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ABSTRACT

This letter reports effective passivation of crystalline silicon (c-Si) surfaces 

by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum 

layer thickness and activation annealing conditions are determined to be 20 

nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy 

imaging shows an approximately 1.6 nm thick SiOx interfacial layer 

underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements 

(∼20 nm). Capacitance–voltage measurements show that the annealed 

ZrOxfilm features a low interface defect density of 1.0 × 1011 cm−2 eV−1 and a 

low negative film charge density of −6 × 1010 cm−2. Effective lifetimes of 673 

μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si 

wafers, respectively, corresponding to an implied open circuit voltage above 

720 mV in both cases. The results demonstrate that surface passivation 

quality provided by ALD ZrOx is consistent with the requirements of high 

efficiency silicon solar cells.

Crystalline silicon (c-Si) solar cells remain the most successful photovoltaic 

technology due to a combination of high power conversion efficiency and 
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low manufacturing cost. One of the key enablers in achieving high 

performance has been the passivation of the dangling bonds usually present 

on the silicon wafer surfaces. The most extensively explored, and 

implemented in industry, materials to suppress defect-assisted Shockley-

Read-Hall (SRH) recombination are thermally grown or plasma deposited 

thin films of silicon oxide (SiO2),1 silicon nitride (SiNx),2,3 amorphous silicon 

(a-Si),4 and aluminium oxide (Al2O3).5,6 Recently, a range of transition or post-

transition metal oxides have also been demonstrated to provide high quality 

passivation of silicon surfaces, including titanium oxide,7,8 hafnium oxide,9–

12 gallium oxide,13 and tantalum oxide.14,15

Zirconium oxide (ZrOx) is another transition metal oxide having high 

potential to be compatible with photovoltaic applications, as it has reasonable

optical properties (i.e., a relatively high refractive index and a negligible 

absorption in the visible range) to be used as antireflection coating.16 It has 

also been reported to provide some passivation of titanium oxide surfaces.17In 

the semiconductor industry, ZrOx has been extensively investigated as an 

alternative to SiO2 as a gate insulator due to its high dielectric constant (∼25),

insulating properties, and relatively good thermal stability.18–20 Indeed, binary 

alloy systems of ZrOx/alumina or ZrOx/yttria have been patented for the 

antireflection and passivation of silicon surfaces.21,22 However, no scientific 

details have yet been published on such an ability of ZrOx to suppress surface 

recombination in c-Si photovoltaic devices.

In this letter, we present evidence of effective surface passivation of c-Si by 

ZrOx prepared by atomic layer deposition (ALD). The structure, composition, 
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and interfacial characteristics of this passivating layer are examined using 

cross-sectional transmission electron microscopy (TEM) and x-ray 

photoelectron spectroscopy (XPS). The passivation quality is then evaluated 

on undiffused p-type and n-type c-Si wafers. Furthermore, capacitance–

voltage (C–V) measurements and X-ray diffraction (XRD) are undertaken to 

probe the electronic and crystal properties of ZrOx films before and after 

thermal annealing to elucidate the physical mechanisms underlying the 

evolution in surface passivation.

The ZrOx films were deposited in a thermal ALD system (Cambridge 

Savannah) using TEMAZ [Tetra(ethylmethylamido)zirconium] as the 

zirconium precursor, H2O as the oxidant, and N2 as the purge gas. The 

deposition was performed at 150 °C and had a corresponding rate of 1.33 

Å/cycle as measured by ex-situ spectroscopic ellipsometry (J.A. Woollam 

M2000 ellipsometer) and also was confirmed by the high resolution TEM 

presented in Fig. 1(a). The cross section of the ZrOx film was prepared using a

focused ion beam (FIB) lift-out technique in a Helios NanoLab 600 

DualBeam SEM/FIB system. Note that the film used for TEM is after thermal

annealing (300 °C for 20 min in air), which is required to activate the 

passivation capability by ZrOx. TEM images were taken using a JEOL 

ARM200F microscope operating at 200 kV. As shown in Fig. 1(a), there 

exists an approximately 1.6 nm thick interfacial layer and a ∼18 nm thick 

ZrOx layer. The interfacial layer is typically observed for ALD deposited 

films5,6 and likely resultant from exposure to water during the first few ALD 

cycles and/or possible reactions between ZrOx and the c-Si surface. 
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Furthermore, the TEM also reveals that the ZrOx film after annealing exhibits 

partial crystallization, which is validated by the XRD measurements 

presented in Fig. 1(b).

FIG. 1.(a) Cross-sectional TEM image showing an 18 nm ZrOx film with

an ∼1.6 nm thick interfacial layer on c-Si and (b) XRD features of as-

deposited and annealed ZrOx films.
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 High-resolution

XRD measurements were performed on ZrOx coated single-side polished c-Si

wafers, using a PANalytical X'Pert PRO MRD diffractometer with an X-ray 

parabolic mirror and a parallel plate collimator (0.27°). The diffraction 

patterns were obtained by Ni-filtered Cu Ka radiation and analysed using the 

software package MDI Jade. Figure 1(b) plots the XRD pattern of ZrOx films 

as deposited at 150 °C and annealed at 300 °C. As can be seen, the as-

deposited film exhibits very weak diffraction features apart from a peak at 

35°, indicating that the film may have some localised crystal nucleation, but 

is predominantly amorphous. In contrast, the film after thermal annealing 
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shows strong and distinctive diffraction features, consistent with the partial 

crystallization revealed by TEM in Fig. 1(a).

XPS measurements were performed to determine the stoichiometry of ALD 

ZrOx films before and after annealing. Figure 2 shows the core levels of Zr 3d

and O 1s. While the Zr 3d spectra show typical doublet peaks located at 182 

eV and 184.5 eV for Zr 3d5/2 and Zr 3d3/2, respectively, the O 1s spectra can be 

fitted with two Gaussian components with peaks positioned at 530 eV and 

531.5 eV, respectively.23,24 The small peak located at 531.5 eV is usually 

attributed to hydroxyl groups although sometimes it can also be due to 

surface contamination. The component with lower binding energy peaked at 

530 eV can be attributed to Zr–O binding. Notably, the peak positions for 

both Zr 3d and O 1s are observed to be the similar for the zirconia films 

before and after thermal annealing. The extracted zirconia film stoichiometry 

(i.e., O to Zr atomic fraction) based on core level peak areas is determined to 

be 2.0 and 1.8 for the film before and after annealing, respectively, implying 

that the thermal annealing process makes the film slightly sub-stoichiometric.

FIG. 2.The core level spectrum of (a) Zr 3d and (b) O 1s of as-

deposited and annealed ZrOx films measured by X-ray photoelectron 

spectroscopy (XPS) measurements.
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To evaluate surface passivation of c-Si by the deposited dielectric, 1 Ω cm n-

type and p-type c-Si substrates with a thickness of 200 μm were 

symmetrically coated with ALD ZrOx films. All wafers were float-zone (FZ) 

grown and {100} oriented. The undiffused wafers were etched in 

tetramethylammonium hydroxide (TMAH, 25 wt. %) at ∼85 °C to remove 

saw damage. All samples were then cleaned by the RCA (Radio Corporation 

of America) procedure and dipped in 1% diluted HF acid to remove any 

remaining oxide prior to deposition. The effective carrier lifetime τeff as a 

function of excess carrier density Δn was measured using a Sinton 

Instruments WCT-120 photoconductance tool.25 Neglecting Shockley–Read–

Hall recombination in the bulk of the wafer, the upper limit of the effective 

surface recombination velocity Seff,UL was calculated according 

to Seff,UL=W2(1τeff−1τintrinsic),Seff,UL=W21τeff−1τintrinsic, where W is 

the c-Si substrate thickness and τintrinsic is the intrinsic bulk lifetime of c-Si as 

parameterized by Richter et al.26

Figure 3 shows the measured effective lifetime provided by as-deposited and 

thermally activated ZrOxfilms on p-type and n-type 1.0 Ω cm undiffused c-Si 

wafers. As can be seen, the as-deposited ZrOx provides some surface 

passivation on both p-type and n-type wafers with a τeff value around 40 μs at 

Δn = 1015 cm−3. Upon thermal annealing at 300 °C for 20 min on a hotplate in 
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air, the level of surface passivation is vastly improved by more than one order

of magnitude, resulting in τeff as high as 673 μs and 1.1 ms at Δn = 1015 

cm−3 on p-type and n-type c-Si, respectively. These lifetimes correspond 

to Seff,UL values of 13 cm/s and 8 cm/s and to implied open circuit voltages of 

721 mV and 726 mV, respectively. The obtained Seff,UL by ZrOx is slightly 

higher than that by conventional passivation layers such as SiNx or Al2O3 and 

comparable to that by HfO2, as summarized in Ref. 12.

FIG. 3.Effective lifetime τeffas a function of excess carrier density 

Δn for p-type and n-type 1.0 Ω cm undiffused c-Si wafers passivated 

by as-deposited and annealed ZrOx films.
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C–V measurements were performed to evaluate the physical mechanisms for 

the substantial improvement in surface passivation upon thermal annealing, 

using a contactless corona charging method (Semilab PV2000A) on the 

same n-type and p-type c-Si samples used for the effective lifetime 

measurements.27 The extracted interface defect density Dit and effective film 

charge density Qeff are summarised in Table I. The results show that the as-

deposited film presents a significant amount of defects at the ZrOx/c-Si 

interface of 1.51 × 1012 cm−2 eV−1, which is then drastically reduced by more 

than one order of magnitude to a level of 1.0 × 1011 cm−2 eV−1 after annealing. 

The reduction in Dit is commonly ascribed to the hydrogenation of dangling 

bonds at the dielectric/c-Si interface, for example, for the case of passivation 

by SiNx,2,3 a-Si,4 and Al2O3.5,6 This could also be the case for ZrOx passivation 

since the precursor is a hydrogen-containing organometallic compound. The 

effective charge density is at the order of 1010 cm−2 for both as-deposited and 

annealed samples, which is low compared to the charge density typically 

found in conventional silicon nitride or alumina films (i.e., ∼1012 cm−2).28,29 The 

thermal annealing switched the charge from positive 4.4 × 1010 cm−2 to 

negative 5.8 × 1010 cm−2. The cause of the charge polarity change is still under 

investigation. Consistent results were obtained on both n-type and p-type 

substrates. Nevertheless, the substantial improvement in surface passivation 

by ZrOx upon thermal annealing appears to be primarily attributable to a 

reduction in the interface defect density rather than to an increase in charge 

density since Qeff is reasonably low.
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TABLE I. Interface defect density Dit and effective fixed charge 

density Qeff for ZrOx films.

TABLE I.Interface defect density Ditand effective fixed charge density Qefffor ZrOxfilms.

As-deposited n-type
Annealed n-
type

Annealed p-type

Dit(1011cm−2eV−1) 15.1 1.0 1.2

Qeff/q(1010cm−2) +4.4 −5.8 −5.9

The passivation quality by ZrOx is shown in Fig. 4 to exhibit a strong 

dependence on film thickness, thermal annealing temperature, and time. As 

the film thickness increases, the effective lifetime first increases sharply and 

peaks at 20 nm. The passivation seems slightly less effective when 

ZrOx becomes thicker. This thickness dependence is similar to that exhibited 

by ALD hafnium oxide presented by Cui et al.,12 presumably due to higher 

crystallinity of thick films upon thermal annealing. A similar behaviour was 

observed for the dependence of thermal annealing temperature and time, 

showing an optimum condition at 300 °C for 20 min. It is worth mentioning 

that the degradation of passivation upon annealing above 300 °C could also 

be due to deterioration of silicon bulk quality, as presented in Ref. 30. As 

presented before, the thermal annealing activates the passivation by the 

ZrOx film primarily through the reduction in interface defect density. The 

process window of annealing duration seems reasonably wide between 10 
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and 30 min. Note that the annealing was conducted on a hotplate in air. Our 

preliminary study of annealing in forming gas in the thermal furnace shows 

similar trends but slightly poorer passivation quality. The reason for this 

behaviour is still unknown to us and warrants further investigation.

FIG. 4.The dependence of effective lifetime by ZrOx passivation on (a) 

ZrOx film thickness, (b) annealing temperature, and (c) annealing time.
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In conclusion, we have shown effective surface passivation of c-Si wafers by 

thermal ALD ZrOx with an optimum thickness at 20 nm and annealing at 300 

°C for 20 min in air ambient. Effective lifetimes of 673 μs and 1.1 ms were 

achieved on p-type and n-type 1 Ω cm undiffused wafers, respectively, 

corresponding to Seff,ULvalues of 13 cm/s and 8 cm/s and an implied VOC above 

720 mV. C–V measurements revealed that the annealed ZrOx film features a 

low Dit of 1.0 × 1011 cm−2 eV−1 and a low negative Qeff of −6 × 1010 cm−2. The 

demonstrated high passivation by ALD ZrOx paves the way for its application

in the design and fabrication of high efficiency silicon solar cells.
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