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A B S T R A C T   

Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In 
this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well 
as providing in-depth illustrative examples leveraging omics data and improving production. We also include 
practical advice for the practitioner in terms of data management, algorithm libraries, computational resources, 
and important non-technical issues. A variety of applications ranging from pathway construction and optimi
zation, to genetic editing optimization, cell factory testing, and production scale-up are discussed. Moreover, the 
promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the 
future perspectives and most promising directions for this combination of disciplines are examined.   

1. Introduction 

Metabolic engineering is enjoying an auspicious moment, when its 
potential is becoming evident in the form of many commercially avail
able products with undeniable impact on society. This discipline has 
produced: synthetic silk for clothing (Hahn, 2019; Johansson et al., 
2014), meatless burgers that taste like meat because of bioengineered 
heme (“Meat-free outsells beef,” 2019), synthetic human collagen for 
cosmetic purposes ("Geltor unveils first biodesigned human collagen for 
skincare market", 2019), antimalarial and anticancer drugs (Ajikumar 
et al., 2010; Paddon and Keasling, 2014), the fragance of recovered 
extinct flowers (Kiedaisch, 2019), biofuels (Hanson, 2013; Per
alta-Yahya et al., 2012), hoppy flavored beer produced without hops 
(Denby et al., 2018), and synthetic cannabinoids (Dolgin, 2019; Luo 

et al., 2019), among others. Since the number of possible metabolites is 
enormous, we can only expect these successes to significantly increase in 
number in the future. 

Traditional approaches, however, limit metabolic engineering to the 
usual 5–15 gene pathway, whereas full genome-scale engineering holds 
the promise of much more ambitious and rigorous biodesign of organ
isms. Genome-scale engineering involves multiplex DNA editing that is 
not limited to a single gene or pathway, but targets the full genome (Bao 
et al., 2018; Esvelt and Wang, 2013; Garst et al., 2017; Liu et al., 2015; Si 
et al., 2017). This approach can open the field of metabolic engineering 
to stunning new possibilities: engineering of microbiomes for thera
peutic or bioremediation uses (Lawson et al., 2019), designing of 
multicellular organisms as biomaterials that match a specification (Islam 
et al., 2017), ecosystem engineering (Hastings et al., 2007), and perhaps 
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even fusion of physical and biological systems. None of these examples 
are likely to become reality through a traditional trial-and-error 
approach: the number of genetic part combinations that could produce 
these outcomes is a vanishingly small fraction of the total possible. For 
example, engineering a microbiome to produce a medical drug involves 
not only introducing and balancing the corresponding pathway in one or 
more of the microbiome species, but also modifying internal regulatory 
networks so as to keep the community stable and robust to external 
perturbations. Even for the case of single pathways and teams of 
highly-trained experts, the trial-and-error approach is hardly sustain
able, since it results in very long development times: for example, it took 
Amyris an estimated 150 person-years of effort to produce the imme
diate precursor of the antimalarial artemisinin, and Dupont 575 
person-years to generate propanediol (Hodgman and Jewett, 2012). An 
approach that pinpoints the designs that match a desired specification is 
needed. 

The main challenge in more sophisticated biodesign is, arguably, our 
inability to accurately predict the outcomes of bioengineering (Car
bonell et al., 2019; Lopatkin and Collins, 2020). New technologies 
provide markedly easier ways to make the desired DNA changes, but the 
final result on cell behavior is usually unpredictable (Gardner, 2013). If 
metabolic engineering is “the science of rewiring the metabolism of cells 
to enhance production of native metabolites or to endow cells with the 
ability to produce new products” (Nielsen and Keasling, 2016), the 
ability to engineer a cell to a specification (e.g. a given titer, rate and 
yield of a desired product) is critical for this purpose. Only the ability to 
accurately predict the performance of a genetic design can avoid an 
arduous trial-and-error approach to reach that specification. 

Moreover, while the flourishing offshoots of the genomic revolution 
provide powerful new capabilities to discover new DNA sequences, 
understand their function, and modify them, it is not trivial to harness 
these technologies productively. The genomic revolution has provided 
the DNA code as a condensed set of cell instructions that constitutes the 
main engineering target, and functional genomics to understand the cell 
behavior. Furthermore, the cost for these data is rapidly decreasing: 
sequencing cost decreases faster than Moore’s law, transcriptomic data 
grow exponentially (Stephens et al., 2015), and high-throughput 
workflows for proteomics and metabolomics are slowly becoming a re
ality (Chen et al., 2019; Zampieri et al., 2017). But many researchers 
find themselves buried in this “deluge of data”: there seems to be more 
data than time to analyze them. Furthermore, data come in many 
different types (genomics, transcriptomics, proteomics, metabolomics, 
protein interaction maps, etc), complicating their analysis. As a result, 
analysis of functional genomics data often does not yield sufficient in
sights to infer actionable strategies to manipulate DNA for a desired 
phenotype. Moreover, CRISPR-based tools (Doudna and Charpentier, 
2014; Knott and Doudna, 2018) provide easy DNA editing and metabolic 
perturbations (e.g. CRISPRi (Tian et al., 2019)). These tools provide the 
potential to perform genome-wide manipulations in model systems 
(Wang et al., 2018), and a growing number of hosts (Peters et al., 2019). 
However, it is not clear how to prioritize the possible targets. Rational 
engineering approaches have proven useful in the past (George et al., 
2015; Kang et al., 2019; Tian et al., 2019), but the detailed knowledge of 
a pathway can produce on the order of tens of targets, whereas 
CRISPR-based tools can reach tens of thousands of genome sites (Bao 
et al., 2018; Bassalo et al., 2018; Garst et al., 2017; Gilbert et al., 2014). 

Machine learning (ML) is a possible solution to these problems. 
Machine learning can systematically provide predictions and recom
mendations for the next steps to be implemented through CRISPR (or 
other methods (Paschon et al., 2019; Reyon et al., 2012; Wang et al., 
2019)), and it can use the exponentially growing amounts of functional 
genomics data to systematically improve its performance. Machine 
learning has already proven its utility in many other fields: self-driving 
cars (Duarte and Ratti, 2018), automated translation (Wu et al., 2016) , 
face recognition (Voulodimos et al., 2018), natural language parsing 
(Kreimeyer et al., 2017), tumor detection (Paeng et al., 2016), and 

explicit content detection in music lyrics (Chin et al., 2018), among 
others. It has the potential to produce similar breakthroughs in meta
bolic engineering. 

However, a change in perspective is required regarding the relative 
importance of molecular mechanisms. Whereas the machine learning 
paradigm concentrates on enabling predictive power, metabolic engi
neers typically define scientific value around the understanding of ge
netic or molecular mechanisms (see section 4.0). Nonetheless, the 
biological sciences (including computational biology) have been 
particularly challenged to make accurate quantitative predictions of 
complex systems from known and tested mechanisms. Hence, if accurate 
quantitative predictions are needed for a more transformative metabolic 
engineering, it may be desirable to shift some of the emphasis from 
identifying molecular mechanisms into enabling data-driven ap
proaches. This apparent detour may, in the end, more efficiently pro
duce mechanistic models, if we combine the predictive power of 
machine learning with the insight of molecular mechanisms (Heo and 
Feig, 2020). 

In this review we provide an explanation of machine learning in 
metabolic engineering terms, in the hopes of providing a bridge between 
both disciplines. We explore the promises of machine learning, as well as 
its current pitfalls, provide examples of how it has been used so far, as 
well as auspicious future uses. In short, we will make the case that 
machine learning can take metabolic engineering to the next step in its 
maturation as a discipline, but it requires a conscious choice to under
stand its limitations and potential. 

2. Demystifying machine learning for bioengineers 

2.1. What is machine learning? 

Machine learning is a subdiscipline of Artificial Intelligence (AI), 
which attempts to emulate how a human brain understands, and in
teracts with, the world (Fig. 1). A fully functioning AI would enable us to 
perform the same processes as human metabolic engineers: choose the 
best molecules to produce, suggest possible pathways to produce it, 
select the right pathway design to obtain the desired titers, rates and 
yield, and interpret the resulting experimental data to troubleshoot the 
metabolic engineering effort. A fully functioning AI would of course be 
useful for many other tasks such as: fully autonomous cars and planes, 
recommending medical treatments, directing agricultural practices, 
reading and summarizing texts like a human, automating translations 
from different human languages, and producing music and movies. 
Obviously, we do not yet have full functioning AIs (or strong AI or 
artificial general intelligence as it is often referred to (Pei et al., 2019; 
Walch, 2019 )), and it is a continuing debate whether we will ever have 
them (Melnyk, 1996), but AI approaches have been quite successful in 
some bounded tasks such as playing chess and Go better than humans 
(Silver et al, 2016, 2018), or predicting protein structures from sequence 
(AlQuraishi, 2019). Since AI and machine learning are generally appli
cable tools, some of these partial successes can be very useful for 
metabolic engineering (see section 3 for examples). 

Machine learning is the study of computer algorithms that seek to 
improve automatically through experience (i.e. learning), often by 
training on supervised examples (Fig. 2), also known as supervised 
machine learning. This works by statistically linking an input to its 
associated response for several different examples: e.g. promoter choice 
for a pathway and the corresponding final production, protein sequence 
and its function, etc (Figs. 2 and 3). It is important to realize that the 
emphasis is set in predicting the response, rather than produce mecha
nistic understanding. In fact, the algorithm linking input and response is 
not meant to represent a mechanistic understanding of the underlying 
processes: for example, modeling the full process of promoters causing 
the expression of proteins that code enzymes which then catalyze re
actions that transform metabolites and result in a predicted production. 
Rather, the algorithm is chosen to be as expressive as possible to be able 
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to learn any relationship between input and response. Hence, none of 
the biological information is encoded in the algorithm; all the biological 
information is provided by the training data, which must be carefully 
selected (supervised) so the algorithm can learn the desired relationship 
(promoters to production, protein sequence to function, etc.), generalize 
it, and be able to predict it for new inputs that were not in the training 
set (Fig. 3). This difference is crucial with respect to traditional meta
bolic engineering and microbiology, where understanding the mecha
nism is considered of paramount importance (see section 2.2.1 for a 
specific example). In machine learning, we can see the situation in which 

we can predict that, e.g., a given promoter choice will have the best 
production, but we cannot explain the metabolic mechanism that pro
vides that optimal production (Zhang et al., 2020). This state of affairs 
has its pros and cons, and efforts have been made to introduce biological 
prior knowledge in the algorithms (see section 4). 

There is a continuous interplay between the complexity of a super
vised machine learning algorithm and the amount of data available to 
train it (Fig. 4). If the model/algorithm is not expressive enough (not 
enough parameters), it will be unable to describe the data accurately 
(underfitting). If the model displays much more parameters than data 
instances are available, it will just “memorize” the training data set 
rather than grasp the underlying general patterns required to predict 
new inputs (overfitting). In this case, the algorithm will produce 
exceedingly good results for the training set, but very poor ones for any 
new input that is used as a test (Figs. 3 and 4). Cross validation (Fig. 3) 
provides an effective way to choose the number of parameters: both 
overfitting and underfitting result in very poor predictions. 

There are many supervised machine learning algorithms available in 
the public domain: linear regressions, quadratic regressions, random 
forest, support vector machines, neural networks, Gaussian process re
gressors, gradient boosting regressors (the popular library scikit-learn 
provides a good starting point with an extensive list and explanations 
(Pedregosa et al., 2011)). To give a concrete example, a classic machine 
learning algorithm is the decision tree, that can be used, for example, to 
predict which protein expression levels result in high production 
(Fig. 5). As can be observed, this algorithm represents a high-level 
abstraction of how humans are believed to think. Because no single al
gorithm is best for every learning task (Wolpert, 1996), a significant 
endeavor when applying machine learning is choosing the optimal al
gorithm for your problem (and its hyperparameters, see Fig. 5). 
Ensemble modeling is an alternative approach that sidesteps the chal
lenge of model selection (Radivojević et al., 2020). Ensemble modeling 
takes the input of various different models and has them “vote” for a 
particular prediction. Based on their performance, a different weight is 
assigned to each algorithm. The examples of the random forest algo
rithm (Ho, 1995) or the super learner algorithm (van der Laan et al., 
2007) have demonstrated that even very simple models can increase 
their performance significantly by using an ensemble of them (e.g., 
several decision trees in a random forest algorithm). 

Learning without supervision also constitutes an important part of 

Fig. 1. Machine learning vs Artificial intelligence vs. 
Deep learning. Machine learning is a subdiscipline of 
Artificial Intelligence, which attempts to reproduce 
how human brains think. Symbolic AI (or Good Old 
Fashioned AI, or GOFAI), is a part of AI devoted to 
reproduce thought through symbolic representations 
of the world. In contrast, machine learning mimics 
thought using algorithms that learn a task (e.g., 
identify a dog) through learning from data. GOFAI 
was dominant in the early states of AI (50s–80s) but 
has now lost relative influence. Machine learning, 
however, is now the dominant branch of AI and fo
cuses on improving performance through the acqui
sition of experience in terms of data. Among the many 
possible algorithmic approaches in machine learning, 
neural networks (Fig. 7) have become most popular 
since ~2010 because their performance seems not to 
saturate as easily as other methods (Fig. 8). Neural 
networks with many layers (Fig. 8) are called deep 
neural networks, and constitute the basis for Deep 
Learning.   

Fig. 2. Machine learning basics. Supervised Machine learning algorithms 
define learning in a narrow way: the ability to predict a response (e.g. the target 
compound production) from a set of inputs (e.g. protein concentrations for a 
pathway). The inputs (or features) and response (or output) can be numbers (e. 
g. protein concentrations) or categories (e.g. different available promoters). All 
supervised machine learning algorithms follow this general architecture. 
Because the algorithm linking input and response does not include mechanistic 
information, but is rather chosen to be as expressive as possible, machine 
learning can predict relationships between really diverse inputs and outputs: e. 
g., production and enzyme choice (see section 2.2.2), metabolite rate change 
and multiomics measurements (section 2.2.1), or protein sequence and protein 
function. The supervision consists in providing training data consisting of the 
input and the associated response. This labeling of the input data to teach the 
algorithm the right associations is the step that is most arduous and costly, 
particularly for large data sets. This has prompted AI researchers to develop 
methods that do not require this step (Fig. 6). 
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Fig. 3. Machine learning terminology. The standard workflow for supervised machine learning involves first using a training data set (including the inputs, or 
features, and the corresponding responses, or labels) to train the chosen algorithm. The training data set is composed of instances or examples of the inputs and 
response to be learnt. Instances depend on the problem to be learnt: they could be different strains and conditions (section 2.2.2 example), time points (section 2.2.1 
example) or different proteins. The goal is for the algorithm to be able to predict the response for inputs that it has never seen before (i.e. were not in the training set), 
which is the ultimate test of its performance. A way to foresee how the algorithm will perform under such a test is to use only part of the training data set (all data 
except red overlay) for training, and then check the predictions for the remaining inputs (red overlay), to be compared with the known responses. This procedure is 
called validation and, if performed several times by randomly holding out a fraction of the training data set, it takes the name of cross validation. A 10-fold cross-fold 
validation, for example, randomly holds out 10% of the training set to test predictions for several draws. Cross validation is a good way to determine the needed 
algorithm complexity needed (Fig. 4). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Model complexity vs data availability. The number of parameters (model characteristics that can be changed to fit data, see Fig. 5) in a model provides an idea 
of its complexity (more parameters → more complex). If the number of parameters is much smaller than the number of instances, the model cannot hope to describe 
the training data (underfit model). This can happen with “long and skinny” training data: few inputs and many instances. If the number of parameters is much bigger 
than the instances, the model but will be unable to generalize beyond the training set. The solution for the underfitting case is straightforward: increase the 
complexity of the model (number of parameters). The solution for the overfitting case is reducing the model parameters. However, if the number of inputs/features is 
high, it may be impossible to do so. This is often the case in metabolic engineering, where omics data sets displaying tens of thousands of features are available, but 
only for ~100 instances (“short and fat” training data). It becomes imperative then to choose the most informative features through the feature selection methods 
provided by unsupervised learning (Fig. 6). This feature selection is needed to avoid the “curse of dimensionality”: i.e., the amount of data needed to support results 
in a statistically sound fashion often grows exponentially with the dimensionality. Poor cross validation scores (Fig. 3) can help identify both overfitting and 
underfitting. 
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machine learning, given the significant effort involved in creating 
labeled data sets. The areas of machine learning focused on this chal
lenge are unsupervised learning and reinforcement learning. Unsuper
vised learning searches for patterns in a data set with no pre-existing 
labels, requires only minimal human supervision, and often attempts to 
create clusterings or representations that aid human understanding or 
reduce dimensionality (Fig. 6). Examples of unsupervised machine 
learning algorithms include Principal Component Analysis (PCA), K- 
means clustering (Sculley, 2010), and Single Value Decomposition 
(Manning et al., 2008). Familiar examples in metabolic engineering 
include identifying patterns in metabolomics profiles that distinguish 
between different types of cells: healthy vs. sick (Sajda, 2006), stressed 
vs. non-stressed (Luque de Castro and Priego-Capote, 2018; Mamas 
et al., 2011), or high-producing vs low-producing (Alonso-Gutierrez 
et al., 2015). Reinforcement learning represents a different paradigm 

regarding learning from experience that posits that humans learn not 
from properly labeled examples, but rather from interacting and probing 
their environment. Hence, the aim of reinforcement learning is to use 
experience and data to update an internal policy that optimizes a desired 
goal (Fig. 6). A prime example of this approach (Treloar et al., 2020) is 
controlling a bioreactor which contains a co-culture (environment), 
through manipulations of the concentration of auxotrophic nutrients 
flowing into the reactor (actions), and informed by the relative abun
dances (measurements), to ensure a specified co-culture composition 
(goal). Perhaps the most known example of reinforcement learning are 
the Hidden Markov Models (HMMs) that are commonly used to annotate 
genes and align sequences (Yoon, 2009). Reinforcement learning has 
also been applied to suggest pathways for specific molecules (Koch et al., 
2020) or molecules that fit desired properties (Popova et al., 2018), as 
well as to optimize large-scale bioreactor fermentations using online 

Fig. 5. Example of a supervised machine learning algorithm: a decision tree. Decision trees come from an abstracted view of how human learning works, rather than 
a mechanistic understanding. Decisions trees automatically build a decision “flowchart” that, in this case, predicts high or low production based on the protein 
expression levels. An example training data set and corresponding decision tree are shown in panels A and B, respectively, based on a set of strains (instances) and 
their production (response) depending on different protein expression levels (input features). Using the training data set, the algorithm decides on the optimal split 
points (x1, x2 and y1) to predict the production based on the input features. The split points are the parameters of the algorithm: more parameters will allow the 
algorithm to describe more instances. The algorithm also has a number of “hyperparameters” which are set before training, including the maximum tree depth, and 
the minimum number of instances required to split a node, among others (see scikit learn library for more details). Decision trees form the base for one of the most 
popular algorithms: the random forest. The random forest algorithm is just an ensemble of decision trees. 
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Fig. 6. Other types of machine learning that do not require labeled data. Unsupervised methods and reinforcement learning were created to avoid the cumbersome 
process of labeling data for supervised methods. Unsupervised machine learning methods often search for patterns that aid human understanding or reduce 
dimensionality (e.g. PCA). For example, in this case the algorithm projected the five inputs (e.g. metabolomics data) into a two dimensional plane that groups them 
according to similarity. This type of dimensionality reduction can be very useful for feature selection (Fig. 4). Reinforcement learning methods attempt to achieve a 
goal through a continuous interaction with an environment from which they learn through a variety of measurements, and on which they can act through a menu of 
actions. The result of the actions as viewed by the measurements is used to iteratively update an internal policy that dictates future actions. 

Fig. 7. Artificial neural networks are a particular type of machine learning algorithms that loosely mimic how neurons work (Fig. 1). Neurons are modeled 
as having a set of inputs (dendrites) and a single long axon that serves as output (A). Artificial neural network cells mimic that: several outputs combined linearly and 
a non-linear output (B). The output is combined to other cell inputs, creating an artificial neural network (ANN). Here we see a fully connected network where all 
cells from each layer are connected to all cells in the next layer (C). This type of architecture results in many parameters (wij and bj), which requires large amounts of 
data to determine (Fig. 4). Deep neural networks are ANNs with many layers (Fig. 8). Given the original biological origin of ANNs, there is a significant interest in the 
AI field in obtaining further inspiration from biomimicry. 
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continuous process data (see section 3.3). However, there is still 
generally a dearth of reinforcement learning examples in metabolic 
engineering, which represents an opportunity for this type of machine 
learning. 

Deep learning (DL, Fig. 7 (LeCun et al., 2015)) is a specific type of 
machine learning algorithm that has been particularly successful in the 
past decade (Fig. 8). This algorithm has been shown to improve per
formance with the amount of training data when other methods plateau. 
Deep learning is based in Artificial Neural Networks, which attempt to 
mimic how neurons work (Fig. 7). In the last decade, deep learning has 
been the basis of the most celebrated AI achievements. However, 
compared to more classical machine learning methods, deep learning 
generally requires far larger amounts of data for training: 10,000s or 
millions of instances, as opposed to hundreds or thousands (although 
that depends on the number of inputs, see section 2.2.2). The reason for 
these large data sets hunger is that deep neural networks can include 
thousands to millions of parameters, which need to be determined from 
the data (see Fig. 4). In metabolic engineering, the use of deep learning 
has been sparse for this reason: the data sets tend to be small (<100 
instances), with the notable exception of sequence data. Deep learning 
has been most useful with sequence data: e.g., to predict protein func
tion (Ryu et al., 2019), or translation initiation sites (Clauwaert et al., 
2019) (see section 3.0). However, this is expected to change as more 
high-throughput methods to characterize cellular components become 
available, provided that data are structured consistently and stored 
appropriately (see section 2.4). Indeed, techniques to generate high 
quality omics data are improving rapidly and the cost per sample is 
decreasing (Stephens et al., 2015), so application of deep learning to 
metabolic engineering might become commonplace soon. 

2.2. A couple of illustrative examples of machine learning in metabolic 
engineering 

We will now illustrate how machine learning algorithms work 
through two different applications that elucidate particularly important 
points: predicting the kinetics of a metabolic network, and optimizing 
cell-free butanol production. We have focused on these examples 
because we believe they most relate to the day-to-day activities of 
metabolic engineers: leveraging omics data and improving production. 

2.2.1. Kinetic learning: relearning Michaelis-Menten dynamics through 
machine learning 

Our first example uses machine learning to tackle a commonly 
encountered problem in bioengineering: predicting the kinetics of a 
metabolic pathway. Predicting pathway dynamics can enable a much 
more efficient pathway design by allowing us to foresee in advance 
which pathway designs will meet our specifications (e.g., titers, rates 
and yields). Classic kinetic models predict the rate of change of a given 
metabolite based on an explicit functional relationship between sub
strate/product concentrations (metabolites) and enzymes (protein 
abundance, substrate affinity, maximum substrate turnover rate). 
Michaelis-Menten kinetic models (Costa et al., 2010; Heinrich and 
Schuster, 1996) have historically been the most common choice. In re
ality, the true functional relationship between metabolites and enzymes 
are typically unknown for most reactions due to gaps in our under
standing of the mechanisms involved, resulting in poor prediction 
capabilities. 

Costello et al. (Costello and Martin, 2018) showed that supervised 
machine learning (Fig. 2) can offer an alternative approach, where the 
relationship between metabolites and enzymes can be directly “learnt” 
from time series of protein and metabolite concentration data. In a 
sense, this approach involves relearning the equivalent of 
Michaelis-Menten based purely on data. This is a prime example of how 
a machine learning approach ignores mechanism in favor of predicting 
power: there is no intention that the function predicting metabolite 
change rate from proteins and metabolites describes a mechanism, but it 

offers the best prediction of the final limonene/isopentenol, which is 
what we require for our engineering. In this case, the inputs (Fig. 3) were 
the exogenous pathway protein and metabolite concentrations, and the 
response was the rate of change of the metabolite. The instances involved 
each of the time points for which the metabolite rate of changes was 
learnt. 

This approach outperformed a classic kinetic model in predictive 
power using very little data: only three time series of protein and 
metabolite measurements of 7 time points each (for two different 
pathways). While it would be desirable to have hundreds of time point 
measurements, the high cost and time associated with performing multi- 
omic experiments typically constrains data sets to less than 10 time 
points/samples, which is too sparse for training accurate models. Crit
ical to its success, hence, was the use of data augmentation to increase 
the number of available instances from the initial 7 time points to the 
final 200 used for learning. Data augmentation simulates additional 
instances by modifying or interpolating actual data. In this case, data 
augmentation involved first smoothing the data (via a Savitzky-Golay 
filter) and then interpolating new data points from the fitted curve. 
This augmentation scheme only assumed continuity and smoothness 
between time points, but provided sufficient data to train a machine 
learning model using data from only 2 time series that accurately predict 
pathway dynamics of the “unseen” third strain. The final predictions of 
metabolite concentrations for the exogenous pathways, although not 
perfect by any measure, were more accurate than equivalent predictions 
by a hand-crafted kinetic model. More importantly, while the kinetic 
model took weeks to produce through arduous literature search, the 
kinetic learning approach can be systematically applied to any pathway, 
product and host with no extra overhead. 

An opportunity to improve the machine learning model predictions 
of Costello et al. would of course be to collect more data, but deciding 
which data to collect is not always clear. For example, instead of using 
protein and metabolite data only from the exogenous pathways as input 
features, protein and metabolite measurements from the full host 
metabolism could be added (surely, host metabolic effects like ATP 
supply must be relevant). However, using these extra data would not 
necessarily improve machine learning predictions. This is because many 
machine learning algorithms suffer from the “curse of dimensionality”: 
that is, the amount of data needed to support results in a statistically 
sound fashion often grows exponentially with the dimensionality of the 
input (Fig. 4). Hence, machine learning algorithms may struggle to learn 
from data sets that have many measurements or “input features” (col
umns), but few instances (rows). Adding host proteins and metabolites 
will increase the number of inputs without increasing the number of 
instances. Unfortunately, most multi-omic data sets used in metabolic 
engineering fit this description, containing more than 5000 measure
ments (e.g. proteins or metabolites abundances), but only tens to hun
dreds of instances (e.g. different time points, strains, or growth 
conditions, depending on what your algorithm is attempting to learn) 
(Fig. 4). Therefore, collecting as many instances as possible should be 
emphasized early on during experimental design (see section 2.4). 

In the absence of being able to generate more data, algorithms that 
reduce the number of input features to the most important ones can be 
performed, a process known as feature selection. Feature selection 
(Pedregosa et al., 2011) was used in Costello et al. (Costello and Martin, 
2018) to identify a subset of the input features based on their contri
bution to the model’s error. This, more limited, curated set of features 
was then used to predict metabolite dynamics. The idea behind this is to 
remove non-informative or redundant input features from the model. An 
additional approach used was dimensionality reduction, where “syn
thetic features” are created that transform the original input features 
into fewer ones (or “lower dimensions”) based on their contribution to 
explaining the data’s variability (for example, via principal component 
analysis). Similar to feature selection, these algorithms simplify the data 
set in order to better fit a machine learning model. These approaches 
were integrated into a machine learning pipeline using the tree-based 
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pipeline optimization tool (TPOT) (Olson et al., 2016; Olson and Moore, 
2019), which automatically selected the best combination of feature 
preprocessing steps and machine learning models from the scikit-learn 
library (Pedregosa et al., 2011) to maximize prediction performance. 

2.2.2. Artificial neural networks to improve butanol production in cell-free 
systems 

Our second example involves using deep neural networks to optimize 
cell-free butanol production (Karim et al., 2020). Here, the authors 
provide an example of how machine learning can accelerate the 
design-build-test-learn (DBTL) cycles used in metabolic engineering 
(Nielsen and Keasling, 2016), by effectively guiding pathway design. In 
this study, the authors optimized a six-step pathway for producing 
n-butanol, an important solvent and drop-in biofuel, using a cell-free 
prototyping approach (iPROBE). iPROBE reduces the overall time to 
build pathways from weeks or months to a few days (around five in this 
case), providing the quick turnaround and large numbers of enzyme 
combinations that can enable successful use of machine learning. 
Several pathway variants were constructed in vitro and scored based on 
their measured butanol production through a TREE score which com
bines titer, rate, and enzyme expression. The challenge, however, lies in 
analyzing the sheer number of pathway combination possibilities. 
Testing only six homologs for the first four pathway steps at 3 different 
enzyme concentrations would result in 314,928 pathway combinations 
(strain genotypes). Even with the increased turnover provided by the 
cell-free approach, it would take years for typical analytical pipelines to 
exhaustively test the landscape of possible combinations. Therefore, a 
data-driven design-of-experiments approach was implemented using 
neural networks to predict optimized pathway designs (homolog sets 
and enzyme ratios) from an initial data set that could subsequently be 
tested. In this case the input for the neural network was the enzyme 
homologs used for each of the reaction steps and their corresponding 
concentrations. The response was the TREE score, and each instance was a 
pathway design. 

The pathways predicted from the neural network model were able to 
improve butanol production scores over fourfold (~2.5 times higher 
titer, 58% increase in rate) compared to the base-case pathway. An 
initial data set of 120 instances (pathway designs) was used to train and 
test different neural network architectures consisting of 5–15 fully 
connected hidden layers and 5 to 15 nodes per layer. Genetic algorithms 
were used to suggest combinations of network architectures, and ten- 
fold cross validation was used to select the best. Once the model was 
built, the authors used a nonlinear optimization algorithm (Nelder-Mead 
simplex) to recommend pathway designs that optimized butanol pro
duction through the maximization of the TREE score. These machine 
learning recommendations resulted in 5 of the 6 top performing path
ways, and outperformed 18 expert determined pathways selected based 
on prior knowledge, demonstrating the power of a data-driven design 
approach for cases in which design choices are numerous. 

While the study by Karim et al. only reported 1 DBTL cycle, multiple 
cycles would have likely resulted in even better production pathways, 
and also provided more data instances for model training. Indeed, the 
neural network of 5–15 hidden layers developed by Karim et al. was 
relatively small compared to state-of-the-art deep neural networks, but 
this design was limited by having only 120 instances (pathway designs) 
to train on. If more data were to become available through more DBTL 
cycles, the neural network could have been made more complex by 
expanding its depth (hundreds of hidden layers), which would improve 
prediction performance (Fig. 4). This improved performance, however, 
comes at a cost: as the number of layers increases, the time to train the 
network (i.e. learning model weights and parameters) increases 
considerably. Moreover, the dense hidden layers of deep neural net
works render them very difficult to interpret and infer possible mecha
nisms from. Hence a significant research thrust in machine learning 
involves new approaches to make models “explainable” (see Section 5.3) 
(Gunning, 2016; Gunning et al., 2019). The use of only 1–2 DBTL cycles 

seems to be the most common case in published projects (Denby et al., 
2018; Alonso-Gutierrez et al., 2015; Opgenorth et al., 2019; Zhang et al., 
2020). In our experience, this happens not because more DBTL cycles are 
not expected to be useful, but because results from a single DBTL cycle 
are often enough for a publication. Often, in the academic world, there is 
little incentive (or resources) to continue further. 

2.3. Requirements for machine learning in metabolic engineering 

Here we provide a practical guide on the immediate prerequisites to 
applying machine learning to metabolic engineering, in the next section 
we will discuss some practical considerations for experimental design 
once the machine learning project is in progress, and, in section 5.1, we 
discuss long term hurdles for the development of the discipline as a 
whole. In essence, four requirements need to be aligned for a successful 
application: data, algorithms, computing power and an interdisciplinary 
environment. Each of them is critical for a real impact. 

Data needs to be abundant, non-sparse, high quality, and well 
organized. Training data needs to be abundant because machine 
learning algorithms depend critically on training data to be predictive. 
There is no prior biological knowledge embedded in them. In general, 
the more training data, the more accurate the algorithm predictions will 
be. Data augmentation (see section 2.2.1) can certainly help, and should 
be routinely used in metabolic engineering due to the scarcity of large 
data sets, but it is no substitute for experimental data. There is, however, 
no way to know a priori how much data will be enough. Different 
problems present different difficulty levels to being “learnt” (Radi
vojević et al., 2020), and this difficulty level can only be assessed 
empirically. A scaling plot of predictive accuracy vs. instances can be 
very helpful in this regard. Training data can be abundant but still 
sparse, depending on the phase space (Fig. 9) considered. A total of a 
hundred instances can be enough if only two input features are 
considered, or completely insufficient if a thousand input features are 
considered. The “curse of dimensionality” implies that the amount of 
data needed to support results in a statistically sound and reliable 
fashion often grows exponentially with the dimensionality (Fig. 4). The 
data must be high-quality in the sense that it must avoid biases due to 
inconsistent protocols and provide quantification for repeatability (see 
section 2.4). Both goals can be systematically achieved through auto
mation (see section 5.2). Data needs to be well organized, following 
standards and ontologies, and must include the corresponding metadata 
(see section 2.4). The alternative is that data analysts will spend 50–80% 
of their effort organizing the data and metadata for analysis, mining 
their efforts (Lohr, 2014). Since data analysts might be the most effective 
effort multiplier in your team (Nielsen and Keasling, 2016), and possibly 
the most expensive (Metz, 2018), it is very useful to optimize their effort. 

While there are many machine learning algorithms to choose from 
(Fig. 10), there is no clear best algorithm for every situation. Indeed 
there is a famous theorem (the no free lunch theorem, NFLT) that proves 
(under some conditions) that no single algorithm is most effective for 
every type of problem (Wolpert, 1996). While the utility of the NFLT for 
machine learning has been cast in doubt (Giraud-Carrier and Provost, 
2005 ), the standard approach remains to try as many algorithms as 
possible and compare their results. In this effort, it is very useful to count 
on libraries that collect a large variety of algorithms and have stan
dardized input, output and other standard procedures (e.g. 
cross-validation). The most popular among them is, without a doubt, 
scikit-learn (Pedregosa et al., 2011), a python library that comprises a 
very wide selection of machine learning methods, is well documented, 
and easy to use (Fig. 10). These features combined with its open source 
nature, and its compatibility with Jupyter notebooks (Kluyver, 2016), 
which facilitate reproducibility and communication, make it our top 
recommendation for beginners. Furthermore, the open source nature 
and wide use of scikit-learn means that there are several tools that 
leverage it to combine and test methods. Tree-based pipeline optimi
zation tool (TPOT), for example, automatically combines all the 
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available algorithms and preprocessing steps in scikit-learn to choose 
the best option (Olson et al., 2016). Another example is the Automated 
Recommendation Tool (ART), which leverages scikit-learn, ensemble 
modeling, and bayesian inference to provide uncertainty quantification 
for predictions (Radivojević et al., 2020). A proprietary alternative is to 
use Matlab, for which a machine learning toolbox is available (Ciaburro, 
2017), with possible educational discounts. For artificial neural net
works, the best supported (and free) frameworks are TensorFlow and 
Pytorch, backed by Google and Facebook respectively. Keras, a frame
work focused on providing a simple interface for neural networks, is 
now the official high-level front-end for TensorFlow (Géron, 2019). 
Keras has its own hyperparameter tuner, Keras Tuner (O’Malley et al., 
2019), and an extremely simple interface for DL with Keras and Ten
sorFlow, AutoKeras (Jin et al., 2019). 

Computation is another key element, particularly for large amounts 
of data. Whereas the libraries above (Scikit-learn, Matlab toolbox, 
Tensorflow, Pytorch) can be run on a standard laptop (e.g. 2018 Mac
book Pro, 3.5 Ghz Intel Core i7, 16 GB RAM), as more training data is 
added this may be insufficient. This is particularly the case for deep 
neural networks using Tensorflow or Pytorch, which will benefit from 
the parallelization obtained through Graphics Processing Units (GPUs). 
The need to scale up all these Python frameworks for high performance 
computing (HPC) or deployment on cloud computing environments (e.g. 

Amazon EC2, Microsoft Azure, and Google’s Cloud Platform) has pro
moted the development of several parallel and distributed computing 
backends for data analysis and machine learning, such as Ray, Spark, 
and Dask (Rocklin, 2015). Furthermore, as the general applicability of 
AI has become more evident, new processor architectures are being 
created specifically for neural network machine learning, including 
Google’s Tensor Processing Unit (TPU), Nvidia’s V100 and A100, 
Graphcore’s Intelligence Processing Unit (IPU), and a variety of 
FPGA-based solutions. 

Since very few people master both machine learning and metabolic 
engineering, interdisciplinary collaborations are truly necessary. Ma
chine learning practitioners and metabolic engineers are trained very 
differently, however, and this can produce significant friction (see sec
tion 5.1). Both disciplines profess different cultures, which are reflected 
in how they solve problems, but also which problems are prioritized. It 
is, hence, very important to foster an inclusive work environment that 
integrates and values contributors with very different skills, and does 
not penalize knowledge gaps. It is also important to be very clear about 
the interfaces: which exchanges (e.g., data, designs, predictions) are 
expected, and when, in order for both sides to be effective. 

Fig. 8. Deep Learning involves artificial neural networks many layers deep. (A) Deep learning methods have been shown to improve performance with the amount of 
training data when other methods plateau (B) This is Alexnet, one of the first ANNs that leveraged the network depth to improve performance and win the ImageNet 
image classification contest in 2012. Deep networks lower the amount of parameters by sparsely using fully connected layers, which require many parameters. The 
first five layers in Alexnet are convolutional layers (Rawat and Wang, 2017), which only take input from a limited number of cells in the previous layer. Many 
architectures are possible for deep learning, and finding the optimal one is more of an art than a science. See Lecun et al. (LeCun et al., 2015) for more details. 
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2.4. Practical considerations for implementing machine learning 

As in the case of a genetic selection or screen, machine learning re
quires careful experimental planning to make it effective. An experi
mental design that ignores its basic assumptions (e.g., instances are 
independent and identically distributed) will result in a random walk 
over possible designs with the same (or even worse) results as a trial- 
and-error approach. 

Here, we offer a succinct list of recommendations to consider when 
planning to use machine learning to guide bioengineering: 

● Choose the right objective/response. When a response for the al
gorithm is chosen, you are entering a Faustian bargain with your 
algorithm: it will try to optimize it to the detriment of everything else 
(Riley 2019) . For example, setting final titer as the response might 
provide high titers in the end for a production strain, but at rates so 
slow that the result is of little practical use. In the case of Karim et al., 
(see section 2.2.2), the response was a carefully selected mixture of 
titer, rate, and enzyme expression precisely for this reason. Deciding 
on the right response is a bit of an art, and less trivial than often 
assumed. Be careful what you ask the algorithm for, because you may 
get it!  

● Choose inputs that truly predict your response. Performing small, 
directed experiments in the lab to verify that the response of interest 
(e.g. a phenotype) is affected by a given input (e.g. a treatment) can 
save a significant amount of time and headaches later in the DBTL 
cycle, by limiting the number of inputs (and the overall complexity of 
the model) to terms that matter. Omitting this step might give rise to 
a frustrating chase of a red herring in the form of statistical noise, or 
cause serious challenges to the interpretability of the model.  

● Choose actionable inputs that can be measured. The machine 
learning process will require you to change your inputs in order to 
achieve the desired goal (e.g. increase production). Hence, these 
inputs need to be experiment variables that can be easily manipu
lated. Since you will need to assess whether you indeed reached the 
recommended targets, it is highly desirable that these inputs can be 

Fig. 9. The input phase space. It is a multidimensional space composed by all 
possible configurations of a system. Each axis represents, for example, the 
expression level for a protein pi (or any other variable such as nucleobase for 
each position, transcription level, promoter, fermentation condition etc.) 
required to specify the input state of a system. Hence, a point in the space (blue) 
corresponds to a unique possible state of the system, consisting of e.g. expres
sion levels for each protein in the pathway considered. The volume of this 
space, representing all possible states, grows exponentially with the number of 
variables. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 10. The scikit-learn library is our top recommendation for machine learning beginners. This library provides a wide range of supervised and unsupervised 
algorithms, as well as practical advice on how to choose among them. Image obtained from scikit-learn github repository (https://github.com/scikit-learn/scikit 
-learn, Pedregosa et al., 2011). 

C.E. Lawson et al.                                                                                                                                                                                                                              

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn


Metabolic Engineering 63 (2021) 34–60

44

easily measured. For example, it is generally better to use as inputs 
promoter (Zhang et al., 2020) or enzyme choices (Karim et al., 2020), 
rather than protein levels (Opgenorth et al., 2019). Promoter or 
enzyme choices are entirely under the metabolic engineer’s control, 
and their effects on expression may be verified via sequencing; 
whereas certain target protein levels may be difficult to reach, and 
usually require specialized mass spectrometry methods to verify.  

● Choose very carefully how many experiment variables you 
would like to explore. Choosing too many variables (i.e. input 
features, Fig. 3) can make the corresponding phase space too large 
for machine learning to explore in a reasonable amount of DBTL 
cycles. Choosing too few variables might mean missing important 
system configurations (e.g. if protein X is not chosen and it needs to 
be downregulated to improve production, it will be impossible to 
find the optimum). As a very crude rule of thumb, you should budget 
for around at least 100 instances per 5–10 variables. This, of course, 
depends on the difficulty presented by the problem being learnt: 
more difficult problems will need more instances per variable, 
whereas easier problems will require less instances per variable.  

● Verify that your experiment variables can be independently 
acted upon. Whole-operonic effects can make this unexpectedly 
difficult (Opgenorth et al., 2019). For example, if recommendations 
require protein A concentration to be increased three-fold and pro
tein B to be decreased by a factor of two to improve production, but a 
strong promoter for protein A also produces an increase in protein B, 
it will be difficult to reach the target protein profile. Hence, modular 
pathway designs (Boock et al., 2015) that ensure that the full input 
phase space can be fully explored are highly recommended. Sys
tematic part characterization involving large promoter libraries with 
a variety of tested relative strengths are a fundamental tool in this 
endeavor.  

● Design your experiment to start with ~100 instances for the 
initial DBTL cycle. Although there are examples of success stories 
with less than a hundred instances as starting points (Radivojević 
et al., 2020), this outcome cannot be guaranteed. Actual success 
depends on the complexity of the problem (Radivojević et al., 2020), 
and this complexity can only be gauged by testing predictive accu
racy as data sets increase. By starting with ~100 instances, one en
sures some progress even if predictions are not accurate: this amount 
of instances goes a long way to ensure statistical convergence. The 
alternative is a non-predictive model and little understanding 
whether the problem is lack of data (instances), or other design 
problems (Opgenorth et al., 2019). Consider automating as much of 
your process as possible so as to guarantee enough instances. This 
automation may seem an unnecessary hassle, but it will pay off in the 
long run.  

● Sample the initial phase space as widely as possible. Ensure that 
you cover wide ranges for both input and response variables. Strive 
to include both bad (e.g. low production) and intermediate results as 
well as good ones (e.g. high production), since this is the only way 
that the algorithms can learn to distinguish the inputs needed to 
reach any of these regimes. The Latin Hypercube (McKay et al., 
1979) is a good choice to choose starting points, but other options are 
also available.  

● Consider uncertainty, as well as predicted response, when 
choosing next steps. As the need to quantify prediction uncertainty 
becomes more recognized in the biological sciences (Begoli et al., 
2019), more algorithms provide it along with response predictions 
(Radivojević et al., 2020). Using this information can improve the 
whole process. Choose some recommendations with the lowest 
possible uncertainty even if the predicted outcome is not so desirable 
(e.g. low production), so as to establish trust in the approach (see 
sociological hurdles in section 5.1). Choose some recommendations 
with large uncertainty even if the predicted outcome is not desirable 
so as not to miss unexpected opportunities. In addition, to obtain an 
empirical view of how uncertainty in the data affects the accuracy of 

predictions, it may be instructive to create simulated, in silico 
“ground truth” data sets displaying different levels of noise in order 
to test the performance of the machine learning algorithm.  

● Avoid biases created through inconsistent protocols and beware 
of hidden variables. Machine learning algorithms learn to map an 
input to a response (Fig. 3). If different DBTL cycles produce different 
results for reasons that are not reflected in the input (hidden vari
ables (Riley 2019)), the algorithms will provide poor predictions. 
Such uncontrolled variables can easily arise in biological data due to 
lab temperature or climate fluctuations, reagent batch differences, 
undetected culture mutations, “edge effects” in plate-based assays, 
and equipment drift. These effects should be assessed and eliminated 
as part of the experimental design, and is one of the key topics of 
communication for bench and computational scientists to empower 
downstream data analysis and predictions. Machine learning can 
also help by performing simple checks: if an algorithm can predict 
which well or batch sample the data came from, that means they 
unduly influence the response. Lack of repeatability is the main 
stumbling block of machine learning.  

● Add experimental controls to test for repeatability. Since 
ensuring repeatability is among the top requirements for machine 
learning to be successful, it is important to test and quantify it often. 
Batch, instrument, and operator effects are often the first principal 
component of data. These effects can be detected by including a few 
controls of known response in every experiment (e.g., 2–3 base 
strains in every DBTL cycle). While this approach consumes valuable 
analytical resources, it ensures that the data can be trusted and does 
not need to be discarded, saving substantial labor during modeling 
and analysis.  

● Plan for several DBTL cycles. Machine learning algorithms shine 
when they can dynamically probe your system, since they are 
designed to learn from data interactively. While results can be ob
tained using two DBTL cycles, they are not comparable to what >5 
cycles can provide (Radivojević et al., 2020). If only a limited budget 
of, e.g. 100 instances, is available, it is better to start with a strong 
first cycle and several weaker ones (e.g. 40 instances for cycle 1, then 
six 10 instance cycles) than the usual two DBTL cycle study (e.g. 60 
instances for first cycle, 40 instances for the second one).  

● Standardize your data and metadata. Taking machine learning for 
metabolic engineering seriously requires large amounts of high 
quality data. Hence, it is advisable to store it in a standardized 
manner. There are a variety of data repositories available for this 
purpose: e.g., the Experiment Data Depot (Morrell et al., 2017), the 
Inventory of Composable Elements (ICE) (Ham et al., 2012), 
DICOM-SB (Sainz de Murieta et al., 2016), SynBioHub (McLaughlin 
et al., 2018), ProteomeXchange (Vizcaíno et al., 2014), MetaboLights 
(Haug et al., 2013), BioGraph-IIn (Gonzalez-Beltran et al., 2013), the 
Nature Scientific Data journal (“Open for business,” 2017), to name a 
few. Moreover, a labeled data set of high quality is a significant 
resource for the community, and is more likely to be cited.  

● Be careful about how you split your data for cross-validation. 
Cross-validation of your model (Fig. 3), assumes data sets are inde
pendent and identically distributed (iid). This assumption is basic for 
machine learning, and presumes that both validation and training 
sets stem from the same generative processes and have no memory of 
past generated samples. However, it can be violated in practice due 
to temporal effects on biological systems or group effects during 
sample processing (Riley 2019). In these cases, alternatives to 
random splitting need to be considered. Sheridan (2013), for 
example, showed that randomly splitting compound libraries used 
for drug discovery overestimated their model’s ability to successfully 
predict drug candidates. The reason for this difference is that com
pounds added to the public record at particular dates shared higher 
structural similarity, resulting in models that had already “seen” 
compounds in the test set when randomly split. Similar consider
ations need to be made when sample generation occurs in a biased 
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manner, which is quite common in biological experiments. For 
example, “batch effects” can be avoided by splitting the data first by 
group (e.g. each batch) to ensure the same group is not represented 
in both testing and training sets (see scikit-learn group k-fold). Do 
only worry about this effect if you have a large data set (>100 
instances). 

Perhaps the best way to get familiar with machine learning, and its 
potential and limitations, is to experiment with it in a tutorial. The 
recently published Automated Recommendation Tool (Radivojević 
et al., 2020) includes three synthetic data sets, three real data sets and a 
software package that can be used for this purpose. Furthermore, some 
of these cases are explained in detail in several Jupyter notebooks 
contained in the github repository (https://github.com/JBEI/ART/tree/ 
master/notebooks), and can be used as tutorials. 

3. Applications of machine learning to metabolic engineering 

Although application of machine learning in metabolic engineering 
is nascent, early studies have already shown its potential use for accel
erating bioengineering. Here, we highlight examples where machine 
learning is being used to improve different stages of the metabolic en
gineering development cycle: gene annotation and pathway design, 
pathway optimization, pathway building, performance testing, and 
production scale-up (Table 1). We focus on prime examples that best 
epitomize the potential of machine learning in metabolic engineering, 
rather than an exhaustive list of applications. The reason for this deci
sion is that this list is quickly growing and might be outdated soon, and 
there are recent reviews on the topic that provide that information (Kim 
et al., 2019; Presnell and Alper, 2019; Volk et al., 2020). We also discuss 
key challenges and opportunities when applying machine learning for 
metabolic engineering, with particular focus on practices that could 
formalize data-driven approaches. 

3.1. Machine learning for design 

The goal of metabolic engineering design is to develop DNA parts 
and assembly instructions to synthesize metabolic pathways and pro
duce a desired molecule (Nielsen and Keasling, 2016; Woolston et al., 
2013). This requires completion of several tasks, including gene anno
tation, pathway reconstruction and design, as well as metabolic flux 
optimization, which currently rely heavily on domain expertise and 
enjoy little standardization (Nielsen and Keasling, 2016). Application of 
machine learning can improve the accuracy and speed of these tasks, 
offering a standardized approach that fully leverages experimental data. 

3.1.1. Pathway reconstruction and design 
Locating and annotating protein encoding genes in a genome 

sequence is essential for metabolic pathway reconstruction and design. 
This is conventionally done bioinformatically, for example using Hidden 
Markov Models (HMMs) (Finn et al., 2011; Kelley et al., 2012; Yoon, 
2009). Initially, genes are identified in a genome by searching for known 
protein coding signatures (e.g. Shine-Dalgarno sequences), and this is 
followed by annotation based on sequence homology searches against a 
database of previously characterized proteins. More recently, however, 
deep learning approaches have been used to identify and functionally 
annotate protein sequences in genomes by leveraging large high-quality 
experimental data sets (Armenteros et al., 2019; Clauwaert et al., 2019; 
Ryu et al., 2019). DeepRibo, for example, uses high-throughput ribo
some profiling coverage signals and candidate open reading frame se
quences (input features) to train deep neural networks to delineate 
expressed open reading frames (response is part of predicted ORF or not 
for every nucleotide) (Clauwaert et al., 2019). This approach showed 
more robust performance compared to a similar tool, REPARATION 
(Ndah et al., 2017), that uses a random forest classifier instead of deep 
neural networks. DeepRibo also improved prediction of protein coding 

sequences in different bacteria (e.g. Escherichia coli and Streptomyces 
coelicolor) compared to RefSeq annotations, including higher identifi
cation of novel small open reading frames commonly missed by 
sequence alignment algorithms. Another example is DeepEC, which 
takes a protein sequence as input and predicts enzyme commission (EC) 
numbers as output with high precision and throughput using deep 
neural networks (Ryu et al., 2019). A data set containing 1,388,606 
expert curated reference protein sequences and 4669 enzyme commis
sion numbers (Swiss-Prot (Bairoch and Apweiler, 2000) and TrEMBL 
(UniProt Consortium, 2015) data sets) was used to train the deep neural 
networks, which improved EC number prediction accuracy and speed 
compared to 5 alternative EC number predictions tools, including Cat
Fam (Yu et al., 2009), DETECT v2 (Nursimulu et al., 2018), ECPred 
(Dalkiran et al., 2018), EFICAz2.5 (Kumar and Skolnick, 2012), and 
PRIAM (Claudel-Renard et al., 2003). DeepEC was also shown to be 
more sensitive in predicting the effects of protein sequence domain and 
binding site mutations compared to these tools, which could improve the 
accuracy of annotating homologous proteins that have mutations with 
previously unknown effects on function (e.g. from metagenomic data 
sets). 

The design of metabolic pathways involves identifying a series of 
chemical reactions that produce a desired product from a starting sub
strate, and selecting different enzymes that catalyze each reaction. 
While nature has evolved many pathways for producing diverse mole
cules, the known and characterized biochemical pathways can still be 
insufficient to produce certain molecules of interest, especially non- 
natural compounds or secondary metabolites. Therefore, retrosyn
thesis methods that start with a desired chemical and suggest a set of 
chemical reactions that could produce it from cellular metabolite pre
cursors are being pursued to design new metabolic pathways (Lin et al., 
2019; Lee et al., 2019). The latest and most sophisticated of these 
methods use generalized reaction rules to describe possible biochemical 
transformations (Delépine et al., 2018; Kumar et al., 2018). However, 
the number of possible reaction combinations is intractable since it 
grows combinatorially with the number of reactions. Choosing the right 
reaction combination is a non-trivial problem, which is typically tackled 
via optimization or heuristic methods. A possible solution to this search 
problem comes from solving the same problem in organic synthesis, 
through the use of deep neural networks (Segler et al., 2018). Segler 
et al. preprocessed 12.4 million reaction rules from the Reaxys chemistry 
database to train three deep neural networks implemented within a 
Monte Carlo tree search (heuristic search algorithm used in decision 
making) to discover retrosynthesis routes for small molecules. This deep 
learning approach found pathways for twice as many molecules, thirty 
times faster than traditional computer-aided searches (Segler et al., 
2018). The predicted synthesis routes better adhered to known chemical 
principles than traditional computer-aided searches and could not be 
differentiated by expert organic chemists compared to synthesis routes 
taken from the literature, highlighting the potential of deep learning to 
be applied for metabolic retrosynthesis (or retrobiosynthesis). Indeed, a 
similar Monte Carlo Tree Search method has recently been extended to 
predict synthetic pathways within biological systems (RetroPath RL), 
enabling systematic pathways design for metabolic engineering (Koch 
et al., 2020). 

Pathways designed via retrosynthesis still face the difficult challenge 
of finding enzymes for novel biochemical reactions, for which no 
enzyme is known. In this case, the solution involves enzymes that may 
catalyze the novel reaction through enzyme promiscuity, or new enzyme 
functions must be designed or evolved that perform the desired chem
istry. While chemoinformatic techniques (e.g. density functional theory, 
DFT, and partitioned quantum mechanics and molecular mechanics, 
QM/QM) can be used to predict the interaction between metabolites and 
proteins in silico (Alderson et al., 2012), these techniques are compu
tationally intensive and require substantial domain expertise. Therefore, 
the task of searching for promiscuous enzymes is increasingly being 
performed using more general and computationally efficient techniques 
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Table 1 
Machine learning applications for metabolic engineering.  

Task Application Input features Algorithm Response Ref. 

Identify ORF Identify signal peptide 
(SignalP 5.0) 

20,758 protein amino acid sequence deep RNN presence or absence of 
signal peptide 

Armenteros et al. 
(2019) 

ORF prediction 
(DeepRibo) 

626,708 candidate ORF DNA 
sequences and ribo-seq signal 
(alignment file) from 7 species 

RNN and CNN translation initiation site 
and translated open 
reading frames 

Clauwaert et al. 
(2019) 

ORF prediction 
(REPARATION) 

67,158 candidate ORF DNA sequences 
and ribo-seq signal (alignment file) 
from 4 species 

random forest translation initiation site 
and translated open 
reading frames 

Ndah et al. (2017) 

Annotate ORF Annotate enzyme 
(DeepEC) 

1,388,606 protein sequences and 
4669 EC numbers 

CNN enzyme commission (EC) 
numbers 

Ryu et al. (2019) 

Annotate enzyme 
(ECPred) 

11,018 protein amino acid sequences, 
subsequence extraction and peptide 
physicochemical properties 

ensemble classifier (BLAST-kNN, 
Pepstats-SVM and SPMap) 

EC numbers Dalkiran et al. (2018) 

Annotate enzyme 
(DEEPre) 

22,168 protein amino acid sequence CNN and RNN EC numbers Le et al., 2018 

Annotate enzyme 
(EnzyNet) 

63,558 protein sequences represented 
as voxel-based protein spatial structure 

CNN EC numbers Amidi et al., 2018 

Enzyme & 
Pathway 
design 

Automated enzyme 
search 

10,951 compounds and 6556 
reactions. Features represented as 
reaction signature and enzyme amino 
acid sequence 

support vector machines positive or negative 
enzyme-reaction pairs 

Faulon et al. (2008) 

Automated enzyme 
search 

7318 reactions and 9001 enzymes. 
Features represented as reaction 
signature and enzyme amino acid 
sequence pair 

gaussian process model positive or negative 
enzyme-reaction pairs, 
and 

Mellor et al. (2016) 

Michaelis constant KM 
(substrate affinity) 

Directed evolution 805 protein amino acid sequence 
variants 

linear, kernel, neural network, and 
ensemble methods 

protein fitness Wu et al. (2019) 

Directed evolution 585,199 protein amino acid sequence 
variants 

partial least-squares linear 
regression 

bacterial halohydrin 
dehalogenase 
productivity 

Fox et al. (2007) 

and multivariate optimization 
Directed evolution 218 protein amino acid sequence 

variants 
gaussian process fluorescent protein color Saito et al. (2018) 

Directed evolution 4716 protein amino acid sequence 
variants 

gaussian process protein thermostability Romero et al. (2013) 

Rational protein 
design (UniRep) 

~24 millon protein amino acid 
sequence 

RNN protein feature 
representation 

Alley et al. (2019) 

Rational protein 
design 

96 protein amino acid sequence 
variants (UniRep encoding) 

UniRep pretraining + linear 
regression (ridge, lasso-lars, 
ensemble) 

protein fitness Biswas et al. (2020) 

Rational protein 
design (BioSeqVAE) 

protein amino acid sequence residual neural networks protein representation Costello and Garcia 
Martin, 2019 

Synthetic pathway 
design (RetroPath RL) 

N/A Monte Carlo Tree Search 
reinforcement learning 

metabolic pathway Koch et al. (2020) 

Pathway 
optimization 

Promoter design 675,000 constitutive and 327,000 
inducible promoter sequences 

CNN gene expression activity Kotopka and Smolke, 
2020 

Promoter design 100 mutated promoter and RBS 
sequences 

neural network promoter strength Meng et al. (2013) 

Promoter design promoter amino acid sequence neural network promoter strength Tunney et al., 2018 
Riboswitch design biophysical properties (entropy, stem 

melting temperature, GC content, 
length, free energy, etc) from 96 
riboswitch aptamer sequences 

Random forest and CNN dynamic range of gene 
expression between ON/ 
OFF states 

Groher et al. (2019) 

Plasmid design 
(SelProm) 

120 plasmid sequences partial least-squares regression promoter strength, 
induction time, inducer 
concentration 

Jervis et al. (2019a) 

multi-gene pathway 
optimization (MiYA) 

24 strains, different promoter 
combinations 

neural network β-carotene and violacein 
production 

Zhou et al. (2018) 

multi-gene pathway 
optimization 

156 strains, different RBS sequences support vector machines and 
neural network 

limonene production titer Jervis et al. (2019b) 

multi-gene pathway 
optimization 
(BioAutomata) 

136 strains, different promoter and 
RBS sequences 

gaussian process and Bayesian 
optimization 

lycopene production titer HamediRad et al. 
(2019) 

(Automated 
Recommendation Tool 
(ART) 

promoter combinations, multi-omics 
data, etc 

Bayesian ensemble model chemical production titer, 
rate, yield 

Radivojević et al. 
(2020) 

multi-gene pathway 
optimization 

250 strains, different promoter 
combinations 

probabilistic ensemble model 
(ART) and Bayesian optimization 
(EVOLVE algorithm) 

tryptophan production 
titer 

Zhang et al. (2020) 

Multi-gene Pathway 
optimization 

12 strains, 4 biological replicates per 
strain 

Ensemble model (random forest, 
polynomial, multilayer 
perceptron, TPOT meta-learner) 

Dodecanol production Opgenorth et al. 
(2019) 

CRISPR sgRNA Scorer 2.0, 
CRISPR activity 

430 sgRNA sequences support vector machine sgRNA on-target activity Chari et al. (2017) 

(continued on next page) 
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from machine learning. For example, given a reaction and enzyme pair 
instance, Support Vector Machines (Faulon et al., 2008) and Gaussian 
Processes (Mellor et al., 2016) have been developed to predict whether 
the enzyme catalyzes the reaction, with the latter model having the 
added benefit of providing uncertainty quantification. These models 
predict positive or negative enzyme reaction pairs from protein se
quences (e.g. K-mers) and reaction signatures (e.g. functional groups, 
chemical transformation properties) (Carbonell and Faulon, 2010) by 
learning patterns about promiscuous enzyme activities through training. 
They can also be applied to predict substrate affinity for proteins (Km 
values) (Mellor et al., 2016), an important kinetic parameter for deter
mining enzyme activity, which is difficult and time consuming to mea
sure experimentally. This is critical for pathway design as sequences 
with the most desirable kinetic properties can be selected when multiple 
candidates catalyzing a given reaction are available. 

In the case that no enzyme can be found for a target reaction, new 
enzymes may be designed or discovered through protein engineering. A 
common laboratory method for protein engineering is directed evolu
tion, where beneficial mutations accumulate in a protein through iter
ative experimental rounds of mutation and selection until the desired 
protein function is achieved (Yang et al., 2019). In essence, a series of 

local searches (via sequence mutation and screening) are performed on 
an enormous and highly complex functional landscape with the hope of 
finding a local optima (i.e. protein variant with desired properties). 
However, experimental approaches can only explore an infinitesimal 
part of this landscape and computational approaches are needed to 
guide experimental efforts. Machine learning can be used to guide 
directed evolution and decrease the number of experimental iterations 
needed to obtain a protein with the desired function. This is achieved by 
leveraging previous screening data to learn a protein’s 
sequence-function landscape and predict new sequence libraries that 
contain variants with higher fitness. For example, instead of experi
mentally performing sequential single point mutations or recombining 
mutations found in best variants (common directed evolution ap
proaches), Wu et al. (2019) trained a machine learning model to perform 
in silico evolution rounds that ranked new protein variants by predicted 
fitness for experimental testing. Instead of relying on a single machine 
learning method, multiple models (linear, kernel, neural network, and 
ensemble) were trained in parallel, and the ones showing the highest 
accuracy were used to perform in silico evolution rounds (Wu et al., 
2019). This enabled deeper exploration of the possible variant func
tional landscape, resulting in the successful evolution of an 

Table 1 (continued ) 

Task Application Input features Algorithm Response Ref. 

Azimuth, CRISPR 
activity 

4390 sgRNA sequences support vector machine with 
logistical regression 

sgRNA on-target and off- 
target activity 

Doench et al. (2016) 

Seq-DeepCpf1, 
CRISPR activity 

16,292 sgRNA sequences CNN sgRNA on-target activity Kim et al. (2018) 

Elevation, CRISPR 
activity 

299,387 sgRNA–target pairs gradient boosted regression trees sgRNA off-target activity Listgarten et al. (2018) 

CRISPR activity 294,534 sgRNA-target pairs CNN and deep feedforward neural 
network 

sgRNA off-target activity Lin and Wong (2018) 

DeepCRISPR, CRISPR 
activity 

0.68 billion sgRNA sequences 
(unlabeled pre-training data) 
~160,000 sgRNA-target pairs (off- 
target data sets) ~200,000 sgRNA seq 
uences (on-target data set) 

deep convolutional denoising 
neural network and CNN 

sgRNA on-target and off- 
target activity 

Chuai et al. (2018) 

Outlier 
Detection 

Novelty and Outlier 
Detection 

Any training data set isolation forest, local outlier 
factor, one-class SVM, and elliptic 
envelope 

outlier identification https://scikit-learn.or 
g/stable/modules/out 
lier_detection.html 

Omics Data 
Processing 

Prosit, peptide 
identification 

550,000 tryptic peptides bi-directional RNN peptide chromatographic 
retention time and 
tandem mass spectra 

Gessulat et al. (2019) 

Peakonly, metabolite 
peak detection 

4000 regions of interest, labeled as 
noise, one or more peaks, or uncertain 
peak 

CNN peak detection +
integration (peak area) 

Melnikov et al. (2020) 

Bioprocess 
Control & 
optimization 

Bioprocess 
optimization 

69 fed-batch fermentations, 13 process 
features (fermentation conditions, 
inoculum conditions, media variables) 

three-step optimization method 
using decision trees, neural 
network, and hybrid genetic 
algorithm 

maximum cell 
concentration, product 
concentration, and 
productivity 

Coleman et al. (2003) 

Bioprocess 
optimization 

25 fed-batch fermentations, 11 process 
features (temperature, induction 
strength, growth rate, process 
variables) + spectroscopic information 

data preprocessing, random forest 
and neural network 

cell dry mass, 
recombinant soluble 
protein conc., inclusion 
bodies conc. 

Melcher (2015) 

Bioprocess 
optimization 

27 batch fermentations, 7 process 
features (time, pH, temperature, kLa, 
biomass, xylose, glycerol) 

regression and neural network 
coupled to genetic algorithm for 
optimization 

xylitol production Pappu and Gummadi 
(2017) 

Bioprocess control & 
real-time optimization 

continuous bioreactor, 24 h duration 
with measurement/action every 5 min 

Neural network fitted Q-learning 
algorithm (reinforcement 
learning) 

control species biomass 
ratio; maximize product 
yield 

Treloar et al. (2020) 

Process control 600 temperature measurement/action 
timesteps (episodes) 

Model Predictive Control (MPC) 
guided deep deterministic policy 
gradient (reinforcement learning). 
Policy parameterized by neural 
network 

Reactor (CSTR) 
temperature control 

Xie et al., 2020 

Real-time process 
optimization 

500 measurement/action episodes Policy gradient parameterized by a 
recurrent neural network. Transfer 
learning from offline training on 
mechanistic model 

Maximize product yield 
(phycocyanin) 

Petsagkourakis et al., 
2020 

Process control 21 measurement/action episodes multi-step action Q-learning 
controller based on fuzzy k 
selector 

ethanol concentration 
control 

Li et al., 2011 

Notes: RNN = recurrent neural network; CNN = convolutional neural network. 
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immunoglobulin-binding protein and a putative nitric oxide dioxyge
nase from Rhodothermus marinus. ML-assisted directed evolution has also 
been used to maximize enzyme productivity (Fox et al., 2007), change 
the color of fluorescent proteins (Saito et al., 2018), and optimize pro
tein thermostability (Romero et al., 2013) making it a promising 
approach for searching large sequence-function spaces in an efficient 
manner for proteins variants with desired properties. 

In addition to directed evolution, deep learning has also recently 
been applied for the rational design of proteins (Alley et al., 2019; Bis
was et al., 2020; Costello and Garcia Martin, 2019). For example, Alley 
et al. (2019) developed UniRep, which uses recurrent neural networks to 
learn an internal statistical representation of proteins that contained 
physicochemical, organism, secondary structure, evolutionary and 
functional information, by training on 24 million UniRef50 (Suzek et al., 
2015) amino acid sequences (instances). The resulting representation 
was applied to train models (random forest or sparse linear model) using 
UniRep encoded proteins that predicted the stability of a large collection 
of de novo designed proteins and also the functional consequence of 
single point mutations on wild-type proteins. UniRep encoding was also 
used to optimize the function of two fundamentally different proteins (to 
wild-type), a eukaryotic green fluorescent protein from Aequorea victo
ria, and a prokaryotic β-lactam hydrolyzing enzyme from Escherichia 
coli, highlighting the generalizability of this approach for rational pro
tein engineering (Biswas et al., 2020). Other generative models based on 
deep learning have been used to suggest protein sequences with desired 
functionality and location (Costello and Garcia Martin, 2019). 

3.1.2. Pathway optimization 
Following pathway design, metabolic flux optimization is required to 

maximize product titers, rates, and yields (TRY). In this endeavor, ma
chine learning provides an orthogonal approach to computational ap
proaches leveraging flux analysis and genome-scale models, which have 
been successfully used in the past to increase TRY (Maia et al., 2016). 
The combination of both approaches has the potential to be more 
effective than each of them separately (see section 4 for a discussion). 

A common approach to increase TRY involves fine tuning gene 
expression through the modification of promoter and ribosome binding 
site (RBS) sequences. Despite decades of progress in understanding the 
regulatory mechanisms controlling gene expression (Snyder et al., 
2014), quantitative prediction of gene expression based on sequence 
information remains challenging. While computational models do exist 
to predict gene expression (Leveau and Lindow, 2001; Salis et al., 2009; 
Rhodius and Mutalik, 2010), they rely on a comprehensive under
standing of transcription and translation processes. This knowledge is 
often unavailable, especially for non-model organisms. Therefore, many 
gene expression optimization efforts rely on trial-and-error experi
mental approaches based on promoter and RBS library screening (Choi 
et al., 2019), that also suffer from the large combinatorial space of 
possible sequences. 

Machine learning has also guided the design of promoter and RBS 
sequences in a data-driven manner for improved control of gene 
expression. In particular, neural networks have been used to predict 
gene expression output from input promoter sequences or coding re
gions (Kotopka and Smolke, 2020; Meng et al., 2013; Tunney et al., 
2018). Meng et al. (2013) used a simple neural network trained with 100 
mutated promoter and RBS sequences as inputs to predict promoter 
strength (response). This machine learning model outperformed mech
anistic models based on position weight matrix or thermodynamics 
methods (Leveau and Lindow, 2001; Salis et al., 2009; Rhodius and 
Mutalik, 2010), and was able to optimize heterologous expression of a 
small peptide BmK1 (used in traditional Chinese medicine) and the dxs 
gene involved in the isoprenoid production pathway (Meng et al., 2013). 
Additionally, optimization of promoter strength and inducer concen
tration/time has been achieved using partial least squares regression 
(Jervis et al., 2019a), whereas prediction of riboswitch dynamic range 
from aptamer sequence biophysical properties has been achieved using a 

combination of random forests and neural networks (Groher et al., 
2019). In this latter riboswitch design example, instead of directly using 
sequence information to train the random forest, the authors calculated 
known riboswitch biophysical properties from aptamer sequences (en
tropy, stem melting temperature, GC content, length, free energy, etc.) 
and used these as input features for model training, in order to predict 
switching behavior. This allowed for the interpretation of which input 
features were most important to the model prediction using variable 
importance (e.g. melting temperature was more important than free 
energy), enabling inferences on possible mechanisms. 

More recently, machine learning models have been used to optimize 
multi-step pathways for chemical production (Zhou et al., 2020). For 
example, Zhou et al. (2018) used neural network ensembles to improve a 
5-step pathway for violacein production (pharmaceutical) by selecting 
promoter combinations to tune gene expression. Using an initial training 
set of only 24 strains (out of a possible 500) containing different pro
moters for each gene, the model predicted a new strain that improved 
violacein titer by 2.42-fold after only 1 DBTL iteration. Their ensemble 
approach allowed top producing strains to be predicted from a combi
nation of over 1000 ANN, which improved model accuracy and also 
allowed optimization of violacein based on both titer and purity. In 
another example, Opgenorth et al., (2019) used an ensemble of four 
different models (random forest, polynomial, multilayer perceptron, 
TPOT meta-learner) to optimize a 3-step pathway for dodecanol pro
duction from two DBTL cycles. The model was trained using data 
generated from 12 strains (48 data points total) with different RBS se
quences for each gene, where an optimization step was used to recom
mend improved strain designs to build and test in the second cycle. 
Additional machine learning models have guided the optimization of 
multi-gene pathways, including limonene production in E. coli using 
support vector regression (Jervis et al., 2019b), lycopene synthesis in E. 
coli using gaussian processes (HamediRad et al., 2019), and tryptophan 
production in S. cerevisiae using ensemble models (Zhang et al., 2020). 
Together, these examples highlight the potential of systemically 
leveraging high-throughput strain construction, testing, and machine 
learning to optimize multi-step pathway expression for improving 
product TRY. 

To enable broader use of ML-driven pathway optimization and 
design by the metabolic engineering community, Radivojevic et al. 
(Radivojević et al., 2020) developed the Automated Recommendation 
Tool (ART). ART is specifically tailored to the needs of the metabolic 
engineering field: effective methods for small training data sets and 
uncertainty quantification. ART’s ability to quantify uncertainty enables 
a principled way to explore areas of the phase space that are least 
known, and is of critical importance to gauge the reliability of the rec
ommendations. We expect that further development of tools tailored to 
the specific needs of the field will enable broader application of machine 
learning. 

3.2. Machine learning for building and testing cellular factories 

Machine learning can also be used to improve the tools that build and 
test cellular factories. A major challenge in gene editing using CRISPR- 
Cas technologies, for example, is predicting the on-target knockout ef
ficacy and off-target profile of single-guide RNA (sgRNA) designs. 
Several approaches exist to make these predictions, including 
alignment-based methods (Aach et al., 2014), hypothesis-driven 
methods (Heigwer et al., 2014; Hsu et al., 2013), and classic machine 
learning algorithms (i.e. non-deep learning) (Chari et al., 2017; Doench 
et al., 2016). However, their generalizability has been limited by the 
small size and low quality (high noise) of the training data. 
Higher-throughput screening methods combined with deep learning 
have recently improved the accuracy and generalizability of sgRNA 
activity prediction tools. For example Kim et al (Kim et al., 2018), 
developed DeepCpf1, which predicts on-target knockout efficacy (indel 
frequencies) using deep neural networks trained on large-scale sgRNA 
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(AsCpf1) activity data sets. While previous machine learning tools had 
been trained on medium-scale data (1251 target sequences), the authors 
high-throughput experimental approach generated a data set of indel 
frequencies for over 15,000 target sequence compositions, which was 
sufficient to train deep neural networks. Seq-DeepCpf1 was shown to 
outperform conventional ML-based algorithms, and steadily increased in 
performance as training data size increased, highlighting the value of 
data sets with >10,000 high-quality training instances. Seq-DeepCpf1 
was also extended by considering input features other than target 
sequence composition known to affect sgRNA activity (in this example, 
chromatin accessibility (Jensen et al., 2017)) that further improved 
prediction accuracy and performance on independently collected data 
sets from other cell types (a metric of model generalizability). This 
highlights the value of expanding input features beyond the obvious 
choice. 

In addition to predicting on-target knockout efficacy, the off-target 
profile of sgRNA activity is also important to forecast, in order to pre
vent undesirable perturbations that result in genomic instability or 
functional disruption of otherwise normal genes. This has been per
formed using both regressive models and deep neural networks (List
garten et al., 2018,Lin and Wong, 2018). To combine on-target knockout 
efficacy and off-target profile predictions into one tool Chuai et al (Chuai 
et al., 2018), developed DeepCRISPR. DeepCRISPR uses both an unsu
pervised deep representation learning technique and deep neural net
works to maximize on-target efficacy (high sensitivity), while 
minimizing off-target effects (high specificity). Unsupervised represen
tation learning allows DeepCRISPR to automatically discover the best 
representation of input features from billions of genome-wide unlabeled 
sgRNA sequences, instead of specifying what input features should look 
like (e.g. target sequence composition). This sgRNA representation was 
then used when training a deep neural network using labeled data 
consisting of target sequences and epigenetic information (input fea
tures) to predict both on-target and off-target activities (responses). 
Overall, DeepCRISPR outperformed classic machine learning methods 
and exhibited high generalizability to other cell types, highlighting the 
value of unsupervised representation learning to automate feature 
identification. 

Machine learning methods could also be used to optimize the DNA 
assembly and transformation protocols critical for building engineered 
strains. Although DNA and strain construction has traditionally been 
accomplished empirically (Chan et al., 2013) or guided by rule-of-thumb 
approaches (Engler and Marillonnet, 2014), the ability to assemble and 
test DNA constructs and their transformation efficiencies under different 
conditions in high-throughput could enable data-driven optimization. 
For example, machine learning could leverage comprehensive overhang 
ligase fidelity data sets (Potapov et al., 2018) to expand the identifica
tion of high-fidelity overhang sets for gibson assembly, potentially 
allowing more DNA fragments to be assembled in a single reaction. 
Machine learning could also leverage large data sets that examine 
transformation efficiency under a range of different conditions (e.g. 
media compositions, temperatures, incubation times, electroporation 
conditions, plasmid designs) to improve plasmid delivery and expres
sion. This would be particularly useful for expanding genetic systems to 
a broader range of host organisms that have potential for industrial 
applications (Brophy et al., 2018; Wang et al., 2019). 

Once cell factories are built their performance needs to be tested. Cell 
factories can be assayed for various components such as target mole
cules, transcripts, proteins, and metabolites. The throughput of these 
assays varies greatly from over 10,000 samples per day to fewer than 20 
samples per day (Petzold et al., 2015). Together, the data from these 
assays provide a comprehensive picture of how the engineered cells 
function. However, constructing large numbers of strains followed by 
high-throughput screening often produces noisy data sets arising from 
several factors, including small plate-based formats (e.g. edge effects), 
analytical measurement errors, and laboratory handling errors and 
biases. One way to reduce these errors is manual inspection, but this 

approach is not scalable for large data sets and often not reproducible 
due to person-to-person variability. Therefore, machine learning 
methods that predict outliers and biases from data and perform data 
processing in a standardized and reproducible manner are desirable. For 
this, the use of unsupervised learning algorithms that do not depend on 
“good” and “bad” labeled data examples have been used, such as clus
tering analysis methods (Fig. 6). The sci-kit learn library implemented in 
python has a set of machine learning tools available to perform outlier 
detection, including Isolation Forest, Local Outlier Factor, One-Class 
SVM, and Elliptic Envelope, that can be integrated into workflows to 
provide rapid and robust data quality processing. Additionally, super
vised learning approaches based on deep neural networks have been 
applied to improve multi-omics data processing, for example protein 
identification from tandem mass spectra (Gessulat et al., 2019) and peak 
detection during metabolomic data processing (Melnikov et al., 2020). 
Given the large volume of data generated overtime from lab workflows 
and analytical instruments, further efforts to standardized data pro
cessing using machine learning should result in improved data sets for 
cellular factory design and analysis. 

3.3. Machine learning for scaling up cellular factories 

One of the largest challenges in metabolic engineering is maintaining 
the performance of laboratory strains when scaling up to commercial 
production plants (Chubukov et al., 2016; Wehrs et al., 2019). The 
typical procedure consists of cultivating lab strains in successively larger 
fermentation systems from bench-scale (~250mL-5L), to pilot-scale 
(~20–200L), to full-scale processes (>1000L). Critical to successful 
scale up is understanding how process variables (feed rate, pH, tem
perature, fermentation time, mixing regime, media composition, aera
tion rate, etc.) impact host physiology, cell growth, and product TRY. 
Accordingly, a central task of bioprocess scale-up is to identify and fine 
tune these process variables to maintain robust and stable production of 
the desired chemical. This process is often heuristic, and scale-up pro
cess development is often seen as more of an art than a science (Crater 
and Lievense, 2018; Humphrey, 1998). The fundamental reasons for 
this, is that large scale fermentations are expensive and difficult to 
predict. A fermentation is a massively multiparametric process that can 
be affected by the slightest change in any of the number of factors 
involved in bioreactor conditions. For example, a change in feedstock or 
water source, inoculation volume, or even altitude of the bioreactor can 
impact the progress of the fermentation process. Performing thorough 
fermentation optimization studies in bioreactors is not only expensive, 
but also time consuming. Each 2L bioreactor test can cost over 1000 USD 
and last over a week. Hence, scientific methods are needed to accelerate 
fermentation process development in bioreactors, beyond the current 
artisanal procedure. Fortunately, modern fermentation systems used 
during scale up and at commercial plants contain sophisticated process 
controls, comprehensive data collection and archiving systems, and 
automation, which can be leveraged for training machine learning 
algorithms. 

The use of machine learning to mine the wealth of online and offline 
bioprocess data to shed light on the cause of scale-up process failures, 
and to improve process outcomes, is common (Charaniya et al., 2008; 
Baughman and Liu, 2014). For example, Coleman et al. (2003) used 
historical process data to develop a three-step optimization method 
using decision trees, an ANN ensemble, and a genetic algorithm to 
identify which process input variables were most important for 
fermentation modeling, and to select input values that increased product 
output. To avoid overfitting, process inputs (different fermentation, 
media, and inoculum conditions – 13 total) were sub-selected using 
decision tree analysis on a data set of 69 fed-batch fermentations, which 
identified inputs that best corresponded with each process output 
(biomass density, product concentration, and productivity). This feature 
selection preprocessing step is common for bioprocess data sets to 
remove highly correlated or redundant process inputs prior to model 
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training to prevent overfitting (Melcher et al., 2015; Coleman et al., 
2003; Charaniya et al., 2008). The subsetted inputs were then used to 
train ANN ensembles to quantitatively predict each process output. This 
resulted in a data-driven process model that was used to identify novel 
input conditions that maximized process outputs via optimization (ge
netic algorithm). A similar approach combining ANN modeling followed 
by optimization using a genetic algorithm was taken by Pappu et al. 
(Pappu and Gummadi, 2017) to optimize fermentation parameters for 
producing xylitol. The model accurately predicted xylose consumption, 
biomass density, and xylitol production following training on 27 
fermentation batches with multiple inputs, and was used to select new 
process inputs (pH, agitation speed, and aeration rate) that increased 
xylitol titers from 59.4 to 65.7 g/L. These examples highlight the ability 
to generate predictive process models in a data-driven fashion, 
providing an alternative to more traditional physical-based kinetic 
models (e.g. Monod or Droop model) that often fail to capture poorly 
understood relationships between microbial growth and multiple pro
cess variables (Kovárová-Kovar and Egli, 1998). 

Bioprocess data is highly heterogeneous and requires appropriate 
data pre-processing to be used for machine learning. Many bioprocess 
parameters are collected online as continuous measurements (optical 
(cell) density, pH, dissolved oxygen, oxygen uptake rate, flow rate, off- 
gas production, etc.) while others (e.g., chemical concentrations, sub
strate consumption rates) are measured offline at discrete time intervals. 
Additionally, some parameters, such as product concentrations, are only 
measured at the final time point, while others are categorical or binary 
(e.g. ON/OFF nutrient feed setting). This results in highly heterogeneous 
data sets with respect to time and between fermentation runs that 
require pre-processing to extract temporal trends that compactly and 
smoothly represent the data, preventing model overfitting (i.e. many 
more features than instances). For example, instead of using each time 
point measurement for model training, first and second order de
rivatives can be used to more compactly represent temporal trends 
(Cheung and Stephanopoulos, 1990a); (Cheung and Stephanopoulos, 
1990b), as can wavelet decomposition methods (Bakshi and Stephano
poulos, 1994), which outperforms more classical smoothing approaches 
such as Savitzky-Golay. For low and very low signal-to-noise ratios, 
more recent methods of denoising can be applied, such as mean enve
lope filter (Merino et al., 2015) or spectral noise reduction by vector 
casting (Gebrekidan et al., 2020). Other approaches, including discrete 
Fourier transform and symbolic aggregate approximation (SAX) can be 
applied, which represent temporal trends as representative segments (e. 
g. mean over time window) instead of the entire time-series (Charaniya 
et al., 2008). In addition to reducing the number of timepoints used for 
model training, temporal offsets between data sets can arise, for 
example, due to lag phases in growth between fermentation batches. 
This can be corrected using dynamic time warping strategies that align 
time profiles between data sets to avoid incorrect comparisons (Chak
rabarti et al., 2002); (Keogh and Ratanamahatana, 2005). 

The availability of continuous online bioreactor data has also 
enabled control and optimization of bioprocesses through reinforcement 
learning. Currently, bioprocesses are controlled manually or using pro
portional–integral–derivative (PID) controller or model predictive con
trol (MPC) (Qin and Badgwell, 2003) methods that automatically 
modulate one or more process variables (e.g. feeding rate) to control an 
output (e.g. temperature, production concentration). While these tech
niques have been widely used for complex multivariable control appli
cations, they are built upon fixed models of the environment that do not 
get continuously updated and improved as they see more data. There
fore, there is growing interest in using model-free reinforcement 
learning methods to learn, through trial and error, the best control al
gorithm from large online data, and to optimize process operations (for a 
detailed overview see (Shin et al., 2019)). For example, a control policy 
was learned from online ethanol data to control final ethanol titers 
during yeast fermentations that had a lower overshoot, faster tracking, 
shorter transition, and smoother control signal than an advanced PID 

controller (Li et al., 2011). Reinforcement learning methods have also 
been demonstrated in simulated systems to control co-culture species 
biomass abundances and optimize product yields (Treloar et al., 2020), 
control reactor temperatures (Xie et al., 2020), and to optimize a 
downstream product separation unit (Hwangbo and Sin, 2020). How
ever, current reinforcement learning methods alone still suffer from 
requiring large amounts of data for complex multivariable processes, 
and are often impractical or too costly to implement in real world ap
plications (Shin et al., 2019). Therefore, approaches to improve the 
sample efficiency of reinforcement learning methods are needed; 
promising examples include combining them with model-based con
trollers (Xie et al., 2020) or through transfer learning, where offline 
model simulations are initially used to train control policies followed by 
the efficient adaptation of these policies with real online data (Petsag
kourakis et al., 2020). 

In sum, despite the challenges of high experimental cost and un
predictable nature of fermentations, the wealth of data generated in a 
single fermentation makes application of machine learning to scale-up 
an appealing proposal. Machine learning can be used to identify 
optimal fermentation parameters (i.e. selecting the most appropriate 
process conditions) and recommend appropriate responses during pro
cess upsets (via adaptive process monitoring and control) using the large 
amount of data that is available. This area may benefit significantly from 
coupling machine learning with mechanistic modelling (see next sec
tion) such as computational fluid dynamics simulations (Haringa et al., 
2016, 2017). 

4. Machine learning and mechanism 

4.1. Two paradigms at odds 

Whereas the machine paradigm concentrates on enabling predictive 
power, metabolic engineers typically define scientific value around the 
understanding of mechanism, because it is perceived to be the road to 
better performance. Mechanisms are defined as the causally related set 
of processes and parts that result in the observed phenomena. Under
standing these mechanisms has been crucial in the history of microbi
ology because it results in knowledge that can indeed be leveraged to 
predict the behavior of a biological system (pathways, strains, products, 
etc.) and can also be transferred to different systems where the same 
mechanism is involved. For example, if fosmidomycin is toxic and in
hibits 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in the 
mevalonate pathway in E. coli, you would expect fosmidomycin to 
inhibit DXR in another host (Murkin et al., 2014). The kinetics of this 
inhibition mechanism can also be used to quantitatively predict the 
corresponding changes in mevalonate pathway flux, based on a 
Michaelis Menten equation that relates fosmidomycin concentration and 
DXR reaction rate (i.e. inhibitory dissociation constant, Ki). 

While there are a variety of different mechanistic mathematical 
models that are useful for guiding design, including gene expression 
models (Ay and Arnosti, 2011), genome-scale models (GSM) (King et al., 
2016,Thiele and Palsson, 2010), kinetic models (O. D. O.D. Kim et al., 
2018), whole cell models (Karr et al., 2012; Macklin et al., 2020), and 
process models (Koutinas et al., 2012), many of them fail to provide the 
accurate quantitative predictions needed to systematically drive meta
bolic engineering projects in practice. For example, predicting metabolic 
flux changes due to gene knockouts with GSM remains challenging 
(O’Brien et al., 2015), even after attempts to improve prediction accu
racy by deriving constraints or objective functions from experimental 
data such as transcriptomics (Machado and Herrgård, 2014). Moreover, 
kinetic model predictions based on assumed quantitative relationship 
between inputs (e.g. fosmidomycin concentration) and outputs (e.g. 
DXR reaction flux) often do not hold in reality (Costa et al., 2010; 
Heijnen, 2005) and are nearly impossible to parameterize for every 
enzyme across all growth conditions. A key reason why these models fail 
is because their mathematical relationships between inputs and outputs 
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are based on ideal conditions (e.g. in vitro for Michaelis Menten equa
tion) that do not capture the complexity of the intracellular environment 
(e.g. regulation). They also lack the ability to automatically leverage 
more data to learn and improve prediction performance. If the model 
predictions fail, it takes a human head to creatively figure out how to 
correct the model, which often happens too slowly, leaving design to 
rely on trial-and-error experimental approaches. Therefore, new quan
titative prediction frameworks are needed to drive the commercial 
success of metabolic engineering projects in industry, and bring about 
the field’s full potential (as discussed in the introduction). 

Machine learning’s flexible data-driven framework can help over
come the challenges facing predictive biology. Machine learning links 
inputs and outputs (Fig. 2) without needing to understand what happens 
in between (i.e. the mechanism). Instead of using knowledge-derived 
mathematical relationships, machine learning models empirically 
derive input/output relationships (equations) through training on data 
that can be collected in a higher throughput manner (titers, rates, yields, 
expression levels, etc.) and can automatically improve prediction per
formance as more data becomes available. Of course, machine learning 
approaches have their own limits. They require a large amount of data 
that is expensive to collect, and which constitutes currently the largest 
practical bottleneck (see Section 5.1). Moreover, most machine learning 
algorithms, particularly deep neural networks, are black boxes and 
difficult to interpret, although this is also improving (see Section 5.3). 
Therefore, troubleshooting machine learning models to try and achieve 
further predictive power once performance has plateaued is challenging, 
especially since a clear connection to mechanism is not available. 
Accordingly, the preferred type of model is both predictive and mech
anistic, and it is by leveraging machine learning with mechanistic 
models that these types of models can be created. 

4.2. Integrating biological knowledge and machine learning 

It is by integrating machine learning and mechanistic models that the 
benefits of both approaches can be combined: predictability that sys
tematically increases as more data is available, and mechanistic insight. 
It is not entirely clear how to proceed about reaching this goal, but there 
are some budding attempts (Fig. 11). A more comprehensive list of ap
proaches that integrate data- and knowledge-based models can be found 
in the review by Zampieri et al. (2019). 

One interesting avenue to explore is whether machine learning can 
be used to parameterize mechanistic models. A couple of studies 
(Andreozzi et al., 2016; Heckmann et al., 2018) demonstrated the po
tential for this by leveraging a set of machine learning models to predict 
enzyme catalytic turnover numbers from input features composed of 
network properties, enzyme structural properties, biochemistry, and 

assay conditions. Enzyme turnover numbers were then used to param
etrize genome-scale models which improved proteome predictions. 
Similarly, Chakrabarti et al. (2013) used a machine learning approach to 
identify feasible kinetic parameters for an ORACLE (optimization and 
risk analysis of complex living entities) kinetic model of metabolism. 
More generally, deriving biological knowledge from machine learning 
methods would enable an efficient way to advance scientific under
standing from the increasing data deluge coming from multi-omic ap
proaches. While it is not obvious how an actual mechanism can be learnt 
from purely data-driven machine learning approaches that are based on 
correlations rather than causation, some recent examples have demon
strated promising results in identifying relationships that are candidates 
for follow-up experiments to distill mechanisms. For example, Ma et al. 
(2018) developed a visible neural network (VNN), which couples the 
model’s inner workings to those of a real system, by incorporating 
knowledge from gene ontologies into a VNN to simultaneously simulate 
cell hierarchical structure and function. The resulting VNN was opti
mized for functional prediction (e.g., growth rate) while respecting 
biological structure (subsystem hierarchy) and was capable of identi
fying subsystem activity patterns. Another study (Zelezniak et al., 2018) 
leveraged metabolic network information to predict metabolite con
centrations (response) from protein levels (input) in S. cerevisiae mutants 
through a multilinear regression: metabolite concentrations were 
expressed as a function of expression levels of the closest enzyme 
neighbors in the metabolic network. A more general approach called 
explainable artificial intelligence, XAI (see Section 5.3), presents 
enourmous potential for providing mechanistic insights within 
data-driven machine learning models. An algorithm of this type was able 
to detect enhancer activity in the Drosophila embryo and alternative 
splicing in human-derived cell lines by systematically capturing 
high-order interactions between features that are predictive of the 
response (Basu et al., 2018). 

Another possible approach is to incorporate input features derived 
from mechanistic models into machine learning models to improve their 
predictive power. For example, Culley et al. (2020) developed a machine 
learning pipeline for predicting S. cerevisiae growth rate that leveraged 
transcriptomic data and genome-scale model predicted fluxes as input 
features. They show that using fluxes predicted from parsimonious flux 
balance analysis (pFBA) as features combined with transcriptomics data 
improved the predictive power of neural networks over using tran
scriptomics data alone. In a similar direction, it would be worthwhile 
exploring whether synthetic data augmentation based on mechanistic 
simulations can increase predictive accuracy of machine learning 
models while learning hypothesized mechanisms underlying the data. 
Also, mechanistic models can be a useful tool for feature selection for 
machine learning models. It has been shown that GSMs can be fruitfully 

Fig. 11. Integrating machine learning and mechanistic models. (A) Parametrizing GSMs using machine learning predictions; (B) Using GSMs to derive input 
features for machine learning; (C) constraining the machine learning solution space with mechanism. 
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leveraged to identify a subset of reactions to then be optimized through 
machine learning methods (Zhang et al., 2020). 

Finally, incorporating known physical or biological constraints on 
the solution space of machine learning algorithms can ensure biologi
cally meaningful solutions or rule out possible machine learning solu
tions that are known to be biologically infeasible. In a study by Wu et al. 
(Wu et al., 2016) various machine learning algorithms were used to 
predict central carbon metabolic fluxes measured through 13C Metabolic 
Flux Analysis (response) from culture and genetic information (input). 
The best performing machine learning model flux predictions were then 
changed as minimally as possible to satisfy the stoichiometric con
straints provided by a GSM. Similarly, machine learning was used to 
reconcile empirical genetic interaction data with FBA model predictions 
(Szappanos et al., 2011). 

4.3. Inspiring new machine learning from metabolic engineering 

Metabolic engineering can also provide inspiration for new machine 
learning and AI algorithms. Biomimicry was the inspiration for neural 
networks (Fig. 7), so it is not unreasonable to think that biology can be 
the inspiration for more and better algorithms. Gene regulatory net
works, for example, involve a sophisticated network of molecular in
teractions that regulate and determine the cell behaviour to sense and 
react to environmental cues and optimize survival. A full mechanistic 
understanding of the general principles of how this is achieved for 
different cells, environments, and threats, could provide valuable in
sights for new machine learning approaches. 

Indeed, metabolic engineering is in a better situation to inspire new 
machine learning algorithms than other disciplines. While there is no 
hope that understanding how a neural network identifies a cat will 
reveal physiologically meaningful information on the brain identifica
tion processes, in metabolic engineering we are quite close to the 
mechanism. Indeed, some of the mechanistic models provide predictions 
that may not be completely accurate, but are qualitatively acceptable 
(Lerman et al., 2012; Karr et al., 2012; Macklin et al., 2020). We believe 
using machine learning to complement the parts of mechanistic models 
that are less tested can significantly increase their accuracy. These 
hybrid models can lead to new inspiration for new machine learning 
architectures and general approaches. 

5. Perspectives for machine learning in metabolic engineering 

5.1. Major bottlenecks for further application 

While the need for improved predictive power fosters the further 
application of machine learning in metabolic engineering, there are 
some fundamental obstacles to a wider application. These obstacles are 
both technical (data and algorithmic challenges) and sociological. 

The foremost challenge is undoubtedly the scarcity of the large data 
sets needed to train machine learning algorithms. The majority of 
metabolic engineering projects typically involve much less than 100 
strains/conditions. Whereas training instances can be multiplied by 
shrewd data augmentation (see section 2.2.1), it seems unlikely that the 
current status quo will be able to provide the amount of data routinely 
found in other fields (several million instances/images in ImageNet 
(Deng et al., 2009)). This will undoubtedly limit the benefit that meta
bolic engineering can leverage from machine learning. Another chal
lenge is data quality, which is as important as quantity. High 
repeatability and low uncertainty are critical characteristics of 
high-quality data: an experiment must produce similar responses under 
identical inputs, or there is little hope that an algorithm can be predic
tive. Furthermore, data sharing is often hampered by the lack of bio
logical data standards needed for this exchange. For example, in the case 
of multiomics data, there are databases for genes (e.g. Genbank IDs 
(Benson et al., 2011)), proteins (e.g. Uniprot IDs (The UniProt Con
sortium, 2017)), metabolites (pubchem IDs (Kim et al., 2016)), and 

reactions (e.g. BIGG database (King et al., 2016)), but these databases 
are often not comprehensive (e.g. not all proteins are submitted to 
Uniprot) and are not fully interlinked (e.g. BIGG metabolites not always 
have a pubchem entry). While there are efforts to solve this problem (e. 
g. Metanet X (Moretti et al., 2016), or BioCyc (Karp et al., 2019)), this 
issue rarely reaches the high profile needed to attract the investment 
required to completely solve it. Moreover, if the state of data stan
dardization is not good, metadata standardization is in an even worse 
state. Without an investment in this piece of infrastructure, there is little 
hope for a disruptive impact of machine learning in metabolic engi
neering (Fig. 12). A possible solution to several of these problems in
volves automation (see section 5.2). 

A second hurdle involves the adaptation of machine learning algo
rithms to the special needs of metabolic engineering. Uncertainty 
quantification is one of the needs of a discipline with small training data 
sets that is beginning to be met (Radivojević et al., 2020). Explainable AI 
(XAI) involves creating models such that the reasons for their pre
dictions can be understood by humans (see section 5.3). This is partic
ularly important in metabolic engineering, where we often have, or can 
easily investigate, the mechanism responsible for a given response. This 
investigation is much more complicated for other fields like, e.g., arti
ficial vision or astrophysics. The integration of prior biological knowl
edge into machine learning algorithms, and its extraction from machine 
learning results is also an area that could provide significant advances in 
both metabolic engineering and machine learning, as discussed in sec
tion 4. 

Another, often overlooked, obstacle involves the sociological chal
lenge of having two very different groups working together: machine 
learning researchers and metabolic engineers. These two crowds are 
typically trained very differently and there is little intersection among 
them. Communication is, hence, often complicated by these differences. 
Furthermore, they are different not only in their skill toolbox, but also in 
which problems arouse their interest. This creates problems in aligning 
interests and managing projects. Interaction is, however, necessary: it is 
becoming impossible even for machine learning researchers to keep 
abreast of the literature on their field, and the new metabolic engi
neering tools (e.g., CRISPR-based gene editing, cell-free engineering) are 
posing a similar challenge in this field. Only through an interdisciplinary 
effort can the best of both disciplines be combined to create something 
bigger than the sum of the parts. 

5.2. Integrating machine learning and synthetic biology with automation 

As indicated above, the training data for machine learning must be 
high-quality, in the sense that it must avoid biases due to inconsistent 
protocols and provide quantification for repeatability (see section 2.4). 
Both goals can be systematically achieved through automation, which is 
one of the main reasons the intersection of machine learning, synthetic 
biology, and automation is thriving (Carbonell et al., 2019). Biological 
and chemical sciences data are nowadays growing at an unprecedented 
pace, but the databases aggregating biological and chemical findings are 
usually biased (Rodrigues, 2020). To avoid this bias, it is highly desir
able to start veering away from the traditional approach of one entire 
PhD per molecule or one scientist performing the full metabolic engi
neering process, in order to adopt the creation and maintenance of in
tegrated engineering pipelines (Fig. 13). This is the path embodied by 
biofoundries (Chao et al., 2017; Hillson et al., 2019). This goal can be 
achieved by extending current automation pipelines for machine 
learning (Olson and Moore, 2018). Pipelines are fully or semi-automated 
infrastructure that realize a procedure in a systematic manner: e.g., 
phenotyping through proteomics, strain construction, fermentation. 
Automated pipelines facilitate consistent protocols and reproducibility 
in synthetic biology (Jessop-Fabre and Sonnenschein, 2019), and have 
the capability to produce the amount of data required by machine 
learning. Fully automated and integrated DBTL pipelines have already 
been successfully adopted for the identification and optimization of 
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biosynthetic pathways (Carbonell et al., 2018). In general, we expect 
machine learning, biochemical analytical techniques and automation to 
follow a path of parallel development and keep symbiotically interacting 
in pipelines so that machine learning will be a pillar in every step of 
biosystems design (Volk et al., 2020). 

Automating metabolic engineering often involves multiplexing the 
bioengineering efforts to parallelize a set of combinatorial experiments. 
For example, digital microfluidics is a high-throughput liquid handling 
technique able to quickly automate diverse biological experiments at 
micro and nanoscales, thus accelerating the DBTL cycles and making 
synthetic biology programmable (Gach et al., 2017; Kothamachu et al., 
2020). The combination of microfluidics with nanofluidics and opto
electronics has been used for the automated growth and analysis of 
thousands of cell lines in parallel on a single chip (Le et al., 2018). 
Another implementation of these technologies enables the parallel 
construction and optical screening of tens of thousands of synthetic 
microbial communities per day (Kehe et al., 2019). Other efforts focus 
on parallelizing experiments while maintaining their potential to effi
ciently scale up. That is the case of automated workflows for media 
optimization, induction profiling, or microbial bioprocess optimization 

leveraging the Biolector, a microtiter plate-based cultivation device 
(Rohe et al., 2012). Another example of productive scale up involves the 
Automated Microscale Bioreactor (Ambr 250), which can generate 
comparable cell growth and protein production profiles comparable to 
those obtained in 1000-L bioreactor industrial scale fermentations (Xu 
et al., 2017). 

Some automation technologies focus on the human-to-system inter
face and embrace AI to further accelerate the experimentation processes. 
Robotic Process Automation (RPA) is an alternative approach that pro
vides agents (bots) that operate on user interfaces in the way a human 
would do (van der Aalst et al., 2018). RPA is meant to replace humans in 
repetitive work that is frequent enough to make fully automation 
economically feasible. Intelligent RPA (IRPA) is the current effort to fuse 
RPA with advanced AI methods to drastically extend its scope (Syed 
et al., 2020). Combining experimentation platforms with AI to accel
erate experimental research is at the core of the so-called self-driving 
laboratories (Häse et al., 2019), which typically use multi-objective 
optimization techniques (Häse et al., 2018) and iterate over the 
design, execution, and learning steps of the experiments with complete 
autonomy (MacLeod et al., 2020). The use of AI-driven automation 

Fig. 12. The hierarchy of needs for leveraging machine learning in metabolic engineering. It is futile to rely on machine learning to guide metabolic engineering 
without first establishing the basic infrastructure that it depends on. The very base consists on creating the infrastructure to physically collect large amounts of high 
quality data. The next step is to have the databases, standard and ontologies to structure and store the data appropriately. Data cleaning and outlier detection follow. 
The base for simple machine learning algorithms (linear regression), feature selection and algorithm training is at this point set. It is only at this stage that so
phisticated machine learning and deep learning can significantly improve the metabolic engineering practice. Adapted from Rogati (Rogati, 2017). 

Fig. 13. Traditional metabolic engineer
ing vs pipeline. The traditional metabolic 
engineering process involves a single 
researcher doing all phases of the project 
from pathway choice to strain building, 
fermentation, and data analysis. The pipe
line approach instead focuses resources on 
creating a single, flexible, semi automated, 
pipeline consisting of different connected 
services supported by specialized teams. The 
pipeline approach favors repeatability, data 
quality and the stream of data required by 
machine learning. Furthermore, the pipeline 
allows for simultaneous development of 
multiple strains, so knowledge obtained 
from one design can immediately be lever
aged for all others. BioCAD: Biological 
Computer-Aided Design; BioCAM: Biological 
Computer-Aided Manufacturing of Synthetic 
DNA (Oberortner et al., 2020).   
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technologies with hardware robotics represents a step further. In that 
sense, a very recent automation effort has used state of the art robotics to 
completely move the focus from automating the instruments to auto
mate the researcher (Burger et al., 2020). 

Cloud labs are tools based on cloud technologies (Xu, 2012) that 
allow a scientist to remotely conduct biological research through robotic 
control, by using a high-level interface to ease the requirement for any 
programming knowledge. As an added benefit, researchers usually get 
all the intermediate and final results stored on the cloud in digital for
mats prepared for downstream analysis by local or cloud computing 
(Mell and Grance, 2011). Past years have seen an emergence of cloud 
labs (Check Hayden, 2014) and tools (Bates et al., 2017), which has been 
recently boosted by the social distancing requirements of the 
SARS-CoV2 pandemic. Thus, a remote or distributed manner of experi
mentation is arising as an alternative to the local or centralized classic 
model. 

Interestingly, COVID-19 has also promoted the do-it-yourself (DIY) 
approach to lab automation. In 1981, IBM introduced the personal 
computer (PC), democratizing computing with an open architecture 
model (Miller, 1989; O’Regan, 2012), and producing a paradigm shift. 
An equivalent shift for automation seems to be in motion, due to the 
combination of the maturity of the open source model with the rise of 
free open scientific hardware (FOSH), now accelerated by the 
SARS-CoV2 pandemic (Maia Chagas et al., 2020). This trend in auto
mation emerged from the use of 3D printing for a growing number of 
scientific and engineering applications in the laboratory (Silver, 2019). 
This pure DIY approach has already produced successful 
high-throughput automation platforms for bioengineering (Wong et al., 
2018) and is susceptible to improvement by machine learning tech
niques such as deep reinforcement learning (Treloar et al., 2020). Some 
companies, such as Opentrons, are taking advantage of this new market 
niche and are providing open automation solutions halfway between the 
extreme DIY and the classical automation (May, 2019) based on pro
prietary and expensive equipment and consumables (Maia Chagas, 
2018). There are already some open automation systems built on top of 
Opentrons liquid handling robots and devoted to synthetic biology ap
plications, such as the DNA-BOT for automated DNA assembly (Storch 
et al., 2020). On the other hand, a low-cost modular FOSH liquid handler 
has been recently combined with machine learning for automatizing 
droplet experiments with AI-enabled computer vision (Faiña et al., 
2020). Considering all of the above, it seems that there are technological 
developments quickly converging towards open hardware and software 
automation solutions based on machine learning and specific for syn
thetic biology. 

5.3. Novel machine learning techniques to watch 

Deep learning, with applications using several interconnected layers 
of ANNs (see Figs. 7 and 8), has been the subfield of machine learning 
driving the recent boost of AI. The number of such layers of ANNs is the 
depth of the neural network. With increasing depths, deep neural net
works often have a large number of parameters. For example, a state-of- 
the-art system for natural language processing (NLP) (Manning, 1999), 
the autoregressive language model GPT-3 (Brown et al., 2020), has 
almost one hundred layers and 175 billion parameters. These DL systems 
are intricate black boxes making decisions that are not easily inter
pretable from a human perspective. If a prediction deviates from the 
expected answer, it is generally not easy to understand why it failed, or 
how to correct the issue. These algorithms are only as good as the data 
they are trained with, so biases in the data have a significant impact on 
the predictions (Rodrigues, 2020), with a growing need for developing 
bias quantification metrics along with methods for overfitting detection 
and data debiasing (Ellingson et al., 2020). 

The lack of interpretability has prevented machine learning in gen
eral and DL in particular from expanding in some fields that require trust 
in the underlying technology, such as in defense, healthcare, and other 

sensitive applications. Different novel approaches are under active 
research to overcome this critical drawback. Some of these try to make 
classic machine learning methods such as random forests more inter
pretable without a loss of efficacy (Basu et al., 2018). Another technique 
is even able to extract explicit physical relations by applying symbolic 
regression to components of a Graph Neural Network (GNN) trained by 
encouraging sparse latent representations in a supervised setting 
(Cranmer et al., 2020). In drug discovery, the lack of transparent and 
reproducible workflows has hindered widespread adoption of machine 
learning models, but this is being solved by novel scalable pipelines with 
traceable models stressing uncertainty quantification (Minnich et al., 
2020). 

In 2017, DARPA launched its explainable artificial intelligence (XAI) 
program as a comprehensive strategy to tackle the machine learning 
interpretability problem. DARPA’s XAI aims at developing superior AI 
systems able to have a symbiotic relationship with humans (Gunning 
and Aha, 2019). A recent evolution on top of the XAI paradigm is the 
concept of Responsible AI (Barredo Arrieta et al., 2020), which imposes 
further constraints on the implementation of AI systems, like trans
parency, accountability, and ethics. However, the movement towards 
greater interpretability involves significant trade-offs in terms of per
formance, with a toll on fidelity and accuracy (Gunning et al., 2019). 
Ultimately, that compromise could be rendered unnecessary by ad
vances in high performance computing (HPC), since AI and HPC are 
converging in approaching the exascale era (Gwynne, 2019). Indeed, the 
joint effort of XAI developments with exascale computing, by bridging 
the gaps between cutting-edge research and sustainable policies, could 
pave the way for designing practical solutions to global challenges such 
as climate change (Streich et al., 2020). 

XAI has numerous applications in unraveling the profound me
chanics of natural or artificial systems, such as the molecular mecha
nisms underlying genome biology (Basu et al., 2018). A related DL 
framework is the use of physics-informed neural networks (PINN), 
which are trained to solve supervised forward and inverse problems 
involving nonlinear partial differential equations (PDE), thus supporting 
the union of data-driven and mathematical models (Raissi et al. 2019, 
2020). In the case of very noisy data, Bayesian Neural Networks can be 
combined with PINNs (called then B-PINNs) to both avoid overfitting 
and quantify uncertainty (Yang et al., 2020). 

Transfer learning (TL) (Ando and Zhang, 2005; Caruana, 1997; Pan 
and Yang, 2010) is the technique of knowledge transfer from a domain 
with enough training data to another related domain of interest that 
lacks such data. This transfer considerably enhances the learning per
formance by avoiding costly data-labeling efforts. This area is under 
rapid expansion but already offers many consolidated models from 
which to choose carefully depending on the type of application and its 
data (Zhuang et al., 2020). For example, TL has been used to tackle the 
problem of predicting associations between genotype and phenotype 
(Petegrosso et al., 2017). Clearly, TL could be key for different metabolic 
engineering projects if used to transfer predictive capabilities from one 
organism to another, avoiding the cost and time expenses of getting 
large multiomics data sets from scratch. Finally, TL can be combined 
with XAI methods, for instance, for gathering pathway and metabolic 
information in model organisms and translate it to others so as to get 
comprehensive genome-scale metabolic models in an efficient manner. 

6. Conclusion 

Machine learning provides an opportunity to make metabolic engi
neering more predictable and efficient. In this review, we have 
attempted to provide an introduction to this discipline in terms that are 
relatable to metabolic engineers, as well as providing illustrative ex
amples along the traditional phases of metabolic engineering (from 
pathway choice and construction to scaling). We have also included 
practical advice including library suggestions and experimental design 
recommendations. Finally, we have examined the perspectives for this 
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combination of disciplines, which are particularly relevant and difficult 
to predict, given the current explosive growth of both machine learning 
and synthetic biology. 

In our opinion, metabolic engineering could take two courses in the 
future: incremental or disruptive. In one, traditional methods prevail, 
progress is incremental, and more molecules are arduously brought into 
commercial use at an increasing rate. In another one, metabolic engi
neering fully embraces and integrates the possibilities afforded by 
automation and machine learning. This choice leads to a disruptive 
change that makes production of new molecules a relatively easy task 
dwarfed by the more ambitious goals enabled by the new predictive 
capabilities. Metabolic engineering is used to engineer microbiomes, 
create new biomaterials, provide fundamental understanding of emer
gent properties and evolution, and suggest new artificial intelligence 
approaches. 

The fundamental challenges for the disruptive path involve enabling 
streams of high-quality data, developing new algorithms to integrate the 
advantages of data-driven and mechanistic approaches, and fully 
leveraging novel tools in machine learning and synthetic biology. In our 
view, solving these challenges is only possible through a multidisci
plinary collaboration of scientists including metabolic engineers, bio
chemists, microbiologists, computer scientists, electrical engineers, 
chemical engineers, mathematicians, statisticians, and physicists, 
among others. We hope to have provided in this review a helpful 
resource for that multidisciplinary collaboration. 
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