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ABSTRACT OF THE DISSERTATION 

 

Mining and Integrating Epigenomics 

Big Data to Discover Novel 

Mechanisms of Gene Regulation 

 

by 

 

Kai Fu 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2018 

Professor Matteo Pellegrini, Chair 

 

Besides DNA sequences, the genes are regulated by epigenomic mechanisms. 

Advances in high-throughput sequencing technologies have enabled the 

generation of huge amount of epigenomic data sets. Those epigenomic big data 

then requires the application of sophisticated computational approaches and 

statistical algorithms. My dissertation then focuses on mining and integrating 

epigenomic big data to inform novel biological mechanisms behind those datasets. 

The first research project compares the binding patterns of pluripotent regulatory 

factors, i.e. Oct4, Sox2, Klf4 and c-Myc, between human and mouse in induced 
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pluripotent stem cells. The result suggests the genome-wide regulatory 

mechanisms are conserved between those two species, but the detailed 

transcriptional mechanisms are diverged. The second research project analyzes 

the temporal expression data from embryonic stem cells to cardiomyocytes. The 

results in this project then identify regulators, including transcription factors and 

long intergenic non-coding RNAs, which are strongly associated with the 

cardiogenesis differentiation process. The third research project integrates 

datasets of DNA methylation and histone modification in 35 human cell types. The 

result shows histone modifications, especially for H3K4me3, are highly 

predictable of DNA methylation. As a summary, my dissertation analyzes and 

integrates epigenomic big data in biological context related with embryonic stem 

cells and induced pluripotent cells, provides and discoveries novel insights to 

understand epigenetic regulation of gene expression. 
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Chapter 1 

 

Introduction: 

Epigenomics and Big Data 
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1.1 Epigenomics 

The genome is the sum of genetic material within a cell. It contains all the genetic 

information that controls every aspect of biological processes of a living organism. 

In 2003, when the Human Genome Project was completed, scientists began to 

describe all the genes in the human genome [1]. This was a milestone in the 

history of science, and since then, these achievements have revolutionized 

biomedical science and research.  

 

With the rapid development of high-throughput sequencing technologies, the 

overall time and expense to sequence a genome, such as human, has 

dramatically decreased during the last ten years. The major bottleneck is no 

longer sequencing DNA itself, but is the interpretation of the function of DNA 

sequences in a genome. Research in the post-genomics focuses on annotating 

sequenced genomes in new ways. Re-sequencing technologies, such as 

ChIP-Seq, to identify DNA-Protein interactions [2], RNA-Seq to quantify gene 

expression and search for novel transcripts [3], Bisulfite-Seq to measure DNA 

methylation levels [4], have become powerful tools for annotating a genome, and 

thus be able to interpret the function of regulatory elements in a genome.  

 

International collaborative projects, such as ENCODE (Encyclopedia of DNA 

Elements) and Epigenomics Roadmap, have generated tens of thousands of such 

re-sequencing datasets and have used them to annotate the functional elements 

in hundreds of human tissues and cell lines [5, 6]. At the same time, biologists are 



 

	 3	

generating vast numbers of genomics and epigenomics datasets to investigate 

various biological systems. To interpret these valuable datasets, we need not only 

sophisticated computational tools to analyze them, but also intelligent integration 

methods to generate novel biological insights.  

 

The central dogma is the most important and fundamental concept in modern 

molecular biology [7]. It involves three major processes: DNA replication, DNA 

transcription into RNA, and RNA translation into proteins. My PhD thesis then 

focus on the epigenetic regulation of transcription, which is the key process that 

controls genomic information flow from DNA to RNA.  

 

Epigenetic modifications are reversible modifications of a cell’s DNA or 

histones that affect gene expression without altering the DNA sequence [8-10]. 

Recent progress in high-throughput sequencing technologies enables us to 

measure genome-wide epigenetic modifications in an unprecedented way. We 

can now decipher genomic DNA through DNA sequencing, transcribed RNA 

through RNA-Seq, and epigenetic modifications through ChIP-Seq or 

Bisulfite-Seq. However, measuring a single layer of information is not enough to 

reveal the hidden biological mechanisms, since cells are regulated in complex 

ways. To overcome this limitation and arrive at a more complete understanding of 

key cellular mechanisms, we need to systematically investigate the functionality of 

the genome from a multi-dimensional perspective. 
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Motivated by this goal, my thesis focuses on applying sophisticated statistical 

methods and development of novel computational algorithms to analyze and 

integrate different layers of high-throughput sequencing datasets. On the biology 

side, I focus on stem cell reprogramming and stem cell differentiation processes, 

since the understandings of these two biological systems provides key insights to 

address both basic biological questions and lead to potential applications in 

regenerative medicine.  

 

1.2 Epigenomics of stem cell 

Stem cells are able self-renew and differentiate into any cell type. In adult tissues, 

stem cells repair aging cells and replenish adult cells. In the developing embryo, 

stem cells differentiate into myriad specialized cells. As a result there is great 

interest in understanding biological mechanisms underlying the pluripotency of 

stem cells. The knowledge gained from the study of stem cells could have a 

significant impact in both increasing our understanding of basic biological 

questions and applications in regenerative medicine.  

 

Although stem cells hold great promise in regenerative medicine, there is still 

a limited understanding of how stem cells are regulated. There are a number of 

ways to study stem cells: from a biological chemistry, cellular biology or 

developmental biology perspective. In my PhD dissertation, I focus on the study of 

epigenetic regulation of transcription in stem cells. By doing so, I address the 
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following key questions in stem cell research: 1. How do the core transcription 

factors, Oct4, Sox2, Klf4, and c-Myc, control reprogramming to pluripotency, 2. 

How epigenetics changes affect stem cell differentiation or reprogramming, 3. 

What transcription factors control the differentiation process from stem cells to 

cardiomyocytes. 4. What is the quantitative relationship between DNA methylation 

and histone modifications. Answering these questions will reveal novel biological 

mechanisms underlying the regulation of stem cells and ultimately contribute to 

the transition of stem cell therapies.  

 

I thus focus on three novel aims to study the biological mechanisms of stem 

cell regulation and epigenomics. In specific aim one, I study the stem cell early 

reprogramming process from a comparative genomics aspect. By comparing 

OSKM binding sites between human and mouse, I am able to reveal both the 

shared and divergent patterns of OSKM regulation. In specific aim two, I study a 

unique biological system where stem cells are differentiated into cardiomyocytes 

with very high efficiency. This system enables me to find cardiomyocyte specific 

novel genes and identify potential new driver transcription factors that mediate the 

differentiation process. In specific aim three, I integrate hundreds of ChIP-Seq 

and Bisulfite-Seq assays to study to crosstalk between DNA methylation and 

histone modifications for 35 human cell types. This result reveals that histone 

modifications are highly predictable of DNA methylation in a variety of human cell 

types. 
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1.3 Overview of research project 

Chapter 2 is based on a manuscript in preparation for publication that compares 

OSKM regulation between human and mouse in early iPSC reprogramming 

process. By expressing the core transcription factors, Oct4, Sox2, Klf4 and c-Myc 

(abbreviated as OSKM), adult differentiated cells can be reprogrammed into 

induced Pluripotent Stem Cells (iPSCs) that have the ability to differentiate into 

any type of cells [11, 12]. Since transplants of iPSCs derived tissues or organs 

should not cause immune rejection to its donor, iPSCs technology holds great 

promise in regenerative medicine. However, there is still a limited understanding 

of the molecular mechanisms of iPSCs reprogramming. An important approach to 

understand reprogramming is to systematically investigate the mechanisms of the 

core transcriptional circuitries that underlie this process. Scientists have 

generated iPSCs from both human and mouse fibroblast cells. Previous studies 

show similar properties of either iPSCs from human or mouse [13-15]. However, it 

is unknown whether human reprogramming and mouse reprogramming are 

controlled by the same pattern of OSKM binding sites or not. This question 

motivates the first research project in my dissertation. Through a comprehensive 

comparison between human and mouse OSKM binding profiles, I am able to 

identify both shared and divergent patterns of OSKM binding in human and 

mouse on a genome-wide scale.  

 

Chapter 3 is based on a manuscript in preparation that dissects the 

cardiomyocyte differentiation regulatory network. Stem cell-based cardiogenesis 
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holds great promise for novel therapeutic approaches to heart diseases. However, 

we still have a limited understanding of the mechanisms associated tithe the 

differentiation of stem cells to cardiomyocytes. We thus established a 

differentiation protocol that yields about 90 percent cardiomyocytes from human 

embryonic stem cells [16, 17]. This powerful biological system provides a valuable 

tool to examine the mechanisms of cardiogenesis. Two main results are obtained 

in this research project. First, dissecting genome-wide gene expression changes 

during cardiogenesis. This helps us identify cardiogenesis associated genes or 

transcripts. Second, inferring potential driver transcription factors that control the 

cardiogenesis process by integrating expression profiles and genome-wide 

epigenetic profiles. 

 

Chapter 4 is based on a manuscript in preparation that models the 

quantitative relationships between histone modifications and DNA methylation in 

human cells. Recently, hundreds of epigenomic landscape maps have become 

available though the Epigenome Roadmap Project [6]. These valuable maps 

provide unprecedented resources to study epigenetic regulation of cells. I thus 

integrate hundreds of ChIP-Seq and Bisulfite-Seq assays to interrogate the 

quantitative relationships between DNA methylation and histone modifications for 

35 human cell types. As a result, I built a logistic regression model to link the two 

types of assay and predicted DNA methylation in high accuracy. This study 

provides the largest integration analysis of DNA methylation and histone 

modifications so far and reveals the close crosstalk between the two major 
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epigenetic mechanisms in human. 
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2.1 Abstract 

Both human and mouse fibroblasts can be reprogrammed to pluripotency with 

Oct4, Sox2, Klf4, and c-Myc (OSKM) transcription factors. While both systems 

generate pluripotency, human reprogramming takes considerably longer than 

mouse. To assess additional similarities and differences, we sought to compare 

the binding of the reprogramming factors between the two systems. In human 

fibroblasts, the OSK factors initially target many more closed chromatin sites 

compared to mouse. Despite this difference, the intra- and intergenic distribution 

of target sites, target genes, primary binding motifs, and combinatorial binding 

patterns between the reprogramming factors are largely shared. However, while 

many OSKM binding events in early mouse cell reprogramming occur in syntenic 

regions, only a limited number is conserved in human. Our findings suggest 

similar general effects of OSKM binding across these two species, even though 

the detailed regulatory networks have diverged significantly.  
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2.2 Introduction 

By expressing the transcription factors Oct4, Sox2, Klf4 and c-Myc (abbreviated 

as OSKM), differentiated cells can be reprogrammed into induced pluripotent 

stem cells (iPSCs) that have the ability to differentiate into any type of cell [1, 2]. 

iPSC technology holds great promise in regenerative medicine and for the 

modeling of diseases in a culture dish [3, 4]. However, there is still limited 

understanding of the essential mechanisms underlying reprogramming of somatic 

cells to iPSCs. Furthermore, there are marked differences in the reprogramming 

process for mouse and human cells, even though reprogramming can be 

accomplished by the same set of factors. Mouse cells reprogram within a week or 

two, whereas human cells take up to a month and the efficiency of the conversion 

is typically lower in the human system [5, 6]. Moreover, while mouse cells can be 

reprogrammed efficiently with OSK alone, ectopic c-Myc expression is more 

critical in the human process [2, 7, 8]. To understand universal features of 

reprogramming across species, we characterized the differences and similarities 

in the regulatory networks that were manifested at the onset of reprogramming of 

human and mouse somatic cells. 

 

An important approach towards understanding the reprogramming process is 

to systematically investigate the binding of reprogramming factors in the genome. 

By investigating OSKM binding at 48 hours of reprogramming, previous studies 

have begun to elucidate the patterns and regulatory roles of OSKM in early 

reprogramming in the human and mouse systems [9-11]. Reprogramming 
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typically is an inefficient process where only few cells in the culture dish induce 

the pluripotency program, yielding a highly heterogeneous cell population at the 

end of the process [12]. However, in the first 48 hours of reprogramming, the 

reprogramming culture is thought to react homogeneously [13, 14], enabling 

location studies of OSKM in the early reprogramming population. Moreover, for 

the 48-hour time point in mouse, we used fetal bovine serum containing media, 

which results in iPSC colonies within 2-3 weeks. In these conditions, the timing of 

reprogramming is similar to that found in human experiments. The early human 

and mouse cells are thus expected to be in a similar stage of reprogramming. 

However, the final iPSC stage between human and mouse is significantly different: 

the human cells are reprogrammed to a primed stage while the mouse cells are 

reprogrammed to a naïve stage [15]. For this reason, in this study we focused on 

the 48-hour comparison instead of the iPSC stage of reprogramming. 

 

In this study, we compared the initial OSKM binding events between human 

and mouse fibroblasts to shed light on both conserved and species-specific 

mechanisms of OSKM-mediated processes early in reprogramming. By focusing 

on the binding events of OSKM early in reprogramming, we guaranteed minimal 

influence of the differences between human and mouse cell reprogramming that 

resulted in mouse iPSCs in the naïve pluripotent state and human iPSCs in the 

primed pluripotent state caused by the external culture conditions. We first show 

that general features of OSKM binding events, such as inter- and intragenic 

distribution, target genes, primary binding motifs, and combinatorial binding 
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patterns between the reprogramming factors, are largely similar between human 

and mouse. However, when we compared the locations of OSKM binding events, 

we found that only a small fraction of binding sites in syntenic regions were 

conserved between human and mouse at 48 hours of reprogramming. This result 

indicates that the binding of the reprogramming factors is in large part distinct at 

the initial stage of the reprogramming process. We show that conserved binding 

events within syntenic regions often represent target sites that are also bound in 

the pluripotent end state and tend to occur in promoters and enhancers, 

suggesting that the engagement of pluripotency sites early in reprogramming is a 

conserved mechanism between mouse and human reprogramming. Lastly, we 

show that both motif usage and chromatin states contribute to the conservation of 

binding events in early human and mouse reprogramming. 

2.3 Results 

2.3.1 General features of OSKM binding events in early human and mouse 

reprogramming 

In this study, we compare the binding of OSKM peaks in mouse and human at 48 

hours post transfection. This is accomplished by analyzing previously published 

datasets [9, 11]. We note that there are some differences in the mouse and 

human datasets that are due to the difference in overexpression methodology and 

the starting cell type. While the mouse data was generated by overexpressing the 

pluripotency factors using a polycistronic cassette (ensuring that each cell 

expresses all four factors at comparable levels), the human data was generated 
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using individual lentiviral vectors, which leads to more variability in the 

combination and level of expression of the factors. However, as we show below, 

these differences do not have a significant impact on our conclusions. 

 

We first addressed the effects of overexpression between polycistronic and 

individual based approaches. While the primary results presented in Chronis et al 

were based on a polycistronic cassette [11], in the same study we also collected 

binding data generated by individually overexpressing factors using pmX. We 

showed that in mouse, individual retroviral based expression of Oct4, Sox2 and 

Klf4 (OSK) have strong signals in the polycistronic derived OSK peaks, indicating 

that the OSK signal from the two systems are enriched in similar genomic loci 

(Supp Fig 1). Moreover, we note that while the mouse experiments were carried 

out in embryonic fibroblasts, the human studies were done in fetal foreskin 

fibroblast. Since we did not have access to epigenomes from both embryonic 

fibroblasts and fetal foreskin fibroblasts in either human or mouse, we were not 

able to compare the potential differences between the two starting cell types. 

Nonetheless, we do have access to epigenomes for both human foreskin 

newborn and human lung fetal fibroblasts from Roadmap Epigenomics Project. To 

address the potential differences between different types of fibroblasts, we used 

DNaseI hypersensitive sites to represent the chromatin states and then compared 

their overlapping. Supplementary Fig 2 then shows that the two types of 

fibroblasts have a large overlapped number of DNaseI peaks, suggesting the 

overall similarities of chromatin states between those two types of fibroblasts. We 
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thus argue that chromatin changes are modest between the two types of 

fibroblasts we used in this study. 

 

Having shown that these two experimental strategies yield similar OSKM 

binding events, we chose to focus our analyses on the mouse polycistronic and 

human individual lentiviral cassette where all our ChIP-Seq and RNA-Seq data 

was collected. To further enable their comparison, we generated OSKM peaks for 

both human and mouse cells reprogramming using the same analysis pipeline for 

mapping and peak calling, setting the peak calling q-value cutoff of 0.05 (see 

Methods).  

 

The human and mouse data sets generated a similar number of peaks for 

Oct4, while the early human reprogramming culture had about twice as many 

peaks for the other three factors compared to the mouse (Supp Fig 3). In both 

human and mouse, ChIP-seq for Myc generated fewer peaks than O, S, or K 

(Supp Fig 3). The average fragment size (average distances between plus strand 

reads and minus strand reads) was similar for all four reprogramming factors in 

the mouse and human data sets (Supp Fig 4, Supp Fig 5). We found that the 

human datasets for O, S, and K had a lower signal to noise ratio than the mouse 

data sets, whereas M binding events were slightly stronger in the human sample 

(Supp Fig 4, Supp Fig 5, Supp Fig 6). 

 

We first asked whether OSKM peaks had a similar positional distribution with 
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respect to transcriptional start sites (TSSs) in the two species (Fig 1a). Specifically, 

we classified the distances between peaks and TSSs into different groups, i.e. 0 

to 5kb, 5 to 50kb etc. We found that O, S and K peaks were most abundant in the 

-500 to -50kb and 50 to 500kb bins in both human and mouse, indicating that O, S 

and K in both human and mouse predominantly bind regions distal to TSS. M 

peaks, however, were most abundant in -500 to -50kb and 50 to 500kb bins in 

human, while most abundant in the -5 to 0kb and 0 to 5kb bins in mouse. This 

result reveals that M has a different distribution between human and mouse: in 

humans M tends to bind distally to the TSS whereas in mouse it tends to bind 

proximal to TSS regions. In addition, we observed less overall binding of O, S and 

K in proximity to the TSS compared to distal sequences in human than in mouse 

cells (Fig 1a). 

 

 We next compared the target genes for each factor between human and 

mouse reprogramming.  Targets were defined as a gene whose TSS is closest to 

the peaks for each factor irrespective of binding distance. Because there were 

tens of thousands of O, S, K, and M peaks, about 40% to 70% of all genes could 

be assigned to O, S, K or M peak. We calculated the number of overlapping target 

genes among the four factors in the two species and found that a large fraction of 

genes was targeted by the four factors in both species (Fig 1b). Furthermore, 

among the 8,433 OSKM co-targeted genes in human and 6,867 co-targeted 

genes in mouse, 3,919 of them were shared significantly (p-value < 10-16, 

hypergeometric test), indicating a large fraction of OSKM co-targeted genes are 
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conserved. Gene ontology enrichment analyses showed those shared co-targeted 

genes were enriched in the biological processes of regulation of transcription, in 

utero embryonic development and regulation of Wnt signaling pathway. This 

agrees with previous studies which showed that the Wnt signaling pathway 

modulated reprogramming efficiency when altered early in reprogramming [16]. 

When only considering orthologous genes between human and mouse, we also 

found a large overlap of target genes for each reprogramming factor (Fig 1c). The 

hypergeometric test showed that the number of overlapping target genes was 

also significant for each of the four factors (p-value<10-16). Those results indicate 

that the factors tend to generally target the same genes in mouse and human 

fibroblasts. We also used another definition of target genes, requiring that the 

peak of each factor was within 20kb of the TSS and obtained a similar result 

(Supp Fig 7). 

 

We next carried out de novo motif discovery in each factor’s binding regions 

(see Methods). The DNA binding motifs we identified for each reprogramming 

factor was similar between human and mouse (Fig 1d). However, we observed 

minor motif differences in Oct4, which terminated with A/T AA in mouse but A/G 

C/T AT in human, as well as in c-Myc, which terminated with C G/A TG in mouse 

but C/T G T/C G in human. Moreover, de novo motifs of the four factors were 

largely consistent with their canonical motifs (obtained from Jaspar database) [17], 

indicating DNA binding preferences of O, S, K, and M are largely conserved 

between human and mouse. 
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To further characterize OSKM binding, we identified all possible combinations 

of binding events. If summits of peaks from different reprogramming factors were 

within 100 bp of each other, we considered them to be “co-“ binding events. If 

summits of peaks from one factor were at least 500 bp away from all other factors, 

we defined these as “solo” binding events. To gauge whether co-bound sites 

occurred more or less frequently than expected, we compared our counts to a 

synthetic null model for all possible combinations of factors (see Methods). We 

found that in both human and mouse, all co-binding events occurred more 

frequently than expected, whereas solo binding sites were observed less 

frequently than expected (Fig 1e). OSKM, OSK, OSM, OKM and SKM co-binding 

events were the most prevalent combinations in both human and mouse. 

Moreover, solo binding sites were more likely in human than in mouse and nearly 

all co-binding events (except KM and OKM) were more prevalent in mouse. 

Regardless of the differences, these results indicate that O, S, K, and M tend to 

bind together with similar combinatorial patterns in both human and mouse, 

suggesting that the factors often co-bind to exert their actions. Overall, we 

conclude that the general properties of O, S, K and M are similar, although there 

are some observable differences. 

 

2.3.2 Comparison of OSKM binding to the chromatin state of starting cells 

Next, we sought to compare the chromatin state in the starting cells for OSKM 

binding sites at 48 hours between human and mouse. This enabled us to see how 
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OSKM interacted with the initial chromatin states in fibroblasts. We analyzed 

H3K4me1, H3K4me3, H3K27me3, H3K27ac and H3K36me3 histone marks of 

human fibroblasts from the Roadmap Epigenome Project [18] and of mouse 

fibroblasts [11] to build a 15 chromatin state model using ChromHMM [19] with a 

concatenated human-mouse genome (see Methods). Based on the combinatorial 

probability of the five histone marks, we classified the mouse and human 

genomes into chromatin states such as active promoter and active enhancer. We 

chose a model with 15 chromatin states because these had a clearly distinct 

combination of histone marks and functional annotations based on prior 

expectations. The genomes of both human and mouse were segmented into 

non-overlapping 200 bp regions, and each bin associated with a specific 

chromatin state. Figure 2a shows the emission probabilities (signal enrichments) 

of each histone mark as well as the fractions of the genome (numbers in the 

brackets, human followed by mouse) that each chromatin state occupies in 

human and mouse fibroblasts. We noted primary differences between human and 

mouse chromatin states including the frequency of the two H3K9me3-containing 

chromatin states, weak repressed polycomb and quiescent chromatin state, 

where human fibroblasts had significantly more genomic regions annotated as 

ZNF/repeats and heterochromatin and less genomic regions annotated as the 

latter two states.  

 

 By intersecting OSKM peaks with chromatin states, we calculated the 

percentage of peaks within chromatin states in both human and mouse (Fig 2b). 
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As a result, about 40~50% of human O, S, and K peaks, and 20% of human M 

peaks were within low signal regions (states 14 and 15). This chromatin analyses 

agrees with a direct assessment of the individual histone modification states 

targeted by OSKM, which showed that O, S, and K predominantly target 

unmarked chromatin sites [9]. By contrast, in mouse, the percentage of low signal 

regions targeted decreased to 20% for O, S, and K peaks and 2% for M peaks. In 

addition, about 40~50% of mouse O, S, and K peaks and 30% of M peaks were 

within enhancers, consistent with the finding that mouse OSK efficiently target 

enhancers active in fibroblasts early in mouse reprogramming [11].  However, for 

human O, S and K peaks, this number dropped to about 10%~25% and M peaks 

showed a similar number of 30%. After correction for the genome percentage 

annotated as different chromatin states, the human peaks were still more 

enriched in low signal regions and less enriched in enhancer regions. Those 

results reveal a distinct distribution of OSKM in chromatin states of low signals 

and enhancers between human and mouse. This binding preference may also 

suggest pluripotent genes in human are more difficult to induce and thus, human 

reprogramming will take longer than in mouse. In addition, consistent with the 

genomic distribution analysis (Fig 1a), mouse c-Myc was more often associated 

with promoters compared to human. 

 

Additionally, when considering the genomic region captured by each 

chromatin state, we calculated the enrichment of OSKM peaks in each chromatin 

state by calculating the log2 ratio between peak percentage and chromatin state 
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percentage (Fig 2c). This reveals OSKM binding preferences in the various 

chromatin states. As a result, we observed a strong preference of mouse OSKM 

targeting promoters and enhancers, whereas in human, this preference still held 

but the extent was decreased.  

 

2.3.3 OSKM binding events show limited conservation between human and 

mouse 

To further compare OSKM occupancy in early mouse and human cell 

reprogramming, we mapped mouse peaks to the human genome based on 

synteny (see Methods). Mouse peaks were classified into three groups based on 

sequence conservation and binding conservation. Figure 3a shows a schematic 

illustration of the definition of the three groups: syntenic conserved peaks, 

syntenic unconserved peaks, and unsyntenic peaks. Syntenic conserved (SC) 

peaks had orthologous DNA sequences as well as binding events in both 

organisms. Syntenic unconserved (SU) peaks only had orthologous DNA 

sequences but no binding event detected in human. Unsyntenic (UN) peaks did 

not have orthologous DNA sequences between organisms and therefore could 

not be mapped between human and mouse. 

 

We found that about 74, 80, 73 and 89 percent of mouse O, S, K, and M 

peaks, respectively, were syntenic with human, while the background ratio for the 

entire genome was about 40 percent (Fig 3b), indicating that elements bound by 

OSKM show much higher sequence conservation rates than the rest of the 
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genome, consistent with OSKM bind to cis-regulatory events such as enhancers 

and promoters. However, for each reprogramming factor, we found that syntenic 

conserved peaks only represented a small fraction of peaks (Fig 3c). Specifically, 

4%, 4.5%, 10.9% and 34.4% of mouse O, S, K, and M peaks, respectively, were 

syntenic conserved. O, S, and K, which mostly bind to enhancer regions in mouse 

(Fig 2b) [11], had a lower fraction of conserved peaks compared to M, which 

mostly binds to promoter regions in early mouse cell reprogramming (Fig 2b) [11]. 

We then asked whether the limited degree of conservation between mouse and 

human binding events could be solely explained by random background binding 

events between human and mouse. To address this we simulated both human 

and mouse background peaks (same number and length with the observed ones), 

then calculated the conservation rate and repeated the simulation 1,000 times. 

The simulation result showed a conservation rate for OSKM background peaks of 

approximately 1%, implying that although the fraction of conserved binding was 

relatively small, conserved binding events still occurred at a higher rate than 

expected by chance. Lastly, we also mapped mouse pMX peaks (individual 

retroviral based system) to human peaks. Consistent with the comparison 

between polycistronic peaks in mouse and lentiviral peaks in human, our result 

showed that there was a limited fraction of syntenic conserved peaks for Oct4, 

Sox2 and Klf4 (Supp Fig 8). This result also indicates that the divergence of 

binding between human and mouse is not affected by using different 

overexpression systems.  
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In a previous study, Cheng et al. showed that the degree of binding 

conservation varied markedly, from several percent to about 60 percent, between 

human and mouse among different transcription factors (TFs) [20]. In addition, 

promoter bound TF binding sites showed higher conservation rates than enhancer 

sites. Moreover, this trend held after adjusting the sequence conservation 

differences between promoters and enhancers, indicating that the TF binding 

sites in promoter regions are indeed more conserved than those in enhancer 

regions [20]. In another study, Schmidt et al. reported a 10 to 22 percent binding 

conservation rate between two of five mammals for liver-specific transcription 

factors [21]. In early reprogramming, we observed a low conservation rate for O, S, 

and K and a medium conservation rate for M, indicating the significance of binding 

divergence in early reprogramming system between human and mouse 

fibroblasts.  

 

We next investigated whether peak binding strength (based on peak calling 

q-values) had an impact on conservation. We classified all mouse peaks into four 

groups based on their -log10 q-values (Fig 3d). For each reprogramming factor, 

we observed a clear trend where the strongest peaks (top 25%) had a higher 

percentage of syntenic conserved binding events compared to other three groups. 

This result suggests peak binding strength indeed is positively correlated with 

peak conservation rates and stronger peaks tend to be more conserved.  

 

By analyzing the presence of repeat sequences within the three groups of 
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peaks (see Methods) (SC, SU, and UN), we found that the unsyntenic peaks had 

a much higher percentage of repeat sequences compared to the other two groups, 

and, except for Sox2, syntenic conserved binding sites contained the fewest 

repeats (Fig 3e). Moreover, compared to peaks in syntenic regions, peaks in 

unsyntenic regions were more often associated with long terminal repeats (LTR) 

and short interspersed nuclear elements (SINE) and less often with simple 

repeats in the mouse genome (Supp Fig 9). These results are consistent with 

previous findings which showed that transposable elements are enriched in 

species-specific sequences and have rewired the transcriptional network during 

evolution [22, 23]. 

 

The analyses described above were carried out by mapping mouse OSKM 

peaks to the human genome, but we also performed the inverse analysis by 

mapping human OSKM peaks to the mouse genome (Supp Fig 10a). 

Approximately 60 percent of human peaks occurred in genomic regions syntenic 

with the mouse. The lower syntenic rate of human peaks mapping to the mouse 

genome compared with mouse peaks mapping to the human genome correlated 

with a higher proportion of repeats in human peak sequences (Fig 9). Among 

human OSKM peaks in syntenic regions, those also found in the mouse (syntenic 

conserved) constituted a small proportion as seen in the reverse mapping of 

mouse OSKM peaks to the human data (Supp Fig 10b). Interestingly, syntenic 

and unsyntenic human OSKM peaks showed a more similar distribution of certain 

types of repeats compared to mouse peaks (Supp Fig 11, Supp Fig 12). 
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We also investigated how human syntenic peaks and all peaks of mouse were 

distributed relative to each other.  We first calculated the distances between 

human syntenic peak summits and mouse peak summits. We then categorized 

the distances into several groups of genomic ranges, i.e. within 200bp, 400bp, 

600bp, 800bp etc. Lastly, to compare the observed distance distribution with 

simulated background, we calculated the background distance distribution, where 

the mouse peaks were shuffled and the human syntenic peaks were kept fixed. 

The result suggests that observed human syntenic peaks are indeed closer to 

observed mouse peaks than expected by chance (Fig 3f). Moreover, there was a 

clear trend showing that the log2 ratio between observed and simulated peaks 

declined with increased distance. Among the four factors, c-Myc showed the most 

dramatic trend. This is consistent with the fact that c-Myc is the most conserved 

factor compared to the other three.  

  

2.3.4 Syntenic conserved peaks are associated with different genomic 

features compared with unconserved peaks 

Since we observed that only a small fraction of syntenic peaks had conserved 

binding early in reprogramming in human and mouse cells, we sought to identify 

properties that distinguish conserved peaks from the others. We observed that 

syntenic conserved peaks had significantly higher ChIP enrichment (-log10 

q-value) than the other two groups (Fig 4a), indicating the SC peaks tend to be 

bound more strongly. We then used the GREAT tool [24] to perform gene 
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ontology enrichment analysis for the mouse SC, SU, and UN peaks, with all peaks 

as background (Supp Fig 13). For SC peaks of OSM, we found their target genes 

were enriched for fat pad, adipose tissue, and adrenal gland development. 

Surprisingly, for SU peaks no enriched gene ontology terms for any of the four 

factors were detected. UN peaks of OSKM were strongly enriched in 

immunity-related gene ontologies. These results suggest that the target genes of 

the three groups of peaks might be associated with distinct functions. When 

comparing the genomic locations of mouse SC peaks to all peaks with respect to 

the distance to the TSSs, we found that SC O, K, and M peaks more often 

occurred within the proximal TSS regions, while Sox2 was slightly more often 

within the distal TSS regions (Fig 4b).  

 

We also compared binding of mouse OSKM at 48 hours with that in the 

pluripotent state, to define those mouse OSKM binding events that were bound 

both early in reprogramming and in the pluripotent state (based on mouse 

embryonic stem cell ChIP-seq data) versus those that only occur at 48 hours but 

not in pluripotent cells (Fig 4c,i) [11]. In our previous study, we described that 

many of these persistent binding events for OSKM were enriched in promoters 

and OSK were also highly enriched in pluripotency enhancers [11]. We calculated 

the percentage of SC peaks that were bound only early in reprogramming or 

persist throughout reprogramming. We found that compared with SU and UN 

peaks, mouse SC peaks of OKM at 48 hours had a higher fraction of persistent 

binding events (Fig 4c,ii-iv). Specifically, for Oct4, the percent of persistent bound 
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events was 20, 9 and 14 for SC, SU and UN respectively. For Klf4, this percent 

was 56, 17 and 23, and for c-Myc, this percent was 59, 10 and 22. This result 

indicates that conserved binding events, especially for K and M, tend to be 

maintained during reprogramming and are therefore likely to be more functionally 

important than unconserved ones. 

 

We next asked whether SC, SU and UN peaks had distinct patterns of 

chromatin states in mouse at 48 hours. A mouse 18 chromatin state model was 

generated with nine histone marks and described in our previous paper (Supp Fig 

14) [11]. We therefore calculated the percentage of peaks within each chromatin 

state (Fig 4d). As a result, we found that SC peaks preferentially tended to occur 

within certain chromatin states compared to SU and UN peaks. Specifically, SC 

peaks of O, K and M had higher percentages within active promoters, bivalent 

promoters and certain groups of enhancers. By contrast, UN peaks of O, S and K 

had higher percentages within low signal regions. Those results indicate that 

different groups of peaks are likely to associate with different chromatin states. 

 

To further investigate the chromatin states of syntenic peaks, we performed 

another comparison from a human-mouse transition perspective. We assigned 

each syntenic peak to the chromatin state in the concatenated human and mouse 

genome (Fig 2a) and compared the chromatin assignment of each SC peak 

between mouse and human (see Methods) (Fig 5a). The color in the heatmap 

reflects the percentage of SC peaks within that transition in chromatin state 
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between the mouse and human syntenic genome. For example, the top left 

square in the heatmap is the transition from human TSS regions (state 1) to 

mouse TSS regions (state 1) and the bottom right is the transition from human 

quiescent regions (state 15) to mouse quiescent regions (state 15) (i.e. no 

changes in chromatin state), and any deviation from the diagonal represents a 

change in chromatin state. For SC peaks of O, S, and K, the most frequent 

transitions corresponded to human promoter to mouse promoter, human 

enhancer to mouse promoter, human enhancer to mouse enhancer, and human 

enhancer to mouse quiescent regions. By contrast, the majority of frequent 

transitions for c-Myc involved promoter to promoter states. We also asked 

whether the chromatin state transition patterns were different for unconserved 

peaks. When comparing the transition profiles between SC and SU peaks (Fig 5b), 

we found an enrichment in human promoter to mouse promoter, human enhancer 

to mouse promoter and human enhancer to mouse enhancer transitions, 

indicating that SC peaks are more often associated with certain regulatory sites in 

both species than SU peaks. 

 

Another factor that may help maintain the conservation of peaks is the 

occurrence of binding motifs. Although we observed that SC peaks were 

preferentially found within promoters and enhancers, it was not clear whether 

motifs help maintain the conservation of peaks between mouse and human. To 

shed light on this question, we computed the motif frequency in each group of 

peaks (see Methods) (Fig 5c). We reasoned that if the conservation of peaks was 
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strongly influenced by the presence of binding motifs between mouse and human, 

then SC peaks should have a different fraction of motifs compared to the other 

two groups. For Sox2, 53% of SC binding events had identifiable motifs within 

their peaks, compared to approximately 35% of SU and UN. However, for the 

other three factors, SC peaks contained more motifs but the differences among 

the three types of peaks were smaller, indicating the limited impact of sequence 

motifs in the determination of binding conservation. 

 

2.3.5 Using transitions of regulatory motifs and chromatin states as 

predictors of conserved binding 

To quantitatively assess the extent to which SC peaks are determined by motifs or 

chromatin states, we built a naïve Bayesian classifier to evaluate the prediction 

power for classifying syntenic peaks into the SC and SU groups (see Methods). 

This model was trained using different sources of information: motif only, 

chromatin state only, and the two combined. Area under the curve (AUC) values 

of receiver operator curves (ROC) were used to estimate the prediction power 

(Fig 5d). We found that except for Sox2, the chromatin state only model 

outperformed the motif only model. Moreover, when combining information from 

both motif and chromatin states, the AUC for O, S, K, and M were 0.63, 0.71, 0.90, 

and 0.71 respectively. Klf4 showed a strikingly high prediction power due to its 

strong motif preference in syntenic regions between human and mouse and its 

strong chromatin state preference for specific chromatin state transitions. 

Although the models for O, S, and M only predicted a fraction of conserved sites, 
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these results demonstrate that conserved peaks are indeed associated with 

syntenic regions that contain strong motif sequences and preferred chromatin 

state transitions between mouse and human.  

 

2.4 Discussion and conclusion 

In this study, we systematically compared binding patterns of the four 

reprogramming factors OSKM between human and mouse at an early time point 

of reprogramming to the iPSC state. When analyzed in each genome separately, 

OSKM binding sites in human and mouse shared similar features: OSK tend to 

bind distal TSS regions, OSKM tend to target similar genes, have similar DNA 

binding motifs, and show similar combinatorial binding patterns among the 

reprogramming factors. This suggests that molecular properties of these factors 

are conserved between human and mouse. However, differences emerged when 

we investigated the chromatin state of target sites: OSKM targeted far more 

closed (low signal state) chromatin states in human cells than in mouse . 

Importantly, when we compared the binding sites across syntenic regions, we 

found that there was only a small percentage of sites that were bound in both 

genomes (i.e. syntenic conserved, SC). Altogether, our results suggest that the 

initial OSKM binding sites are largely distinct in these two species, even though 

the phenotypic consequences of these interactions ultimately lead to similar cell 

types. 
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We also observed that most early binding events do not persist in the later 

stages of iPSCs reprogramming [11]. However, we found that binding events that 

were conserved between mouse and human tended to persist more often 

throughout the reprogramming process compared to unconserved sites. 

Conserved binding sites also tended to have a higher proportion of conserved 

cis-regulatory elements associated with each factor. We also showed that binding 

sites were more likely to be conserved if the mouse and human chromatin states 

were similar and the motifs were conserved. 

 

We recognize that there are certain limitations to our analysis. One is that 

human and mouse reprogramming was performed using slightly different 

experimental protocols. An inducible polycistronic cassette including all four 

reprogramming factors was used in mouse fibroblasts, ensuring homogeneous 

expression and stoichiometry across the cell population at 48 hours; whereas four 

separate lentiviral constructs were used in human, each expressing one factor.  

However, as we have shown by comparing mouse polycistronic to individual 

cassettes, these different overexpression methods lead to very similar binding 

peaks.  Also, it is possible that at 48 hours, human and mouse cells might not be 

in the same reprogramming stages due to their different reprogramming kinetics. 

However, the time point we used corresponds to early events in the time series of 

both species, and should, therefore, identify the first interactions of these factors 

with chromatin. Moreover, we compared mouse embryonic fibroblasts and human 

fetal foreskin fibroblasts as starting cells of reprogramming.  However, we 
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believe that the epigenome changes from embryonic to fetal stages of fibroblasts 

are unlikely to have a dramatic effect on OSKM binding patterns. As a result, our 

conclusions drawn from the comparison of these two species should not be 

significantly affected by the differences in the experimental details of the human 

and mouse systems.  

 

In conclusion, we have shown that while some general properties of OSKM 

binding are conserved between mouse and human, the detailed transcriptional 

network is vastly reorganized. A subset of the binding events are syntenic 

between the two species and this study has allowed us to identify these. We do 

not know if they represent key events that are distinct from the large fraction of 

other binding sites that are not conserved. However, several lines of evidence that 

we have presented, such as the fact that these sites tend to persist throughout the 

reprogramming process, do suggest that these may play a more significant role in 

reprogramming than the typical unconserved site. Nonetheless, the overall picture 

that emerges is that the OSKM regulatory networks have significantly diverged 

between the two species, and while the general properties of these networks are 

similar, the specific binding sites are generally distinct. This observation may 

suggest that reprogramming to pluripotency may be driven by global regulatory 

changes in cells that do not depend critically on a small set of specific interactions.  
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2.5 Materials and Methods 

Cell culture and reprogramming 

In the human reprogramming system, BJ fibroblasts were purchased from ATCC 

(CRL-2522) at passage 6 and cultured in the ATCC-formulated Eagle’s Minimum 

Essential Medium supplemented with 10% fetal bovine serum at 37 C and 5% 

CO2. The human H1-ES line [25] were purchased from ATCC and maintained as 

described [26]. More information about experimental details can be found in the 

supplementary documents of Soufi et al. 2012 [9]. In the mouse reprogramming 

system, the mouse embryonic fibroblasts were obtained from day 13.5 embryos of 

timed mouse pregnancies. In addition, mouse embryonic fibroblasts carrying a 

polycistronic, dox-inducible OSKM cassette in the Col1A locus and a 

heterozygous M2rtTA allele in the R26 locus, were grown in standard mouse ESC 

media containing knockout-DMEM, 15% fetal bovine serum, recombinant 

leukemia inhibitory factor (Lif), b-mercaptoethanol, 1x penicillin/streptomycin, 

L-glutamine, and non-essential amino acids. Repogramming was induced by the 

addition of 2ug/ml doxycycline. We generated mouse iPS cell lines as described 

[27, 28]. Briefly, BJ cells at passage 10 were infected with lentiviruses encoding 

for dox-inducible Oct4, Sox2, Klf4, and c-Myc, along with lentiviruses expressing 

rtTA2M2 in the presence of 4.5 mg/ml polybrene. Additional experimental details 

can be found in the supplementary documents of Chronis et al. 2017 [11]. 

Mapping and Peak Calling 
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The human OSKM ChIP-Seq datasets were downloaded from GEO with 

accession number of GSE36570, while mouse OSKM ChIP-Seq datasets were 

downloaded from GEO with accession number of GSE90895. Bowtie was used to 

map ChIP-Seq reads of both human and mouse to their respective genomes 

allowing two mismatches and keeping only uniquely mapped reads for further 

analysis [29]. MACS2 2.1.0 was used to identify ChIP-Seq peaks with a q-value 

cutoff of 0.05 [30].  

Motif finding and motif occurrences within peaks 

MEME-ChIP was used to perform de novo motif finding for OSKM binding peaks 

[31]. To identify the strongest motifs, the identified summits of peaks were ranked 

based on their enrichments and the top 10,000 summits, along with their 

surrounding 200bp, were used as the input regions. The enriched motifs were 

identified using the DREME algorithm in the MEME-ChIP software. Starting with 

the most significant motif for each factor, we then used the Position Weight Matrix 

of this motif to scan for peaks, and determined the peaks associated with this 

motif using a p-value cutoff of 0.001. 

Combinatorial binding and solo binding 

To identify combinatorial binding regions where multiple factors bind, peaks were 

merged if their summits were within 100 bp of each other. Then these different 

combinations of binding sites were broken down into their different combinations 

of factors. To identify solo binding regions where only one factor bound, we 

required that its summit be at least 500 bp away from all other factors. Note that 

this method is more stringent than that used by Soufi et al. [9]; the latter 
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considered solo binding events as simply not falling within 100 bp of the peak 

center. Here, to estimate the background rates of combinatorial binding, the 

peaks of OSKM were first randomly shuffled in the genome (using the bedtools 

shuffle function) [32]. Secondly, the expected number of combinatorial binding 

events was re-calculated based on these shuffled peaks. Lastly, we compared the 

number of observed binding events versus the number of expected binding 

events for all possible combinations of factors. 

RNA-Seq samples and analysis 

The human fibroblasts and 48 hours of reprogramming cells for RNA-Seq were 

cultured and generated in the same condition with the samples for OSKM 

ChIP-Seq analyzed in this study. The total mRNA was then extracted and 

sequenced. The experimental details could be found within method section in 

Tong et al. [33]. The RNA-Seq samples for mouse fibroblasts cells were obtained 

from Chronis et al. [11]. The raw sequencing reads of both human and mouse 

were then mapped back to their corresponding genome using Tophat [34]. After 

this, HTSeq software was used to calculate the number of reads within each gene 

for both human and mouse [35]. Finally, the DESeq2 software was used to 

perform the differential expressed gene analysis with a q-value cutoff of 0.05 [36]. 

Mapping sequences between human and mouse 

To map OSKM binding sites between human and mouse, the liftOver algorithm 

from the UCSC Genome Browser was used with a cutoff of 0.5. The LiftOver 

algorithm uses an alignment chain file to map genomic coordinates between 

different versions of assemblies, or different species. The algorithm searches for 
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regions where the input sequences are in the same block with the converted 

assemblies or species. The cutoff of 0.5 requires that the mapped sequences 

share at least half of exactly same DNA sequences with the converted species. 

This cutoff is consistent with  modENCODE project paper which compares 

transcription factor binding sites between human and mouse [20]. To confirm the 

reliability of our results, we also used another method named bnMapper and got 

very similar results [37].  

Peaks associated with repeat sequences 

Repeat sequences were downloaded from the RepeatMasker database. We 

extracted the genomic coordinates for the major repeat families including DNA 

(DNA transposon elements), LINE (Long interspersed nuclear elements), LTR 

(Long terminal repeats), Retroposon (Transposons via RNA intermediates), 

Satellite (Satellite DNA which belongs to tandem repeats), Simple (Simple repeats) 

and SINE (Short interspersed nuclear elements). A peak was considered to be 

associated with a repeat sequence if the genomic coordinate of this repeat was 

within this peak.  

Chromatin states for concatenated human and mouse genomes 

For mouse histone marks, we used the datasets for mouse fibroblast cells from 

our previously published paper [11]. For human histone marks, we used the 

datasets of IMR90 fibroblast cell line downloaded from RoadMap Epigenomics 

Project [18]. To learn the joint chromatin state for human and mouse, a pseudo 

chromosome size table was constructed by concatenating human and mouse 

genomes. Then the model was trained with the human fibroblast and mouse 
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embryonic fibroblast histone data, producing a common set of emission 

probabilities. We then generated a 15 chromatin state model based on the 

combinatorial patterns of five histone marks, i.e, H3K4me1, H3K4me3, 

H3K27me3, H3K27ac and H3K36me3.  

Chromatin state transitions between human and mouse 

Each syntenic conserved peak in mouse and its corresponding orthologous peak 

in human was assigned a chromatin state as described above. We then 

calculated the number of peaks within each possible chromatin state transition. 

This leads to the generation of a 15 X 15 chromatin state transition matrix. For 

example, the top left of the matrix represents the fraction of syntenic peaks with 

state 1 of human and state 1 of mouse. We also performed the same calculation 

for syntenic unconserved peaks between human and mouse. To compare to 

relative enrichment of chromatin state transitions, the log2 ratio between the 

syntenic conserved and syntenic unconserved matrices was calculated. 

Classification model 

We built a Naïve Bayes model to classify syntenic peaks into a syntenic 

conserved and syntenic unconserved group, based on their chromatin state 

transition (see above) and motif occurrences transitions. The motif occurrence 

transition matrix was a 2 X 2 matrix that represents the frequency of motif 

occurrences for syntenic peaks between human and mouse. Log odds ratios were 

then calculated between syntenic conserved group and syntenic unconserved 

groups for both chromatin state transition and motif occurrence transition matrices. 

As a result, each peak was assigned two values: one was the chromatin state 
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transition log odds ratio matrix to represent the chromatin state model, and 

another was the motif occurrences transition log odds ratio matrix to represent the 

motif model. The two values were added to represent both the chromatin state 

and motif occurrence model. Syntenic peaks were then ranked based on log odds 

ratio values from either the chromatin state transition matrix or motif occurrences 

transition matrix, or their sum. A syntenic conserved peak was labeled as 1 and a 

syntenic unconserved peak is labeled as 0. Lastly, the Area under the curve (AUC) 

values of the receiver operator curves (ROC) were calculated to represent the 

model performance for classifying syntenic peaks into 1 or 0 given the chromatin 

state transitions or motif occurrences transitions. 

Availability of data and materials 

The dataset analyzed in this study can be found at GEO with accession number of 

GSE90895 and GSE36570. 
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Figures 

 

Figure 1. General feature comparison of OSKM ChIP-Seq peaks between 

human and mouse 48 hours fibroblast reprogramming.  

A. Positional distribution of OSKM peaks with respect to Transcription Start Sites 

(TSSs). The top panel shows the peaks in human while the bottom panel shows 

that in mouse. B. Venn diagram of OSKM co-targeted genes in human (left panel) 

and in mouse (right panel). C. Venn diagram of OSKM co-targeted orthologous 

genes between mouse and human. D. De novo and canonical motifs of OSKM 

peaks. E. Log2 ratio of observed combinatorial binding events versus expected. 
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Figure 2. OSKM peaks target of the chromatin states in starting cells.  

A. Chromatin state model for concatenated human and mouse fibroblast cells 

based on five histone marks. The value in the heatmap represents the enrichment 

of that histone mark in that learned chromatin state. The values in the bracket 

represent the genomic percentage (human then followed by mouse) occupied by 

that chromatin state. B. Heatmap for percentages of OSKM peaks in each 

chromatin states from A. C. Heatmap for log2 enrichments between OSKM peaks 

percentages and chromatin state genomic percentages.  
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Figure 3. Map OSKM binding between human and mouse.  

A. Schematic illustration of the three different groups of peaks, i.e. Syntenic 

Conserved (SC) binding group, Syntenic Unconserved (SU) binding group and 

UNsyntenic (UN) binding group. B. Percentage of mouse OSKM peaks that can 

be mapped to human. The background is calculated by the simulation of peaks 

that have the same size and same number as the real peaks, and are allowed to 

map anywhere on the genome. C. Fractional constitutions of SC, SU and UN 

peaks for each factor. D. Percentage of SC binding events with respect to all 

syntenic binding events. For each factor, syntenic peaks are classified into four 

groups based on their peak enrichments of -log10(q-value). 0-25% are the top 25 

percent of peaks while 75-100 are the bottom 25 percent of peaks. E. Percentage 

of the three groups of peaks that contain repeat sequences. F. Log2 fold 

enrichment of distances between human syntenic peaks in mouse and mouse 
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peaks compared to random background.  

 

 

Figure 4. Comparisons of syntenic conserved peaks with syntenic 

unconserved peaks and unsyntenic peaks.  

A. Box plot of peak calling q-values for the SC, SU and UN groups of peaks. B. 

Fold enrichment of positional distribution between SC peaks and all peaks around 

Transcription Start Sites. C. Percentage of SC, SU and UN peaks with 

consecutive bindings. 48 hr only represents the peaks that only bound in 48 hours 

of reprogramming, while 48 hr and pluripotent represents the peaks that are also 

bound in the reprogramming final stage. i represents the number of the two group 

of peaks. ii-iv represents the percentage of SC, SU and UN peaks that are either 

48 hr only bound or 48 hr and pluripotent bound. D. Heatmap for percentages of 

mouse SC, SU and UN peaks in the mouse 18 chromatin states.  
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Figure 5. Chromatin state transitions, motif usages and their contributions 

in the maintaining of syntenic conserved peaks. 

A. Chromatin state transitions of syntenic conserved peaks between human and 

mouse. The top left is state 1 of human to state 1 of mouse. The value in the 

heatmap represents the fraction of the number of syntenic conserved peaks in 

that square divided by the total number of all syntenic conserved peaks. B. 

Chromatin state transitions of the log2 ratio between syntenic conserved peaks 

versus syntenic unconserved peaks. The value in the heatmap represents the 

log2 ratio between the fraction of syntenic conserved peaks and the fraction of 

syntenic unconserved peaks in that square. C. Percentage of SC, SU and UN 

peaks that have canonical motifs. D. ROC AUC of a classifier to predict syntenic 

based on motif occurrences and chromatin state transitions.  
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Supp Fig1. Similarities between individual retroviral based and 

poly-cistronic based system. 

A. Heatmap of ChIP-Seq signal for Oct4, Sox2 and Klf4 using pMX (individual 

retroviral), for sites co-bound by OSK (polycistronic) at 48 hr of OSKM-induced 

reprogramming. The blue color represents ChIP-Seq signal. Each row represents 

an OSK co-bound peak. B. Venn diagram of mouse individual retroviral based 

(pMX) OSK peaks and polycistronic based OSK peaks. The numbers in the circle 

indicates the number of peaks. 
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Supp Fig2. Venn diagram of DNaseI hypersensitive sites (broad peaks) 

between human foreskin newborn fibroblasts and human lung fetal 

fibroblasts.  

The numbers in the circle indicates the number of peaks. 

 

 

 

Supp Fig3. Bar plot of the number of the identified OSKM ChIP-Seq peaks in 

human and mouse 
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Supp Fig4. MACS2 peak calling models for human OSKM.  

The model represents the average signal profiles for forward strand reads and 

reverse strand reads within top 1000 peaks. The d value in the figure represents 

the average fragment size between forward strand and reverse strand. 

 

 

Supp Fig5. Same as Supp Fig4, except this is for mouse. 
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Supp Fig6. Boxplot of peak calling q-values for OSKM peaks in human and 

mouse. Q-value is calculated by MACS2 software to measure the false discovery 

rate of an identified peak. 

 

 

Supp Fig7. Venn diagram of OSKM target orthologous genes between 

mouse and human using 20 kb as a target gene cutoff.  

Hypergeometric test shows that the number of shared orthologs is significant 

(p-value<10-16) for all the four factors. 
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Supp Fig8. Distribution of mouse individual retroviral based (pMX) syntenic 

conserved, syntenic unconserved and unsyntenic peaks for Oct4, Sox2 and 

Klf4. 

 

 

Supp Fig9. Percentages of mouse peaks that contain specific type of mouse 

repeat sequences.  

Seven major types of repeat, i.e. DNA (DNA transposon elements), LINE (Long 

interspersed nuclear elements), LTR (Long terminal repeats), Retroposon 

(Transposons via RNA intermediates), Satellite (Satellite DNA which belongs to 

tandem repeats), Simple (Simple repeats) and SINE (Short interspersed nuclear 

elements) are calculated. 
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Supp Fig10. Map human OSKM peaks to mouse show limited conservation.  

A. Percentage of human OSKM peaks that can be mapped to mouse. B. 

Distribution of human syntenic conserved, syntenic unconserved and unsyntenic 

peaks for each factor. 

 

 

Supp Fig11. Percentage of the human syntenic conserved, syntenic 

unconserved and unsyntenic group of peaks that contain human repeat 

sequences 
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Supp Fig12. Same as Supp Fig9, except this is for human 

 

 

Supp Fig13. Enriched gene ontology terms for genes near mouse SC and 

UN OSKM peaks 
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Supp Fig14. 18 chromatin state model for mouse 48 hours post induction of 

OSKM based on nine histone marks.  

This figure is taken from Chronis et al. The value in the heatmap represents the 

enrichment of that histone mark in that learned chromatin state. The value in the 

brackets represents the percentage of genome that is occupied by that specific 

chromatin state. 
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Chapter 3 

A temporal transcriptome in human  

embryonic stem cell-derived cardiomyocytes  

identifies novel regulators of early cardiac development 
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3.1 Abstract 

Stem cell based cardiogenesis has become a powerful tool to enhance our 

understanding of cardiac development and test novel therapeutics for 

cardiovascular diseases. However, this approach usually yields a high 

heterogeneity of cardiac cells that impede accurate research discoveries. We thus 

established a robust protocol that yields human cardiomyocytes (hCM) with more 

than 90% purity from human Embryonic Stem Cells (hESC). To take advantage of 

our protocol, we systematically examined how gene expression and epigenetic 

program changes at temporal developmental stages during cardiogenesis. Our 

results then provide a comprehensive view of expression changes during 

cardiogenesis, allowing us to identify key transcription factors as well as lincRNAs 

that are strongly associated with cardiac differentiation. Moreover, we 

incorporated a simple but powerful method to screening for novel regulators of 

cardiogenesis solely based on expression changes. As a result, we found four 

novel cardiac-related transcription factors, i.e. SORBS2, ZNF436, DPF3 and 

MITF, which have no or few literature reports. Our strategy of identifying novel 

regulators of cardiogenesis can also be easily implemented in other stem cell 

based systems. In summary, our results provide a valuable resource for 

understanding cardiogenesis and identify four novel cardiac-related transcription 

factors. 
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3.2 Introduction 

Recent advances in the method of directed differentiation using human pluripotent 

stem cells (hPSCs) to generate enriched cardiomyocytes in a dish have provided 

a great platform for not only studying human development but also disease 

mechanism and translational research [1-4]. Yet, transcriptional and epigenetic 

regulation of multiple transitional stages from pluripotent cells to committed 

cardiomyocytes has not been fully characterized with hPSC-CMs differentiated in 

a chemically defined manner, which can be the most suitable model for the future 

studies in regard to the scalability and the cost-effectiveness. 

 

Formation of the mature mammalian heart is governed by intricate gene 

regulatory network: precise temporal and spatial gene expression dictates cell 

fate. Transcription factors (TFs) regulate both activation and repression of the 

genes in cell lineage specification and differentiation [5]. A zinc finger transcription 

factor GATA4 is one of the major TFs that determines cardiac cell fate and its 

mutation results in congenital heart disease [3]. 

 

Here, we performed systematic analysis of transcriptome and histone 

modification of five stages of directed cardiac differentiation of human embryonic 

stem cells (hESCs). We utilized chemically defined directed differentiation of 

cardiomyocytes from hESCs, which reproducibly yields over 90% of 

cardiomyocytes [6-8]. That enabled us to profile the stage specific changes in 

global transcriptome and epigenetic changes during cardiac differentiation without 
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further purification step of differentiated cell population. The direct comparison of 

our data to the ones from past reports [1, 9] validated the highly efficient cardiac 

differentiation system by demonstrating higher enrichment of cardiac gene 

expressions in our system. By using the induced rate scoring model, we 

discovered previously understudied transcription factors: MITF, SORBS2, DPF3, 

and ZNF436, which regulatory functon of cardiac genes are further validated by 

RNAi gene knockdown. This work provided a comprehensive view of gene 

expression and epigenetic changes during cardiac differentiation and proposed a 

simple but powerful screening method of novel gene regulators, which is easily 

transferrable to other organ development. 

 

3.3 Results 

3.3.1 Differentiation of high purity Cardiomyocytes from Embryonic Stem 

Cells  

Heterogeneity is a common bottleneck for research using stem cell derived cell 

lines. To overcome this problem in the in-vitro modeling of cardiogenesis, we 

utilized a chemically defined differentiation protocol, which reproducibly yields ~90% 

of cardiomyocytes [6, 8]. The purity of cardiomyocytes generated with our protocol 

thus out-performs previous published studies. To characterize the differentiation 

process, we performed serially mRNA expression profiling with RNA-Seq from H9 

hESC-CMs at five distinct stages: undifferentiated stage (hESC, day 0); 

mesodermal precursor stage (hMP, day 2); cardiac progenitor stage (hCP, day 5); 
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immature cardiomyocyte (hCM15, day 15); and hESC-CM differentiated for 15 

additional days (hCM30, day 30). Replicates were highly correlated and we thus 

merged them for the downstream analysis. 

 

To further prove the purity and advantages of our system, we compared fold 

enrichments between cardiac signature gene expression and average gene 

expression at CM stage in our data and data obtained from Paige et al and Liu et 

al. [1, 9]. As a result, for all the signature genes we tested, our system showed 

higher expression enrichments, indicating our data is composed with stronger 

cardiac signals. Inspired by those observations, we then sought to perform a 

comprehensive analysis to illustrate a detailed cardiogenesis process and 

screening for novel cardiac regulators using our system.  

 

3.3.2 Gene expression changes during ESCs to Cardiomyocytes 

We first investigated the general pattern of genome-wide gene expression 

changes during cardiomyocyte differentiation. For all the samples, the normalized 

read counts were used to represent the expression values for each gene (see 

Methods for more details). To characterize the expression changes, expression 

values were subtracted by their means across the five stages. Figure 1b then 

shows the heatmap for the k-means clustering of all the genes with their 

expression changes. Genes in cluster 1 (with 1,755 genes) show a clear pattern 

of decreasing gene expression, while genes in cluster 3 (with 1,005 genes) show 

the opposite.  
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Gene Ontology (GO) enrichment analysis showed that cluster 1 genes were 

significantly enriched in GO terms related with cell proliferation and stem cell 

population maintenance, and cluster 3 genes were significantly enriched in GO 

terms of cardiac muscle contraction and heart development. Interestingly, we also 

found genes in cluster 2 (with 1,331 genes) showed an increasing pattern but 

remained largely unchange from day 5 to day 30. Those genes were significantly 

enriched in GO terms of anterior/posterior pattern and heart development. The 

remaining genes in cluster 4 and cluster 5, which represented 81 percent of all 

genes, showed limited or no changes during cardiomyocytes differentiation.  

 

An example cluster 1 gene is POU5F1 (also known as OCT4), which is a key 

signature gene for stem cells (9). The expression of POU5F1 dramatically 

decreased at day 5 as the cells developed into cardiac progenitor stage (Fig 1d). 

In contrast, MYL7 in cluster 3, a key signature gene for cardiac muscle cells, was 

expressed at day 5 and further induced at later stages (Fig 1d). Our data thus 

captured both expression changes and exon information of those genes, 

providing an opportunity to expand our analysis in more details. 

 

We next sought to identify upstream regulators that bound to gene promoter 

regions for different clusters of genes. We thus used Ingenuity software [10], 

which collected empirical information of upstream regulators for a large set of 

genes, to searching for significantly enriched regulators. Figure 1c shows the 
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identified regulators and their statistical p-values. For cluster 1 genes, we found 

POU5F1, SOX2, IFNG and CREB1. For cluster 2 genes, TGFB1 and WNT3A 

were identified. For genes in cluster 3, we found TBX5, MEF2C, HNF1A, MYOCD 

and DNMT3B.  

 

Besides the clustering of all genes, we performed differential expressed 

genes analysis between each neighboring stages (Fig 1e)(see Methods). Most 

differential expressed genes occurred within day2-day5 and day5-day15 

comparisons. Gene ontology enrichment analysis confirmed that there were 

increasing expressions of cardiac-related genes and decreasing expressions of 

stem cell genes. Notably, gene expression changes for day15-day30 were much 

smaller than the other three comparisons, indicating the limited degree of 

expression changes in cells from day 15 to day 30. All together, our results 

revealed the general characteristics of how gene expression changes during 

cardiogenesis. 

 

3.3.3 Transcription factors expression changes during ESCs to 

Cardiomyocytes 

Transcription factors (TFs) are the drivers of gene expression program. Having 

shown the global pattern of gene expression changes, we then focused our 

analysis on the transcription factors. By doing so, we investigated the expression 

changes of 1,835 human TFs from a comprehensive curated list [11]. We first 

asked what transcription factors varied most during cardiogenesis. Figure 2A 
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shows the top 50 TFs with largest variances of normalized expression values 

among the five stages. Canonical pluripotency TFs, such as POU5F1, SOX2, 

NANOG, were gradually repressed, while canonical cardiac TFs, such as HAND2, 

TBXs, NK2s, and MEF2C, were gradually induced. Mesodermal TFs including T, 

MIXL1, MESP1, and EOMES were peaked at day 2. This result provides a set of 

most dynamic TFs during cardiogenesis, indicating their potentially important 

regulatory functions.  

 

Since the differentiation process includes multiple developmental stages of 

cardiogenesis, we sought to identify stage-specific TFs that associate with each 

individual time point. By doing so, we calculated the ratios between normalized 

expression values of that stage and the sum values of all stages for each TF. The 

proportions then represented the stage-specific gene expression ratios. A TF was 

considered to be stage-specific only if it showed a proportion of at least 0.6, which 

is 3 fold of the average proportion 0.2 across the five stages. Under our criteria, 

we identified 16 ESC-specific, 23 MP-specific, 12 CP-specific, 2 CM15-specific 

and 8 CM30-specific TFs (Fig. 2B). The gene sets of ESC- and MP-specific genes 

are similar to the ones identified in Fig. 2A. However, this analyses revealed set of 

genes that were not identified in Fig. 2A, such as HOXBs at day 05 and PRDM16 

and NFIX at day 30. This result thus defined a number of cell type specific TFs 

associating with distinct developmental stages from ESCs to Cardiomyocytes.  
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3.3.4 Screening for novel regulatory transcription factors during 

Cardiogenesis 

To identify transcription factors regulating the activation of cardiac-related 

pathways, we hypothesized that those TFs would show significant gene 

expression inductions during cardiogenesis. With this hypothesis, we thus used a 

scoring system based on induced rates between day 30 and day 0 to sort the 

1,835 curated TFs (see Methods). Figure 3A then shows the top 25 TFs with their 

induced rate scores. For example, HAND2, as the top 1 factor based on our 

ranking, plays an essential role in cardiac morphogenesis. Genome browser view 

of this gene revealed enormous expression at CM30 stage while limited 

expression at ESC stage (Fig. 3B). It then showed an induced rate of 139 during 

cardiogenesis.  

 

Surprisingly, among the top 25 factors in Figure 3A, 21 of them are 

cardiac-related TFs with extensive literature supports. In Paige et al., the authors 

used a combinatorial model of histone modifications and gene expression 

changes to predict cardiac regulatory transcription factors [1]. From the ranking 

list based on their scoring model, 20 of top 25 TFs were supported by extensive 

literatures (Fig 3C). In addition, the two ranking lists had an overlaps of 11 factors 

among the top 25 hits (Fig 3d), which is highly significant considering of the total 

number of TFs. However, our method only required cardiomyocytes with high 

purity and RNA-Seq expression profiling of undifferentiated and fully differentiated 

cells. By contrast, serial ChIP-Seq of several histone modifications and RNA-Seq 
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data were the prerequisite in order to use the model proposed by Paige et al. Our 

method for screening novel regulators thus is much more implementable and 

cost-efficient, while enabling to retain a high sensitivity and high specificity.  

 

3.3.5 Identification of lincRNAs associated with cardiogenesis 

Long intergenic non-coding RNAs (lincRNAs) play important regulatory roles in 

various cell differentiation processes by activating or repressing their neighboring 

genes. We then extended our analysis from protein coding genes to lincRNAs. 

We used a curated list of human lincRNAs and re-mapped RNA-Seq reads to 

each lincRNA. As the same with protein-coding genes, the normalized read 

counts falling in each lincRNA region were then used to represent its expression 

value.  

 

We next computed the variance of lincRNA normalized expression values 

among the five developmental stages. Figure 4a then shows the top 50 lincRNAs 

that have the largest variances within our list. Moreover, we also calculated an 

induced rate for each lincRNA between CM30 and ESC. Figure 4b shows the 

ones with an induced rate of 10 or higher. Genome browser viewing of those 

lincRNAs revealed dramatic expression activation in later developmental stages 

during cardiogenesis. All together, this result provided a valuable resource for the 

communities to further validate the functions of those lincRNAs during 

cardiogenesis.  
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3.3.6 Genome-wide methylation changes during cardiogenesis 

To measure epigenetic changes during cardiogenesis, we performed 

reduced-representative bisulfite sequencing (RRBS) for four stages of hESC, 

hMP, hCP and hCM15. We then identified 133,912 RRBS fragments covering at 

least 3 CpG sites across samples (see Methods for more details). To obtain the 

differential methylated fragments, we further selected fragments that showed 

delta methylation changes of 0.2 or higher relative to the average methylation 

levels. As a result, 3,890 of differential RRBS fragments were identified for 

downstream analysis. 

 

We next performed hierarchical clustering on the 3,890 RRBS fragments (Fig 

5a). In clusters 1 and cluster 2, we observed a clear decrease of methylation 

levels from ESC to CM. While in cluster 3, we observed an opposite trend. We 

next asked what genes were close to the differential methylated regions within 

each cluster. As we expected, gene ontology analysis revealed that cluster 1 

regions were enriched in heart morphogenesis, cluster 2 regions were enriched in 

cardiac muscle development, while cluster 3 regions were enriched in stem cell 

related terms. Notably, these differential methylated fragments tend to occur in 

distal transcription start sites (TSS) regions, instead of proximal TSS regions, 

indicating the methylation of enhancers might be affected.  

 

DNA methylation is maintained by DNMT3a, which may affect the binding of 

various transcription factors. We thus asked whether there were enriched TF 
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binding sites in the three groups of the differential methylated regions. By 

performing motif discoveries in these regions, we identified a total of 14 TFs and 

their motif sequences with a stringent q-value cutoff of 10-15 (Fig 5b)(see 

Methods). Among them, we were able to re-capture well-characterized TFs, such 

as GATA4 in cluster 1, GATA4, TBX20, and MEIS1 in cluster 2, and OCT4 in 

cluster 3. Thus, there is a clear trend that DNA methylation status is associated 

with the gene expression genome-wide.  

 

3.3.7 Identification of novel regulators in cardiac development 

Four remaining factors from the top 25 of our list in Figure 3A, i.e. SORBS2, 

ZNF436, DPF3 and MITF, had no or limited literature support showing they were 

cardiac regulators. We thus decided to perform experimental validations by 

knocking down the four TFs with siRNAs and see whether the expression of 

cardiac marker gene will be affected or not. Knockdown efficiency was 70 % for 

MITF, 90 % for SORBS2, 50 % for DPF, and 56 % for ZND436. As a result, 

cardiac genes were downregulated significantly by their knockdown (Figure 6). 

Majority of the cardiac sarcomeric genes were all down-regulated especially by 

MITF and SORBS2, validating their roles as cardiac regulators. The cardiac 

transcription factors were downregulated but in lesser extent than sarcomeric 

genes also varied in each knockdown, suggesting some gene specificities existed. 

For example, HAND2 was significantly downregulated by DPF3 knockdown but 

not by MITF even though knockdown efficiency of MITF is higher than that of 

DPF3. The relation of these novel factors with the known regulatory gene network 
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needs to be addressed in the future. 

 

3.4 Discussion and conclusion 

In this work, we utilized a high purity ESC-based cardiomyocytes to study the 

early development of cardiac. Our analysis focused on the identification of 

transcription factors and lincRNAs that are strongly associated with the temporal 

development of cardiogenesis. As a result, we were able to capture both 

well-characteristic regulatory factors as well as identify novel ones. Therefore, our 

results provide a comprehensive picture of expression changes for important 

cardiac regulators.   

 

There are two major factors influencing the study of hPSC-derived systems. 

One is which assay, e.g. RNA-Seq, ATAC-Seq, BS-Seq, ChIP-Seq, to choose in 

order to study the biological mechanisms of the differentiation process. Another is 

the efficiency of the differentiation protocol. In this study, we showed that high 

purity differentiated cells plus RNA-Seq expression changes were able to capture 

the regulatory factors in a large extent. This strategy thus is highly implementable 

and cost-efficient to screening for novel regulators.   

 

With the above reasons, we expect this differentiation protocol would be a 

valuable approach to further investigates the early development of cardiac cells. 

Although we found four novel transcription factors associated with cardiogenesis, 
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in vivo experiments would be needed to further address their functions. Moreover, 

how transcription factors, epigenetic enzymes, non-coding RNAs interact with 

each other in a regulatory network would be the next step to understand 

cardiogenesis in a system biology way. This knowledge will ultimately lead to 

novel therapeutic and drug target development in the diagnosis and treatment of 

heart related diseases. 

 

3.5 Materials and Methods 

Cell cultures from Embryonic Stems Cells to Cardiomyocytes 

H9 (WA09) hESC lines were maintained as described before [7]. Authentication of 

hESCs was achieved by confirming the expression of pluripotency genes and 

protein markers. hESCs were routinely verified as mycoplasma-free using a 

PCR-based assay. hESCs were grown and differentiated in a chemically defined 

condition [6]. Usage of all the human embryonic stem cell lines is approved by the 

UCLA Embryonic Stem Cell 

Library preparations and sequencing 

RNA was extracted from the cells of five stages namely, hESC, hMP, hCP, 

hCM14, and hCM28, using TRIZOL (TheroFisher) and RNeasy kit (QIAGEN) 

according to manufacturer’s protocol. 500 ng of DNaseI-treated RNA was used as 

input material for library preparation using the Illumina TruSeq mRNA kit (Illumina, 

RS-122–2001), according to manufacturer’s instructions. Final libraries were 

sequenced as Sequencing was performed on an Illumina HiSeq 3000 for a paired 
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end 2x150 run. 

RNA-Seq analysis 

We first used tophat to map the RNA-Seq reads back to the human genome (hg19) 

[12]. After that, we utilized HTseq software to calculate the number of reads falling 

in each gene [13]. With the RNA-Seq read counts matrix, we then used DESeq2 

package of R to perform data normalization (rlog function) and differential 

expressed genes (DEG) analysis [14]. For DEG analysis, we set a cutoff of FDR 

<= 0.01 and fold change >= 2. Replicate samples of each stage were highly 

correlated. We thus merged them for downstream analysis.  

Induced rate calculation 

To search for the most changed genes from ESCs to CMs, we introduced the 

calculation of induced rate. An induced rate (IR) was calculated as the ratio of 

Reads Per Million between day 30 (yi) and day 0 (xi) for each gene i. We also 

added a small pseudo read count to day 0, resulting: 

IR = yi/(xi+1) 

We then ranked all the transcription factors and lincRNAs based on their induced 

rates, enabling us to re-capturing both known cardiac factors and screening for 

novel ones. 

siRNA knock-down and functional validation of novel regulators 

hESC-derived CMs were transfected with siRNA Negative Control (Qiagen) or 

human MITF, SORBS2, DPF3, and ZNF436 targeting siRNA 40 nM (MITF and 

SORBS2; Qiagen, DPF3 and ZNF436; ThermoFisher) using lipofectamine RNAi 

MAX reagent (ThermoFisher) according to the manufacturer’s instructions. The 
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medium was changed 48 hr after transfection, and cells were then incubated for 

an additional 7 days. 

Reduced-reprehensive bisulfite sequencing (RRBS) analysis 

We used BS-Seeker2 software to mapping the RRBS data back to human 

genome (hg19) and calculating methylation levels for each CpG [15]. The RRBS 

data then covered 1,044,850 of CpG sites across the samples. To robustly 

estimate the methylation level for each CpG, we filtered the CpG sites by requiring 

they were covered by at least 10 reads. For each RRBS fragment, we then 

calculated the average methylation levels of CpG within this fragment. The 

average value was thus assigned to this fragment to represent the fragment 

methylation level. Lastly, we further filtered the fragments that had less than 3 

CpG sites. This analysis pipeline then allowed us to identify 133,912 RRBS 

fragments covering at least 3 CpG sites across samples.  

Motif discoveries within differential methylated regions 

The RRBS fragments had a medium size around 500 base pairs. Based on the 

hierarchical clustering result, we performed motif discovery analysis using 

HOMER software to RRBS fragment for regions in each cluster [16]. HOMER 

calculated the statistical significance of motif occurrences for observed regions to 

a large set of known TF motif usages. Lastly, we set a stringent cutoff of 10-15 

FDR to filter the identified motifs.  
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Figures 

 

Figure 1. Global gene expression changes during cardiogenesis.  

A. Comparison of signature gene expression enrichments for cardiomyocytes 

between our study and Paige et al. The y-axis represents the log 2 fold change 

between expression values of signature genes and average expression values of 

all genes. B. K-means clustering of normalized gene expression values for 

samples among the five developmental stages. The color in the heatmap 

represents the log 2 fold change of expression values. The red color represents a 

higher expression value than average expression across samples, while the blue 

color represents the opposite. Text on the left of heatmap shows the enriched 

gene ontology terms for each cluster of genes. C. Ingenuity analysis identifies 
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statistical significant upstream regulators for cluster of genes showed in B. D. 

Genome browser view of RNA-Seq data for POU5F1 gene and MYL7 gene. Each 

track shows the expression profile for a different stage. E. MA-plot of differential 

expressed genes for neighboring stage comparisons (A VS B). The number N 

shows the number of up and down regulated genes. The number above the red 

line represents the number of DEGs that is up regulated in A.  

 

 

Figure 2. Transcription factors expression changes during cardiogenesis.  

A. Heatmap for top 50 TFs showing the largest expression variations from ESCs 

to Cardiomyocytes. Each column represents a different sample and each row 

represents a different gene. The color in the heatmap again represents the log 2 

fold change of normalized expression values. B. Heatmap for stage-specific TFs 

from ESCs to Cardiomyocytes. The color in the heatmap represents the 

proportion of expression value for that sample to the sum of all samples.  
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Figure 3. Screening for novel cardiac related transcription factors.  

A. Bar-plot of top 25 transcription factors (y-axis) ranked by their induced rate 

(x-axis). B. Genome browser view of RNA-Seq data for HAND2. C. The number of 

known cardiac TFs in top 25 hits based on the ranking calculation by our study 

and by Paige et al. D. Venn-diagram of top 25 transcription factors identified by 

our ranking approach and by Paige et al.  
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Figure 4. LincRNA expression changes during cardiogenesis.  

A. Heatmap for top 50 lincRNAs showing the largest variations from ESCs to 

Cardiomyocytes. The color in the heatmap represents the log 2 fold change of 

normalized lincRNA expressions. B. Bar plot of lincRNAs that show at least 10 

fold of induced rates. C. Genome browser view of RNA-Seq data for 

linc-CCDC59-1 and linc-GTPBP8-1 during cardiogenesis.  
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Figure 5. RRBS-based DNA methylation changes during cardiogenesis.  

A. Hierarchical clustering of RRBS fragments that show at least 0.2 delta 

methylation changes compared to average methylation levels across samples. 

The color in the heatmap represents the delta methylation value. The red color 

represents hypo methylation while blue color represents hyper methylation. B. 

Enriched transcription factors and their motif sequences found in each cluster of 

RRBS fragments. The number in the bracket shows the –log10 p-value of the 

statistical significance for motif discovery. 
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4.1 Abstract 

DNA methylation and histone modifications are the major two epigenetic 

mechanisms in mammalian cells. Previous studies have revealed those two 

mechanisms exhibit a crosstalk in the regulation of gene expression. However, 

those evidences are in a descriptive and qualitative way. In this project, we thus 

sought to systematically evaluate the quantitative relationship between DNA 

methylation and the major histone modification marks in human. Our analysis 

integrated 35 whole genome bisulfite sequencing (about 800 million CpG sites) 

and 175 ChIP-Seq histone modification assays for 35 human cell types. The 

logistic regression model we built show that there is an universal quantitative 

relationship between DNA methylation and histone modification in human. 

Importantly, we find that H3K4me3 is a dominant predictor of DNA methylation. 

Interestingly, our result suggests that the power for histone modification based 

prediction of DNA methylation varies among different type of cells, where 

pluripotent cells tend to have higher predictive power. Lastly, we show that two 

H3K27me3 associated chromatin states, i.e. bivalent enhancer and repressed 

polycomb show distinct residual predicted DNA methylation values compared with 

other states. In summary, our results provide a comprehensive evaluation of the 

quantitative crosstalk between DNA methylation and histone modification in a 

variety of human cell types. 
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4.2 Introduction 

DNA methylation is a major epigenetic mechanism of gene regulation [1]. This 

epigenetic process plays an important role in silencing of transposon, X 

chromosome inactivation and regulation of gene expression. In mammalian cells, 

DNA methylation are regulated by DNA methyltransferases (DNMTs) [2]. 

Specifically, DNMT1 is a maintenance DNMT, DNMT3a/3b are de novo DNMTs 

and DNMT3L is an inactive member that increase the catalytic activity of 

DNMT3a/b. There are three different domains in active de novo DNMTs: the 

catalytic domain, an ADD domain and a PWWP domain [3]. Previous studies have 

found ADD domains preferentially bind histone 3 tails lacking methylation at lysine 

4 (H3K4me), while the PWWD domain bind to histone 3 tails lacking methylation 

at lysine 36 (H3K36me). The functional unit within DNMTs then forms the basis of 

interaction between histone modifications and DNA methylation. 

 

Over the past decade, whole-genome bisulfite sequencing (WGBS) 

technology has been developed to capture the methylation level for CpG sites 

across the genome [4, 5]. This technology has been widely applied to map 

methylome in a variety of cellular stages for a number of species. Besides 

studying of epigenetic mechanisms, DNA methylation can also be used as a 

robust biomarker in human complex diseases such as cancer. One example of 

this is methylation profiling of cell-free circulating DNA enables the identification of 

cancer and its tissue of origin in a non-invasive way [6]. Another example of using 

methylome in clinics is to classify brain tumor patients into groups that have 



 

	87	

different treatment options and prognosis progress [7]. Despite those advances, it 

is still expensive for a typical laboratory to perform whole-genome bisulfite 

sequencing since the estimation of CpG methylation value requires re-sequencing 

the genome in a high coverage (usually more than 20x). This has limits the 

application of WGBS assay as a routine method in study of epigenetic changes 

for the wide biomedical research community. Thus a method that is capable of 

predicting genome-wide methylation can be highly valuable.  

 

In this study, we thus sought to systematically evaluate the relationships 

between histone modifications and DNA methylation from a quantitative 

perspective. We chose five histone marks: H3K4me3, H3K4me1, H3K27me3, 

H3K36me3 and H3K9me3 as the core histone marks. Those markers have been 

shown to represent a large part of histone code and can be used to identify the 

major chromatin states for genomic annotation. We then use a multiple logistic 

regression model to predict DNA methylation with the core histone marks in 35 

human cells and tissues. We show that histone modifications are highly 

predictable of methylome and H3K4me3 is a predominant predictor. In addition, 

the significant predictive power exists in all human cell lines or tissues we 

examned, indicating there is a universal relationship between histone 

modifications and DNA methylation in human. Interestingly, we observed a 

variation of predictive power where pluripotent cells are generally having a 

stronger values compared with cells from tissues. Lastly, we found two 

H3K27me3 associated chromatin states, i.e. bivalent enhancers and repressed 
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polycomb showing distinct predictive methylation values compared with other 

chromatin states. Our work thus provides a comprehensive and quantitative 

evaluation between histone modifications and DNA methylation in a variety type 

of human cells.  

 

4.3 Results 

4.3.1 Materials and data integration 

To systematically evaluate the quantitative relationship between core histone 

modifications and DNA methylation, we used datasets from Roadmap 

Epigenomics Project of 35 human cells lines and tissues [8]. This enables us to 

perform an extensive inspection. We chose to use datasets from Roadmap 

Epigenomics Project for two reasons. First, the consortium produced a large 

number of high quality whole genome bisulfite sequencing (WGBS) as well as 

corresponding core ChIP-Seq histone marks for various of human cell lines and 

tissues. Second, the datasets were generated in a consistent way, allowing a 

robust integrated analysis and limiting the technical variations between data 

samples.  

 

We thus used 35 WGBS samples generated by the project to represent the 

methylome for a variety of cells. Each sample contains an average of about 25 

million CpG sites with methylation calls, leading to a total of about 800 million CpG 

sites. To compare between different histone marks, we used the normalized fold 
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change values, i.e. normalized fold change between specific histone ChIP-Seq 

samples and control, to represent the histone modification signals for each 

genomic coordinates. As a result, 175 normalized ChIP-Seq samples were used 

to represent the histone modifications. In addition, we also used chromatin states 

datasets to characterize the genomic annotation of methylated CpG sites. The 

chromatin states were learnt from a hidden markov model to represent the 

combinatorial pattern of histone marks.  

 

We next sought to integrate those datasets together. Figure 1 shows the 

schematic illustration of our integrative approach. For each CpG sites with 

methylation calls, we first calculated its neighboring 200 bp (centered on CpG site) 

of average ChIP-Seq signal for each histone marks. Each CpG site then had five 

normalized histone modification values. We then assigned each CpG site to its 

nearest chromatin state of genomic annotation. As a result, this strategy allows us 

to generate an integrated matrix whose rows represent all the CpG sites and 

columns represent chromosome, genomic location, methylation level, histone 

modification values, chromatin state annotation and cell of origin for each CpG 

site.  

 

4.3.2 Characteristics of input variables in the integrated matrix   

To understand the characteristics of variables in the matrix, we first investigated 

their value distributions. As expected, DNA methylation levels show a bimodal 

distribution that peaks at no methylation (0) and fully methylation (1) (Fig 2A), and 
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histone modifications also show a bimodal distribution that peaks at no signal (0) 

and similar to background (~1 fold) (Fig 2B and Supp Fig1). We next calculated 

the genome-wide Pearson correlation between DNA methylation and the core 

histone marks (Fig 2C). As a result, K4me3, K4me1 and K27me3 showed a 

significant anti-correlation (-0.6, -0.3 and -0.2 respectively) with DNA methylation, 

while K36me3 showed a positive-correlation (0.1) with DNA methylation and 

K9me3 showed neutral-correlation (0). This result then suggests a distinct pattern 

of relationships between the different histone marks and DNA methylation.  

 

We next inspected the relationship between DNA methylation and chromatin 

states. Figure 2D then shows the distribution of DNA methylation in each 

chromatin state. As expected, chromatin states associated with transcription, 

ZNF/Repeats, quiescent and heterochromatin showed a high level of DNA 

methylation, while K4me3 associated chromatin states, including bivalent regions 

(with both K4me3 and K27me3) and TSS regions showed hypomethylation signal. 

Interesting, we also found bivalent enhancer (with K4me1 and K27me3) tend to 

be depleted of DNA methylation. Moreover, enhancers and repressed polycomb 

regions showed a highly variable level of DNA methylation values, indicating there 

are multiple methylation mechanisms within those chromatin states.  

 

4.3.3 Modeling of DNA methylation with multiple logistic regression 

With the integrated matrix above, we then used multiple logistic regression to 

model the quantitative relationship between histone modifications and DNA 
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methylation. We chose logistic regression model instead of others for two major 

reasons. First, DNA methylation value is between 0 and 1, this fits naturally for 

logistic regression model. Second, logistic regression, as a class of linear 

regression, makes it easier to interpret the learnt parameters and relationships 

between variables. The following equation then represents the modeling process: 

              

Where x1 to x5 is the log2 fold change for different histone modification values, 

and Pi is the DNA methylation values for each CpG site i. 

 

To evaluate the model performance, we then used RMcFadden to represent the 

correlation between observed methylation value and predicted methylation value: 

                

Where Lc is the maximum likelihood value from the fitted model, and Lnull is the 

likelihood value from the model with only an intercept but no covariates. The 

resulted R value then captures fraction of responsive values that could be 

explained by the input variables.  

 

We thus evaluate the model performance with different combinations of 

histone marks as input variables. When single histone mark was used in the 

model, we observed a superior performance of K4me3 (0.52) compared to the 
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other four histone marks (K9me3: 0.02, K36me3: 0.07, K27me3: 0.18, K4me1: 

0.26) (Fig 3A). This result then suggests K4me3 is a strong predictor of DNA 

methylation, while K4me1, K27me3 and K36me3 shows a medium but also 

significant prediction power.  

 

We next sought to include multiple histone marks in the model. As a result, 

when used the four histone marks beside K4me3, we got a model performance of 

0.32 (Fig 3A), which was 40 percent lower than using K4me3 alone, again 

highlighting the evident predictive power of K4me3. More importantly, when 

incorporated all five histone marks in the model, we got an overall predictive 

power of 0.56 (Fig 3A). This power value thus indicates that there is a universal 

quantitative relationship between histone modifications and DNA methylation for 

different types of human cells, where more than half of methylation variations 

could be explained by the five histone marks we used in the model.  

 

To have a clearly genome-wide view of the model performance, we then plot 

the predicted methylation values against observed methylation values for each 

CpG sites (Fig 3B). The scatterplot shows two enriched groups (color in red) 

where low observed methylation values are also predicted to be low and high 

observed methylation values are also predicted to be high, indicating the 

predicted model performs well for those CpG sites. To look at the model 

performance in specific genomic regions, we chose a random region in 

chromosome 1 for an ESC cell line (HUES64 cells). Figure 3D then shows the 
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genomic view of the observed and predicted methylation signal, the five histone 

modification signals and the refseq genes. It is obvious that the predicted 

methylation track agrees well with the observed methylation track. In summary, 

we showed that histone modifications are highly predictable of DNA methylation 

and K4me3 is the dominant predictor of DNA methylation. 

 

4.3.4 Model performance in 35 human cells or tissues 

In the above section, we showed that our model was able to capture a large 

variation of DNA methylation for the integrated 800 million CpG sites for a variety 

of human cells or tissues. The prediction power then represents the average 

predictive power for 35 human cells types. We next asked whether this prediction 

power varied in different types of human cells. We thus used the same approach 

for CpG sites and their histone signals in each individual cell lines or tissues we 

have collected. As a result, we indeed observed some differences of model 

performance, ranging from 0.43 (fetal intestine small cells) to 0.70 (HUES64 stem 

cells). Strikingly, we also found a clear pattern that pluripotent cells tend to have a 

higher methylation predictive power compared with tissue cells. One possible 

explanation of this is that tissue cells are highly heterogeneity, making it less 

accurate to do the methylation prediction based on histone modifications. Another 

explanation is the quantitative relationships between DNA methylation and 

histone modifications decrease when the cells differentiated into developed cells. 

Further investigations will need to be carried out to address which hypothesis 

plays a major role in the differences of methylation prediction power. 
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4.3.5 Characteristics of mis-predicted methylation loci 

Although our model was able to capture a significant fraction of methylation signal, 

there was still a considerably degree of mis-prediction. We next sought to 

examine the characteristics of those mis-predicted methylation loci. Figure 5A 

then shows the distribution of residual values between predicted and observed 

methylation. Residual distribution generally followed a normal distribution. 

However, we also observed a longer tail towards 1 where predicted values tend to 

be hypermethylated compared with actual values. This result suggests that there 

are additional de-methylation mechanisms that could be explained by the core 

histone modifications.  

 

Moreover, we found that there were less than 5 percent of CpG sites showing 

a residual methylation values larger than 0.5. This result then reveals that the 

model would perform extremely well if the task is classify the CpG methylation 

level into a binary event, either un-methylated (0) or methylated (1). To 

quantitative evaluate this finding, we then carried out Receive Operation Curve 

analysis (Fig 5B). The area under curve (AUC) thus represents the power of the 

model to correctly classify the CpG sites into methylated sites or un-methylated 

sites. As a result, we observed a AUC of 0.97, indicating the core histone 

modifications have a extremely high performance to classify CpG sites into a 

binary event.  
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To further characterize the residual methylation, we next investigated the 

distribution of those values in each chromatin states (Fig 5C). In most cases, the 

residual distribution followed a similar distribution as shown in Fig 5A. However, 

residual values in bivalent enhancer (with K4me1 and K27me3) and repressed 

polycomb (with K27me3) showed a distinct pattern compared with others. 

Specifically, predictions in both bivalent enhancers and repressed polycomb tend 

to be hypermethylated, indicating there are additional de-methylation mechanisms 

associated with those two K27me3 chromatin states. Therefore, it appears that 

K27me3 can influence DNA methylation in those chromatin states.  

 

One explanation of the above finding for bivalent enhancers is that there are 

some factors, e.g. transcription factors, bound to those regions that are inhibiting 

DNA methylation. To test this hypothesis, we next performed gene ontology 

annotation and motif discovery analysis for the top mis-predicted CpG regions.  

  

4.4 Discussion and conclusion 

In this study, we built a predictive model of DNA methylation based on core 

histone marks. This model integrates about 800 million CpG sites and achieved a 

reasonably high predictive power. We found H3K4me3 is a dominant predictor 

and DNA methylation, where regions with H3K4me3 are generally depleted of 

DNA methylation. Moreover, we also showed that our model has a less than five 

percent of error when classifying CpG methylation level into a binary value. This 
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result then can be widely applied in the circumstances where researchers only 

care about hypermethylation or hypomethylation. In addition, previous studies 

have revealed relationships between histone modifications and DNA methylation 

in a descriptive and qualitative way. Our work then integrates data from 35 types 

of human cells and provide a comprehensive and quantitative interrogation of the 

crosstalk between the two major epigenetic mechanisms.  

 

We observed a variation of power when examined the predictive values for 

each cell type. We think this might be caused by either cells having different 

heterogeneity or under different developmental stages. It is then interesting to 

further study whether the crosstalk between the two major epigenetic 

mechanisms decrease or not during cell differentiation. Another interesting 

observation is the H3K27me3-associated genomic regions show distinct pattern 

of residual methylation distribution. This result then suggests there is other 

de-methylation mechanisms that can not be explained solely by histone 

modifications. This mechanism can be other regulators, such as transcription 

factors, where they bind to those regions and initiate the de-methylation activities. 
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Figures 

 

 

 

Figure 1. Schematic illustration of the integrative approach. 
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Figure 2. Relationships among input variables in the integrated matrix. 

A. Distribution of the DNA methylation values in the integrated matrix. B. 

Distribution of the H3K4me3 normalized log fold change values in the integrated 

matrix. C. Genome-wide pearson correlation between the five histone 

modifications and DNA methylations. D. Distribution of DNA methylation in each 

learnt chromatin states (y axis). 
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Figure 3. Performance of the predictive model. 

A. Model performance based on different combinations of histone modifications 

as input variables. The X-axis represents the model performance evaluated by 

RMcFadden. B. Scatterplot of observed DNA methylation and predicted DNA 

methylation. C. Relative importance of the histone modification in the core 5 

histone modification model. D. An example genomic region of the predicated DNA 

methylation and its corresponding histone modifications. 
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Figure 4. Performance for 35 different types of human cell lines/tissues. 

The x-axis represents the model performance for each human cell type. The 

y-axis represents the name for each human cell type. The legend represents the 

corresponding tissue for each cell type. 
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Figure 5. Characteristics of residual DNA methylation values. 

A. Distribution of residual DNA methylation values. B. Density plot of residual DNA 

methylation values in each chromatin states. 
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