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Abstract 

Land-use change currently constitutes the primary driver of modern biodiversity loss. One 

way that land conversion to agriculture can lead to biodiversity loss is through biotic 

homogenization where agriculture consistently favors the same species, causing communities to 

converge in species composition over space or time. Biotic homogenization could also occur 

phylogenetically, where species from the similar phylogenetic lineages are consistently favored by 

agriculture. However, whether phylogenetic homogenization occurs across multiple scales and in 

tropical regions is rarely investigated. In Chapter 1, I leveraged species’ phylogeny and traits to 

understand how land-use change affects tropical bird communities within Costa Rica and 

Colombia. We conducted bird surveys across Costa Rica and Colombia in 294 sites that varied in 

levels of local forest cover and annual precipitation. We then analyzed sites in Costa Rica and 

Colombia together to find that land conversion from forest to agriculture consistently favors the 

same types of species at a large scale. While most trait-based studies measure effects of global 

changes on species occurrences or abundances, changes in species abundance or occurrence 

provide little information about how species actually use the habitats where they occur. For 

example, a species detected in agriculture could simply be passing through (and not actually 

resilient to land-use change) or it could be using agriculture to forage, reproduce, or otherwise 

complete its lifecycle (meaning the species is resilient to land-use change). In Chapter 2, I 

developed and then validated a statistical model to analyze how species’ behavior differs between 

habitat types using observational data. To our knowledge, this is the first model to measure how 

animals use different environments while accounting for behavior-specific imperfect detection 

probability. We compared the model to an alternative model that did not account for imperfect 

detection probability and found that our new model produced more accurate estimates of the mean 
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and uncertainty of the effects of environmental covariates on behaviors. Thus, this model allows 

researchers and managers to more accurately assess how species use the environments they are in 

using observational behavior data. In Chapter 3, I applied this model to over 14,000 behavioral 

observations across 55 bird species in Northwest Costa Rica to understand how local forest cover 

and forest protection level affect bird behaviors. We found that birds were more likely to perform 

reproductive behaviors in protected forest than private forest and agriculture, meaning that 

protected areas are likely important for bird reproduction and conservation. This chapter also 

demonstrates the importance of behavioral analyses in conservation planning, as species’ 

behavioral responses were not always consistent with their differences in abundance. Beyond 

measuring changes in occurrence and behavior, it is also critical to understand if habitats can 

support sufficient reproductive rates to allow for population persistence. Tropical cavity-nesting 

birds may be particularly threatened by agricultural land-use change, which removes the tree they 

rely on for nesting and roosting. In Chapter 4, I aimed to understand how land-use change affects 

tropical cavity-nesting bird reproduction by measuring nest site availability and conducting a nest-

box addition experiment in forest and agriculture Northwest Ecuador. I found that land-use change 

likely limits the reproduction of cavity-nesting birds in agriculture, as nest boxes in agriculture had 

much higher levels of avian activity than nest boxes in forest. Nest boxes also had a relatively high 

rate of chicks fledged, meaning that nest boxes could be a successful conservation strategy for 

certain species. Overall, my dissertation explores the different effects of agricultural land-use 

change on tropical bird occurrence, behavior, and reproduction. I found that these effects can differ 

from each other and across scales. The results highlight the importance of forest conservation, 

especially in wet regions, and support investigating species’ responses beyond occurrence when 

comparing the conservation value of habitat types
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Introduction 

 Land conversion from forest to agriculture can cause local extinctions by decreasing 

population sizes, increasing population isolation, and in turn, increasing the influence of stochastic 

events (Wiens 1992, Brooks et al. 2002). If agricultural land-use change consistently favors the 

same widespread species in very different regions, then this could cause biotic homogenization, 

where communities become more similar over space in time and biodiversity is lost across large 

scales (McKinney & Lockwood 1999, Olden et al. 2018). Currently, most studies of biotic 

homogenization focus on taxonomic diversity and take place in temperate regions at one scale 

(Olden et al., 2018). Meanwhile, phylogenetic homogenization may occur if agriculture selects 

species from the same lineages in different regions, resulting in a loss of diversity in key parts of 

the tree of life (Nowakowski et al., 2018). To address these knowledge gaps, we investigated 

whether land-use change causes phylogenetic homogenization of tropical bird communities at two 

scales: regionally (i.e., within the countries of Costa Rica and Colombia) and continentally (i.e., 

among the two countries). We also determined which traits were associated with species that were 

most vulnerable to land-use change, and whether or not these traits were consistent across 

countries. To do so, we conducted parallel bird surveys in forest and agriculture in Costa Rica and 

Colombia. We recorded all birds seen or heard within 50 m in 294 sites across varying levels of 

local forest cover and annual precipitation. We found that among both countries, land conversion 

from forest to agriculture consistently favored birds from similar phylogenetic lineages. However, 

we did not find the same pattern regionally: within Costa Rica, beta-diversity was highest in 

agriculture, and, within Colombia, beta-diversity peaked in wetter sites (irrespective of land use). 

Why then did agriculture cause homogenization among countries? We found that open-habitat 

associated, more mobile, and seed-eating species thrived in agricultural areas across both 
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countries, and these traits were related to phylogeny, helping to explain the large-scale 

phylogenetic homogenization. We also found that species with large global ranges tended to occur 

in agriculture, meaning the same species were more likely to occur in agriculture than in forest 

between distant sites. Our findings suggest that it is important to measure biotic homogenization 

at multiple scales, as patterns could differ between scales. It is also important to conserve 

undisturbed forest, especially in wetter areas, as these habitat types hosted the highest variation in 

species communities among Costa Rica and Colombia. 

While understanding which species are most likely to occur in different habitat types can 

provide insights on the effects of land-use change on biodiversity, measuring how animals behave 

in their environment is critical to determining the conservation value of habitats (Luck 2002; Lyons 

2005). For example, species must be able to forage and reproduce for populations to persist. 

However, measuring behaviors often requires a large amount of effort, including capturing and 

tracking individuals (e.g., Luck 2002; Tremblay et al. 2005). On the other hand, observational 

surveys can be used to sample behaviors, where an observer records the behaviors performed by 

any individual within a given time period. However, some behaviors are more difficult to observe 

than others, which biases results when analyzing raw data. Here, we developed a novel statistical 

method to account for the fact that the detectability of a behavior depends on the species, behavior 

performed, and surrounding environment (e.g., a foraging bird is likely easier to detect in an open 

field versus a dense forest). We developed a Bayesian model, which we call the behavior N-

mixture model, to estimate the probability that an individual performs a given behavior in a 

particular environment while accounting for imperfect detection. We simulated data to validate the 

model’s ability to estimate the probability of a species performing a given behavior, as well as the 

effect of environmental covariates on behaviors. We compared our model estimates to a naïve 
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model that did not account for imperfect detection. Then, we used our model to estimate behavior 

probabilities of three species from bird observations in forests and farms in Northwest Costa Rica. 

We found that the behavior N-mixture model produced more accurate estimates of behaviors and 

covariate effects on behaviors than the naïve model, which often produced incorrect results about 

the effects of covariates on behaviors. For example, our model could be used to measure the effect 

of canopy cover on the probability of a bird foraging. In our case study, we found that Hoffmann’s 

Woodpecker (Melanerpes hoffmannii) and Inca Dove (Columbina inca) behaved differently in 

forested versus agricultural habitats, while Turquoise-browed Motmot did not. The behavior N-

mixture model can be used to identify habitats that are most important for species’ needs while 

using lower survey effort than more traditional methods.  

 In Chapter 2, we developed a novel statistical model to estimate behaviors while 

accounting for imperfect detection. Again, most studies of the effects of land-use change on 

biodiversity focus on species abundance or occurrence, but animals’ first responses to 

environmental changes are behavioral, and behavioral changes may not reflect differences in 

abundance or occurrence (Wright et al. 2010; Wong & Candolin 2015; González-Lagos & 

Quesada 2017). For example, species may be observed in agriculture but may not be able to forage 

or reproduce in that habitat. The model from Chapter 2 can only applied to one species at a time. 

This makes it difficult to understand how the behaviors of species communities are changing as a 

whole, and it requires more observations to estimate covariates for each species separately. Here, 

we extended the model from Chapter 2 from a single-species model to a community model to 

investigate how species’ abundances and behaviors differed between protected forest, private 

forest, and agriculture in Northwest Costa Rica, and if their changes in abundance were related to 

their changes in behavior. We analyzed over 14,000 behavioral observations of 55 bird species 
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and used a novel statistical model (an extension of the model from Chapter 2) to quantify how 

species differed in their abundances and their foraging, reproductive, and passive (e.g., perching, 

preening) behaviors between land-use types. We found that on average, birds were more abundant 

and more likely to perform reproductive behaviors in forest than in agriculture. We also found that 

on average, birds were more likely to perform reproductive behaviors in protected forest than 

private forest, despite there being no significant difference in abundance between protected and 

private forest. Individual species were not always more abundant in the habitats where they were 

more likely to exhibit foraging or reproductive behaviors, meaning that behavioral surveys and 

analyses add valuable information to assess habitat quality. Our work also highlights the 

importance of forest, especially protected forest, for the reproduction of tropical birds. 

While understanding how animals behave in different environments can elucidate which 

resources they may be obtaining from their habitat, most studies of the effects of land-use change 

on biodiversity do not assess whether habitats contain the resources necessary to sustain species’ 

reproduction. Animals that use or nest in tree cavities may be especially vulnerable to 

deforestation, which removes their critical nesting habitat (Engblom et al. 2002, Cockle et al. 

2010). Cavity-nesting birds are most diverse in the Neotropics, but little research has been done 

on the reproductive biology of tropical cavity-nesting birds and how converting forest to 

agriculture may affect their nesting resources and success  (Hoek et al. 2017). For example, to our 

knowledge, there have been no experiments conducted in tropical pastures to understand the 

effectiveness of nest boxes as a conservation strategy. Here, we aimed to understand how land 

conversion from forest to agriculture affects the reproductive resources of cavity-nesting birds by 

comparing cavity-nesting bird abundance, nesting habitat availability, artificial nest box use, and 

nest success in tropical forests and pastures in Northwest Ecuador. We hypothesized that cavity 
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limitation would lead to higher rates of artificial nest box use in agriculture as compared to forest. 

We conducted four rounds of bird surveys at ten sites, half in forest and half agriculture, recording 

all cavity-nesting birds seen or heard within 50 m and ten minutes. We found more natural cavities 

and higher levels of avian nest box occupancy in agriculture than forest, which supported our 

hypothesis that deforestation limits nesting resources for cavity-nesting birds in Neotropical 

pastures. Retaining trees and adding nest boxes to agriculture could help to conserve certain 

species, while promoting insectivorous cavity-nesting species in farms could also potentially 

benefit farmers if the birds consume crop pests. 
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Abstract 

 Land conversion from forest to agriculture may be a driver of biotic homogenization where 

communities converge in species composition over space or time, resulting in the loss of 

biodiversity. This could occur if agricultural habitats consistently favor the same widespread 

species across distant regions. Currently, there are a lack of studies that investigate homogenization 

at various scales, measure dimensions of biodiversity other than taxonomic diversity, and take 

place in tropical regions. Here, we surveyed birds across precipitation gradients in Costa Rica and 

Colombia to understand how land conversion from forest to agriculture affects the phylogenetic 

homogenization of tropical bird communities at two scales, regionally (i.e., within the countries of 

Costa Rica and Colombia) and continentally (i.e., among the two countries). We then explored if 

species’ responses to forest cover were consistently explained by traits related to habitat affinity, 

global range size, dispersal ability, and diet across regions to understand if traits may explain 

patterns of phylogenetic homogenization. We found that land-use change drives phylogenetic 
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homogenization at a continental scale, and that phylogenetic homogenization is likely mediated 

by phylogenetically conserved functional traits, with open-habitat associated, more mobile, and 

seed-eating species thriving in and homogenizing in agricultural areas across both countries. 

However, the effects of land-use and climate on phylogenetic beta diversity varied across regions 

and spatial scales – within Costa Rica, beta-diversity was highest in agriculture, and within 

Colombia, beta-diversity peaked in wetter sites (irrespective of land use). Our study suggests that 

it is critical to study homogenization at multiple scales, and that conserving undisturbed forest, 

preventing forest degradation, and restoring degraded areas, especially in wetter areas, may be 

critical to preventing phylogenetic homogenization at large spatial scales. 

 

Introduction 

 Most contemporary biodiversity consists of ecological communities changing in 

composition over space (i.e., beta-diversity; Anderson et al. 2011). However, it is increasingly 

recognized that biotic homogenization may be a hallmark of the Anthropocene, whereby global 

changes cause communities to converge in species composition over space or time (McKinney & 

Lockwood, 1999; Olden et al., 2018). Indeed, a recent global synthesis reported that half of the 

studies analyzed found evidence for biotic homogenization as opposed to biotic differentiation or 

no change (Olden et al., 2018). Land conversion to agriculture is thought to be a major driver of 

biotic homogenization, as agricultural habitats seem to consistently favor the same widespread, 

disturbance-adapted, and/or generalist species across distant regions (Nowakowski et al., 2018). 

Nonetheless, key knowledge gaps persist regarding many facets of homogenization, with effects 

of land-use change in particular varying considerably among sites, taxonomic groups, and scales 

(Socolar et al., 2016).  
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 At least three key biases exist in the literature that impede understanding of the 

homogenization process. First, there has been disproportionate research on terrestrial plants and 

freshwater fishes in Nearctic regions, with far fewer studies focused on other taxonomic groups 

and in tropical regions (Olden et al., 2018). Yet land conversion may be especially likely to cause 

homogenization in the tropics, as tropical species generally exhibit higher sensitivity to ecological 

change, more specialization, poorer dispersal ability, and less prior experience with climatic 

variability (Janzen, 1967; Newbold et al., 2020; Sheldon et al., 2018; Wiens, 2016). Second, while 

many studies examine homogenization within regions, fewer focus on homogenization at 

continental or global scales (Olden et al., 2018; Socolar et al., 2016). Yet such large-scale studies 

are crucial to determine whether biodiversity is eroding due to the expansion of widespread species 

and decline of range-restricted, endemic species (Socolar et al., 2016). In addition, much of the 

theory for why land conversion may cause homogenization at continental scales assumes that 

species consistently respond (either positively or negatively) to land-use change across their 

ranges, which may not be true (Orme et al., 2019; Williams & Newbold, 2021). Indeed, it is harder 

to imagine how land conversion could cause global homogenization if the same species persists in 

anthropogenic habitats in some regions but not others (McGill et al., 2015).  

Third, and finally, there are multiple facets of biotic homogenization, but taxonomic 

homogenization is by far the most studied. Over 80% of studies quantify homogenization by 

comparing taxonomic species overlap over space or time (Olden et al., 2018). However, diversity 

could also be lost at large spatial scales if the same phylogenetic lineages are favored by land-use 

change across broad regions and/or if land-use change negatively affects phylogenetically unique 

lineages characteristic to certain places (Nowakowski et al., 2018). Moreover, phylogenetic 

analyses provide insight into how communities are ecologically, historically, and evolutionarily 
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structured, and are particularly useful at larger scales if few taxonomic species are shared between 

distant sites (Graham & Fine, 2008). 

 Land conversion could favor the same lineages in different regions if the key traits that 

dictate how species respond to global changes are phylogenetically conserved (Nowakowski et al., 

2018). For example, traits that describe the demography, dispersal, habitat usage, and/or 

biogeography of a species are often used to predict their sensitivity to global change or extinction 

risk (Henle et al., 2004). If these traits are phylogenetically conserved, then species’ traits could 

provide a predictive framework for understanding why global changes may phylogenetically 

homogenize communities (Henle et al., 2004). Most trait-based studies, however, only focus on 

one community or region: without an assessment of the generality of trait-based patterns, it is 

unknown how reliable the traits can be as proxies to species sensitivity across regions (e.g., 

Hausner et al. 2003, Cleary et al. 2007). Indeed, analyses have called into question the idea that 

the same set of traits consistently predict species responses to global change across regions. For 

example, Kennedy et al. (2010) found that, in Jamaica, ground-nesting birds were less sensitive to 

forest fragmentation than tree-nesting birds. Yet Davies et al. (2010) and Hausner et al. (2003) 

found that ground-nesting birds were more adversely affected by land-use change as compared to 

other groups in Australia and Norway, respectively. 

Here, we investigated how land conversion to agriculture affects the phylogenetic 

homogenization of tropical bird communities at two scales: regionally (i.e., within the countries of 

Costa Rica and Colombia) and continentally (i.e., between the two countries, with about 20% of 

taxonomic species present in both countries). We then explored whether traits related to habitat 

affiliation, global range size, dispersal ability, and diet consistently predict species responses to 

land conversion across regions. To link traits with phylogeny, we also determined the degree to 
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which different traits are phylogenetically conserved. We surveyed birds across precipitation 

gradients in both countries, as it is known that Neotropical bird communities change dramatically 

with precipitation due to changes in vegetation structure and biotic interactions (Gomez et al., 

2020; Karp et al., 2018). Land conversion, however, may cause vegetation structure to converge 

across precipitation gradients and erode this natural turnover, an observation that we have reported 

previously in Costa Rican birds (Karp et al., 2018). 

Our work was guided by three questions. First, how does land conversion from forest to 

agriculture affect the phylogenetic differentiation of bird communities across precipitation 

gradients within Costa Rica and Colombia? We hypothesized that agriculture would favor similar 

lineages of birds in both dry and wet regions, thereby eroding the natural turnover of bird 

communities across precipitation gradients (Gomez et al., 2020; Karp et al., 2018). Second, how 

does land conversion affect the phylogenetic differentiation of bird communities between Costa 

Rica and Colombia? We hypothesized that species’ responses to land conversion would be 

consistent between countries and that similar bird lineages would occupy agriculture in both 

countries, driving phylogenetic homogenization at the continental scale. Finally, what traits predict 

species responses to land-use change? Are they consistent across regions, and are they 

phylogenetically conserved? We predicted that in both countries the species most vulnerable to 

land-use change would be those adapted to dense habitats, with limited range sizes, low dispersal 

ability, and specialized diets, and that these traits would be phylogenetically conserved (Kennedy 

et al., 2010; Newbold et al., 2013).  

 

Methods 

Study regions 
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We investigated how land use shapes bird communities in the Guanacaste Province of 

Costa Rica and the Magdalena River Valley of Colombia (Figure 1). Our study regions are 

geographically distant but similar in important ways. First, both regions are a mosaic of tropical 

forest and agriculture, much of which is cattle pasture. Both regions also contain rainfall gradients, 

varying from ~1,500 mm to ~3,000 mm over ~60 km in Costa Rica and ~1,300 mm to ~3,600 mm 

over ~270 km in Colombia. In both regions, elevation (and thus temperatures) remains largely 

constant between sites, allowing us to isolate the effects of rainfall. Guanacaste experiences a dry 

season from December to April as well as a mid-rainy season drought in July and August. 

Similarly, the Magdalena River Valley also has two dry seasons, December-February, and June-

July. Summer rainfall in the Guanacaste region is projected to decrease up to 25% over the next 

century (Rauscher et al., 2008), while the rainfall in the Magdalena River Valley is predicted to 

increase (World Bank Climate Knowledge Portal). 

In Costa Rica, we selected point count locations across a network of five protected areas 

and 20 farms along the rainfall gradient, and in Colombia, we selected point count locations across 

a network of 12 farms along the rainfall gradient (Figure 1). The farms in Colombia were more 

distant from each other, and fewer farms could be included. Moreover, protected areas were absent 

in our study region in Colombia. All farms were adjacent to forests. On each farm in Costa Rica, 

birds were surveyed at six-point count locations (N= 150 locations). On each farm in Colombia, 

birds were surveyed at 12 point-count locations to balance sampling effort across countries (N = 

144 locations). At each farm, half of the point counts occurred in agriculture and half occurred in 

forest, whereas at each protected area, all point counts occurred in forest. Equal numbers of points 

were placed in 1) forest interiors, 2) forest edges, 3) small forest fragments, 4) agricultural field 
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centers, 5) fields bordering forest, and 6) fields surrounded by forest (Figure 1C). Thus, forest 

cover in the landscape varied independently from the local land-use.  

 

Bird surveys 

We surveyed bird communities in Costa Rica between May-July each year from 2016-

2019, and in Colombia between June-August in 2018 and 2019. In Costa Rica, JZ recorded all 

birds seen and heard in 20 min and within 50 m (excluding fly overs). In Colombia, ML, MS, and 

AK recorded all birds seen and heard in 10 min within 50 m – the sampling time was shorter 

because we were required to visit more point count locations per day. In Costa Rica, we repeatedly 

sampled half of the point-count locations three times within a 1-week period and the other half 

were surveyed once to increase spatial replication while still allowing us to estimate detection 

probabilities. Similarly, in Colombia, three quarters of all point-count locations were repeatedly 

sampled three times with in a 1-week period, and the other quarter were sampled once. We 

conducted surveys between sunrise and 5 hours after sunrise. During each survey, we recorded 

time of day, date, ambient noise, number of people within the count radius, and wind speed (using 

a handheld anemometer) to account for variation in the probability of detection. 

 

Forest cover and precipitation measurements 

To quantify surrounding forest cover, we hand-classified tree cover within 1.5 km of all 

point-count locations, using the most recent cloud-free Google Earth images available closest to 

2016 in Costa Rica and 2019 in Colombia (ranging from 2013-2019).   

For Costa Rica, we modeled precipitation levels at each site, where site refers to either a 

farm or protected area, using weather station data collected between 1921 and 2015 from Costa 
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Rica’s Instituto Meteorólogico Nacional; Inicio - IMN, N = 8), the Organization for Tropical 

Studies (http://www.ots.ac.cr/meteoro; N = 1), KNMI Climate Explorer (https://climexp.knmi.nl/; 

N = 19), and one of our focal farms (http://tiopelon.cr/; N = 1). We filled missing days and months 

by averaging two previous and subsequent days and averaging the same month in two previous 

and subsequent years, respectively. We omitted years with over 3 months of missing data. Then, 

to interpolate the precipitation at sampling sites, we used a general additive mixed model (GAMM) 

with a spatial thin-plate spline, distance from the coast to each census location along the 

predominant offshore wind direction (30° North of West chosen based on MERRA re-analysis 

data (http://globalwindatlas.com/)) as a covariate, and “Year” as a random intercept.  

 For Colombia, we downloaded monthly precipitation data from 1981-2010 from 404 

precipitation stations in the MRV from Instituto de Hidrologia, Meteorologia y Estudios 

Ambientales (IDEAM, www.ideam.gov.co). We fitted a thin-plate spline to the mean monthly 

precipitation values and interpolated predicted values using the ‘fields’ package (Nychka et al., 

2015) in R (Team, 2013). Precipitation and forest cover were not correlated (r = -0.023). 

 

Phylogeny and trait data 

To quantify phylogenetic dissimilarity between point count locations, we obtained 10,000 

phylogenetic trees from http://BirdTree.org (Jetz et al., 2012), using Hackett et al. (2008) as the 

backbone. We computed a consensus tree from the phytools package (Revell, 2012) in R version 

4.0.0 (R Core Team 2013). Two species in Colombia were not in the tree and excluded from 

phylogenetic analyses: Striolated Manakin (Machaeropterus striolatus, observed in 4% of visits) 

and Colombian Chachalaca (Ortalis columbiana, observed in 16% of visits). To understand which 

traits predicted species responses to land-use change, we obtained data on species’ diet, habitat 
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affiliation, range size, and dispersal ability. Specifically, we obtained species’ diet traits from 

EltonTraits (Wilman et al., 2014), which includes percentage of diet comprised of invertebrates as 

well as seeds and grains. We obtained altitudinal range data from Bird et al. (2020) and migration 

status, hand-wing index, territoriality, habitat affiliation, and range-size data from Sheard et al. 

(2020).  

 

Occupancy models 

We implemented a community occupancy model for each region to estimate the probability 

of each species occupying each point count location. The occupancy models used spatially and 

temporally replicated surveys to account for variation in detection probability across species and 

point count locations (Kery & Schaub, 2011). The observed occupancy of a species (i) at a given 

point count location (j) in a given visit (k) during a given year (t) was modeled as follows: 

 

𝑌!,#,$,%~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Z!,#,% ∗ P!,#,$,%) 

Where Y represents whether a species was observed (Y = 1 if observed, 0 if not), Z is the true 

occupancy state (Z = 1 if present, 0 if absent), and P is the probability of detecting a species. The 

detection process was modeled as follows: 

 

logit5P!,#,$,%6 = 𝛼0&'[#] + 𝛼1 ∗ 𝑡𝑖𝑚𝑒#,$ + 𝛼2 ∗ 𝑛𝑜𝑖𝑠𝑒#,$ + 𝛼3 ∗ 𝑝𝑝𝑙#,$ + 𝛼4 ∗ 𝑤𝑖𝑛𝑑#,$ + 

𝜃1! ∗ 𝑑𝑎𝑡𝑒#,$ + 𝛿0! + 𝛿1!,#,$,% 

Here, all 𝛼 parameters were fixed effects. LU (land use) was a binary variable indicating if the 

point count was in forest or agriculture, time was the time at the start of the point count, noise 

represents the presence of loud noise during the survey (cicadas, farm machinery, etc.), ppl 
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represents the log number of people within the survey area (e.g., farm workers), and wind is the 

wind speed during the point count. date is the day of the year of the survey. The effect of date on 

detection probability of each species (𝜃1) was drawn from a normal distribution estimated from 

the data, as different species may be more detectable at different parts of the year. The 𝛿 parameters 

were random intercepts drawn from normal distributions with mean 0 and variance estimated from 

the data. The species-level intercept (𝛿0) allowed species to have different detection probabilities, 

while 𝛿1 accounted for the remaining variation in detection among point count locations, visits, 

and years that was not explained by the other effects. 

 The occupancy process, or the true presence or absence of a species (Z), was modeled as 

follows: 

𝑍!,#,%~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖5𝜓!,#,%6, 

where 𝜓 is the occupancy probability. We modelled the occupancy probability as: 

logit5ψ!,#,%6 = 𝛽0! +	𝛽1! ∗ 𝑙𝑜𝑐𝑎𝑙# + 𝛽2! ∗ 𝑝𝑟𝑒𝑐𝑖𝑝# + 𝛽3! ∗ 𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒# + 

	𝛽4! ∗ 𝑙𝑜𝑐𝑎𝑙# ∗ 𝑝𝑟𝑒𝑐𝑖𝑝# + 𝛾0!,# + 𝛾1!,*!%+[#] 

Here, each 𝛽 term was estimated for each species, and was drawn from a normal distribution with 

hyperparameters estimated from the data. 𝛽0! is a species-specific intercept. Each species was 

allowed to have a different response to local forest cover within 50 m (local), annual precipitation 

(precip), the interaction between local forest cover and precipitation, and landscape forest cover 

(landscape). Landscape forest cover was the area of forest cover within 610 m, subtracting the 

local forest cover within 50 m. This was the scale found to be most biologically relevant for species 

on average using the Costa Rica dataset (Frishkoff et al., 2019; Karp et al., 2018). All covariates 

were scaled prior to analysis. Finally, we included random effects 𝛾 to account for additional 

variation in species-point combinations (𝛾0!,#) and species-site combinations (𝛾1!,*!%+[#]), where 
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site refers to either a farm or protected area. We allow changes in detection but not occupancy 

between years to simplify model structure. 

 We implemented models in a Bayesian framework in R Version 4.0.0 using the R2jags 

Version 0.7-1 package, which runs Markov chain Monte Carlo algorithms (Su & Yajima, 2012; 

Team, 2013). For each model, we ran three chains starting at random initial values, with 25,000 

burn-in iterations, 75,000 post-burn-in iterations, and a thinning rate of 50. We considered the 

chains to converge if the Gelman-Rubin statistics of the chains of every parameter were ≤1.1 

(Gelman et al., 2004). We also determined if forest cover had a significant relationship with 

average species occupancy by assessing whether the 95% Bayesian Credible Interval (BCI) for the 

community mean of the local land-use slope (𝛽1)	crossed zero. 

To understand if species respond similarly to local land use in different parts of their range, 

we calculated the Spearman’s rank correlation coefficient for the beta values of the effect of forest 

cover on species’ occupancy (𝛽1) in Costa Rica and Colombia, only using the shared species 

among countries. 

 

Quantifying and analyzing pairwise dissimilarity 

We quantified phylogenetic pairwise dissimilarity between all point count locations in 

Costa Rica and Colombia using a simulation method because samples from the posterior 

distributions in each country were not linked. First, we used our occupancy models to simulate 

1000 communities, where the occupancy of each species at each point count location was drawn 

from a Bernoulli distribution, with the probability determined by the posterior mean of that 

species’ occupancy probability at that point count location. Then, we calculated the turnover 
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component of the Sorensen phylogenetic pairwise dissimilarities among all point count locations, 

using the betapart package Version 1.5.4 (Baselga & Orme, 2012). 

Next, we categorized point count locations across countries into three levels of local forest 

cover (low, intermediate, high) and two levels of rainfall (low, high), resulting in six categories 

total (e.g., dry/forested, wet/agricultural, etc.). The local forest cover category cutoffs were 40% 

and 85%, which correspond approximately to the 33% and 66% percentile of forest cover of all 

point count locations. For the cross-country analyses, we restricted our analysis to point count 

locations with annual rainfall between 1325 and 3065 mm, which is 200 mm above and below the 

precipitation range of Costa Rica. This resulted in analyzing 96 out of the 144 point count locations 

in Colombia in cross-country analyses. The precipitation category cutoff that determined high 

versus low precipitation was 1826 mm, which corresponds to the 50% percentile of precipitation 

of all point count locations in the analysis (after removing the 48 Colombian point count locations). 

To visualize phylogenetic turnover across land-use and precipitation axes, we used non-metric 

multidimensional scaling. Then, to quantify whether phylogenetic turnover was significant across 

land-use and precipitation categories, we ran a permutational multivariate analysis of variance 

(PERMANOVA) with local forest cover and annual precipitation as predictors, constrained by 

point count locations (i.e., farms or protected areas).  

To measure homogenization within each country, we measured the phylogenetic turnover 

between all unique pairs of point count locations for each of the 1000 simulated communities. We 

then calculated the average distance between each pair of point count locations across the 1000 

simulated communities, resulting in one “true” community distance matrix. Within each habitat 

category (e.g., wet forest, dry agriculture, etc.), we then calculated the mean distance across the 

pairwise point count location distances within each category. Next, we used a null method to 
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determine if these mean distances were statistically different among habitat categories, while 

accounting for nonindependence between point count location distances (as the same point count 

location is incorporated into many distance measurements). In the null method, we shuffled the 

point count locations of the “true” distance matrix while keeping the country and points within 

farms/protected areas consistent. Then, we calculated the mean distances within each habitat (as 

we did for the true matrix). We repeated this procedure for 1000 null communities. To compare 

two habitat categories (e.g., is the mean distance in wet forest significantly higher than the mean 

difference in dry agriculture?), we determined whether >95% of the mean distances calculated 

using the null matrices were greater or less than the true difference. We also repeated this analysis 

using point count location comparisons within habitat categories but across countries to quantify 

phylogenetic homogenization among countries.  

To account for variation in species richness among point count locations (which may 

influence beta-diversity metrics), we used an additional null model approach (as in Ponisio et al. 

2016, Karp et al. 2018). For each of the 1000 simulated communities from the occupancy models, 

we shuffled point count location labels, keeping point count locations within countries and point 

count locations within farms consistent, and then calculated the turnover component of Sorensen 

phylogenetic pairwise dissimilarities. Then, we took the difference between each of the 1000 true 

distance matrices and their corresponding null distance matrix. We repeated the method described 

above to determine if mean distances were statistically different among habitat categories. 

 

Analyzing traits 

We quantified each species’ response to land-use in each country using the mean of each 

species’ posterior distribution of the beta parameter for the effect of local forest cover on 
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occupancy (𝛽1). Higher beta values indicated a species was more likely to occupy more forested 

areas. We then created the following trait predictor variables according to our hypotheses about 

which types of traits are related to species’ responses to land-use change: 

 

1. % Diet insects: % of diet consisting of invertebrates  

2. % Diet seeds: % of diet consisting of seeds and grains 

3. Mobility: Linear combination of whether or not a species is migratory (binary), hand-wing 

index, and the territoriality of a species (3 levels) 

4. Biogeography: Linear combination of global range size and altitudinal range 

5. Habitat affinity: Habitat scores 1 = dense, 2 = semi-open, 3 = open 

 

 Hand-wing index represents the elongation of the wing, and is positively associated with 

dispersal ability (Arango et al., 2022). The territoriality levels were non-territorial, seasonal or 

weak territoriality, and year-round territoriality; we hypothesized that more territorial species 

would be more restricted to one area and exhibit less movement. We used linear combinations for 

mobility and biogeography to combine relevant but correlated measures. To understand which 

traits were most related to species’ responses to land-use while accounting for phylogenetic non-

independence, we ran phylogenetic generalized linear models with a normal error distribution 

using the five trait predictors and the ape Version 5.6-1 package (Paradis et al., 2004). To account 

for varying amounts of uncertainty associated with forest affiliation scores of each species, we 

weighted each observation by one divided by the variance of the posterior distribution of the beta 

parameter for the effect of local forest cover on occupancy (𝛽1). We fit one linear model to all 

species observed in Colombia and one model for all species observed in Costa Rica. To understand 
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whether predictive traits were consistent between countries, we checked if the same traits were 

significant (p < 0.05) in the same direction. To check model fit, we checked whether the residuals 

were normally distributed and if the variance of error terms was consistent. We also repeated this 

analysis for each country using only the 66 shared species among countries.  

Finally, we calculated Pagel’s lambda for each trait using the phytools Version 1.0-1 

package, which measures the degree to which correlations in traits relate to their shared 

evolutionary history. We determined the traits to be significantly phylogenetically conserved if the 

p-value was <0.05. Finally, we measured the average phylogenetic distance among species in each 

trait category, both within each country and in a phylogeny including all detected species. To do 

so, we split continuous traits into two categories at the mean value (e.g., cutoff of high vs. low 

proportion of insect diet at 52%). For the habitat affinity trait, we split the three categories into 

two to simplify all comparisons to two categories: dense and a combination of semi-open and open. 

Then, to determine whether phylogenetic distances significantly differed, we compared true 

differences in phylogenetic distance to 1000 null distances, generated by randomly shuffling tips 

of the phylogeny while maintaining the number of species in each trait category. We considered 

distances to be significantly different if the true distance was greater than over 95% of the null 

distances. 

 

Results 

We detected 168 species (20,184 individuals) in Costa Rica and 264 species (8,812 

individuals) in Colombia, with 66 species present in both countries (Table S1.1). In Costa Rica, 

local forest cover had a positive effect on species’ occupancy on average (effect size 0.75, 95% 

BCI [0.36, 1.13]), whereas in Colombia, there was no significant effect of local forest cover on 
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occupancy across species on average (effect size 0.06, 95% BCI [-0.13, 0.25]). All core parameters 

in the logistic model of occupancy converged (Gelman-Rubin Statistics <1.1). As expected, 

communities exhibited significant turnover across land-use and precipitation gradients within both 

countries; however, forest cover was correlated with relatively more community turnover in Costa 

Rica and precipitation caused relatively more turnover in Colombia (Figure 2; Table S1.2).  

In our analyses of pairwise dissimilarities, we found that patterns in the degree of 

phylogenetic turnover across categories of forest cover and precipitation differed within Costa 

Rica and Colombia. Surprisingly, in Costa Rica, agricultural habitats had the highest phylogenetic 

turnover, while forested habitats had the lowest turnover (Figure 3A). This pattern was consistent 

across the precipitation gradient. Wetter sites generally had lower phylogenetic turnover than dryer 

sites across all categories of forest cover, though these differences were not statistically significant 

at any category of forest cover (Figure 3A). On the contrary, phylogenetic turnover was correlated 

primarily by precipitation and not land-use in Colombia (Figure 3B). Specifically, phylogenetic 

turnover was highest in wet habitats across all levels of forest cover, while dry forest had the lowest 

phylogenetic turnover as compared to all other habitat types (Figure 3B).  

In contrast, when analyzing Costa Rica and Colombia together (only including across-

country comparisons), forested sites had higher phylogenetic turnover than agricultural sites, 

supporting our hypothesis about agriculture-driven homogenization at the continental scale. This 

pattern was consistent across the precipitation gradient, though wetter sites generally had higher 

turnover than dryer sites. However, there was no significant difference in phylogenetic turnover 

between dry and wet agricultural sites (Figure 3C). Results from the null method to account for 

variation in species richness among sites matched our findings without accounting for species 

richness (Figure S1).  
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Functional traits tended to consistently predict species responses to forest cover across both 

countries. In Colombia, species that inhabited denser habitats, were less mobile, ate more insects, 

and ate fewer seeds/grains responded positively to local forest cover (Table 1). Similarly, in Costa 

Rica, species that inhabited denser habitats, ate more insects, and ate fewer seeds/grains also 

responded more positively to local forest cover (Table 1). Trends were similar, and effect sizes 

often even larger, when analyzing the 66 shared species only (Table S1.3). All traits were 

phylogenetically conserved (Table 1). Importantly, however, the mean phylogenetic distances 

associated with agricultural traits tended to be smaller than those associated with forest traits. 

Specifically, within each country, phylogenetic distances were greater for species associated with 

closed habitats, species that ate insects, and species with smaller ranges (Colombia only; Table 2). 

Across the entire phylogeny of all detected species, phylogenetic distances were greater for forest-

associated birds, species that ate insects, species that were less mobile, and species with smaller 

ranges (Table 2). The 66 species that occurred in both countries displayed consistent response to 

land conversion (Figure 4; Spearman’s rho = 0.49, p<0.001). This correlation was strong despite 

there being some species with a near-zero effect size in Costa Rica (due to there being few 

observations of those species in the data). 

Because the range metric did not have a statistically significant effect in our full models 

and it was slightly correlated with other trait metrics (Table S1.4), we also ran a phylogenetic linear 

model with only global range size as a predictor. When only including global range size as a trait, 

species with larger global range sizes were more likely to have a positive response to agriculture, 

though species with large range sizes tended to have smaller residuals, meaning that the 

relationship could be driven by a few of the widest-ranging species.  
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Discussion 

We found that land-use change drives phylogenetic homogenization at a continental scale, 

and that phylogenetic homogenization is likely mediated by phylogenetically conserved functional 

traits. Specifically, species’ habitat affiliations, mobility, and diets consistently explained 

sensitivity to land-use change in Costa Rica and Colombia, with open-habitat associated, more 

mobile, and seed-eating species thriving in and homogenizing communities in agriculture across 

both countries. However, the effects of land-use and climate on phylogenetic beta diversity varied 

across regions and spatial scales. Indeed, within Costa Rica, phylogenetic beta-diversity was 

highest in agriculture, and within Colombia, phylogenetic beta-diversity peaked in wetter sites 

(irrespective of land use).  

 

Regional patterns in phylogenetic beta diversity 

 We were surprised that agriculture did not lower beta-diversity and cause phylogenetic 

homogenization within Costa Rica or Colombia. Indeed, our prior work in the same Costa Rican 

study system reported lower taxonomic beta-diversity in agriculture compared to forest (Karp et 

al., 2018), a pattern that has been replicated in other taxa and study systems (e.g., Solar et al. 2015, 

Ibáñez-Álamo et al. 2017, Liang et al. 2019, Weideman et al. 2020). One possible explanation for 

the difference may be temporal replication. Here, we leveraged 4 years of bird survey data versus 

1 year in our prior work (Karp et al., 2018). High-intensity agriculture is regularly disturbed, 

destabilizing species’ abundances and driving shifts in community composition among years 

(Hendershot et al., 2020; Karp et al., 2011). The high temporal beta-diversity in agriculture may 

thus accentuate differences in community composition among sites over time. Correspondingly, 

García-Navas and Thuiller (2020) found that phylogenetic diversity was lower in forest than 
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farmland in France, and that phylogenetic diversity of farmland assemblages increased over the 

study period.  

Within Colombia, we also did not find that agriculture caused phylogenetic 

homogenization. Instead, phylogenetic beta-diversity was mostly related to precipitation (Table 

S1.2), with dry forest having the lowest phylogenetic turnover among all habitat types (Figure 3). 

This could be because dry forests tended to have a unique bird community, but the community 

was consistently observed across sites. Indeed, many species inhabiting neotropical seasonally dry 

forests tend to be highly associated with and/or endemic to that habitat (Prieto-Torres et al., 2019). 

Dry regions in Colombia also had smaller species pools than wetter regions: 135, 139, 182, and 

189 species were found in dry forest, dry agriculture, wet forest, and wet agriculture, respectively. 

Wetter regions may have had higher phylogenetic beta-diversity because of both its larger species 

pool and low per-species abundances, leading to observations of rarer species that varied more 

between visits and sites. 

Why might have precipitation been correlated with patterns in beta-diversity in Colombia 

but not Costa Rica? One possibility is that the extent of the study region in Colombia is 

geographically longer (270 vs. 60 km) and encompasses a wider range of annual precipitation. 

Thus, habitat filtering and dispersal limitation may be stronger in Colombia if variation in habitat 

is greater between dry and wet sites than in Costa Rica, causing communities to be more distinct 

between dry and wet regions regardless of local forest cover (Gómez et al. 2010). On the other 

hand, in Costa Rica, the precipitation gradient is geographically shorter with a smaller range of 

annual rainfall, leading to more shared species across the precipitation gradient.  

 

Homogenization at the continental scale 
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Unlike regional patterns, we found evidence that land conversion to agriculture may cause 

phylogenetic homogenization at larger spatial scales. That is, when comparing communities across 

Costa Rica and Colombia combined, wet forests hosted the most phylogenetically distinct 

communities whereas agriculture (both wet and dry) was significantly more phylogenetically 

homogenous (Figure 2). At least two potential mechanisms may explain why agriculture seemed 

to cause homogenization across countries but not within them.  

First, if species respond to agriculture consistently across their ranges, and agriculture is 

more likely to host wide-ranging species, then distant agricultural sites should be more likely to 

share species than distant forest sites. Correspondingly, we found that the 66 species that occurred 

in both countries responded similarly to forest cover in each country (Figure 4). Moreover, though 

our range metric did not significantly explain variation in species’ habitat associations when 

present with all other traits (Table 1), there was a significant negative relationship between species’ 

responses to forest cover and global range size when modeled in isolation (Figure 4). This 

discrepancy likely arose because range size was correlated with other traits that were even more 

predictive of species’ preferences for forest versus agriculture (Table S1.4). Nonetheless, our work 

suggests that agriculture may homogenize biodiversity by promoting the same wide-ranging 

species across large geographic distances.  

Second, phylogenetic homogenization could arise if forest-associated species are derived 

from very distinct lineages in different regions, but agriculture-associated species are not. 

Correspondingly, we found that forest-affiliated species were less phylogenetically clustered than 

agriculture-affiliated species across the phylogeny encompassing all detected species (Table 2). 

However, they were not less clustered than agriculture-affiliated species across the smaller 

phylogenies of each individual country (Table 2).  
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These patterns may have been mediated through species’ traits. Consistent with other 

research, we found that, in both countries, agriculture tended to favor species that have a diet 

consisting of more seeds/grains and fewer insects, are more mobile, have larger ranges, and are 

affiliated with more open habitats (Hatfield et al., 2018; Kennedy et al., 2010; Newbold et al., 

2013). These traits were phylogenetically conserved and tended to be more concentrated in the 

bird phylogeny (i.e., present in a more limited subset of lineages) than the corresponding traits 

associated with forest species. That is, the species that occupy forests— specifically, insect-eating 

species with narrow ranges that are less mobile and more affiliated with closed habitats— are more 

likely to be from more distant lineages of the bird phylogeny than the species that occupy 

agriculture (Table 2). Meanwhile, the more limited subset of lineages that contain species with 

high mobility, that prefer seeds/grains over insects, and that have large range sizes may be a 

homogenizing force in agriculture. 

 

Limitations 

 Our core result—that agriculture homogenizes bird lineages across countries—may be 

conservative. In our study systems, forest sites were often degraded. For example, compared to the 

protected areas, privately-owned forests in Costa Rica were twice as fragmented as protected areas 

and more frequently logged, causing significantly lower canopy cover, shorter tree heights, and 

lower tree richness (Karp et al., 2019). No protected areas were present in our Colombia study 

system. If the forests studied here have already lost some of the most phylogenetically distinct and 

range-restricted species (Sykes et al., 2020), then we could be underestimating the degree of 

phylogenetic differentiation that “should” be present between forested sites. Indeed, only five 

species we detected in Costa Rica (Great Curassow (Crax rubra; 5 observations), Yellow-naped 
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Parrot (Amazona auropalliata; 22 observations), Crested Guan (Penelope purpurascens; 1 

observation), Keel-billed Toucan (Ramphastos sulfuratus; 3 observations), and Eastern 

Meadowlark (Sturnella magna; 21 observations)) and five species in Colombia (Military Macaw 

(Ara militaris; 1 observation), White-mantled Barbet (Capito hypoleucus; 1 observation), Crested 

Guan (Penelope purpurascens; 2 observations), Saffron-headed Parrot (Pyrilia pyrilia; 1 

observation), and Yellow-throated Toucan (Ramphastos ambiguus; 6 observations)) that are not 

listed as “least concern” by IUCN. If forest point count locations were more intact, we would 

expect to observe more species that are rare, threatened, and phylogenetically distinct, resulting in 

higher phylogenetic turnover in forest. Moreover, in Colombia, there were some auditory 

observations that could not be identified, and these events were more common in forest than 

agriculture (86 vs. 57), meaning we could be further missing some elusive forest species.  

 

Conclusion 

We used species traits and phylogenetic relationships to understand the traits associated 

with species that profit from land conversion to agriculture, those that do not, and what the ensuing 

consequences are for biotic homogenization. We found that the proliferation of wide-ranging 

species in agriculture, as well as the concentration of agriculture-associated species in certain 

lineages within the avian phylogeny, caused phylogenetic homogenization between Costa Rica 

and Colombia but not within each country. These results suggest it is critical to study 

homogenization at multiple scales (Olden et al., 2018), because regional patterns may differ from 

continental ones. They also point to the importance of examining multiple dimensions of 

homogenization (i.e., taxonomic, functional, and phylogenetic), given that species traits are often 
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non-randomly distributed across phylogenies and agriculture-associated traits may be particularly 

concentrated in certain lineages (Olden et al., 2018; Soares et al., n.d.).  

Tropical forests are one of the most endangered ecosystems in Central and South America 

due to land conversion to agriculture (Janzen, 1988; Portillo-Quintero & Sánchez-Azofeifa, 2010). 

In Colombia, the government’s recent agreement with The Revolutionary Armed Forces of 

Colombia brought an end to the decades-long civil conflict but, in doing so, indirectly opened up 

vast forested areas that people previously avoided to deforestation (Clerici et al., 2016). In contrast, 

northwest Costa Rica is currently experiencing reforestation; however, climate change is expected 

to elicit significant regional droughts that may threaten wet forests in the future (Karp et al., 2019; 

Rauscher et al., 2008). In the face of these ongoing global changes, our study suggests that 

conserving undisturbed forest (Gibson et al., 2011), preventing forest degradation, and restoring 

degraded areas (Malhi et al., 2014), especially in wetter areas (Karp et al., 2019), may be critical 

to preventing phylogenetic homogenization at large spatial scales.  
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Table 1: Functional traits are consistently related to species’ responses to forest cover in Costa 

Rica and Colombia. Table shows coefficient estimates, standard errors, t-values, and p-values 

from phylogenetic least squares models for Colombia and Costa Rica. The response variable is 

the mean of each species’ posterior distribution of the beta parameter for the effect of local forest 

cover on occupancy (𝛽1), where higher values represent higher occupancy as forest increases. 

Coefficients are associated with traits, which are described in methods. Table also contains an 

analysis of trait conservatism, reporting Pagel’s lambda and the associated p-value for each trait. 

 

 
 
  

Coefficient Value
Standard 

 error t-value p-value Value
Standard 

 error t-value p-value
Pagel's 
lambda p-value

Intercept 0.078 0.08 0.93 0.35 0.562 0.38 1.48 0.14
Habitat -0.369 0.04 -8.30 <0.01 -0.766 0.15 -5.08 <0.01 0.75 <0.001
Mobility -0.130 0.04 -2.94 <0.01 -0.238 0.13 -1.87 0.06 0.78 <0.001
Diet-invertebrate 0.075 0.05 1.51 0.13 0.009 0.00 2.11 0.04 0.98 <0.001
Diet-granivore -0.130 0.04 -2.97 <0.01 -0.012 0.01 -1.95 0.05 0.91 <0.001
Biogeography -0.022 0.05 -0.46 0.64 -0.137 0.17 -0.81 0.42 0.78 <0.001

Within Colombia Within Costa Rica
Pagel's lambda 
across countries
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Table 2: Mean branch lengths between species grouped by country and traits. “High” and “Low” 

species’ response to forest cover denotes whether the mean of each species’ posterior distribution 

of the beta parameter for the effect of local forest cover on occupancy (𝛽1) is positive (High) or 

negative (Low). Habitat openness is a categorial variable with three categories. Diet, mobility 

metric, and range metric are split by whether a species has a trait value above or below the mean 

value of the community. Cells in dark grey denote that there is a significant difference between 

the branch length categories using a null model method (See SI Methods). For cells in light grey 

(habitat openness), there was a significant difference between high and medium categories, 

medium and low categories, but not high and low categories. 

 

 
 
 
 
  

High Low Open/Medium Closed High Low High Low High Low High Low
Across Countries 143.76 138.25 139.84 142.71 149.01 128.42 141.33 138.54 137.36 144.89 139.49 146.32

Significance
Within Costa Rica 152.14 145.83 141.13 151.91 157.00 132.52 150.54 142.19 148.43 150.28 147.65 151.04

Significance
Within Colombia 138.54 139.34 136.25 147.83 145.41 124.85 136.49 140.51 135.01 139.20 134.39 145.26

Significance 0.0000.089

0.108

0.402 0.000 0.000 0.094

0.1870.3690.0800.0000.001

Range metricHabitat openness

0.017 0.136 0.000 0.320 0.004 0.004

Species' response 
to local forest cover Diet - invertebrate Diet - seed Mobility metric
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Figure 1: (A) Map of study sites in Costa Rica. Precipitation data are modelled (see Methods). 

(B) An example study site in Costa Rica, where half of the point-count locations were in forest 

and the other half were in agriculture. (C) Map of study sites in Colombia. Precipitation data are 

from WorldClim (Fick & Hijmans, 2017). 
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Figure 2: Non-metric multidimensional scaling (NMDS) plots showing bird community 

phylogenetic turnover along gradients of forest cover (top row), phylogenetic turnover along 

gradients of precipitation (middle row), and Shepard diagrams (bottom row). Plots show trends 

within countries (Costa Rica, left panel, stress = 0.16; Colombia, middle panel, stress = 0.13) and 

for both countries combined (right panels, stress = 0.21). The distance among sites (points) 

represents the differences in phylogenetic turnover, according to changes in species occupancy 

(Sorensen similarity). The precipitation gradient ranges from 1525 mm to 2865 mm in Costa 

Rica and from 1309 mm to 3580 mm in Colombia and the “Combined” plot. In both Costa Rica 

and Colombia, sites with more similar levels of forest cover (red to blue gradient) and 

precipitation (orange to green gradient) tended to have more similar bird communities. 

Nonetheless, forest cover influenced bird community turnover more in Costa Rica, whereas 
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precipitation influenced bird community turnover in Colombia (Table S1.2). Sites across 

countries had very phylogenetically distinct communities. 
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Figure 3: Agriculture elicited phylogenetic homogenization across but not within countries. 

Boxplots depict phylogenetic turnover in each habitat type (A) within Costa Rica, (B) within 

Colombia, and (C) between sites in Costa Rica and Colombia. All boxplots depict the median 

phylogenetic turnover from 1000 simulated communities for each habitat; whiskers are 1.5 times 

the interquartile range. Different letters denote statistical significance, based on a null shuffling 

method to account for nonindependence among sites in pairwise comparisons (see Methods). 
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Figure 4: Large-ranged species may contribute to phylogenetic homogenization in agriculture. (A) 

Shared species responded similarly to local forest cover in Costa Rica and Colombia. The x-axis 

represents the effect of local forest cover on occupancy in Colombia, and the y-axis represents the 

same metric in Costa Rica (i.e., the mean 𝛽1 across each species’ posterior distribution). Higher 

numbers indicated a species was more likely to occupy forested areas. The Spearman’s rho 

correlation and the p-value associated with it are shown. (B and C) Plots of species’ response to 

forest cover and global range size in Colombia (B) and in Costa Rica (C). The x-axes represent 

scaled global range size, and the y-axis represents responses to forest cover (as in panel A). The 

line is the predicted relationship between the variables according to a phylogenetic generalized 

linear model with only range size as a predictor.  
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Supporting Information 1 
 
 

 
Figure S1: Comparisons of phylogenetic beta-diversity across sites, leveraging a null analysis 

method to account for variation in species richness between sites. Boxplots depict phylogenetic 

turnover in each habitat type (A) within Costa Rica, (B) within Colombia, and (C) between sites 

in Costa Rica and Colombia. All boxplots indicate the median phylogenetic turnover from 1000 

simulated communities for each habitat, and whiskers are 1.5 times the interquartile range. 
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Different letters denote statistical significance, based on a null shuffling method to account for 

nonindependence among sites in pairwise comparisons (see Methods). 

 
 

 
Figure S1.2: Forest cover benefits similar lineages across both Costa Rica and Colombia. Figure 

depicts a phylogenetic tree of the 366 species detected in Costa Rica and Colombia. The inner 

circle of points represents species in Colombia, and the outer circle of points represents species in 

Costa Rica. Species absent from a country were left blank. Points are colored by the species’ 

relationship to local forest cover, where red indicates significantly higher occupancy as forest 

cover decreases, blue indicates significantly higher occupancy as forest cover increases, and grey 

indicates no significant differences with changes in forest cover. 
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Table S1.1: List of species in the study and which country each species was present in. 

Species 
Present in 
Colombia 

Present in 
Costa 
Rica 

Agelaius phoeniceus 0 1 
Aimophila ruficauda 0 1 
Amazilia amabilis 1 0 
Amazilia franciae 1 0 
Amazilia rutila 0 1 
Amazilia saucerrottei 1 1 
Amazilia tzacatl 1 1 
Amazona albifrons 0 1 
Amazona amazonica 1 0 
Amazona auropalliata 0 1 
Amazona ochrocephala 1 0 
Amblycercus holosericeus 0 1 
Ammodramus humeralis 1 0 
Anthracothorax nigricollis 1 0 
Anthracothorax prevostii 0 1 
Ara ararauna 1 0 
Ara macao 0 1 
Ara militaris 1 0 
Aramides cajanea 1 1 
Aramus guarauna 0 1 
Aratinga canicularis 0 1 
Ardea alba 1 1 
Arremon aurantiirostris 1 0 
Arremonops conirostris 1 0 
Arremonops rufivirgatus 0 1 
Asio clamator 0 1 
Atalotriccus pilaris 1 0 
Atticora tibialis 1 0 
Attila spadiceus 1 1 
Baryphthengus martii 1 0 
Basileuterus rufifrons 1 1 
Brotogeris jugularis 1 1 
Bubulcus ibis 1 1 
Burhinus bistriatus 0 1 
Busarellus nigricollis 1 0 
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Buteo albonotatus 0 1 
Buteo magnirostris 1 1 
Buteo nitidus 0 1 
Buteogallus anthracinus 0 1 
Buteogallus meridionalis 1 0 
Butorides striata 1 0 
Butorides virescens 0 1 
Cacicus cela 1 0 
Cairina moschata 0 1 
Calocitta formosa 0 1 
Campephilus guatemalensis 0 1 
Campephilus melanoleucos 1 0 
Camptostoma imberbe 0 1 
Camptostoma obsoletum 1 0 
Campylorhamphus 
trochilirostris 1 0 
Campylorhynchus griseus 1 0 
Campylorhynchus rufinucha 0 1 
Campylorhynchus zonatus 1 0 
Cantorchilus leucotis 1 0 
Cantorchilus nigricapillus 1 0 
Capito hypoleucus 1 0 
Capsiempis flaveola 1 0 
Caracara cheriway 1 1 
Cathartes aura 1 1 
Catharus aurantiirostris 0 1 
Celeus loricatus 1 0 
Ceratopipra erythrocephala 1 0 
Cercomacra nigricans 1 0 
Cercomacroides tyrannina 1 0 
Certhiaxis cinnamomeus 1 0 
Chaetura vauxi 0 1 
Chalybura buffonii 1 0 
Chiroxiphia lanceolata 1 0 
Chiroxiphia linearis 0 1 
Chloroceryle amazona 1 1 
Chloroceryle americana 1 1 
Chlorophanes spiza 1 0 
Chlorostilbon canivetii 0 1 
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Chlorostilbon gibsoni 1 0 
Chondrohierax uncinatus 0 1 
Claravis pretiosa 1 1 
Cnemotriccus fuscatus 1 0 
Coccyzus minor 0 1 
Coereba flaveola 1 0 
Colaptes punctigula 1 0 
Colinus cristatus 1 1 
Colonia colonus 1 0 
Columba livia 1 0 
Columbina inca 0 1 
Columbina minuta 1 1 
Columbina passerina 1 1 
Columbina talpacoti 1 1 
Conirostrum leucogenys 1 0 
Contopus cinereus 1 1 
Contopus sordidulus 0 1 
Coragyps atratus 1 1 
Coryphospingus pileatus 1 0 
Crax rubra 0 1 
Crotophaga ani 1 0 
Crotophaga major 1 0 
Crotophaga sulcirostris 1 1 
Crypturellus cinnamomeus 0 1 
Crypturellus soui 1 1 
Cyanerpes caeruleus 1 0 
Cyanerpes cyaneus 0 1 
Cyanocompsa cyanoides 1 1 
Cyanocorax affinis 1 0 
Cyclarhis gujanensis 1 1 
Dacnis cayana 1 0 
Dacnis lineata 1 0 
Dendrocincla fuliginosa 1 0 
Dendrocincla homochroa 0 1 
Dendrocincla tyrannina 1 0 
Dendrocolaptes picumnus 1 0 
Dendrocolaptes sanctithomae 0 1 
Dendrocygna autumnalis 1 1 
Dendroplex picus 1 0 
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Dives dives 0 1 
Donacobius atricapilla 1 0 
Dryocopus lineatus 1 1 
Elaenia flavogaster 1 1 
Elanus leucurus 1 1 
Electron platyrhynchum 1 0 
Epinecrophylla fulviventris 1 0 
Eucometis penicillata 1 1 
Eumomota superciliosa 0 1 
Euphonia affinis 0 1 
Euphonia concinna 1 0 
Euphonia hirundinacea 0 1 
Euphonia laniirostris 1 0 
Euphonia luteicapilla 0 1 
Euphonia xanthogaster 1 0 
Euscarthmus meloryphus 1 0 
Falco femoralis 1 0 
Falco rufigularis 0 1 
Falco sparverius 1 0 
Florisuga mellivora 1 0 
Fluvicola pica 1 0 
Formicivora grisea 1 0 
Forpus conspicillatus 1 0 
Furnarius leucopus 1 0 
Galbula ruficauda 1 0 
Geothlypis poliocephala 0 1 
Geotrygon montana 1 1 
Geranospiza caerulescens 1 1 
Glaucidium brasilianum 0 1 
Glaucis hirsutus 1 0 
Glyphorynchus spirurus 1 0 
Gymnocichla nudiceps 1 0 
Habia cristata 1 0 
Habia gutturalis 1 0 
Habia rubica 0 1 
Heliomaster constantii 0 1 
Hemithraupis flavicollis 1 0 
Hemitriccus 
margaritaceiventer 1 0 
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Henicorhina leucosticta 1 0 
Herpetotheres cachinnans 1 1 
Herpsilochmus rufimarginatus 1 0 
Himantopus mexicanus 0 1 
Hirundo rustica 0 1 
Hylophilus decurtatus 1 1 
Hylophilus flavipes 1 0 
Hypnelus ruficollis 1 0 
Icterus auricapillus 1 0 
Icterus nigrogularis 1 0 
Icterus pectoralis 0 1 
Icterus pustulatus 0 1 
Icterus spurius 0 1 
Ictinia plumbea 1 0 
Islerothraupis luctuosa 1 0 
Jacana jacana 1 0 
Jacana spinosa 0 1 
Juliamyia julie 1 0 
Laniocera rufescens 1 0 
Laterallus albigularis 1 0 
Legatus leucophaius 1 1 
Leistes militaris 1 0 
Lepidocolaptes souleyetii 1 1 
Lepidopyga goudoti 1 0 
Leptodon cayanensis 0 1 
Leptopogon amaurocephalus 1 0 
Leptopogon superciliaris 1 0 
Leptotila plumbeiceps 0 1 
Leptotila verreauxi 1 1 
Lonchura malacca 0 1 
Machaeropterus regulus 1 0 
Machaeropterus striolatus 1 0 
Machetornis rixosa 1 0 
Malacoptila panamensis 1 0 
Manacus manacus 1 0 
Megaceryle torquata 1 1 
Megarynchus pitangua 1 1 
Melanerpes hoffmannii 0 1 
Melanerpes pucherani 1 0 
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Melanerpes pulcher 1 0 
Melanerpes rubricapillus 1 0 
Micrastur semitorquatus 0 1 
Microcerculus marginatus 1 0 
Microrhopias quixensis 1 0 
Milvago chimachima 1 1 
Mimus gilvus 1 0 
Mionectes oleagineus 1 1 
Mionectes olivaceus 1 0 
Molothrus aeneus 0 1 
Molothrus bonariensis 1 0 
Molothrus oryzivorus 0 1 
Momotus aequatorialis 1 0 
Momotus momota 0 1 
Morococcyx erythropygus 0 1 
Mycteria americana 0 1 
Myiarchus apicalis 1 0 
Myiarchus cephalotes 1 0 
Myiarchus nuttingi 0 1 
Myiarchus panamensis 1 0 
Myiarchus tuberculifer 1 1 
Myiarchus tyrannulus 0 1 
Myiodynastes chrysocephalus 1 0 
Myiodynastes luteiventris 0 1 
Myiodynastes maculatus 1 1 
Myiopagis gaimardii 1 0 
Myiopagis viridicata 1 1 
Myiothlypis fulvicauda 1 0 
Myiozetetes cayanensis 1 0 
Myiozetetes similis 1 1 
Myrmeciza immaculata 1 0 
Myrmeciza longipes 1 0 
Myrmotherula axillaris 1 0 
Myrmotherula brachyura 1 0 
Myrmotherula pacifica 1 0 
Notharchus macrorhynchos 0 1 
Notharchus pectoralis 1 0 
Notharchus tectus 1 0 
Numenius americanus 0 1 



 49 

Nyctibius grandis 1 0 
Nyctibius griseus 1 0 
Nycticorax nycticorax 0 1 
Nyctidromus albicollis 1 1 
Nystalus radiatus 1 0 
Odontophorus gujanensis 1 0 
Oncostoma cinereigulare 0 1 
Oncostoma olivaceum 1 0 
Onychorhynchus coronatus 0 1 
Ornithion brunneicapillus 1 0 
Ortalis columbiana 1 0 
Ortalis vetula 0 1 
Oryzoborus angolensis 1 0 
Oryzoborus crassirostris 1 0 
Oryzoborus funereus 1 0 
Pachyramphus aglaiae 0 1 
Pachyramphus cinnamomeus 1 0 
Pachyramphus polychopterus 0 1 
Pachyramphus rufus 1 0 
Pandion haliaetus 0 1 
Pardirallus maculatus 0 1 
Passer domesticus 0 1 
Passerina caerulea 0 1 
Patagioenas cayennensis 1 0 
Patagioenas fasciata 1 0 
Patagioenas flavirostris 0 1 
Patagioenas speciosa 1 0 
Patagioenas subvinacea 1 0 
Penelope purpurascens 1 1 
Phaeomyias murina 1 0 
Phaethornis anthophilus 1 0 
Phaethornis striigularis 1 1 
Phaethornis syrmatophorus 1 0 
Pheugopedius fasciatoventris 1 0 
Philohydor lictor 1 0 
Phimosus infuscatus 1 0 
Phyllomyias griseiceps 1 0 
Piaya cayana 1 1 
Picumnus olivaceus 1 0 
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Pilherodius pileatus 1 0 
Pionus menstruus 1 0 
Pitangus sulphuratus 1 1 
Platyrinchus cancrominus 0 1 
Poecilotriccus sylvia 1 1 
Poliocrania exsul 1 0 
Polioptila albiloris 0 1 
Polioptila plumbea 1 1 
Porphyrio martinica 0 1 
Progne chalybea 1 1 
Psarocolius angustifrons 1 0 
Psarocolius decumanus 1 0 
Pteroglossus torquatus 1 1 
Pygochelidon cyanoleuca 1 0 
Pyrilia pyrilia 1 0 
Pyrocephalus rubinus 1 0 
Pyrrhomyias cinnamomeus 1 0 
Quiscalus mexicanus 0 1 
Ramphastos ambiguus 1 0 
Ramphastos sulfuratus 0 1 
Ramphastos vitellinus 1 0 
Ramphocaenus melanurus 0 1 
Ramphocelus dimidiatus 1 0 
Rhynchocyclus olivaceus 1 0 
Rostrhamus sociabilis 0 1 
Saltator coerulescens 1 0 
Saltator grossus 1 0 
Saltator maximus 1 0 
Saltator striatipectus 1 0 
Sarcoramphus papa 1 1 
Sayornis nigricans 1 0 
Schiffornis turdina 1 0 
Sicalis flaveola 1 0 
Sittasomus griseicapillus 1 1 
Sporophila corvina 0 1 
Sporophila intermedia 1 0 
Sporophila minuta 1 0 
Sporophila nigricollis 1 0 
Sporophila schistacea 1 0 
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Sporophila torqueola 0 1 
Stelgidopteryx ruficollis 1 0 
Streptoprocne zonaris 0 1 
Sturnella magna 0 1 
Synallaxis albescens 1 0 
Synallaxis brachyura 1 0 
Tangara cyanicollis 1 0 
Tangara gyrola 1 0 
Tangara icterocephala 1 0 
Tangara inornata 1 0 
Tangara larvata 1 0 
Tangara vitriolina 1 0 
Tapera naevia 1 1 
Terenotriccus erythrurus 1 0 
Tersina viridis 1 0 
Thalurania furcata 1 0 
Thamnophilus atrinucha 1 0 
Thamnophilus doliatus 1 1 
Thamnophilus multistriatus 1 0 
Thamnophilus nigriceps 1 0 
Thamnophilus schistaceus 1 0 
Thraupis episcopus 1 1 
Thraupis palmarum 1 1 
Threnetes ruckeri 1 0 
Thryothorus modestus 0 1 
Thryothorus pleurostictus 0 1 
Thryothorus rufalbus 0 1 
Tiaris olivaceus 0 1 
Tigrisoma mexicanum 0 1 
Tityra inquisitor 1 1 
Tityra semifasciata 1 1 
Todirostrum cinereum 1 1 
Todirostrum nigriceps 1 0 
Tolmomyias sulphurescens 1 1 
Troglodytes aedon 1 0 
Trogon caligatus 1 0 
Trogon chionurus 1 0 
Trogon elegans 0 1 
Trogon melanocephalus 0 1 
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Trogon melanurus 1 0 
Trogon violaceus 0 1 
Turdus grayi 0 1 
Turdus ignobilis 1 0 
Turdus leucomelas 1 0 
Turdus leucops 1 0 
Tyrannulus elatus 1 0 
Tyrannus melancholicus 1 1 
Tyrannus savana 1 0 
Tyto alba 0 1 
Vanellus chilensis 1 1 
Veniliornis kirkii 1 0 
Vireo flavoviridis 0 1 
Vireolanius eximius 1 0 
Volatinia jacarina 1 1 
Xenops minutus 1 0 
Xiphorhynchus flavigaster 0 1 
Xiphorhynchus susurrans 1 0 
Zenaida asiatica 0 1 
Zenaida auriculata 1 0 
Zenaida macroura 0 1 

 
 
Table S1.2: PERMANOVA tests of phylogenetic community differentiation along local forest 

cover and precipitation gradients within Costa Rica and within Colombia. 

 

 
 
  

Coefficient Df
Sum of 
squares

Mean 
squares F R2 Pr(>F)

Precipitation 1 0.89 0.89 18.60 0.08 0.001
Forest cover 1 2.99 2.99 62.62 0.27 0.001
Residuals 147 7.02 0.05 0.64
Total 149 10.89 1.00
Precipitation 1 2.67 2.67 62.53 0.28 0.001
Forest cover 1 0.68 0.68 15.99 0.07 0.001
Residuals 141 6.02 0.04 0.64
Total 143 9.37 1.00

Within 
Costa Rica

Within 
Colombia
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Table S1.3: Functional traits consistently dictate species’ responses to forest cover amongst the 66 

shared species between Costa Rica and Colombia. Table shows coefficient estimates, standard 

error, t-value, and p-values from phylogenetic least squares models using only the 66 shared 

species between Costa Rica and Colombia. The response variable is the mean of each species’ 

posterior distribution of the beta parameter for the effect of local forest cover on occupancy (𝛽1), 

where higher values represent higher occupancy as forest increases. Coefficients represent traits, 

which are described in methods.   

 

 
 
Table S1.4: Correlation between trait predictors in the phylogenetic generalized linear models. 

 

 
 
  

Country Coefficient Value
Standard 

 error t-value p-value
Intercept -0.329 0.26 -1.24 0.22
Habitat -0.509 0.10 -5.25 <0.01
Mobility -0.279 0.12 -2.36 0.02
Diet-invertebrate 0.071 0.13 0.56 0.58
Diet-granivore -0.079 0.10 -0.77 0.45
Biogeography -0.332 0.11 -3.06 <0.01
Intercept 0.789 0.51 1.55 0.13
Habitat -1.239 0.19 -6.37 <0.01
Mobility -0.230 0.23 -1.02 0.31
Diet-invertebrate 0.935 0.27 3.42 <0.01
Diet-granivore 0.130 0.30 0.44 0.66
Biogeography -0.376 0.22 -1.69 0.10

Colombia, 
shared 
species

Costa 
Rica, 
shared 
species

Habitat 
affiliation

Diet - 
invertebrate

Diet - 
seeds

Range 
metric

Mobility 
metric

Habitat 
affiliation

Diet - 
invertebrate Diet - seeds

Range 
metric

Mobility 
metric

Habitat 
affiliation 1.00 -0.09 0.21 0.43 0.20 1.00 -0.10 0.16 0.33 0.10
Diet - 
invertebrate -0.09 1.00 -0.40 -0.05 0.26 -0.10 1.00 -0.37 0.00 0.16
Diet - seeds 0.21 -0.40 1.00 0.09 -0.13 0.16 -0.37 1.00 0.05 -0.23
Range 
metric 0.43 -0.05 0.09 1.00 0.32 0.33 0.00 0.05 1.00 0.19
Mobility 
metric 0.20 0.26 -0.13 0.32 1.00 0.10 0.16 -0.23 0.19 1.00

Colombia Costa Rica
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Abstract: 

Understanding how and why animals use the environments where they occur is both 

foundational to behavioral ecology and essential to identify critical habitats for species 

conservation. However, some behaviors are more difficult to observe than others, which can bias 

analyses of raw observational data. To our knowledge, no method currently exists to model how 

animals use different environments while accounting for imperfect behavior-specific detection 

probability. We developed an extension of a binomial N-mixture model (hereafter the behavior N-

mixture model) to estimate the probability of a given behavior occurring in a particular 

environment while accounting for imperfect detection. We then conducted a simulation to validate 

the model’s ability to estimate the effects of environmental covariates on the probabilities of 

individuals performing different behaviors. We compared our model to a naïve model that does 

not account for imperfect detection, as well as a traditional N-mixture model. Finally, we applied 

the model to a bird observation dataset in Northwest Costa Rica to quantify how three species 

behave in forests and farms. Simulations and sensitivity analyses demonstrated that the behavior 

N-mixture model produced unbiased estimates of behaviors and their relationships with predictor 
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variables (e.g., forest cover, habitat type). Importantly, the behavior N-mixture model accurately 

characterized uncertainty, unlike the naïve model which often suggested erroneous effects of 

covariates on behaviors. When applied to field data, the behavior N-mixture model suggested that 

Hoffmann’s woodpecker (Melanerpes hoffmanii) and Inca dove (Columbina inca) behaved 

differently in forested versus agricultural habitats, while turquoise-browed motmot (Eumomota 

superciliosa) did not. Thus, the behavior N-mixture model can help identify habitats that are 

essential to a species’ life cycle (e.g., where individuals nest, forage) that non-behavioral models 

would miss. Our model can greatly improve the appropriate use of behavioral survey data and 

conclusions drawn from them. In doing so, it provides a valuable path forward for assessing the 

conservation value of alternative habitat types.  

 

Introduction 

Species responses to environmental conditions are most often assessed by measuring 

effects on their occurrences or abundances (e.g., Newbold et al. 2013; Hatfield et al. 2018). Yet, 

changes in incidence provide little information about how species use the environments where they 

occur (Gilroy and Edwards 2017; Ortega-Álvarez et al. 2021). For example, a species regularly 

detected in agricultural habitats could simply be passing through, rather than actively using 

agricultural habitats to forage, reproduce, and complete its lifecycle (Vickery et al. 2001). 

Variation in the behavioral use of different environments can have cascading implications for 

individual fitness and population persistence (e.g., Luck 2002; Lyons 2005). For example, a dense 

habitat may not be necessary for an individual to survive, but still important for population 

persistence because it contains the necessary substrates for reproduction (e.g., nesting, mating). 

Therefore, changes in behavior can act as a warning signal that a population is in trouble (Berger-
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Tal et al. 2016), and understanding the fitness effects of animals behaving differently in different 

habitats is critical to conserve species effectively. In contrast, if we base costly, lengthy 

management actions solely on incidence, without understanding how a species uses that habitat, 

we may fail to protect habitats that are essential to critical phases of the species’ life cycle.  

Unfortunately, many behaviors are difficult to observe (Durso, Willson, and Winne 2011), 

and the detectability of individuals often depends on the behaviors they perform (Crowe and 

Longshore 2010). Moreover, the detectability of different behaviors may change depending on the 

surrounding environment. This may be particularly problematic when changes in behaviors are 

confounded with changes in their detection probability, such as when the same covariate (e.g., 

vegetation density) influences behaviors and the probability of detecting both individuals and their 

behaviors. For example, the probability of detecting bird vocalizations may be similar between 

open areas (e.g., farms) and dense environments (e.g., forests), whereas the probability of detecting 

behaviors that are observed visually may decline. Meanwhile, it is possible that a species performs 

behaviors detected visually, such as foraging, more frequently in denser environments. Without 

accounting for behavior-specific detection, we would risk falsely concluding that open 

environments are more beneficial to this species because we observe it foraging there more often. 

To our knowledge, no method currently exists to model how different habitats support different 

behaviors while accounting for behavior-specific detection probability.  

Ecologists have long grappled with the problem of imperfect detection when modeling the 

abundance of wildlife (Hilborn, Redfield, and Krebs 1976; Seber 1982; M. Kéry and Royle 2008). 

Failing to account for variation in detection (among species, observers, habitats, etc.) can bias 

estimates of abundances (Kellner and Swihart 2014). One method frequently used to account for 

imperfect detection in abundance estimation is the N-mixture model (Royle 2004; Marc Kéry 
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2018). N-mixture models estimate abundance and detection using spatially and temporally 

replicated surveys where the number of individuals is counted. They assume populations are 

closed, such that the same number of individuals are present during each visit to a site, and that all 

individuals have the same detection probability. If there is unmodeled heterogeneity in detection 

(such as variable detection probabilities between behaviors), N-mixture models are known to 

underestimate abundance (Marc Kéry and Royle 2015). Therefore, modeling behavior-specific 

detection probabilities could potentially account for behavior-driven heterogeneity (e.g. between 

individuals, age-sex classes, populations) in detection.  

Given a dataset of species observations with spatial and temporal replication, where 

behaviors are noted for all detected individuals, a conceptually straightforward way to account for 

behavior-specific detection probabilities is to extend the N-mixture model to estimate abundance 

of each behavior separately, using repeated counts of behaviors. Then, a species’ total abundance 

is the sum of the abundances of each behavior. This approach allows each behavior to have its own 

detection probability that can be modelled as a function of covariates. It also allows modeling of 

covariate effects on the prevalence of a given behavior. However, a major challenge with this 

method is that the N-mixture model assumes populations are closed, which may be less probable 

with behavior-specific abundances than overall abundances. Specifically, it is quite possible that, 

across multiple visits to a single site, the same number of individuals are present but perform 

different behaviors – we refer to this as a violation of the behavioral closure assumption. 

Here, we develop a behavior N-mixture model that estimates the effects of environmental 

covariates on behavior probabilities (that is, the probability that an individual performs a certain 

behavior), while accounting for imperfect detection of individuals and behaviors. This method 

adds another conditional layer to the traditional N-mixture model. Specifically, it estimates the 
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probabilities that individual animals will use one type of habitat for a behavior (e.g., foraging, 

vocalizing), while accounting for the imperfect and variable detection of those behaviors. We 

conduct a simulation study to understand how variation in detection, abundance, and violation of 

the behavioral closure assumption affect our ability to estimate relationships between 

environmental covariates and behavior probabilities. To assess performance, we compare our 

model to a naïve model that estimates behavior probabilities without accounting for imperfect 

detection, as well as a traditional N-mixture model that accounts for overall imperfect detection 

but neither estimates behavior probabilities nor behavior-specific detection probabilities. Finally, 

we apply our model to a four-year dataset of bird surveys in Costa Rica, in which behaviors (e.g., 

vocalizing, eating, passive behaviors) were noted during repeated point counts in agricultural and 

forested habitats.  

 

Materials and Methods 

Formulation of the Behavior N-Mixture Model 

We extended the N-mixture model framework to quantify how environmental covariates 

influence the relative frequency of behaviors performed (behavior probability), while accounting 

for variation in detection probability among different behaviors in different environments (Royle 

2004; Marc Kéry 2018). Under certain assumptions, our new model can also be used as a typical 

N-mixture model to estimate abundance, though in other cases doing so can be problematic (see 

below). In typical N-mixture models, the number of individuals observed (Y) at a site (j) and a visit 

(k) is modeled based on abundance and detection processes such that: 

𝑌#,$ 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁# , 𝑃#,$) , 
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where N is the true number of individuals and P is the per-individual detection probability. P can 

be modeled as a function of site and visit-specific covariates. Site-specific abundances, 𝑁#, are 

modeled as a random count variable (e.g., with a Poisson probability distribution), and expected 

abundance can be modeled as functions of site-specific covariates. For the behavior N-mixture 

model, to model the counts (Y) and proportion (π) of individuals performing the bth behavior, we 

modified the typical N-mixture model such that: 

𝑌#,,,$ 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁. 𝑏#,,	, 𝑃#,,,$)  

𝑁. 𝑏#,,	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆# ∗ 𝜋#,,) 

𝑁# = ∑ 𝑁. 𝑏,-
,./  . 

Here, 𝑌#,,,$ 	is the number of individuals observed performing a certain behavior (b) at a site 

(j) and a visit (k). 𝑃#,,,$ is the detection probability of an individual performing a certain behavior 

at a particular site and visit. 𝑁. 𝑏#,, is the number of individuals performing a certain behavior at a 

site, and π j,b is the probability that an individual performs a certain behavior at a site. Finally, 𝜆# 

is the expected value of the total abundance (𝑁#) at a site. Note that πj,b and 𝑁. 𝑏#,,	are indexed by 

site and behavior, which implies closure of relative behavior frequencies between visits (i.e., 

assuming the same number of individuals performs each behavior during each visit). Expected 

abundance 𝜆# can be modeled as:  

log5𝜆#6 = α0 + 𝛂′𝐗𝐣 ,  

where α0 is the intercept and 𝛂′ is a vector of coefficients that are multiplied by the 

covariates 𝐗. 

 𝐵. 𝑝#,,	is modeled as a function of covariates using multinomial logistic regression. For 

the first behavior,  
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π j,1 = /

/2	∑ +!"#$𝛃&𝐛𝐙𝐣*
#+,

	, 

and for the remaining behaviors, 

π j,b = +!"#$𝛃&𝐛𝐙𝐣

/2	∑ +!"#$𝛃&𝐛𝐙𝐣*
#+,

	.  

The first behavior serves as a reference category that the other behaviors are compared to; 

any category can be used as the reference. B is the number of behavior categories. In the 

multinomial logistic regression, 𝛽0, is a behavior-specific intercept and 𝛃′	is the vector of 

coefficients that is multiplied by the covariates 𝐙.  

Finally, the detection probability of an individual performing a certain behavior at a given 

site and visit (𝑃#,,,$) can be modelled as a function of site- and visit-specific covariates:  

logit5𝑃#,,,$6 = 𝛾0 + 𝛄′𝐛𝐕𝐣 , 

where 𝛾0 is the intercept and 𝛄′ is the vector of behavior-specific coefficients that are 

multiplied by the covariates 𝐕. 

 

Simulation study 

We evaluated the performance of the behavior N-mixture model under five combinations 

of mean expected abundance (λ) and detection probability (P). For each scenario, we applied the 

behavior N-mixture model to 100 sets of simulated observations of behaviors and abundances for 

one species across 50 sites (indexed by j), with five visits to each site (indexed by k). In all 

scenarios, individuals could perform one of three behaviors (indexed by b), with intercepts of the 

behavior probabilities fixed at 0.6, 0.15, and 0.25 (𝛽0 = [0, -1.38, -0.87]). The intercepts of the 

behavior probabilities must sum to 1, and the first behavior served as the reference level. First, we 

tested model performance with a detection probability intercept fixed at 0.2 (a realistic value for 
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bird communities; Karp et al. 2018) and three levels of abundance intercepts representing 1, 2.7, 

and 7.4 individuals per site. Second, we tested model performance with an abundance intercept 

fixed at 2.7 individuals per site (𝛼0 = 1) and two additional levels of detection probability 

intercepts: 0.5 and 0.8 (𝛾0 = 0	and	1.38).  

In all cases, the abundance intercept 𝛼0 was added to the product of one site-specific 

covariate X and an abundance coefficient 𝛼′. The behavior probability intercept 𝛽0 was added to 

the product of a behavior-specific coefficient 𝛽′, and one site-specific covariate Z for two 

behaviors, while the first behavior served as the reference level. The number of individuals 

performing each behavior at each site and visit was determined using a multinomial random 

distribution with size n = Nj and cell probabilities π 1:3,j. This case reflects behavioral closure, 

where the numbers of individuals performing each behavior at each site is constant across visits. 

Finally, we generated detection probabilities by adding the intercept 𝛾0 and the product of a 

behavior-specific detection coefficient and the covariate Z. For each replicate, the abundance 

coefficient and detection intercept were drawn from a normal distribution with mean 0 and 

variance 0.25, while the behavior-specific coefficients were drawn from a normal distribution with 

mean 0 and variance 1. We wanted to explore more of the parameter space of the behavior-specific 

coefficients in contrast to abundance and detection parameters, which we aimed to control for in 

each simulation scenario. Site-specific covariates were also drawn from a normal distribution with 

mean 0 and variance 1 so that we did not have to standardize environmental covariates prior to 

analysis. 

Assuming behavioral closure could be problematic in practice, as animals can change 

behaviors frequently. To explore how the behavior N-mixture model performs under complete 

violation of behavioral closure, we applied it to an additional dataset paired with each simulated 
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dataset described above, where the number of individuals performing each behavior was re-

sampled from the same multinomial distribution for each visit. This way, the number of individuals 

was constant across visits, but the number of them engaging in each behavior could change. Next, 

to understand model performance under intermediate levels of violation of the behavioral closure 

assumption, we applied the behavior N-mixture model to more paired datasets where the numbers 

of individuals performing each behavior each visit were determined by re-sampling 0, 25, 50, 75, 

and 100% of the total abundance while holding the detection intercept at 0.2 and abundance 

intercept at 2.7 (see above). When the behavioral closure assumption was violated, we expected 

abundance to be overestimated and detection probability to be underestimated. This is because 

when an individual is observed performing different behaviors between visits, it contributes to 

overall abundance estimates multiple times. 

 

Alternative models 

To compare how the behavior N-mixture model estimated total abundance to an alternative 

model, we applied a traditional N-mixture model to every simulated dataset where we retained 

covariates for estimating abundances and detection probabilities. Under behavioral closure, we 

expected the traditional N-mixture model to underestimate abundance due to unmodeled variation 

in detection probabilities. When behavioral closure was violated, we expected the behavior N-

mixture model to produce more biased abundance estimates than the traditional N-mixture model. 

  We also sought to compare the behavior N-mixture model’s estimates of behavior 

parameters to a naïve model that did not account for imperfect detection. To do so, we applied a 

multinomial regression model to every simulated dataset, where we aggregated behavioral 

observations across visits for each simulation replicate. This was the most straightforward way to 
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model behavior frequencies without accounting for imperfect detection. We expected the naïve 

model to produce biased relationships with covariates, especially when the same covariate affected 

detection and behavior. 

We assessed model estimates for abundance (N, 𝛼0, 𝛼′), detection (𝑃#,,,$ , 𝛾0, 𝛾′,), and 

behavior (π j,b, 𝛽0, 𝛽′,) parameters. For each replicate, we calculated the absolute bias of the 

posterior means and 95% Bayesian credible interval (BCI hereafter) coverage, which represents 

how often the range between the 2.5 and 97.5th percentiles of the posterior distribution contains 

the true value. We compared bias and BCI coverage across levels of mean detection, abundance, 

and violation off behavioral closure. We also compared bias and BCI coverage of parameters 

between the behavior N-mixture model, traditional N-mixture model, and naïve multinomial 

regression model.  

 

Implementation 

We implemented all models in R Version 4.0.0 using the package nimble, which runs 

Markov chain Monte Carlo (MCMC) algorithms (Team 2013; de Valpine et al. 2017). For each 

simulation replicate, we ran three chains starting at random initial values and 5,000 burn-in 

iterations. We included 150,000, 100,000, and 50,000 burn-in iterations and thinning rates of 75, 

50, and 25 for the behavior N-mixture, traditional N-mixture, and naïve multinomial regression 

models, respectively. We considered models to converge if all chains for abundance, detection 

probabilities, behavior probabilities, and intercept and slope parameters had Gelman-Rubin 

statistics ≤1.1 (Gelman et al. 2004). If any chains did not converge, we excluded the entire 

replicate (i.e., all models fit to that dataset) from further analysis. 
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Case Study: Effects of Agriculture on Bird Behavior in Northwest Costa Rica  

We applied the behavior N-mixture model to behavioral observations of Hoffmann’s 

woodpecker (Melanerpes hoffmannii), Inca dove (Columbina inca), and turquoise-browed motmot 

(Eumomota superciliosa) in adjacent agricultural and forested sites in northwest Costa Rica. All 

species are regularly observed both in forest and agricultural habitats; our objective was to 

determine whether species changed behavior frequencies between habitats.  

At twenty forest-adjoining farms and five protected areas, birds were surveyed at six sites 

each, half in agricultural sites and half in forest (N=150 sites total). At each site, the same expert 

observer (J. Zook) surveyed all birds seen or heard in 20-min, 50-m fixed radius point counts in 

May – July from 2016-2019. Half of the point counts were sampled three times within a 1-week 

period and the other half were surveyed once to increase spatial replication while still being able 

to estimate detection probabilities. One farm or protected area (6 sites) was surveyed each day, 

beginning at sunrise and continuing for ~5 hr. The observer recorded species identity, number of 

individuals observed, time of day, and ambient noise, which we considered to be noise levels that 

were above typical background noises and were thought by the observer to interfere with his ability 

to detect bird vocalizations. Each observation of a species was associated with one of 32 behaviors 

(Appendix S1: Table S2.2) that we classified into three categories: vocalizing, eating/foraging, and 

other. When an individual performed more than one behavior during a point count (10.5% of 

observations), we randomly selected one of the behaviors from those recorded by the observer.  

We modeled annual abundance of each species at each site as a function of an intercept, a 

coefficient multiplied by the fraction of forest cover within 50 meters, and random effects for farm, 

point, and year. We modeled behavior probability as a function of a behavior-specific intercept 

and a behavior-specific coefficient multiplied by a binary habitat covariate (agriculture vs. forest). 
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We modeled detection probability as a function of an intercept, a behavior-specific coefficient 

multiplied by a binary noise variable (no noise vs. noise; e.g., machinery, cicadas), a behavior-

specific coefficient multiplied by the binary habitat covariate, and a coefficient multiplied by the 

time of day.  

We considered the composition of behaviors to differ between habitats when the BCIs for 

any behavior coefficients did not include zero. Because the values of behavior coefficients are 

relative to the reference behavior, their values do not necessarily reflect how a behavior probability 

differs between habitats. Thus, we considered a behavior probability to be significantly different 

between forested and agricultural habitats when the BCI for the predicted difference in the 

behavior probability between habitats did not include zero. We compared estimates of behavior 

probabilities and coefficients to the naïve model and compared estimates of abundance to the 

traditional N-mixture model (See Supporting Information 2). For all models, we ran three chains 

of 5,000 burn-in iterations and 150,000 post burn-in iterations and thinned chains by 75. We 

implemented models in R Version 4.0.0 using the package nimble and checked for convergence as 

described above (Team 2013; de Valpine et al. 2017). 

 

Results 

Model convergence 

Chains for every parameter within the behavior N-mixture, traditional N-mixture, and 

naïve models converged for 60-85% of the simulation replicates when the detection intercept was 

0.2 and 0.5 across all levels of abundance. When the detection intercept was 0.8, all chains 

converged in only 14% of replicates (Appendix S1: Table S2.1). When we adjusted the levels of 
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violation of the behavioral closure assumption, all chains from 15 models (three models applied to 

five levels of closure violation) converged in 23% of replicates.  

 

Behavior parameters 

Overall, we found that the behavior N-mixture model better estimated behavior 

probabilities and effects of covariates (e.g., land-use type) on behavior compared to the naïve 

model. Specifically, the mean estimate of behavior probabilities was 0.96-3.34 times more likely 

to be less biased under the behavior N-mixture model than under the naïve model across scenarios 

(Appendix S1: Table S2.3). When data met the behavioral closure assumption, BCIs from the 

behavior N-mixture model captured the true value of the behavior probabilities 90-95% of the time 

across all scenarios of abundance and detection (Table 3). The naïve model, however, only 

captured the true value 42-74% of the time.  

The mean absolute bias of estimates of behavior probability and behavior probability 

coefficients (i.e., the effect of a covariate on each behavior; 𝛽′,) from the behavior N-mixture 

model were small (-0.001 to 0.03 and -0.01 to 0.21, respectively; true 𝛽′,values ranged from -4.11 

to 3.06; Table 3). When the detection intercept was 0.2 or 0.5, the behavior N-mixture model’s 

BCI coverage of the behavior probability coefficients was 91-95%. However, when mean 

detection was 0.8, the behavior N-mixture model’s BCI coverage was only 82% (Appendix S1: 

Table S2.3). Again, coverage of behavior probability coefficients was always higher for the 

behavior N-mixture model than the naïve model (Figure 5). Further, the behavior N-mixture 

model’s mean estimate of behavior probability coefficients was 1.33-6.14 times more likely to be 

less biased than the naïve model (Appendix S1: Table S2.3). For behavior probabilities and 

coefficients, BCIs from the behavior N-mixture model were about 50% wider than BCIs from the 
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naïve model, which clearly underestimated uncertainty. Therefore, the better coverage of the 

behavior N-mixture model can be attributed to a combination of both lower bias and wider BCIs. 

 

Abundance parameters 

Under behavioral closure, the mean absolute bias of the behavior N-mixture model’s 

estimate of abundance (N) ranged from 0.03 to 0.22 (true values ranged from 0-47, with three 

outlier values of 88) across all scenarios (Appendix S1: Table S2.4). The mean absolute bias of 

the traditional N-mixture model’s abundance estimate ranged from -1.23 to -0.02 across scenarios 

(Appendix S1: Table S2.6). The behavior N-mixture model’s BCI coverage of abundance was 98-

99% (Appendix S1: Table S2.4), and across scenarios, the behavior N-mixture model’s estimate 

of abundance was 1.17-2.13 times more likely to be less biased than the traditional N-mixture 

model (Appendix S1: Table S2.3).  

The mean absolute bias of the behavior N-mixture model’s estimate of the abundance 

coefficient (𝛼′) ranged from -0.03 to 0.02 across scenarios, which was similar to that from the 

traditional N-mixture model (-0.02 to 0.02; Appendix S1: Table S2.3, Table S2.6). The behavior 

N-mixture model’s BCI coverage of the true value of 𝛼′ was 84-100%, and the highest coverage 

occurred were when the detection intercept was 0.2 (Appendix S1: Table S2.4). The behavior N-

mixture model’s mean estimate of the abundance coefficient was 0.59-3.35 times more likely to 

be less biased than the traditional N-mixture model across trials (Appendix S1: Table S2.3), so for 

some simulation scenarios, the behavior N-mixture model resulted in more bias than the traditional 

N-mixture model. 

 

Detection parameters 
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Under behavioral closure, mean absolute bias of the behavior N-mixture model’s estimate 

of detection probability (𝑃#,,,$) ranged from -0.01 to 0.00, and the BCI coverage of the true value 

was 88-97% (Appendix S1: Table S2.4). Mean absolute bias of the detection probability 

coefficient (𝛾′,) ranged from -0.10 to 0.07 (true values ranged from -3.90 to 2.67) (Appendix S1: 

Table S2.4), and the BCI coverage of the true value was 90-96%. The worst-performing scenario 

for detection parameters was when the mean detection probability was 0.8 (Appendix S1: Table 

S2.4). There was no alternative model that estimated behavior-specific detection probabilities for 

comparison, as the naïve model did not estimate detection probabilities and the traditional N-

mixture model did not estimate behavior-specific parameters.  

 

Violation of the behavioral closure assumption 

When the behavioral closure assumption was violated, the behavior N-mixture model still 

outperformed the naïve model in estimating behavioral frequencies (and effects of covariates on 

behaviors) but performed worse than the traditional N-mixture model at estimating abundances. 

Specifically, when the behavioral closure assumption was fully violated (i.e., 100% of the 

behaviors re-sampled each visit), the mean absolute bias of behavior probability coefficients (𝛽′,) 

for the behavior N-mixture model ranged from -0.10 to 0.25 (Appendix S1: Table S2.4). Although 

the range of absolute bias increased when the behavioral closure assumption was violated, BCI 

coverage for the behavior N-mixture model (74-91%) was still much greater than the naïve model 

(28-67%). The only scenario where the BCI coverage for the naïve model was greater was when 

the detection intercept was 0.8 (Figure 5). With violation of the behavioral closure assumption, the 

variance of the bias of behavior and detection parameters increased, but the mean absolute bias 

was close to zero (Appendix S1: Table S2.4). Across intermediate levels of behavioral closure 
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violation, there was little variation in the BCI coverage of behavior probability coefficients (Figure 

6). 

 With increasing violation of the behavioral closure assumption, bias in total abundance (N) 

became increasingly positive and bias of detection probability (P) became increasingly negative 

(Figure 7; Appendix S1: Table S2.4). At low levels of behavioral closure violation, such as when 

25% of the behaviors were re-sampled, mean absolute bias of N was still rather low (i.e., 0.51; 

Figure 7; true values ranged from 0 to 13). However, at higher levels of mean abundance, mean 

absolute bias increased (Appendix S1: Table S2.4). Meanwhile, the traditional N-mixture model 

underestimated N on average – mean absolute bias ranged from -0.27 to -0.15 across all levels of 

behavioral closure violation. When the behavioral closure assumption was violated, the mean 

absolute bias of the behavior N-mixture model’s estimates of the abundance and detection 

coefficients (𝛼′ and 𝛾′) were not consistently positive or negative, ranging from -0.01 to 0.05 and 

-0.10 to 0.07, respectively (Appendix S1: Table S2.4). In addition, when mean detection was 0.2 

or 0.5, at the behavior N-mixture model’s estimates of 𝛼′ were 1.04-2.44 times more likely to be 

less biased than the naïve and traditional N-mixture models across replicates (Appendix S1: Table 

S2.3). 

 

Application: bird behavior variation between forest and agricultural habitats 

We estimated the effects of land use on the probabilities of eating and vocalizing for three 

focal species, using the behavior N-mixture model and a naïve model. In some cases, predictions 

from the behavior N-mixture and naïve model largely aligned. The behavior N-mixture and naïve 

models both estimated higher probabilities of eating in agricultural habitats and vocalizing in forest 

for Inca dove, a species often found foraging in agricultural fields (“Inca Dove - Columbina Inca 



 70 

- Birds of the World” n.d.; though they differed in which behavior coefficients were statistically 

significant; Figure 8). In other cases, the models produced very distinct results. For example, for 

Hoffmann’s woodpecker, a species known to occupy both forest and open areas  (Stiles, Skutch, 

and 1904- 1989), the behavior N-mixture model only found that the probability of the “other” 

behavior was significantly higher in agricultural land than in forest, whereas the naïve model 

suggested that the woodpecker was less likely to vocalize and more likely to perform the “other” 

behavior category in agricultural land than in forest (Figure 8). Similarly, for turquoise-browed 

motmot, a species that has been observed foraging and nesting in both forested and anthropogenic 

landscapes (Snow and Kirwan 2020), the behavior N-mixture model did not find significant effects 

of land use on behavior; however, the naïve model indicated a marginally significant higher 

probability of vocalizing and lower probability of “other” in forest as compared to agricultural 

habitats (Figure 8), where the BCI bordered 0.00. Additionally, the behavior N-mixture model 

suggested that loud noises reduced the likelihood of detecting vocalizations of all three species, 

Hoffmann’s woodpecker was harder to detect later in the day, and forest cover increased the 

likelihood of observing turquoise-browed motmots eating (Appendix S1: Fig. S1). The behavior 

N-mixture model also suggested that forest cover increased the abundance of Hoffmann’s 

woodpecker and turquoise-browed motmot but not Inca dove.  

 

Discussion 

We developed and applied a novel hierarchical model to assess shifts in animal behavior 

across environments. Data on how animals behave can be used to understand how local 

management activities and global changes affect species, quantify habitat suitability (e.g., by 

identifying potential source/sink habitats), and identify conservation interventions (Ortega-
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Álvarez et al. 2021). Indeed, behavior data can reveal trends that census data cannot. For example, 

urban parks may appear to be high quality habitat for wildlife based on the presence and abundance 

of individuals, even as human activity reduces the availability of foraging resources, thereby 

decreasing fitness and increasing the probability of future extirpations (Jokimäki et al. 2011). Most 

studies of animal behavior, however, rely on intensively monitoring animals (e.g., Luck 2002; 

Tremblay et al. 2005), and are thus limited to few individuals because they are labor-intensive and 

restricted to certain species (e.g., those that can carry tracking equipment).  

Here, we present a novel method that allows researchers to leverage survey-type behavioral 

data while accounting for imperfect detection, thereby enabling scientists or practitioners to 

analyze behaviors for many individuals of multiple species and better assess the conservation value 

of alternative habitat types. When the behavioral closure assumption was met, our behavior N-

mixture model produced unbiased estimates of behavior probabilities, their relationships with 

predictor variables, and abundance, even when the same covariate affected both behavior and 

detection probability. When the behavioral closure assumption was violated, the behavior N-

mixture model still produced unbiased estimates of behavior probabilities and the effects of 

covariates on behaviors, but it overestimated total abundance. Further, the behavior N-mixture 

model had better BCI coverage than the naïve model when estimating behavior probabilities in all 

scenarios, except when the behavioral closure assumption was completely violated and the mean 

detection probability was high (Note: Figure 9 provides a decision tree of which models to choose 

in different circumstances). 

 

Behavior parameters 
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The behavior N-mixture model produced unbiased estimates of covariates affecting 

behavior probability and accurate estimates of uncertainty. As mentioned, the only scenario in 

which the behavior N-mixture model performed worse than the naïve model was when mean 

detection probability was 0.8 and the behavioral closure assumption was violated. In reality, a 

mean detection probability of 0.8 or greater is rare (Marc Kéry 2018; Kellner and Swihart 2014), 

and if detection probability is near-perfect, a naïve model may be sufficient (Figure 9). While the 

naïve model is a simpler alternative that does not make assumptions about closure, the behavior 

N-mixture model produced similar or less biased estimates of behavior parameters in all cases 

when there was behavioral closure, and at mean detection probabilities of 0.5 or lower when the 

behavioral closure assumption was violated (Table 3). 

A critical disadvantage of the naïve model is that it underestimated uncertainty, causing it 

to make incorrect inferences about how covariates affected behaviors. In the most egregious cases 

the naïve model returns significant results suggesting that a behavior increases in probability in an 

environment, when in fact it decreases. For example, under behavioral closure, when the naïve 

model was applied to the scenario with mean detection probability of 0.2 and mean abundance of 

2.7 (Figure 5a), 14% of the significant coefficients affecting behavior (i.e., where BCI did not 

include 0) were in the opposite direction of the true value. This type of error could be problematic 

if naïve model results are applied to management decisions, as we may fail to protect essential 

habitats for a species’ life cycle, and potentially protect non-important habitats instead. In contrast, 

the behavior N-mixture model did not estimate any statistically significant coefficients affecting 

behavior in the wrong direction in the same scenario.  

 

Abundance parameters 
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The behavior N-mixture model produced unbiased estimates of abundance parameters, as 

well as accurate estimates of uncertainty, when the data conformed to the behavioral closure 

assumption. In this case, it outperformed the traditional N-mixture model, which tended to 

underestimate abundance. When the behavioral closure assumption was violated, however, the 

behavior N-mixture model performed poorly (Figure 7), which we expected based on what is 

known about N-mixture models (Rota et al. 2009). Therefore, when the behavioral closure 

assumption is violated, the behavior N-mixture model should not be used to estimate abundances 

or detection probabilities. However, when mean detection probability is around 0.5 or lower, the 

behavior N-mixture model can still be used to estimate coefficients affecting abundance and 

detection (Table 3).  

When the behavioral closure assumption is violated, the traditional N-mixture model can 

still be used to estimate abundance and detection in most cases. Although there was a negative bias 

in abundance estimates, BCI coverage was at least 93% across all scenarios. Bias was greatest 

when mean abundance was high (average of 7.4 individuals per site), when the traditional N-

mixture model consistently overestimated detection and underestimated abundance (Appendix S1: 

Table S2.6).  

In practice, it may be hard to determine whether the behavioral closure assumption is 

violated, so caution is warranted before using the behavior N-mixture model to estimate 

abundances. To assess behavioral closure, users could potentially contrast abundance estimates 

under both models and, if similar, solely use the behavior N-mixture model. Overall, we 

recommend using the traditional N-mixture model to estimate abundances, but to use the behavior 

N-mixture model to measure changes in behavior (Figure 9). 
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Bird behavior variation in Northwest Costa Rica 

The behavior N-mixture model produces important insights into the effects of 

environmental conditions on behaviors. As illustrated in the simulation study, these effects can be 

incorrectly determined when not accounting for imperfect and varying detection.  

Among our case studies, the turquoise-browed motmot and Hoffmann’s woodpecker 

highlight scenarios where the behavior N-mixture model suggests that birds do not behave 

differently in forest and agricultural habitats, while the naïve model suggests that they do. This is 

likely because the naïve model underestimates the uncertainty around coefficients (as seen in the 

simulation study), and the detectability of some of these behaviors differed between habitats 

(Appendix S1: Fig. S1). In contrast, the Inca dove highlights that sometimes both models can 

produce consistent estimates of important effects on behaviors. This may occur when there are 

large differences in behaviors performed between habitats that are apparent even without 

correcting for detection.  

The results of the behavior N-mixture and naïve models seemed to differ the most when 

there was more heterogeneity in the effects of habitat on the detection probability of each behavior 

(Figure 8; Appendix S1: Fig. S1). That is likely because the naïve model confounds effects of 

habitat on detection of behaviors with effects on the behaviors themselves. For example, for the 

turquoise-browed motmot, the naïve model likely estimated a larger effect of forest on the 

probability of vocalizing than the behavior N-mixture model because it did not account for the fact 

that vocalizing is relatively easier to detect in forest than foraging, which becomes more difficult 

to see when there is dense cover (Appendix S1: Fig. S1). Thus, a potential consequence of using 

the naïve model is falsely concluding that turquoise-browed motmots vocalize more frequently in 

forest. Because vocalization is essential for reproduction, this could lead to incorrect conclusions 
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about the importance of forest habitat for reproduction. Indeed, turquoise-browed motmots are 

known to breed in human-dominated areas and even exploit nesting opportunities created by 

human infrastructure (Snow and Kirwan 2020). In contrast, for Hoffmann’s woodpecker, the 

effects of habitat on detection probability of each behavior were near zero (Appendix S1: Fig. S1), 

likely because the foraging behavior of Hoffmann’s woodpecker is often audible. Because habitat 

did not have a large effect on detection probability, the behavior N-mixture and naïve models 

produced similar coefficient estimates (Figure 8). More generally, this suggests that our model is 

especially critical in scenarios where there is heterogeneity in the detection probabilities of 

different behaviors and their relationships with the environment. For example, when conducting 

visual surveys of amphibians, it is important to account for the variation in detection probability 

depending on the activity level of individuals (Hammond et al. 2021).  

The behavior N-mixture model provided useful information on how birds utilize different 

habitats. For the turquoise-browed motmot and Hoffmann’s woodpecker, the behavior N-mixture 

model estimated a positive effect of forest cover on abundance, but no significant differences in 

the probability of eating and vocalizing between habitats (Appendix S1: Fig. S1; Table 4). This 

implies that there may be higher densities of individuals in more forested habitats, but individuals 

have similar probabilities of eating and vocalizing in forest and in agricultural habitats. This could 

mean that these species indeed perform important behaviors for their life history in agricultural 

habitats, but that forest habitat can support more individuals performing these key behaviors. In 

contrast, the Inca dove was estimated to eat more and vocalize less in agricultural habitats than in 

forest. This makes biological sense because they primarily eat seeds from grains, weeds, and 

grasses, which are more abundant in agricultural habitats (Johnston 1960). Interestingly, the 

behavior N-mixture model did not find an effect of forest cover on abundance. This implies that 
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agricultural habitats provide better foraging resources for the Inca dove than forest, and that certain 

types of agriculture may boost populations of Inca doves. Without accounting for behaviors, 

managers may assume forest and agricultural habitats are equally beneficial for Inca doves, while 

in reality, agricultural habitats support more foraging resources. Thus, the behavior N-mixture 

model can add insights to abundance information that could lead to novel conservation strategies 

and ecological understanding; for example, by identifying where animals obtain resources to 

survive and reproduce.  

 

Limitations 

There are several limitations to applying the behavior N-mixture model in practice. First, 

there is currently no method to determine whether data meet the behavioral closure assumption. A 

potential method to measure the degree of behavioral closure is to model the abundance of each 

behavior category separately using an N-mixture model that allows for temporary emigration 

(Chandler, Royle, and King 2011). An animal switching behaviors between visits could result in a 

higher estimate of the probability of temporary emigration that indicates more violation of the 

behavioral closure assumption, but we have not explored this further. Based on our simulation, 

another sign of behavioral non-closure could be when estimates of abundance from the behavior 

N-mixture model are consistently higher than estimates from a traditional N-mixture model. An 

issue we did not explore is that not only may the behaviors performed differ between visits, but 

the probabilities of behaviors an individual performs could change across visits, which could 

worsen the violation of the closure assumption.  

Finally, all model chains converged in over 50% of the simulation trials except for when 

mean detection was 0.8, when there were often convergence issues. The reasons for non-
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convergence of chains were unclear. For abundance estimates that did not converge, the chains 

were often at zero most of the time with a few non-zero values. For other parameters that did not 

converge, the chains appeared to be in different locations of parameter space. Splitting 

observations into behavior classes as is necessary for the behavior N-mixture model leads to sparse 

data and it is possible that increasing the number of observations could improve model 

convergence. Because of this, we chose frequently observed species and behaviors for our case 

study, and this model would work best for animals and behaviors that are more easily detectable 

so that there is sufficient data to estimate detection probabilities. For example, in a camera trap 

study of mammals, it would likely be difficult to detect and analyze reproductive behaviors, but 

easier to observe foraging behaviors (Abu Baker, Emerson, and Brown 2015). A useful extension 

of the behavior N-mixture model could be to develop it into a multi-species community model so 

that behaviors of many species can be analyzed when data is sparse (Ovaskainen and Soininen 

2011). 

 

Conclusions 

Measuring behavior is important to understanding the ecology and conservation of species 

because behavioral changes are often an animal’s first response to human-induced environmental 

changes (Wong and Candolin 2015). The behavior N-mixture model advances the study of 

behavior because it accurately estimates behavior probabilities and the effects of covariates on 

behavior probabilities using observational surveys. In doing so, the model facilitates a low-cost 

method to monitor many individuals’ behavior changes simultaneously. Under the behavioral 

closure assumption, the model can also be used to estimate abundance by modeling heterogeneity 

in detection between behaviors, though when the behavioral closure assumption is broken, it 
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should not be used for abundance (Figure 9). Behavior-driven heterogeneity in detection is likely 

present in many taxa, and information on individual behavior can be obtained from many different 

survey types beyond the point-count data analyzed in our case study (e.g., camera traps for 

mammals, transects/area searches for herpetofauna, etc.) (Burton et al. 2015). Thus, scientists 

should attempt to collect behavioral observations and incorporate them into analyses whenever 

possible.   
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Table 3: Mean and 2.5 and 97.5th percentiles of absolute bias, and 95% Bayesian credible interval 

coverage across replicates where all chains converged (see Appendix S1: Table S2.1) for each 

scenario (defined by input values of mean detection and abundance) for the behavior N-mixture 

model from the simulation study. The first values in each cell correspond to when the behavioral 

closure assumption was met, and the values in parentheses correspond to the model under complete 

violation of behavioral closure, such that 100% of the behaviors were re-sampled each visit. The 

first column contains the “baseline” levels of the simulation, where we fixed mean detection at 0.2 

and mean abundance at 2.7.  

 
  

Parameter Measure 

detection 
0.2, 
abundance 
2.7 

detection 
0.5, 
abundance 
2.7 

detection 
0.8, 
abundance 
2.7 

detection 
0.2, 
abundance 1 

detection 
0.2, 
abundance 
7.4 

Behavior 
probability 
coefficient 
β'b 

Mean absolute 
bias 0.21 (-0.04) 0.06 (-0.03) 0.03 (-0.10) 0.07 (-0.04) -0.01 (0.25) 

2.5 and 97.5th 
percentile, 
absolute bias 

-1.28, 1.56 
(-3.34, 1.88) 

-0.63, 0.82 
(-2.03, 1.89) 

-0.74, 0.59 
(-1.65, 2.00) 

-1.14, -0.94 
(-2.16, 1.58) 

-0.70, 0.62 
(-1.38, 1.60) 

Behavior 
probability 
B.pj,b 

Mean absolute 
bias -0.001 (0.01) 0.008 (0.02) 0.003 (0.02) 0.03 (0.03) 0.00  (-0.01) 

2.5 and 97.5th 
percentile, 
absolute bias 

-0.17, 0.19 
(-0.29, 0.30) 

-0.12, 0.12 
(-0.33, 0.33) 

-0.15, 0.13 
(-0.36, 0.32) 

-0.28, 0.27 
(-0.36, 0.35) 

-0.11, 0.12 
(-0.27,  0.24) 
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Figure 5: (a) Estimated vs. true input values and 95% Bayesian credible intervals for 𝛽′,, (the 

effect of a covariate on the probability of an individual performing a behavior) based on a 

simulation study exploring the effectiveness of the behavior N-mixture model across varying 

levels of detection and abundance. Dark blue points and lines indicate Bayesian credible intervals 

(BCIs) that did not capture the true simulated values; light blue points and lines indicate BCI 

coverage of true values. (b) Percentage of 95% BCIs that captured the true input values for 𝛽′, 

across all simulation replicates at varying levels of mean detection. The mean abundance is fixed 

at 2.7 and the blue lines mark 0.95. (c) Percentage of 95% BCIs that capture the simulated values 

for 𝛽′, across all iterations at varying levels of mean abundance. The mean detection is fixed at 

0.2 and the blue lines mark 0.95. Only replicates where all chains converged were used for analysis 

(Appendix S1: Table S2.1). 
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Figure 6: Percentage of 95% Bayesian credible intervals that captured the simulated values for 𝛽′,, 

(i.e., the effect of a covariate on behaviors) across all replicates where all chains converged 

(Appendix S1: Table S2.1) of the simulation study where the level of the violation of the behavioral 

closure assumption (i.e., percent of data resampled) varied from 0 to 100%. The blue lines mark 

0.95. 
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Figure 7: Percentage of 95% Bayesian credible intervals that captured the simulated values for 𝑁 

and the mean absolute bias of N across all replicates where all chains converged (Appendix S1: 

Table S2.1) of the simulation study where the level of the violation of the behavioral closure 

assumption (i.e., percent of data resampled) varied from 0 to 100%. The blue lines mark 0.95. 

  



 85 

 
Figure 8: Top row: Behavior N-mixture model and naïve model estimates and 95% Bayesian 

credible intervals for the effect of land use, where positive values correspond to higher 

probabilities in forest and negative values correspond to higher probabilities in agriculture, on the 

probability of eating and vocalizing for (a) Hoffmann’s woodpecker, (b) turquoise-browed 

motmot, and (c) Inca dove. Bottom row: The behavior N-mixture model and naïve model’s 

predictions of the probabilities that an individual performs each behavior in each habitat type. 

Significant differences between habitats according to only the naïve model are marked with “△”; 

significant differences according to both models are marked with “▲”.  
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Figure 9: Decision tree to help determine when behavior N-mixture, naïve, and traditional N-

mixture models should be used to estimate abundance and behavioral frequencies from wildlife 

survey data across various scenarios of imperfect detection and population closure. 
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Supporting Information 2 

 

Table S2.1: Percent of iterations of the behavior N-mixture model per simulation scenario where 

all chains converged out of 100 trials, such that all estimates of abundance, detection probabilities, 

behavior probabilities, intercepts, and slope parameters had Gelman-Rubin statistics ≤1.1. 

 

  
Detection Mean 

  0.2 0.5 0.8 
Abundance 

mean 

1 60%   
2.7 65% 85% 14% 
7.4 66%   
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Table S2.2: Categorization of behaviors. 
 

Recorded behavior Behavior category 

Aerial Foraging 

Eat 

Bark Gleaning 

Berry Plucking 

Foliage Gleaning 

Flower Visiting 

Sit-And-Wait Foraging 

Stalking 

Hawking 

Eating 

Ground Rummaging 

Plant shoot eating 

Fruit/flower/seed eating 

Seed plucking 

Searching 

Other Foraging 

Alarm 

Vocalize Calling 

Singing 

Courtship 

Other 

Feeding young 

Mating 

Nest building 

Nest sitting 

Intraspecific aggression 

Interspecific aggression 

Mobbing 

Preening 

Perching 

Roosting 

Fly over 
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Table S2.3: Percent of the iterations of each scenario for which mean estimates from the 

behavior N-mixture model were less biased than the alternative model. Each column represents a 

different parameter. Respective alternative models are specified in parentheses. 

 

Mean detection 
and abundance 
levels Data type 

Behavior 
probability 
coefficient 
(Naïve) 

Behavior 
probability 
(Naïve) 

Abundance 
coefficient 
(Naïve) 

Abundance 
coefficient 
(Traditional 
N-Mixture) 

Abundance 
(Traditional 
N-Mixture) 

Detection 0.2, 
Abundance 2.7 

Closure 71% 68% 62% 58% 54% 

Non-closure 58% 53% 52% 51% 5% 

Detection 0.5, 
Abundance 2.7 

Closure 76% 49% 69% 77% 56% 

Non-closure 49% 42% 62% 53% 1% 

Detection 0.8, 
Abundance 2.7 

Closure 57% 58% 29% 43% 68% 

Non-closure 25% 28% 43% 43% 0% 

Detection 0.2, 
Abundance 1 

Closure 58% 63% 47% 37% 62% 

Non-closure 71% 55% 50% 53% 0% 

Detection 0.2, 
Abundance 7.4 

Closure 86% 77% 77% 53% 58% 

Non-closure 62% 59% 70% 71% 8% 
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Table S2.4: Mean absolute bias, the 2.5 and 97.5th percentiles of absolute bias, and 95% 

Bayesian credible interval coverage across 100 trials for each scenario (defined by input values 

of detection and abundance) of the behavior N-mixture model.  

 
  

Parameter Measure Data type
detection 20%, 
abundance 2.7

detection 50%, 
abundance 2.7

detection 80%, 
abundance 2.7

detection 20%, 
abundance 1

detection 20%, 
abundance 7.4

Mean absolute bias 0.21 0.06 0.03 0.07 -0.01

2.5 and 97.5th percentile, absolute bias -1.28, 1.56 -0.63, 0.82 -0.74, 0.59 -1.14, -0.94 -0.70,  0.62
95% CI coverage 92% 93% 82% 93% 95%
Mean absolute bias -0.04 -0.03 -0.10 -0.04 0.25

2.5 and 97.5th percentile, absolute bias -3.34, 1.88 -2.03, 1.89 -1.65, 2.00 -2.16, 1.58 -1.38, 1.60
95% CI coverage 85% 74% 57% 91% 84%

Mean absolute bias -0.001 0.01 0.003 0.03 0.00

2.5 and 97.5th percentile, absolute bias -0.17, 0.19 -0.12, 0.12 -0.15, 0.13 -0.28, 0.27 -0.11, 0.12
95% CI coverage 95% 93% 90% 94% 95%
Mean absolute bias 0.01 0.02 0.02 0.03 -0.01

2.5 and 97.5th percentile, absolute bias -0.29, 0.30 -0.33, 0.33 -0.36, 0.32 -0.36, 0.35 -0.27,  0.24
95% CI coverage 90% 82% 67% 94% 88%
Mean absolute bias 0.01 0.02 0.00 -0.03 0.00

2.5 and 97.5th percentile, absolute bias -0.69, 0.74 -0.28, 0.19 -0.12, 0.15 -0.40, 0.27 -0.09, 0.09
95% CI coverage 94% 84% 86% 100% 100%
Mean absolute bias -0.01 0.02 0.00 0.05 -0.01

2.5 and 97.5th percentile, absolute bias -0.19, 0.18 -0.23, 0.25 -0.10, 0.10 -0.37, 0.50 -0.13, 0.11
95% CI coverage 94% 76% 86% 83% 98%
Mean absolute bias 0.22 0.03 0.03 0.22 0.08

2.5 and 97.5th percentile, absolute bias -2.50, 2.79 -2.01, 1.39 -0.73, 0.38 -1.66, 1.80 -4.55, 4.51
95% CI coverage 99% 99% 99% 99% 98%
Mean absolute bias 7.85 7.08 6.59 3.65 14.61

2.5 and 97.5th percentile, absolute bias 0.57, 35.82 1.34, 18.75 0.83, 20.26 -0.29, 12.91 -0.54, 60.61
95% CI coverage 63% 25% 17% 15% 41%
Mean absolute bias 0.03 -0.01 -0.09 0.10 0.00

2.5 and 97.5th percentile, absolute bias -0.69, 0.74 -0.47, 0.56 -1.44, 0.52 -1.17, 2.14 -0.51, 0.69
95% CI coverage 95 96 90 96 95
Mean absolute bias 0.01 -0.05 -0.05 0.07 -0.10

2.5 and 97.5th percentile, absolute bias -1.52, 1.66 -1.52, 2.36 -1.72, 2.29 -2.32, 1.81 -1.70, 1.67
95% CI coverage 80 45 33 84 72
Mean absolute bias 0.00 0.00 -0.01 0.00 0.00

2.5 and 97.5th percentile, absolute bias -0.11, 0.15 -0.09, 0.11 -0.13, 0.12 -0.16, 0.22 -0.09, 0.09
95% CI coverage 94 97 88 96 97
Mean absolute bias -0.14 -0.33 -0.50 -0.14 -0.12

2.5 and 97.5th percentile, absolute bias -0.49, 0.04 -0.67, 0.03 -0.75, -0.07 -0.58, 0.10 -0.47, 0.05
95% CI coverage 28 10 4 37 29

Non-closure

Closure

Behavior 
probability 
coefficient  

β' b

Behavior 
probability 

 B.p j,b

Abundance 
coefficient  

α'

Closure

Non-closure

Closure

Non-closure

Closure

Closure

Non-closure

Detection 
probability 
coefficient 

!'

Detection 
probability 

 P j,b,k

Abundance 
N j

Non-closure

Closure

Non-closure
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Table S2.5: Mean absolute bias, the 2.5 and 97.5th percentiles of absolute bias, and 95% Bayesian 

credible interval coverage across 100 trials for each scenario (defined by input values of detection 

and abundance) of the naïve model. 

 

 
 
 

Parameter Measure Data type
detection 20%, 
abundance 2.7

detection 50%, 
abundance 2.7

detection 80%, 
abundance 2.7

detection 20%, 
abundance 1

detection 20%, 
abundance 7.4

Mean absolute bias 0.03 0.22 -0.06 0.18 0.13

2.5 and 97.5th percentile, absolute bias -1.90, 1.84 -1.61, 2.27 -0.72,  0.43 -2.15, 3.37 -1.56, 2.13

95% CI coverage 36% 33% 68% 63% 25%

Mean absolute bias -0.03 0.17 -0.04 0.02 0.04
2.5 and 97.5th percentile, absolute bias -2.20, 2.02 -1.35, 1.96 -0.60,  0.55 -3.57, 2.54 -1.54, 2.12
95% CI coverage 40% 45% 68% 56% 30%

Mean absolute bias 0.01 0.01 0.003 0.01 0.01

2.5 and 97.5th percentile, absolute bias -0.31,  0.32 -0.31,  0.32 -0.12,  0.12 -0.39,  0.35 -0.30,  0.33

95% CI coverage 55% 47% 62% 70% 42%

Mean absolute bias 0.01 -0.01 0.001 0.03 0.01

2.5 and 97.5th percentile, absolute bias -0.32,  0.33 -0.31,  0.28 -0.12,  0.10 -0.41,  0.43 -0.31,  0.32
95% CI coverage 60% 67% 79% 71% 45%

Mean absolute bias 0.00 0.01 0.00 -0.06 0.00

2.5 and 97.5th percentile, absolute bias -0.20,  0.27 -0.32,  0.22 -0.15,  0.08 -0.40,  0.23 -0.19,  0.14
95% CI coverage 68% 62% 86% 85% 76%
Mean absolute bias 0.00 0.01 -0.01 0.03 -0.01

2.5 and 97.5th percentile, absolute bias -0.24,  0.26 -0.27,  0.24 -0.10,  0.08 -0.37,  0.56 -0.22,  0.14

95% CI coverage 77% 56% 71% 80% 67%

Abundance 
coefficient  

α'

Closure

Non-closure

Behavior 
probability 
coefficient  

β' b

Closure

Non-closure

Behavior 
probability 

 B.p j,b

Closure

Non-closure
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Table S2.6: Mean absolute bias, the 2.5 and 97.5th percentiles of absolute bias, and 95% 
Bayesian credible interval coverage across 100 trials for each scenario (defined by input values 
of detection and abundance) of the traditional N-mixture model. 
 

 
 

  

Parameter Measure Data type
detection 20%, 
abundance 2.7

detection 50%, 
abundance 2.7

detection 80%, 
abundance 2.7

detection 20%, 
abundance 1

detection 20%, 
abundance 7.4

Mean absolute bias 0.00 0.02 -0.01 -0.02 -0.01

2.5 and 97.5th percentile, absolute bias -0.23, 0.22 -0.33, 0.22 -0.14, 0.11 -0.35, 0.26 -0.14, 0.08
95% CI coverage 94% 84% 86% 100% 100%
Mean absolute bias -0.01 0.01 0.00 0.05 -0.01
2.5 and 97.5th percentile, absolute bias -0.19, 0.20 -0.31, 0.23 -0.10, 0.07 -0.31, 0.42 -0.14, 0.11
95% CI coverage 94% 76% 86% 83% 98%

Mean absolute bias -0.06 -0.16 -0.04 -0.02 -1.23

2.5 and 97.5th percentile, absolute bias -3.16, 2.92 -2.78, 1.49 -0.97, 0.52 -2.05, 1.48 -7.32, 3.58
95% CI coverage 96% 94% 98% 99% 89%
Mean absolute bias 0.35 0.06 -0.02 0.36 0.05

2.5 and 97.5th percentile, absolute bias -2.73, 4.51 -1.80, 1.65 -0.97, 0.45 -1.59, 1.74 -6.02, 7.05

95% CI coverage 98% 98% 99% 99% 93%

Abundance 
coefficient  

α'

Closure

Non-closure

Abundance 
N j

Closure

Non-closure



 93 

 
Figure S1.1: The behavior N-mixture model’s estimates of the effects of habitat (binary variable 

where forest = 1 and agriculture = 0), noise, and time on detection probability and the effect of 

forest cover on abundance for Hoffmann’s Woodpecker (HOWP), Turquoise-browed Motmot 

(TBMM), and Inca Dove (INDO). Effects are in blue when the 95% Bayesian credible interval 

does not overlap zero.  
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Applying the traditional N-mixture model to birds in Northwest Costa Rica 

When we applied the traditional N-mixture model to each species, the mean differences 

between the abundance estimates from the traditional N-mixture model and the behavior N-

mixture model were -1.41, 2.56, and 0.43 for Inca Dove, Hoffmann’s Woodpecker, and Turquoise-

browed Motmot, respectively.  

On average, the behavior N-mixture model’s abundance estimates of Hoffmann’s 

Woodpecker and Turquoise-browed Motmot were higher than the traditional N-mixture model, 

which could indicate violation of the behavioral closure assumption. Meanwhile, the behavior N-

mixture model’s abundance estimates of Inca Dove were lower than the traditional N-mixture 

model’s estimates, which could mean that there is a large amount of unmodeled heterogeneity in 

P in the traditional N-mixture model (Kéry and Royle, 2015). 
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Abstract 

Behavioral changes are often animals’ first responses to environmental change and may act as a 

bellwether for population viability. Nonetheless, most studies of habitat conversion focus on 

changes in species occurrences. We analyzed >14,000 behavioral observations across 55 bird 

species in communities within Northwestern Costa Rica to understand how land-use affects 

reproductive, foraging, and other ‘passive’ kinds of behaviors not associated with either foraging 

or reproduction. Specifically, we quantified differences in behaviors between farms, privately-

owned forests, and protected areas, implementing a novel modeling framework to account for 

variation in detection. Birds were 1.3 times more likely to exhibit reproductive behaviors in forest 

than in agriculture, and 1.1 times more likely to exhibit reproductive behaviors in protected areas 
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than in private forests. Moreover, species were not always most abundant in the habitats where 

they were most likely to exhibit foraging or reproductive behaviors. Finally, species of higher 

conservation concern were less abundant in agriculture than in forest. Together, our results 

highlight the importance of behavioral analyses for elucidating the conservation value of different 

habitat types. 

 

Introduction 

Habitat loss and fragmentation are restructuring wildlife communities, especially in 

tropical regions where rates of biodiversity loss and land conversion peak (Gibbs et al. 2010; von 

Essen & Lambin 2021; Winkler et al. 2021). While biodiversity is often higher in intact protected 

areas than human-dominated landscapes (Newbold et al. 2015), ‘working landscapes’ can be 

managed to provide for human needs while sustaining wildlife (Kremen and Merenlender 2018, 

Frishkoff et al. 2019). For example, Frishkoff et al. (2014) found that diversified farms in Costa 

Rica with multiple crop types and natural habitat patches sustained similar levels of species 

richness as tropical forest reserves (though reserves supported more phylogenetic diversity).  

 In most studies of land-use change, changes in species occurrences and/or abundances are 

used to quantify species’ tolerances for anthropogenic landscapes (e.g., Newbold et al. 2013, 

Hatfield et al. 2018, Ehlers Smith et al. 2018). Such studies, however, provide little information 

about how species actually use the habitats where they occur (Kleijn et al. 2011; Gilroy & Edwards 

2017; Ortega-Álvarez et al. 2021). For example, a species regularly detected in agriculture may be 

passing through or spilling over from nearby natural habitats (and thus not actually resilient to 

land-use change; Vickery et al. 2001, Brudvig et al. 2009, Frishkoff et al. 2019). Alternatively, the 

species could use working landscapes to forage and reproduce, meaning it is resilient to or can 
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even benefit from land-use change. Finally, a species may use working landscapes, but with 

suboptimal demographic rates such that populations are subject to source-sink dynamics (Pulliam 

1988), buffer effects (Gill et al. 2001), spill-over effects (Brudvig et al. 2009), ecological traps 

(Gates & Gysel 1978), and/or extinction debt (Tilman et al. 1994). For example, urban areas in 

Southern Arizona acted as ecological traps for Cooper’s Hawks (Accipiter cooperii), which resided 

and nested in cities but suffered over 50% nest failure, primarily from trichomoniasis acquired 

from feeding on urban doves (Boal & Mannan 1999). Therefore, looking beyond species 

occurrence is critical for quantifying the conservation value of anthropogenic habitats. 

One way to assess how animals use their environments is by examining behavior. 

Behavioral changes are often an animal’s first response to human-induced environmental changes, 

and can indicate whether individuals are able to cope with land-use change (Wright et al. 2010; 

Wong & Candolin 2015; González-Lagos & Quesada 2017). For example, some species can adapt 

their acoustic signals to maximize transmission in new environments, thus maintaining 

communication between individuals (Graham et al. 2017). Alternatively, land-use change can 

result in behaviors and physiological responses that decrease an individual’s fitness, such as 

reducing foraging due to higher risk of predation (Desrochers et al. 2002), altering their acoustic 

signals (Slabbekoorn & Peet, 2003), or decreasing their body mass (Liker, et al. 2008). Because 

behavior can often be linked to demographic parameters (e.g., birth, death, migration), variation 

in behavior across different environments can have cascading implications for population 

persistence (Luck 2002, Lyons 2005). For example, male bird song rate can be used as a proxy for 

superior male quality and territory defense (Møller 1991; Gil & Gahr 2002), and Pillay et al. (2019) 

measured male per-capita song rate to explore the potential mechanisms underlying tropical bird 

distributions in selectively logged forest. Therefore, observing changes in behavior can help 
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identify species that are able to exploit anthropogenic resources and act as an early warning signal 

for populations in trouble (Wong & Candolin 2015; Berger-Tal et al. 2016). If, however, 

management decisions rely only on occurrence data, ignoring how species use different habitats, 

then areas essential to phases of the species’ life cycle may not be protected (Ke et al. 2022). 

Most studies that measure variation in behavioral use of different environments are limited 

to few individuals and species because they require labor-intensive animal-monitoring methods 

(e.g., focal observations or telemetry; Luck 2002, Tremblay et al. 2005). In contrast, survey-type 

data require fewer resources to collect, can capture a larger portion of the population, and are often 

suitable for multiple species simultaneously. However, some behaviors are difficult to observe 

(e.g., sedentary, ambush-oriented feeding behavior in snakes; Durso et al. 2011). Moreover, the 

detectability of individuals often depends on the behaviors they perform (Crowe & Longshore 

2010), which could lead to underestimating the frequency of hard-to-detect behaviors. The 

detectability of different behaviors may also vary across environments. For example, the 

probability of observing visually detected behaviors may be lower in dense vegetation compared 

to open areas. Without accounting for behavior-specific detection, we could risk falsely 

concluding, for example, that a species forages more often in agriculture than forests, simply 

because the species is more apparent in open environments. 

 Here, we evaluate how land-use affects the likelihood of birds exhibiting reproductive, 

foraging, and passive behaviors (e.g., perching, preening, roosting; Table S3.1; See SI for details), 

using four years of bird surveys in Northwest Costa Rica, encompassing >14,000 behavioral 

observations of 55 species across 150 sites. We extended a single-species behavior N-mixture 

model (Ke et al. 2022) to a community model to quantify differences in behaviors between farms, 
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privately-owned forest patches, and formal nature reserves, accounting for variation in detection 

between behaviors, species, and habitats. 

Our work was guided by three core questions. First, how do bird communities vary in 

abundance and behavior between land-uses? We hypothesized that because high-intensity 

agricultural habitats contain fewer trees and fewer bird species that utilize the habitat (Luck & 

Daily 2003), birds would be less abundant and perform foraging and reproductive behaviors less 

frequently in agriculture as compared to forest. Based on prior work (Karp et al. 2019), we also 

hypothesized that protected areas would have similar bird abundances but higher probabilities of 

exhibiting reproductive behaviors than privately-owned forests, due to higher rates of disturbance 

from logging, fires, and hunting in private forests. Second, do species that peak in abundance in 

one habitat also forage and/or reproduce there more often? We predicted that most species would 

exhibit reproductive and foraging behaviors in the habitats where they peak in abundance (as long 

as they are selecting their habitats correctly and not subject to ecological traps; Gates & Gysel 

1978). However, we predicted that some species would have “inconsistent responses” in 

abundance and behavior, for example, if individuals are more likely to perform reproductive 

behaviors in one habitat but are equally or less abundant in that habitat. That is, a species could 

have equal abundances in forest and agriculture, but perform more reproductive behaviors in 

forest. Finally, do species of higher conservation concern (i.e., range-restricted and/or declining 

species) react differently than less sensitive species? Given prior research documenting the 

sensitivity of range-restricted species to habitat conversion (Karp et al. 2019; Sykes et al. 2020), 

we predicted that species of higher conservation concern would be more abundant and perform 

foraging and reproductive behaviors more frequently in protected areas than in agriculture and 

private forests. 
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Methods 

Study area 

We investigated how land use affects bird behavior and abundance in the Guanacaste 

Province of northwest Costa Rica (Figure S3.1). Our study region is a mosaic of tropical forest 

ranging from coastal wet forests to inland dry forests (protected and privately-owned forests) and 

agriculture (pastures and crop fields). Guanacaste experiences a dry season from December to 

April, two rainy seasons (May to June and September to November), as well as a mid-summer 

dry period in July and August (Hund et al. 2021). We selected sites across a network of 5 

formally protected areas and 20 farms, which were composed of pasture (N=12), rice (N=6), 

sugarcane (N=1), and Taiwan grass (a forage crop, N=1). These agricultural types were 

representative of the broad study region, and we selected sites so that local forest cover within 

50m varied, with sites located in forest interiors, forest edges, small forest fragments, agricultural 

field centers, fields bordering forest, and fields surrounded by forest. The most common tree 

species in our study region were Guazuma ulmifolia, Semialarium mexicanum, Ardisia revoluta, 

Lysiloma divaricatum, and Luehea candida. Protected areas were under government 

administration, and human activity is not excluded from them as they are visited by tourists and 

illegal hunting still occurs. 

On each farm or protected area, birds were surveyed at six point-count locations (150 

points total). On farms, half of the point-count locations were in agriculture and the other half in 

privately-owned forests. All point counts in protected areas occurred in forest. Privately-owned 

forests were twice as fragmented as protected areas (measured using total forest edge length); 
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they are also regularly logged, leading to significantly shorter tree heights than in protected areas 

(Karp et al. 2019). 

 

Bird surveys 

At each point count location, the same expert observer (J. Zook) surveyed all birds seen or 

heard in 20-min, 50-m fixed radius point counts in from 2016-2019 during the breeding season for 

most bird species in the region, May-July. The length of point counts allowed us to detect more 

rare behaviors, and the observer has a high level of expertise allowing him to precisely identify 

individuals. Zook sampled half of the point-count locations three times within a 1-2 week period. 

The other half were sampled once to increase spatial replication while still providing sufficient 

replication to estimate detection probabilities (see below). One farm or protected area (6 points) 

was surveyed each day, beginning at sunrise and continuing for ~5 hr. Information concerning 

species identity, number of individuals observed, time of day, and whether noise exceeded typical 

background levels (e.g., farm machinery, cicadas) was recorded. 

Each observation was also associated with one of 32 behaviors that we classified into three 

categories: reproductive, foraging, and passive behaviors (Table S3.1; See SI for details). 

Observations that were heard only were classified as “singing” or “calling” behaviors. When an 

individual performed more than one behavior during a point count (~10.5% of observations), we 

randomly selected one of the behaviors observed because the structure of our model only allowed 

for one behavior per individual (See “Modeling behavior”). This could slightly bias results for a 

given behavior category for the species with the fewest observations, but we did not expect it to 

affect results on average given only 10% of observations had more than one behavior. To ensure 

we had enough observations of each species for the model to estimate behaviors, we restricted 
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analyses to species that were observed at least 20 times and had at least one observation in each 

behavior category, resulting in 55 species for the analysis using all sites and 40 species for the 

analysis only using forest sites.  

 

Covariates 

To quantify local forest cover, we hand-classified tree cover within 50m of all point count 

locations using cloud-free Google Earth images available from 2013-2017. Because many 

Neotropical species are understudied and population sizes are often uncertain, we assessed 

multiple dimensions of rarity. We obtained species’ range sizes from (“BirdLife Data Zone”) and 

global population trend information (i.e., whether each species is declining, stable, or increasing) 

from the IUCN (“The IUCN Red List of Threatened Species” 2022). 

 

Modeling behavior 

To quantify how birds change their behavioral use of habitats, we developed a community 

extension of a behavior N-mixture model (Ke et al. 2022). N-mixture models use spatially and 

temporally replicated surveys where the number of individuals is counted to estimate abundance 

while accounting for detection probability (Royle, 2004; Kéry, 2018). Behavior N-mixture models 

quantify the probability of individuals exhibiting different behaviors, while accounting for 

variation in detectability among different behaviors in different environments (Ke et al. 2022). We 

extended the single-species behavior N-mixture model such that the probabilities of many species 

exhibiting different behaviors can be estimated jointly. Species-specific parameters were derived 

from community-wide hyperdistributions governed by (community-level) hyperparameters 

estimated from the data. This parameterization allows estimating parameters of rare species by 
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sharing information among species in the community, and rare species’ parameters tend to shrink 

towards the community mean (Dorazio & Royle 2005; Kéry & Royle 2015).  

In summary, the number of individuals of species (i) performing a certain behavior (b) at 

site (j) was modeled using a Poisson distribution, where the expected abundance 𝜆!,# was modelled 

as: 

log5𝜆!,#6 = 𝛼0! + 𝛼1! ∗ TreeCover6 + δ0!,789:[#] 	+ 	δ1!,;<=>[$] 	+ 	δ2!,?@!A%[#] 

“TreeCover” is the local forest cover within 50m. Parameters in the 𝛼 family were 

estimated for each species, and the δ terms represent random effects that were included to account 

for spatial and temporal autocorrelation in bird abundances and explain variation among species, 

point-count locations, farms, or years that was not explained by the other parameters. We modeled 

the probabilities of species performing each behavior as a function of habitat, using multinomial 

logistic regression. Finally, we modelled the detection probability of an individual of a certain 

species performing a certain behavior at a given site and visit (𝑃!,#,,,$) as:  

 

logit5𝑃!,#,,,$6 = 𝛾0!,, + γ1, ∗ Noise6,B + γ2!,, ∗ Habitat6 + γ3 ∗ Time6,B , 

where “Noise” is a binary variable indicating if noise levels exceeded typical background 

noises and “Time” is the time of day of the point count. Parameters γ0 and γ2	were species-level 

random effects, while parameters γ1 and γ3 were constant over species and behaviors. See SI for 

detailed modelling methods. 

To compare shifts in behaviors between protected areas and private forests (Questions 1, 

2), we conducted a second analysis omitting all sites in agriculture and replacing the “Habitat” and 

“TreeCover” variables with a binary variable indicating whether the forest site was in a protected 
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area or not. We also excluded γ2!,, (i.e., habitat type) from the detection process, as all sites were 

in forests.  

Behavioral N-mixture models can be used to estimate effects of environmental covariates 

on abundance, but the actual abundance estimates generated from them can be biased because 

when an individual is observed performing different behaviors between visits, it contributes to 

overall abundance estimates multiple times (Ke et al. 2022). Thus, to model abundances 

(Questions 1, 2), we constructed a traditional N-mixture model for each analysis (forest vs. 

agriculture and protected vs. private forest; Royle 2004, Kéry 2018). The models retained all 

parameters above, but removed the behavior index and the behavior components involving π. 

All models were implemented in R Version 4.0.0 using the package nimble, which runs 

Markov chain Monte Carlo (MCMC) algorithms (RC Team, 2013; de Valpine et al., 2017). We 

ran three chains starting at random initial values and 10,000 burn-in iterations. We included 50,000 

post burn-in iterations thinned at a rate of 50. We assessed convergence by examining Gelman-

Rubin statistics of the chains of every parameter, and considered chains to converge if Gelman-

Rubin statistics were ≤1.1 (Gelman et al. 2004).  

 

Interpreting behavioral coefficients 

We combined parameters to calculate the probability of performing a behavior, as well as 

the number of individuals performing each behavior in each habitat. We compared the resulting 

Bayesian Credible Intervals (BCIs) to assess significance (using a 90% BCI cut off because each 

parameter is estimated with less data than the community means; see SI for detailed methods). To 

understand how bird communities change in abundance and behavior with changes in land-use 

(Question 1), we extracted community-wide mean effects of tree cover (or protection status) on 
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abundance (𝛼1) and the mean predicted differences in behavior between habitats using the 

community-wide means for the behavior probability intercept (𝛽0) and the effect of habitat on 

behavior (𝛽1). For community-wide effects, we used a BCI cutoff of 95% to determine statistical 

significance because we had more data available to estimate them (Kruschke 2014; McElreath 

2020). For the effects of forest cover and protected area on abundance, we calculated their 

statistical significance using MCMC p-values from the MCMC.qpcr package (Matz 2020).  

To understand how individual species’ abundance responses to forest cover (or protection 

status) related to their behavioral responses (Question 2), we compared differences in abundance 

across tree cover (or protection levels) to differences in behavior between habitats and measured 

the strength of relationships using Spearman’s correlation coefficient. We then categorized species 

based on their abundance response to local forest cover (or protection status) and their behavioral 

response to habitat. For example, when individuals of a species were more likely to exhibit reproductive or foraging behaviors in 

one habitat (e.g., forests), but they were equally or less abundant in that habitat, we termed this an “inconsistent response.” Here, this is because 

the abundance pattern indicates that forest is not more important than agriculture for the species, but the behavior information implies the opposite. 

Because passive behaviors were considered as the least important for survival and reproduction, 

we considered species that were more likely to exhibit passive behaviors in one habitat, but were equally or more abundant in that 

habitat, to have an “inconsistent response.” 

In contrast, we considered responses “consistent” when a species was more abundant in 

one habitat and was also more or equally likely to exhibit reproductive or foraging behaviors (or less likely to exhibit passive behaviors) in 

that habitat. We labeled these species as “affiliated” with a habitat. Finally, species with no significant 

differences in abundance or behavior between habitats were labeled “non-significant response.” 

These species could have BCIs that were too wide to be considered statistically significant or be 

species that have similar abundance and behavioral use in different habitats (i.e., habitat 

generalists).  
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Finally, to understand whether species of higher conservation concern exhibited greater 

sensitivity to agriculture and/or privately-owned forests (Question 3), we calculated Spearman’s 

correlation coefficients between species’ global range sizes and differences in abundance across 

tree cover (or protection levels), as well as differences in behavior between habitats. We also 

used pairwise Wilcoxon rank sum tests to understand whether differences in abundance across 

tree cover (or protection levels), as well as differences in behavior between habitats, differed 

between categories of global population trends (decreasing, stable, or increasing). We used the 

more conservative non-parametric tests because linear model assumptions were not met. 

 

Results 

After filtering out rare species (see methods), we retained 14,051 behavioral observations 

of 55 species for our analysis comparing forest and agriculture and 9,145 behavioral observations 

of 40 species when comparing protected and private forests (Table S3.2). Thirty species were 

passerines and the others were non-passerines (e.g., Columbiformes, Apodiformes). Chains for all 

parameters of the protected status analysis, and all but 4 (out of 1382) parameters for the land-use 

analysis converged (Gelman-Rubin statistics <1.1). The four parameters that did not converge had 

Gelman-Rubin statistics <1.25.  

 

Abundance and behavior trends between land-use types 

We found evidence to support our hypothesis that the community-average species 

abundance significantly increased with forest cover (effect size = 0.37, pMCMC = 0.002, 95% 

BCI [0.13, 0.61], Figure S3.2, Table S3.7). However, there was no significant effect of protection 

status on average abundance (effect size = 0.11, pMCMC = 0.34, 95% BCI [-0.12, 0.35]) or 

abundance of any species (Figure S3.3, Table S3.8).  
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We also found evidence to support our predictions that, on average across all species, 

individuals were 1.3 times more likely to perform reproductive behaviors in forest than agriculture 

(statistically significant, Figure 10A, Table S3.3). Likewise, models predicted 3.3 times more 

individuals performing reproductive behaviors in forest than agriculture (statistically significant, 

Figure 10B, Table S3.3). On average, individuals were more likely to perform foraging and passive 

behaviors in agriculture than in forest; however, we observed no significant differences between 

land-use types in the number of individuals performing these behaviors (Figure 10A, B, Table 

S3.3). At the species level, many more species had significantly higher probabilities and numbers 

of individuals exhibiting reproductive behaviors in forest than agriculture (e.g., Elegant Trogon 

[Trogon elegans]; Table 4, Figure S3.4, Table S3.7, Table S3.9).  

Conforming to our expectations, when comparing protected and privately-owned forest, 

the average species was significantly more likely to perform reproductive behaviors and less likely 

to perform passive behaviors in protected forest (Figure 10C, Table S3.3). Correspondingly, eleven 

species had higher probabilities of exhibiting reproductive behaviors in protected forest than in 

private forest (e.g., Stripe-throated Hermit [Phaethornis striigularis]), while only one species had 

a higher probability of exhibiting reproductive behaviors in private forest (White-winged dove 

[Zenaida asiatica], Table 4, Figure S3.5, Table S3.8). However, the total number of individuals 

performing reproductive behaviors was not significantly different between protected and privately-

owned forest, both across all species and at the species level (Table 4, Figure 10D, Figure S3.7, 

Table S3.3, Table S3.10).  

  

Relationships between abundance and behavioral responses to land-use  
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We did not find evidence to support our second hypothesis. Specifically, species were not 

always more likely to forage or reproduce in the habitats where they were most abundant. Although 

most species had consistent abundance and behavioral responses, species’ abundance responses to 

forest cover (or protection status) were not statistically correlated with their behavioral responses 

Table S3.4). This can happen because many species had a significant abundance response but no 

significant behavioral response to habitat, and these responses were considered to be consistent.  

At the species level, 37 species had consistent abundance and reproductive responses to 

forest versus agriculture (29 affiliated with forest and 8 affiliated with agriculture), 8 had 

inconsistent responses, and 10 species had non-significant responses (Table 5; Figure 11; see 

methods for definitions). Species exhibiting inconsistent responses were more likely to perform 

reproductive behaviors in forest but were either less or equally abundant as local forest cover 

increased (e.g., Great Kiskadee [Pitangus sulphuratus]). In the protected area analysis, there were 

12 species with inconsistent responses but no species with consistent responses (likely because no 

species had a significant abundance response to protected forest vs. private forest; Figure S3.8). In 

terms of foraging behavior, four species exhibited inconsistent responses. These species were more 

likely to forage in agriculture but were either less or equally abundant as local forest cover 

increased (e.g., Yellow-green Vireo [Vireo flavoviridis]; Figure 12). In terms of passive behavior, 

6 species exhibited inconsistent responses. These species performed passive behaviors more 

frequently in agriculture but were either less or equally abundant with increasing forest cover 

(Figure 13). 

 

Species of conservation concern  
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Our hypothesis that species of higher conservation concern would disproportionately rely 

on forest and protected areas was partially supported. Based on correlation analyses, species with 

smaller range sizes and decreasing global population trends tended to be more abundant in forest 

(Table S3.5, Table S3.6). There were negative relationships between range size (and global 

population trends) and the numbers of individuals performing each behavior in forest versus 

agriculture, likely driven by the strong negative relationships with the abundance response (Table 

S3.5; Table S3.6). However, we observed no significant relationships between species’ range sizes 

(or global population trends) and the probability of individuals exhibiting any behavior between 

any habitats (Table S3.5, Table S3.6).  

 

Discussion 

Our community behavioral N-mixture model elucidated how bird communities and 

individual species vary in abundance and behavior across land-use types, while accounting for 

differences in detection probability between species, behaviors, and habitats. On average, we 

found that Costa Rican bird species were both more abundant and more likely to perform 

reproductive behaviors in forest than agriculture. Species were also more likely to perform 

reproductive behaviors in protected forest, despite there being no significant abundance 

differences between protected versus privately-owned forest. Moreover, abundance and behavioral 

responses to land-use were largely uncorrelated and sometimes inconsistent at the species-level. 

These results highlight the importance of behavioral analyses for elucidating the conservation 

value of different habitat types, as well as identifying species which may have the least behavioral 

flexibility for coping with human-induced changes (Wong & Candolin 2015).  
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Behavior and abundance differences between forest and agriculture 

Across the community, we found that Costa Rican birds on average increased in abundance, 

were more likely to perform reproductive behaviors, and were less likely to forage in forest than 

in agriculture. We also estimated over 3 times as many individuals engaging in reproductive 

behaviors in forest than in agriculture (Figure 11). This implies that forests host better reproductive 

territories and resources for the average bird species, which is unsurprising given that Costa Rica 

was forested historically (Sader & Joyce 1988).  

At the species-level, some behavioral responses to habitat were consistent with their abundance 

responses. For example, “agriculture specialist” species that both occurred and foraged more in 

agriculture tended to be granivorous (e.g., White-collared Seedeater [Sporophila torqueola], 

Common Ground-Dove [Columbina passerine], Crested Bobwhite [Colinus cristatus]). 

Meanwhile, “forest specialist” species tended to be those known to primarily occur and nest in 

forest (e.g., Lesson’s Motmot [Momotus lessonii], Elegant Trogon; del Hoyo et al. 2020; 

Kunzmann et al. 2020). Importantly, there were very few species that increased their reproduction 

or decreased their foraging behaviors in agriculture – even the species with “consistent” responses 

primarily showed no significant differences in behavior but with the majority of the posterior 

density being in favor of forest for reproduction and agriculture for foraging. As such, most of the 

species with inconsistent responses were agriculture affiliates that reproduce in forest, and some 

(but fewer) species were forest affiliates that forage in agriculture. 

Correlations between species’ abundance and behavioral responses to land-use were often low 

(Table S3.4) and, for some species, abundances did not peak where the species was most likely to 

exhibit reproductive or foraging behaviors. Thus, combining abundance and behavior information 

proved essential to understanding how species respond to land-use. For example, Tropical 
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Kingbirds (Tyrannus melancholicus) were more abundant in agriculture and were more likely to 

perform reproductive behaviors in forest. The greater number of individuals in agriculture was 

balanced by a greater fraction of individuals performing reproductive behaviors in forest, leading 

to a similar number of individuals engaging in reproductive behaviors between the two habitat 

types. On the other hand, Inca Doves (Columbina inca) were equally abundant across habitat types 

but had a higher likelihood and number of individuals foraging in agriculture. This indicates that 

Inca Doves can likely find more food resources in agriculture but may still need forest for other 

reasons (e.g., nesting).  

Finally, for several species, our analyses suggested the possibility that agriculture may act as 

an ecological trap (Robinson et al. 1995). Specifically, we found that Common Ground-Dove, 

Masked Tityra (Tityra semifasciata), and Tropical Kingbird showed more reproductive behaviors 

in forest and more passive behaviors in agriculture, despite being more or equally abundant in 

agriculture. Interestingly, there is already evidence that land-use change causes declines in 

Common Ground-Dove: the species used to be highly abundant in gardens and open areas in San 

José, Costa Rica until the late 1990s but has now almost disappeared from urban areas in this 

region (Biamonte et al. 2011). Ecological traps have been observed through behavioral studies of 

other species. For example, Ben-Aharon et al. (2020) tracked the territories of mourning wheatears 

(Oenanthe lugens) to find that roads in southern Israel reduced survival and acted as an ecological 

trap. Rufous Treecreepers (Climacterus rufus) had significantly lower density but significantly 

higher reproductive success in ungrazed habitats compared to grazed and fragmented habitats in 

southwestern Australia (Luck 2003), suggesting that habitat quality may be higher in ungrazed 

areas and that the other habitats may act as ecological traps.  
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That said, more data is needed before conclusively determining that agriculture is acting as an 

ecological trap for the species surveyed here. Another possibility is that one habitat is insufficient 

to fulfill all the needs of a species (e.g., Fiss et al. 2021). For example, a species may forage in 

agriculture and reproduce in forest. This could be the case for Great Kiskadee and Inca Dove. In 

this scenario, a mosaic of land-use types could result in larger populations than if only one habitat 

was present. Conversely, it is also possible that ecological traps are present, even for species that 

we deemed to have ‘consistent responses’ to land-use. For example, a species may exhibit more 

reproductive behaviors in a habitat but reproduction in that habitat may still be unsuccessful.  Thus, 

to truly understand habitat quality for foraging and reproduction, more data would be needed, 

ideally from experiments that manipulate food availability, nest site locations, or reproductive 

success between habitat types to see how birds change their behaviors and habitat selection (Bélisle 

2005; Knowlton & Graham 2010). 

 

Behavior and abundance differences between privately-owned and protected forest 

Consistent with our prior work (Karp et al. 2019), we found that species did not differ in 

abundance between protected and privately-owned forests, and, as such, the predicted number of 

individuals performing each behavior did not differ either. Nonetheless, species were, on average, 

more likely to perform reproductive behaviors and less likely to perform passive behaviors in 

protected forest. At the species-level, 11 species were more likely to exhibit reproductive behaviors 

in protected areas versus only one for which reproductive behaviors were more likely in private 

forests. These differences may result from differences in habitat quality. In our study system, 

privately-owned forests are embedded in more fragmented landscapes and have less canopy cover, 

shorter tree heights, lower tree richness, and less dense understories than protected forests, likely 
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due to regular logging, fires, hunting, and other disturbances (Karp et al. 2019). Thus, while  bird 

abundances weren’t different between privately-owned forests and protected areas in Northwest 

Costa Rica in our prior work (Karp et al. 2019), here we show that the behaviors may differ 

between protection levels.  

 

Species of conservation concern  

We found that species with smaller geographic range sizes and decreasing global 

populations tended to be more abundant in forest (as in Karp et al. 2019). Smaller range sizes are 

especially related to higher extinction vulnerability, lower dispersal ability, and heightened 

sensitivity to land-use change (Böhning‐Gaese et al. 2006; Sykes et al. 2020). This suggests that 

habitat conversion to agriculture is most likely to threaten species that are already declining, while 

favoring the species that are more adapted to different or novel food resources. However, we found 

little evidence that species of conservation concern were more dependent on protected areas than 

privately owned forests.  

 

Limitations 

Like any other study of behavior, it is important to acknowledge that that the frequency a 

species performs a behavior during surveys may not reflect the behaviors that it performs 

consistently. Animal behavior is known to vary based on seasons, time of day, which other species 

are present, and individual personalities (Bailey et al. 2004; Chambert et al. 2012; Veech et al. 

2016; Merrick & Koprowski 2017). This limitation could be reduced with more behavioral 

observations, potentially spread throughout the day. Another assumption that we made is that if 

animals are spending more time foraging (or engaging in reproductive behaviors) in one location, 
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then they have selected a habitat with more abundant food (or reproductive) resources. However, 

it is also possible that areas with fewer food resources force individuals to forage more often, or 

that the individuals foraging may be less skilled at finding food (Lescroël et al. 2010). In this case, 

the ecological trap may be actually where individuals spend more time foraging. 

Another caveat is that because we had to restrict analyses to the most easily observed 

species, we could be missing the rarest and/or most forest-restricted species. Indeed, compared to 

included species, species excluded from analyses were observed three times more often in each 

forested site than in each agriculture site on average, and 1.5 times more often in each protected 

area site than each private forest site on average. Thus, if anything, our finding that species are 

more likely to exhibit reproductive behaviors in forests (especially protected areas) is likely 

conservative.   

 

Conclusions 

Our results suggest that habitat conversion to agriculture can have strong effects on avian 

behavior. These changes may have cascading implications for individual fitness and future 

population viability, given the strong negative effects on reproductive behavior. Moreover, our 

finding that reproductive behaviors are, on average, more likely in protected areas than private 

forests suggest that studying behaviors can unmask differences in habitat value, even when 

community composition and abundance exhibit little differences between habitat types. Another 

benefit of the community behavior N-mixture model is that it can be used to identify the species 

that are most likely to shift their behaviors across land-use types, and, as such, most likely to be 

caught in ecological traps, unable to adjust to anthropogenic changes, or alternatively, be able to 

exploit novel resources and thrive in new environments (Sih et al. 2011; Tuomainen & Candolin 
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2011). Looking forward, we recommend that scientists incorporate behavioral observations into 

survey protocols and analyses when possible. Doing so could not only help provide early warning 

signals for species in trouble but may also point towards some of the mechanisms underlying 

species’ habitat selection as well as the ecological and evolutionary consequences of behavioral 

changes. 
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Tables and Figures  

Table 4: Number of species that had a positive, negative, or non-significant (NS) behavioral 

response to habitat, where rows specify which behavior is being measured and which habitats are 

being compared, and columns specify whether the species’ responses were positive, non-

significant, or negative, as well as whether the response was the probability of exhibiting a 

behavior or the number of individuals exhibiting a behavior.  

  

Positive NS Negative Positive NS Negative
Reproductive Behavior 20 34 1 26 25 4
Foraging Beheavior 0 47 8 14 29 12
Passive Behavior 2 38 15 10 37 8
Reproductive Behavior 11 28 1 0 40 0
Foraging Beheavior 1 36 3 0 38 2
Passive Behavior 1 31 8 0 39 1

Prob. of exhibiting a behavior # Individuals exhibiting a behavior

Effect of forest 
(relative to 
agriculture)
Effect of protected 
areas (relative to 
private forest)
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Table 5: Number of species in each behavior category, where rows specify agriculture vs. forest 

analyses or private vs. protection forest analyses and columns represent behavior categories. 

Species were categorized based on their abundance response to local forest cover (or protection 

status) and their behavioral response to habitat. For example, species exhibited inconsistent 

responses when individuals were more likely to exhibit reproductive or foraging behaviors in one 

habitat (e.g., forests), but were equally or less abundant in that habitat. In contrast, responses 

were “consistent” and “affiliated” with a habitat when a species was both more abundant and 

more or equally likely to exhibit reproductive or foraging behaviors in the same habitat. Species 

with no significant differences in abundance or behavior between habitats were labeled “non-

significant response.” 

 

 

 

 

 

 

 

 

Reproductive 
Behavior

Foraging 
Beheavior

Passive 
Behavior

Forest-affiliated 29 27 29
Agriculture-affiliated 8 12 10
Non-significant Response 10 12 10
Inconsistent Response 8 4 6
Protected-area affiliated 0 0 0
Private-forest affiliated 0 0 0
Non-significant Response 28 36 31
Inconsistent Response 12 4 9

Forest v. agriculture 
analysis

Protected v. private 
forest analysis 
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Figure 10: Reproductive, foraging, and passive behavior probabilities differ between forest and 

agriculture (A), and reproductive behavior probabilities differ between private and protected forest 

(C). Panels depict mean predicted probabilities (A, C) and expected numbers of individuals (B, D) 

performing foraging, passive, and reproductive behaviors in agriculture versus forest (A, B) and 

in protected versus private forest (C, D), using community-wide mean parameters. Uncertainty for 

probabilities is shown by 95% Bayesian credible intervals and uncertainty for numbers of 

individuals is the 95% percentile interval of the simulated posterior. Stars denote significant 

differences between habitats, such that the 95% intervals do not overlap zero. 
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Figure 11: Relationship between the effect of local forest cover on a species’ abundance and the 

predicted difference in species’ probability of performing reproductive behaviors between habitats. 

Grey lines indicate 90% Bayesian credible intervals. Positive values on the y-axis represent a 

higher probability (on the probability scale) of performing reproductive behaviors in forest than 

agriculture. Colors represent whether species were classified as habitat generalists (black), 

agriculture affiliated (blue), or forest affiliated (green). Species with inconsistent responses 

(orange) preferentially exhibited reproductive behaviors in forest but did not significantly increase 

in abundance with forest cover. Representative species in each category are pictured and labeled. 
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Figure 12: Relationship between the effect of local forest cover on a species’ abundance and the 

predicted difference in a species’ probability of performing foraging behaviors between habitats. 

Grey lines indicate 90% Bayesian credible intervals. Positive values on the y-axis represent a 

higher probability (on the probability scale) of performing foraging behaviors in forest than 

agriculture. Colors represent whether species were classified as habitat generalists (black), 

agriculture affiliated (blue), or forest affiliated (green). Species with inconsistent responses 

(orange) preferentially exhibited foraging behaviors in agriculture but did not significantly 

decrease in abundance with forest cover. Representative species in each category are pictured and 

labeled.   
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Figure 13: Relationship between the effect of local forest cover on a species’ abundance and the 

predicted difference in a species’ probability of performing passive behaviors between habitats. 

Grey lines indicate 90% Bayesian credible intervals. Positive values on the y-axis represent a 

higher probability (on the probability scale) of performing passive behaviors in forest than 

agriculture. Colors represent whether species were classified as habitat generalists (black), 

agriculture affiliated (blue), or forest affiliated (green). Species with inconsistent responses 

(orange) preferentially exhibited passive behaviors in agriculture but did not significantly increase 

in abundance with forest cover. Representative species in each category are pictured and labeled.   
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Supporting Information 3 

Bird surveys  

Each observation was also associated with one of 32 behaviors that we classified into three 

categories: reproductive, foraging, and passive behaviors (e.g., perching; Table S3.1; See 

Supporting Information for details). We categorized vocalizing behaviors into the reproductive or 

passive category depending on the species’ life history, as determined by expert ornithologist and 

co-author JZ (Table S3.11). For example, to defend their reproductive territories, some species 

sing (e.g., Banded Wren [Thryophilus pleuostictus]; Catchpole and Slater 2003), while others call 

(e.g., Lesser Greenlet [Hylophilus decurtatus]). We excluded six species from our analysis, as it 

was not possible to determine whether calling constituted a reproductive behavior: Orange-chinned 

Parakeet [Brotogeris jugularis], Orange-fronted Parakeet [Aratinga canicularis], Squirrel Cuckoo 

[Piaya cayana], White-fronted Amazon [Amazona albifrons], White-throated Magpie-jay 

[Calocitta formosa], Yellow-naped Amazon [Amazona auropalliata]. Aggressive behavior was 

sometimes placed in the reproductive category, depending on the context of the actual observation. 

Finally, mobbing, alarm calls, and non-reproductive aggression (~1% of observations combined) 

were placed into the passive category. 

 
Interpreting behavioral coefficients 

Because the values of behavior coefficients are relative to the reference behavior, they do 

not necessarily reflect how the probabilities of exhibiting behaviors differ between habitats. Thus, 

we considered the probability of a species performing a behavior to be significantly different 

between forested and agricultural habitats (or privately-owned versus protected forest) when the 

90% Bayesian credible interval (BCI) for the predicted difference in the behavior probability 

between habitats did not include zero. We calculated this BCI by predicting the probability of each 
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species performing each behavior in landscapes with 0% and 100% forest cover for each posterior 

sample. Then, we used the 5% and 95% percentiles of the posterior difference between the 

predicted values to obtain the 90% BCI. We used a 90% BCI for species-level analyses because 

each parameter is estimated with less data than the community means, and 90% BCIs are 

recommended when effective sample sizes are lower (Kruschke 2014; McElreath 2020). 

To estimate the number of individuals performing each behavior between habitats 

(Question 1), we multiplied the posterior samples of predicted behavior probabilities (from the 

behavior N-mixture model) by the posterior samples of predicted abundance (from the traditional 

N-mixture model), randomly ordering the samples before multiplication. To estimate uncertainty 

and statistical significance, we used the 2.5th and 97.5th percentile of the multiplied posterior 

samples for community-wide effects and the 5th and 95th percentile for species-specific effects. 

Because these quantities come from two different models, the calculations are technically not BCIs 

and cannot account for the possible covariance of the two quantities. They are therefore likely to 

overestimate uncertainty. 

 
Modeling behavior 

The number of individuals of species (i) performing a certain behavior (b) at site (j) 

(𝑁. 𝑏!,#,,) was modeled using a Poisson distribution. The detection probability (𝑃!,#,,,$) of an 

individual of species (i) performing a certain behavior (b) at site (j) and visit (k) was modeled 

assuming the number of individuals observed is a binomial random variable, with the number of 

trials equal to 𝑁. 𝑏!,#,, and success probability as the detection probability: 

 
𝑌!,#,,,$~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁. 𝑏!,#,,	, 𝑃!,#,,,$)  

𝑁. 𝑏!,#,,~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!,# ∗ 𝜋!,#,,) 
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The true number of individuals across all behavior classes, N, was derived as 𝑁!,# = ∑ 𝑁. 𝑏!,,-
,./ . 

Here, π i,j,b is the probability that an individual of a certain species performs a certain behavior at 

a site, and 𝜆!,# is the expected value of the total abundance (𝑁!,#) at a site. We used point-level 

covariates to explain variation in expected abundance 𝜆!,# and in multinomial logistic regression 

to model behavior probabilities π i,j,b. Finally, we used point and visit-level covariates to explain 

variation in the detection probability of an individual of a given species, behavior, site, and visit 

𝑃!,#,,,$. 

To capture variation in expected abundance across habitats (Questions 1, 2), we modeled 

𝜆!,# as  

log5𝜆!,#6 = 𝛼0! + 𝛼1! ∗ TreeCover6 + δ0!,789:[#] 	+ 	δ1!,;<=>[$] 	+ 	δ2!,?@!A%[#] 

where “TreeCover” is the local forest cover within 50m. Parameters in the 𝛼 family were estimated 

for each species, where each species term was drawn from a normal hyperdistribution with a 

community-level mean and variance. The δ terms represent random effects (normally distributed 

with mean of zero and variance estimated from the data) that were included to account for spatial 

and temporal autocorrelation in bird abundances and explain variation among species, point-count 

locations, farms, or years that was not explained by the other parameters. To understand how bird 

communities vary in behavior between habitats (Questions 1, 2), we modeled π i,j,b as a function of 

habitat, using multinomial logistic regression. For the first behavior,  

π i,j,1 = /

/2	∑ +!"-,#$/01,2∗4521656*
#+,

	, 

and for the remaining behaviors, 

 



 129 

πi,j,b = 	+!"-,#$/01,2∗4521656

/2	∑ +!"-,#$/01,2∗4521656*
#+,

	.  

The first behavior is a reference category that other behaviors are compared to. B is the 

number of behavior categories; here, B=3 (for reproductive, foraging, and passive behaviors). 

“Habitat” is a binary variable indicating whether the survey was in forest or agriculture. Parameters 

in the 𝛽 family were species-level random effects, which were drawn from a normal distribution 

with behavior-specific means and variances. Finally, we modelled the detection probability of an 

individual of a certain species performing a certain behavior at a given site and visit (𝑃!,#,,,$) as:  

logit5𝑃!,#,,,$6 = 𝛾0!,, + γ1, ∗ Noise6,B + γ2!,, ∗ Habitat6 + γ3 ∗ Time6,B , 

where “Noise” is a binary variable indicating if noise levels exceeded typical background noises 

and “Time” is the time of day of the point count. Parameters γ0 and γ2	were species-level random 

effects, drawn from a normal distribution with behavior-specific means and variances. Parameters 

γ1 and γ3 were constant over species and behaviors because we assumed noise would equally 

affect detectability of behaviors, and that most birds would become less active (and less detectable) 

later in the day (Robbins 1981).  
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Table S3.1: Categorization of behavior observations. 
 
Recorded behavior Behavior category 
Aerial Foraging 

Eat 

Bark Gleaning 
Berry Plucking 
Foliage Gleaning 
Flower Visiting 
Sit-And-Wait Foraging 
Stalking 
Hawking 
Eating 
Ground Rummaging 
Plant shoot eating 
Fruit/flower/seed eating 
Seed plucking 
Searching 
Other Foraging 
Alarm 

Passive 

Calling (species-dependent) 
Singing (species-dependent) 
Mobbing 
Preening 
Perching 
Roosting 
Fly over 
Intraspecific aggression (context-specific) 
Interspecific aggression (context-specific) 
Calling (species-dependent) 

Reproductive 

Singing (species-dependent) 
Courtship 
Feeding young 
Mating 
Nest building 
Nest sitting 
Intraspecific aggression (context-specific) 
Interspecific aggression (context-specific) 

 
 



 131 

Table S3.2: List of species uses in behavior analyses including the English common name, 

scientific name, order, and whether species were included in the protected area analysis, where 

“1” indicates that the species was included and “0” indicates that the species was not included. 

Common name Scientific name Family Order 

Protected 
area 
analysis 

Boat-billed Flycatcher Megarynchus pitangua Tyrannidae Passeriformes 0 
Blue-black Grassquit Volatinia jacarina Emberizidae Passeriformes 0 
Brown-crested Flycatcher Myiarchus tyrannulus Tyrannidae Passeriformes 1 
Lesson’s Motmot Momotus lessonii Momotidae Coraciiformes 1 
Black-headed Trogon Trogon melanocephalus Trogonidae Trogoniformes 1 
Blue Grosbeak Passerina caerulea Emberizidae Passeriformes 0 
Black Vulture Coragyps atratus Cathartidae Accipitriformes 0 
Banded Wren Thryothorus pleurostictus Troglodytidae Passeriformes 1 
Fork-tailed Emerald Chlorostilbon canivetii Trochilidae Apodiformes 1 
Clay-coloured Thrush Turdus grayi Turdidae Passeriformes 1 
Collared Aracari Pteroglossus torquatus Ramphastidae Piciformes 1 
Common Ground-dove Columbina passerina Columbidae Columbiformes 1 
Crested Bobwhite Colinus cristatus Odontophoridae Galliformes 0 
Crested Caracara Caracara cheriway Falconidae Falconiformes 0 
Elegant Trogon Trogon elegans Trogonidae Trogoniformes 1 
Ferruginous Pygmy-owl Glaucidium brasilianum Strigidae Strigiformes 1 
Groove-billed Ani Crotophaga sulcirostris Cuculidae Cuculiformes 1 
Green Kingfisher Chloroceryle americana Alcedinidae Coraciiformes 1 
Great Kiskadee Pitangus sulphuratus Tyrannidae Passeriformes 1 
Grey-headed Tanager Eucometis penicillata Thraupidae Passeriformes 1 
Great-tailed Grackle Quiscalus mexicanus Icteridae Passeriformes 0 
Hoffmann's Woodpecker Melanerpes hoffmannii Picidae Piciformes 1 
Inca Dove Columbina inca Columbidae Columbiformes 1 
Lesser Greenlet Hylophilus decurtatus Vireonidae Passeriformes 1 
Lesser Ground-cuckoo Morococcyx erythropygus Cuculidae Cuculiformes 1 
Stripe-throated Hermit Phaethornis striigularis Trochilidae Apodiformes 1 
Long-tailed Manakin Chiroxiphia linearis Pipridae Passeriformes 1 
Masked Tityra Tityra semifasciata Cotingidae Passeriformes 0 
Nutting's Flycatcher Myiarchus nuttingi Tyrannidae Passeriformes 1 
Plain-capped Starthroat Heliomaster constantii Trochilidae Apodiformes 0 
Rufous-and-white Wren Thryothorus rufalbus Troglodytidae Passeriformes 1 
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Red-billed Pigeon Patagioenas flavirostris Columbidae Columbiformes 1 
Ruddy Ground-dove Columbina talpacoti Columbidae Columbiformes 0 
Red-legged Honeycreeper Cyanerpes cyaneus Thraupidae Passeriformes 1 
Rufous-naped Wren Campylorhynchus rufinucha Troglodytidae Passeriformes 1 
Roadside Hawk Buteo magnirostris Accipitridae Accipitriformes 1 
Rose-throated Becard Pachyramphus aglaiae Cotingidae Passeriformes 1 
Rufous-tailed Hummingbird Amazilia tzacatl Trochilidae Apodiformes 1 
Ruddy Woodcreeper Dendrocincla homochroa Dendrocolaptidae Passeriformes 1 
Red-winged Blackbird Agelaius phoeniceus Icteridae Passeriformes 0 
Sulphur-bellied Flycatcher Myiodynastes luteiventris Tyrannidae Passeriformes 1 
Streak-backed Oriole Icterus pustulatus Icteridae Passeriformes 0 
Scrub Euphonia Euphonia affinis Thraupidae Passeriformes 1 
Stripe-headed Sparrow Aimophila ruficauda Emberizidae Passeriformes 0 
Social Flycatcher Myiozetetes similis Tyrannidae Passeriformes 1 
Streaked Flycatcher Myiodynastes maculatus Tyrannidae Passeriformes 1 
Steely-vented Hummingbird Amazilia saucerrottei Trochilidae Apodiformes 1 
Turquoise-browed Motmot Eumomota superciliosa Momotidae Coraciiformes 1 
Tropical Kingbird Tyrannus melancholicus Tyrannidae Passeriformes 0 
White-collared Seedeater Sporophila torqueola Emberizidae Passeriformes 1 
White-tipped Dove Leptotila verreauxi Columbidae Columbiformes 1 
White-winged Dove Zenaida asiatica Columbidae Columbiformes 1 
Yellow-green Vireo Vireo flavoviridis Vireonidae Passeriformes 1 
Yellow-olive Flycatcher Tolmomyias sulphurescens Tyrannidae Passeriformes 1 
Yellow-throated Euphonia Euphonia hirundinacea Thraupidae Passeriformes 0 
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Table S3.3: Mean predicted probabilities and expected numbers of individuals performing 

foraging, passive, and reproductive behaviors in agriculture versus forest and in protected versus 

private forest, using community-wide mean parameters. Uncertainty for probabilities is shown by 

95% Bayesian credible intervals and uncertainty for numbers of individuals is the 95% percentile 

interval of the simulated posterior.  

 

Behavior Habitat 
Mean probability of 
performing behavior 

Mean abundance of individuals of 
performing behavior 

Reproductive Forest 0.792 (0.693, 0.866) 0.354 (0.224, 0.532) 
Reproductive Agriculture 0.627 (0.498, 0.738) 0.106 (0.06, 0.171) 
Eating Forest 0.078 (0.045, 0.126) 0.034 (0.017, 0.062) 
Eating Agriculture 0.128 (0.076, 0.201) 0.021 (0.01, 0.04) 
Passive Forest 0.129 (0.064, 0.224) 0.057 (0.025, 0.112) 
Passive Agriculture 0.243 (0.137, 0.387) 0.041 (0.018, 0.079) 
Reproductive Protected forest 0.89 (0.838, 0.928) 0.566 (0.38, 0.822) 
Reproductive Privately-owned forest 0.835 (0.775, 0.882) 0.477 (0.328, 0.666) 
Eating Protected forest 0.066 (0.039, 0.102) 0.041 (0.021, 0.073) 
Eating Privately-owned forest 0.08 (0.053, 0.114) 0.045 (0.026, 0.073) 
Passive Protected forest 0.043 (0.017, 0.084) 0.027 (0.01, 0.058) 
Passive Privately-owned forest 0.084 (0.045, 0.14) 0.048 (0.023, 0.086) 

 
Table S3.4: Spearman’s correlations between species’ abundance responses to forest cover and 

effect of habitat on the probability of performing each behavior (first row), and Spearman’s 

correlations between species’ abundance responses to protection status and effect of protection 

status on the probability of performing each behavior (second row). Abundance responses are 

positive when species’ abundances increase with higher levels of forest cover or in protected 

forests versus private forests. 

 
  Reproductive Foraging Passive 

Forest cover 0.02 (P=0.90) 0.22 (P =0.10) -0.07 (P=0.61) 

Protection status 0.15 (P=0.37) -0.09 (P=0.59) -0.12 (P=0.47) 
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Table S3.5: Spearman’s correlations between species’ global range sizes and their responses to 
habitat. Responses to habitat include the effects of forest cover and protection status on overall 
abundance, the predicted difference in probabilities and number of individuals performing each 
behavior between forest and agriculture, and the predicted difference in probabilities and number 
of individuals performing each behavior between protected and private forest. Positive 
correlations indicate that the corresponding response to habitat increases with range size in more 
forested and protected areas. 
 

Comparison Response Rho P-value 

Forest/Agriculture 

Abundance -0.370 0.01 

Probability Reproductive 0.154 0.26 
Probability Foraging -0.198 0.15 
Probability Passive -0.138 0.32 
Number Reproductive -0.293 0.03 
Number Foraging -0.336 0.01 
Number Passive -0.378 <0.01 

Protected/Private 
Forest 

Abundance 0.085 0.60 
Probability Reproductive 0.113 0.49 
Probability Foraging 0.054 0.74 
Probability Passive -0.192 0.24 
Number Reproductive -0.306 0.06 
Number Foraging 0.146 0.37 
Number Passive 0.159 0.33 
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Table S3.6: Difference between group means and P-values for pairwise Wilcoxon rank sum tests 

to understand whether differences in abundance across tree cover (or protection levels), as well 

as differences in behavior between habitats differed between categories of global population 

trends (decreasing, stable, or increasing). Response variables include the effects of forest cover 

and protection status on overall abundance, the predicted difference in probabilities and number 

of individuals performing each behavior between forest and agriculture, and the predicted 

difference in probabilities and number of individuals performing each behavior between 

protected and private forest. Positive estimates indicate larger values of corresponding response 

variables in more forested and protected areas. 

 

Comparison Response Contrast 

Difference 
between group 

means P-value 

Forest/Agriculture 

Abundance Decreasing - Increasing 1.132 <0.001 
Abundance Decreasing - Stable 0.523 0.05 
Abundance Increasing - Stable -0.610 0.05 
Probability Reproductive Decreasing - Increasing -0.009 1.00 
Probability Reproductive Decreasing - Stable 0.001 1.00 
Probability Reproductive Increasing - Stable 0.010 1.00 
Probability Foraging Decreasing - Increasing 0.033 0.23 
Probability Foraging Decreasing - Stable 0.015 0.93 
Probability Foraging Increasing - Stable -0.017 0.28 
Probability Passive Decreasing - Increasing -0.024 1.00 
Probability Passive Decreasing - Stable -0.017 1.00 
Probability Passive Increasing - Stable 0.007 1.00 
Number Reproductive Decreasing - Increasing 0.439 0.09 
Number Reproductive Decreasing - Stable 0.214 0.78 
Number Reproductive Increasing - Stable -0.225 0.46 
Number Foraging Decreasing - Increasing 0.169 <0.001 
Number Foraging Decreasing - Stable 0.058 0.22 
Number Foraging Increasing - Stable -0.111 0.15 
Number Passive Decreasing - Increasing 0.323 <0.001 
Number Passive Decreasing - Stable 0.128 0.03 
Number Passive Increasing - Stable -0.195 0.02 
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Protected/Private 
Forest 

Abundance Decreasing - Increasing 0.167 0.17 
Abundance Decreasing - Stable -0.195 0.13 
Abundance Increasing - Stable -0.362 0.03 
Probability Reproductive Decreasing - Increasing 0.016 1.00 
Probability Reproductive Decreasing - Stable 0.025 1.00 
Probability Reproductive Increasing - Stable 0.009 1.00 
Probability Foraging Decreasing - Increasing -0.011 0.99 
Probability Foraging Decreasing - Stable -0.007 1.00 
Probability Foraging Increasing - Stable 0.004 1.00 
Probability Passive Decreasing - Increasing -0.005 1.00 
Probability Passive Decreasing - Stable -0.018 0.63 
Probability Passive Increasing - Stable -0.013 1.00 
Number Reproductive Decreasing - Increasing 0.052 0.24 
Number Reproductive Decreasing - Stable 0.046 0.77 
Number Reproductive Increasing - Stable -0.006 0.77 
Number Foraging Decreasing - Increasing 0.008 1.00 
Number Foraging Decreasing - Stable -0.028 1.00 
Number Foraging Increasing - Stable -0.035 1.00 
Number Passive Decreasing - Increasing -0.060 0.50 
Number Passive Decreasing - Stable -0.018 0.73 
Number Passive Increasing - Stable 0.042 0.79 
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Table S3.7: Species-level behavior analyses in forest versus agriculture. Column 2 contains the 

effect of local forest cover on the abundance of each species, as well as the community mean 

effect. 90% Bayesian credible intervals (BCIs) are shown for each species, and the 95% BCI is 

shown for the community mean. Columns 3-5 contain the difference in probability of each 

behavior between forest and agriculture for each species with 90% Bayesian credible intervals 

(BCIs). Positive values indicate a higher probability in forest, and negative values indicate a 

higher probability in agriculture.  

 

Species 

Effect of local 
forest cover on 

abundance 

Difference in prob. of 
reproductive behavior 

between forest and 
agriculture 

Difference in prob. 
of eating behavior 
between forest and 

agriculture 

Difference in prob. of 
passive behavior 

between forest and 
agriculture 

Community mean 
0.372 (0.131, 

0.612)       
Boat-billed 
Flycatcher 

0.519 (0.183, 
0.849) 0.057 (0.005, 0.141) 

-0.034 (-0.098, 
0.004) -0.023 (-0.073, 0) 

Blue-black 
Grassquit -0.925 (-1.24, -0.6) 

-0.073 (-0.236, 
0.134) 

-0.058 (-0.11, -
0.019) 0.132 (-0.091, 0.311) 

Brown-crested 
Flycatcher 

0.323 (0.031, 
0.639) 0.065 (-0.009, 0.158) 

-0.027 (-0.097, 
0.028) -0.037 (-0.102, 0.01) 

Lesson’s Motmot 
1.617 (0.999, 

2.281) 0.231 (0.039, 0.524) 
-0.042 (-0.167, 

0.032) -0.188 (-0.526, -0.005) 
Black-headed 
Trogon 

0.871 (0.564, 
1.178) 0.055 (-0.076, 0.191) 

-0.023 (-0.06, -
0.001) -0.032 (-0.167, 0.097) 

Blue Grosbeak 
-0.469 (-0.84, -

0.099) 0.057 (-0.193, 0.31) 
-0.016 (-0.055, 

0.007) -0.041 (-0.306, 0.217) 

Black Vulture 
-0.62 (-1.057, -

0.212) 
-0.062 (-0.188, -

0.001) 
-0.16 (-0.281, -

0.071) 0.222 (0.088, 0.391) 

Banded Wren 0.992 (0.73, 1.259) 0.047 (-0.08, 0.192) 
-0.034 (-0.107, 

0.017) -0.013 (-0.158, 0.106) 
Fork-tailed 
Emerald 

-0.158 (-0.49, 
0.165) 0.044 (-0.041, 0.169) -0.025 (-0.206, 0.16) -0.018 (-0.234, 0.187) 

Clay-coloured 
Thrush 

0.365 (0.063, 
0.663) 0.126 (0, 0.267) 

0.029 (-0.034, 
0.099) -0.155 (-0.315, 0) 

Collared Aracari 
0.497 (0.069, 

0.949) 0.119 (-0.092, 0.323) 
-0.039 (-0.159, 

0.067) -0.08 (-0.309, 0.158) 
Common Ground-
dove 

-0.628 (-0.863, -
0.384) 0.325 (0.173, 0.472) 

-0.097 (-0.208, 
0.005) -0.228 (-0.365, -0.097) 

Crested Bobwhite 
-0.903 (-1.33, -

0.492) 0.073 (-0.198, 0.303) 
-0.132 (-0.275, -

0.01) 0.059 (-0.177, 0.394) 

Crested Caracara 
-0.344 (-0.767, 

0.068) 0.097 (-0.054, 0.323) 
-0.048 (-0.172, 

0.081) -0.049 (-0.321, 0.188) 
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Elegant Trogon 
1.357 (0.887, 

1.844) 0.158 (0.022, 0.387) 
-0.036 (-0.122, 

0.009) -0.122 (-0.363, -0.003) 
Ferruginous 
Pygmy-owl 

0.225 (-0.302, 
0.747) 0.127 (-0.009, 0.312) 

-0.078 (-0.236, 
0.019) -0.048 (-0.216, 0.046) 

Groove-billed Ani 
-0.896 (-1.174, -

0.62) 0.149 (0.022, 0.27) -0.047 (-0.112, 0.01) -0.101 (-0.214, 0.009) 

Green Kingfisher 
0.418 (-0.073, 

0.941) 0.199 (-0.032, 0.463) 
-0.024 (-0.157, 

0.083) -0.175 (-0.499, 0.085) 

Great Kiskadee 0 (-0.288, 0.326) 0.086 (0.025, 0.169) 
-0.034 (-0.082, -

0.002) -0.052 (-0.118, -0.011) 
Grey-headed 
Tanager 

1.516 (0.933, 
2.128) 0.122 (-0.125, 0.347) -0.011 (-0.069, 0.02) -0.111 (-0.35, 0.165) 

Great-tailed 
Grackle 

-0.855 (-1.205, -
0.507) 

-0.036 (-0.212, 
0.166) 

-0.191 (-0.301, -
0.096) 0.228 (0.004, 0.424) 

Hoffmann's 
Woodpecker 

0.486 (0.224, 
0.745) 0.141 (0.04, 0.267) 

-0.045 (-0.126, 
0.018) -0.095 (-0.196, -0.028) 

Inca Dove 
-0.052 (-0.292, 

0.195) 0.313 (0.181, 0.439) -0.2 (-0.306, -0.097) -0.112 (-0.211, -0.02) 

Lesser Greenlet 
1.193 (0.894, 

1.512) 0.025 (-0.091, 0.15) 
-0.004 (-0.127, 

0.106) -0.021 (-0.082, 0.016) 
Lesser Ground-
cuckoo 

0.13 (-0.261, 
0.509) 0.07 (-0.022, 0.204) 

-0.035 (-0.125, 
0.023) -0.034 (-0.144, 0.028) 

Stripe-throated 
Hermit 

1.945 (1.313, 
2.627) 0.049 (-0.127, 0.235) 

-0.024 (-0.212, 
0.099) -0.024 (-0.281, 0.286) 

Long-tailed 
Manakin 

1.642 (1.241, 
2.067) 0.305 (0.107, 0.487) 

0.008 (-0.045, 
0.053) -0.314 (-0.514, -0.082) 

Masked Tityra 
0.194 (-0.236, 

0.62) 0.215 (0.064, 0.392) 
0.002 (-0.062, 

0.076) -0.217 (-0.401, -0.071) 
Nutting's 
Flycatcher 

1.546 (1.045, 
2.049) 0.116 (0.006, 0.309) 

-0.046 (-0.149, 
0.007) -0.069 (-0.259, 0.007) 

Plain-capped 
Starthroat 

0.479 (-0.012, 
1.011) 0.082 (-0.06, 0.281) 

0.019 (-0.093, 
0.133) -0.102 (-0.346, 0.125) 

Rufous-and-white 
Wren 

1.885 (1.352, 
2.467) 0.17 (-0.002, 0.419) -0.061 (-0.22, 0.03) -0.108 (-0.4, 0.039) 

Red-billed Pigeon 
0.273 (-0.141, 

0.666) 0.138 (-0.033, 0.331) -0.002 (-0.03, 0.018) -0.136 (-0.336, 0.051) 
Ruddy Ground-
dove 

-0.952 (-1.396, -
0.486) 0.21 (-0.019, 0.457) -0.128 (-0.36, 0.153) -0.081 (-0.316, 0.293) 

Red-legged 
Honeycreeper 

0.789 (0.337, 
1.259) 0.04 (-0.084, 0.172) 

-0.017 (-0.127, 
0.082) -0.023 (-0.119, 0.048) 

Rufous-naped 
Wren 

0.521 (0.296, 
0.738) 0.025 (-0.064, 0.12) -0.051 (-0.14, 0.024) 0.025 (-0.02, 0.079) 

Roadside Hawk 
0.436 (-0.02, 

0.917) 0.214 (0.015, 0.432) 
-0.035 (-0.194, 

0.102) -0.178 (-0.449, 0.002) 
Rose-throated 
Becard 

0.428 (0.133, 
0.718) 0.064 (-0.011, 0.158) 

-0.017 (-0.082, 
0.041) -0.047 (-0.118, -0.004) 

Rufous-tailed 
Hummingbird 

1.031 (0.626, 
1.447) 0.023 (-0.093, 0.155) 

-0.066 (-0.233, 
0.052) 0.043 (-0.159, 0.273) 

Ruddy 
Woodcreeper 

1.336 (0.605, 
2.168) 0.162 (-0.007, 0.431) 

-0.051 (-0.187, 
0.028) -0.111 (-0.422, 0.035) 

Red-winged 
Blackbird 

-1.083 (-1.589, -
0.596) 0.196 (-0.084, 0.437) 

-0.028 (-0.136, 
0.093) -0.167 (-0.435, 0.152) 

Sulphur-bellied 
Flycatcher 

0.209 (-0.114, 
0.549) 0.091 (-0.003, 0.214) 

-0.015 (-0.056, 
0.013) -0.075 (-0.198, 0.01) 
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Streak-backed 
Oriole 0.337 (0.024, 0.65) 0.08 (0.008, 0.171) 

-0.049 (-0.128, 
0.012) -0.031 (-0.087, -0.001) 

Scrub Euphonia 0.55 (0.222, 0.907) 0.07 (0.001, 0.177) 
-0.054 (-0.148, 

0.001) -0.016 (-0.066, 0.013) 
Stripe-headed 
Sparrow 

-0.773 (-1.076, -
0.452) 0.038 (0.004, 0.084) 

-0.019 (-0.055, 
0.004) -0.018 (-0.048, 0) 

Social Flycatcher 
0.224 (-0.138, 

0.578) 0.108 (-0.009, 0.261) 
-0.034 (-0.143, 

0.054) -0.074 (-0.204, 0) 
Streaked 
Flycatcher 

0.782 (0.427, 
1.135) 0.053 (-0.009, 0.147) -0.02 (-0.079, 0.021) -0.033 (-0.102, 0.001) 

Steely-vented 
Hummingbird 

0.858 (0.373, 
1.364) 0.044 (-0.146, 0.246) 

-0.039 (-0.256, 
0.142) -0.004 (-0.289, 0.302) 

Turquoise-browed 
Motmot 

0.941 (0.669, 
1.215) 0.084 (-0.011, 0.191) 

-0.027 (-0.107, 
0.038) -0.057 (-0.145, 0.003) 

Tropical Kingbird 
-0.601 (-0.97, -

0.207) 0.212 (0.05, 0.388) 
-0.054 (-0.157, 

0.033) -0.158 (-0.331, -0.004) 
White-collared 
Seedeater 

-0.543 (-0.818, -
0.27) 0.172 (-0.009, 0.347) -0.034 (-0.1, 0.026) -0.138 (-0.317, 0.057) 

White-tipped Dove 
0.959 (0.654, 

1.265) 0.216 (0.039, 0.392) -0.03 (-0.195, 0.112) -0.185 (-0.388, -0.038) 
White-winged 
Dove 

-0.233 (-0.53, 
0.071) 0.064 (-0.067, 0.236) 

-0.027 (-0.072, 
0.011) -0.037 (-0.222, 0.118) 

Yellow-green 
Vireo 

0.846 (0.549, 
1.125) 0.141 (0.034, 0.264) 

-0.131 (-0.255, -
0.026) -0.01 (-0.037, 0.005) 

Yellow-olive 
Flycatcher 

1.036 (0.744, 
1.322) 0.126 (-0.004, 0.289) -0.053 (-0.17, 0.031) -0.073 (-0.232, 0.031) 

Yellow-throated 
Euphonia 0.668 (0.21, 1.148) 0.066 (0.006, 0.166) 

-0.023 (-0.077, 
0.003) -0.042 (-0.131, -0.001) 
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Table S3.8: Species-level behavior analyses in private versus protected forest. Column 2 contains 

the effect of protected forest (versus privately-owned forest) on the abundance of each species, as 

well as the community mean effect. 90% Bayesian credible intervals (BCIs) are shown for each 

species, and the 95% BCI is shown for the community mean. Columns 3-5 contain the difference 

in probability of each behavior between privately-owned and protected forest for each species with 

90% Bayesian credible intervals (BCIs). Positive values indicate a higher probability in protected 

forest, and negative values indicate a higher probability in privately-owned forest. 

 

Species 

Mean effect of 
protection level on 

abundance 

Difference in prob. 
of reproductive 

behavior between 
protected and 
private forest 

Difference in prob. 
of eating behavior 
between protected 
and private forest 

Difference in prob. 
of passive behavior 
between protected 
and private forest 

Community mean 
0.114 (-0.119, 
0.351)       

Brown-crested Flycatcher 
-0.328 (-1.019, 
0.309) 

0.009 (-0.079, 
0.079) 

0.007 (-0.054, 
0.091) 

-0.016 (-0.054, 
0.012) 

Lesson’s Motmot 
0.577 (-0.045, 
1.259) 

0.058 (-0.001, 
0.143) 

-0.028 (-0.088, 
0.02) 

-0.03 (-0.099, 
0.003) 

Black-headed Trogon 
-0.179 (-0.799, 
0.408) 0.079 (0.005, 0.165) 0 (-0.023, 0.028) 

-0.079 (-0.165, -
0.004) 

Banded Wren -0.334 (-0.99, 0.28) 0.111 (0.037, 0.195) 
-0.011 (-0.05, 
0.032) 

-0.099 (-0.177, -
0.036) 

Fork-tailed Emerald 
0.006 (-0.64, 
0.643) 

0.047 (-0.136, 
0.221) 

-0.011 (-0.105, 
0.096) 

-0.036 (-0.188, 
0.133) 

Clay-coloured Thrush 
0.245 (-0.363, 
0.866) 0.131 (0.02, 0.249) 0.059 (0, 0.142) 

-0.191 (-0.315, -
0.07) 

Collared Aracari 
0.057 (-0.588, 
0.706) 

-0.136 (-0.35, 
0.028) 

-0.006 (-0.072, 
0.072) 

0.143 (-0.022, 
0.372) 

Common Ground-dove 
-0.331 (-0.988, 
0.273) 

0.058 (-0.025, 
0.142) 

-0.013 (-0.079, 
0.066) 

-0.044 (-0.098, -
0.004) 

Elegant Trogon 
0.56 (-0.039, 
1.202) 

0.023 (-0.033, 
0.086) 

-0.003 (-0.047, 
0.044) 

-0.02 (-0.065, 
0.003) 

Ferruginous Pygmy-owl 
0.496 (-0.159, 
1.197) 

0.052 (-0.026, 
0.161) 

-0.009 (-0.062, 
0.047) 

-0.042 (-0.153, 
0.005) 

Groove-billed Ani 
-0.063 (-0.705, 
0.55) 

-0.086 (-0.238, 
0.028) 0.06 (-0.013, 0.185) 

0.025 (-0.063, 
0.151) 

Green Kingfisher 
0.388 (-0.253, 
1.069) 0.117 (0, 0.288) 

-0.012 (-0.075, 
0.055) 

-0.105 (-0.288, 
0.006) 

Great Kiskadee 
-0.088 (-0.736, 
0.503) 

-0.011 (-0.073, 
0.033) 0 (-0.033, 0.044) 0.01 (-0.013, 0.053) 

Grey-headed Tanager 
0.399 (-0.225, 
1.05) 

0.093 (-0.057, 
0.246) 

-0.011 (-0.04, 
0.011) 

-0.082 (-0.238, 
0.078) 
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Hoffmann's Woodpecker 
0.007 (-0.553, 
0.547) 0.058 (0.009, 0.112) 

-0.048 (-0.097, -
0.005) 

-0.009 (-0.033, 
0.013) 

Inca Dove 
-0.259 (-0.87, 
0.329) 0.009 (-0.057, 0.07) 

0.005 (-0.031, 
0.052) 

-0.015 (-0.067, 
0.042) 

Lesser Greenlet 
0.323 (-0.255, 
0.909) 0.081 (0.012, 0.161) 

-0.065 (-0.144, 
0.001) 

-0.015 (-0.047, 
0.003) 

Lesser Ground-cuckoo 
-0.275 (-0.966, 
0.359) 

0.029 (-0.043, 
0.102) 

-0.014 (-0.066, 
0.042) 

-0.015 (-0.066, 
0.024) 

Stripe-throated Hermit 
0.613 (-0.017, 
1.315) 0.192 (0.027, 0.369) 

0.036 (-0.015, 
0.108) 

-0.228 (-0.407, -
0.054) 

Long-tailed Manakin 
0.447 (-0.15, 
1.078) 0.03 (-0.053, 0.109) 

-0.001 (-0.031, 
0.032) 

-0.029 (-0.111, 
0.055) 

Nutting's Flycatcher 
-0.128 (-0.735, 
0.469) 

0.009 (-0.063, 
0.066) 

-0.014 (-0.058, 
0.031) 

0.004 (-0.026, 
0.058) 

Rufous-and-white Wren 
0.542 (-0.03, 
1.158) 

0.072 (-0.003, 
0.162) 

-0.025 (-0.082, 
0.028) 

-0.047 (-0.127, 
0.012) 

Red-billed Pigeon 
-0.309 (-1.099, 
0.352) 0.318 (0.095, 0.538) 

0.013 (-0.017, 
0.066) 

-0.331 (-0.559, -
0.096) 

Red-legged Honeycreeper 
0.376 (-0.269, 
0.997) 0.081 (0.011, 0.165) 

-0.054 (-0.123, 
0.001) 

-0.026 (-0.078, 
0.008) 

Rufous-naped Wren 
0.02 (-0.579, 
0.578) 0.071 (0.004, 0.14) 

-0.013 (-0.065, 
0.043) 

-0.058 (-0.111, -
0.019) 

Roadside Hawk 
0.062 (-0.591, 
0.712) 

0.031 (-0.066, 
0.124) 

-0.008 (-0.082, 
0.082) 

-0.022 (-0.088, 
0.019) 

Rose-throated Becard 
0.137 (-0.455, 
0.736) 

0.042 (-0.008, 
0.098) 

-0.033 (-0.088, 
0.014) 

-0.009 (-0.032, 
0.005) 

Rufous-tailed 
Hummingbird 

0.281 (-0.338, 
0.92) 

0.021 (-0.162, 
0.198) 0.023 (-0.026, 0.09) 

-0.044 (-0.229, 
0.148) 

Ruddy Woodcreeper 
0.199 (-0.478, 
0.869) 0.03 (-0.057, 0.121) 

-0.023 (-0.082, 
0.026) 

-0.007 (-0.082, 
0.068) 

Sulphur-bellied 
Flycatcher 

-0.129 (-0.779, 
0.494) 

0.037 (-0.017, 
0.099) 

-0.013 (-0.055, 
0.026) 

-0.024 (-0.074, 
0.011) 

Scrub Euphonia 
-0.046 (-0.67, 
0.552) 0.032 (-0.008, 0.08) 

-0.021 (-0.061, 
0.013) 

-0.011 (-0.037, 
0.007) 

Social Flycatcher -0.15 (-0.83, 0.477) 
0.034 (-0.028, 
0.097) 

-0.023 (-0.08, 
0.035) 

-0.011 (-0.041, 
0.006) 

Streaked Flycatcher 
0.316 (-0.283, 
0.935) 

0.034 (-0.007, 
0.084) 

-0.026 (-0.071, 
0.012) 

-0.008 (-0.031, 
0.004) 

Steely-vented 
Hummingbird 

0.48 (-0.174, 
1.177) 

-0.024 (-0.218, 
0.151) 

0.022 (-0.058, 
0.131) 

0.002 (-0.181, 
0.197) 

Turquoise-browed 
Motmot 

0.078 (-0.492, 
0.656) 

0.026 (-0.042, 
0.088) 

-0.003 (-0.058, 
0.059) 

-0.023 (-0.061, 
0.007) 

White-collared Seedeater 
-0.27 (-0.992, 
0.381) 

0.068 (-0.102, 
0.234) 

0.033 (-0.028, 
0.145) 

-0.101 (-0.267, 
0.06) 

White-tipped Dove 0.399 (-0.202, 1) 
-0.072 (-0.169, 
0.018) 0.117 (0.035, 0.211) 

-0.045 (-0.102, 
0.002) 

White-winged Dove 
-0.001 (-0.662, 
0.641) 

-0.294 (-0.458, -
0.131) 

-0.035 (-0.075, -
0.008) 0.329 (0.154, 0.502) 

Yellow-green Vireo 
0.296 (-0.295, 
0.872) 0.074 (0.021, 0.141) 

-0.066 (-0.132, -
0.015) 

-0.008 (-0.026, 
0.002) 

Yellow-olive Flycatcher 
0.187 (-0.381, 
0.765) 

0.071 (-0.002, 
0.152) 

-0.024 (-0.079, 
0.03) 

-0.047 (-0.112, -
0.001) 
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Table S3.9: The difference in abundance of individuals performing each behavior between forest 

and agriculture for each species, with 90% Bayesian credible intervals (BCIs). Positive values 

indicate a higher abundance in forest, and negative values indicate a higher abundance in 

agriculture. 

 

Species 

Difference in # individuals 
reproductive between forest 

and agriculture 

Difference in # 
individuals eating 
between forest and 

agriculture 

Difference in # 
individuals passive 
between forest and 

agriculture 
Boat-billed Flycatcher 1.266 (0.251, 2.735) 0.021 (-0.045, 0.104) -0.001 (-0.038, 0.033) 

Blue-black Grassquit -0.305 (-0.633, -0.082) 
-0.089 (-0.196, -

0.025) -0.579 (-1.248, -0.105) 
Brown-crested Flycatcher 0.723 (-0.14, 2.015) 0.03 (-0.068, 0.159) 0.002 (-0.064, 0.08) 
Lesson’s Motmot 0.394 (0.156, 0.813) 0.026 (0.003, 0.074) 0.022 (0, 0.077) 
Black-headed Trogon 2.443 (0.824, 5.175) 0.025 (-0.016, 0.089) 0.403 (0.057, 1.053) 
Blue Grosbeak -0.074 (-0.253, 0.064) -0.008 (-0.03, 0.002) -0.108 (-0.326, 0.053) 

Black Vulture -0.073 (-0.243, 0) 
-0.145 (-0.352, -

0.036) -0.373 (-1.062, 0.129) 
Banded Wren 1.321 (0.636, 2.269) 0.07 (0.006, 0.173) 0.207 (0.054, 0.435) 
Fork-tailed Emerald -0.023 (-0.122, 0.043) -0.109 (-0.318, 0.023) -0.165 (-0.467, 0.03) 
Clay-coloured Thrush 0.055 (-0.009, 0.14) 0.015 (-0.009, 0.048) 0.037 (-0.15, 0.208) 
Collared Aracari 0.181 (0.006, 0.512) 0.028 (-0.012, 0.109) 0.087 (-0.023, 0.283) 

Common Ground-dove -1.164 (-2.972, 0.043) 
-0.823 (-1.772, -

0.219) -1.266 (-2.593, -0.405) 

Crested Bobwhite -0.15 (-0.415, 0) 
-0.085 (-0.217, -

0.014) -0.085 (-0.248, 0.01) 
Crested Caracara 0.003 (-0.064, 0.08) -0.014 (-0.06, 0.022) -0.047 (-0.223, 0.109) 
Elegant Trogon 0.554 (0.264, 0.993) 0.019 (0.002, 0.055) 0.017 (-0.002, 0.057) 
Ferruginous Pygmy-owl 0.035 (-0.04, 0.123) 0 (-0.021, 0.016) 0 (-0.016, 0.014) 
Groove-billed Ani -3.061 (-6.134, -1.037) -0.563 (-1.24, -0.174) -1.075 (-2.3, -0.345) 
Green Kingfisher 0.038 (-0.025, 0.124) 0.002 (-0.015, 0.021) 0 (-0.048, 0.043) 
Great Kiskadee 0.585 (-1.485, 2.859) -0.048 (-0.222, 0.076) -0.083 (-0.281, 0.039) 
Grey-headed Tanager 0.116 (0.027, 0.3) 0.006 (0, 0.02) 0.211 (0.057, 0.482) 
Great-tailed Grackle -0.2 (-0.509, -0.014) -0.188 (-0.42, -0.059) -0.268 (-0.706, 0.028) 
Hoffmann's Woodpecker 2.34 (0.634, 4.672) 0.154 (-0.072, 0.478) -0.015 (-0.186, 0.162) 

Inca Dove 1.043 (-1.645, 4.049) 
-0.888 (-2.112, -

0.014) -0.514 (-1.518, 0.252) 
Lesser Greenlet 0.827 (0.432, 1.39) 0.143 (0.054, 0.278) 0.018 (-0.001, 0.06) 
Lesser Ground-cuckoo 0.019 (-0.243, 0.252) -0.007 (-0.045, 0.019) -0.007 (-0.045, 0.018) 
Stripe-throated Hermit 0.179 (0.031, 0.497) 0.085 (0.019, 0.22) 0.582 (0.199, 1.264) 
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Long-tailed Manakin 0.626 (0.296, 1.121) 0.055 (0.017, 0.125) 0.614 (0.284, 1.143) 
Masked Tityra 0.22 (-0.09, 0.667) 0.014 (-0.02, 0.068) -0.033 (-0.118, 0.025) 
Nutting's Flycatcher 0.799 (0.332, 1.602) 0.03 (0.003, 0.092) 0.021 (0, 0.067) 
Plain-capped Starthroat 0.023 (-0.01, 0.09) 0.01 (-0.006, 0.04) 0.054 (-0.053, 0.196) 
Rufous-and-white Wren 0.491 (0.236, 0.881) 0.042 (0.01, 0.103) 0.044 (0.009, 0.108) 
Red-billed Pigeon 0.05 (-0.01, 0.144) 0.001 (-0.004, 0.008) 0.064 (-0.103, 0.255) 

Ruddy Ground-dove -0.068 (-0.269, 0.06) 
-0.155 (-0.387, -

0.015) -0.12 (-0.315, -0.002) 
Red-legged Honeycreeper 0.332 (0.049, 0.809) 0.043 (-0.004, 0.128) 0.018 (-0.006, 0.069) 
Rufous-naped Wren 1.259 (0.4, 2.344) 0.114 (-0.048, 0.331) 0.109 (0.018, 0.257) 
Roadside Hawk 0.075 (-0.01, 0.221) 0.01 (-0.014, 0.05) 0 (-0.034, 0.035) 
Rose-throated Becard 0.614 (0.014, 1.409) 0.031 (-0.033, 0.125) -0.007 (-0.052, 0.031) 
Rufous-tailed 
Hummingbird 0.09 (0.008, 0.25) 0.055 (0.004, 0.15) 0.397 (0.128, 0.868) 
Ruddy Woodcreeper 0.193 (0.047, 0.5) 0.013 (0, 0.047) 0.017 (-0.001, 0.064) 

Red-winged Blackbird -0.108 (-0.318, 0.003) 
-0.037 (-0.107, -

0.002) -0.134 (-0.366, -0.019) 
Sulphur-bellied Flycatcher 0.248 (-0.282, 0.841) 0 (-0.034, 0.033) -0.019 (-0.115, 0.057) 
Streak-backed Oriole 0.582 (0.005, 1.445) 0.018 (-0.048, 0.107) -0.004 (-0.033, 0.024) 
Scrub Euphonia 0.889 (0.107, 2.058) 0.022 (-0.055, 0.122) 0.012 (-0.023, 0.067) 

Stripe-headed Sparrow -2.277 (-4.73, -0.708) 
-0.105 (-0.271, -

0.016) -0.076 (-0.201, -0.01) 
Social Flycatcher 0.112 (-0.138, 0.388) 0.002 (-0.049, 0.052) -0.011 (-0.053, 0.017) 
Streaked Flycatcher 0.951 (0.267, 2.05) 0.036 (-0.006, 0.116) 0.007 (-0.016, 0.046) 
Steely-vented 
Hummingbird 0.064 (0, 0.188) 0.042 (-0.001, 0.12) 0.112 (0.012, 0.29) 
Turquoise-browed Motmot 1.727 (0.819, 3.049) 0.161 (0.036, 0.364) 0.068 (-0.012, 0.198) 
Tropical Kingbird -0.158 (-0.481, 0.061) -0.05 (-0.143, 0) -0.105 (-0.266, -0.013) 

White-collared Seedeater -0.226 (-0.607, 0.059) 
-0.059 (-0.156, -

0.002) -0.265 (-0.596, -0.038) 
White-tipped Dove 1.748 (0.754, 3.225) 0.518 (0.159, 1.076) 0.188 (-0.017, 0.508) 
White-winged Dove 0.06 (-0.216, 0.465) -0.028 (-0.114, 0.041) -0.053 (-0.933, 1.042) 
Yellow-green Vireo 1.105 (0.497, 1.959) 0.118 (0.012, 0.298) 0.008 (-0.003, 0.031) 
Yellow-olive Flycatcher 0.689 (0.361, 1.105) 0.063 (0.012, 0.148) 0.05 (0.003, 0.132) 
Yellow-throated Euphonia 0.564 (0.108, 1.46) 0.009 (-0.004, 0.038) 0.005 (-0.009, 0.03) 

 
  



 144 

Table S3.10: The difference in abundance of individuals performing each behavior between 

privately-owned and protected forest for each species, with 90% Bayesian credible intervals 

(BCIs). Positive values indicate a higher abundance in protected forest, and negative values 

indicate a higher abundance in privately-owned forest. 

 

Species 

Difference in # individuals 
reproductive between 

protected and private forest 

Difference in # 
individuals eating 

between protected and 
private forest 

Difference in # individuals 
passive between protected 

and private forest 
Brown-crested Flycatcher 0.007 (-0.841, 0.865) 0.005 (-0.099, 0.13) -0.012 (-0.061, 0.029) 
Lesson’s Motmot 0.034 (-0.627, 0.706) -0.016 (-0.099, 0.054) -0.017 (-0.077, 0.016) 
Black-headed Trogon 0.167 (-2.052, 2.514) 0 (-0.117, 0.121) -0.166 (-0.65, 0.204) 
Banded Wren 0.131 (-0.866, 1.17) -0.013 (-0.119, 0.095) -0.117 (-0.29, 0.009) 
Fork-tailed Emerald 0.009 (-0.168, 0.191) -0.002 (-0.059, 0.058) -0.008 (-0.093, 0.072) 
Clay-coloured Thrush 0.056 (-0.149, 0.284) 0.025 (-0.026, 0.098) -0.082 (-0.361, 0.166) 
Collared Aracari -0.06 (-0.599, 0.446) -0.002 (-0.083, 0.077) 0.065 (-0.122, 0.346) 
Common Ground-dove 0.038 (-0.6, 0.724) -0.008 (-0.124, 0.111) -0.028 (-0.1, 0.02) 
Elegant Trogon 0.019 (-0.834, 0.882) -0.002 (-0.083, 0.081) -0.016 (-0.071, 0.019) 
Ferruginous Pygmy-owl 0.014 (-0.383, 0.419) -0.002 (-0.041, 0.035) -0.011 (-0.059, 0.015) 
Groove-billed Ani -0.058 (-0.811, 0.653) 0.04 (-0.072, 0.204) 0.017 (-0.117, 0.18) 
Green Kingfisher 0.029 (-0.3, 0.366) -0.003 (-0.042, 0.034) -0.026 (-0.122, 0.034) 
Great Kiskadee -0.021 (-2.141, 2.1) 0.001 (-0.145, 0.161) 0.017 (-0.06, 0.129) 
Grey-headed Tanager 0.042 (-0.27, 0.389) -0.004 (-0.031, 0.016) -0.036 (-0.402, 0.306) 
Hoffmann's Woodpecker 0.16 (-2.743, 3.128) -0.134 (-0.509, 0.182) -0.026 (-0.144, 0.08) 
Inca Dove 0.022 (-2.227, 2.312) 0.013 (-0.204, 0.266) -0.036 (-0.297, 0.227) 
Lesser Greenlet 0.101 (-0.887, 1.155) -0.081 (-0.315, 0.119) -0.019 (-0.076, 0.022) 
Lesser Ground-cuckoo 0.008 (-0.345, 0.362) -0.003 (-0.038, 0.031) -0.004 (-0.031, 0.019) 
Stripe-throated Hermit 0.183 (-0.384, 0.918) 0.033 (-0.07, 0.168) -0.215 (-0.998, 0.436) 
Long-tailed Manakin 0.041 (-0.723, 0.836) -0.001 (-0.098, 0.097) -0.041 (-0.712, 0.622) 
Nutting's Flycatcher 0.005 (-0.685, 0.681) -0.008 (-0.065, 0.048) 0.002 (-0.034, 0.048) 
Rufous-and-white Wren 0.048 (-0.541, 0.661) -0.016 (-0.101, 0.059) -0.031 (-0.13, 0.04) 
Red-billed Pigeon 0.089 (-0.165, 0.417) 0.003 (-0.014, 0.03) -0.092 (-0.314, 0.069) 
Red-legged Honeycreeper 0.052 (-0.798, 0.906) -0.036 (-0.169, 0.061) -0.017 (-0.082, 0.028) 
Rufous-naped Wren 0.144 (-1.5, 1.793) -0.025 (-0.269, 0.243) -0.116 (-0.294, 0.003) 
Roadside Hawk 0.006 (-0.315, 0.315) -0.002 (-0.046, 0.045) -0.004 (-0.027, 0.013) 
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Rose-throated Becard 0.048 (-1.268, 1.36) -0.037 (-0.185, 0.087) -0.01 (-0.055, 0.023) 
Rufous-tailed 
Hummingbird 0.013 (-0.325, 0.385) 0.013 (-0.051, 0.095) -0.027 (-0.458, 0.387) 
Ruddy Woodcreeper 0.009 (-0.434, 0.47) -0.006 (-0.047, 0.031) -0.002 (-0.044, 0.041) 
Sulphur-bellied 
Flycatcher 0.027 (-0.785, 0.883) -0.009 (-0.076, 0.055) -0.017 (-0.077, 0.028) 
Scrub Euphonia 0.044 (-1.459, 1.556) -0.027 (-0.145, 0.074) -0.015 (-0.074, 0.029) 
Social Flycatcher 0.018 (-0.646, 0.698) -0.012 (-0.093, 0.06) -0.006 (-0.033, 0.013) 
Streaked Flycatcher 0.043 (-1.405, 1.597) -0.031 (-0.159, 0.084) -0.011 (-0.06, 0.021) 
Steely-vented 
Hummingbird -0.01 (-0.405, 0.378) 0.009 (-0.078, 0.11) 0.001 (-0.221, 0.23) 
Turquoise-browed 
Motmot 0.045 (-1.468, 1.596) -0.006 (-0.251, 0.236) -0.039 (-0.154, 0.051) 
White-collared Seedeater 0.015 (-0.193, 0.235) 0.007 (-0.022, 0.049) -0.024 (-0.114, 0.046) 
White-tipped Dove -0.211 (-2.767, 2.243) 0.351 (-0.406, 1.326) -0.133 (-0.53, 0.182) 
White-winged Dove -0.201 (-0.665, 0.143) -0.024 (-0.08, 0.009) 0.226 (-0.341, 0.931) 
Yellow-green Vireo 0.095 (-1.074, 1.297) -0.086 (-0.28, 0.057) -0.01 (-0.044, 0.016) 
Yellow-olive Flycatcher 0.061 (-0.652, 0.769) -0.02 (-0.114, 0.072) -0.04 (-0.124, 0.022) 
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Table S3.11: Table describes how species’ singing and calling behaviors were categorized. 

‘Singing reproductive territory defense’ indicates whether or not singing represents a 

reproductive activity (e.g. attracting mates) or reproductive territory defense (Y=Yes, N=No, 

M=Maybe). ‘Calling reproductive’ indicates whether or not calling represents a reproductive 

activity (e.g. attracting mates; Y=Yes, N=No, M=Maybe, NA=Not applicable as calling not in 

dataset). ‘Calling Territory Defense’ indicates whether or not calling represents a reproductive 

territory defense (Y=Yes, N=No, M=Maybe, NA=Not applicable as calling not in dataset). We 

excluded species with “Maybe” categorizations from the analysis. 

 

Common name Scientific name 

Singing 
Reproductive 

Territory 
Defense 

Calling 
Reproductive 

Calling 
Territory 
Defense 

Red-winged Blackbird Agelaius phoeniceus Y Y Y 
Stripe-headed Sparrow Aimophila ruficauda Y Y Y 
Steely-vented 
Hummingbird Amazilia saucerrottei Y N N 

Rufous-tailed 
Hummingbird Amazilia tzacatl Y N Y 

Roadside Hawk Buteo magnirostris Y NA NA 

Rufous-naped Wren Campylorhynchus 
rufinucha Y NA NA 

Crested Caracara Caracara cheriway Y N N 
Long-tailed Manakin Chiroxiphia linearis Y N N 

Green Kingfisher Chloroceryle 
americana Y NA NA 

Fork-tailed Emerald Chlorostilbon canivetii Y N N 
Crested Bobwhite Colinus cristatus Y N N 
Inca Dove Columbina inca Y NA NA 
Common Ground-dove Columbina passerina Y NA NA 
Ruddy Ground-dove Columbina talpacoti Y NA NA 
Black Vulture Coragyps atratus NA NA NA 

Groove-billed Ani Crotophaga 
sulcirostris Y NA NA 

Red-legged Honeycreeper Cyanerpes cyaneus Y NA NA 
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Ruddy Woodcreeper Dendrocincla 
homochroa Y Y Y 

Grey-headed Tanager Eucometis penicillata Y N N 
Turquoise-browed 
Motmot 

Eumomota 
superciliosa Y Y Y 

Scrub Euphonia Euphonia affinis Y Y Y 

Yellow-throated Euphonia Euphonia 
hirundinacea Y NA NA 

Ferruginous Pygmy-owl Glaucidium 
brasilianum Y Y Y 

Plain-capped Starthroat Heliomaster constantii Y N N 
Lesser Greenlet Hylophilus decurtatus Y NA NA 
Streak-backed Oriole Icterus pustulatus Y Y Y 
White-tipped Dove Leptotila verreauxi Y NA NA 
Boat-billed Flycatcher Megarynchus pitangua Y NA NA 

Hoffmann's Woodpecker Melanerpes 
hoffmannii Y NA NA 

Lesson’s Motmot Momotus lessonii Y N Y 

Lesser Ground-cuckoo Morococcyx 
erythropygus Y Y Y 

Nutting's Flycatcher Myiarchus nuttingi Y Y Y 
Brown-crested Flycatcher Myiarchus tyrannulus Y NA NA 
Sulphur-bellied 
Flycatcher 

Myiodynastes 
luteiventris Y NA NA 

Streaked Flycatcher Myiodynastes 
maculatus Y NA NA 

Social Flycatcher Myiozetetes similis Y NA NA 
Rose-throated Becard Pachyramphus aglaiae Y NA NA 
Blue Grosbeak Passerina caerulea Y N N 

Red-billed Pigeon Patagioenas 
flavirostris Y NA NA 

Stripe-throated Hermit Phaethornis 
striigularis Y N N 

Great Kiskadee Pitangus sulphuratus Y NA NA 
Collared Aracari Pteroglossus torquatus Y NA NA 
Great-tailed Grackle Quiscalus mexicanus Y N N 
White-collared Seedeater Sporophila torqueola Y N N 

Banded Wren Thryothorus 
pleurostictus Y N N 

Rufous-and-white Wren Thryothorus rufalbus Y N N 
Masked Tityra Tityra semifasciata Y NA NA 
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Yellow-olive Flycatcher Tolmomyias 
sulphurescens Y Y Y 

Elegant Trogon Trogon elegans Y Y Y 

Black-headed Trogon Trogon 
melanocephalus Y N N 

Clay-coloured Thrush Turdus grayi Y M M 

Tropical Kingbird Tyrannus 
melancholicus Y NA NA 

Yellow-green Vireo Vireo flavoviridis Y Y Y 
Blue-black Grassquit Volatinia jacarina Y N N 
White-winged Dove Zenaida asiatica Y NA NA 

 
 

 
Figure S3.1: Map of 25 study sites, with private land and protected areas denoted by color.  
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Figure S3.2: Effect of local forest cover on the abundance of each species, as well as the 

community mean effect. 90% Bayesian credible intervals (BCIs) are shown for each species, and 

the 95% BCI is shown for the community mean. Blue lines indicate BCIs that do not overlap zero. 

 

 
Figure S3.3: Effect of protected forest (versus privately-owned forest) on the abundance of each 

species, as well as the community mean effect. 90% Bayesian credible intervals (BCIs) are shown 

for each species, and the 95% BCI is shown for the community mean. Blue lines indicate BCIs 

that do not overlap zero. 
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Figure S3.4: Difference in probability of each behavior between forest and agriculture for each 

species with 90% Bayesian credible intervals (BCIs). Positive values indicate a higher probability 
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in forest, and negative values indicate a higher probability in agriculture. Blue lines indicate BCIs 

that do not overlap zero. 
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Figure S3.5: Difference in probability of each behavior between privately-owned and protected 

forest for each species with 90% Bayesian credible intervals (BCIs). Positive values indicate a 
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higher probability in protected forest, and negative values indicate a higher probability in 

privately-owned forest. Blue lines indicate BCIs that do not overlap zero. 
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Figure S3.6: Difference in numbers of individuals performing each behavior between forest and 

agriculture for each species with the 90% percentile interval of the simulated posterior. Positive 
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values indicate a higher number in forest, and negative values indicate a higher number in 

agriculture. Blue lines indicate intervals that do not overlap zero. 
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Figure S3.7: Difference in numbers of individuals performing each behavior between privately-

owned and protected forest for each species with the 90% percentile interval of the simulated 

posterior. Positive values indicate a higher number in protected forest, and negative values indicate 

a higher number in privately-owned forest. Blue lines indicate intervals that do not overlap zero. 
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Figures S3.8-3.10: Relationship between the effect of protection status on species’ abundance and 

the predicted difference in species’ probabilities of performing reproductive behaviors between 

protected and privately-owned forest. Grey lines indicate 90% Bayesian credible intervals. Positive 
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values on the y-axis represent a higher probability of performing reproductive behaviors in 

protected forest than privately-owned forest. Colors represent whether species were classified as 

habitat generalists (black), or inconsistent responses (red), which preferentially exhibited 

reproductive behaviors in one habitat but did not significantly increase in abundance in that habitat. 
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Abstract 

Most studies comparing biodiversity between natural and human-modified landscapes 

focus on patterns in species occurrence or abundance, but do not consider how different habitat 

types meet species’ breeding requirements. Organisms that use or nest in tree cavities may be 

especially threatened by habitat conversion due to the loss of their nesting sites. Although cavity-

nesting bird diversity is highest in the tropics, little is known about how tropical birds use cavities, 

how agriculture affects their reproductive biology, and how effective nest boxes could be as a 

conservation strategy in tropical agriculture. Here, we explored how habitat conversion from 

tropical forests to pasture affects the abundance, nesting habitat availability, and nest success of 

cavity-nesting birds in Northwest Ecuador. We conducted bird surveys and measured natural 

cavity availability and use in forest and agriculture. We also added artificial nest boxes to forest 

and agriculture to see if cavity limitation in agriculture would elicit higher use of artificial nest 

boxes than in forest. We found evidence of cavity limitation in agriculture – there were many more 

natural cavities in forest than in agriculture, as well as more avian use of nest boxes placed in 

agriculture as compared to forest. Our results suggest that it is important to retain remnant trees in 

tropical agriculture to provide critical nesting habitat for birds. In addition, adding nest boxes to 
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tropical agricultural systems could be a good conservation strategy for certain species, including 

insectivores that could provide pest control services to farmers.  

 

Introduction 

Habitat conversion is the primary driver of modern terrestrial biodiversity loss (Newbold 

et al. 2015), causing local extinctions by decreasing population sizes, increasing population 

isolation, and, in turn, increasing the influence of stochastic events (Wiens 1992, Brooks et al. 

2002). Understanding how to conserve biodiversity in human-modified landscapes is therefore 

critical to mitigating the ongoing biodiversity crisis (Kremen & Merenlender 2018). To date, most 

studies comparing biodiversity between natural and human-modified landscapes focus on patterns 

in species occurrence or abundance (e.g., Sekercioglu et al. 2007, Newbold et al. 2013). However, 

even if species are present, agricultural habitats may still not support sufficient reproductive rates 

to allow populations to persist. For example, observing the presence of species in agriculture may 

not be sufficient to classify its importance if highly mobile organisms regularly move through 

agricultural systems but still rely on nearby natural habitats to complete their lifecycles and/or 

reproduce (Frishkoff et al. 2019). In addition, species in agricultural landscapes may be subject to 

source-sink dynamics (Pulliam 1988) and/or ecological traps (Gates & Gysel 1978), in which 

animals are regularly found in suboptimal habitats and then suffer lower population-level fitness. 

One component of fitness that is important for maintaining populations is reproductive success. 

Failing to understand species’ breeding requirements, and the degree to which these requirements 

can be met in different habitat types, may thus draw focus away from optimal habitats and cause 

conservation practitioners to protect areas that cannot support populations over the long term. 
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 A major consequence of habitat conversion to agriculture is deforestation, which may make 

organisms that use or nest in tree cavities especially threatened due to the loss of their nesting sites. 

These organisms include many mammal species (e.g., bats, squirrels, mice; Czeszczewik et al. 

2008), as well as cavity-nesting birds, which depend on tree cavities to breed and roost (Martin & 

Eadie 1999). Worldwide, 26% of land bird species nest or roost in tree cavities (Newton 1998). 

Researchers have found that these species tend to decline in areas where humans remove cavities, 

for example, in forests that are selectively logged (Engblom et al. 2002, Cockle et al. 2010). 

Human disturbances may also increase nest predator abundances, facilitating increased predation 

pressure and lowering nesting success (Robinson et al. 1995).  

 Most of our knowledge concerning how habitat conversion affects cavity-nesting birds 

comes from studies in temperate landscapes (Cornelius et al. 2008). However, like other taxa, 

cavity-nesting bird diversity is highest in the tropics, and it peaks in the Neotropics, where 678 

cavity-nesting bird species occur (Hoek et al. 2017). Though tropical species are generally thought 

to be more sensitive than temperate species to habitat conversion (Newbold et al. 2020), a general 

lack of knowledge surrounding their ecology, nesting preferences, and reactions to human 

disturbances impedes efforts to conserve tropical cavity-nesting birds (Cornelius et al. 2008). 

In temperate landscapes, artificial nest boxes are used extensively as a conservation tool to 

increase cavity availability for a wide range of species (e.g., birds, bats, and non-volant mammals; 

(Ardia et al. 2006, Czeszczewik et al. 2008, Rueegger 2016). Such efforts have enjoyed varying 

degrees of nest box use depending on the study region and attributes of the nest boxes. For 

example, Lindenmayer et al. (2009) found that nest boxes that were higher and on steeper slopes 

had higher occupancy by arboreal marsupials in southeastern Australia, north-facing boxes were 

adopted the fastest, but there was no effect of nest box dimensions on occupancy. On the other 
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hand, Goldingay et al. (2015) found that native birds very rarely used nest boxes in eastern 

Australia. However, in tropical regions, while there are some studies evaluating whether nest boxes 

could be used for particular species (e.g., Scarlet Macaw, Ara macao; Olah et al. 2014), very few 

have evaluated whether the reproduction of cavity-nesters is limited by nesting habitat in 

agricultural landscapes (Fimbel et al. 2001), let alone whether nest boxes could be used to bolster 

their abundances. To our knowledge, no nest box experiments have occurred in tropical pastures, 

which make up a large percentage of Earth’s land surface and are a leading cause of tropical habitat 

loss worldwide (Curtis et al. 2018, Pendrill et al. 2022). 

Here, we conducted an observational study and nest box addition experiment to explore 

how habitat conversion from tropical forests to pasture affects the abundance, nesting habitat 

availability, and nest success of cavity-nesting birds in Northwest Ecuador. First, we conducted 

observational surveys to understand how cavity-nesting bird abundances compare between forest 

and pastures. We hypothesized that, due to a lack of large trees, there would be lower cavity-

nesting bird abundances, lower cavity availability, and higher cavity occupancy rates in agriculture 

than in forest. Then, we conducted an experiment, adding artificial nest boxes to forest and pastures 

to understand how artificial nest box use and nest success compare between forest and pastures. 

We hypothesized that cavity limitation in pastures would elicit higher use of artificial nest boxes 

compared to forests (Cockle et al., 2010), but that the nest boxes in pastures will experience lower 

success due to higher predation levels in more open areas (Andren & Angelstam 1988). We also 

predicted that nest boxes in pastures would not be used by species of conservation concern in the 

Neotropics, as rarer, range-restricted species are often disproportionately sensitive to land-use 

change (Cockle et al. 2010, Sykes et al. 2020). 
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Methods 

Study sites 

We studied cavity-nesting bird communities in Northwest Ecuador, around the Mache-

Chindul Ecological Reserve (0◦ 470N, 79◦ 780W; elevation 390-510 m in our study site) in the 

Esmeraldas Province (Figure 14). The area has been delineated as a BirdLife International 

“Important Bird Area” (“BirdLife Data Zone” 2019) within the Chocó biogeographic zone, 

characterized by high biodiversity and severe rates of deforestation (Sierra 1999, Orme et al. 

2005). The Mache-Chindul Ecological Reserve was created in 1996 and consists of pristine and 

secondary forest fragments with agricultural lands, and it has experienced rapid agricultural 

expansion in the last 50 years. About 6500 people live in the reserve, typically on farms of 20-50 

ha with agriculture including cacao, pasture for cattle, corn, beans, rice, plantain, and oil palm 

(Carrasco et al. 2013). Dominant forest types include humid evergreen and sub-humid evergreen 

forests, with canopy heights in primary forest spanning 30-40 m. Average monthly temperatures 

range from 26 to 28°C, and total annual precipitation ranges from 2 to 3.5 m in the region with the 

majority of the rainfall occurring between January and May. To study bird communities and cavity 

limitation, we identified fourteen 0.5-ha plots (100 m x 50 m), half within forest and half in 

agriculture, consisting mostly of pasture but also with occasional cacao or plantain plants. All plots 

were separated by at least 150 m (mean distance between plots: 178 m). 

 

Bird surveys 

To survey bird communities, FC and LC conducted 10-minute point counts during in 

February 2020, July 2020, May 2021, and July 2021 at five agriculture sites and five forest sites 

(Figure 14). There are two peaks of breeding activities in our region, from February to May and 
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October to November (Carrasco et al. 2013). During surveys, we recorded all birds seen or heard 

within 50 m from a stationary observer. Within each of the four survey periods, each site was 

sampled three times over the course of a week to estimate bird abundances while accounting for 

imperfect detection (see N-mixture modeling section below). Point counts took place between 

6:00 and 11:30am (with 97% taking place between 6:00 and 10:00am). We recorded the survey 

time, wind conditions (qualitative 0-3 scale), and fog conditions (qualitative 0-3 scale) to help 

account for variation in detection probabilities between species, conditions, and habitats. No 

surveys were conducted in the rain. Finally, we used existing databases to identify cavity-nesting 

species (e.g., del Hoyo 2015).  

 

Modelling bird communities 

To estimate the abundance of each bird species at each site, we implemented an N-mixture 

model, where the number of individuals is counted during spatially and temporally replicated 

surveys to estimate abundance while accounting for imperfect detection (Royle 2004, Kéry 2018). 

We combined an N-mixture model with a community modeling framework where species-specific 

parameters are estimated using community-wide hyperparameters, allowing us to share 

information among species in the community and estimate parameters of rarer species (Dorazio & 

Royle 2005, Kéry & Royle 2015).   

The number of individuals of species (i) at site (j) was modeled using a Poisson 

distribution; specifically, the expected abundance 𝜆!,# was modelled as: 

log5𝜆!,#6 = 𝛼0! + 𝛼1! ∗ LU6 + 	𝛼2 ∗ cavityC + 	𝛼3 ∗ cavityC ∗ LU6 + 	δ0# 	+ 	δ1;<=>[*D9E+F[#]] 

where “LU” is a binary variable representing either forest (1) or agriculture (0), and “cavity” is a 

binary variable where 1 indicates that the species nests in cavities. 𝛼0 and 𝛼1 were estimated for 
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each species, and 𝛼2 was a fixed effect representing the interaction between cavity-nesting species 

and land-use type. The δ terms represent random effects that were included to account for spatial 

and temporal autocorrelation in bird abundances, explaining variation among point-count locations 

(δ0) and years (δ1).  

We modeled the detection probability of an individual of species (i) at site (j), visit (k), and 

point count survey (l), where survey represents surveys in February 2020, July 2020, May 2021, 

or July 2021, (𝑃!,#,$,G) as:  

logit5𝑃!,#,$,G6 = 𝛾0&'[#] +	γ1! + γ2 ∗ time#,$,G + 	γ3 ∗ wind#,$,G + 	γ4 ∗ fog#,$,G +	γ5! ∗ date#,$,G		

+	γ6! ∗ date_sq#,$,G	 

where “time” represents time of day, “wind” is the level of wind from 0-3, “fog” is the level of fog 

from 0-3, and “date” is the Julian day of the year. All variables, including the 0-3 scales, were 

scaled and centered prior to analysis. 𝛾0 is a land-use specific intercept (for forest versus 

agriculture), γ1 is a species intercept, and γ3 and γ4 are fixed effects for wind and fog, 

respectively, because we believed that wind and fog would have a consistent negative effect on 

the detectability of all species. γ5 and γ6 are species-specific slopes for date and date squared, as 

each species’ activity (and thus detectability) could peak at different times of the year. 

We implemented the model in R Version 4.0.0 using the package R2jags, which runs 

Markov chain Monte Carlo (MCMC) algorithms (Su & Yajima 2012, Team 2013). We ran three 

chains starting at random initial values and 50,000 burn-in iterations. We included 50,000 post 

burn-in iterations thinned at a rate of 50. We considered the chains to converge if the Gelman-

Rubin statistics of the chains of every parameter were ≤1.1 (Gelman et al. 2004). 

We expected the bird community on average to be positively associated with forest habitat 

(i.e., 𝛼1>0); and we determined if cavity nesting birds had a stronger positive association with 
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forest than non cavity nesting birds by assessing whether 𝛼2 was positive and if its 95% Bayesian 

Credible Interval (BCI) did not include 0. We also determined if each species had a significant 

relationship with land-use by assessing whether the 90% BCI for the species slope (𝛼3) crossed 

zero. We used a 90% BCI for species-level analyses because each parameter is estimated with 

fewer data than the community means, and 90% BCIs are recommended when effective sample 

sizes are lower (Kruschke 2014, McElreath 2020).  

 

Natural cavity availability and use 

In 2019, we searched each tree within four of the agricultural and four of the forest plots 

(Figure 14) for natural cavities (entrance hole diameter >2 cm, >2.5 m high) by scanning each tree 

using binoculars (Cockle et al. 2010). We noted the height and orientation of each cavity, as well 

as the tree’s height (using a hypsometer) and diameter at breast height (DBH). To test whether 

natural cavity counts differed between land-use types, we conducted a Welch’s two-sample t-test 

between the number of natural cavities found in agriculture versus forest sites.  

We also quantified natural cavity use in each plot. Specifically, from September 2019 to 

April 2020, we conducted weekly observations of each natural cavity for 15 minutes, noting any 

cavity-nesting bird activity observed. We considered cavity-nesting bird activity to be when a bird 

was observed inside, perching at the entrance, or excavating a cavity. This resulted in 19 

observation periods per cavity and 980 observation periods total (multiple cavities were often 

visible simultaneously so they could be observed in the same 15-minute period). To test whether 

natural cavity activity differed between land-use types, we calculated the total number of bird 

activity events observed per natural cavity (across all visits to a given plot) and then conducted a 

Welch’s two-sample t-test to compare cavity activity in forest versus agriculture. 
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Nest box addition experiment 

To quantify use of and fledging success from artificial nest boxes, we constructed and 

placed ten nest boxes in each of the five agricultural and five forest plots (100 nest boxes total; 

Figure 14). Specifically, we placed nest boxes on trees in six of the plots in September 2019 and 

the remaining four plots several months later (February 2020). Boxes were located 10-20 m apart 

within a plot and 5 m off the ground, facing SW to minimize sun exposure. Half of the nest boxes 

in each plot were small (12-cm width x 12-cm depth x 24-cm height, with a 4-cm diameter entrance 

hole), and the other half were large (18-cm width x 18-cm depth x 38-cm height, with a 10-cm 

diameter entrance hole). Because nest box studies are rare in tropical ecosystems and we wanted 

to cater to a wide variety of species, nest box sizes were based on standard dimensions for attracting 

Western Bluebirds (Sialia mexicana) (Jedlicka et al. 2011) and then ~1.5x those dimensions to 

attract larger species. We put 5 cm of sawdust in each nest box to imitate the conditions of natural 

cavities. We replaced 31 nest boxes throughout the study period when the boxes decayed or fell. 

Nest boxes were monitored on a weekly basis from September 2019 to June 2022 (i.e., 2.5 

years), resulting in 10,837 nest box visits. We used a telescoping pole with an endoscope to observe 

active nests and quantify the proportions of eggs that hatch, chicks that fledge, and nestlings/eggs 

predated. We noted any new activity from birds or mammals, defining new activity as evidence of 

new materials in a nest box that was inactive for several weeks or a different material than what 

was present from the previous species occupying the box. Bird nesting materials were often sticks, 

bark, and leaves; mammal nesting materials were often leaves (opossum) and dried grasses 

(squirrel). We considered an activity to be an avian nesting attempt if any eggs were laid. 
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To quantify how land-use type and nest box size affect nest box activity, we implemented 

a Poisson mixed effects model with a log link, with the response variable as the total number of 

bird activity events at each box across the 2.5-year period (including nesting attempts). 

Explanatory variables included land-use type (binary) and nest box size (large or small; binary), 

as well as the interaction between land-use and nest box size. We also included a random effect of 

‘site’ to account for both spatial autocorrelation (i.e., multiple nest boxes at the same site) and the 

fact that some sites had nest boxes active for slightly longer than others (i.e., 28 vs. 33 months). 

We then repeated this analysis using mammal activity events. The interaction between land-use 

type and nest box size was not included in the model of mammalian activity so that the model 

could be identifiable. Finally, to understand how land-use type affected nest success, we 

implemented a binomial mixed-effects model with the same explanatory variables and a binary 

response variable, indicating whether or not at least one chick fledged during each avian nesting 

attempt. 

 

Results 

Bird abundances across land-use types 

Across 120 point counts, we detected 1093 individuals and 111 species, 26 (23.4%) of 

which are known to nest in cavities (Table S4.1). Out of 4440 abundance estimates (N), 38 did not 

converge (3%; all had R-hat ≤ 1.25, 88% of which had R-hat < 1.2), 𝛾0&'[H] had an R-hat of 1.12, 

and all other parameters converged, including the core parameters among our log linear predictors. 

The 95% BCI for the community mean effect of land use on abundance was negative but crossed 

zero (Figure 15), meaning that, on average, species were not more abundant in agriculture or 

forests. Eight cavity-nesters were more abundant in agriculture (House Wren; Troglodytes aedon, 
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Dusky-capped Flycatcher; Myiarchus tuberculifer, Pacific Parrotlet; Forpus coelestis; Social 

Flycatcher; Myiozetetes similis; Red-bellied Macaw; Orthopsittaca manilatus, Red-billed 

Scythebill; Campylorhamphus trochilirostris; Masked Tityra, Tityra semifasciata; Bronze-winged 

Parrot, Pionus chalcopterus) whereas one cavity-nester was more abundant in forest (Collared 

Aracari; Pteroglossus torquatus). There was no significant interaction between being a cavity-

nesting species and the effect of land-use on abundance (effect size -0.10, 95% BCI [-1.39, 1.21]), 

suggesting that cavity-nesting species did not differ from non-cavity nesting species in their 

response to land use.  

 

Natural cavity availability and use 

As expected, there were significantly more natural cavities in forest than agriculture (mean 

34 cavities/ha versus 7.25/ha; t = -5.85, p-value = 0.0014; Figure 16). The mean cavity height in 

forest and agriculture were similar (13.8 [range 3-43 m] and 13.9 m [range 4-34 m], respectively) 

and natural cavities did not tend to be oriented in any cardinal direction (Figure S4.1). Mean DBH 

of trees with cavities in forest and agriculture were 42.9 cm (range 7-200 cm) and 33.7 cm (range 

10-63 cm) respectively, and mean tree height for forest and agriculture cavities were 22.0 m (range 

3-46 m) and 21.6 m (range 6-35 m) respectively. Across the nearly 1000 observation periods, we 

observed surprisingly low bird activity around natural cavities, with only seven instances of birds 

inside cavities in agriculture and two in forest (Table 6). Five of the seven observations of a bird 

inside a cavity in agriculture were of the Collared Aracari using the same cavity, while there was 

one observation of the Collared Aracari inside a cavity in forest. Other species observed inside 

natural cavities included Golden-olive Woodpecker (Colaptes rubiginosus; in forest and 

agriculture), Blue-and-white Swallow (Notiochelidon cyanoleuca; in agriculture), Black-cheeked 
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Woodpecker (Melanerpes pucherani; in forest and agriculture), and Olivaceous Woodcreeper 

(Sittasomus griseicapillus; in forest). This low rate of observation precluded a statistical 

comparison of cavity activity rates between forest versus agriculture. 

 

Nest box addition experiment 

Avian activity and nesting attempts (i.e., where an egg was laid) were much more common 

in experimentally placed nest boxes within agriculture compared to forest. There were 109 total 

avian activity events in agriculture from 8 species and 5 in forest from 2 species. Of those activity 

events, there were 52 nesting attempts in agriculture and 5 in forest. Correspondingly, our Poisson 

model indicated agriculture had significantly more avian activity events in boxes than forest 

(Figure 17, Table S4.2). Smaller nest boxes also had significantly more avian activity events than 

large boxes, and a significant negative interaction was found between habitat and nest box size, 

such that difference in avian activity between forest and agriculture was greater for small nest 

boxes (Figure 17, Table S4.2). Ten nest boxes were occupied by wasps and bees, half in agriculture 

and half in forest. 

Seven bird species laid eggs in nest boxes (six in agriculture and two in forest; Table 7). 

Five nesting attempts could not be attributed to a particular species because eggs disappeared 

before we could ascertain the species (all in agriculture). No species that used the nest boxes were 

of conservation concern based on the IUCN red list classification. On average, avian nest success 

(i.e., successfully fledging at least one young) was 0.44 in agriculture (out of 52 nesting attempts) 

and 0.2 in forest (out of 5 nesting attempts). Out of the 57 total nesting attempts, we presumed that 

13 nests had eggs predated and 12 nests had chicks predated because the eggs or chicks disappeared 

before an appropriate fledging age when chicks develop feathers. In our binomial model, neither 
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box size nor habitat had a significant effect on nest success, likely due to the low number of nesting 

attempts in forest (Table S4.2). 

Unlike birds, mammal activity in experimentally placed nest boxes was more common in 

forest than in agriculture. In agriculture, there was one instance of mammal activity within a nest 

box (the brown four-eyed possum; Metachirus nudicaudatus) versus 28 instances in forest (i.e., 

22 brown four-eyed possum and 6 red-tailed squirrel (Sciurus granatensis) activity events across 

all sites; Table 7). As such, Poisson models indicated that mammal activity was significantly 

higher in forest than agriculture, but no effects of nest box size were observed (Table S4.2).  

 

Discussion 

To our knowledge, this was the first nest box addition experiment conducted in tropical 

pastures to determine if cavity-nesting birds experience cavity limitation in tropical forest versus 

agriculture. We found that bird abundance, including cavity-nester abundance, was not 

significantly higher in forests than in agriculture. There were many more natural cavities in forest 

than in agriculture and much more avian activity and nesting in nest boxes placed in agriculture 

compared to forest, suggesting that birds might be limited by cavities in agriculture. Finally, we 

observed very little natural cavity activity in either habitat, and there were very few bird nesting 

attempts in forest, making it difficult to compare nest success between habitats. 

 

Trends in bird abundance  

On average, birds were not more abundant in forests than agriculture. Cavity-nesting 

species were also not more abundant in either habitat, even though natural nest site availability 

was low in agriculture. One possible explanation is that agriculture may act as a sink habitat, 
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drawing animals out from better habitat but not enabling sufficient reproduction for populations to 

persist in the absence of continued immigration (Gilroy & Edwards 2017). If agriculture is a sink 

habitat, then biologists may be overestimating the ability of cavity-nesting birds to persist in 

agricultural landscapes and there could be unexpected crashes in cavity-nesting bird populations 

if forest loss reaches a certain threshold (Delibes et al. 2001). However, we found higher nesting 

success in agriculture than in forest (though there were few observations in forest), which does not 

support this hypothesis. Alternatively, the high rates of bird abundances in agriculture may be 

explained by birds simply moving through agricultural systems and/or using multiple habitats to 

complete their life cycles, for example, foraging in agriculture and reproducing in forest (Frishkoff 

et al. 2019). This could mean that agriculture already provides certain key resources such as food 

and increasing nesting habitat would further increase the usage of agriculture by birds. Looking 

forward, behavioral analyses could be used to identify the habitats that species preferentially move 

through, forage in, and reproduce in (Ke et al. 2022), allowing us to understand how reliant species 

are on forest for populations to persist.  

Of the species we observed, 23.4% of them are known to nest in cavities, which is high 

compared to the percentage of cavity-nesting birds globally (ranging from 10.9% to 19.5% 

depending on the global realm) (Hoek et al. 2017). Eight cavity-nesting species were more 

abundant in agriculture, which all have “Least Concern” conservation status from IUCN and are 

mostly species with wide global distributions. House Wrens had the most nesting attempts within 

nest boxes in agriculture (60% of the attempts in agriculture, no nesting attempts in forest), and 

are also known to readily use nest boxes in agriculture in temperate regions (Baldwin & Bowen 

1928, Willner et al. 1983). Dusky-capped Flycatchers and Pacific Parrotlets each nested once in 

agriculture, and both have been previously documented using nest boxes (Bock et al. 1992, Collar 
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et al. 2020). On the other hand, Collared Aracaris were significantly more abundant in forest, 

though they were observed using natural cavities in both forest and agriculture. 

 

Natural cavities: density and frequency of use  

We found over four times the density of natural cavities in forest than in agriculture. If 

anything, this is likely a significant underestimate of the difference between habitat types because 

it is difficult to find cavities that are high in the canopy and/or in dense foliage (Koch 2008). For 

example, Cockle et al. (2010) recorded over nine times the density of suitable cavities (at least 13 

cm deep and 2.5 m high) in primary forest compared to logged forest in the Atlantic forest of 

Argentina. They also found that cavities were much more likely to be in large trees (>100 cm 

DBH). We did not find significant differences in the tree height, cavity height, DBH, or orientation 

of cavities in forest versus agriculture; however, our estimates could be biased if we tended to 

overlook cavities high up in forest canopies.  

Within the natural cavities that we did observe, bird activity tended to be quite low. Many 

of these cavities may not have been suitable for birds. Cavities that are too low in the canopy might 

be subject to higher predation risk and thus avoided (Nilsson 1984). Additionally, cavities must 

also be large enough to satisfy species’ needs. For example, Cockle et al. (2010) found that, among 

86 cavities found through ground surveys, only 19% of them exceeded minimal size requirements 

for birds (at least 13 cm deep and 2.5 m high), and birds only occupied 25% of those suitable 

cavities. Similarly, Lima and Garcia (2016) found that birds occupied 26% of natural cavities in 

Mexico. Our natural cavity occupancy rate was even lower (6.6% with observations of a bird at 

the entrance or inside) and thus more similar to values reported from the Peruvian Amazon forest 

(2%; Brightsmith, 2005). This low activity rate made it challenging to get a good sample size to 
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understand cavity occupancy. Overall, it seems that occupancy rates in tropical forests may be 

much lower than in northern temperate forests (e.g., 67% in Ingold and Ingold (1984); 57% in 

Peterson and Gauthier (1985)).  

 

Nest boxes occupancy and reproductive success 

 Nest boxes were used much more often by birds in agriculture and by mammals in forest. 

Mammals were likely not outcompeting birds in forest nest boxes because overall nest box 

occupancy in forest was relatively low (32 out of 100 nest boxes had activity). Prior studies have 

also observed low avian activity in tropical forest nest boxes. For example, in Mexico, no nest 

boxes were occupied in mature forest, whereas 14% of 80 nest boxes were occupied in young 

forests (Lima and Garcia, 2016). Similarly, only 2% of nest boxes were occupied in an undisturbed 

Peruvian forest (Brightsmith, 2005). These numbers stand in stark contrast to studies conducted in 

temperate forests, where many nest box addition experiments have been shown to increase cavity-

nesting bird and mammal populations (Lindenmayer et al. 2009, Aitken & Martin 2012, Norris et 

al. 2018). This may be because tropical forests have much higher cavity density than temperate 

forests (e.g., mean 34 cavities/ha in our study versus mean 2.4 cavities/ha in Swedish boreal forest 

(Andersson et al. 2018); mean 12.5 cavities/ha in Polish coniferous forest (Walankiewicz et al. 

2014)). Low nest box occupancy rates may occur if natural cavities are both ubiquitous and 

advantageous. For example, unlike artificial boxes, natural cavities can be found higher in the 

canopy and in live wood, which may be preferable for tropical birds (Nilsson 1984, Wesolowski 

2002, Cockle et al. 2015). Together these studies and our work suggest that cavity-nesting birds 

may not be limited by nesting habitat in tropical forests, with other factors like competition, food 

resources, or predation constraining population sizes (Nilsson 1984, Wiebe 2011, Dhondt 2012).  



 175 

 On the other hand, avian nest box activity was high in agriculture, and six species were 

observed using experimentally placed nest boxes in agriculture compared to two in forests (though 

sample size was low in forest). As a comparison, only two species were found occupying nest 

boxes in primary and logged forests in Argentina (Cockle et al. 2010), and two species were found 

in nest boxes distributed across old growth forest, secondary forest, and coffee plantations in Costa 

Rica (Saker 2015). Perhaps because tropical pastures have so few trees, cavity-nesting bird 

populations may be especially limited by nesting habitat as compared to populations in selectively 

logged forests or coffee plantations. 

 Importantly, we found that nest success was relatively high in artificial nest boxes (~50% 

fledging at least one young) compared to rates reported from other tropical studies. For example, 

nesting success of birds nesting in natural cavities has been estimated to be ~25% in lowland 

Panamanian forests (Robinson et al. 2000, Brawn et al. 2011). Moreover, many studies of non-

cavity nesting birds report lower nest success in fragmented versus natural land uses (Rangel-

Salazar et al. 2008, Young et al. 2008, Borges & Marini 2010, Newmark & Stanley 2011). Other 

studies report increased nest success in areas with more canopy connectivity (Britt et al. 2014) and 

in older cavities (Brightsmith 2005). If anything, we found that birds nesting in agricultural nest 

boxes were more successful than in forests; however, the difference was not significant (likely due 

to the very few nesting attempts we observed in forest). It is possible that we could have slightly 

overestimated nest success if we missed nest failures near fledging in the cases that we observed 

nestlings near fledging age on one visit, and then found an empty nest on the next visit. 

Nevertheless, the nest success we observed was sufficiently high that it seems that artificial nest 

boxes in agriculture provide suitable conditions to successfully rear tropical birds.  
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Conclusions  

Overall, we found that nesting habitat seems to limit reproduction by cavity-nesting bird 

populations in tropical agriculture but not forest, even though cavity-nesting birds are abundant in 

tropical agricultural systems. Retaining forest patches and remnant trees in tropical agriculture 

may thus provide critical nesting habitat for birds (Cockle et al. 2015). Large trees may be 

especially important because they are more likely to have cavities and persist for many years 

(Cockle et al. 2015, Lima & Garcia 2016). However, large trees are declining globally and are 

particularly threatened by selective logging in ecosystems worldwide, including in agricultural 

landscapes (Lindenmayer et al. 2012).  

Our results also suggest that adding nest boxes to tropical agricultural systems could be a 

good conservation strategy for certain species, though this could potentially lead to a source-sink 

or ecological trap dynamic, drawing species out of forest and leading to lower fitness (Robertson 

& Hutto 2006). Different species occupied different boxes; thus, while small nest boxes were used 

more frequently, a mixture of box sizes could be deployed to benefit more species. While 

deploying nest boxes in agriculture is unlikely to benefit species of conservation concern, we found 

that small insectivorous birds dominated nest boxes in agriculture (e.g., House Wrens), indicating 

nest boxes might be useful in helping farmers control insect pests. Indeed, nest boxes are 

commonly deployed in temperate agricultural systems to attract insectivorous birds and predatory 

raptors, which, in turn, can help control insect pests, (e.g., Jedlicka et al. 2011, 2014, Benayas et 

al. 2017, Olmos-Moya et al. 2022), rodents (e.g., Kross et al. 2016), and even pest birds (e.g., 

Shave et al. 2018). Prior work has shown that House Wrens rapidly occupy nest boxes in Chilean 

vineyards and feed on insects nearby, causing elevated predation rates on sentinel insect prey near 

boxes (Olmos-Moya et al. 2022).  
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Beyond pest-control benefits, cavity-nesting birds also play important roles in ecosystems 

by dispersing seeds (Da Silva & Tabarelli 2000) and pollinating plants (Saker 2015). These 

ecosystem services could increase tree regeneration (though they could promote spread of weedy 

species) and the economic and biodiversity value of temperate and tropical forests alike (Sethi & 

Howe 2009). Even low nest box occupancy levels could increase bird presence and ecosystem 

services on farms (Hannay et al. 2022), so coupling farmer education campaigns about ecosystem 

services provided by cavity-nesting birds with incentives for maintaining remnant trees and 

installing nest boxes could help mitigate cavity limitation and bolster bird populations in tropical 

agricultural systems. 
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Table 6: Number of natural cavities found and total avian activity events in natural cavities split 

by the type of activity at each site. 

 
 
 
Table 7: Total number of avian and mammalian observations in artificial nest boxes at each site. 
 

 
 
 
  

Land-use Site
Natural 

cavities found
Observations 
at entrance

Observations 
excavating 

existing cavity
Observations 
inside cavity

Total natural 
cavity activity 

events

Observations 
excavating 
new cavity

1 0 0 0 0 0 0
2 6 3 2 6 11 1
3 12 1 5 1 7 4
4 11 0 1 0 1 2
1 26 0 2 1 3 0
2 30 0 0 1 1 3
3 42 0 1 0 1 0
4 38 0 0 0 0 7

Agriculture

Forest

Land-use Site

Avian activity, 
did not lay 

eggs

Avian nesting 
attempts 

(laid eggs)
Mammalian 

activity
1 21 9 0
2 18 12 0
3 11 17 0
4 1 2 1
5 6 12 0
1 0 0 7
2 0 0 11
3 0 5 5
4 0 0 2
5 0 0 3

Agriculture

Forest
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Table 8: Total number of nesting attempts in artificial nest boxes by species, whether or not species 

are obligate or facultative cavity-nesters, land use, and nest box size (small versus large). 

 
 
 
 
  

Scientific name Common name
Obligate or 
Facultative

Nesting 
attempts in 
agriculture 

(small)

Nesting 
attempts in 
agriculture 

(large)

Nesting 
attempts in 

forest 
(small)

Nesting 
attempts in 

forest (large)
Dendrocincla fuliginosa Plain-brown Woodcreeper Obligate 1 2 0 0
Forpus coelestis Pacific Parrotlet Facultative 1 0 0 0
Lepidocolaptes souleyetii Streak-headed Woodcreeper Obligate 10 0 2 0
Myiarchus tuberculifer Dusky-capped Flycatcher Obligate 1 0 0 0
Tityra semifasciata Masked Tityra Obligate 1 0 0 0
Troglodytes aedon House Wren Facultative 30 1 0 0
Megascops guatemalae Choco Screech Owl Obligate 0 0 0 3
Unknown Unknown NA 4 1 0 0
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Figure 14: Map of study region (left) and map of study sites (right). In map of study sites, labels 

outlined in red represent agriculture and labels outlined in blue represent forest. Shapes and colors 

indicate if sites were surveyed for bird communities (“point count”) and/or had nest boxes. Natural 

cavity surveys and monitoring occurred at points 1-4 in agriculture and forest. 
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Figure 15: N-mixture model estimates and Bayesian Credible Intervals (BCIs) for the effect of 

land-use type on abundance. Positive values indicate that the species is more abundant in forest 

than in agriculture. Circles represent posterior means, the blues bar is the estimate of the 

community mean with a 95% BCI, and all other estimates are for individual species with 90% 

BCIs. Open circles indicate that the BCI overlaps zero, while closed circles indicate that the BCI 

does not overlap zero. Red points and bars represent species that nest in cavities. 
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Figure 16: Boxplots of the number of natural cavities found per site in agriculture versus forest. 

Gray points represent raw data. The solid horizontal bar represents the median and the box 

represents the first and quartiles. Whiskers represent the minimum and maximum values that are 

no further than 1.5 times the interquartile range. Star indicates a significant difference (from a 

Welch’s two-sample t-test). 
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Figure 17: Predicted effect of land use and nest box size on avian activity within artificial nest 

boxes. Points (mean predicted effects from the mixed-effects model) and lines (95% confidence 

intervals from the model) are colored according to land-use type (agriculture in red; forest in blue). 

Gray points represent raw data. Models indicated a significant interaction between land-use type 

and nest box size, such that difference in avian activity between forest and agriculture was 

accentuated in small nest boxes. Icons depict a large and small nest box. 
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Supporting Information 4 
 

Common name Scientific name 
Cavity-
nesting 

Total 
observations 
in agriculture 

Total 
observations 

in forest 
Bananaquit Coereba flaveola 0 13 1 
Band-backed Wren Campylorhynchus zonatus 0 15 2 
Barred Puffbird Nystalus radiatus 0 0 2 
Black-cheeked Woodpecker Melanerpes pucherani 1 4 2 
Black-crowned Antshrike Thamnophilus atrinucha 0 1 16 
Black-faced Dacnis Dacnis lineata 0 3 4 
Black-headed Antthrush Formicarius nigricapillus 1 0 5 
Blue-gray Tanager Thraupis episcopus 0 34 0 
Blue-headed Parrot Pionus menstruus 1 16 10 
Blue-necked Tanager Tangara cyanicollis 0 7 0 
Boat-billed Flycatcher Megarynchus pitangua 0 1 0 
Bran-colored Flycatcher Myiophobus fasciatus 0 2 0 
Bronze-winged Parrot Pionus chalcopterus 1 15 3 
Buff-throated Foliage-
gleaner Automolus ochrolaemus 0 0 5 
Buff-throated Saltator Saltator maximus 0 7 4 
Cattle Egret Bubulcus ibis 0 23 0 
Chestnut-backed Antbird Poliocrania exsul 0 0 46 
Chestnut-fronted Macaw Ara severus 1 0 6 
Chestnut-headed 
Oropendola Psarocolius wagleri 0 8 34 
Choco Tyrannulet Zimmerius albigularis 0 7 1 

Cinnamon Becard 
Pachyramphus 
cinnamomeus 0 2 0 

Collared Aracari Pteroglossus torquatus 1 0 8 
Collared Trogon Trogon collaris 1 1 1 
Common Pauraque Nyctidromus albicollis 0 2 0 
Common Tody-Flycatcher Todirostrum cinereum 0 4 0 
     
Crowned Woodnymph Thalurania colombica 0 1 3 
Dusky Pigeon Patagioenas goodsoni 0 2 3 
Dusky-capped Flycatcher Myiarchus tuberculifer 1 5 0 
Dusky-faced Tanager Mitrospingus cassinii 0 0 6 
Ecuadorian Thrush Turdus maculirostris 0 1 5 
Flame-rumped Tanager Ramphocelus flammigerus 0 71 7 
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Golden-faced Tyrannulet Zimmerius chrysops 0 1 0 
Golden-hooded Tanager Tangara larvata 0 1 1 
Great Tinamou Tinamus major 0 0 4 
Green Honeycreeper Chlorophanes spiza 0 0 4 
Green Manakin Cryptopipo holochlora 0 0 1 
Groove-billed Ani Crotophaga sulcirostris 0 10 0 

Guayaquil Woodpecker 
Campephilus 
gayaquilensis 1 1 11 

House Wren Troglodytes aedon 1 35 0 
Laughing Falcon Herpetotheres cachinnans 1 1 0 
Little Cuckoo Coccycua minuta 0 1 0 
Little Tinamou Crypturellus soui 0 0 14 
Long-tailed Tyrant Colonia colonus 1 1 0 
Long-wattled Umbrellabird Cephalopterus penduliger 0 0 2 
Masked Tityra Tityra semifasciata 1 7 1 
Masked Water-Tyrant Fluvicola nengeta 0 4 0 
Mealy Parrot Amazona farinosa 1 23 74 
Ocellated Antbird Phaenostictus mcleannani 0 0 2 
Orange-bellied Euphonia Euphonia xanthogaster 0 3 7 
Orange-billed Sparrow Arremon aurantiirostris 0 0 2 
Orange-crowned Euphonia Euphonia saturata 0 1 0 
Ornate Flycatcher Myiotriccus ornatus 0 0 4 
Pacific Antwren Myrmotherula pacifica 0 1 0 
Pacific Parrotlet Forpus coelestis 1 2 0 
Pale-legged Hornero Furnarius leucopus 0 2 0 
Pale-vented Pigeon Patagioenas cayennensis 0 2 2 
Pallid Dove Leptotila pallida 0 3 1 
Palm Tanager Thraupis palmarum 0 10 0 
Plain Xenops Xenops minutus 1 0 1 
Plain-brown Woodcreeper Dendrocincla fuliginosa 1 0 6 

Plumbeous Hawk 
Cryptoleucopteryx 
plumbea 0 1 1 

Purple Honeycreeper Cyanerpes caeruleus 1 0 1 
Purple-crowned Fairy Heliothryx barroti 0 1 0 
Purple-throated Fruitcrow Querula purpurata 0 2 9 
Red-bellied Macaw Orthopsittaca manilatus 1 2 0 

Red-billed Scythebill 
Campylorhamphus 
trochilirostris 1 2 0 

Red-capped Manakin Ceratopipra mentalis 0 0 4 
Red-eyed Vireo Vireo olivaceus 0 1 0 
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Red-masked Parakeet Psittacara erythrogenys 1 5 4 
Roadside Hawk Rupornis magnirostris 0 3 1 
Ruddy Pigeon Patagioenas subvinacea 0 12 14 
Ruddy Quail-Dove Geotrygon montana 0 0 1 
Rufous Motmot Baryphthengus martii 0 0 5 
Rufous Piha Lipaugus unirufus 0 0 2 
Rufous-fronted Wood-Quail Odontophorus erythrops 0 0 8 
Rufous-headed Chachalaca Ortalis erythroptera 0 0 4 
Rufous-tailed Hummingbird Amazilia tzacatl 0 18 1 
Rusty-margined Flycatcher Myiozetetes cayanensis 0 17 2 
Scale-crested Pygmy-Tyrant Lophotriccus pileatus 0 2 7 
Scaled Antpitta Grallaria guatimalensis 0 0 4 
Scaly-breasted Wren Microcerculus marginatus 0 0 4 
Scarlet-rumped Cacique Cacicus uropygialis 0 0 3 
Scrub Blackbird Dives warczewiczi 0 2 0 
Slaty Spinetail Synallaxis brachyura 0 36 0 
Slaty-capped Flycatcher Leptopogon superciliaris 0 2 0 
Smoke-colored Pewee Contopus fumigatus 0 3 0 
Social Flycatcher Myiozetetes similis 1 2 0 
Southern Rough-winged 
Swallow Stelgidopteryx ruficollis 0 2 0 
Spotted Nightingale-Thrush Catharus dryas 0 0 1 
Squirrel Cuckoo Piaya cayana 0 1 0 
Stripe-throated Hermit Phaethornis striigularis 0 0 3 
Tawny-crested Tanager Tachyphonus delatrii 0 0 5 
Thick-billed Euphonia Euphonia laniirostris 0 2 2 
Thick-billed Seed-Finch Sporophila funerea 0 2 0 
Tropical Kingbird Tyrannus melancholicus 0 6 0 
Variable Seedeater Sporophila corvina 0 58 0 
Wedge-billed Woodcreeper Glyphorynchus spirurus 1 2 1 
White-bearded Manakin Manacus manacus 0 0 1 
White-cheeked Antbird Gymnopithys leucaspis 0 0 2 
White-flanked Antwren Myrmotherula axillaris 0 0 9 
White-shouldered Tanager Tachyphonus luctuosus 0 2 4 
White-tailed Trogon Trogon chionurus 1 0 1 
White-tipped Sicklebill Eutoxeres aquila 0 0 2 
White-whiskered Hermit Phaethornis yaruqui 0 0 53 
White-whiskered Puffbird Malacoptila panamensis 1 0 1 
Yellow-bellied Seedeater Sporophila nigricollis 0 28 1 
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Yellow-bellied Siskin Spinus xanthogastrus 0 2 0 
Yellow-crowned Tyrannulet Tyrannulus elatus 0 6 0 
Yellow-throated Bush 
Tanager 

Chlorospingus 
flavigularis 0 2 0 

Yellow-throated Toucan Ramphastos ambiguus 1 16 24 
Zeledon's Antbird Hafferia zeledoni 0 0 3 

 
Table S4.1: List of species observed in point count surveys, whether each species nests in cavities, 

and total number of observations in agriculture and forest. 

 

 
 
Table S4.2: Estimates, standard errors, z-values, and p-values of predictors from mixed effects 

models with the response variables as the total number of avian activities at each nest box, the total 

number of mammalian activities at each nest box, and avian nest success (among nests where at 

least one egg was laid). Predictor variables include habitat (larger values indicate higher 

activities/success in forest) and nest box size (larger values indicate higher activities/success in 

small nest boxes). 

 
 

               Estimate Std. Error z value Pr(>|z|)
Intercept -0.50 0.53 -0.95 0.34
Habitat -2.39 1.09 -2.18 0.03
Box size 1.56 0.25 6.16 <0.01
Habitat x Box size -1.96 0.95 -2.07 0.04
Intercept -4.22 1.19 -3.55 <0.01
Habitat 4.23 1.26 3.36 <0.01
Box size 0.00 0.59 0.00 1.00
Intercept 0.09 1.05 0.09 0.93
Habitat -1.51 1.51 -1.00 0.32
Box size -0.19 1.11 -0.17 0.87

Avian 
activity

Mammalian 
activity

Avian nest 
success
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Figure S4.1: Histograms of tree height, cavity height, diameter at breast height (DBH), and 

orientation of natural cavities found in agriculture (red) and forest (blue). 

 

 
 

 
 




