rather than a consequence of genetic diversity in
the population. For example, there might be dominant genes that
mandate storing the privately efficient quantity and recessive
genes that mandate storing greater amounts. Seger and Brockmann
observe that it is difficult to determine whether observed diversity
of behavior in a population arises from randomization by genet-
ically identical individuals or from genetic differences resulting
from immigration of individuals who are optimized for environ-
mental conditions in a different geographical region.
Our theoretical predictions suggest empirical tests that could

be helpful in determining whether observed diversity arises
from evolutionary bet hedging by genetically identical individuals
or from diversity of genetic endowments. The bet-hedging model
predicts that, regardless of the length of the previous winter, the
size distribution of observed food caches should be roughly the
same from year to year. If on the other hand, diversity of amounts
of stored food result from a genetically diverse population of
genes, each of which mandates a determinant food strategy, then
the genetic composition of the surviving population would depend
on the length of the previous winter. After a long winter onewould
expect to find a greater proportion of large caches than after a
short winter. The evolutionary bet-hedging theory also makes
specific predictions about the shape of the distribution of food
cache sizes. The theory predicts that there is a minimum cache
level, which all population members would attempt to reach. It
also predicts that the frequency distribution of food cache sizes
that exceed this minimum would be inversely proportional to the
frequency of winters for which such a food cache would be needed.
Themodel presented here is highly simplified and ignores some

effects that must interact with evolutionary bet hedging in im-
portant and subtle ways. A gene can diversify its portfolio not only
by varying the phenotypes of its carriers, but also by dispersing the
locations of its carriers in such a way that not all face the same
environment in any year. This possibility is discussed by Cohen
and Levin (13) and further studied by Vitalis et al. (14). The
interaction between variable environments and frequency de-
pendence is also likely to have a major effect on the form that bet
hedging will take (15). For example, when there are limited
resources available, a large population surviving through a short
winter faces severe competition for food in the following year,
while survivors of a harsh winter have relatively few competitors
for resources.jj

Our model has focused on the behavior of squirrels, but the
decision problems that the squirrels face are not unlike those
confronted by our human ancestors. Like squirrels, humans must
store food and other resources when they are available, because
they face long and variable time periods during which little food
can be harvested. More generally, stores of food and other re-
sources become critical sources of livelihood in the event of many
kinds of unpredicted vicissitudes. While the nature of risks for
humans may be more complex than for squirrels, the structure is
roughly similar. Thus, it is interesting to see that the theory of
evolutionary bet hedging predicts that individuals with identical
genetic endowments might differ greatly in their inclination to
accumulate wealth and that the resulting wealth distributions are
related to the frequency of occasions on which these amounts of
wealth are critical to survival.

Redistributive Lotteries. Although squirrels occasionally steal from
each other, it is unlikely that they redistribute wealth to the extent
required to maximize long-term expected reproduction rates. Our
own species, with its greater capacity for theft and coercion and
with its ability to implement voluntary lottery and insurance con-
tracts, has managed to achieve highly unequal wealth distributions
and in some communities provides safety nets to guarantee a
minimum level of income.
Could the evolutionary theory that we have discussed shed any

light on wealth distributions in human populations? Our discus-
sion used themetaphor of a random “winter’s length” to represent
an environmental risk that affects the survival requirements of
an entire population. The variable length of seasons quite literally
played this role for our hunter–gatherer and peasant ancestors.
However, for human populations, there are many other random
events that simultaneously affect all members’ need for accumu-
lated wealth. Among such events are drought and flood, diseases
of crops and cattle, war, conquest, and pestilence. While the proba-
bility distributions of such events are not as regular as those of
the length of winter, these risks share many qualitative features
with the winter’s length model.
Quite generally, it will be true that in the presence of envi-

ronmental risks affecting the survival requirements of an entire
population, a bet-hedging gene that manages to diversify the
wealths of those who carry it will reproduce more rapidly than
a gene that mandates the same behavior whenever it appears.
One way in which a gene could arrange for itself to be found in
a diverse portfolio of individuals with differing wealth holdings
would be to assign a variety of different savings propensities and
risk preferences to the individuals who carry it.
Psychiatrists consider compulsive hoarding and compulsive

gambling to be well-defined psychological disorders. A review
article by Pertusa et al. (17) indicates that up to 5% of the US
population are afflicted by a compulsive hoarding disorder, which
they define as “excessive collection and failure to discard objects
of apparently little value, leading to clutter, distress and disabil-
ity.” A review by Shaffer et al. (18) reports that about 1.5% of the
US population suffer from pathological gambling problems while
another 4.8% have subclinical levels of gambling problems, where
the official definition of pathological gambling is “persistent and
recurring maladaptive gambling behavior that disrupts personal,
family or vocational pursuits.”
The prevalence of these two disorders suggest that they may not

be simple biological malfunctions, but rather genetically de-
termined propensities that have been preserved by natural selec-
tion. Although each of these disorders is likely to reduce expected
reproductive success of those who have them, it may be that in the
ancestral past, compulsive hoarders would be more likely than
others to survive through extreme winters and famines. Likewise,
it may be that those compulsive gamblers who experienced good
luck would acquire sufficient wealth to survive in lean years when
more conservative individuals would surely starve.
Thus, it may be that compulsive hoarding and compulsive

gambling can be at least partially explained by evolutionary bet
hedging. In its strictest form, if diverse gambling and hoarding
behaviors were the result of randomized phenotypic realizations
of a single genotype, we would not expect to see any influence of
heredity in these behaviors. In fact, available evidence suggests
that the appearance of these disorders is at least partially sus-
tained by genetic diversity rather than by random phenotypic
realizations.
Zyphur et al. (19) administered questionnaires to pairs of

monozygotic (identical) and dizygotic (nonidentical) twins to
study the inheritance of risk preferences. Using the standard twin-
study methodology of behavioral genetics, they conclude that that
“risk preferences appear to be two-thirds genetically and one-
third environmentally determined.” However, they found that
“there was no effect of shared environmental factors but a

jjAmonograph by Clutton-Brock and Pemberton describes population cycles in an isolated
but much-studied population of wild sheep (16) in the St. Kilda archipelago. This pop-
ulation faces highly variable winter conditions and is subject to intense competition for
limited grazing resources when the population gets large.
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sizable influence of unshared environmental factors.” A recent
study by Iervolino et al. (20) used observations of monozygotic
and identical twins to estimate the “genetic and environmental
components” of compulsive hoarding behavior. This study finds
that ∼50% of the observed variance of compulsive hoarding is
genetically determined and 50% is due to either “unshared en-
vironmental factors” or measurement error.
These studies, adhering to the usual convention in twin studies

of inheritance, partition observed phenotypic differences into ge-
netic and environmental differences by means of the assumption
that any phenotypic differences found in identical twins must be
the result of unshared environmental factors. The fact that these
studies find substantial genetic components of behavior suggests
that differences in hoarding and gambling behavior are partially
the result of genetic diversity in the population. On the other
hand, the large proportion of differences in behavior that cannot
be explained by genetic differences and cannot be attributed to
observed environmental differences may well be an indication
that evolution has resulted in human genes that randomize their
phenotypic realizations, much as the theory of evolutionary bet
hedging suggests.

Appendix
Equivalence of Maximization Problems 3 and 4. Eq. 12 implies that

πW =
SW
vW

and πt =
St − St+1

vt
for 0≤ t<W : [23]

The constraints that

XW
t=0

πt = 1 and πt ≥ 0 for t= 1; . . . ;W [24]

can then be written as

XW−1

t=0

St − St+1
vt

+
SW
vW

= 1 and 0≤ St ≤ St−1 for t= 1; . . . ;W ;

[25]

which is also equivalent to

S0
v0

+
XW
t=1

ht
vt
St = 1 and 0≤ St ≤ St−1 for t= 1; . . . ;W : [26]

Properties of Log-Concave Distributions. Continuous probability
distributions with log-concave density are frequently assumed in
economic applications (11, 21). A continuous univariate proba-
bility distribution f with log-concave density has the property that
ðln f ðtÞÞ′′ ≤ 0 for all t in its support. This implies that f ′ðtÞ=f ðtÞ is
nonincreasing in t. To see that Definition 2 is a natural extension
of log concavity for continuous distributions, we observe that the
discrete analog of nonincreasing f ′ðtÞ=f ðtÞ is

pt+1 − pt
pt

≤
pt − pt−1
pt−1

:

This is equivalent to pt+1pt−1 ≤ p2t and thus to

pt+1
pt

≤
pt
pt−1

:

The following result, which is proved in ref. 11, is the analog to
the theorem that for continuous distributions, log concavity of

the density function implies log concavity of the cumulative
distribution function.
Lemma 5: If the discrete distribution pt is strictly log concave,

then pt=Pt is strictly decreasing in t.

Proofs of Proposition 1 and Related Lemmas
Proof of Lemma 1: Assumption 2 requires that p1=P1 =

p1=ðp1 + p0Þ> h and pW=PW = pW < h. Assumption 1 (log concav-
ity) implies that pt=PT is a decreasing function of t (Lemma 5).
Therefore, there must be some k between 1 and W, such that
pt=Pt ≥ h for all t≤ k and pt=Pt < h for all t> k. We note that

Pt+1ð1− hÞt+1 −Ptð1− hÞt = ð1− hÞtðPt+1 − hPt+1 −PtÞ
= ð1− hÞtðpt+1 − hPt+1Þ: [27]

Since pt=Pt ≥ h for all t≤ k and pt=Pt < h for all t> k, it must be
that the expression in Eq. 27 is positive if t< k and negative if
t≥ k. Therefore, Ptð1− hÞt is maximized at t= k. This proves
Assertion i of Lemma 1.
To prove Assertion ii of Lemma 1, note that pk ≥ hPk and

pk+1 < hPk+1 = hPk + hpk+1. Therefore, it must be that pk+1 < pk +
hpk+1, which implies that

pk+1
pk

<
1

1− h
:

Since the distribution of winter’s length is log concave, it must be
that pt+1=pt decreases with t. It follows that pt+1=pt < 1=ð1− hÞ for
all t≥ k.
Proof of Lemma 2: Let t be the smallest number, such that

St+1 < St. Consider the perturbed survival probability distribution
SðxÞ, such that SiðxÞ= Si − xh=ð1− hÞ for all i≤ t, St+1 = St+1 + x
and SiðxÞ= Si, where t+ 1< i≤W . For x sufficiently small, SðxÞ
satisfies all of the constraints of Maximization Problem 4. There-
fore, it must be that

XW
i=0

pi ln SiðxÞ≤
XW
i=0

pi lnSi;

and hence the derivative of
PW

i=0 pi ln SiðxÞmust be nonpositive at
x= 0. This implies that

pt+1
St+1

−
Pt

St

h
1− h

≤ 0;

which implies that

pt+1
Pt

1− h
h

≤
St+1
St

< 1:

If this is the case, we have ð1− hÞpt+1 < hPt, and hence pt+1 <
hðpt+1 +PtÞ= hPt+1. This implies that pt+1=Pt+1 < h. Since, accord-
ing to Lemma 1, pt=Pt ≥ h for all t≤ k, it must be that t> k.
Therefore, St = S0 for all t≤ k.
Proof of Proposition 1: According to Lemma 2, Si = S0 for all

i≤ k, where k is the privately optimal storage quantity. Given that
this is the case, constrained Maximization Problem 4 is equivalent
to the following problem.
Find ðSk; Sk+1; . . . ; SW Þ to maximize

Pk ln Sk +
X

k<i≤W
pi ln Si; [28]
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subject to the constraints St+1 ≤ St for all k≤ t<W and

X
k≤i<W

Si − Si+1
vi

+
SW
vW

= 1: [29]

Now

X
k≤i<W

Si − Si+1
vi

+
Sw
vW

=
Sk
vk

+
X

k<i<W

Si

�
1
vi
−

1
vi−1

�
: [30]

Since we assume that vi = v0ð1− hÞi, it must be that

1
vi
−

1
vi−1

=
h

ð1− hÞi;

and therefore the constraint in Eq. 29 is equivalent to

Sk
v0ð1− hÞk

+
X

k≤i<W
Si

h

v0ð1− hÞi = 1: [31]

If the inequality constraints are ignored, the maximum of
expression 28, subject to the constraint in Eq. 31 has a solu-
tion Sp = ðSpk; Spk+ 1; . . . ; S

p
W Þ, such that Spk =Pkv0ð1− hÞk and

Spt = ð1=hÞptv0ð1− hÞt for k< t≤W . We now show that Sp satisfies
the inequality constraints Spt+ 1 ≤ Spt for all k≤ t<W , and hence Sp

maximizes expression 28, subject to the required constraints.

For k< t<W , we see that

Spt+1
Spt

=
pt+1ð1− hÞ

pt
:

According to Lemma 1, for all t> k, pt+1=pt < 1=ð1− hÞ. It follows
that Spt+ 1=S

p
t < 1. It remains to be shown that Spk ≥ Spk+ 1. We have

Spk+1
Spk

=
pk+1
Pk

1− h
h

: [32]

Lemma 1 implies that pk+1=Pk+1 < h. Therefore, pk+1 < hPk+1 =
hðPk + pk+1Þ, which, in turn, implies that pk+1=pk < h=ð1− hÞ,
and hence

Spk+1
Spk

=
pk+1
Pk

1− h
h

< 1: [33]

Therefore, the vector Sp maximizes [28] subject to [29]. It fol-
lows that S solves constrained Maximization Problem 1, where
St =Pkv0ð1− hÞk for all t≤ k and

St =
v0
h
pið1− hÞt

for all t> k: Thus, establishes Proposition 1.
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Supplemental Information Appendix: Proofs of Proposition 3 and related lemmas

Proof of Lemma 3 :
Since Pt+1 = Pt + pt, it follows that for t = 1, . . . ,W − 1,

t + 1

Pt+1
− t

Pt
=

(t + 1)Pt − t(Pt + pt)

Pt+1Pt

=
Pt − tpt
Pt+1Pt

(SI 1)

Unimodality of the distribution of winter lengths implies that pi < pt, for all i < t ≤ m. It follows that for all t ≤ m,

Pt − tpt =

t∑
i=1

(pi − pt) < 0. (SI 2)

It follows from Inequality SI (2) and Equation SI (1) that “average cost” t/Pt is decreasing in t for all t < m.
Inequality SI (2) implies that Pm −mpm < 0. For t > m, it is also the case that Pt − tpt is an increasing function in t. To

see this we note that since Pt+1 = Pt + pt,

(Pt+1 − (t + 1)pt+1) − (Pt − tpt) = (t + 1)(pt − pt+1). (SI 3)

Since pt > pt+1 for t > m, it follows from Equation SI (3) that Pt − tpt is increasing for t > m.
Since PW = 1, Assumption 3 implies that PW − WpW > 0. We have shown that Pm − mpm < 0 and that Pt − tpt is

increasing in t for m < t < W . It follows that there is a unique integer v with m < v < W such that Pt − tpt ≤ 0 for t ≤ v and
Pt − tpt > 0 for t > v. Lemma 3 is then immediate from Equation SI (1).

Proof of Lemma 4: The constraints of Maximization Problem 6 require that S̄t+1 ≤ S̄t for 1 ≤ t ≤ W − 1. Let t be the first
time period for which S̄t+1 < S̄t. Consider the following perturbation S(x) of S̄. Let St+1(x) = S̄t+1 + x. For i ≤ t, let
Si(x) = S̄i − (x/t), and for i > t + 1, let Si(x) = S̄i. It is straightforward to verify that for sufficiently small x > 0, S(x)
satisfies all of the constraints of Maximization Problem 6. Therefore since S̄ is a solution to Problem 6, it must be that

d

dx

W∑
i=1

pi lnSi(0) ≤ 0. (SI 4)

But

d

dx

W∑
i=1

pi lnSi(0) = −1

t

t∑
i=1

pi + pt+1 (SI 5)

= pt+1 −
Pt

t

=
(t + 1)pt+1 − Pt+1

t

From Lemma 3 it follows that (t + 1)pt+1 − Pt+1 ≤ 0 only if t + 1 > v. Therefore it must be that S̄i = S̄1 for all i ≤ v.

Proof of Proposition 3:

Proof: According to Lemma 4, if S̄ solves Maximization Problem 6, it must be that S̄t = S̄v for all t ≤ v. Then,
(S̄v, S̄v+1, . . . , S̄W ) must be a solution to the maximization problem: Maximize:

Pv lnSv +

W∑
t=v+1

pt lnSt (SI 6)

subject to vSv +
∑W

t=v+1 St = Y , S1 ≤ 1, and Sv ≥ Sv+1 ≥ Sv+2 ≥ · · · ≥ SW . In the absence of the inequality constraints, the
solution to this constrained maximization problem is

S∗
v =

Pv

v
Y and S∗

t = ptY for v < t ≤ W. (SI 7)

According to Lemma 3, it must be that pv+1 <
Pv+1

v+1
. Since Pv+1 = Pv + pv+1, it follows that pv+1 < Pv

v
and hence that

Sv > S∗
v+1. Since v > m, it must also be that pt+1 < pt for t > v and therefore S∗

t+1 < S∗t for all t > v. Thus we have
S∗
v ≥ S∗

v+1 ≥ S∗
v+2 ≥ · · · ≥ S∗

W .

If Y < v
Pv

, then Pv
v
Y < 1 and so the condition S∗

1 = Pv
v
Y ≤ 1 is also satisfied. Therefore(S∗

v , S
∗
v+1, . . . S

∗
W ) maximizes

Expression (SI (6)) subject to the entire set of constraints. It follows that if Y ≤ v
Pv

, the solution to Maximization Problem 6

is S̄, where S̄i = Pv
v
Y for i = 1, . . . v and S̄i = piY for i = v + 1, . . .W . This proves assertion (i) of the proposition.
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If Y > v
Pv

, then Pv
v
Y > 1, and the constraint S̄1 ≤ 1 is binding, so that for all t ≤ v, S̄t = 1. By assumption, Y < W .

There since
∑W

t=1 S̄t = Y < W , it must be that S̄t < 1 for some t ≤ W . It follows that for some r ≥ v, S̄r = 1 and Sr+1 < 1.
Then if S̄ maximizes Expression (SI (6)) subject to the given constraints, it must be that (S̄r+1, . . . , S̄W ) maximizes

W∑
i=r+1

pi lnSi

subject to
W∑

i=r+1

Si = Y − r.

The solution to this constrained maximization problem is seen to be

S̄t =
pt

1 − Pr
(Y − r)

for all t such that r < t ≤ W . Since r ≥ v ≥ m, it must be that pt
1−Pr

(Y − r) >
pt+1

1−Pr
(Y − r) for all t ≥ r. It follows that S̄ is

a solution to Maximization Problem 6 where S̄t = 1 for 1 ≤ t ≤ r and where S̄t = pt
1−Pr

(Y − r) for r < t ≤ W .

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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