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Learning in the corticostriatal network 

Stefan Lemke 

Abstract 

A fundamental question regarding movement control is how the brain regulates motor learning. In 

other words, how does initially variable control of a new behavior transition into stable control of 

a skilled behavior? Plasticity in the corticostriatal network, which includes the motor cortex and 

the striatum, an input structure of the basal ganglia innervated by the motor cortex, has been 

identified as a critical regulator of learning. In this thesis, I begin by presenting a historical 

perspective on the motor network, outlining why the corticostriatal network is uniquely positioned 

to regulate learning. I then present my work investigating the corticostriatal network during 

learning. In Chapter 2, I explore how the corticostriatal network drives learning of a complex 

coordinated action and show that distal vs. proximal movements are differentially encoded. In 

Chapter 3, I examine how and when corticostriatal plasticity occurs during learning and show that 

non-REM sleep and sleep spindles play central roles in shaping the corticostriatal network. I 

conclude by presenting a model for motor network organization in Chapter 4, proposing that 

corticostriatal plasticity may mediate learning by transitioning an initially cortically driven 

behavior to a subcortically driven behavior.  
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Chapter 1: Introduction 
 

The stability-plasticity dilemma 

The stability-plasticity dilemma is a critical constraint for artificial and biological neural systems. 

The dilemma is how a neural system can acquire new information (plasticity) without overriding 

older knowledge (stability). What this refers to, in the case of procedural learning, is the ability to 

learn new behaviors without forgetting others. For example, I can spend the next week learning as 

many new skills as possible: shooting a basketball, crocheting a blanket, playing the piano, yet at 

the end of the week I will not have forgotten how to ride my bike or sign my name. How does the 

brain achieve this? 

 

A “simple” explanation to solve this dilemma 

is that the ability to explore new behaviors and 

the ability to execute well-established 

behaviors derive from distinct brain regions. 

For example, the stable control of innate 

behaviors such as locomotion has been linked 

to the brainstem1,2, while the flexible control of 

exploratory movements associated with new 

behaviors, such learning to play the piano, has 

been linked to motor cortex (Figure 1.1a)3,4. 

Figure 1.1. Motor network model. a. 
Example distributed motor control. b. Potential 
neural controllers of a learned behavior. 
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However, what happens if I practice the piano until I can play with stability comparable to the 

control of locomotion (Figure 1.1b)? Does local plasticity allow the same brain region to shift 

from the control of flexible new to stable learned behaviors (dashed red arrow)? Does the brain 

region associated with stable innate behaviors also control stable learned behaviors (dashed blue 

arrow)? Does a new brain region assume control of stable learned behaviors (dashed black arrow)?  

These questions are the topic of this thesis. I built on a body of work implicating plasticity in the 

corticostriatal network as a key regulator in the transition from new to learned behaviors. This 

thesis aims to clarify what is (and is not) encoded by corticostriatal activity throughout learning of 

a complex coordinated action (Chapter 2) and explore how and when corticostriatal network 

plasticity occurs during learning (Chapter 3). In conclusion (Chapter 4), I propose a model of motor 

network organization to answer the question posed in Figure 1.1b. As an introduction, this chapter 

presents a historical perspective on our modern understanding of the motor network, outlining why 

the corticostriatal network is particularly relevant for learning and worthy of our focus.  

 

History of the distributed motor network  

The goal of this section is to provide a brief historical perspective that outlines why the motor 

network is considered distributed, that is, with multiple regions able to control movement. 

 

Our modern understanding of motor control began with the first evidence that nerves activate 

muscles via electricity. By the early 18th century, anatomists had established that muscles were 

connected to the brain through nerves. However, the prevailing theories were that vibrations, 

ethereal spirits, or fluids flowed through nerves to activate muscles5. In 1714, Isaac Newton wrote 

in General Scholium6–8:  
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The members of animal bodies move at the command of the will, namely, by the vibrations of this 

Spirit, mutually propagated along the solid filaments of the nerves, from the outward organs of sense to 

the brain, and from the brain into the muscles. But these are things that cannot be explained in few 

words, nor are we furnished with that sufficiency of experiments which is required to an accurate 

determination and demonstration of the laws by which this electric and elastic spirit operates. 

It wasn’t until 1791 that Luigi Galvani established that nerve impulses are electrical in nature. In 

the Commentary on the Effects of Electricity on Muscular Motion5,9, Galvani details ten years of 

experimental results, including famous work where he electrically stimulated muscles in frog legs, 

causing them to contract and demonstrating that nerves 

activate muscles via “animal electricity” (Figure 1.2). In 

the Commentary, Galvani theorizes that animal electricity 

is secreted by the brain and distributed by the nerves. He 

reports a clever experiment in which he extracts droplets 

of oil from nerves and concludes that nerves must have an 

oily covering that prevents leakage of electricity to 

surrounding tissues5. With the Commentary, Galvani 

uncovered the role of electricity as the means in which the 

nervous system communicates and thereby established the 

field of electrophysiology. 

 

Galvani’s experiments themselves, however, did not provide direct evidence that the brain was a 

source of “animal electricity”. It was Galvani’s nephew, Giovanni Aldini, who continued 

Galvani’s work and, in 1802, showed it was possible to evoke muscle contractions by stimulating 

Figure 1.2. Illustration of 
Galvani’s frog leg experiments. 
Muscular contraction caused by 
electrical stimulation, generated 
by connecting zinc (Z) and copper 
(C) wires. From Galvani (1791). 
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the brain5,10. Along with experimental work in animals, Aldini performed public demonstrations 

where he electrically stimulated the exposed brains of criminals who had been recently killed by 

decapitation. These gruesome experiments demonstrated that facial muscle contractions could be 

evoked through electrical stimulation of the brain5,11. In these experiments, Aldini also reports the 

prescient result that stimulating the cerebral cortex of one hemisphere elicited facial muscle 

contractions of the opposite hemisphere, early evidence for what would come to be called the 

“motor cortex” nearly 70 years later10,12.  

 

Before the discovery of the motor cortex, 

however, the cortex was largely considered 

“unexcitable”, that is, that stimulation of the 

cortex would not  evoke movement5,12. It was 

instead believed that cortex was involved in 

“intellectual functions” while more primitive 

structures such as the corpus striatum, 

cerebellum, or brainstem (discussed below) 

were responsible for driving movement13,14. 

This view was so prevalent that when, in 

1870, Gustav Fritsch and Edvard Hitzig 

published their discovery of motor cortex, outlining a specific region of the dog’s cortex that could 

elicit contralateral movement15 (Figure 1.3), prominent scientists questioned their conclusions. In 

1875, Ludimar Herman, a well-known electrophysiologist of the time, wrote11,16:  

Figure 1.3. Hitzig and Frisch discovery of 
the motor cortex. Illustration from Fritsch 
and Hitzig (1870) on the left and recreation 
emphasizing stimulation locations that caused 
facial (◊), neck (Δ), and leg (+ and #) 
movements from Brazier (1988) on the right.  
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There had to be the suspicion that the authors obtained their positive results because of the strength of 

electrical current they were using, never before attempted, and that this high electrical current had set 

into action motor apparatus deeper within the brain. In fact, in an organ containing an incredibly fine 

net of apparatus in a compact mass, an electrical stimulus must appear most dangerous, since it cannot 

be limited to one particular area. 

George Henry Lewes made a more succinct criticism, arguing that the observation that movements 

could be evoked by electrical stimulation of the cortex was not sufficient to classify cortex as a 

“motor center”11,17:  

We do not consider the centre of laughter to be located in the sole of the foot, because tickling the sole 

causes laughter. 

These concerns, centered on the potential spread of electrical current to other brain regions13,14, 

led to the practice of “punctate” mapping, where experimenters used the minimum current required 

to elicit movement. These experiments dispelled the worry of current spread and provided 

confirmatory evidence that electrical stimulation of cortex can evoke movements14,15,18. Punctate 

mapping also allowed Charles Sherrington to establish the idea of motor cortex topography with 

his famous publication of “motor maps” in 191719. 

 

This work of Fritsch and Hitzig, confirmed by Sherrington and others, added motor cortex to the 

growing list of brain regions where movements had been observed with electrical stimulation, 

including the corpus striatum and cerebellum5. Anatomical studies also confirmed that multiple 

“descending tracts”, originating from motor cortex and brainstem, connected the brain to the spinal 

cord20, altogether providing overwhelming evidence that multiple brain regions control movement. 

Over the next century, the study of each of these regions grew into largely independent fields of 
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study. In the following sections, I will briefly outline some of the main themes of this work. Of 

particular relevance to this thesis is the study of the motor cortex and basal ganglia, as modern 

work has shown that the interaction of these regions is critical for learning new behaviors. The 

final section in this chapter will focus on this network. 

 

Brainstem / Cerebellum 

Both the brainstem and cerebellum have long been considered central to movement due to the 

severity of occipital injuries12. The proximity of the brainstem and cerebellum led some early 

investigators studying occipital injuries to mistakenly assign motor functions between these 

structures12. However, in 1760, A.C. Lorry published results from a series of careful brainstem 

lesion experiments in cats and dogs establishing that the brainstem, rather than the cerebellum, 

controls innate movements such as respiration12,21. The modern view of the cerebellum, on the 

other hand, can be traced back to the early 19th century, when Pierre Flourens proposed a role for 

the cerebellum in the coordination of movements:22,23 

All movements persist following ablation of the cerebellum: all that is missing is that they are not regular 

and coordinated. From this I have been induced to conclude that the production and the coordination 

of movements form two classes of essentially distinct phenomena and that they reside in two classes of 

organs also essentially distinct: with coordination in the cerebellum and production in the spinal cord 

and medulla oblongata. 

Modern work on the brainstem and cerebellum has largely confirmed these different functions. 

Serial dissections confirmed the vital role for the brainstem in movement: animals in which the 

forebrain has been removed but with an intact brainstem retain their ability to perform a large 
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repertoire of innate movements compared to animals with transections at the brainstem-spinal cord 

junction24. 

 

More recent work has further elucidated that the brainstem contains a variety of nuclei that control 

disparate motor functions25. Although many of these function relate to innate behaviors including 

orofacial movements, breathing, and locomotion, recent evidence has demonstrated that certain 

brainstem nuclei also control aspects of skilled forelimb control25–27. Of note, recent work showed 

that ablations of the medullary reticular formation ventral part, or MdV, disrupts grasping in a 

skilled reaching task but does not disrupt simple locomotor tasks27. Similarly, lesions of the red 

nucleus have been shown to impair reaching and grasping but not locomotion28. An important 

consequence of this work is our understanding of how forelimb control recovers after brain injury. 

It has been proposed that redundant controllers of forelimb movements in the cortex and brainstem 

provide substrates for functional recovery29. Further work is required to understand whether cortex 

and brainstem regions interact or act as parallel controllers in skilled forelimb control. 

 

Similarly, modern work has clarified the role of the cerebellum in movement coordination. The 

cerebellum is thought to compute the estimated sensory consequences of motor commands30. 

These “forward models” allow for fast feedback corrections (that are faster than sensory feedback 

would allow) that are critical for coordinated movements. In addition to coordination, these 

forward models also allow for motor adaptation, that is, the ability to adapt the brain’s estimates 

is they are consistently biased31. 
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Despite the disparate functions assigned to the cerebellum and brainstem, neither region has been 

shown to play a central role in the learning of new behaviors (but see ref. 28). Although it is 

possible that future work uncovers a role for the cerebellum and brainstem in learning, this thesis 

focuses on two regions that have been shown to play central roles in learning: the motor cortex 

and basal ganglia. 

 

Motor Cortex 

Disputes over what aspects of movement the motor cortex controls began soon after the discovery 

of the motor cortex. While Fritsch and Hitzig’s original discovery of the motor cortex suggested 

that motor cortex activated individual muscles, follow-up work by David Ferrier, who used longer 

electrical stimulation pulses, showed that activation of motor cortex can elicit complex movements 

that involve the coordination of several muscles14. These initial differences in results grew into a 

larger “muscles vs. movement” debate over the next century as neural recordings from motor 

cortex began with Edward Evarts’ pioneering work32. Since then, neural activity in motor cortex 

has been linked to specific muscle activations, as well as a range of kinematic features such as 

movement amplitude, direction, speed, velocity, acceleration, and position33. Altogether, this work 

presents a complex view of what motor cortex activity actually encodes. Indeed, Apostolos 

Georgopoulos, one of the pioneers of this work, reflects on the diversity of roles played by the 

motor cortex as follows34: 

It would be fair to say that motor cortex is involved in motor ‘stuff’, be it real movement, imagined 

movement, or motor cognition. 

These complexities, combined with the lack of clear conclusions, have led to distinct 

conceptualizations of motor cortical activity. Krishna Shenoy, Mark Churchland, and colleagues, 
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recently presented the Dynamical Systems perspective of motor control as an alternative to 

conventional work focused on finding the aspects of movement or muscle activity that correlate 

best to motor cortical activity35,36. The Dynamical Systems perspectiveproposes that neural activity 

during movement evolves according to laws of a dynamical system with an initial state set by 

motor preparatory activity, and that any correlations between motor cortical activity and specific 

muscle activations or kinematic features are incidental. Paul Cisek simply justified this view by 

stating: “the role of the motor system is to produce movement, not to describe it”37. The power of 

the Dynamical Systems perspective has been demonstrated through accurate predictions of neural 

activity during movement, as well as new insights gained about how motor cortical activity may 

control movement38,39. 

 

The modern study of motor cortex has also continued to leverage lesion techniques. Such work 

has provided considerable evidence that a key role of motor cortex is to control dexterous 

movements, that is, the coordination of fine movements of the hands and fingers40–43. Intriguingly, 

however, recent work showed that motor cortex does not play the same central role in controlling 

non-dexterous movements44. This work, by Bence Ölveczky and colleagues, provided compelling 

evidence that a complex sequence of non-dexterous movements learned with an intact motor cortex 

can be performed without disruption after a complete motor cortical lesion. The motor cortex is 

therefore only required to learn, but not execute, these movement sequences, presenting an 

intriguing dichotomy in the role of motor cortex, in the learning vs. executing non-dexterous 

movements.  
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Lastly, it is also important to note that “motor cortex” is often subdivided into multiple regions. 

For example, in rodents there exists both a primary and secondary motor cortical region45. Each 

motor cortical region projects to many downstream brain regions in addition to the spinal cord and 

receives input from a range of brain regions. Therefore, motor cortical activity is both shaped 

“upstream” and “downstream” by the activity in other brain regions. Of particular relevance to this 

thesis are the projections from motor cortex to the striatum, a major input region of the basal 

ganglia, which have been shown to mediate learning of new behaviors46,47. 

 

Basal Ganglia 

The term “basal ganglia” describes a set of ~7 subcortical regions bound together by reciprocal 

interconnections. Although the exact characterization of which brain regions make up the basal 

ganglia has (and continues to) vary between researchers, the modern conception of the basal 

ganglia is attributed to work by Walle Nauta and William Mehler published in 196548,49. Our 

contemporary view of the basal ganglia includes the caudate nucleus, putamen, globus pallidus 

(interna and externa), subthalamic nucleus, and substantia nigra (pars compacta and pars 

reticula)50. 

 

Far predating this view, however, was the initial characterization of the largest component of the 

basal ganglia, the corpus striatum (or striatum). The striatum is so called because of it is made up 

of striations of gray and white matter, an anatomical feature so distinct that Thomas Willis 

characterized it in 166449,51. Willis postulated that the corpus striatum may be involved in 

movement due to its placement in the brain, a striking hypothesis given that it occurred long before 
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“animal electricity” was even discovered (Willis subscribed to the theory that spirits traveled in 

nerves to activate muscles). In Cerebri anatome Willis wrote49,51:  

If one should enquire about their function, it immediately comes to one's mind that these bodies are 

placed between the cerebrum and its appendix and form a lodging place for both … here, namely, as it 

were in a most frequented public place, the animal spirits concerned with the execution of willed action 

are directed into the appropriate nerves. 

This prescient description has largely held true as functions of the basal ganglia have been 

investigated in the following centuries. Work in the first half of the 19th century demonstrated it 

was possible to elicit movement by stimulating the striatum52 and a more complete theory was put 

forth by David Ferrier in The Functions of the Brain in 187618, where he differentiates the functions 

of the motor cortex and the striatum, suggesting the striatum is important for automatic 

movements: 

It appears from these facts that the corpora striata proper are centres of innervation of the same 

movements as are differentiated in the cortical motor centres, but of a lower grade of specialization. The 

innervation of the limbs in all that relates to their employment as instruments of consciously 

discriminated acts is dependent on the cortical centres, while for all other purposes involving mere 

strength or automatism, primary or secondary, the corpora striata with the lower ganglia are sufficient. 

In fact, modern work has placed the basal ganglia as a central controller of habits and automatic 

actions53. Lesions in the basal ganglia are known to disrupt habitual, automatic, and learned 

behaviors54. Additionally, disorders that impact the basal ganglia, such Parkinson’s Disease, have 

provided further evidence for its central role in controlling movement49,55. However, the precise 

role of the basal ganglia in controlling movement remain debated. I will describe two major 

proposed roles: selecting actions and controlling continuous movement kinematics. 
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The classical view of the basal ganglia is that the output nuclei, particularly the globus pallidus 

inetrna (GPi) and substantia nigra pars reticulata (SNr), keep motor regions in the cortex and 

brainstem under tonic inhibition to prevent unwanted movements56,57. To generate a movement, 

therefore, this inhibitory drive must be released. This release from inhibition is proposed to occur 

through the activation of inhibitory striatal neurons, which make up the input nuclei of the basal 

ganglia and receive cortical, thalamic, and dopaminergic input56,57. This influential 

conceptualization has led to the idea that the basal ganglia is critical for the initiation and 

“selection” of actions, but does not directly implicate the basal ganglia in the control of detailed 

kinematic features of movement. This latter idea is instead supported by considerable evidence 

that basal ganglia activity encodes kinematic features58,59 and that lesions of the basal ganglia 

disrupt the details of movement but do not prevent initiation of movements58,60. An active field of 

study is investigating how these two proposed functions occur in the basal ganglia. 

 

The goal of the preceding section was to demonstrate that the motor network is comprised of a 

variety of brain regions capable of driving movement. Even beyond the regions that have been 

mentioned, there are additional brain regions, although typically not considered “motor regions”, 

that influence movement. For example, the thalamus is responsible for connecting the basal ganglia 

back to the motor cortex61,62 and thalamic inputs to the basal ganglia are known to mediate basal 

ganglia function63. Similarly, inputs from the amygdala to the basal ganglia have been shown to 

modulate basal ganglia function64. Furthermore, with improved recording technologies, it is 

becoming increasingly clear that the study of any brain region in isolation provides a limited view 

of brain function65 and that studying the interactions between regions is a critical step towards 

furthering our understanding of how the brain controls movement. In the next section, we will 
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begin to restrict our focus to the study of one such interaction, between the motor cortex and the 

striatum. This corticostriatal network has been shown to play a central role in learning new 

behavior, the focus of this thesis. 

 

The corticostriatal network and learning 

In the preceding sections I briefly described the major regions within the distributed motor 

network. In this section, my goal is to provide evidence that the corticostriatal network is a 

uniquely important hub within this network responsible for learning new behaviors. 

 

We can think of learning is several ways. From a cognitive lens, we can think of learning as the 

association of an action and a reward. From the lens of motor control, we can think of learning as 

the combination and refinement of movements into a consistent action. This latter type of learning 

is typically referred to as motor skill learning and is classically conceptualized as “increasing 

spatial and temporal accuracy of movements with practice”66. The central role such learning plays 

in our lives was expressed by Daniel Willingham in a 1998 review66: 

It would be a strange, cruel world without motor skill learning: Automobile drivers would get behind 

the wheel as if for the first time every day; there would be no virtuosic athletic and artistic performances 

to watch; and tying one's shoes in the morning would require minutes of intense concentration. 

The corticostriatal network has been proposed to play a central role in motor skill learning. Below, 

I will describe two central factors that make the corticostriatal network particularly well suited to 

mediate learning (1) input/output connectivity and (2) evidence for plasticity. 
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We will first consider connectivity. The functional connectivity of the basal ganglia was briefly 

described in the preceding section: the output nuclei of the basal ganglia are thought to tonically 

inhibit movement through the inhibition of motor regions in the cortex and brainstem and 

excitatory inputs from cortex and thalamus to the striatum are thought to result in the reduction of 

this inhibitory output of the basal ganglia to facilitate movement56,57. In the context of learning, 

plasticity in the inputs to the striatum would therefore allow for the specific, consistent activation 

of striatum to emerge with learning, leading to the consistent disinhibition of motor centers in the 

cortex and brainstem and stable, learned behavior. The inputs to the striatum are uniquely suited 

to undergo such plasticity as the striatum receives inputs from nearly all (if not all) regions of 

cortex67, allowing the striatum to integrate widespread information about context and behavior. In 

fact, there is considerable evidence for convergence within the inputs to the striatum that allow a 

single site in the striatum to receive input from widespread regions of cortex68. For example, it has 

been observed that projections from functionally linked areas of somatosensory and motor cortex, 

i.e., areas that represent the same body part, overlap in the striatum69. Such convergence is enabled 

by the projection patterns of corticostriatal neurons. A typical corticostriatal projection neuron 

makes sparse connectivity with many striatal neurons, rather than strong connectivity with few 

striatal neurons68, in an approximate 6:1 ratio of corticostriatal neurons to striatal projection 

neurons. It is also important to note that there are two broad classes of corticostriatal neurons: 

intratelencephalic (IT) neurons that project widely within the cortex and striatum and pyramidal 

tract (PT) neurons that project to the brainstem or spinal cord with collaterals to the striatum (as 

well as to the thalamus, subthalamic nucleus, zona incerta, globus pallidus internal segment, 

substantia nigra parts reticulata, superior colliculus, and pontine nuclei). The specific role of these 

two classes of neurons is an active field of study. The striatum also receives dopaminergic 
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innervation, which has been shown to both serve as a reward signal that influences plasticity and 

play a role in driving movement itself57. Altogether, this unique connectivity places the striatum, 

and basal ganglia more broadly, in a unique position to mediate learning.  

 

Next, we will consider plasticity. To mediate learning a brain network must have the ability to 

modify connectivity to represent learned actions. NMDA-dependent plasticity has been observed 

in the excitatory inputs to the striatum70,71. Such excitatory inputs originate from cortex and 

thalamus and largely synapse onto spiny projection neurons within the striatum, which compose 

95% of striatal cells. Blocking such NMDA-dependent plasticity in the striatum has been shown 

to prevent learning, suggesting that striatal input plasticity is a critical mediator of learning72–75. 

The focus of work investigating striatal input plasticity during learning has largely been on the 

cortical inputs to the striatum, both in vitro47 as well as in vivo74,76–78. However, recent work has 

also implicated plasticity in thalamic inputs79,80. Additionally, 5% of striatal cells are interneurons 

of two classes: large aspiny acetylcholine interneurons and medium aspiny GABAergic 

interneurons68. There is evidence that within the class of GABAergic interneurons, 

parvalbuminergic interneurons and calretinergic interneurons receive cortical input81,82, suggesting 

another potential site for learning-related plasticity. Plasticity is likely regulated by dopamine, 

classically linked to reinforcement learning in the basal ganglia83. Such demonstrations of 

plasticity in the striatum, particularly within inputs from cortex, suggests this is a fruitful area of 

study to further understand learning. 

 

Prior to this thesis, it had been demonstrated that neural activity across the corticostriatal network 

becomes more coordinated and consistent as behaviors become more consistent with learning74,77. 
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The goal of work in Chapter 2 was to understand, during learning of a complex coordinated action, 

what aspects of the behavior are controlled (or not controlled) by this emerging coordinated 

activity. We found that skilled proximal movements are encoded by coordinated corticostriatal 

activity, while skilled distal movements, such as grasping, are uniquely cortically represented. The 

goal of work in Chapter 3 was to understand how and when the corticostriatal network is shaped 

during learning, with a particular focus on the role of sleep which has been linked to procedural 

learning84–90. We found that non-REM sleep, generally, and sleep spindles, specifically, play a 

central role in shaping the corticostriatal network during learning and impact learned behavior. 

The goal of Chapter 4 is to present a model for the motor network and outlines a potential 

explanation for why corticostriatal plasticity is a critical regulator of learning. 
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Chapter 2: What does the corticostriatal 
network encode? 

 

Chapter 2 is adapted from Lemke, S. M., Ramanathan, D. S., Guo, L., Won, S. J. & Ganguly, K. 

Emergent modular neural control drives coordinated motor actions. Nat. Neurosci. 22, 1122–1131 

(2019). doi:10.1038/s41593-019-0407-2 

 

Abstract 

A remarkable feature of motor control is the ability to coordinate movements across independent 

body parts, or “effectors”, into a consistent, skilled action. To reach and grasp an object, effectors 

for “gross” arm and “fine” dexterous movements must be coordinated as a single action. How the 

nervous system achieves this coordination remains unknown. One possibility is that, with training, 

effectors are co-optimized to produce a coordinated action; alternatively, effectors may be 

modularly refined to function together. To address this question, we recorded neural activity in 

primary motor cortex (M1) and dorsolateral striatum (DLS) during reach-to-grasp skill learning in 

rats. With training, coordinated activity across M1 and DLS emerged, linked to the appearance of 

fast and consistent gross movements. Surprisingly, the emergence of skilled fine movements was 

independent of such activity, evolved over a longer timescale, and displayed a stronger cortical 

reliance. Consistent with these results, inactivation of M1 and DLS had distinct effects on skilled 

fine and gross movements. Our results indicate that skilled movement coordination can be 

achieved through emergent modular neural control.   
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Introduction 

The deceptively simple act of reaching and grasping an object requires the precise coordination of 

both “gross” movements of the arm and “fine” movements of the fingers. Each of these distinct 

body parts, or “effectors”, plays a different role in the action and has distinct complexities in its 

control1–3. For example, there are distinct degrees-of-freedom in movements of the arm and hand. 

How, then, does the nervous system coordinate such effectors to produce a unified skilled action? 

It has been suggested that such multi-effector coordination is achieved by globally optimizing 

movements with respect to biologically relevant task goals4–8. For example, in reaching and 

grasping, both fine and gross movements may be jointly optimized to achieve task success while 

minimizing parameters such as effort. Surprising little, however, is known about the emerging 

neural basis of such coordination during skill learning.    

 

While many tasks have been used to study the neural basis of skill learning (e.g. reaching and 

grasping9–12, lever pressing13,14, accelerating rotarod15–17), learning is often measured by a global 

task parameter rather than changes in the actual movements involved (however, see Kawai, et al., 

2015, Rueda-Orozco, et al., 2015). For example, while rodent reach-to-grasp skill learning requires 

the coordination of both fine and gross movements3, learning is commonly assessed using overall 

success rate rather than detailed analyses of the fine and gross movement components. Thus, a key 

goal of this study was to establish how changes in parameters such as success rate are achieved 

through changes in the underlying movements involved and, further, to determine the neural basis 

for the emergence of such skilled movements. 
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One possibility is that the emerging neural basis of multi-effector coordination reflects theories 

positing the global optimization of movements, i.e., changes in success rate are achieved through 

the co-optimization of both fine and gross movements. In this case, during reach-to-grasp skill 

learning, we would expect a pattern of neural activity linked to both fine and gross movements to 

emerge as fine and gross movements are refined concurrently. Alternatively, however, 

coordination may be achieved in a distributed fashion. In this case, we would expect modular 

patterns of neural activity to emerge independently that represent the control of fine or gross 

movements specifically. We hypothesized that monitoring neural activity across the motor 

network during learning of a multi-effector skill would allow us to distinguish between these 

possibilities.  

 

Here, we report that effector-specific neural control emerged as a coordinated motor action was 

learned. We recorded neural activity in primary motor cortex (M1) and dorsolateral striatum 

(DLS), the primary striatal target of M117,18, throughout learning of a reach-to-grasp skill in 

rats. We observed that coordinated low-frequency activity emerged across M1 and DLS, linked to 

the emergence of fast and consistent gross movements. Intriguingly, the emergence of skilled fine 

movements was independent of this activity, evolved over a longer timescale, and displayed a 

stronger cortical reliance. Consistent with these results, inactivation of M1 and DLS had distinct 

effects on skilled fine and gross movements. Together, our results indicate that skilled movement 

coordination can be achieved through emergent modular neural control. 
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Results 

We recorded neural signals, including single-unit 

activity and local field potentials (LFP) in M1 and DLS 

(Figure 2.1; Figure 2.2) as rats (n=4) learned a reach-

to-grasp skill. Rats were trained for eight days using 

automated behavioral boxes, performing 75-150 trials 

each day19. Refinement of both “gross” movements of 

forearm, for an accurate reaching action, and “fine” 

movements of the digits, to successfully grasp the pellet, 

are required to learn this skill (Figure 2.3a). Consistent 

with past results9,10, over eight days of learning, training 

resulted in faster and more consistent movements, as 

well as increased success rate (Figure 2.3b&c; reach 

duration: 874 ± 203ms on day one to 262 ± 10ms on day 

eight, mean ± SEM across animals hereafter, mixed-

effects models hereafter (see methods): t(913) = -16.6, P = 3.6 × 10–54; sub-movement timing 

variability: 281 ± 97ms to 66 ± 34ms, t(913) = -4.4, P = 1.7 × 10–5; forearm trajectory consistency: 

0.86 ± 0.02 to 0.92 ± 0.02 mean correlation value, t(516) = 4.4, P = 1.5 × 10–5; success rate: 25.2 

± 9.9% to 51.4 ± 10.3% , t(913) = 9.4, P = 5.1 × 10–20). 

 

Refinement of skilled fine and gross movements is dissociable during skill learning 

We first sought to determine how changes in success rate were related to changes in fine or gross 

movements. Intriguingly, we observed that success rate and changes in gross forearm movements, 

Figure 2.1. Localization of 
electrodes. a. Illustration of M1 
and DLS recording sites. b. 
Quantification of electrolytic lesion 
sites marking electrode locations 
for four learning animals. 
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measured by reach duration, sub-movement timing variability, and forearm trajectory consistency, 

seemed to evolve on different timescales. While measures of gross forearm movements reached a 

plateau within eight days, success rate remained variable (Figure 2.3b, D5-D8 in gray box). This 

dissociation suggested that the control of gross movements may stabilize while the control of fine 

movements of the digits remains variable, resulting in variable success rate. In fact, we observed 

that differences in forearm movements did not account for success on days five through eight as 

we found no significant differences between reach duration, sub-movement timing variability, or 

forelimb trajectory consistency for successful and unsuccessful trials on these days (Figure 2.3d; 

reach duration: 355 ± 48ms for successful trials and 327 ± 35ms for unsuccessful trials, t(1310) = 

0.3, P = 0.76; sub-movement timing variability: 101.1 ± 24.7ms and 100.6 ± 34.9ms, t(114) = 1.1, 

P = 0.29; forearm trajectory consistency: 0.92 ± 0.02 and 0.92 ± 0.01 mean correlation value, 

t(301) = -0.001, P = 0.99). Furthermore, success rate did not covary with measures of gross 

movements on days five through eight of training (Figure 2.4; reach duration: p = 0.21, R = 0.11; 

sub-movement timing variability: p = 0.26, R = 0.10). 

Figure 2.2. Corticostriatal projections. a. Anterograde labeling of projections 
from M1 showing projections to the DLS. b. Retrograde labeling of projections 
to the DLS showing strong inputs from cortex, including M1. 
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Importantly, the control of skilled fine movements continued to evolve over a longer time scale 

after gross movements stabilized. In a separate “extended training” cohort (n=3), performing 

~2500 trials over 4 weeks, average success rate reached a significantly higher rate than our 

“learning cohort” reached in eight days, while reach duration, sub-movement timing variability, 

and forearm trajectory consistency were not significantly different between cohorts (Figure 2.3c; 

reach duration: 262 ± 10ms for learning cohort and 279 ± 39ms for extended training cohort, t(714) 

= 0.49, P = 0.62; sub-movement timing variability: 66 ± 34ms and 125 ± 22.1ms, t(135) = 1.5, P 

= 0.12; forearm trajectory consistency: 0.92 ± 0.02 and 0.91 ± 0.01 mean correlation value, t(460) 

= 0.07, P = 0.94; success rate: 51.4 ± 10.3% and 78.9 ± 8.4%, t(714) = 2.5, P = 0.01). Altogether, 

this indicated that the refinement of skilled fine and gross movements is dissociable during reach-

to-grasp skill learning.  
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Figure 2.3. Refinement of skilled fine and gross movements is dissociable during 
reach-to-grasp skill learning. a. Diagram of reach-to-grasp task and learning metrics: 
duration from movement onset (MO) to pellet touch (PT), duration from MO to retract 
onset (RO), forearm trajectory correlation, and success rate. b. Example learning curve 
(dots represent individual trials, lines are averaged over 30 trials; forearm trajectories are 
shown from day one and eight, individual trial trajectories in grey and mean trajectory in 
yellow). c. Difference in reach duration, sub-movement timing variability, forearm 
trajectory correlation, and success rate between day one of training (D1), day eight (D8), 
and performance from an extended training cohort (EXT). d. Differences in reach 
duration, sub-movement timing variability, and forearm trajectory correlation between 
successful (Suc.) and unsuccessful (Unsuc.) trials on days 5-8. 

Figure 2.4. Fine and gross movements do not 
covary between days five through eight of 
reach-to-grasp skill learning. a. Scatterplots of 
mean movement duration, sub-movement timing 
variability and success rate for non-overlapping 
ten trial bins between days five and eight of 
training across animals. Values are z-scored 
within each animal. 
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Coordinated movement-related activity emerges across M1 and DLS during skill learning 

We first explored the neural basis for the refinement of skilled gross movements. As gross 

movements were refined, consistently timed sub-movements and a multiphasic profile of forelimb 

velocity emerged (Figure 2.5a, top/middle). We observed rhythmic movement-related neural 

activity across M1 and DLS that reflected the precise timing of sub-movements. Specifically, we 

observed that coordinated low-frequency (~3-6Hz) activity emerged during movement across M1 

and DLS that was closely related to the timing of sub-movements and forearm muscle activity, 

which also displayed a similar low-frequency component (Figure 2.5a, bottom). 

 

Movement-related LFP signals displayed the emergence of coordinated low-frequency activity 

across M1 and DLS during skill learning. A clear increase in movement-related LFP power was 

observed from day one to eight in both M1 and DLS in the 3-6Hz frequency range (Figure 2.5b; 

M1: 1.0 ± 0.13 baseline normalized power on day one to 1.74 ± 0.1 on day eight, t(146) = 9.1, P = 

5.0 × 10–16; DLS: 1.0 ± 0.7 to 1.67 ± 0.1, t(94) = 6.4, P = 5.1 × 10–9). Movement-related LFP 

coherence between M1 and DLS LFP also significantly increased in the 3-6Hz frequency range 

(Figure 2.5c; 0.18 ± 0.03 coherence on day one to 0.24 ± 0.03 on day eight, t(870) = 9.1, P = 

9 × 10–19). As striatal LFP signals can contain volume-conducted cortical signals with zero phase-

lag coherence20, we measured the phase-lag for high-coherence M1 and DLS channel pairs (i.e., 

coherence value > 0.2) and found phase lag values consistent with the connectivity between M1 

and DLS and inconsistent with volume conducted signals (Figure 2.6). Additionally, increases in 

LFP power and coherence were not solely a result of faster and more consistent movements, as we 

observed significant increases in LFP power and coherence for behaviorally matched fast and 

consistent trials early and late in learning (Figure 2.7).  
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Figure 2.5. Coordinated movement-related activity emerges across M1 and DLS during 
skill learning. a. Diagram of reach-to-grasp task and learning metrics: duration from 
movement onset (MO) to pellet touch (PT), duration from MO to retract onset (RO), forearm 
trajectory correlation, and success rate. b. Example learning curve (dots represent individual 
trials, lines are averaged over 30 trials; forearm trajectories are shown from day one and eight, 
individual trial trajectories in grey and mean trajectory in yellow). c. Difference in reach 
duration, sub-movement timing variability, forearm trajectory correlation, and success rate 
between day one of training (D1), day eight (D8), and performance from an extended training 
cohort (EXT). d. Differences in reach duration, sub-movement timing variability, and forearm 
trajectory correlation between successful (Suc.) and unsuccessful (Unsuc.) trials on days 5-8. 



35 
 

 

 

   

Figure 2.7. LFP power and coherence increases for behaviorally-matched trials during 
learning. a. Differences in M1 3-6Hz LFP power, DLS 3-6Hz LFP power, and M1-DLS 3-
6Hz LFP coherence between behaviorally-matched “fast” trials with a duration between 200-
400ms on days one and two (Early Days) and days seven and eight (Late Days; grey lines 
represent individual animals and black lines represent mean and SEM across animals). b. Same 
as a for behaviorally-matched high forelimb trajectory correlation trials (individual trial 
trajectory with correlation value >0.9 to mean session trajectory). 

Figure 2.6. Non-zero phase lag between high coherence M1 and DLS LFP signals. a. 
Example mean movement onset-locked LFP signals from M1 and DLS (top) and extracted phase 
(bottom). b. Histogram of phase difference between M1 and DLS LFP signals from 250ms before 
to 500ms after movement onset for example LFP pair (grey shaded region in a). c. Peak of phase 
difference histogram (as in b) for all high coherence (coherence value >0.2) pairs of M1-DLS 
channels on day eight. 
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We next characterized the relationship between emerging coordinated low-frequency activity 

across M1 and DLS and the timing of sub-movements. With training, sub-movement timing 

became precisely phase-locked to 3-6Hz LFP activity across both M1 and DLS, consistent with 

what we would expect if this activity was involved in generating sub-movements21–24 (Figure 

2.5d; significant increase in inter-trial coherence (ITC) of M1 LFP signals locked to movement 

onset, t(102) = 3.8, P = 2 × 10–4; M1 LFP signals locked to pellet touch, t(102) = 4.7, P = 1 × 10–

7; M1 LFP signals locked to retract onset, t(102) = 8.5, P = 2 × 10–13; DLS LFP signals locked to 

movement onset, t(96) = 9.6, P = 1 × 10–15; DLS LFP signals locked to pellet touch, t(96) = 6.6, 

P = 3 × 10–9; DLS LFP signals locked to retract onset, t(96) = 12.4, P = 1 × 10–23). Given this 

close relationship between LFP activity and sub-movement timing, we next explored whether the 

frequency of LFP coherence between M1 and DLS covaried with movement duration. In fact, the 

peak frequency of LFP coherence on day eight was significantly higher for faster movements 

compared to slower movements (Figure 2.8). Together, these results indicated that coordinated 

low-frequency activity across M1 and DLS was closely linked to skilled gross movements.  
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Figure 2.8. Peak frequency of M1-DLS LFP coherence covaries with movement duration 
on day eight. a. Example mean M1 and DLS LFP signals for slowest third of trials (top) and 
fastest third of trials (bottom) on day eight for example animal. b. Difference in 3-6Hz M1-
DLS LFP coherence between slowest third of trials (Slow Trials) and fastest third of trials 
(Fast Trials; normalized to mean coherence for slowest third of trials) on day one and day eight 
(n = 4 animals). Grey lines represent mean values from individual animals and black lines 
represent mean and SEM across animals. P values from mixed-effects models. c. Difference 
in peak M1-DLS frequency between 3-6Hz for slowest third of trials and fastest third of trials 
on day one and day eight (n = 4 animals). Grey lines represent mean values from individual 
animals and black lines represent mean and SEM across animals. P values from mixed-effects 
models. 
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Coordinated spiking activity emerges across M1 and DLS during skill learning 

Coordinated low-frequency spiking activity also emerged across M1 and DLS during skill 

learning. Peri-event time histograms (PETHs) of M1 and DLS units displayed movement-related 

multiphasic activity locked to 3-6Hz LFP activity (Figure 2.9a). We investigated the relationship 

between movement-related spiking activity and LFP signals by quantifying the phase-locking of 

M1 and DLS spikes to low-frequency LFP signals. Phase-locking was quantified by generating 

polar histograms of the LFP phases at which each spike occurred for a single unit and LFP channel 

filtered in the 3-6Hz band in a one-second window around movement (Figure 2.9b). We compared 

all M1 and DLS units on day one and day eight to the same LFP channel in M1 and DLS. The non-

uniformity of these histograms (indicating phase-locking) was quantified using a Raleigh test of 

circular non-uniformity that produced a z-statistic with a threshold for significance that allowed 

us to determine the percentage of units in M1 and DLS that were significantly phase-locked to 

LFP signals in either M1 or DLS. We observed an increase in the percentage of M1 and DLS units 

phase-locked to both M1 and DLS LFP signals with training (Figure 2.9c; black vertical dotted 

lines correspond to the p = 0.05 significance threshold of the natural log of the z-statistic, all unit-

LFP pairs with z-statistics greater than this threshold were significantly phase-locked; M1 unit - 

M1 LFP pairs: 37.3% day one to 76% day eight, p = 1 × 10–6, Kolmogorov-Smirnov test; M1 unit 

- DLS LFP pairs: 35.0% to 56.8%, p =0.03; DLS unit - M1 LFP pairs: 42.9% to 66.0%, p = 0.03; 

DLS unit – DLS LFP pairs: 24.2% to 66.3%, p = 6 × 10–8). We tested whether LFP phase-locked 

units were active during a specific phase of movement compared to other units and did not observe 

any clear timing differences in the average responses of phase-locked and not phase-locked units 

(Figure 2.10). 
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The percentage of units that displayed transient oscillatory activity in the 3-6Hz range during 

movement also increased with training (Figure 2.9d). This increase provided an LFP-independent 

measure of local changes in quasi-oscillatory activity. Of these quasi-oscillatory units, 47.1% of 

M1 units on day eight were also phase-locked to M1 LFP, compared to 42.1% on day one, and 

53.9% of DLS units on day eight were also phase-locked to DLS LFP, compared to 50.0% on day 

one. Strikingly, the mean quasi-oscillatory unit cross-correlation across regions on day eight 

(average of all individual cross correlations of quasi-oscillatory M1 and DLS unit pairs) displayed 

a peak with a short time lag consistent with the connectivity of M1 and DLS, as well as secondary 

peaks corresponding to a 3-6Hz rhythm. This spiking relationship was not observed on day one 

(Figure 2.9e). Altogether, these results provided further evidence of emerging movement-related 

coordination across M1 and DLS during skill learning.  
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Figure 2.9. Coordinated M1 and DLS spiking activity emerges during skill learning. a. 
Example Peri-Event Time Histograms (PETH) from units in M1 (left) and DLS (right) 
displaying multi-phasic activity locked to 3-6Hz LFP activity. b. Diagram of spike-LFP phase 
locking. Top: Raster plot of example M1 unit spiking activity during movement aligned to 
movement onset (MO). Middle: Example unit PETH with M1 LFP activity overlaid and 
extracted 3-6Hz LFP phase. Bottom: Polar histogram of LFP phases at which spikes occurred. 
c. Cumulative density functions of z-statistics for every unit-LFP pair across and within each 
region (vertical dotted lines denote significance threshold of z-statistic at p<0.05, % of 
respective unit-LFP pairs greater than threshold noted, lighter color is day one). d. Left: PETHs 
from example unit displaying multiphasic activity and example unit not displaying multiphasic 
activity and corresponding autocorrelations used for classifying quasi-oscillatory (QO; arrows 
denote “bumps” used for classification, see methods) and non-quasi-oscillatory units (Non-
QO). Right: Percentage of units in M1 and DLS on day one and day eight that display quasi-
oscillatory activity. e. Mean cross-correlation between all quasi-oscillatory M1 and DLS units 
on day one (grey) and day eight (blue). 
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Figure 2.10. Details of M1 and DLS spiking activity. a. Example waveforms from array 
spanning M1 and DLS for one session. b. Total recorded units and total task-related units across 
days in M1. c. Total recorded units and total task-related units across days in DLS. d. Histogram 
of firing rates for all units across all sessions, vertical lines denote median for each region. e. 
PETHs of all M1 units time-locked to movement onset on day one (left) and day eight (right). 
f. PETHs of all DLS units time-locked to movement onset on day one (left) and day eight 
(right). g. M1 unit activity during reaching. h. DLS unit activity during reaching. i. PETHs of 
all phase-locked and not phase-locked M1 units on day eight. j. PETHs of all phase-locked and 
not phase-locked DLS units on day eight. 



42 
 

Coordinated M1 and DLS activity is specifically linked to skilled gross movements 

Given the close relationship between coordinated low-frequency activity across M1 and DLS and 

skilled gross movements, we expected their emergence to coincide during learning. In fact, we 

found that the emergence of movement-related M1-DLS 3-6Hz LFP coherence closely coincided 

with the transition to fast and consistent gross movements (Figure 2.11a). Across animals, we 

observed a significant correlation between each session’s average movement-related 3-6Hz M1-

DLS LFP coherence and the average reach duration, sub-movement timing variability, and forearm 

trajectory correlation of that session (Figure 2.11b; reach duration: p = 3× 10–5, R = -0.73; sub-

movement timing variability: p = 2 × 10–3, R = -0.58; forelimb trajectory correlation: p = 6 × 10–

3, R = 0.52; Pearson Correlation, n = 25 sessions across 4 animals). As we observed variable 

success rate after the stabilization of gross movements (Fig. 1b, D5-D8 in gray box), we wondered 

whether coordinated M1-DLS activity was also related to this variability in success rate. We 

compared movement-related 3-6Hz M1-DLS LFP coherence between successful and unsuccessful 

trials on days five through eight and found no significant difference (Figure 2.11a&c; 0.20 ± 0.03 

for successful trials and 0.21 ± 0.03 for unsuccessful trials, t(2558) = 1.1, p = 0.28). As we attribute 

whether trials were successful during this period to the control of skilled fine movements, this 

suggested that the production of skilled fine movements is independent of such activity. These 

results indicated that emerging coordinated activity across M1 and DLS is specifically linked to 

skilled gross movements.  
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Figure 2.11. Coordinated M1 and DLS activity is specifically linked to skilled gross 
movements. a. Time course of movement-related 3-6Hz LFP coherence from example M1-
DLS channel pair over training period overlaid with timing of sub-movements and forearm 
trajectories from day one and day eight. b. Scatterplots of each session’s mean movement-
related 3-6Hz M1-DLS LFP coherence and mean reach duration, sub-movement timing 
variability, and forelimb trajectory correlation, each normalized per animal. c. Filtered LFP (3-
6Hz) signals from example M1 and DLS channels for successful and unsuccessful trials on 
days 5-8, individual trials overlaid with mean signal (left) and difference in M1-DLS LFP 
coherence for successful and unsuccessful trials on days 5-8 (right; grey lines represent 
individual animals and black line represents mean and SEM across animals). 
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M1 and DLS inactivation have differential effects on skilled fine and gross movements 

We next sought to causally test the role of M1 and DLS activity in producing skilled fine and gross 

movements. In a separate cohort of well-trained animals (n=5) implanted with infusion cannulas 

in both M1 and DLS, we acutely inactivated either M1 or DLS by muscimol infusion and observed 

the effects on skilled movements (Figure 2.12a). To dissect impairments of either skilled fine or 

gross movements we developed a novel reach-to-grasp task design in which the pellet position is 

either placed at the “far” position (same position used for training) or a “close” position (Figure 

2.12b). A close position was added to generate a reaching condition in which the reliance on skilled 

gross movements for success was reduced, while skilled fine movements were still required to 

successfully grasp the pellet. Differential effects of region inactivation on success rate for the close 

and far position would therefore indicate differences in skilled fine and gross movement 

impairment. 

 

Both acute M1 and DLS inactivation disrupted gross movements (Figure 2.12c; M1 

inactivation/far position: reach duration: 662 ± 63ms and 2.6 × 103 ± 667ms, t(311) = 11.2, P = 2 

× 10–24; sub-movement timing variability: 121 ± 35ms and 586 ± 228ms, t(53) = 5.7, P = 5 × 10–

7; M1 inactivation/close position: reach duration: 662 ± 63ms and 2.7 × 103 ± 711ms, t(312) = 

14.8, P = 6 × 10–38; sub-movement timing variability: 121 ± 35ms and 641 ± 89ms, t(54) = 7.0, 

P = 3 × 10–9; DLS inactivation/far position: reach duration: 448 ± 63ms baseline and 889 ± 279ms 

post-infusion, t(725) = 7.5, P = 2 × 10–13; sub-movement timing variability: 74 ± 8ms and 237 ± 

77ms, t(136) = 3.7, P = 3 × 10–4; DLS inactivation/close position: reach duration: 448 ± 63ms and 

995 ± 284ms, t(735) = 10.0, P = 3 × 10–22; sub-movement timing variability: 74 ± 8ms and 195 ± 
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82ms, t(138) = 4.2, P = 5 × 10–5). This was consistent with our conclusion that coordinated activity 

across both M1 and DLS is closely linked to skilled gross movements. 

 

Intriguingly, while both M1 and DLS inactivation also impaired success rate to the far position 

(Figure 2.12c; M1 infusion: 73.6 ± 7.7% baseline and 6.8 ± 3% post-infusion, t(311) = -12.4, P 

= 8 × 10–29; DLS infusion: 67.5 ± 3.8% and 34.7 ± 8.6%, t(725) = -8.95, P = 3 × 10–18), only M1 

inactivation impaired success rate at the close position (Figure 2.12c; M1 infusion: 73.6 ± 7.7% 

baseline and 10.8 ± 6.6% post-infusion, t(312) = -12.1, P = 6 × 10–28; DLS infusion: 67.5 ± 3.8% 

and 72.2 ± 2.9%, t(735) = -1.3, P = 0.20). This suggested that while skilled gross movements rely 

on activity across both M1 and DLS, skilled fine movements display a stronger cortical reliance. 

No changes in behavior were observed with saline infusions (M1 and DLS saline infusion sessions 

combined; saline/far position: reach duration: 269 ± 43ms baseline and 279 ± 53ms post-infusion, 

t(817) = 1.5, P = 0.13; sub-movement timing variability: 135 ± 27ms baseline and 140 ± 34ms 

post-infusion, t(817) = 0.93, P = 0.35; success rate: 64.6 ± 2% baseline and 66.5 ± 7.2% post-

infusion, t(817) = 0.77, P = 0.44). 
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Behavioral and neural effects of DLS inactivation 

We next sought to further dissect the effects of DLS inactivation. With DLS inactivation we 

observed decreased reach amplitude, compared to an increase in reach amplitude with M1 

inactivation (DLS infusion: 1 ± 1 x 10–16 normalized reach amplitude baseline to 0.99 ± 5 x 10–

Figure 2.12. M1 and DLS inactivation have differential effects on skilled fine and gross 
movements. a. Illustration of M1 and DLS muscimol inactivation. b. Illustration of two-
position reach-to-grasp task design with a “far” pellet and “close” pellet position. c. Differences 
in reach duration, sub-movement timing variability, and success rate between trials before 
muscimol infusion (Baseline), trials after muscimol infusion reaching to the far pellet position 
(Far), and trials after muscimol infusion reaching to the close pellet position (Close) for M1 
infusions (left) and DLS infusions (right; grey lines represent individual sessions and black 
lines represents mean and SEM of all sessions). 
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3 normalized reach amplitude post-infusion, t(593) = -4.1, P = 6 x 10–5; M1 infusion: 1 ± 1 x 10–

16 to 1.01 ± 0.02, t(322) = 6.1, P = 3 x 10–9). This is consistent with work implicating the striatum 

in movement vigor25–30 and suggested that decreased reach amplitude may account for the decrease 

in success rate at the far position. In fact, when we compared DLS inactivated, post-infusion trials 

with “normal” reach amplitude (i.e., greater or equal to the average reach amplitude during pre-

infusion baseline trials) to pre-infusion baseline trials, success rate was not significantly different 

(74.4 ± 4.4% baseline and 75.33 ± 11.8% post-infusion, t(670) = 1.5, P = 0.12). This provided 

further evidence that DLS inactivation impairs gross movements involved in transporting the paw 

to the pellet, rather than the fine movements involved in grasping. Importantly, body posture at the 

time of movement onset was not significantly different after DLS inactivation compared to pre-

infusion baseline trials (Figure 2.13).  

Figure 2.13. Body posture during 
reaching before and after DLS 
inactivation. a. Example of top 
camera view and quantification of 
body axis/posture during reaching. b. 
Example body posture for all trials 
(posture is quantified at the time of 
movement onset) before DLS 
muscimol infusion (Baseline Session) 
and after DLS muscimol infusion 
(DLS Inactivation Session). c. 
Difference in posture variability and 
lateral bias for trials before DLS 
muscimol infusion and after DLS 
muscimol infusion (grey lines 
represent individual animals and 
black lines represents mean and SEM 
across animals). 



48 
 

We next sought to examine off-target effects of DLS inactivation. In a separate cohort of well-

trained animals (n=3) implanted with infusion cannulas in DLS and electrodes in M1, we acutely 

inactivated DLS by muscimol infusion and observed the effects on M1 activity (Figure 2.14;  

Figure 2.15). With DLS inactivated, there was a significant decrease in movement-related 3-6Hz 

M1 LFP power compared to pre-infusion baseline (Figure 2.14b; t(318) = 18.1, P = 5 × 10–51). 

Intriguingly, this suggested that DLS is required for movement-related low-frequency activity in 

M1. Importantly, this change was not attributable to a general suppression of M1 activity as we 

found no significant decrease in movement-related firing rates in M1 with DLS inactivated (Figure 

2.14c; t(318) = 18.1, P = 0.56). No changes in movement-related M1 LFP power or firing rate 

were observed after saline infusions compared to pre-infusion baseline (LFP power, t(190) = 1.3, 

P = 0.20; movement-related firing rate, t(168) = 0.36, P = 0.72). To test whether such acute off-

target effects may be causing behavioral impairments, we performed excitotoxic lesions centered 

on DLS that lesioned DLS as well as small portions of surrounding cortex (n=3). Consistent with 

previous work31, we observed increased reach duration, sub-movement timing variability and 

decreased success rate two weeks post-lesion (Figure 2.16; reach duration: 428 ± 56ms baseline 

and 631 ± 114ms post-lesion, t(620) = 4.7, P = 3 × 10–6; sub-movement timing variability: 106 ± 

13ms and 296 ± 90ms, t(620) = 4.2, P = 4 × 10–5; success rate: 63 ± 4.3% and 40.7 ± 2.9%, t(620) 

= -5.5, P = 5 × 10–8). This suggests that acute off-target effects do not fully account for disruptions 

in skilled gross movements observed with acute DLS inactivation. 
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Figure 2.15. Localization of muscimol infusion. 
a. Localization of muscimol infusion into DLS. 

Figure 2.14. DLS inactivation decreases movement-related low-frequency M1 activity.  a. 
Illustration of DLS muscimol infusion and M1 recording. b. Left: 3-6Hz filtered LFP aligned 
to movement onset from example M1 channel for trials before and after DLS inactivation, 
individual trials overlaid with mean signal. Right: Difference in movement-related 3-6Hz LFP 
power in M1 before and after DLS inactivation. c. Left: PETH from example M1 unit for trials 
before and after DLS inactivation. Right: Difference in movement-related firing rate before and 
after DLS inactivation. 
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Skilled reaching impairments with chronic M1 lesion 

We next sought to further investigate impairments in skilled movements with chronic M1 lesions. 

It was recently shown that for a complex motor skill composed of non-dexterous movements, 

lesioning M1 after skill learning did not impair performance14. However, decreases in success rate 

have been reported with cortical lesions in the reach-to-grasp skill32. Therefore, we sought to 

determine if specific aspects of the reach-to-grasp skill are chronically impaired by a permanent 

M1 lesion. In a separate cohort of well-trained animals (n=5), we generated photothrombotic 

lesions centered on M1 (Figure 2.17a; Figure 2.18). In the first training session post-lesion 

(within 8 to 13 days post-lesion), reach duration and sub-movement timing variability were 

increased and success rate was decreased (Figure 2.17b; reach duration: 339 ± 63ms baseline and 

Figure 2.16. Localization and behavioral effects of excitotoxic DLS lesions. a. DLS 
excitotoxic lesion localization (immunolabeling: DAPI in blue; NeuN in red). b. Differences in 
reach duration, sub-movement timing variability, and success rate between trials before DLS 
lesion (Pre Lesion) and trials two weeks after DLS excitotoxic lesion (Post Lesion; lines 
represent individual animals and black lines represent mean and SEM across animals). 
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756 ± 130ms early post-lesion, t(806) = 14.5, P = 3 × 10–42; sub-movement timing variability: 

183 ± 66ms and 365 ± 63ms, t(195) = 6.7, P = 2 × 10–10; success rate: 69.1 ± 2.5% and 19.4 ± 

7.65%, t(808) = -15.84, P = 2 × 10–49). With training, gross movement metrics recovered while 

success rate remained disrupted. Comparing pre-lesion performance to performance once all 

behavioral performance measures had plateaued (within 15 to 73 days post-lesion), reach duration 

and sub-movement timing variability were not significantly different than pre-lesion performance 

(Figure 2.17b; reach duration: 339 ± 63ms baseline and 395 ± 117ms late post-lesion, t(966) = 

2.5, P = 0.1; sub-movement timing variability: 183 ± 66ms and 254 ± 133ms, t(234) = 2.4, P = 

0.1), but success rate remained significantly decreased (Figure 2.17b; 69.1 ± 2.5% baseline and 

44.7 ± 2.75% late post-lesion, t(968) = -8.3, P = 4 × 10–16). We interpreted the differential 

recovery of skilled fine and gross movements as further evidence that skilled fine movements have 

a strong cortical reliance.  
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Skilled fine movement representation in M1 

Lastly, we explored the representation of skilled fine movements in M1 and DLS. We used 

gaussian-process factor analysis (GPFA) to find low-dimensional neural trajectory representations 

of population spiking activity in M1 and DLS on individual trials33 (Figure 2.19a; Figure 2.20) 

and then compared trajectories for successful and unsuccessful trials during the period of training 

after gross movements had stabilized (e.g., Figure 2.3b, D5-D8). As we attribute whether trials 

were successful during this period to the control of skilled fine movements of the digits, we 

expected to find a difference in movement-related neural signals between successful and 

Figure 2.17. Persistent disruption of skilled fine 
movements after M1 lesion. a. Illustration of 
photothrombotic M1 lesion. b. Differences in reach 
duration, sub-movement timing variability, and success rate 
between trials before M1 lesion (Pre Lesion), trials during 
the first reaching session post- lesion (Early Lesion), and 
trials once a performance plateau had been reached (Late 
Lesion; grey lines represent individual animals and black 
lines represents mean and SEM across animals). 

Figure 2.18. Localization of M1 
photothrombotic lesion. a. 
Example photothrombotic M1 
lesion. 
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unsuccessful trials if a region encodes the control of skilled fine movement. Alternatively, if a 

region does not encode the control of skilled fine movements, we did not expect to find a 

difference.  

 

Strikingly, we observed a difference between trajectories for successful and unsuccessful trials in 

M1 but not DLS. To compare successful and unsuccessful trials we subtracted the mean neural 

trajectory for successful trials, i.e., the “successful template”, from each individual trial’s neural 

trajectory (Figure 2.19b) and calculated the mean absolute value of the deviation during each time 

point from 250ms before movement onset until pellet touch. We focused on this period as it 

includes the fine movements involved in shaping the digits for contact with the pellet but does not 

include differences in retraction or reward between successful and unsuccessful trials. As trials 

differed in the duration of this period, we interpolated trajectories such that they were all the same 

length (see methods). We found that M1 neural trajectories for unsuccessful trials had significantly 

higher deviation than successful trials starting after movement onset (Figure 2.19c, top; * = 

p<0.05, mixed effects model w/Bonferroni correction for multiple comparisons). In DLS, 

however, deviation of successful and unsuccessful trials from the template did not differ (Figure 

2.19c, bottom), providing evidence for a specifically cortical representation of skilled fine 

movements. 
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Figure 2.19. Skilled fine movement representation in M1. a. GPFA neural trajectories for 
trials on day eight for M1 (top) and DLS (bottom) from example animal. b. Illustration of 
method for calculating deviation from the mean successful template for successful and 
unsuccessful trials. c. Mean deviation (width depicts SEM) from successful template for 
successful and unsuccessful trials from 250ms before movement onset to pellet touch, across 
animals (* = p<0.05, mixed-effects model w/Bonferroni correction for multiple comparisons). 

Figure 2.20. Increased GPFA neural trajectory consistency during skill learning. a. GPFA 
neural trajectories for M1 (top) and DLS (bottom) on day one and day eight from example 
animal. b. Difference in consistency of GPFA trajectories between early days (days 1-4) and 
late days (days 5-8) in M1 (top) and DLS (bottom), across animals (grey dots represent 
individual days and black lines represents mean and SEM across days). 
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Discussion 

In summary, we found that fine and gross movement refinement were behaviorally and neurally 

differentiable during reach-to-grasp skill learning in rats. Coordinated low-frequency activity 

emerged across M1 and DLS, linked to the emergence of skilled gross movements. The emergence 

of skilled fine movements was independent of this activity, evolved over a longer timescale, and 

displayed a stronger cortical reliance. Consistent with these results, inactivation of either M1 or 

DLS disrupted gross movements, while only inactivation of M1 disrupted fine movements. This 

work provides evidence that coordinated skills can emerge from the modular refinement of 

effectors. Importantly, this work was performed on effectors that vary greatly in degrees of 

freedom, further work is required to determine whether such modular control generalizes to other 

forms of coordination (e.g., arm/leg). 

 

The role of M1 in skill learning and execution 

Primary motor cortex has been ascribed multiple roles in learning and executing motor skills34. A 

critical determinant for the role of M1 is whether the skill involves dexterous movements34. Our 

results indicate that for a motor skill composed of both dexterous (fine) and non-dexterous (gross) 

movements, distinct patterns of M1 activity emerge independently during skill learning that are 

related to each component. This suggests that M1 plays dual, but separable, roles in learning a skill 

composed of both dexterous and non-dexterous components. 

 

Motor cortex is known to play a critical role in the production of dexterous movements35,36. Motor 

cortical projections to brainstem and spinal cord are thought to mediate this role37–39. Lesions to 

cortex disrupt this pathway and lead to chronic impairments in dexterous movements40,41. 
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Interestingly, non-dexterous movements have been shown to recover after motor cortical 

lesion40,41, suggesting a greater ability for gross movements to be generated subcortically. Our 

results are broadly consistent with this literature. We found a predominantly cortical representation 

of skilled fine movements (Figure 2.19). Moreover, permanent lesions of M1 were associated with 

chronic fine motor impairments while aspects of gross movements recovered (Figure 2.17). The 

observed deficits in both fine and gross movements with acute M1 inactivation (Figure 2.12) raise 

the possibility of off-target effects42. 

 

The role of motor cortex in non-dexterous movements evolves with learning 

A recent study found that bilateral lesions of premotor and motor cortex after learning did not 

impair performance of complex motor skill composed of non-dexterous movements. However, 

similar lesions before learning prevented skill acquisition14. This has led to the notion that non-

dexterous skills are “transferred” to downstream structures and that motor cortex plays a “tutor” 

role, i.e., is required for learning but not execution of a motor skill14. What may allow non-

dexterous control in the absence of M1? Skill learning is commonly associated with plasticity in 

corticostriatal projections13,16,17 and it has therefore been theorized that the striatum and 

thalamostriatal inputs may be critical downstream producers of these learned skills14,43,44.  Our 

results suggest that corticostriatal plasticity is indeed important to learn motor skills (Figure 2.5). 

Additionally, it is possible that the observed coordinated activity across M1 and DLS is a 

neurophysiological substrate for the motor cortical training or tutor signal. This coordinated low-

frequency activity may provide a mechanism through which M1 activity patterns induce long-term 

plasticity in the DLS. Modeling has shown that temporally patterned inputs to the striatum can 

drive inter-striatal plasticity44.  
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Importantly, in our work, recovery of skilled gross movements after motor cortical lesion occurred 

over time with training. This is different from Kawai, et al., 2015, in which full recovery was 

observed after a period of 10 days with no further training. One important difference that may 

explain this discrepancy is that the reach-to-grasp task contains both dexterous and non-dexterous 

components. Another important variable is the amount of training required for transfer. In Kawai, 

et al., 2015, the complex motor skill was learned over a long period of training (~20,000 training 

trials over ~30 days); it remains possible that an action containing dexterous movements may also 

be realized by downstream circuitry after cortical lesions with enough training. 

 

The role of DLS in skill learning and execution 

The striatum’s role in producing skilled movements is also multifaceted. Receiving widespread 

cortical innervation, the striatum is positioned to play a central role in motor function as is 

evidenced by the motor dysfunction caused basal-ganglia disorders45. Cortical innervation of the 

striatum projects back to cortex via basal-ganglia output nuclei and the thalamus, forming a 

corticostriatal “loop”. The precise role of this loop in the production of motor skills remains 

unclear, although it has been shown that striatal activity can influence motor cortical activity with 

low-latency46 (<200ms). It has also been shown in a Brain Machine Interface (BMI) task in which 

animals learn to modulate cortical activity to achieve reward that plasticity in corticostriatal 

projections is required, suggesting that cortex may require striatum to generate stereotyped patterns 

of activity47. Consistent with this notion, we found disrupted movement-related LFP activity in M1 

with DLS inactivation (Figure 2.14). Altogether, this suggests that the striatum may play a role in 

modulating cortical activity during skill learning. Additional work detailing the precise effect of 
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basal ganglia activity on cortical activity will be critical to understand the role of striatum in the 

production of skilled movements. 

 

Recent work has also championed a role of the striatum in controlling movement vigor25–30. One 

such model focuses on the feed-forward convergent pathway of motor cortical neurons that project 

to “premotor” brainstem regions and their collaterals that project to the dorsal striatum, that in turn 

projects to the same “premotor” brainstem regions through basal ganglia output nuclei30. This 

pathway through the striatum is theorized to play a role in controlling the gain of descending motor 

commands based on previous experience. One prediction of this “history-dependent gain” model 

(for details see Yttri & Dudman, 2018) posits that the striatum is active during the acceleration and 

deceleration phases of a movement, which was confirmed in a joystick27 and locomotor28 task. 

Similarly, we find that striatal units are active throughout the reaching action (Figure 2.9; Figure 

2.10). Additionally, we found evidence that disrupting striatal activity effects movement vigor, as 

reach amplitude was decreased with DLS inactivation. Altogether, our results support the notion 

that DLS may play a role in both modulating cortical activity and controlling movement vigor for 

skilled gross movements. Our finding that  DLS activity is linked to skilled gross movements in 

the rodent is consistent with work in the monkey48,49 and human50,51 basal ganglia, demonstrating 

a greater representation of proximal, compared to distal, portions of the limb. 

 

What kind of “skill” is the reach-to-grasp task? 

The term “motor skill” can describe a vast range of behaviors characterized by fast, accurate, and 

consistent movements. One group of skills has been formalized using the speed-accuracy 

tradeoff52. Learning such skills typically involves optimizing speed while maintaining accuracy. 
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For example, one can play a series of notes on the piano consistently and accurately on the first 

day of learning if the movements are performed slowly enough. Learning therefore involves 

optimizing speed. Other skills require optimizing accuracy without constraints on than speed (e.g., 

shooting a free throw). The rodent reach-to-grasp skill falls under this latter type of learning. 

Interestingly, while there were no explicit constraints on speed, we still observed a significant 

decrease in movement duration. This may be because the brain’s motor network, in general, biases 

toward faster skills to increase rewards per unit time53. Another possibility is that coordinated low-

frequency activity between M1 and DLS is critical for consistent and accurate movements, and 

that speed is simply a byproduct of network dynamics.  In fact, there is evidence that increases in 

speed are required to maximize efficiency or maintain consistency54. 

 

Coordination across the motor network 

The study of the coordination between different regions in the motor network may allow us to 

dissect the details of each region’s complex role. It has been suggested that oscillatory or rhythmic 

activity is central to multi-region communication55–57. Intriguingly, a growing body of work has 

also proposed that transient oscillatory activity is central to motor function21,58,59. In fact, modeling 

has suggested that low-frequency activity may be an essential feature of neural activity that 

generates descending commands to muscles60. While this work has focused on the role of cortex 

in such a process, the coordinated low-frequency activity we observe between M1 and DLS 

suggests that such activity is also present in other nodes in the motor network and that such 

rhythmic activity may allow for the coordination of activity across regions. Further work exploring 

multi-region interactions will be essential to understanding the interplay between cortex and 

striatum, and the greater motor network, during motor skill learning. 
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Methods 

Animal Care and Surgery 

All procedures were in accordance with protocols approved by the Institutional Animal Care and 

Use Committee at the San Francisco Veterans Affairs Medical Center. Male Long-Evans rats 

between 3-4 months old and 250-300 grams were used in this study. Animals were kept under 

controlled temperature and a 12–h light, 12–h dark cycle with lights on at 06:00 a.m. 

 

All surgical procedures were performed using sterile technique under 2-4% isoflurane. For 

electrode and/or cannula implantation, surgery involved exposure and cleaning of the skull, 

preparation of the skull surface (using cyanoacrylate), and then implantation of skull screws for 

referencing and overall head-stage stability. Reference screws were implanted posterior to lambda, 

contralateral to the neural recordings. Ground screws were implanted posterior to lambda, 

ipsilateral to the neural recordings. Craniotomy and durectomy were performed, followed by 

implantation of neural probes or cannulas. Neural probes (32- or 64-channel Tucker-Davis 

Technologies (TDT) 33 μm polyimide-coated tungsten microwire electrode arrays) or infusion 

cannulas (PlasticsOne) were implanted in the forelimb area of M1, centered at 3.5mm lateral and 

0.5mm anterior to bregma and implanted in layer 5 at a depth of 1.5mm, and the dorsolateral 

striatum, centered at 4mm lateral and 0.5mm anterior to bregma and implanted at a depth of 

4.5mm. Final location of electrodes was confirmed by electrolytic lesion (Figure 2.1). Muscimol 

localization was performed by infusing a fluorescent muscimol (Figure 2.15; BODIPY, TMR-X 

Conjugate) prior to perfusion and histology. The forearm was implanted with a pair of twisted 

electromyography (EMG) wires (0.007” single-stranded, teflon-coated, stainless steel wire; A-M 

Systems, Inc.) with a hardened epoxy ball (J-B Weld) at one end preceded by 1–2 mm of uncoated 
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wire under the ball. Wires were inserted into the muscle belly and pulled through until the ball 

came to rest on the belly. EMG wires were braided, tunneled under the skin to a scalp incision, 

and soldered into headstage connectors. Fascia and skin incisions were closed with a suture. The 

post–operative recovery regimen included administration of buprenorphine at 0.02 mg/kg and 

meloxicam at 0.2 mg/kg. Dexamethasone at 0.5 mg/kg and Trimethoprim sulfadiazine at 15 mg/kg 

were also administered post–operatively for 5 days. All animals recovered for 14 days prior to start 

of behavioral experiments.  

 

For photothrombotic lesion surgery, the protocol was the same as for electrode and cannula 

implantation up to the craniotomy. After the craniotomy, rose bengal dye was injected into the 

femoral vein using an intravenous catheter. Next, the surface of the brain was illuminated with 

white light (KL-1500 LCD, Schott) using a fiber optic cable for 20 min. We used a 4-mm 

aperture for lesion induction (centered on the M1 coordinates reported above) and covered the 

remaining cortical area with an aluminum foil mask to prevent light penetration. After lesion 

induction the craniotomy was covered with a layer of silicone (Quiksil), followed by dental 

cement. The same post-operative recovery regimen as electrode and cannula implantation 

surgery was then implemented. After all experiments, rats were anesthetized and transcardially 

perfused with 0.9% sodium chloride, followed by 4% formaldehyde. The harvested brains were 

post-fixed for 24 h and immersed in 20% sucrose for 2 days. Coronal cryostat sections (40-μm 

thickness) were then mounted and imaged for lesion and muscimol localization. 
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Behavior 

For learning, rats naïve to any motor training were first tested for forelimb preference. This 

involved presenting approximately ten pellets to the animal and observing which forelimb was 

most often used to reach for the pellet. One-week later rats underwent surgery followed by a 

recovery period. Rats were then trained using an automated reach-box, controlled by custom 

MATLAB scripts and an Arduino micro-controller. This setup required minimal user intervention, 

as described previously19. Each trial consisted of a pellet dispensed on the pellet tray followed by 

an alerting beep indicating that the trial was beginning and then the door opening. Animals had to 

reach, grasp and retrieve the pellet. A real-time “pellet-detector” using an IR sensor centered over 

the pellet was used to determine when the pellet was moved, indicating the trial was over, and the 

door was closed. All trials were captured by video through a camera placed on the side of the 

behavioral box, which was synced with electrophysiology data using an Arduino digital output. 

Two types of cameras were used, Microsoft LifeCams which captured videos at 30Hz, and Basler 

Cameras which captured videos at 75Hz. Behavioral scoring, including timing of sub-movements 

and reconstruction of the forelimb trajectory, was performed manually. For inactivation 

experiments, a second camera was placed above the behavioral box to capture body posture during 

reaching. The learning paradigm consisted of 100-150 trial sessions performed each day for 8 

consecutive days. Rats had 15 seconds in each trial to execute a reach before a 10 second inter-

trial-interval in which the door was closed, which led to ~75-150 trials performed (i.e., trials where 

the pellet was displaced) each day. For the “extended training” cohort, a separate cohort of animals 

was trained more extensively using the same paradigm for 4 weeks, resulting in ~2500 trials 

performed.  
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Behavioral Analysis 

Learning was assessed using four metrics (Figure 2.3): (1) reach duration defined as the time from 

the onset of movement (movement onset) to when the paw is fully retracted off of the pellet tray 

(retract onset), (2) sub-movement timing variability defined as the standard deviation across trials 

of the duration between paw touching the pellet (pellet touch) and when the paw is fully retracted 

off of the pellet tray (retract onset), (3) success rate defined as the percentage of reaches that 

resulted in retrieval of the pellet into the box, and (4) forelimb trajectory consistency defined as 

the average correlation between each individual trial’s forelimb trajectory and the mean forelimb 

trajectory calculated over all trials in that session (computed separately in each of the two 

dimensions). These metrics were chosen as they measured changes in both gross movements of 

the forelimb involved in producing a consistent reach and fine movements of the fingers involved 

in successful grasping. For the scatter plots comparing changes in reach duration, sub-movement 

timing variability, and forelimb trajectory consistency across learning to changes in movement-

related 3-6Hz M1-DLS LFP coherence (Figure 2.11), normalized values of reach duration, sub-

movement timing variability, and forelimb trajectory consistency were computed by z-scoring the 

eight mean values corresponding to the eight days of training for each animal separately, then 

combining the normalized values across animals. To determine body posture with DLS 

inactivation we used a top camera and manually determined the body axis from nose to center of 

the body (Figure 2.13). We defined posture variability as the mean of the absolute value of the 

distance across all trials from the middle of the body to the average middle of the body position. 

We defined lateral bias as the mean distance in the x-axis across all trials from the middle of the 

body to the average middle of the body position.  
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Inactivation Experiments 

We performed two sets of inactivation experiments. For both experiments, rats were first tested 

for forelimb preference, then underwent either dual cannula surgery (M1 and DLS cannula 

implantation) or cannula and electrode implantation surgery (DLS cannula and M1 electrode 

implantation). Following the recovery period, rats were trained for 10 days (100 trials/day). 

Following this training, inactivation experiments began. For each session, baseline performance 

was calculated from 100 trials performed before muscimol infusion. For M1/DLS inactivation 

experiments (Figure 2.12), infusion consisted of anesthetizing the rat (w/isoflurane) and infusion 

of 250nl of 1ug/ul muscimol (Tocris) in saline (0.9% sodium chloride) at a rate of 100nl/min in 

either M1 or DLS. After the two-and-a-half-minute infusion and a five-minute waiting period with 

the infusion cannula inserted, the rat was taken off anesthesia and allowed to recover for 2 hours. 

A 200 trials block was then performed alternating between 10 trials to the “close” position (5mm 

from pellet center to slot opening in behavioral box) and 10 trials to the “far” position (15mm from 

pellet center to slot opening in behavioral box). For DLS inactivation experiments (Figure 2.14), 

infusion protocol was the same except a volume of 1ul of muscimol was infused. After the ten-

minute infusion and a five-minute waiting period, a 100-trial block was performed at the 

“far”/normal pellet position to examine effects of DLS inactivation on movement-related M1 

activity.  

 

Lesion Experiments 

For photothrombotic lesion experiments (Figure 2.17), rats were first tested for forelimb 

preference, then trained for 10 days (100-150 trials/day). Pre-lesion performance was measured 

before animals underwent photothrombotic lesion surgery. Post-lesion, animals began performing 
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reaching trials at variable times, so “early” lesion performance was defined as the performance 

during the first session that animals were completing trials (within 8 to 13 days post-lesion). 

Animals underwent reach training until a performance plateau was reached, which was defined as 

“late” lesion performance (within 15 to 73 days). Photothrombotic lesion size was determined with 

immunohistochemistry (see below). For excitotoxic lesion experiments (Figure 2.16), rats were 

first tested for forelimb preference, then trained for 10 days (100 trials/day). Pre-lesion baseline 

performance was then measured. Excitotoxic lesions were then implemented with 500nl infusions 

of 10ug/ul ibotenic acid (7.4 pH; Abcam) at an infusion rate of 100nl/min at the same DLS 

coordinates as referenced above. The animals recovered for two weeks, then performance post-

lesion was measured. Excitotoxic lesion position and size was determined with 

immunohistochemistry (see below). 

 

In Vivo Electrophysiology 

Units, LFP, and EMG activity were recorded using a TDT-RZ2 system (Tucker-Davies 

Technologies). Spike data were sampled at 24414 Hz and LFP/EMG data at 1017 Hz. ZIF-clip-

based analog headstages with a unity gain and high impedance (∼1 GΩ) were used. Behavior-

related timestamps (i.e., trial onset, trial completion) and video timestamps (i.e., frame times) were 

sent to the RZ2 analog input channel using an Arduino digital board and synchronized to neural 

data. 
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Neural Data Analysis 

Analyses were conducted using a combination of custom-written scripts and functions in 

MATLAB 2015a/2017a (MathWorks), along with functions from the EEGLAB toolbox 

(http://sccn.ucsd.edu/eeglab/) and the Chronux toolbox (http://chronux.org/). 

 

LFP analysis 

Pre-processing steps for LFP analysis included: artifact rejection (manually removing 

noisy/broken channels), z-scoring entire recording session, and common-mode referencing using 

the median signal (at every time-point, the median signal across all channels in a region was 

calculated. This median signal was subtracted from every channel to decrease common noise and 

minimize volume conduction. Common-mode referencing was performed independently for the 

channels in each region, i.e., M1 and DLS. 

 

In several instances we filtered LFP signals to isolate and display the low-frequency (3-6Hz) 

component of the signal (Figure 2.5a&d; Figure 2.6a; Figure 2.8a; Figure 2.9a&b; Figure 

2.11c; Figure 2.14b). Filtering was performed using the EEGLAB function eegfilt. In addition to 

display purposes, we also used filtered LFP to characterize phase-locking of spiking activity 

specifically to low-frequency LFP signals. For this we used the Hilbert transform (MATLAB) to 

extract the phase information from low-frequency filtered LFP signals (Figure 2.9b&c). We also 

used filtered LFP and phase extraction to determine the movement-related phase lag between M1 

and DLS LFP signals (Figure 2.6). 
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To quantify changes across frequencies in the amplitude of rhythmic activity in LFP signals we 

calculated movement-related LFP spectrograms and power spectrums within each region (Figure 

2.5; Figure 2.7; Figure 2.14b). For learning comparisons, power was measured and compared for 

the same channels on day one and day eight across all channels (except those removed due to 

noise). This was carried out using wavelets with the EEGLab function newtimef61.To quantify 

phase-locking of LFP signals to specific sub-movements (movement onset, pellet touch, and 

retract onset) we calculated inter-trial coherence (ITC) of LFP signals across trials time-locked to 

these sub-movements (Figure 2.5). ITC was measured and compared for the same channels on 

day one and day eight across all channels (except those removed due to noise). ITC was computed 

using the EEGLab function newtimef61. 

 

To characterize coordination of activity across regions we measured changes in movement-related 

spectral coherence between LFP channels in M1 and DLS (Figure 2.5c; Figure 2.7; Figure 2.8; 

Figure 2.11). For learning comparisons, coherence was measured for the same channels on day 

one and day eight, and specifically for channels with an increase in power of one baseline 

normalized unit from day one to day eight. Strong coherence in a specific frequency band indicates 

a constant phase relationship in that frequency between two signals and is theorized to indicate 

increased communication between regions56,57. Spectral coherence was computed using chronux 

function cohgramc62. All comparisons of “movement-related” LFP power or coherence used 

power and coherence values generated from signals between 250ms before movement onset to 

750ms after movement onset and trial averaging over relevant trials (e.g., all trials on day one or 

day eight).  
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To determine whether the emergence of coordinated low-frequency activity during training was 

attributable solely to faster and more consistent movements, we compared LFP power and 

coherence between “fast” trials (trials with a movement duration between 200 and 400ms) and 

trials with high forelimb trajectory correlation values (correlation values > 0.9) on days one and 

two vs. days seven and eight (Figure 2.8).  

 

For the scatter plots comparing changes in reach duration, sub-movement timing variability, and 

forelimb trajectory consistency across learning to changes in movement-related 3-6Hz M1-DLS 

LFP coherence (Figure 2.11), normalized values of LFP coherence were computed by z-scoring 

the eight mean values corresponding to the eight days of training for each animal separately, then 

combining the normalized values across animals. 

 

Spiking analysis 

Thresholds for spiking activity were set online using a standard deviation of 4.5 (calculated over 

a one-minute baseline period using the TDT-RZ2 system), and waveforms and timestamps were 

stored for any event that crossed that threshold. Spike sorting was performed using Plexon 

OfflineSorter v4.3.0 (Plexon Inc.) with a PCA-based clustering method followed by manual 

inspection. We accepted units based on waveform shape, clear cluster boundaries in PC space, and  

99.5% of detected events with an ISI>2ms. All units were analyzed and not sorted into cell type 

based on waveform shape. Average firing rates were consistent with what has been previously 

reported for M1 and DLS units13 (Figure 2.10). Peri-event time histograms (PETHs) were 

generated by averaging spiking activity across trials in a session, locked to movement onset and 

binned at 25ms, then fitting a smoothing spline using MATLAB function fit (Figure 2.9a&b&d; 
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the smoothing spline was not applied to PETHs presented in Figure 2.14c). These PETHs were 

used to generate average movement-related spiking plots (Figure 2.10e-j). To investigate spiking 

activity relative to movement phase (Figure 2.10g&h), we interpolated spiking activity binned at 

25ms during movement (from movement onset to retract onset) for each trial such that the resulting 

spiking activity from each trial was normalized to the same length and then averaged across trials. 

We also used PETHs to classify task-related units (Figure 2.10). We defined a unit as task-related 

if during movement its activity was greater than one standard deviation or less than one standard 

deviation away from its baseline activity. 

 

To characterize low-frequency spiking activity, we generated histograms of the LFP phases at 

which each spike occurred for a single unit to a single LFP channel filtered in the 3-6Hz band in a 

one-second window around movement (-250ms before to 750ms after movement onset) across all 

trials of a session (Figure 2.9b). For learning comparisons, all units were compared to the same 

selected M1 and DLS LFP channel on day one and day eight. These histograms were generated 

for each unit-LFP channel pair both within and across regions. For every pair we then calculated 

the Rayleigh’s z-statistic for circular non-uniformity. These z-statistics were then used to calculate 

the percentage of significantly non-uniform distributions across unit-LFP pairs with a significance 

threshold p = 0.05 (Figure 2.9c). A significantly non-uniform distribution signifies phase 

preference for spikes of a unit to an LFP signal. 

 

To further characterize low-frequency spiking activity, we determined the percentage of units that 

displayed low-frequency (3-6Hz) quasi-oscillatory activity. To do this, we computed 

autocorrelations on each unit’s PETH. If a unit’s autocorrelation had a “peak” between 166-333ms 
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time lag (corresponding to 3-6Hz activity) the unit was considered quasi-oscillatory. A “peak” was 

defined as a higher average value between 166-333ms than between 100-166ms (Figure 2.9d).  

 

To characterize spiking interactions between M1 and DLS we calculated the mean cross-

correlation of movement-related spiking across regions for all M1 and DLS quasi-oscillatory units 

on day one and day eight (Figure 2.9e). To do this we concatenated spiking activity for all trials 

between -250ms to 750ms from movement onset for each M1 and DLS quasi-oscillatory unit and 

then computed the cross correlation for each M1 and DLS quasi-oscillatory unit pair using the 

MATLAB function xcorr.  

 

To determine the effects of DLS inactivation on M1 spiking activity we compared movement-

related firing rates from pre-infusion baseline trials and post-infusion trials. Movement-related 

firing rates were calculated by averaging the firing rate from -250ms before to 500ms after 

movement on each trial of the session (Figure 2.14c). 

 

To characterize single-trial representations of population spiking activity we used Gaussian 

process factor analysis (GPFA)33 to find low-dimensional neural trajectories for each trial (Figure 

2.19; Figure 2.20). GPFA analyses were carried out using MATLAB based GUI DataHigh63, 25ms 

time bins, and a dimensionality of 5. The first two factors were used for analysis as they accounted 

for >90% of shared variance explained in both M1 and DLS on each session. We found that the 

consistency of these trajectories, calculated by averaging the correlation of every trial’s neural 

trajectory to the mean neural trajectory of that session (performed in each dimension 

independently) provided a robust measure neural consistency as this measure increased in both M1 
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and DLS during learning (Figure 2.20b; M1: t(1789) = 6.9, P = 7 × 10–12; DLS: t(766) = 4.8, P 

= 2 × 10–6). We also determined the magnitude of deviation for each individual trial trajectory 

from the mean trajectory across all successful trials by taking the absolute value of the difference 

between the trajectory of each trial and the mean trajectory across all trials (Figure 2.19b&c; 

computed in each dimension independently). This was performed specifically for the time period 

between 250ms before movement onset until pellet touch. As this duration varied across trials, we 

interpolated each trial such that every trial was the same length (100 values) and then calculated 

the average deviation. 

 

Statistics 

Linear mixed-effects models were used to test the significance of differences across both 

behavioral and neural measures. Using these models accounts for the fact that units, channels 

or trials from the same animal are more correlated than those from different animals and is more 

stringent than computing statistical significance over all units, channels or trials64. For example, 

to test for learning-related changes in reach duration across all trials from training day one to 

all trials from day eight, we implemental a linear mixed-effects model (using MATLAB fitlme) 

with random intercepts/effects for each rat (n=4) and reported the P values for the regression 

coefficients associated with day one and day eight. Similar models were used to test for changes 

in other behavioral or neural measures, including LFP power, LFP coherence, and LFP/sub-

movement phase-locking. 
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Viral Injection 

We performed two sets of viral injections in separate cohorts of rats to label anterograde 

projections from M1 and retrograde projections from DLS. To label anterograde projections from 

M1 we injected 750nl of AAV8-hsyn-JAWs-KGC-GFP-ER2 virus into two sites (1.5mm anterior, 

2.7mm lateral to bregma, at a depth of 1.4mm and 0.5 posterior, 3.5mm lateral to bregma, at a 

depth of 1.4mm). To label retrograde projections from DLS we injected 750nl of retrogradeAAV-

hsyn-JAWs-KGC-GFP-ER2 virus at one site (4mm lateral and 0.5 mm anterior to bregma at a 

depth of 4mm). Two weeks after injection rats were anesthetized and transcardially perfused with 

0.9% sodium chloride, followed by 4% formaldehyde. The harvested brains were post-fixed for 

24 h and immersed in 20% sucrose for 2 days. Coronal cryostat sections (40-μm thickness) were 

then mounted and imaged with a fluorescent microscope. 

 

Immunohistochemistry 

Cryostat sections (40-μm thickness) were pre-incubated with blocking buffer (2% goat serum, 

0.1% bovine serum albumin and 0.3% Triton X-100 in 0.1 M PB) at room temperature, and then 

incubated with mouse anti-NeuN (1 mg/ml; Millipore, Temecula, CA) overnight. After washing, 

the sections were incubated with biotinylated anti-mouse IgG secondary antibody (5 mg/ml; 

Vector laboratories, Burlingame, CA) for 2 hrs. Sections were visualized by the DAB method, 

using ABC reagents using a Vector ABC kit (Vector laboratories) and peroxidase substrate 

solution (Vector laboratories). For fluorescence images, sections were incubated with Alexa 

Fluor 594-conjugated donkey anti-mouse IgG (Life Technologies Corporation, Grand Island, 

NY; 1:1000). 
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Chapter 3: How is the corticostriatal network 
modified? 

 

Chapter 3 is adapted from Lemke, S. M., Ramanathan, D. S., Darevsky, D., Egert, D., Berke, J.D., 

Ganguly, K. Sleep spindles coordinate corticostriatal reactivations during the emergence of 

automaticity. bioRxiv 2020.10.25.354282 (2020). doi:10.1101/2020.10.25.354282 

 

Abstract 

Plasticity within the corticostriatal network is known to regulate the balance between behavioral 

flexibility and automaticity. Repeated training of an action has been shown to bias behavior 

towards automaticity, suggesting that training may trigger activity-dependent corticostriatal 

plasticity. However, surprisingly little is known about the natural activity patterns that may drive 

plasticity or when they occur during long-term training. Here we chronically monitored neural 

activity from primary motor cortex (M1) and the dorsolateral striatum (DLS) during both training 

and offline periods, i.e., time away from training including sleep, throughout the development of 

an automatic reaching action. We first show that blocking striatal NMDA receptors during offline 

periods prevents the emergence of behavioral consistency, a hallmark of automaticity. We then 

show that, throughout the development of an automatic reaching action, corticostriatal functional 

connectivity increases during offline periods. Such increases track the emergence of consistent 

behavior and predictable cross-area neural dynamics. We then identify sleep spindles during non-

REM sleep (NREM) as uniquely poised to mediate corticostriatal plasticity during offline periods. 

We show that sleep spindles are periods of maximal corticostriatal transmission within offline 

periods, that sleep spindles in post-training NREM reactivate neurons across areas, and that sleep-
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spindle modulation in post-training NREM is linked to observable changes in spiking relationships 

between individual pairs of M1 and DLS neurons. Our results indicate that offline periods, in 

general, and sleep spindles, specifically, play an important role in regulating behavioral flexibility 

through corticostriatal network plasticity. 

 

Introduction 

Automaticity allows animals to capitalize on invariance in the environment through the 

development of actions that, while inflexible to changes, are performed highly consistently in 

response to a specific stimulus1–5. It has been demonstrated that the consistent production of an 

action emerges with repeated training over multiple days and is accompanied by coordinated 

neural activity across the corticostriatal network during action execution6–10. Importantly, the 

emergence of such actions has also been shown to require striatal NMDA receptor activation10–12, 

suggesting that cortical activity pattens that modulate the striatum may be important drivers of 

activity-dependent plasticity13,14 and the emergence of coordinated corticostriatal activity. 

However, surprisingly little is known about the natural activity patterns related to repeated task 

training that underlie the emergence of automaticity.  

 

One intriguing possibility is that time away from training - “offline” periods, including sleep - may 

play a role in modifying the corticostriatal network. This possibility is motivated by evidence that 

sleep-dependent reactivations of cortical neural ensembles active during task performance are 

essential for initial learning15–18. It is possible that the coordinated reactivations of both cortical 

and striatal ensembles modify the corticostriatal network and impact behavior during long-term 

training19–22. However, how cortical reactivation events engage downstream striatal ensembles 
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remains unclear. Moreover, how such cross-area activity may precisely modify the corticostriatal 

network and impact network activity during subsequent awake behavior is unexplored.  

 

Currently, our understanding of how sleep impacts distributed brain networks is largely derived 

from the systems consolidation theory, where it has been shown that coordinated activity patterns 

across hippocampus and cortex lead to the formation of stable long-term memories in cortex that 

do not require the hippocampus23–25. Notably, whether sleep impacts the connectivity across 

hippocampus and cortex has not been established. Therefore, one possibility is that, in the 

corticostriatal network, we similarly observe coordinated cross-area activity patterns during sleep 

but do not find evidence for the modification of corticostriatal connectivity during offline periods. 

Alternatively, it is possible that we find evidence that cross-area activity patterns during sleep 

modify the connectivity between cortex and striatum and impact network activity during 

subsequent behavior.  

 

Here we establish that offline periods play an essential role in modifying the corticostriatal network 

during the emergence of automaticity and identify sleep spindles as uniquely poised to mediate 

such plasticity. We show that during post-training NREM, sleep-dependent reactivation events are 

coordinated across both cortex and striatum during sleep spindles and link such spindle-

modulation to changes in functional connectivity across the corticostriatal network. These results 

suggest that sleep plays an important role in modifying cross-area connectivity within offline 

periods and that the modulation of activity patterns during sleep may offer novel therapeutic targets 

for unlearning maladaptive habits26,27.  
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Results 

To study how corticostriatal network activity evolves during long-term training, we implanted six 

adult rats with either microwire electrode arrays (n = 4) or custom built high-density silicon 

probes28 (n = 2) in both primary motor cortex (M1) and the dorsolateral striatum (DLS), which 

receives the majority of M1 projections to the striatum29 (Figure 3.1a). Neural activity across 

regions was monitored as rats underwent ~eight days of reach-to-grasp task training (range: 5-14 

days, mean: 8.67 days). Each recording day consisted of a 2-3 hour pre-training block (“pre-

sleep”), a 100-150 trial training block, and a second 2-3 hour post-training block (“post-sleep”; 

Figure 3.1b; pre-sleep length: 157.2 ± 5.8 minutes, post-sleep length: 166.6 ± 6.3 minutes, mean 

± SEM). The reach-to-grasp task requires rats to reach and grasp a food pellet through a small 

window present in their behavioral box. During pre- and post-sleep, behavioral states, i.e., wake, 

non-REM sleep (NREM), and REM sleep, were classified using standard methods based on 

cortical local field potential (LFP) power and movement measured from video or 

electromyography (EMG) activity30. 
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Figure 3.1. Offline striatal NMDA receptor activation is required to develop a consistent 
behavior. a. Schematic displaying primary motor cortex (M1) and dorsolateral striatum (DLS) 
recording locations (left) and labeled M1 projections showing direct input to the DLS (right). 
b. Schematic showing each day’s recording blocks during long-term training. c. Individual 
reach trajectories in grey overlaid with mean reach trajectory across trials in red for each day 
of training in example animal. d. Average reach velocity profile in x and y dimensions for each 
day of training in example animal. e. Reach velocity profile correlation for first eight days of 
training for individual animals in grey overlaid with mean ± SEM across animals in black. f. 
Day-to-day evolution in reach velocity profile correlation with post-training DLS infusions of 
either AP5 or saline in example animal. g. Comparison of day-to-day changes in reach velocity 
profile correlation with post-training saline infusion, post-training AP5 infusion, or no infusion 
in learning cohort animals, showing specific decrease in day-to-day reach velocity profile 
correlation with post-training AP5 infusion. Individual day-to-day changes as grey dots 
overlaid with mean ± SEM across all day-to-day changes in color. 
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Offline striatal NMDA receptor activation is required to develop a consistent behavior 

With repeated training on the reach-to-grasp task, animals developed a consistent reaching 

trajectory (Figure 3.1c) and reaching velocity profile (Figure 3.1d). Measuring the correlation 

between the mean reaching velocity profile on each day of training and the final day of training 

revealed that a consistent day-to-day reaching action emerged within the first eight days of training 

(Figure 3.1e). Such day-to-day invariance in skilled reaching is consistent with the emergence of 

automaticity1–3,31. To further test the automaticity of reaching after the emergence of invariant 

behavior, we moved the location of the food pellet such that reaches to the old pellet location 

would no longer be successful. If an animal were reaching flexibly, we would expect that reaching 

behavior would quickly adapt to the new position. Alternatively, if an animal were reaching 

automatically, we would expect that reaches would remain consistent despite decreased success. 

Consistent with automaticity, reach trajectories remained consistent and did not adapt to the new 

pellet position despite a large decrease in success rate (Figure 3.2). We also examined whether 

such automaticity emerged with long-term training or existed at the start of training by testing 

whether animals could reach flexibility during the first two days of exposure to the task (n = 2 rats 

with no neural implant). These animals were able to reach to each of the two different pellet 

positions with comparable success rates (animal 1: 43% and 72% success rate; animals 2: 44% and 

50% success rate, ~200 trials in each animal), indicating that their reaching behavior was flexible 

prior to repeated training. Altogether this indicated that our training paradigm led to the formation 

of inflexible and automatic reach-to-grasp behavior. 
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To further test the link between offline plasticity in the corticostriatal network and increases in 

behavioral consistency, we trained a new cohort of animals (n = 6 rats) and infused 1µl of either 

NMDA receptor antagonist AP5 (5µg/µl) or saline into DLS immediately after training on each 

day (Figure 3.1f). This revealed that offline striatal NMDA activation was essential for the 

emergence of a consistent reaching behavior, as day-to-day changes in reach consistency were 

significantly decreased with AP5 infusions, compared to saline infusions or day-to-day 

improvements observed in the learning cohort (Figure 3.1g; n = 24 correlation change values with 

AP5 infusions, -0.03 ± 0.03 correlation value, n = 24 correlation change values with saline 

infusions, 0.07 ± 0.02 correlation value, n = 40 correlation change values in learning cohort, 0.04 

± 0.01 correlation value; AP5 infusions vs. saline infusions: t(23) = 2.8, P = 8×10-3, paired-sample 

Figure 3.2 Animals do not adapt quickly to new 
pellet position after long-term reach-to-grasp 
training. a. Reach trajectories from example session 
following reach-to-grasp task training paradigm, 
showing that reach trajectories with the pellet in the 
learned position or a new position are largely 
overlapping. b. Histogram of single-trial correlation 
values for individual reach trajectories to the mean 
reach trajectory for trials with the pellet in the 
learned pellet position or a new pellet position in first 
example animal (left; two-sample Kolmogorov–
Smirnov test between distributions from trials with 
pellet in learned position and pellet in new position) 
and success rate in pellet retrieval for learned and 
new pellet positions (right). c. same as b for second 
example animal. 
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t-test, AP5 infusions vs. learning cohort: t(62) = 2.3, P = 0.03, two-sample t-test, saline infusions 

vs. learning cohort: t(62) = 1.3, P = 0.20, two-sample t-test). Importantly, task engagement, as 

measured by reaction time from trial start to reach, did not differ for trials on subsequent days after 

AP5 or saline infusions (AP5: 218.2 ± 3.2ms, saline: 222.4 ± 3.0ms, t(5198) = -0.96, P = 0.34, 

two-sample t-test). Altogether, these results were consistent with the notion that offline plasticity 

in the corticostriatal network following training is critical for the emergence of automaticity.  

 

Corticostriatal functional connectivity increases during offline periods  

To measure long-term changes in corticostriatal functional connectivity during the emergence of 

automaticity, we measured LFP coherence across individual pairs of M1 and DLS electrodes. LFP 

signals can be stably recorded across multiple days allowing LFP coherence to provide a stable 

long-term measure of multi-region connectivity32,33. Specifically, within the corticostriatal 

network, theta coherence (4-8Hz) has been previously shown to reflect coordinated population 

spiking activity8,9,34. Therefore, we measured 4-8Hz LFP coherence during pre- and post-sleep on 

each day of training to determine when corticostriatal functional connectivity changed during long-

term training (Figure 3.3a). LFP coherence was calculated specifically during NREM to control 

for any differences in the time spent in each behavioral state during pre- and post-sleep. Common-

mode referencing was applied, separately in each region, to decrease common noise and minimize 

volume conduction8. We found that there was a significant correlation between each day’s mean 

4-8Hz LFP coherence across all channel pairs and reach velocity profile correlation (r = 0.44, P = 

7×10−3, Pearson’s r), indicating that offline LFP coherence reflects changes in corticostriatal 

functional connectivity that are related to the emergence of a consistent behavior. 
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We next sought to determine whether LFP coherence increased during training or offline periods. 

To do this, we specifically examined LFP channel pairs that increased in coherence from day one 

to day eight (33% of pairs increased, 17% decreased, and 50% did not change; increase or decrease 

defined as a change in coherence of at least 0.25). Remarkably, within the subset of channels that 

showed training-related increases in coherence over learning, increases occurred largely offline, 

i.e., between each day’s post-sleep and the next day’s pre-sleep, rather than online during training, 

i.e., between pre- and post-sleep on the same day (Figure 3.3b&c). More specifically, the 

distribution of online LFP coherence changes was not significantly different than zero, while the 

distribution of offline LFP coherence changes was skewed toward larger increases (Figure 3.3d; 

online LFP coherence changes: t(422) = 1.2, P = 0.23, offline LFP coherence changes: t(422) = 

18.8, P = 5×10−57, one-sample t-test). Importantly, the subset of channels that showed training-

related increases had a close relationship to the emergence of consistent behavior (Figure 3.3e; r 

= 0.73, P = 4×10−7, Pearson’s r), providing evidence that offline increases in corticostriatal 

functional connectivity are relevant to the consistency of behavior during the emergence of 

automaticity. 
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Figure 3.3. Corticostriatal functional connectivity increases during offline periods. a. Schematic 
depicting M1 and DLS electrode pairs with high 4-8Hz LFP coherence (>0.6 coherence value measured 
in NREM) during pre- and post-sleep on one day of training and pre-sleep on the next day of training, 
showing an increase in the number of high LFP coherence pairs occurring offline rather than online, in 
example animal. b. LFP coherence spectrums (measured in NREM) across example M1 and DLS 
electrode pair for pre- and post-sleep periods represented in panel a. showing an increase in 4-8Hz LFP 
coherence largely occurring offline rather than online. c. LFP coherence (4-8Hz measured in NREM) 
for each pre- and post-sleep period throughout learning for example M1 and DLS electrode pair, 
showing increases in coherence largely occurring offline rather than online, overlaid with reach velocity 
profile correlation values for each day of training. d. Comparison of distributions of online (left) and 
offline (right) changes in LFP coherence (4-8Hz measured in NREM) averaged across training days for 
M1 and DLS electrode pairs across animals. e. Correlation between each day’s mean LFP coherence 
(mean 4-8Hz measured in NREM during both pre- and post-sleep) and reach velocity profile correlation 
value. 
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Offline increases in functional connectivity predict the emergence of low-dimensional cross-

area neural dynamics during behavior 

We next examined how offline increases in corticostriatal functional connectivity may impact 

corticostriatal network activity during subsequent reach-to-grasp performance. We extracted low-

dimensional neural trajectory representations of DLS spiking activity during reaching using 

principle components analysis (PCA). We then examined the evolution of how spiking activity in 

M1 could predict DLS neural trajectories over the course of training (Figure 3.4a). We found that 

the ability to predict DLS neural trajectories during reaching from M1 spiking activity increased 

with training, while the ability to predict the trajectory representations of DLS activity during a 

baseline, non-reaching, period did not significantly change (Figure 3.4b; reach activity: first two 

days of training: 0.15 ± 0.05 Pearson’s r, last two days of training: 0.46 ± 0.05 Pearson’s r, t(30) 

= -4.4, P = 1×10−4, two-sample t-test; baseline activity: first two days of training: 0.03 ± 0.02 

Pearson’s r, last two days of training: 0.01 ± 0.03 Pearson’s r, t(30) = 1.0, P = 0.30, two-sample 

t-test). Notably, the ability to predict DLS neural trajectories during reaching from M1 spiking 

activity was significantly correlated to the mean 4-8Hz LFP coherence measured offline on each 

day of training (Figure 3.4c), indicating that offline increases in LFP coherence track the 

emergence of predictable cross-area dynamics during subsequent reach-to-grasp performance. 
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Corticostriatal transmission strength within offline periods is maximal during sleep spindles 

in NREM 

Given the evidence that offline periods are relevant for changes in corticostriatal functional 

connectivity, we next sought to identify the activity patterns that may be responsible for driving 

such plasticity across M1 and DLS. To do this, we first examined how corticostriatal transmission 

strength, i.e., the degree to which M1 neural activity drives DLS activity, differed across 

behavioral states during offline periods (Figure 3.5a). To measure this, we characterized putative 

Figure 3.4. Offline increases in functional connectivity predict the emergence of low-
dimensional cross-area neural dynamics during behavior. a. Trial-averaged neural trajectory 
(PC1 and PC2) of DLS activity during reaching (one second before to one second after pellet 
touch) on day one (left) and day eight (right) of training in example animal, overlaid with 
prediction of DLS neural trajectory from M1 spiking activity. b. Ability to predict DLS neural 
trajectory (PC1 and PC2) during reaching and during a baseline, non-reaching, period from M1 
spiking activity on each day of training (mean ± SEM across animals). c. Correlation between 
each day’s mean LFP coherence (mean 4-8Hz measured in NREM during both pre- and post-
sleep) and ability to predict DLS neural trajectory (PC1 and PC2) during reaching from M1 
spiking activityaveraged across training days for M1 and DLS electrode pairs across animals. e. 
Correlation between each day’s mean LFP coherence (mean 4-8Hz measured in NREM during 
both pre- and post-sleep) and reach velocity profile correlation value. 
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monosynaptically connected pairs of M1 and DLS units (n = 1,100 M1 and 579 DLS units) by 

determining whether there was a significant peak in the cross correlation of their spiking activity 

at the short-latency time lag consistent with the conduction and synaptic delays between M1 and 

DLS (~6ms time lag from M1 to DLS activity9; Figure 3.5b; 3,969/10,286 M1 and DLS unit pairs 

were classified as putatively connected; Figure 3.6a&b). We then compared the short-latency 

cross correlation magnitude (1-10ms time lag) for the population of putatively connected M1 and 

DLS pairs across behavioral states. To account for differences in firing rates across behavioral 

states (Figure 3.6c&d), we normalized each pair’s cross correlation by the mean cross correlation 

value from 50-100ms time lag, where no consistent spiking relationship is expected between 

putatively connected pairs of M1 and DLS units. This revealed that corticostriatal transmission 

strength was maximal during NREM, compared to REM or wake (Figure 3.5c & Figure 3.7a&b).  

 

Given the heterogeneous nature of NREM activity, we next explored the dynamics of 

corticostriatal transmission within NREM. We specifically detected NREM rhythms in M1 that 

have been previously related to activity-dependent plasticity in cortex, i.e., sleep spindles, slow 

oscillations, and delta waves18,35–37, and examined whether activity in DLS was also modulated 

during these rhythms (Figure 3.5d). We found that both LFP signals and spiking in DLS were 

significantly modulated during slow oscillations, delta waves, and sleep spindles detected in M1 

(Figure 3.5e&f; Figure 3.8). To compare corticostriatal transmission strength during these 

rhythms, we measured the short-latency cross correlation magnitude for the population of 

putatively connected M1 and DLS pairs using the spiking activity during each sleep rhythm. 

Importantly, we applied a previously established normalization method to isolate and subtract off 

the influence of firing rate changes or LFP phase-locking differences across NREM rhythms on 
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cross correlations38. This revealed that sleep spindles were unique periods of boosted corticostriatal 

transmission strength, compared to slow oscillations or delta waves (Figure 3.5g & Figure 

3.7c&d). Altogether, this indicated that sleep spindles during NREM may be particularly relevant 

periods for activity-dependent plasticity within the corticostriatal network, given the high 

transmission of activity from M1 to DLS. 
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Figure 3.5. Corticostriatal transmission strength within offline periods is maximal during 
sleep spindles in NREM. a. M1 local field potential (LFP) spectrogram and behavioral state 
detection from example session. b. Example M1 and DLS single unit sorting from high-density 
silicon probe (top) and cross correlation of spiking activity centered on DLS unit spiking for 
an example pair of M1 and DLS units showing a short-latency peak indicating putative 
monosynaptically connectivity (bottom). c. Comparison of normalized cross correlations of 
spiking activity from all putatively connected pairs of M1 and DLS units across behavioral 
states, showing that corticostriatal transmission strength is maximal in NREM (width of line 
represents mean ± SEM). d. Snippet of LFP and single unit spiking activity from M1 and DLS 
during NREM overlaid with detected NREM rhythms in M1. e. Mean LFP and spiking activity 
during slow oscillations, delta waves, and sleep spindles in both M1 and DLS in example 
animal (top) and percentage of M1 and DLS units across animals significantly phase locked to 
M1 LFP during each NREM rhythm (significance threshold of P = 0.05, Rayleigh test of 
uniformity, bottom). f. Comparison of firing rate modulation distributions for M1 (left) and 
DLS (right) units across animals during slow oscillations, delta waves, sleep spindles, and a 
baseline NREM period. g. Comparison of normalized cross correlations of spiking activity for 
all putatively connected pairs of M1 and DLS units across NREM rhythms, showing that 
corticostriatal transmission strength is maximal during sleep spindles (width of line represents 
mean ± SEM). 
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Figure 3.6. Electrophysiology recordings from M1 and DLS a. Illustration of target 
electrode locations in M1 and DLS and dimensions of microwire electrode and silicon probes. 
b. Cross correlations of spiking activity across all pairs of putatively connected and not 
putatively connected pairs of M1 and DLS units (width of line represents mean ± SEM) and 
pie chart depicting percentage of all pairs that are classified as significantly connected. c. 
Comparison of firing rates in M1 across behavioral states, before and after training (1,100 M1 
units; 3.4 ± 0.1 spikes/second in pre NREM vs. 3.7 ± 0.1 spikes/second in post NREM, mean 
± SEM, paired-sample t-test: t(1099) = -6.8, P = 1×10-11; 4.2 ± 0.1 spikes/second in pre REM 
vs. 4.4 ± 0.1 spikes/second in post REM, mean ± SEM, paired-sample t-test: t(1099) = -5.5, P 
= 6×10-8; 4.0 ± 0.1 spikes/second in pre wake vs. 4.4 ± 0.1 spikes/second in post wake, mean 
± SEM, paired-sample t-test: t(1099) = -9.5, P = 1×10-20). d. Comparison of firing rates in DLS 
across behavioral states, before and after training (579 DLS units; 1.9 ± 0.1 spikes/second in 
pre NREM vs. 2.1 ± 0.1 spikes/second in post NREM, mean ± SEM, paired-sample t-test: 
t(578) = -6.5, P = 1×10-10; 2.5 ± 0.1 spikes/second in pre REM vs. 2.7 ± 0.1 spikes/second in 
post REM, mean ± SEM, paired-sample t-test: t(578) = -5.5, P = 8×10-8; 2.4 ± 0.1 spikes/second 
in pre wake vs. 2.8 ± 0.1 spikes/second in post wake, mean ± SEM, paired-sample t-test: t(578) 
= -6.8, P = 3×10-11). 
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Figure 3.7. Corticostriatal transmission strength across behavioral states and NREM 
rhythms. a. Comparison of normalized cross correlations across behavioral states for all 
putatively connected pairs of M1 and DLS units in example animals implanted with either 
microwire electrode array (top) or high-density silicon probe (bottom), showing that 
corticostriatal transmission strength is maximal in NREM sleep (width of line represents mean 
± SEM) b. Comparison of mean short-latency correlation magnitude (1-10ms time lag) across 
behavioral states, values from days for animals implanted with microwires in grey, silicon 
probes in red, and mean ± SEM across animals in black (n = 52 days across 7 rats; wake: 
3.2*10-4 ± 0.3*10-4 correlation value, REM: 2.7*10-4 ± 0.5*10-4 correlation value, NREM: 
5.1*10-4 ± 0.4*10-4 correlation value; wake vs. REM: t(51) = 1.8, P = 0.08, paired-sample t-
test, REM vs. NREM: t(51) = -7.0, P = 6*10-9, paired-sample t-test, wake vs. NREM: t(51) = -
7.7, P = 4×10-10, paired-sample t-test). c. Comparison of normalized cross correlations across 
NREM rhythms for all putatively connected pairs of M1 and DLS units in example animals 
implanted with either microwire electrode array (top) or high-density silicon probe (bottom), 
showing that corticostriatal transmission strength is maximal during sleep spindles (width of 
line represents mean ± SEM). d. Comparison of mean short-latency correlation magnitude (1-
10ms time lag) across NREM rhythms, values from days for animals implanted with 
microwires in grey, silicon probes in red, and mean ± SEM across animals in black (n = 52 
days across 7 rats; sleep spindles: 9.9*10-4 ± 0.8*10-4 correlation value, delta waves: 7.5*10-4 

± 0.6*10-4 correlation value, slow oscillations: 5.7*10-4 ± 1.7*10-4 correlation value; sleep 
spindles vs. slow oscillation: t(51) = 4.0, P = 2*10-4, paired-sample t-test, delta waves vs. slow 
oscillations: t(51) = 1.2, P = 0.22, paired-sample t-test, sleep spindles vs. delta waves: t(51) = 
2.4, P = 0.01, paired-sample t-test). 
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Striatal reactivations during sleep spindles reflect cortical input 

We next assessed whether sleep spindles, or other NREM rhythms, were significant predictors of 

day-to-day changes in behavioral consistency. We found that sleep spindle density (events/minute) 

during post-sleep, but not pre-sleep, was a significant predictor of day-to-day changes in reaching 

consistency (pre-sleep sleep spindles: r = 0.07, P = 0.70, post-sleep sleep spindles: r = 0.38, P = 

0.01, Pearson’s r). Neither delta waves nor slow oscillations were significantly predictive of day-

to-day changes in reaching consistency (pre-sleep delta waves: r = 0.02, P = 0.87, post-sleep delta 

waves: r = 0.03, P = 0.83, pre-sleep slow oscillations: r = -0.11, P = 0.51, post-sleep slow 

Figure 3.8. Corticostriatal 
modulation across NREM 
rhythms. a. Comparison of firing 
rate modulation distributions for M1 
(left) and DLS (right) units during 
slow oscillations and a baseline 
NREM period (M1: P = 3*10-28, 
DLS: P = 6*10-10, two-sample 
Kolmogorov–Smirnov test, followed 
by a shift test to assess how quartiles 
of the distribution differed). b. 
Comparison of firing rate 
modulation distributions for M1 
(left) and DLS (right) units during 
delta waves and a baseline NREM 
period (M1: P = 1*10-16, DLS: P = 
2*10-3, two-sample Kolmogorov–
Smirnov test, followed by a shift test 
to assess how quartiles of the 
distribution differed). c. Comparison 
of firing rate modulation 
distributions for M1 (left) and DLS 
(right) units during sleep spindles 
and a baseline NREM period (M1: P 
= 4*10-24, DLS: P = 2*10-4, two-
sample Kolmogorov–Smirnov test, 
followed by a shift test to assess how 
quartiles of the distribution differed). 
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oscillations: r = -0.08, P = 0.60, Pearson’s r). Given the evidence that corticostriatal transmission 

is boosted during sleep spindles, a possible explanation for the unique relationship between post-

training sleep spindle density and day-to-day increases in behavioral consistency is that sleep 

spindles drive activity-dependent corticostriatal plasticity that impacts behavior. If this were the 

case, we would expect relevant M1 and DLS neural populations to be preferentially engaged 

during sleep spindles after training. In fact, we found that reach modulated (RM) M1 units, 

characterized by a significant modulation of activity during the reaching action, were significantly 

more modulated during sleep spindles after training, while non-RM M1 units did not significantly 

change in modulation from pre- to post-sleep (Figure 3.9a&b; RM M1 units: P = 0.02, non-RM 

M1 units: P = 0.75, two-sample Kolmogorov–Smirnov test between distributions from pre- and 

post-sleep, followed by a shift test to assess how quartiles of the distributions differed; P values 

for the rest of Figure 3 reflect these statistical tests). 

 

How does this then affect downstream neural activity during sleep spindles in DLS? Surprisingly, 

both RM and non-RM DLS unit populations were significantly more modulated during sleep 

spindles after training (Figure 3.9c&d; RM DLS units: P = 8×10-3, non-RM DLS units: P = 2×10-

3). One possibility is that this occurs because DLS activity during sleep spindles is driven by M1 

input, rather than strictly reflecting reach modulation, as is the case for M1 neurons. Consistent 

with this, we were able to separate DLS unit populations that increased or did not increase in sleep 

spindle modulation after training based on putative connectivity with M1 units (Figure 3.9e&f; 

RM DLS units with strong RM M1 input: P = 1×10-3, RM DLS units with weak or no RM M1 

input: P = 0.82, non-RM DLS units with strong RM M1 input: P = 3×10-3, non-RM DLS units 

with weak or no RM M1 input: P = 0.24; strong RM M1 input was defined as putative connectivity 
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with three or more RM M1 units). In contrast, DLS units did not increase in modulation during 

either delta waves (Figure 3.10) or slow oscillations (Figure 3.11) after training. Altogether, this 

suggests that, while reactivations during sleep spindles reflect task modulation in M1, DLS 

reactivations reflect cortical input, suggesting a potential role for sleep spindles in reinforcing task-

related corticostriatal connectivity, including novel connectivity such as projections from RM M1 

units to previously non-RM DLS units. 
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Figure 3.9. Striatal reactivations during sleep spindles reflect cortical input. a. Trial-
averaged spiking activity during reaching for all reach modulated (RM) and non-RM M1 units 
across days and animals. b. Comparison of distributions of sleep spindle modulation during 
pre- and post-sleep for RM (top) and non-RM (bottom) M1 units, showing increased 
modulation from pre- to post-sleep specifically in RM M1 units. c. Trial-averaged spiking 
activity during reaching for all reach modulated (RM) and non-RM DLS units across days and 
animals. d. Comparison of distributions of sleep spindle modulation during pre- and post-sleep 
for RM (top) and non-RM (bottom) DLS units, showing increased modulation from pre- to 
post-sleep in both RM and non-RM DLS units. e. Comparison of distributions of sleep spindle 
modulation during pre- and post-sleep for RM DLS units with strong RM M1 input (top) and 
weak or no RM M1 input (bottom), showing increased modulation from pre- to post-sleep 
specifically in RM DLS units with strong RM M1 input. f. Comparison of distributions of sleep 
spindle modulation during pre- and post-sleep for non-RM DLS units with strong RM M1 input 
(top) and weak or no RM M1 input (bottom), showing increased modulation from pre- to post-
sleep specifically in non-RM DLS units with strong RM M1 input.  
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Figure 3.10. Delta wave modulation change with training. a. Trial-averaged spiking activity 
during reaching for all reach modulated (RM) and non-RM M1 units across days and animals. 
b. Comparison of distributions of delta wave modulation during pre- and post-sleep for RM 
(top) and non-RM (bottom) M1 units (RM M1 units: P = 6×10-4, non-RM M1 units: P = 0.40, 
two-sample Kolmogorov–Smirnov test between distributions from pre- and post-sleep, 
followed by a shift test to assess how quartiles of the distributions differed; P values for the 
rest of Figure 3.10 legend reflect these statistical tests). c. Trial-averaged spiking activity during 
reaching for all reach modulated (RM) and non-RM DLS units across days and animals. d. 
Comparison of distributions of delta wave modulation during pre- and post-sleep for RM (top) 
and non-RM (bottom) DLS units (RM DLS units: P = 0.17, non-RM M1 units: P = 0.51). e. 
Comparison of distributions of delta wave modulation during pre- and post-sleep for RM DLS 
units with strong RM M1 input (top) and weak or no RM M1 input (bottom; RM DLS units 
with strong RM M1 input: P = 0.14, RM DLS units with weak or no RM M1 input: P = 0.72). 
f. Comparison of distributions of delta wave modulation during pre- and post-sleep for non-
RM DLS units with strong RM M1 input (top) and weak or no RM M1 input (bottom; non-RM 
DLS units with strong RM M1 input: P = 0.85, non-RM DLS units with weak or no RM M1 
input: P = 0.01).  
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Figure 3.11. Slow oscillation modulation change with training. a. Trial-averaged spiking 
activity during reaching for all reach modulated (RM) and non-RM M1 units across days and 
animals. b. Comparison of distributions of slow oscillation modulation during pre- and post-
sleep for RM (top) and non-RM (bottom) M1 units (RM M1 units: P = 2×10-4, non-RM M1 
units: P = 0.02, two-sample Kolmogorov–Smirnov test between distributions from pre- and 
post-sleep, followed by a shift test to assess how quartiles of the distributions differed; P values 
for the rest of Figure 3.11 legend reflect these statistical tests). c. Trial-averaged spiking activity 
during reaching for all reach modulated (RM) and non-RM DLS units across days and animals. 
d. Comparison of distributions of slow oscillation modulation during pre- and post-sleep for 
RM (top) and non-RM (bottom) DLS units (RM DLS units: P = 0.28, non-RM M1 units: P = 
0.44). e. Comparison of distributions of slow oscillation modulation during pre- and post-sleep 
for RM DLS units with strong RM M1 input (top) and weak or no RM M1 input (bottom; RM 
DLS units with strong RM M1 input: P = 0.27, RM DLS units with weak or no RM M1 input: 
P = 0.85). f. Comparison of distributions of slow oscillation modulation during pre- and post-
sleep for non-RM DLS units with strong RM M1 input (top) and weak or no RM M1 input 
(bottom; non-RM DLS units with strong RM M1 input: P = 0.85, non-RM DLS units with 
weak or no RM M1 input: P = 0.14). 
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Sleep spindle modulation predicts offline changes in corticostriatal transmission strength 

We next sought to directly examine whether sleep spindle modulation following training was 

related to modifications of the corticostriatal network within offline periods. To measure 

modifications of the corticostriatal network during offline periods, we calculated cross correlations 

of spiking activity across individual pairs of M1 and DLS units during the first and second half of 

each pre- and post-sleep period (Figure 3.12a-c). Cross correlations were generated specifically 

with spiking activity during NREM to control for any differences in time spent in each behavioral 

state. Consistent changes in the short-latency cross correlation magnitude from the first to second 

half of pre- or post-sleep would indicate a modification of corticostriatal transmission strength 

within the offline period. Given the evidence of reactivation during sleep spindles between RM 

M1 and putatively connected DLS units, we first specifically examined transmission strength 

changes within the pairs in this population that were significantly modulated to spindles (708/3,969 

pairs in pre-sleep and 1,062/3,969 pairs in post-sleep). Strikingly, we observed an increase in 

corticostriatal transmission strength during post-sleep, but no significant change during pre-sleep 

(Figure 3.12d&e; pre-sleep: one-sample t-test: t(707) = -0.9, P = 0.37; post-sleep: one-sample t-

test: t(1061) = 10.8, P = 6×10-26). Furthermore, increases in corticostriatal transmission strength 

across individual pairs of M1 and DLS units during post-sleep, but not pre-sleep, were correlated 

to the mean sleep spindle modulation of that pair (Figure 3.12f&g). Importantly, the amount of 

time spent in NREM was similar during pre- and post-sleep (Figure 3.13). In contrast, 

transmission strength across RM M1 and putatively connected DLS unit pairs that were not 

significantly modulated to sleep spindles (1,164/3,969 pairs in pre-sleep and 989/3,967 pairs in 

post-sleep) did not change during either pre- or post-sleep and, within this population, changes in 

corticostriatal transmission strength across individual pairs of M1 and DLS units were not 
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significantly correlated to the mean sleep spindle modulation of that pair (Figure 3.14). These 

results suggested that, following training, offline corticostriatal transmission strength changes are 

linked to sleep spindle modulation. 

 

  Figure 3.12. Sleep spindle 
modulation predicts offline changes 
in corticostriatal coupling. a. 
Schematic of NREM spiking activity 
snippets from example M1 and DLS 
units depicting the evolution of M1 and 
DLS spiking relationships from the 
first to second half of pre- (left) and 
post-sleep (right). b. Cross correlations 
of spiking activity during NREM from 
example M1 and DLS unit pair during 
the first and second half of pre-sleep, 
showing no change in cross correlation 
magnitude. c. Same as b for post-sleep, 
showing an increase in short-latency 
cross correlation magnitude. d. Cross 
correlations of spiking activity during 
NREM for all pairs of RM M1 and 
putatively connected DLS units that 
are significantly modulated to sleep 
spindles during the first and second 
half of pre-sleep, showing no change in 
cross correlation magnitude (width of 
line represents mean ± SEM). e. Same 
as d for post-sleep, showing an 
increase in short-latency cross 
correlation magnitude. f. Correlation 
between change in short-latency cross 
correlation magnitude and mean sleep 
spindle modulation for all pairs of RM 
M1 and putatively connected DLS 
units that are significantly modulated 
to sleep spindles during pre-sleep. g. 
Same as f for post-sleep.  
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Figure 3.13. Comparison of time spent in each behavioral state during pre- and post-sleep. 
a. Comparison of durations spent in each behavioral state during pre- and post-sleep across 
days and animals (NREM: 41.2 ± 2.4 minutes of pre NREM vs. 44.3 ± 2.5 minutes of post 
NREM, mean ± SEM, paired-sample t-test: t(51) = -1.03, P = 0.31; REM: 17.2 ± 1.4 minutes 
of pre REM vs. 16.3 ± 1.4 minutes of post REM, mean ± SEM, paired-sample t-test: t(51) = 
0.56, P = 0.58; wake: 98.8 ± 3.6 minutes of pre wake vs. 106.0 ± 4.3 minutes of post wake, 
mean ± SEM, paired-sample t-test: t(51) = -1.5, P = 0.14).  

Figure 3.14. Corticostriatal transmission strength changes for non-sleep spindle 
modulated pairs of M1 and DLS units. a. Cross correlations of spiking activity during NREM 
for all pairs of RM M1 and putatively connected DLS units that are not significantly modulated 
to sleep spindles during the first and second half of pre-sleep (left) and post-sleep (right), 
showing no changes in cross correlation magnitude (width of line represents mean ± SEM) b. 
Correlation between change in short-latency cross correlation magnitude and mean sleep 
spindle modulation for all pairs of RM M1 and putatively connected DLS units that are not 
significantly modulated to sleep spindles during pre-sleep (left) and post-sleep (right). 
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The interaction between sleep spindles and slow oscillations impact the role of sleep spindles 

within the corticostriatal network 

To understand why changes in corticostriatal transmission strength occurred specifically in post-

sleep, but not pre-sleep, we examined the interaction between sleep spindles and slow oscillations, 

a relationship known to be relevant for sleep-dependent processing18,38,39. We found that the 

distribution of temporal proximity to preceding slow oscillations in post-sleep significantly 

differed from the distribution in pre-sleep, with slow oscillations in closer proximity to sleep 

spindles during post-sleep (Figure 3.15a; P=2×10−29, two-sample Kolmogorov–Smirnov test). We 

found that this close proximity of slow oscillations to sleep spindles increased firing rates during 

sleep spindles in both M1 and DLS (Figure 3.15b&c, M1 units: P = 0.02, DLS units: P = 0.02, 

two-sample Kolmogorov–Smirnov tests, followed by a shift test to assess how quartiles of the 

distribution differed). Notably, the rate of sleep spindles within 500ms after a slow oscillation was 

correlated to the mean change in corticostriatal transmission strength across all pairs of M1 and 

DLS units during post-sleep (Figure 3.15d). This suggested that proximity to slow oscillations 

may be an important factor in whether sleep spindles drive plasticity. Altogether, our results 

provide evidence for offline plasticity within the corticostriatal network after training and that 

sleep spindles, and their interactions with slow oscillations, are important mediators of such 

plasticity.  
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Figure 3.15. The interaction between sleep spindles and slow oscillations impact the role 
of sleep spindles within the corticostriatal network. a. Distributions of the temporal 
proximity to preceding slow oscillations for all sleep spindles during pre- and post-sleep across 
days and animals. b. Firing rate across M1 units during sleep spindles with close proximity to 
slow oscillations (<0.5 seconds) and all other sleep spindles (width of line represents mean ± 
SEM). c. Comparison of distributions of peak firing rates for M1 (left) and DLS (right) units 
during sleep spindles with close proximity to slow oscillations (<0.5 seconds) and all other 
sleep spindles. d. Correlation between each days’ post-sleep density of sleep spindles in close 
proximity to slow oscillations (<0.5 seconds; normalized by subtracting the rate in pre-sleep 
and normalized within each animal by z-scoring across days) and mean change in short-latency 
cross correlation across all pairs of RM M1 and putatively connected DLS units that are 
significantly modulated to sleep spindles (normalized by subtracting the change in pre-sleep 
and normalized within each animal by z-scoring across days). 
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Discussion 

Skilled behaviors exist in a continuum between being flexible - adapting quickly to changes in the 

environment - and automatic - inflexible to changes but cognitively efficient1–4. Plasticity within 

the corticostriatal network is thought to regulate the balance between flexibility and 

automaticity4,5,26. In this study, we study long-term training that resulted in automaticity, as 

evidenced by day-to-day invariance in reaching behavior that persisted even when the food pellet 

was moved such that reaches were no longer successful in retrieving the pellet. We show that, 

during such long-term training, corticostriatal functional connectivity increased during offline 

periods and provide evidence that sleep spindles uniquely engage the corticostriatal network to 

mediate such plasticity. 

 

Our results provide evidence that sleep plays an important role in modifying cross-area 

connectivity during learning. While coordinated cross-area reactivations during sleep have been 

reported across several brain networks19,40–45, how such coordinated activity patterns precisely 

shape the connectivity across brain regions remains largely unexplored (but see 19). For example, 

studies informing the systems consolidation theory have posited that coordinated activity patterns 

across the hippocampus and cortex during sleep drive intra-cortical plasticity23,25,46. However, it is 

not known whether sleep impacts hippocampal-cortical connectivity, despite evidence for a change 

in hippocampal-cortical coupling after learning47. Our results thus suggest that the systems 

consolidation theory may need to be broadened to consider a role for sleep in increasing the 

coupling between connected regions that can impact subsequent wake network activity and 

behavior. As evidence for cross-area reactivations in different brain networks continues to grow48, 



110 
 

it will be important to consider how such activity patterns may impact both local and cross-area 

plasticity. 

 

Our measures of cross-area connectivity are based on the coordination of LFP signals and single 

unit spike timing across M1 and DLS. We observed a subset of both LFP electrodes and 

corticostriatal neuron pairs showing evidence of increased connectivity with training, indicating 

the selective strengthening of corticostriatal connectivity - but what is the neural basis for these 

changes? One possibility is that our functional measures of connectivity reflect changes in synaptic 

strength of M1 projections to the DLS. This is consistent with evidence for the strengthening of 

cortical inputs to the striatum with motor training49. An alternative possibility is that coordinated 

inputs to both M1 and DLS drive increased functional connectivity. We believe our results are 

most consistent with a physical change in synaptic strength, as we observed evidence of increased 

cross-area connectivity in two distinct states, NREM, reflected as increased LFP coherence, and 

awake task performance, reflected in the emergence of predictable cross-area dynamics. Future 

work is required to determine whether our observations are consistent with structural changes in 

synaptic strength. 

 

We also provide evidence that sleep spindles are uniquely poised to mediate the enhancement of 

corticostriatal coupling during the offline period following training. While sleep spindles have 

been previously suggested to be important for plasticity36,50, the precise link between sleep 

spindles, plasticity, and behavior has remained unclear. Here we also show that striatal NMDA 

activation during the offline periods following training is required for increases in behavioral 

consistency. This suggests that sleep spindles may be important drivers of corticostriatal plasticity 
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through NMDA activation. This is consistent with work showing that corticostriatal plasticity is 

NMDA-dependent13,14, as well as in vitro work examining how sleep spindle activity patterns 

might drive plasticity50. Additionally, we provide evidence that the proximity of sleep spindles to 

preceding slow oscillations is an important regulator of plasticity, consistent with previous 

work18,39. As slow oscillations have been linked to NMDA receptor activation51, one intriguing 

possibility is that slow oscillations gate sleep spindle plasticity through the activation of NMDA 

receptors. 

 

Our results link offline corticostriatal plasticity to the emergence of predictable low-dimensional 

cross-area activity. It has been previously demonstrated that M1 exhibits consistent low-

dimensional population neural dynamics during consistently produced motor actions52. There is 

also growing evidence that subcortical regions such as the DLS are important for stabilizing 

cortical activity patterns and the emergence of consistent behaviors8,12. Consistent with this idea, 

task-related coordination of M1 and DLS activity emerges with skill acquisition8–10. Here we link 

offline increases in corticostriatal functional connectivity to the ability to predict low-dimensional 

population activity in DLS from M1 activity. This suggests a model in which consistent low-

dimensional neural dynamics emerge across the motor network with training and that motor 

network plasticity during offline periods is important for the emergence of such consistent cross-

area dynamics. 

 

Lastly, we link offline corticostriatal plasticity in the corticostriatal network to the emergence of 

fast and consistent reaching behavior, reflected in the invariance of day-to-day reaching velocity 

profile. This is consistent with a range of studies demonstrating that sleep benefits speed and 
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consistency in motor tasks in humans53,54 and rodents37,55, as well as rodent brain-machine 

interface (BMI) tasks17,18. Therefore, our results suggest the possibility that a fundamental role of 

sleep is to modify the corticostriatal network to impact the consistency of behavior in a range of 

tasks. Further work is required to determine the precise role of offline corticostriatal plasticity in 

different contexts. One important avenue of research is to explore whether sleep can impact 

corticostriatal connectivity in the context of maladaptive automatic behaviors, such as addiction, 

that have been linked to the corticostriatal network26,56. Notably, there is evidence that the 

reactivation of a stored memory can make the memory temporarily labile27 and recent work has 

shown that the modulation of NREM rhythms can regulate modulate memory consolidation vs. 

forgetting18. Therefore, it will be informative to determine whether similar manipulations could be 

used in the context of maladaptive automatic behaviors to provide a therapeutic benefit. 

 

Methods 

Animal care and surgery 

This study was performed in strict accordance with guidelines from the USDA Animal Welfare 

Act and United States Public Health Science Policy. Procedures were in accordance with protocols 

approved by the Institutional Animal Care and Use Committee at the San Francisco Veterans 

Affairs Medical Center. This study consists of experiments performed with fourteen male Long-

Evans rats (approximately 12-16 weeks old), housed under controlled temperature and a 12-h 

light/12-h dark cycle with lights on at 6:00 a.m. Animal experiments were performed during the 

light period. All surgical procedures were performed using sterile techniques under 2–4% 

isoflurane. Six animals were implanted with either microwire electrodes (n = 4 animals; 32 or 64 

channel 33µm diameter Tungsten microwire arrays with ZIF-clip adapter; Tucker-Davis 
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Technology) or high-density silicon probes (n = 2 animals; 256 channel custom-built silicon 

probes) targeted to both the forelimb area of M1, centered at 3.5mm lateral and 0.5mm anterior to 

bregma and implanted in layer V at a depth of 1.5mm, and the DLS, centered at 4mm lateral and 

0.5mm anterior to bregma and implanted at a depth of 4mm. Six additional animals were implanted 

with infusion cannulas (PlasticsOne; 26Ga) targeted to the DLS. Surgery involved exposure and 

cleaning of the skull, preparation of the skull surface (using cyanoacrylate), and implantation of 

skull screws for overall headstage stability. In the animals implanted with neural probes, a 

reference screw was implanted posterior to lambda, contralateral to the neural recordings and a 

ground screw was implanted posterior to lambda, ipsilateral to the neural recordings. Craniotomy 

and durectomy were then performed, followed by implantation of neural probes or infusion 

cannulas and securing of the implant with C&B Metabond (Parkell, Product #S380) and Duralay 

dental acrylic (Darby, Product #8830630). In four of the animals implanted with neural probes, 

the forearm was also implanted with a pair of twisted electromyography (EMG) wires (0.007” 

single-stranded, Teflon-coated, stainless steel wire; A-M Systems) with a hardened epoxy ball (J-

B Weld Company) at one end preceded by 1–2mm of uncoated wire under the ball. Wires were 

inserted into the muscle belly and pulled through until the ball came to rest on the belly. EMG 

wires were braided, tunneled under the skin to a scalp incision and soldered into an electrode 

interface board (ZCA-EIB32; Tucker-Davis Technology). The postoperative recovery regimen 

included administration of buprenorphine at 0.02mg/kg and meloxicam at 0.2mg/kg. 

Dexamethasone at 0.5mg/kg and trimethoprim/sulfadiazine at 15mg/kg were also administered 

postoperatively for 5 days. All animals recovered for at least one week before the start of 

behavioral training. 
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In vivo electrophysiology 

Units, local field potentials (LFP), and EMG activity were recorded using an RZ2 system (Tucker-

Davis Technologies). For the microwire animals, spike data was sampled at 24,414Hz and 

LFP/EMG data at 1,017Hz. To record spiking data in these animals, thresholds for spiking activity 

were set online using a standard deviation of 4.5 (calculated over a 1-min baseline period using 

the RZ2 system). Waveforms and timestamps were stored for any event that crossed that threshold. 

Spike sorting was then performed using Offline Sorter v.4.3.0 (Plexon) with a principal component 

analysis-based clustering method followed by manual inspection. Spikes were sorted separately 

for each day, combining pre-sleep, training, and post-sleep sessions. We accepted units based on 

waveform shape, clear cluster boundaries in principal component space and 99.5% of detected 

events with an ISI>2ms. For silicon probe animals, signals were recorded at 24,414Hz. In these 

animals, spike times and waveforms were detected from the broadband signal using Offline Sorter 

v.4.3.0 (Plexon). Spike waveforms were then sorted using Kilosort2 

(https://github.com/MouseLand/Kilosort2). We accepted units based on manual inspection using 

Phy (https://github.com/cortex-lab/phy) and 99.5% of detected events with an ISI>2ms.  

 

Viral injection 

To label anterograde projections in M1 we injected 750nl of AAV8-hsyn-JAWs-KGC-GFP-ER2 

virus into two sites (1.5mm anterior, 2.7mm lateral to bregma, at a depth of 1.4mm and 0.5 

posterior, 3.5mm lateral to bregma, at a depth of 1.4mm). Two weeks after injection rats were 

anesthetized and transcardially perfused with 0.9% sodium chloride, followed by 4% 

formaldehyde. The harvested brains were post-fixed for 24 h and immersed in 20% sucrose for 
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2 days. Coronal cryostat sections (40-μm thickness) were then mounted and imaged with a 

fluorescent microscope. 

 

Reach-to-grasp task 

Rats naïve to any motor tasks were first tested for forelimb preference. This involved presenting 

approximately ten food pellets to the animal and observing which forelimb was most often used to 

reach for the pellet. Rats then underwent surgery for either neural probe or cannula implantation 

in the hemisphere contralateral to preferred paw. Following the one-week recovery period, rats 

were trained using an automated reach-box, controlled by custom MATLAB scripts and an 

Arduino microcontroller. This setup requires minimal user intervention, as described previously55. 

Each trial consisted of a pellet dispensed on the pellet tray followed by an alerting beep indicating 

that the trial was beginning, then the door would open. Animals had to reach, grasp, and retrieve 

the pellet. A real-time ‘pellet detector’ using an infrared sensor centered over the pellet was used 

to determine when the pellet was moved, indicating the trial was over and then the door was closed. 

All trials were captured by a camera placed on the side of the behavioral box (n = 2 animals 

monitored with a Microsoft LifeCam at 30 frames/second; n = 12 animals monitored with a Basler 

ace acA640-750uc at 75 frames/second). For animals implanted with neural probes, each animal 

underwent five to fourteen days of training (~100–150 trials per day). For the infusion cannula 

implanted animals, each animal underwent ten days of training (100 trials per day). Rats had fifteen 

seconds to complete each trial, and trials were separated by a ten second inter-trial-interval. Reach 

trajectories were captured from video using DeepLabCut56 to track the center of the rat’s paw as 

well as the food pellet. Reach trajectories consisted of the paw trajectory from 500ms before to 

500ms after “pellet touch”, which was classified as the frame in which the paw was closest to the 
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pellet, before the pellet was displaced off the pellet holder. Only trials in which the pellet was 

displaced off the pellet holder were considered. We assessed behavioral consistency throughout 

training in both neural probe and cannula implanted animals by calculating the correlation between 

the mean velocity profile of reaches on each day of training and the mean velocity profile of 

reaches on the last day of training. These correlations were computed separately for the x and y 

dimensions and then averaged. At the end of training, we tested whether reaching behavior was 

automatic in two of the neural probe implanted animals by performing a 100 trial training session 

on the subsequent day with the pellet moved to a new location (~10mm lateral from original pellet 

position) and observing whether the animal’s reaching behavior changed. We performed a similar 

experiment for two additional animals naïve to the task and without neural implant to test whether 

reaching was flexible or automatic at the start of training. These animals performed ~200 trials on 

two consecutive days. To calculate single-trial reach trajectory correlations, we first generated a 

mean trajectory in each dimension (x and y) for trials with the pellet in the learned position and 

trials with the pellet in the new position (mean trajectories were computed separately for each 

pellet position). Single trial trajectories were then correlated to the mean trajectory in each 

dimension and then averaged across the x and y dimension. To compare across pellet positions, 

we considered reach trajectories up to pellet touch (from 500ms before pellet touch to pellet touch), 

as automatic reaches with the pellet in the new position often missed the pellet and pellet holder 

completely.  

 

DLS infusions 

To test if blocking the activation of striatal NMDA receptors during the offline period after training 

disrupts increases in behavioral consistency, we infused either 1ul of saline or NMDA blocker 
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AP5 (5µg/µl) at an infusion rate 200nl/minute into the DLS immediately following training in six 

animals for ten consecutive days. In the first five days of training, we infused three rats with AP5 

and three rats with saline, for the second five days, we switched the infusion, i.e., animals that 

received AP5 in the first five days, received saline for the second five days, and vice-versa.  

 

Sleep classification 

All neural data analyses were conducted using MATLAB 2019a (MathWorks) and functions from 

the EEGLAB (http://sccn.ucsd.edu/eeglab/) and Chronux (http://chronux.org/) toolboxes. Sleep 

was classified using cortical LFP signals and movement measured by video or EMG activity. LFP 

was preprocessed by artifact rejection, including manual rejection of noisy channels and z-scoring 

of each channel across the entire recording session. A mean LFP channel was then generated in 

M1 for sleep classification by averaging across all M1 channels. This mean M1 LFP channel was 

then segmented into non-overlapping 10 second windows. In each window the power spectral 

density was computed using the Chronux function mtspecgramc and then averaged over the delta 

(1–4Hz) and theta (5-10Hz/2-15Hz) frequency bands. Both LFP power bands were then 

normalized by z-scoring. Epochs with high delta power (>0 z-scored delta) and no movement were 

classified as NREM, epochs with high theta and low delta power (>0 z-scored theta and <0 z-

scored delta) were classified as REM sleep, and other epochs were classified as wake (Watson, et 

al., 2016). All consecutive NREM or REM epochs that were less than 30 seconds long (3 

consecutive epochs) were reclassified as wake. 
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Assessing corticostriatal functional connectivity using LFP coherence 

To measure corticostriatal functional connectivity across days, we measured LFP coherence during 

NREM across all M1 and DLS electrode pairs on each pre- and post-sleep session using chronux 

function cohgramc. For these analyses, we first applied common-mode referencing using the 

median signal, i.e., at every time-point, the median signal across all channels in a region was 

calculated and subtracted from every channel to decrease common noise and minimize volume 

conduction. Common-mode referencing was performed independently for the channels in each 

region, i.e., M1 and DLS. We classified “high coherence LFP pairs” as electrodes with a mean 4-

8Hz coherence >0.6. To compare online changes in LFP coherence (from pre- to post-sleep on the 

same day) to offline changes in LFP coherence (from post-sleep on one day to pre-sleep on the 

next day), we computed a single value per pair for both online and offline coherence changes by 

averaging values across days of training.  

 

Predicting cross-area activity 

To assess cross-area dynamics, we first extracted low-dimensional representations of DLS activity 

by performing principal component analysis (PCA) on trial-averaged activity of DLS neurons 

time-locked to pellet touch and binned at 100ms, specifically for time bins from five seconds 

before to five seconds after pellet touch. Principal components were computed using MATLAB 

function pca. Spiking activity from five seconds before to five seconds after pellet touch and 

binned at 100ms was then projected onto each of the first two components to generate low-

dimensional neural trajectory representations of population activity in DLS. We then fit a linear 

regression model to predict DLS reach-related neural trajectories from one second before to one 

second after pellet touch from single unit spiking activity in M1. A separate model was used to 
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predict each principle component, using MATLAB function fitlm and five-fold cross validation. 

For each time bin of the neural trajectory, the preceding 500ms of spiking activity for all M1 units, 

binned at 100ms, were used as predictors. A model was also fit on baseline, non-reaching, neural 

trajectories, calculated by projecting DLS spiking activity from five seconds to four second before 

pellet touch onto each of the first two computed principal components. The predictive ability of 

these models was assessed by calculating the correlation between the actual neural trajectories and 

the predicted trajectories. 

 

NREM rhythm detection 

The NREM rhythm detection applied here is based on an algorithm we have developed 

previously18,37. A mean LFP channel was generated in M1 for NREM rhythm classification by 

averaging across all channels (same as used for sleep classification). To detect sleep spindles, this 

mean signal was filtered in the spindle band (10 – 16 Hz) using a zero-phase shifted, third order 

Butterworth filter. A smoothed envelope was calculated by computing the magnitude of the Hilbert 

transform of this signal then convolving it with a Gaussian window. Next, we determined two 

upper thresholds for spindle detection based on the mean and standard deviation (s.d.) of the 

spindle band envelope during NREM. Epochs in which the spindle envelope exceeded 2.5 s.d. 

above the mean for at least one sample and the spindle power exceeded 1.5 s.d. above the mean 

for at least 500ms were detected as spindles. Then, spindles that were sufficiently close in time 

(<300 ms) were combined. To detect slow oscillations and delta waves, the mean M1 signal was 

filtered in a low frequency band (2nd order, zero phase shifted, high pass Butterworth filter with a 

cutoff at 0.1Hz followed by a 5th order, zero phase shifted, low pass Butterworth filter with a cutoff 

at 4Hz). Next, all positive-to-negative zero crossings during NREM were identified, along with 
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the previous peaks, the following troughs, and the surrounding negative-to-positive zero crossings. 

Each identified epoch was considered a slow oscillation if the peak was in the top 15% of peaks, 

the trough was in the top 40% of troughs and the time between the negative-to-positive zero 

crossings was greater than 300ms but did not exceed 1 second. Each identified epoch was 

considered a delta wave if the peak was in the bottom 85% of peaks, the trough was in the top 40% 

of troughs and the time between the negative-to-positive zero crossings was greater than 250ms. 

 

Characterizing putatively monosynaptically connected M1 and DLS 

We characterized putatively monosynaptically connected pairs of M1 and DLS units by calculating 

the cross correlation of spiking activity binned at 1ms during the first five minutes of NREM during 

pre- and post-sleep concatenated together (10 minutes total) on each day of training for each pair 

of M1 and DLS units. We then measured the mean value of the short-latency cross correlation for 

each pair (1-10ms time lag centered on DLS spiking; consistent with the conduction and synaptic 

delay between M1 and DLS9) and compared this value to a shuffled distribution generated by 

shuffling DLS spike time bins and recalculating the cross correlation 1,000 times. If the non-

shuffled short-latency correlation magnitude was greater than 95% of the shuffled distribution 

values, we classified the pair of units as putatively connected. 

 

Comparing corticostriatal transmission strength across behavioral 

To compare corticostriatal transmission strength across behavioral states, we generated a cross 

correlation of spiking activity binned at 1ms from each behavioral state (NREM, REM, and wake) 

for all putatively connected pairs of M1 and DLS units, during both pre- and post-sleep. To account 
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for firing rate differences across states, each pair’s cross correlation was normalized by subtracting 

the mean cross correlation values from 100-150ms time lag. 

 

Comparing corticostriatal transmission strength across NREM 

To compare corticostriatal transmission strength across NREM rhythms, we generated a cross 

correlation of spiking activity binned at 1ms from each NREM rhythm (sleep spindles, delta 

waves, and slow oscillations) for all putatively connected pairs of M1 and DLS units. Spiking 

during sleep spindles consisted of spiking during the one second centered on sleep spindle peak (-

500ms to 500ms). Spiking during slow oscillations and delta waves consisted of spiking during 

the one second around upstate peak (-500ms to 500ms). To account for the influence of firing rate 

differences or changes in LFP-phase locking across NREM rhythms, we applied a normalization 

step we previously developed37. Briefly, we generated shuffled cross correlations between each 

M1 and DLS unit pair, with DLS spike times shuffled with respect to the NREM rhythm in which 

it fired. In this approach, both units maintain all their first-order relationships with the NREM 

rhythm; for example, the number of spikes, phase locking values, and phase preferences of 

individual units do not change after shuffling. However, the shuffling breaks the statistical 

relationship between the two neurons under examination. We repeated this shuffling 25 times and 

then subtracted the mean shuffled cross correlation from the unshuffled cross correlation. 

 

NREM rhythm modulation 

To determine the sleep spindle modulation of individual M1 and DLS units, spiking during each 

sleep spindle was time locked to the peak of the filtered LFP and binned at 10ms. Spiking was 

averaged across sleep spindles and modulation was calculated by taking the minimum to maximal 
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firing rate bin in the second around sleep spindle peak (-500ms to 500ms) divided by the minimum 

to maximal firing rate bin in a second long baseline period before each spindle (-1500ms to -500ms 

relative to spindle peak). To determine slow oscillation and delta wave modulation of individual 

M1 and DLS units, spiking during each slow oscillation or delta wave was time locked to the peak 

of the upstate and binned at 10ms. Spiking was averaged across slow oscillations or delta waves 

and modulation was calculated by taking the minimum to maximal firing rate bin in the second 

around upstate peak (-500ms to 500ms) divided by the minimum to maximal firing rate bin in a 

second long baseline period before each slow oscillation or delta wave (-1500ms to -500ms relative 

to upstate peak). 

 

Characterizing reach modulated (RM) units 

To characterize M1 and DLS reach modulated units, we generated trial-averaged peri-event time 

histograms (PETHs) of spiking activity for individual units during reaching locked to pellet touch 

in 25ms bins, from 5 seconds before to 5 seconds after pellet touch (400 total bins). Each unit’s 

PETH was then z-scored and reach modulation was measured by taking the sum of the absolute 

value of the time bins from 1 second before pellet touch to 1 second after pellet touch (80 total 

bins). We then generated a distribution of shuffled modulations by shuffling all time bins and 

recalculating the modulation of the shuffled PETH and repeating this shuffling procedure one 

thousand times. Units with a non-shuffled modulation greater than the 99% percentile of the 

shuffled distribution were considered significantly reach modulated.  
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Characterizing DLS units with strong or weak M1 reach modulated input 

To characterize DLS units with strong or weak M1 reach modulated input, we calculated the 

number of reach modulated M1 units that were putatively connected to each DLS unit. If a DLS 

unit was connected to 3 or more reach modulated M1 units, we classified that DLS unit as having 

strong M1 reach modulated input, if a DLS unit was connected to 2 or less M1 reach modulated 

units, we classified that DLS unit as having weak or no M1 reach modulated input.  

 

Measuring corticostriatal transmission strength changes within pre- and post-sleep 

To measure changes in corticostriatal transmission strength within pre- and post-sleep, we 

generated a cross correlation of spiking activity binned at 1ms from NREM activity during the first 

and second half of pre- and post-sleep. This was done for two populations of M1 and DLS unit 

pairs. The first population was all M1 and DLS unit pairs that contained a RM M1 unit, a DLS 

unit that was putatively connected to a RM M1 unit, and contained both M1 and DLS units that 

were significantly modulated to sleep spindles. The second population was all M1 and DLS unit 

pairs that contained a RM M1 unit, a DLS unit that was putatively connected to a RM M1 unit, 

and contained M1 and DLS units that were both not significantly modulated to sleep spindles. To 

determine which units were modulated to sleep spindles, we generated peri-event time histograms 

(PETHs) of sleep spindle activity locked to spindle peak in 10ms bins from 2 seconds before to 2 

second after spindle peak (400 bins), averaged across all spindles. Sleep spindle modulation was 

then calculated by taking the minimum to maximal firing rate bin within the 1 second period 

centered on spindle peak (-500ms to 500ms). We then generated a distribution of shuffled 

modulations by shuffling the time bins and recalculating the modulation of this shuffled PETH. 

This shuffling procedure was repeated one thousand times to generate a distribution. Units with a 
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non-shuffled modulation greater than the 99% percentile of the shuffled distribution were 

considered significantly sleep spindle modulated.  

 

Sleep spindle and slow oscillation proximity 

Slow oscillation to sleep spindle proximity was determined by measuring the temporal proximity 

of the preceding slow oscillation zero-crossing (positive to negative LFP) to each sleep spindle 

peak. To determine the influence of slow oscillation proximity on sleep spindle modulation, we 

generated two PETHs locked to spindle peak and binned at 10ms for each unit. The first PETH 

was generated with sleep spindles that had a preceding slow oscillation within 500ms (“nested 

spindles”) and the second PETH was generated with sleep spindles that did not have a preceding 

slow oscillation within 500ms (“isolated spindles”). As there were more isolated spindles than 

nested spindles, the number of events used to generate each PETH was matched by randomly 

selecting isolated spindles to match the number of nested spindles. Modulation was then assessed 

by determining the peak firing rate bin in each PETH. 
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Chapter 4: Why corticostriatal plasticity 
matters: a model of motor network organization 
 

There is considerable evidence that the motor network is distributed, that is, activity in multiple 

brain regions in the motor network can drive movement (see Chapter 1). This raises the question, 

how are functions distributed across this network? One influential organizational scheme was put 

forth by Hanricus (Hans) Kuypers, who differentiated the function of brain regions based on 

connectivity to the spinal cord1: 

From these findings it has been concluded that the medially descending group A brain stem pathways, 

which are especially derived from centrally located brain stem structures, characteristically steer body 

and integrated limb and body movements as well as movement synergisms of the individual limbs 

involving their various parts. Group B brain stem pathways also exist; these descend laterally. 

Components of this group appear to add further resolution to brain stem control, and provide the 

capacity to execute relatively independent movements of the limbs, especially of their distal parts. The 

cortical pathways to the spinal cord and lower brain stem, which parallel the descending brain stem 

pathways, further amplify the brain stem control but, especially in primates, also provide the unique 

capacity to execute highly fractionated movements, exemplified by individual finger movements. 

An alternative scheme, put forth by Okihide Hikosaka, differentiated function based on the “level” 

of control, rather than specific body parts controlled2: 

I now propose that there are at least three levels in the control of action. The first level controls innate 

movements (Innate action). The second level controls movements that have been acquired by practice 

(Learned action). The third level controls movements that have not yet become automatic and require 
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attention and effort (New action). It should be stressed, however, that such non-automatic movements 

will eventually become automatic after long-term practice. 

At first glance, these two motor network organization schemes seem quite distinct. On one hand, 

motor control is differentiated based on body part (I will call this “effector level”), while on the 

other hand, motor control is differentiated based on the level of control (“control level”) – how can 

we make sense of these two distinct schemes? In this chapter, I propose a model of motor network 

organization that aims to find a common axis between these schemes.  

 

The proposed model is based on an axis of neural 

flexibility-to-stability. I propose that both the 

“effector level” and “control level” organizational 

schemes can be successfully mapped onto this axis 

(Figure 4.1). In the case of effector control, we can 

think of a gradient from proximal to distal 

movements. For example, distal effectors, such as 

the hand, have higher degrees-of-freedom (DOF) 

and thus require more flexible neural control than 

lower DOF proximal effectors such as the 

shoulder. Similarly, for the “control level”, performing and learning a new behavior requires more 

flexibility compared to executing a stable innate behavior. Therefore, we can map both “effector 

level” and “control level” schemes onto a shared neural axis. But how does this shared axis map 

onto the motor network? And how is corticostriatal plasticity involved? In this chapter I will argue 

for the following two claims:  

Figure 4.1. Proposed shared neural axis 
for different motor control schemes. 
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(1) There exists a cortical-to-subcortical gradient of neural flexibility-to-stability across the 

motor network. 

(2) Learning a new behavior involves transitioning from cortical to subcortical control of a 

behavior and is mediated through corticostriatal plasticity.  

In this chapter, I will present evidence for the above claims, then discuss future work and 

conflicting evidence relating to the proposed model. 

 

A cortical-to-subcortical gradient in neural flexibility  

The first claim is that there exists a cortical-to-subcortical gradient of neural flexibility-to-stability 

across the motor network (Figure 4.2). This gradient is proposed to exist across the motor cortex, 

basal ganglia, and brainstem. I will begin by providing evidence for greater neural flexibility in 

cortex compared to the basal ganglia, and then discuss evidence that this gradient may exist across 

all three regions. To do this, we must first determine how to measure neural flexibility. Imagine 

we measure the activity in two networks, each made up of ten neurons. Given the size of the 

network and assuming we binarize neural activity such that, within each time bin, each neuron 

either has or does not have a spike (0 or 1), there are 1,024 possible neural activity patterns in this 

network (i.e., 1000000000, 0100000000, … = 210). I propose a simple measure of neural flexibility 

vs. stability based on how often specific neural patterns are repeated A stable network will repeat 

the same neural patterns more often than a flexible network. 
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To look for evidence of this gradient I compared 

the dynamics of neural activity from ten-neuron 

networks in primary motor cortex (M1) and the 

dorsolateral striatum (DLS). The data was 

obtained from rats with both M1 and DLS 

networks recorded simultaneously. Each 

recording was ~2 hours long and contained both 

wake and sleep, but no specific behavioral task. 

One consideration when comparing network 

dynamics between M1 and DLS is the difference 

in firing rate (Figure 4.3a). Firing rate is known to influence pairwise correlations3. Therefore, I 

generated circularly shuffled networks of M1 and DLS neurons in which each neuron retained its 

firing rate but pairwise correlations across the population were removed, creating an “independent 

Figure 4.3. M1 and DLS spiking 
properties. a. Firing rate 
distributions in M1 and DLS. b. 
Circular shuffling method. c. 
Comparison of pairwise 
correlation between real and 
shuffled M1 (left) and DLS. (right) 
networks. 

Figure 4.2. Proposed cortical-to-
subcortical gradient in neural 
flexibility-to-stability. 
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network” (Figure 4.3b&c). Then, I compared how often the same neural patterns were produced 

in the real M1 and DLS networks, compared to the shuffled M1 and DLS networks. This approach 

aimed to reveal how removing the correlations in a network impacted neural flexibility. In DLS 

the increase in frequency of neural patterns between the real and independent networks was greater 

than in M1 (Figure 4.4), indicating that correlations in DLS drive neural stability to a greater 

degree than they do in M1, providing evidence towards a cortical-to-subcortical gradient in neural 

flexibility. 

 

Another approach to normalize the firing rate differences between M1 and DLS is to randomly 

select spikes to match firing rates in each M1 and DLS unit. Using this method, I examined how 

the correlational structure in M1 and DLS impacted how often specific neural patterns are repeated 

without the influence of firing rate. Comparing the pattern occurrence between the real and 

shuffled networks, the real DLS network repeats specific patterns more often than the real M1 

network, compared to each network’s shuffle counterparts, despite the same firing rate (Figure 

4.5). I also observe higher pairwise correlation values in DLS vs. M1 with normalized firing rates 

Figure 4.4. Comparison of M1 and DLS neural stability vs. flexibility. a. Scatterplot of 
pattern occurrences in real and shuffled network for M1 (left) and DLS (right). b. Comparison 
of distributions between ratio of real/shuffled pattern occurrence in M1 and DLS.  
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(Figure 4.6). Prior work has demonstrated how pairwise correlations have significant impact on 

network dynamics4, suggesting this difference may account for the stability difference we observe. 

 

 

 

 

 

 

 

 

 

 

 

Together, these analyses provide evidence for greater neural flexibility in motor cortex compared 

to the striatum. While further work is required to provide direct evidence for a gradient in neural 

flexibility vs. stability extending to the brainstem, I believe there are several pieces of evidence 

consistent with such a gradient. First, there is evidence that distal and proximal effectors are 

Figure 4.5. Comparison of M1 and DLS neural stability vs. flexibility for sub-selected 
spike networks. a. Scatterplot of pattern occurrences in sub-selected spike real and shuffled 
networks for M1 (left) and DLS (right). b. Comparison of distributions between ratio of 
real/shuffled pattern occurrence in M1 and DLS for sub-selected spike networks.  

Figure 4.6. Pairwise 
correlation values of M1 
and DLS networks. 
Comparison of pairwise 
correlation values for M1 
and DLS networks with all 
spikes (left) and sub-
selected spikes. (right)  
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differentially controlled by cortical and subcortical brain regions, respectively. For example, there 

is considerable evidence that cortex is uniquely required for dexterity5–8 while, on the other 

extreme, it is known that the brainstem controls movements of proximal body parts such as 

locomotion9,10. Between these extremes, as I presented in Chapter 2, there also exists evidence for 

a difference in the control of proximal vs. distal effectors between cortex and the basal ganglia11. 

Second, there is evidence that lesioning cortex prevents an animal from learning a sequence of 

non-dexterous movements. However, once learned, a complex non-dexterous movement sequence 

could be performed without disruption after complete motor cortical lesion12. One interpretation 

of this work is that the exploration and flexibility involved with early learning require cortex, but 

the stable production of learned behaviors can be controlled subcortically in the basal ganglia and 

brainstem. Together these two pieces of evidence are consistent with a cortical-to-subcortical 

gradient in neural flexibility vs. stability that extends from the cortex to the brainstem.  

 

Learning is mediated through plasticity in the corticostriatal network  

The second claim is that learning a new behavior involves transitioning from cortical to 

subcortical control of a behavior and is mediated through corticostriatal plasticity. (Figure 4.7). 

There is considerable evidence that corticostriatal plasticity is critical for learning. It has been 

shown that NMDA-dependent plasticity in the inputs to the striatum is required to develop a 

consistent behavior13–15. One obvious consequence of such plasticity is that motor cortical inputs 

to the striatum are potentiated and drive greater striatal activity. Consistent with this, across several 

learning paradigms, coordinated activity emerges across motor cortex and the dorsal striatum as a 

consistent behavior develops11,15,16. However, there lacks an explanation for why corticostriatal 

plasticity leads to more consistent, learned behaviors. 
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Here, I propose that corticostriatal plasticity drives learning by transitioning an initially cortically-

driven novel behavior to a subcortically-driven learned behavior. To expand on this idea, I will 

differentiate between two different aspects of motor control: action selection and the control of the 

kinematic aspects of movement. I propose that, specifically, a cortical-to-subcortical shift in the 

kinematic control of movement allows variable kinematics to become more consistent with 

learning. In this model, early in learning, flexible neural activity in motor cortex, along with 

connected frontal and sensory cortices, encodes contextual information required for selecting 

actions and contains movement-related activity responsible for driving exploratory movement 

kinematics. With training and associated corticostriatal plasticity, the role of motor cortex shifts to 

providing a context-specific excitatory input to the striatum that serves to select actions, while the 

consistent patterns of activity driven in the striatum are responsible for stable and reliable 

kinematics. I will provide evidence for two claims supporting this idea below: (1) novel behaviors 

performed early in learning are driven by motor cortex and (2) consistent kinematics associated 

with learned behaviors are largely driven by the basal ganglia. 

Figure 4.7. Proposed cortical-to-subcortical shift in movement control with learning. 
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Consistent with the claim that novel behaviors performed early in learning are driven by motor 

cortex is evidence that, during early learning, motor cortical activity is highly modulated by 

movement17–19. It is possible that, for novel behaviors, motor cortex could be involved in both the 

selection of actions and the control of kinematic aspects of movement, as cortical activity contains 

motor information about movement kinematics, as well as sensory information about context 

relevant for action selection20,21. However, despite evidence for this activity in cortex, it is a 

challenge to determine whether such movement-related modulation is truly “driving” movement. 

For example, it has been demonstrated that while motor cortical lesions prevent motor learning, 

these lesions do not prevent the execution of a variable behavior that fails to develop into a 

consistent learned behavior22. One interpretation of this work is that while behaviors, in general, 

can be executed without motor cortex, for a variable behavior to develop into a consistent learned 

behavior, the variable behavior must be driven by motor cortical activity during early learning. 

This requirement may exist because such activity in motor cortex is a prerequisite for plasticity in 

striatal-projecting motor cortical neurons that is known to be required for learning. For example, 

one possibility is that activity in striatal-projecting motor cortical neurons that drives movement 

in early learning primes these neurons for corticostriatal plasticity that occurs during post-training 

sleep, as suggested in Chapter 3. Notably, there are pyramidal tract (PT) motor cortical neurons 

that project to the brainstem/spinal cord with axon collaterals to the striatum23, suggesting that the 

same motor cortical neurons could drive behavior during early learning, through projections to 

brainstem/spinal cord, and undergo corticostriatal plasticity involved in learning. 

 

The second claim, that consistent kinematics associated with learned behaviors are largely driven 

by the basal ganglia is supported by the demonstration that, while motor cortex is required for 



140 
 

learning a sequence of non-dexterous movements, once learned, a kinematically complex non-

dexterous behavior can be performed even after motor cortical lesion12. Furthermore, follow up 

work has shown that lesioning the striatum disrupts this learned behavior, implicating the basal 

ganglia as the driver of such consistent kinematics24. Notably, however, it has also been shown 

that a learned reaching movement can be interrupted though temporally precise inhibition of motor 

cortical activity25. One interpretation of these studies is that the role of motor cortex transitions 

with learning from the “driver” of variable behavior to a provider of context-specific excitatory 

input to the striatum, where stable patterns of activity drive the kinematics associated with the 

learned behavior. One possibility is that this pattern of context-specific input serves the role of 

action selection. This change in the role of motor cortex suggests that alternative sources of 

subcortical input to the basal ganglia may similarly drive action selection. In fact, it has also been 

demonstrated that striatal-projecting thalamic neurons may play an important role in driving 

learned behavior26. It is possible that, as training progresses, there is plasticity in the projections 

from the thalamus to the striatum, and such projections provide an excitatory input to the striatum 

that replaces the drive from motor cortex with sufficient training. The latter possibility is consistent 

with evidence that, with long-term learning, motor cortex “disengages” from learned behavior27. 

Intriguingly sleep spindles originate in the thalamus28, which is reciprocally interconnected to both 

the motor cortex and basal ganglia, suggesting that sleep may play a critical role in motor network 

plasticity as demonstrated between M1 and DLS in Chapter 3. 

 

An important consideration for this model is the considerable evidence that dexterous movements 

require cortex, even once well learned7,8,11. One possibility, consistent with the proposed model, 

is that, with learning, basal ganglia feedback to the motor cortex, relayed through thalamus, 
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becomes an important driver of cortical activity underlying dexterous movement. Different cortical 

populations, e.g., pyramidal tract vs. intratelencephalic23, may underlie the multiple roles of cortex 

in (1) providing excitatory input to the striatum and (2) receiving feedback from the basal ganglia 

to drive dexterous movements. In this model, therefore, we can think of basal ganglia activity as 

the “driver” of both learned dexterous and non-dexterous movements, through its influence on 

motor cortex and brainstem motor regions, respectively. A benefit of this scheme is that dexterous 

and non-dexterous movements can be precisely coordinated by the basal ganglia in the case of 

learned movements that contain both types of movements, such as reaching and grasping actions. 

Consistent with the idea that learned cortical activity patterns require subcortical input from the 

basal ganglia is evidence that corticostriatal plasticity is required to learn an entirely cortically 

controlled brain-machine interface task14. Another important consideration, however, is whether 

skilled dexterous movement can be performed independently of basal ganglia feedback when not 

integrated into a skilled non-dexterous movement. For example, in Chapter 2, I presented evidence 

that the dexterous portion of a reach-to-grasp task is unaffected by striatal inactivation when the 

reward pellet is moved closer to the animal, removing the requirement for skilled non-dexterous 

movements. There is also evidence, from a different study investigating a cortically controlled 

brain-machine interface task, that striatal inhibition prevents learning of the task but does not 

impair performance once the task is learned29. Therefore, the control of learned dexterous 

movements may vary based on the context in which they are performed. 

 

To summarize, I have provided evidence that novel behaviors are driven by motor cortical activity 

and with learning become driven by striatal activity. I propose this transition is driven by 

corticostriatal plasticity, as there is considerable evidence that blocking plasticity in the inputs to 
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the striatum prevents learning13–15. It is important to note, however, that alternative models exist. 

For example, one such model proposes parallel corticostriatal loops: an associative loop between 

frontal cortex and the dorsomedial striatum and a sensorimotor loop between the motor cortex and 

the dorsolateral striatum30. It has been proposed that the associative loop controls goal directed 

movement while the sensorimotor movements controls learned, habitual stimulus-response 

movements30,31. Therefore, future work, including precise analyses to dissect what aspects of 

activity are, or are not, related to movement across the corticostriatal network, combined with 

careful manipulations of neural activity, will be required to understand the compatibility of distinct 

models and precisely understand how the “drivers” of movement shift with learning. 

 

Summary 

This thesis aims to further our understanding of how the brain regulates the transition from initially 

variable, new behaviors to stable, learned behaviors. In Chapter 2 of this thesis, I presented my 

work investigating how activity across the corticostriatal network differentially encodes learning 

of a complex coordinated action. In Chapter 3, I presented my work investigating the critical role 

that NREM sleep and sleep spindles play in corticostriatal plasticity during learning.  In Chapter 

4, I have sought to bring together this work, along with other evidence, to present a model for 

motor network organization and the role for corticostriatal plasticity in learning. Returning to the 

question presented at the start of this thesis: how does the brain regulate the transition from new to 

learned behaviors? I propose that plasticity between motor cortex and the basal ganglia allows an 

initially cortically driven behavior to be controlled subcortically. 
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