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Splicing accuracy varies across human
introns, tissues, age and disease

S. García-Ruiz 1,2,3,4,5, D. Zhang3, E. K. Gustavsson 1,3,5, G. Rocamora-Perez3,
M. Grant-Peters1,2,3,5, A. Fairbrother-Browne1,2,3,5, R. H. Reynolds 3,
J. W. Brenton1,2,3,5, A. L. Gil-Martínez6, Z. Chen 3,6,7, D. C. Rio 5,8,9, J. A. Botia10,
S. Guelfi6, L. Collado-Torres 11,12 & M. Ryten 1,2,3,4,5

Alternative splicing impacts most multi-exonic human genes. Inaccuracies
during this processmay have an important role in ageing anddisease. Here, we
investigate splicing accuracy using RNA-sequencing data from >14k control
samples and 40 human body sites, focusing on split reads partiallymapping to
known transcripts in annotation. We show that splicing inaccuracies occur at
different rates across introns and tissues and are affected by the abundance of
core components of the spliceosome assembly and its regulators. We find that
age is positively correlated with a global decline in splicing fidelity, mostly
affecting genes implicated in neurodegenerative diseases. We find support for
the latter by observing a genome-wide increase in splicing inaccuracies in
samples affected with Alzheimer’s disease as compared to neurologically
normal individuals. In this work, we provide an in-depth characterisation of
splicing accuracy, with implications for our understanding of the role of
inaccuracies in ageing and neurodegenerative disorders.

RNA splicing is a post-transcriptional process in which introns are
excised from messenger RNA (mRNA) precursors, and exons are
joined together to formmaturemRNAs.RNA splicing occurswithin the
nuclei of cells by base pairing between multiple small nuclear ribo-
nucleoproteins forming the spliceosome and the sequences signalling
the intron boundaries, termed splicing signals1–3.

In humans, ~95% of multi-exon genes are alternatively spliced.
Alternative splicing (AS) occurs when different combinations of exons
are alternatively, rather than constitutively, spliced and included
within thefinalmRNA, resulting inmultiple RNA structures encodedby
the same gene4–6. During AS, splice site choice is largely regulated by

cis-acting splicing regulatory elements (SREs)7–10 that can enhance or
silence the recognition of adjacent introns and exons. Different RNA-
binding proteins (RBPs) are then responsible for interacting with these
SREs and so activate or repress intron splicing accordingly within
specific cells and tissues.

AS is a complex process and, consequently, accurate recognition
and excision of introns and alternative exons relies on overcoming
multiple challenges. First, the spliceosome must identify the splicing
signals, namely the 5’ splicing signal (5’ss), the branch point sequence
and the 3’ splicing signal (3’ss). Together, these sequences approxi-
mately encompass 25basepairs (bp)distributed across the intron. This
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sets a relatively large mutational target in which germline and somatic
variants could appear, compromising the correct identification of
exon-intron boundaries11–14. Genetic variation can also alter the SREs,
which can jeopardise the correct binding of splicing-related RBPs to
these sequences and, therefore, accurate splicing. Third, some intronic
sequences can be long (reaching lengths above 1 million bp15 in
humans), increasing the risk of cryptic splicing sequences3 that can
serve as decoy splice sites for spliceosome selection. Lastly, as obser-
vable in all biological systems, this process is subject to stochastic
variation16–20.

Ensuring splicing accuracy, namely the fidelity with which the
splicingmachinery performs intron excision and exon ligation to form
mature mRNAs, is crucial for producing functional proteins and
maintaining cell homoeostasis21–27. While mechanisms such as the
nonsense-mediated decay (NMD) can mitigate the impact of spurious
mRNA transcripts28–33, differential use of splice sites escaping this
mechanism has demonstrated widespread dysregulation in a range of
diseases34, including Alzheimer’s disease (AD)35,36, and ageing37.

Different studies have demonstrated a decline in age-related
splicing accuracy in species such as Mus musculus38, Drosophila39,
C.Elegans40 and Homo Sapiens41–43. However, to the best of our
knowledge, no study to date has evaluated the genome-wide accuracy
of splicing from an intron-level perspective acrossmultiple tissues and
human samples (>14k), in the context of age, neurodegeneration and
with expression changes of important RBPs and NMD factors. To
address these questions, we used RNA-sequencing data provided by
the Genotype-Tissue Expression v844 project, and studied and char-
acterised splicing accuracy across >300k annotated introns and >3m
novel splicing events. We found robust patterns in the distribution of
splicing noise, reflecting the molecular architecture of spliceosome
assembly and action. By combining RNA-sequencing data from RBP
knockdown experiments45 and CLIP-seq experiments46, we

investigated the role of RBP and NMD expression in tuning splicing
noise and changing its distribution. Given that RBP expression levels
are known to change with age in humans47 and that NMD activity has
been shown to decrease during ageing in other organisms48, we stu-
died the effect of age on splicing accuracy. We demonstrated that age
is positively correlatedwith a decline in splicing fidelity and that, in the
human cortex, it affects genes implicated in neurodegenerative dis-
eases. Using publicly-available RNA-sequencing data from the fusiform
gyrus of AD and neurologically normal individuals49, we observed a
significant increase in inaccurate splicing in the AD brain, affecting
genes implicated in neurodegenerative diseases and synaptic func-
tions. Finally, we evaluated the relative contribution of important RBPs
and NMD factors to the presence of inaccurately spliced transcripts
with increasing age and in AD. We found that a decrease in the
expression levels of RBPs, implicated in post-transcriptional functions,
as well as core components of the NMD machinery, contribute to an
increase in inaccurate splicing with increasing age and in AD. Alto-
gether, these results demonstrate that inaccurate splicing is detectable
across human tissues and modelling its characteristics provides novel
insights into age-related and neurodegenerative diseases in humans
(Fig. 1).

Results
Novel donor andacceptor junctions are commonlydetected and
exceed the number of unique annotated introns by an average
of 11-fold
Splicing events can be accurately detected from short-read RNA-
sequencing data using split reads. Split reads are reads that map to
the genome with a gapped alignment, indicating the excision of an
intron. We focused on three classes of split reads: i) annotated
exon-exon junction reads, which precisely match an intron within
annotation (Ensembl v105), ii) novel donor junctions, where only
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dMis-splicing is predicted to affect protein translation
Splicing is affected by RNA-binding protein expression, age and
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Fig. 1 | Overview of the analyses performed in this study. a We studied splicing
accuracy through three classes of split reads spanning exon-exon junctions:
annotated, novel donor and novel acceptor split reads. The RNA-sequencing
dataset used originated from the Genotype-Tissue Expression (GTEx) project v8. In
all 40 GTEx tissues studied, junctions from the novel acceptor category exceeded
the number of unique novel donor junctions. b Novel splice sites from the novel
donor and novel acceptor categories present high sequence similarity to annotated
splice sites. High sequence fidelity in the vicinity of exon-intron junctions is

required to accomplish accurate splicing. c Novel junctions associated with
protein-coding transcripts are predicted to be deleterious in 2/3 of cases.
d Reduced expression levels of the RNA-binding proteins responsible for sequence
recognition appear to change splice site selection, which reduces the overall
accuracy of the splicing process. Age is positively correlated with increases in
splicing inaccuracies across multiple human tissues. Splicing inaccuracies are sig-
nificantly higher in autopsy-confirmed Alzheimer’s cases as compared to neurolo-
gically normal age-matched controls.
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the implied 3’ss, namely acceptor site, matches an intron-exon
boundary within annotation, and iii) novel acceptor junctions, where
only the implied 5’ss, namely donor site, matches an exon-intron
boundary within annotation (Fig. 1). We use the term “splicing accu-
racy” to refer to the study of splicing fidelity, primarily represented by
unregulated errors that occur at low frequency in a global manner. To
study splicing accuracy through the aforementioned three junction
classes, we leveragedRNA-sequencing data processedby the relational
database, IntroVerse50, and originating from the Genotype-Tissue
Expression (GTEx) Consortium44 v8 data set. After quality-control
processes, we used a subset of the data providedby IntroVerse relating
to 324,956 annotated introns and 3,865,268 novel junctions (Supple-
mentary Fig. 1). Briefly, this involved the discard of all split reads i)
shorter than 25 bp, ii) located within unplaced sequences on the
reference chromosomes, iii) overlapping with any of the regions
included in the hg38 ENCODE51 Blacklist, and/or iv) originating from
introns targeted by the minor spliceosome52.

We started by evaluating the extent to which each specific junc-
tion was shared between samples. We found that while the vast
majority of novel junctions were unique to an individual or a very low
number of individuals in all tissues (Supplementary Fig. 2), annotated
introns were shared across a high number of samples (Supplementary
Fig. 3). Next, we found that 268,988 (82.8%) annotated introns had at
leastone associatednovel junction,with only 55,968 annotated introns
appearing to be accurately spliced across all ~14k samples studied.
Collectively, we detected 3,865,268 unique novel donor (n = 1,582,593)
and acceptor junctions (n = 2,282,675), equating to 14 novel junctions
per annotated intron. The detection of unique novel donor and
acceptor junctions was a common finding across all tissues, with the
highest numbers per sample found in Cell EBV-Transformed Lym-
phocytes tissue and the lowest inWhole Blood (Supplementary Fig. 4).

Over 98% of novel donor and acceptor junctions are likely to be
generated through inaccurate splicing
Unique novel junctions may represent novel transcripts53, but given
the high numbers detected, novel junctions could also be the product
of splicing errors. To explore this, we leveraged the existence of
multiple reference Ensembl transcriptome builds, namely v97 (May
2019) and v105 (June 2021), assuming an increased accuracy over their
2-year gap. For each tissue, we re-processed and re-annotated each
split read provided by GTEx to the v97 and v105 annotation builds.We
found that across all tissues, on average only 0.008 [0.005,0.012] of
junctions defined as novel donor or acceptor junctions using v97 were
reclassified as annotated introns in v105, and thus part of a transcript
structure (Fig. 2a). Interestingly, we noted that the highest re-
classification rates were observed amongst human brain tissues, on
average 0.009 [0.008,0.012]. Given the widespread isoform diversity
and alternative splicing found in frontal cortex54, we extended our
analysis in this body site and included Ensembl versions published
from2014 to 2021. The reclassification rate of novel junctions in frontal
cortex decreased incrementally from 0.023 to 0.003 (Supplementary
Fig. 5), consistent with previous studies reporting that the number of
novel junctions entering annotation has been plateauing since 201355.
These findings suggest that the vast majority of novel junctions are
generated through splicing inaccuracies, with on average <0.009
(< 0.9%) being explained by junctions originating from stable
transcripts.

Splicing inaccuracies are more common at acceptor than donor
splice sites
The recognition of the donor splice site (5’ss) and acceptor splice site
(3’ss) of an intron is performedby separate components of the splicing
machinery34,56,57. We aimed to test whether splicing error rates at these
splice sites also differed. To assess this, we compared the numbers of
unique novel donor and acceptor junctions detected in each tissue to

the numbers of unique annotated introns. We found that novel donor
and acceptor junctions consistently accounted for the majority of
unique junctions detected (70.8% [range: 58.2-79.1%]) and that the
novel acceptor category exceeded the novel donor across the samples
of all tissues (Fig. 2b). While we detected an average of 241,118 unique
annotated introns across body sites, unique novel donor and acceptor
junctions averaged 251,031 and 363,076, respectively. The relative
sizes of junction categories robustly remained even after increasing
theminimumnumber of supporting split reads required for a junction
to be considered (Supplementary Fig. 6a), and after increasing the
stringency in read alignment by raising the anchor length used (Sup-
plementary Fig. 7a).

We reasoned that while splicing inaccuracies might generate high
numbers of unique novel junctions in a given sample, each of these
junctions would be expected to have a low number of associated reads.
Consistentwith this prediction, we found that novel donor and acceptor
junctions together accounted for 0.32-1.08% of all junction reads
whereas annotated introns accounted for 98.92-99.68% of the junction
reads across all tissues evaluated (Fig. 2c, Supplementary Fig. 6b and
Supplementary Fig. 7b). Focusing on frontal cortex, we found that
annotated introns had a median read count of 2,695 supporting split
reads, with novel donor and acceptor junctions having a median read
count of only 2 split reads in both cases. These findings were replicated
across all human tissues (Supplementary Table 1) and were consistent
with novel junctions generated through splicing errors.

High motif sequence similarity between novel splice sites and
their annotated pairs explains inaccurate splicing
Sequences delineating intronboundaries are diverse and cryptic splice
sites have the potential to induce splicing errors when present near
them58. We applied the MaxEntScan59 (MES) algorithm to assess the
motif sequence similarity of all annotated and novel 5’ss and 3’ss to
consensus representative sequences in humans. We found significant
overlaps between thedistributionofMES scores assigned to annotated
versus novel splice sites, suggesting that the splicingmachinerywould
be expected to recognise the latter (Supplementary Fig. 8).

Given that splice selection is likely to be a competitive process, we
leveraged our paired data structure to compare MES scores between
annotated introns and novel junction pairs (termed delta MES score).
We found that the majority of novel 5’ss and 3’ss motif sequences were
weaker than their paired annotated site, with 82.6% of novel 5’ss and
85.8% of novel 3’ss having positive delta MES scores (Fig. 3a, b, Sup-
plementary Fig. 6c and Supplementary Fig. 7c).Moreover, novel 5’ss and
3’ss had amedian delta value of 3.6 and 5.2, respectively, in keepingwith
the higher number of novel acceptor events as compared to novel
donor junctions detected in all tissues, and similar MES scores to their
annotated pairs. Overall, these results suggest that the strength of local
splicing signals is not sufficient to guarantee accurate splicing14,60.

Novel junctions associated with protein-coding transcripts are
predicted to be deleterious in 63.5% of cases
High sequence similarity between novel and annotated splice sites
might be expected if these sites were located in close proximity.
Thus,weanalysed the relationshipbetween annotated andnovel splice
sites focusing on the distribution of the latter within 30 bp upstream
and downstream of annotated sites in frontal cortex tissue. We noted
that: i) both novel 5’ss and 3’ss were located near paired annotated
sites; ii) the distribution of splicing inaccuracies was different between
annotated 5’ss (mode = −4bp/3bp) and 3’ss (mode = −21bp/4 bp);
and iii) splicing accuracy was highly asymmetric at annotated
acceptor sites, with a very low error density upstream this intron-exon
boundary, suggesting that this splicing pattern was driven by the AG
exclusion zone61,62. These results were replicated across all tissues
(Supplementary Table 2), consistent with novel junctions originating
from splicing errors.
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Wealsoobserved regular splice site peaks occurring at 3bp intervals,
most apparent in novel acceptor events downstream of the paired
annotated site, namely within annotated exons. Using data from frontal
cortex tissue, we noticed that these peaks were only observed in novel
events from protein-coding transcripts (n=20,605) (Fig. 3c, d, Supple-
mentary Fig. 6d and Supplementary Fig. 7d). To further explore this
possibility, we studied the divisibility by 3, equating to the size of a codon,
of the distances between each novel junction and their linked annotated
5’ss and 3’ss. Focusing on splice sites exclusively used in protein-coding
transcripts in frontal cortex, this analysis demonstrated that 62.5% of all
novel siteswere located at distances not divisible by 3, implying that these

splicing events would result in deleterious frameshifts for downstream
translation events. When focusing on eachmodulo3 value independently,
we observed an overall preference to maintain the codon reading frame
(mod3=0, 37.4%; mod3= 1, 31.4%; mod3=2, 31.2%). Across all tissues,
63.55% of the novel junctions would likely disrupt the reading frame,
supporting the view of novel junctions originating from splicing errors
(Fig. 3e, Supplementary Fig. 6e and Supplementary Fig. 7e).

We hypothesised that the regular splice site peaks occurring at 3 bp
intervals could be an evolved property of the genomic sequence, with
cryptic splice sites preferentially located at these positions to prevent
frame-shift events. Given that cryptic splice sites are known to have high
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motif sequence similarity to annotated splice sites58, to test this
hypothesis we obtained the deltaMES of the novel splice sites located at
distances divisible by three from their annotated pairs and compared
them with those of the remaining novel junctions (namely those not

located at distances divisible by three). We found no significant differ-
ences in motif sequence similarity across the novel junction types (one-
tailed Wilcoxon Rank-sum test, P = 1, Supplementary Fig. 9). These
findings suggested that the higher frequencies of novel acceptor
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junctions at 3bp intervals are not explained by genomic sequence
properties, but are most likely to arise through a separate mechanism.

Splicing accuracy varies across introns and is likely to be
underestimated in bulk RNA-sequencing data
Next, we wondered if splicing fidelity varies across introns and genes
across the genome. We used the Mis-Splicing Ratio measures to assess
the frequency of splicing inaccuracies at both the 5’ss (MSRD) and
3’ss (MSRA) of each annotated intron. Focusing on frontal cortex
brain tissue, we observed that while splicing errors were detected
infrequently, with the MSRD and MSRA values highly skewed towards
low values, there was considerable variation across introns (MSRD

IQR= 5.7e-04; MSRA IQR= 1.6e-03). Furthermore, consistent with
the overall higher detection of novel acceptors as compared to novel
donor junctions, we observed a significant difference between the two
MSRD and MSRA distributions (paired one-tailed Wilcoxon Rank-sum
test, effect-size=0.09, P <0.001) (Fig. 4a, Supplementary Fig. 6f, Sup-
plementary Fig. 7f and Supplementary Table 3). Given that NMD acti-
vity would be expected to reduce the detection of splicing errors
amongst mRNA transcripts, we compared MSR measures of annotated
introns in protein-coding versus non-coding transcripts in samples
from frontal cortex tissue after controlling for read depth (Supple-
mentary Fig. 10). We found that splicing inaccuracies were more fre-
quent amongst annotated introns from non-coding transcripts as
compared to those from coding transcripts, at both their 5’ss (paired
one-tailed Wilcoxon Rank-sum test, effect-size=0.17, P <0.001) and
3’ss (paired one-tailed Wilcoxon Rank-sum test, effect-size=0.19,
P <0.001) (Fig. 4b, c, Supplementary Fig. 6g and Supplementary Fig. 7g),
suggesting that the frequency of splicing errors is likely to be under-
estimated. These findings were validated across all tissues (Supple-
mentary Table 3).

High sequence fidelity in the vicinity of exon-intron junctions is
required to maintain splicing accuracy
Given the variability found in splicing fidelity across introns, we wanted
to identify features that could influence its generation. Focusing on
frontal cortex tissue, we built two zero-inflated poisson regression
models to predict the rate of splicing inaccuracies as defined by MSRD

and MSRA values. We used as predictors different features of each
annotated intron and the gene from which it originated. This analysis
yielded three main findings. Firstly, we found that gene-level features
had a small but significant effect on splicing accuracy. Increases in
associated transcript number and protein-coding frequency predicted a
reduction in splicing errors, suggesting that splicing inaccuracies within
genes with high transcript diversity might be energetically costly for
organisms20,63 and so selected against (Fig. 4d). Secondly, this analysis
provided support for splice site intercommunication3,34,64, with
sequence properties at both splice sites impacting splicing fidelity.
Interestingly, we found that higher conservation scores (phastCons17) in
genomic regions flanking the 5’ss and 3’ss were associated with lower
splicing error rates (5’ss: MSRD= −0.9 [−0.8, −1.01];MSRA= −0.85 [−0.76,
−0.95]) (3’ss: MSRD=−0.78 [−0.69, −0.88]; MSRA= −0.78 [−0.7, −0.87]).
Similarly, highly constrained sequences amongst humans (mean
context-dependent tolerance, CDTS) in the vicinity of 5’ss and 3’ss, were
associated with lower splicing error rates at both splice sites (5’ss:
MSRD= 1.01 [1.01, 1.02]; MSRA= 1.01 [1.01, 1.02]) (3’ss: MSRD= 1.01 [1,
1.01]; MSRA = 1.01 [1.01,1.02]). Overall, these results suggested that low
sequence variation within intronic sequences flanking exon-intron
junctions are associated with increased splicing fidelity.

Splicing accuracy is affected by RNA-binding protein expression
changes
To better understand the factors influencing splicing accuracy across
tissues, we expanded our analysis in frontal cortex tissue to all body
sites. Interestingly, this identified unexpectedly high variation in the

effect of sequence conservation on splicing accuracy (as captured by
the beta coefficient) across tissues (Fig. 5a, b), despite the con-
servation scores being identical across body sites. We hypothesised
that this finding could have arisen because we had not accounted for
the impact of somatic variation, and that this could alter critical
splicing sequences and cis-acting SREs, hence causing changes in
their recognition by RBPs and resulting in splicing errors. To test for
this possibility, we compared MSRs between sun-exposed and not-
sun-exposed skin across common annotated introns on the basis that
sun-exposed skin is known to have higher rates of somatic
mutations65. However, we did not find any significant differences in
MSRs from annotated introns between these two tissues (two-tailed
Wilcoxon Rank-sum test MSRD P = 0.14; two-tailed Wilcoxon Rank-
sum test MSRA P = 0.25, Supplementary Fig. 11). Based on these
findings, we considered if the observed tissue-specific expression
levels of RBPs involved in splicing processes across body sites
(Supplementary Fig. 12), could explain the variable effect of
sequence conservation observed on MSRs. To explore this possibi-
lity, we analysed ENCODE data involving knockdowns of 54 genes
related to splicing regulation, spliceosome assembly, exon-junction
complex (EJC) recognition45 and NMD (Supplementary Fig. 13). This
analysis yielded three main findings. Firstly, it revealed a significant
increase in MSRs in samples with gene knockdowns compared to
untreated controls for 90% (MSRD FDR< 0.001, n = 49) and 94%
(MSRA FDR <0.001, n = 51) of the 54 genes considered, respectively.
Knockdowns of the splicing machinery and EJC components tended
to have a greater effect on 3’ss than 5’ss (mean MSRD effect-size =
0.10 [0.02,0.39]; mean MSRA effect-size = 0.12 [0.01, 0.62]), except
for 6 genes, including SAFB2, which is not thought to impact on
splicing and so was used as a negative control (Supplementary
Tables 4, 5). Notably, AQR, EFTUD2, HNRNPC, MAGOH, SF3A3, SF3B4,
U2AF1 and U2AF2 knockdowns resulted in the highest increases in
5’ss and 3’ss MSRs (Fig. 5c). Secondly, knocking down components
of the NMD pathway, such as UPF1 and UPF2, produced a detectable
but modest increase in the levels of splice-site noise as compared
to the knockdown of other RBPs such as MAGOH, a core component
of the EJC involved in the activation of the NMD pathway66. We
also found that 3’ splicing errors that were only evident in the context
of NMD knockdown, were generated from annotated introns which
had significantly lower phastCons17 and MES values (phastCons17:
one-tailed Wilcoxon Rank-sum test, effect-size=0.07, P < 0.001; MES:
one-tailed Wilcoxon Rank-sum test, effect-size=0.03, P = 0.01) (Sup-
plementary Fig. 14). Interestingly, across the UPF1 and UPF2 knock-
down experiments, analysis of the genomic distances from
novel junctions to their annotated pairs still demonstrated regular
3 bp peaks in protein-coding transcripts, indicating that NMD
was not preferentially acting at positions that could generate frame-
shift events (mod3 = 1, mod3 = 2) (Supplementary Fig. 15 and Sup-
plementary Fig. 16). Thirdly, this analysis revealed distinct patterns
in MSRs distribution depending on the gene targeted. For instance,
knocking down AQR expression led to a remarkably high number
of splicing inaccuracies within 15-200bp upstream of the annotated
acceptor site (Fig. 6a and Supplementary Fig. 17), including weaker 3’ss
selection (one-tailed Wilcoxon Rank-sum test, effect-size=0.14,
P <0.001) (Fig. 6b), suggesting that the spliceosomewas no longer able
to distinguish splicing signals at acceptor sites accurately.
U2AF2 knockdowns resulted in a relatively high number of splicing
inaccuracies within 15-30bp upstream of the acceptor sites (Fig. 6a),
including the selection of weaker novel 3’ss (one-tailed Wilcoxon Rank-
sum test, effect-size=0.02, P < 0.001) (Fig. 6b). We further investigated
the role of RBPs in splicing errors by jointly analysing each knockdown
experiment with corresponding CLIP-seq data46 for 15 RBPs related to
splicing regulation and spliceosome assembly. Importantly, we found
that annotated introns with the highest levels of MSRs when a given
RBP was knocked down, were also those introns with higher densities
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Fig. 4 | Splicing inaccuracies vary across introns and are impacted by local
sequence properties. a Mis-splicing Rates (MSRs) at the 5’ and 3’ss of the anno-
tated introns (n = 251,042) from frontal cortex samples (n = 186). Bottom right:
MSRs from inaccurately spliced introns across binned values. Bottom left: a
zoomed-in view of the bottom right panel. b, cMSRs at the (b) 5’ and (c) 3’ss of the
annotated introns from protein-coding (n = 55,358) and non-coding (n = 55,358)
transcripts in samples from frontal cortex tissue. The black dashed vertical line
separates the bars displayed under the two y-axes. Right y-scale: a zoomed-in view

of the left y-axis. d Exponentiated beta coefficients from the count model of two
zero-inflated poisson regression models (poisson family, log link function) to
predict MSRs at the donor and acceptor splice sites, respectively, from the anno-
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ZIP model were corrected for multiple testing using the Benjamini-Hochberg
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assessed at q < 0.05; n = 186 biologically independent replicates).
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of RBP binding sites (Fig. 6c). This finding was significant at both donor
and acceptor sites for all 15 RBPs analysed (MSRD, Pearson’s Chi-
squared test, P <0.001) (MSRA, Pearson’s Chi-squared test, P <0.001)
(Supplementary Table 6). Taken together, these findings indicate a
direct link between reduced RBP expression and increased levels of
splicing inaccuracies.

Increasing age is associated with increasing levels of inaccurate
splicing
Previous studies reported an overall reduction in the expression of
multiple RBPs with age47,67–72, producing associated changes in splicing
accuracy71. We formally assessed this in the GTEx dataset, and found
that the expression levels of 107 RBPs (FDR <0.04) and 5 essential
NMD genes73 (FDR <0.02) decreased with age in multiple tissues
(Supplementary Fig. 18). Focusing on brain tissue alone, 40% of the 115
RBPs studied had decreased expression levels with age (FDR <0.04)
(Supplementary Fig. 18b). Given these findings, we investigated age-
related increases in splicing inaccuracies. We grouped samples for
each body site into 2 extreme age clusters, 20-39 and 60-79 years and,
after controlling for potential confounding covariates, we selected a
set of 139,419 annotated introns shared across age groups and body
sites (Supplementary Fig. 19 and Supplementary Fig. 20). We found
thatMSRD values in the 60-79 age groupwere significantly higher than
those in the 20-39 cluster in 12 of the 18 body sites analysed (effect size
= 0.06 [0.006, 0.12]; FDR <0.001). Similarly, MSRA values in the 60-79
age groupwere significantly higher than those in the 20-39 category in
13 of the 18 tissues assessed (effect size = 0.07 [0.02, 0.13]; FDR <
0.001). In both cases, the highest effect size was found in blood vessel
tissue (Fig. 7a and Supplementary Table 7).

We also evaluated the relative contribution of individual NMD and
RBP factors to the presence of inaccurately spliced transcripts with
increasing age in blood, blood vessel and brain, selecting these tissues
basedon the high levels of age-related splicing effects (Fig. 7a).Whenwe
ranked all factors in terms of their contribution to age-related splicing
fidelity, we noted that the top-ranked genes (top 10) for blood vessel
and brain tissues were RBPs involved in splicing (Supplementary
Fig. 21 and Supplementary Fig. 22), whereas for blood tissue it also
included components of the EJC and the NMD pathway (Supplementary
Fig. 23). This suggests that tissue-specific changes in the expression of
RBP and NMD factors with age are likely to explain the increase in age-
related splicing inaccuracies observed (Supplementary Tables 8-10).

Given the complexity of splicing in the human brain and the
importance of age-related disorders affecting this organ, we further
investigated the properties of introns with evidence of age-related
increases in MSRs in brain. We identified 37,743 annotated introns of
interest based on increasing MSRD or MSRA values with age. After
assigning these introns to their unique genes (n= 12,408), we used Gene
Ontology (GO) Enrichment analysis to determine if age-related increases
in MSRs might have an impact on specific biological processes or path-
ways. Interestingly, this analysis identified significant enrichment in terms
such as: neuron to neuron synapse (FDR<0.001), tau protein binding
(FDR=0.006) and dendritic spine (FDR<0.001) (Fig. 7b). Since the for-
mer term suggested that splicing inaccuraciesmight affect neuronsmore
than other cell types, we assessed cell-type specific expression of RBPs in
the human brain. Using single-nucleus RNA-sequencing data from the
Allen Brain Atlas covering multiple cortical regions74, we investigated the
cell-type specificity of 111 splicing-regulator and spliceosomal RBPs45

across all major cell types. We found that splicing-regulator RBPs were
more highly expressed than would be expected by chance in oligoden-
drocyte precursor cells, 4 subtypes of GABAergic neuron and 5 subtypes
of glutamatergic neuron (Fig. 7c, Supplementary Fig. 24 and Supple-
mentary Tables 11, 12). The enrichment of splicing-regulator RBPs within
specific neuronal cell types suggests that neurons may be particularly
sensitive to changes in RBP expression, and by extension, particularly
vulnerable to age-related increases in splicing inaccuracies.

Splicing accuracy decreases in genes enriched for synaptic
functions in Alzheimer’s Disease
Given that ageing is a primary risk factor for multiple neurodegen-
erative diseases in humans, including Alzheimer’s Disease (AD)75, we
studied splicing accuracy in post-mortem human brain amongst neu-
rologically unaffected individuals and those with AD. Using short-read
RNA-sequencing data originating from the fusiform gyrus of 48
individuals49, and after controlling for potential confounding covari-
ates,we analysed splicing across 193,487 annotated introns in ADcases
and controls (Supplementary Fig. 25 and Supplementary Fig. 26). This
analysis demonstrated a genome-wide increase in the number of
unique novel 5’ and 3’ splicing events and associated novel reads in AD
cases as compared to control samples (Fig. 8a, b). We studied the
distances between the novel splice sites and their annotated pairs and
observed a higher frequency of novel junctions located at positions
not divisible by 3 bp in the AD-affected samples, indicating a higher
likelihood of frame-shift events that would be expected to be dele-
terious (Fig. 8c). Analysis of MSR measures also demonstrated sig-
nificantly higher levels of MSRs in AD samples at both donor and
acceptor sites (MSRD effect-size=0.027, one-tailed paired Wilcoxon
signed rank test, P < 0.001; MSRA effect-size=0.0375, one-tailed paired
Wilcoxon signed rank test, P < 0.001). Moreover, we noted that genes
containing introns with higher MSRs at donor or acceptor splice sites
in AD as compared to control samples (n = 15,231) were enriched for
synaptic functions (Fig. 8d, e). Finally, we evaluated the relative con-
tributions of the NMD machinery and RBP factors to splicing inac-
curacies in the disease state by mirroring the approach followed with
ageing. The results of this analysis indicated that correcting for the
expression of RBPs and NMD factors reduced the apparent impact of
disease on splicing noise (Supplementary Fig. 27), with RBPs being top-
ranked (Supplementary Table 13).

Discussion
Herewe have shown that inaccurate splicing is common across human
tissues and occurs near annotated intron-exon boundaries dis-
tinctively and predictably. Using the MSR, our own measure to quan-
tify splicing inaccuracies at both splice sites, we found that this is
higher at acceptor sites than at donor sites, and in non-coding tran-
scripts at both sites in all tissues. We discovered that splicing fidelity
varies across introns and tissues, and is predictable based largely on
local sequence properties. Reduced expression of spliceosome com-
ponents and regulators is a significant contributing factor to the
variability in MSRs, as evidenced by in vitro knockdowns of RBPs and
supportingCLIP-seq data, and in vivowith ageing. In the ageing human
brain, splicing inaccuracies affect genes involved in neuronal function
and proteostasis, with implications for age-related neurodegenerative
disorders. Considering the latter, we observed a genome-wide increase
inMSRs in the AD brain, affecting genes involved in synaptic functions
and suggesting the key importance of splicing integrity in maintaining
cognitive function.

One of the most striking and robust findings in this study was the
consistently higher accuracy of 5’ss as compared to 3’ss recognition.
This is likely to reflect intrinsic weaknesses and molecular differences
in these processes. Initial recognition of the 5’ss of an intron is carried
out by the U1 snRNP complex of the spliceosome. Even though their
base-pairing interactions are often imperfect, this process is thought
to be highly efficient57,76,77. In contrast, recognition of the 3’ end of
introns requires cooperative binding of three interacting proteins to
three neighbouring sequence motifs. Besides, a given 3’ss can be
associated with more than one functional branch point78. Our findings
support this view and suggest that this complexity makes this process
particularly sensitive to errors.

There are a range of ways in which splicing errors could arise at
both splice sites. Most simply, they could originate from genomic
sequence variation due to germline and somatic mutations or
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Fig. 5 | Splicing inaccuracies vary across tissues and this could be explained by
variable RNA-binding protein expression. a, b Distribution of beta coefficient
variation across the zero-inflated poisson regression (ZIP) models built to predict
mis-splicing rates (MSRs) at the (a) donor (5’ss) and (b) acceptor (3’ss) splice sites of
the annotated introns across the samples of each GTEx tissue (n = 40). P-values
from the ZIP models were corrected for multiple testing using the Benjamini-
Hochbergmethod, resulting in q-values. Only beta coefficient values for significant
q values were considered for display. All statistical tests were two-sided, with

significance assessed atq < 0.05. Boxplots indicatemedian (middle line), 25th, 75th
percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single
points) of the distribution of the exponentiated beta coefficient values obtained
across the n = 40 ZIP models built per MSRmeasure (one ZIP model per tissue and
MSRmeasure,n = 80ZIPmodels built in total). cProbability of superiorMSRs at the
5’ss and3’ss of the annotated introns in sampleswith the shRNAknockdownof each
RBP as compared to untreated samples. The top heatmap track contains the
knockdown efficiency of the associated protein.
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inaccuracies in the recognition of splicing signals by the spliceosome
machinery itself. We found limited evidence to support the former.
While measures of DNA sequence constraint in humans (namely CDTS
scores79) and local sequence conservation acrossprimates significantly
impacted MSRs in all tissues, the effect sizes were variable. When we

compared MSRs in unexposed versus sun-exposed skin (known to
have a higher somatic mutation load65), we found no significant
differences.

These findings are consistent with the current understanding of
splicing and its evolution. While splicing is thought to have arisen

36.54%

31.86%

31.6%

35.95%

32.41%

31.64%

99.3%

0.4%
0.31%

99.2%

0.46%

0.35%

AD control

97

98

99

100

AD control

0

25

50

75

100

%
 c

um
ul

at
iv

e 
sp

lit
 re

ad
 c

ou
nt

s

Annotated Acceptor Donor

0

25

50

75

100

AD control

%
 o

f n
ov

el
 ju

nc
tio

ns

Modulo: 0 1 2

CC

0.01 0.02 0.03
U2-type spliceosomal complex

spliceosomal complex
ribosome

ubiquitin ligase complex
Golgi apparatus subcompartment

postsynaptic density
integral component of organelle membrane

asymmetric synapse
glutamatergic synapse

postsynaptic specialization
organelle subcompartment

nuclear speck
neuron to neuron synapse

intrinsic component of organelle membrane
cell leading edge

focal adhesion
cell-substrate junction

mitochondrial inner membrane
mitochondrial matrix

organelle inner membrane

Gene Ratio

q: 1e-04 2e-04 Gene Count: 100 200 300 400

18.71% 17.76%

24.79% 23.12%

56.5% 59.12%

0

25

50

75

100

AD control

%
 u

ni
qu

e 
ju

nc
tio

ns
Annotated Acceptor Donor ba

c

e

KEGG

0.01 0.02 0.03 0.04
Endometrial cancer

Inositol phosphate metabolism
Non-small cell lung cancer

Pancreatic cancer
Chronic myeloid leukemia

Small cell lung cancer
Mitophagy - animal

Glutamatergic synapse
Neurotrophin signaling pathway

Relaxin signaling pathway
Lysosome

Ubiquitin mediated proteolysis
Spinocerebellar ataxia

Efferocytosis
Autophagy - animal

Axon guidance
Focal adhesion

Salmonella infection
Endocytosis

MAPK signaling pathway

Gene Ratio

Gene count: 100 150 200 250 q: 5.0e-07 1.0e-06d

Fig. 8 | Splicing inaccuracies increase in samples affected with Alzheimer’s
disease and affect genes involved in synaptic functions. a Percentage of unique
annotated, novel donor and novel acceptor splicing events across AD samples as
compared to controls. b Percentage of cumulative number of annotated, novel
donor and novel acceptor split read counts across AD samples as compared to
controls. c Percentage of novel junctions that are located at eachmodulo3 value of

the distance to their annotated pairs. d KEGG Enrichment analysis of the genes
containing introns with higher frequencies of MSRs at any of their two splice sites
(i.e. 5’ss and 3’ss) in AD samples as compared to control samples. e GO Enrichment
analysis of the genes containing introns with higher frequencies of MSRs at any of
their two splice sites in AD samples as compared to controls.

Article https://doi.org/10.1038/s41467-024-55607-x

Nature Communications |         (2025) 16:1068 12

www.nature.com/naturecommunications


through the self-removal of introns from primitive RNAmolecules80, it
is postulated that their strict sequence and structural requirements
progressively relaxed over time81. Consequently, these introns became
more reliant on accurate expressionof spliceosomeRNAs andproteins
for efficient recognition of SREs and proper splicing. We suspected
that the variable effect of sequence conservation on MSRs across
human tissues could be explained by differences in the expression of
these components, making splicing inaccuracies primarily a problem
of inaccurate sequence recognition.

We formally assessed this hypothesis using publicly available data
from the ENCODE consortium to measure MSRs following shRNA
knockdown of multiple RBPs45 and NMD factors. Despite the essential
role of UPF1 and UPF2 in degrading aberrant transcripts, knocking
down these NMD components appeared to lead to a modest increase
in splice-site noise, though we recognise the experimental limitations
of this analysis. Depending on the RBP targeted, there were distinctive
patterns of splicing inaccuracies, suggesting a dependency on ade-
quate levels of expression of each spliceosomal component to accu-
rately target a splice site. Surprisingly, shRNA knockdowns of core
spliceosomalmolecules, suchAQR andU2AF2, did not reduce the total
levels of splicing activity. Instead, these knockdowns appeared to
change splice site selection, reducing the overall accuracy of this
process. Certainly, mutations in U2AF are rate-limiting for splice site
choice82–84. To support the hypothesis that variability in RBP expres-
sion is an important driver of transcriptome-wide splicing accuracy,we
co-analysed knockdown data from ENCODE with information on RBP
binding sites derived from CLIP-seq data. We found that introns with
the highest binding site densities for a given RBP were also the most
inaccurately spliced under knockdown conditions of that RBP, indi-
cating a direct relationship between RBP expression and splicing
accuracy.

Given that changes in the activity of core spliceosomal compo-
nents have been linked to ageing25,42,71,85, we studied changes in MSRs
with age in a range of tissues. This analysis revealed an increase in
splicing errors in the eldest group across most body sites, including
the brain. Focusing on the human brain due to the known importance
of RBPs in brain diseases86,87 and ageing, we noted that core spliceo-
somal genes and genes involved in synaptic function and proteostasis
were affected by age-related changes in splicing accuracy. This could
be due to higher requirements for RBP expression in neurons, as
suggestedbyour cell-type specificity analysis.We further explored this
possibility by evaluating MSRs in post-mortem brain samples origi-
nating from neurologically normal individuals and those with AD. We
found a genome-wide increase in MSRs in AD, again affecting genes
involved in synaptic functions. Given that cognitive impairment in AD
is thought to be driven by synaptic dysfunction and that ageing is the
most important risk factor for AD, these findings overall suggest that
age- and disease-associated changes in RBP expression could sig-
nificantly contribute to the pathophysiology of AD. Finally, we ana-
lysed the relative contributions of the NMDmachinery andRBP factors
to splicing inaccuracies in AD andwith increasing ageing.We observed
that the expression of RNA splicing factors appeared to produce a
larger effect. However, more research is required to disentangle the
relative contributions of specific RBPs and NMD components. Fur-
thermore, it would be important to use in vitro models and a range of
molecular tools to dissect the relationship between these processes
and the integrity of transcripts from a given gene.

We note some important limitations of this study. First, all ana-
lyses have been performed using bulk RNA-sequencing data. This is
likely to impact our assessment of splicing accuracy and its biological
impact, potentially leading to an underestimate of its effect on rarer
cell types. Second, the analyses performed in this study were based on
a strict distinction between split reads that were found in annotation
and those that were not, despite the fact that a lack of annotation does

not necessarily imply splicing error or non-functionality. Finally, given
that short-distance tandem splice sites may produce novel splicing
events with important biological functions88–90, further analyses would
be required to distinguish between these regulated novel events and
splicing inaccuracies.

Taken together, our results show that inaccurate splicing is
common and that understanding its patterns will inform our under-
standing of the role of splicing integrity in ageing and disease, parti-
cularly in the human brain. We believe that this will be key to the
successful application of RNA-targeting therapies.

Methods
GTEx v8 RNA-sequencing data download and processing
We downloaded and processed data from the IntroVerse database50,
which contains the splicing activity of 332,571 annotated introns (as
definedby Ensembl-v105) and a linked set of 1,950,821 novel donor and
2,728,653 novel acceptor junctions, covering 17,510 human control
RNA samples and 54 tissues. This dataset of exon-exon junctions was
originally provided by the Genotype-Tissue Expression Consortium
(GTEx) v844 and processed by the recount391 (version 1.0.7, https://
github.com/LieberInstitute/recount3) project.

The Illumina TruSeq library construction protocol (non-stranded
76 bp-long reads, polyA+ selection) was used in GTEx v8. Samples
from GTEx v8 were processed by the recount3 project through
Monorail91 (version 1.0.0, https://github.com/langmead-lab/monorail-
external, https://doi.org/10.5281/zenodo.5576208) which uses STAR92

(RRID:SCR_004463, http://code.google.com/p/rna-star/) to detect
and summarise exon-exon splice junctions for each sample.
Megadepth93 (version 1.0.3, RRID:SCR_022779, https://github.com/
ChristopherWilks/megadepth) was also used by recount3 to analyse
the BAM files output by STAR (version 2.7.3a, RRID:SCR_004463,
http://code.google.com/p/rna-star/), with --outSJfilterOverhangMin
parameter set to 5 (https://gensoft.pasteur.fr/docs/STAR/2.7.3a/
STARmanual.pdf). IntroVerse uses the Bioconductor R package
dasper94 (version 1.4.3, http://www.bioconductor.org/packages/
dasper) to annotate the split reads (Ensembl-v105) from GTEx v8 and
processed by recount3. Within IntroVerse each novel donor and
acceptor junction is first carefully quality-controlled (to ensure that
novel junctions could feasibly arise through splicing) and then
assigned uniquely to a specific annotated intron. Among the quality-
control criteria applied by IntroVerse, all split reads shorter than 25
base pairs (bp) were discarded as well as all split reads located within
unplaced sequences on the reference chromosomes and overlapping
any of the regions published within the hg38 ENCODE Blacklist51 (v2.0,
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-
blacklist.v2.bed.gz). This 25 bp length filter represents the minimum
intron length required for intron splicing (without the inclusion of a
portion of either of the two flanking exons). We modified the original
structure of the pipeline provided by IntroVerse and added the fol-
lowing data filters. First, samples from fresh frozen preserved tissues
were prioritised. On this basis, samples from Brain-Cortex and Brain-
Cerebellum tissues were discarded. Second, as all sex-specific tissues
and tissues with less than 70 samples (e.g. Bladder, Cells - Leukaemia
cell line (CML), Cervix - Ectocervix, Cervix - Endocervix, Fallopian Tube
and Kidney - Medulla) were discarded. Third, only samples presenting
an RNA Integrity Number (RIN) higher or equal to 6 were included in
this study, as any more stringent RIN thresholds would have reduced
excessively the number of samples available for study: i) RIN ≥ 8N
Samples Available = 4,127; ii) RIN≥ 7N Samples Available = 9,301; iii)
RIN ≥ 6N Samples Available = 13,949. Fourth, we discarded n = 555
annotated introns reported to be spliced by the minor spliceosome52

andn = 9,252 novel donor andnovel acceptor junctions linked to them.
We discarded these minor introns because, even though they repre-
sent less than 1% of all intervening sequences in the human genome,
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their consensus splicing sequences differ considerably from the con-
sensus sequences of the human introns targeted by the major
spliceosome95. These filters resulted in a new relational database,
namely Splicing intron database, which included a set of 324,956
annotated introns (Ensembl-v105) and a linked set of 3,865,268 novel
junctions, originating from 32,026 genes and 201,541 transcripts, and
covering 13,949 different human samples and 40 human tissues
(Supplementary Fig. 1a,b). All types of exon-exon junction reads were
considered (jxn_format=ALL), recount3::create_rse_manual() function
(Bioconductor R package recount3 version 1.0.7, https://
bioconductor.org/packages/release/bioc/html/recount3.html).

Calculating the reclassification rates across multiple versions of
the Ensembl reference transcriptome
Split reads were first annotated based on the reference transcriptome
Ensembl-v97 (v97) released in July 2019 and using the Bioconductor R
package dasper version 1.4.3 (https://bioconductor.org/packages/
release/bioc/html/dasper.html). Per each tissue, we compared the
introns that had been classified as novel donor or novel acceptor
junctions using v97 but were also re-annotated as annotated introns in
the Ensembl-v105 (v105), and used them as a measure of junction re-
classification. To create a normalised measure of reclassification rates
across the tissues,wedivided thenumber of novel junctions in v97 that
had been classified as annotated introns in v105 by the total number of
novel junctions that hadmaintained annotation category between the
two aforementioned Ensembl versions.

Cv97
T =

j
y

� �
ð1Þ

Let j denote the total number of unique novel donor and novel
acceptor junctions in v97 that had been re-classified as annotated
introns in v105. Let y denote the total number of unique novel donor
and novel acceptor junctions in v97 that had maintained annotated
category in v105. Let T denote the tissue studied.

This approach was mirrored to reannotate all split reads from the
frontal cortex brain tissue using four different Ensembl versions v76,
v81, v90 andv104published in July 2014, July 2015, July 2017 andMarch
2021, respectively. Reclassification rates in each Ensembl version were
again calculated using v105 as the reference annotation.

Calculating the percentage of unique novel junctions and novel
split read counts per tissue
Focusing on the novel donor category, the percentage of unique novel
donor junctions in a given tissue was calculated by dividing the
cumulative number of unique novel donor junctions across all samples
of the studied tissue by the total number of unique annotated introns,
novel donor and acceptor junctions found across the same set of
samples. Finally, we converted the resulting ratio to a percentage.

PjxT =
ΣN
i = 1xi

ΣN
i = 1xi +Σ

N
i = 1yi + Σ

N
i= 1zi

 !
*100 ð2Þ

Let x denote the total number of unique novel donor junctions within
one sample of the tissue T studied. Let y denote the total number of
unique novel acceptor junctions within one sample of tissue T . Let z
denote the total number of unique annotated introns within one
sample of tissue T . Let N denote the total number of samples studied
of tissue T . Let T denote the tissue studied.

We mirrored the method detailed above to calculate the percen-
tage of unique annotated introns and the percentage of unique novel
acceptor junctions within a tissue. Similarly, focusing on the novel
donor category, the percentage of novel donor read counts in a given
tissue was calculated by dividing the cumulative number of novel

donor reads counts by the total number of reads mapping to anno-
tated introns, novel donor and acceptor junctions across all samples of
the tissue studied. The resulting ratio wasmultiplied by 100 to create a
percentage.

PraT =
ΣN
i = 1ai

ΣN
i = 1ai +Σ

N
i = 1bi +Σ

N
i = 1ci

 !
*100 ð3Þ

Let a denote the total number of read counts that all novel donor
junctions presented within one sample of tissue T . Let b denote the
total number of read counts that all novel acceptor junctions pre-
sented within one sample of tissue T . Let c denote the total number of
read counts that all annotated introns presented within one sample of
tissue T . LetN denote the total number of samples studied of tissue T .
Let T denote the tissue studied.

We mirrored the formula above to calculate the percentage of
annotated introns and novel acceptor read counts within a tissue.

MaxEntScan score analyses
The MaxEntScan59 (MES) algorithm (version 1.0, RRID:SCR_016707,
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html)
was applied to score the 9 bp sequence at the 5’ss and the 23 bp
sequence at the 3’ss of each annotated intron and novel junction
stored on each database produced. We downloaded the Human
Primary DNA Assembly hg38 (https://ftp.ensembl.org/pub/current_
fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_
assembly.fa.gz, accessed 01-07-2023) and used the command “sam-
tools faidx Homo_sapiens.GRCh38.dna.primary_assembly.fa” to
index the sequence of the hg38 fasta file. Secondly, we obtained the
MES software from (http://hollywood.mit.edu/burgelab/software.
html, accessed 01-07-2023). Using the indexed huma.primar-
y.assemblyGRCh383.fa file, we extracted the 9 bp and 23 bp motif
DNA sequences overlapping the 5’ss and the 3’ss, respectively, of all
annotated, novel donor and novel acceptor split reads (Ensembl
v105) considered. Next, we used the MaxEntScan software to calcu-
late the scores corresponding to each motif sequence, namely the
MES scores. The higher the MES score assigned to a given sequence,
the more closely related to a real annotated splice site the sequence
is considered.

To investigate the differences in the strength implied by each
novel splice site and the analogous annotated splice site of its paired
annotated intron, we obtained the delta values of their MES scores.
Focusing on the novel donor junctions, the delta MES 5’ss (ΔMES5ss)
was calculated by obtaining the difference between the MES score
assigned to the 9 bp sequence at the 5’ss of the annotated intronminus
the MES score assigned to the 9 bp sequence at its paired 5’ss of the
novel donor junction. Similarly, to calculate the delta MES at the
acceptor sites (ΔMES3ss), we obtained the differencebetween theMES
score assigned to the 23 bp sequence at the 3’ss of the annotated
intron and the MES score assigned to the 23 bp sequence at the 3’ss of
its linked novel acceptor junction.

Calculating the genomic distance and modulo3 values
Per each tissue analysed, we calculated the distances lying between
each novel splice site and the analogous annotated splice site of their
linked annotated intron. Focusing on the novel donor junctions, we
obtained the distances in bp lying between the novel 5’ss of each novel
donor junction and the annotated 5’ss of their linked annotated intron.
We repeated this process to calculate the distances at 3’ss. Distances in
bp were calculated by following a 0-based genomic-interval approach,
as we required splicing to occur at precise annotated genomic coor-
dinates to consider splicing as accurate. For instance, focusing in a
novel donor junction whose novel 5’ss is located at the gcNovel
genomic coordinate, the distance lying between gcNovel and the 5’ss
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of its linked annotated intron gcIntron can be expressed as:

distance ðbpÞ= gcIntron�gcNovel ð4Þ

Let gcIntron denote the genomic coordinate corresponding to the 5’ss
of the annotated intron Intron (Ensembl-v105). Let gcNovel denote the
genomic coordinate corresponding to the 5’ss of the novel donor
Novel attached to the annotated intron Intron. Letdistance denote the
difference in bp between the two genomic positions gcIntron and
gcNovel within the same strand.

The formula above was mirrored to calculate the distances lying
between each novel acceptor junction and its linked annotated intron.
For the Modulo3 analysis, we restricted the analysis to the annotated
introns belonging to transcripts categorised asMANE Select96, as these
represented exact matches in exonic regions between Refseq tran-
script and the Ensembl/GENCODE. Only the novel junctions located
less than 100bp apart from annotated splice sites were considered.
This filter increased the confidence for the novel products to be
located within the adjacent exon and intron sequences, as the average
exon size corresponds to 120 bp97, whereas the mode, median and
average length of the annotated introns corresponded to 88 bp,
1,945 bp and 8,388 bp, respectively (Supplementary Fig. 28).

Calculating the Mis-Splicing Ratio measures
Focusing on the frequencyof splicing inaccuracies at the 5’ss of a given
annotated intron, the MSRD measure represent the ratio between the
cumulative number of novel donor read counts and annotated
read counts linked to the annotated intron of interest detected across
all samples of a given tissue.

MSRXT
D =

ΣN
i = 1ji

ΣN
i= 1ji +Σ

N
i = 1si

 !
ð5Þ

Let j denote the total number of novel donor junction reads assigned
to the annotated intron X within one sample of the tissue T . Let s
denote the total number of annotated intron reads for the same intron,
X , within the same sample of study. Let N denote the total number of
samples studied from the tissue T .

The MSRD and MSRA represent bounded measures between [0,1).
Focusing on the MSRD ratio, MSRD =0 would represent absence of
evidence for splicing inaccuracies at the 5’ss of a given annotated
intron, whereasMSRD� 1 would represent highmis-splicing activity at
the 5’ss of a given annotated intron.

Calculating the transcript per million measure
Given that poly-adenine (poly-A) selected RNA-sequencing data pri-
marily captures mRNA transcripts with a poly-A tail where splicing has
already occurred, hence lacking intronic sequences, the effective
length of the gene for readcount analyseswould be representedby the
length of its coding sequence. With this in mind, and to calculate the
Transcript Per Million value, namely the TPM measure, per gene, we
used the function getTPM() (recount98 R package, version 1.24.1).

Using zero-inflated poisson regression models to predict
the MSRs
Due to the sparsity of the novel split read data considered in this
project, we use a zero-inflated poisson (ZIP) regression to model the
genomic characteristics potentially influencing theMSRs at each splice
site of the annotated introns studied. We used the zeroinfl function
(pscl99 Rpackage, version 1.5.5.1). As predictors,we included covariates
encompassing diverse gene and intron-level features. The gene-level
covariates included i) the total number of transcripts of the gene
(Ensembl v105) and ii) the percent of protein-coding transcripts in
which the assessed intron may appear. The intron-level covariates

included i) the MES59 scores of the sequences overlapping the 5’ss and
3’ss, ii) the intron length in bp, iii) the mean interspecies conservation
score across 17 primate species100 (phastCons17) and iv) the mean
context-dependent tolerance score (CDTS) scores79 overlapping the
proximal intronic sequences. Assuming that cis-acting splicing reg-
ulatory sequences primarily lie within 100 bp of exon-intron junctions
in the intronic sequence101, wedefined the proximal intronic sequences
as the |+100bp sequence downstream the 5’ss of each annotated
intron, and the -100| bp sequence upstream the 3’ss of each annotated
intron (| representing the last/first base-pair of the upstream/
downstream exon). The mean phastCons17 score represents the
probability of negative selection based on the number of
substitutions100 occurring across 17 species (human and 16 primates)
during evolution. The CDTS score79 is a measure to evaluate the
sequence constraint of the human population across noncoding
regions. This score ranges between negative and positive values, with
positive values indicating regions of the human genome which have
the highest (i.e. least constrained) sequence variation across humans.
Per each tissue analysed, we discarded all annotated introns that were
shorter than 200 bp to avoid including overlapping sequences for the
conservation and constraint scores included in the model. Prior ZIP
model fitting, MSR measures were transformed to integer values. Per
tissue, the formula used to build each ZIP model corresponded to:

Y =β0 +β1X 1 +β2X2 +β3X3 +β4X4 +β5X5 +β6X6 +β7X7 +β8X8 +β9X9 + ε0

ð6Þ

where the dependent variable corresponded to: Y =MSR (MSRD or
MSRA) of each annotated intron, transformed to an integer value using
the constant 100,000. The independent variables corresponded to:
X1=number of transcripts in annotation of the gene; X2=percentage of
protein coding transcripts in which the intronmay appear; X3 =MES of
the 5’ss of the intron; X4 =MES of the 3’ss of the intron; X5=Mean
PhastCons17 score of the 100 bp sequence downstream the 5’ss of the
intron; X6=Mean PhastCons17 score of the 100bp sequence upstream
the 3’ss of the intron; X7=Mean CDTS score of the 100bp sequence
downstream the 5’ss of the intron; X8=Mean CDTS score of the 100 bp
sequence downstream the 3’ss of the intron; X9=intron length in bp;
0 =N(0, sigma2).

In total, 80 ZIP models were generated, corresponding to two ZIP
models per GTEx tissue considered (40 tissues and twoMSRmeasures
per tissue evaluated, the MSRD and the MSRA). For robust standard
error calculation of the beta coefficients, we used the coeftest(vcov =
sandwich::sandwich) function (R package lmtest102, version 0.9-40,
https://cran.r-project.org/web/packages/lmtest/lmtest.pdf). P-values
across the 80 models generated were FDR-adjusted. Beta coefficients
generated by eachZIPmodel produced in each tissuewere grouped by
covariate, generating a distribution of beta coefficients across tissues.
Prior results visualisation, beta coefficients were transformed from log
scale to exponential values, creating exponentiated beta coefficients
and indicating themultiplicative effect on theMSR for a 1-unit increase
per each independent variable. Beta coefficients were not further
adjusted due to the scaling of the dependent variable by 100,000, as
this transformation affects the scale of the outcome rather than the
interpretation of individual coefficients. Covariates were not centred
prior to model fitting in any of the ZIP models produced.

Assessing the levels of MSRs in sun-exposed versus not-sun-
exposed skin tissues
We selected all annotated introns from the Skin - Sun Exposed (Lower
leg) and the Skin - Not Sun Exposed (Suprapubic) body sites, and
evaluated their differences in MSRs at their 5’ss (MSRD) and 3’ss
(MSRA).Weobtained the commonannotated introns overlapping both
tissues (n = 245,349). In addition, to reduce any potential biases
derived fromdifferences in the sequencing depth levels of the two sets
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of samples, we only kept the common annotated introns with similar
expression levels between the two body sites by restricting the max-
imum difference in log10 mean expression to 0.005 reads (matchit()
function, MatchIt R package103, version 4.4.0, https://cran.r-project.
org/web/packages/MatchIt/vignettes/MatchIt.html). Finally, we
obtained the MSRD and MSRA values from each of the n = 245,349
annotated introns of either Skin - Sun Exposed (Lower leg) and Skin -
Not Sun Exposed (Suprapubic). To test for any significant differences
in the median distribution of these two MSR measures between the
two skin body sites, we used a one-tailed paired Wilcoxon signed rank
test function with continuity correction (wilcox_test() function, R
package rstatix104 version 0.7.1, RRID:SCR_021240, https://CRAN.R-
project.org/package=rstatix).

Analysing shRNA knockdown of RBPs followed by RNA-
sequencing data from ENCODE
From the list of 356 RBPs published by Nostrand et al. in ref. 45, we
selected 115 RBPs that had been functionally categorised as splicing
regulation, spliceosome or EJC by the authors. We also downloaded a
second list of 118 human genes published by theReactomeproject that
had been classified as involved in NMD processes [R-HSA-927802,
NMDv3.7, Browser v82], which included UPF1 and UPF2 due to their
known importance in NMD. As a control gene, we selected SAFB2, a
gene coding for anRBPwith no known impact on splicing, spliceosome
structure, EJC identification or NMD45. In total, 235 genes were con-
sidered for study. From the 235 genes initially considered, only 54 had
8 shRNA knockdown followed by RNA-sequencing data experiments
available on the ENCODE platform. A total of 8 alignment BAM files
(GRCh38 v29) were downloaded per gene, each one corresponding to
a different ENCODE experiment. Experiments were chosen based on
similarity of metadata and design. Briefly from ENCODE: i) 4 experi-
ments with RNA-sequencing data available on K562 and HepG2 cells
treated with an shRNA knockdown against a given gene, and ii) 4
control shRNA experiments against no target gene were chosen for
each gene. To extract the splicing junctions from the BAM files to a
BED12 format, we made use of the command “junction extract” made
available through the regtools software package (version 0.5.2, http://
regtools.org/). We required i) a minimum anchor length of 8 bp and ii)
a minimum and maximum intron size of 25 and 1,000,000 bp,
respectively, to call the presence of a junction. The strand information
was provided by the aligner. Prior to the extraction, alignment reads
were sorted and indexed using the commands sort and index, both
made available through the SAMTOOLS105 software (version 1.16.1,
RRID:SCR_002105, http://htslib.org/). We then applied a similar data
analysis to the one originally published by IntroVerse, and created a
separate database for each ENCODE shRNA knockdown project, in
which samples were clustered following a case/control grouping cri-
teria. Case samples corresponded to the experiments in which a gene
had been targeted for knockdown, whereas control samples corre-
sponded to untreated controls in which no gene had been targeted.
This database stored splicing information about n = 276,589 unique
annotated introns (Ensembl-v105) that were found across the 4 shRNA
knockdownand 4 control experiments studied per each of the 54 RBPs
evaluated. From the 276,589 annotated introns stored, 163,099 pre-
sented evidence of at least one type of novel donor or novel acceptor
splicing event. It also included 344,713 novel donor and 617,016 novel
acceptor junctions, covering 185,022 transcripts, 25,578 genes and 432
ENCODE experiments. To account for any differences in read-depth or
RIN numbers across the different samples and experiments compared,
weonly considered the annotated introns thatwere commonacross all
experiments. Formore details about how theMES, distances,modulo3
and MSRmeasures were calculated, please refer to the corresponding
Methods sections in this manuscript. To detect any significant differ-
ences for each gene between case versus control samples in the MSR
values of the common introns across experiments, wemade use of the

wilcox_test function (R package rstatix104 version 0.7.1,
RRID:SCR_021240, https://CRAN.R-project.org/package=rstatix). A
total of 116 one-tailed Wilcoxon tests were run, one per ENCODE
knockdown project and splice site. The p-values obtained from each
test were adjusted using the Bonferroni correction method. In those
cases in which the alternative hypothesis (H1) was accepted, we cal-
culated the probability of superior MSR outcome in case vs control
samples by using the function wilcox_effsize() (R package rstatix,
version 0.7.1, RRID:SCR_021240, https://CRAN.R-project.org/package=
rstatix).

ENCODE shRNA knockdown efficiency extraction
To obtain a measurement of the knockdown efficiency for each
ENCODE experiment, we identified a biosample preparation and
characterization document attached to 46 out of the 54 studied genes.
The efficiency is calculated by comparing protein levels in control and
knockdown cells using a western blot analysis, and reported in figures
embedded in the document. To extract the figures, wemade useof the
fitz module available from the python package PyMuPDF106 (version
1.21.1, https://github.com/pymupdf/PyMuPDF). We employed the
Tesseract-OCR (Optical Character Recognition) algorithm, available
through the python package pytesseract (version 0.3.10, https://pypi.
org/project/pytesseract/) to extract the text from the images. To
ensure high accuracy in the image to text conversion, figures were: (1)
cropped toonly contain the depletion percentages, and (2) resized to a
lower resolution to better match the training data of the OCR algo-
rithm. No additional configuration was specified to the Tesseract-OCR
engine. A perfect accuracy was observed when tested in 15% of the
samples, and outliers were manually verified. The final reported
knockdown efficiency is the average of the measurements for all four
samples.

Analysis of RBP-RNA interactions using CLIP-seq data
Given the evidence indicating that RBP expression is likely to be cell-
type specific45, we linked ENCODE RBP knockdown data with RBP-RNA
interactions supported by the binding sites of RBPs derived fromCLIP-
seq from the ENCORI platform46, as both sources of data had been
created from K562 and HepG2 cell lines. Of the 54 RBPs considered
within the shRNA knockdown analysis, only 15 RBPs related to splicing
regulation and spliceosome assembly had CLIP-seq data available for
HepG2 and K562 cell lines on the starBase/ENCORI platform. To
download data, we used the available API (https://rnasysu.com/encori/
tutorialAPI.php, accessed 03/04/2024, Assembly=hg38, GeneTy-
pe=mRNA, RBP=name of each RBP, clipExpNum=1, pancancerNum=0,
target=all, cellType=all). For each of the 15 RBPs considered, we
obtained the annotated introns with increasing MSR levels, either at
their donor or acceptor splice sites, in samples under knockdown
conditions of each RBP, namely case samples, and compared with
untreated control samples. We built a contingency table using the
number of introns displaying higher/lower levels ofMSR at any of their
two splice sites in case samples and the number of intronswith binding
sites for the studied RBP either within their intronic sequence or in
close proximity of their donor and acceptor boundaries (-/+ 100 bp).
We performed a chi-square test (function chisq.test, R package stats,
version 4.0.5, RRID:SCR_025968, https://stat.ethz.ch/R-manual/R-
devel/library/stats/html/00Index.html). The null hypothesis tested
per RBP studied corresponded to: “H0: There is no significant differ-
ence inMSR changes between the annotated introns from knockdown
versus control experiments and the number of binding sites that the
intron presents for that RBP”. We ran a chi-square test per MSR
measure.

RBP expression levels across tissues
We visualised the gene expression for 115 important spliceosomal RBP
genes across 42 GTEx v8 tissues, deriving the RBP gene list from Van
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Nostrand et al. 45. In order to gauge cross-tissue variation in expression
for each gene, the following calculations were performed on a per-
gene basis. Firstly, we obtained the cross-sample expression for each
tissue, identifying the tissue with themedian expression value, namely
tissue Y. Next, we calculated the log2 fold-change in expression for
each of the remaining 41 tissues in relation to expression in tissue Y.
Finally, the log2 fold-change expression values for each gene were
visualised as a heatmap facetted by gene functional groups. The
functional categories usedwere Splicing Regulation, Spliceosomal and
EJC, obtained from Van Nostrand et al. 45. The code to reproduce this
analysis can be accessed at https://github.com/ainefairbrother/RBP_
expression_analysis (version 1.0.0, https://doi.org/10.5281/zenodo.
7736907).

Changes in RBP expression levels with age
We downloaded raw read counts from all genes expressed within each
of the GTEx v8 tissues available on the recount3 project. We used the
function create_rse_manual() (R package recount3, version 1.0.7,
https://bioconductor.org/packages/release/bioc/html/recount3.
html). Raw counts were transformed using the function transform_-
counts() (R package recount3, version 1.0.7, https://bioconductor.org/
packages/release/bioc/html/recount3.html). To calculate the gene
expression within each sample we obtained its corresponding Tran-
script per Million (TPM) value. TPM data was used in this analysis
because all samples hadbeenobtained from the same tissue each time,
and all samples had been sequenced using the same library protocol,
polyA-selection, reducing the risk of misleading TPM comparisons107.
To know whether the expression levels of the 116 RBPs involved in
splicing regulation, spliceosomal and EJC recognition45 and the 5 NMD
genes studied were affected by age across tissues, we built a linear
regression model per RBP. The independent variable to predict cor-
responded to the TPM value in log10 scale of each RBP in each sample.
Thedependent variables corresponded to a set of covariates providing
information about the sample: age, center, gebtch, gebtchd, nabtc,
nabtchd, nabtcht, hhrdy, sex and rin. These covariates were chosen
on the basis of the principal component analysis (PCA) results pub-
lished by Fairbrother-Browne, A. et al. 108 using data from GTEx v6.
Some of these covariates were categorical, so we transformed
them into numerical values prior inclusion to the linear models. In
total, 121 linear models were run per GTEx tissue, one linearmodel per
116 RBPs and 5 NMD genes studied. Each linear model was built to
predict N TPM values per RBP, with N equating to the total number
of samples available per tissue. P-values produced by each linear
model were corrected for multiple testing using the Benjamini-
Hochberg method, producing q values. Finally, in those cases in
which the age covariate produced a negative estimate value in the
prediction of the TPM for a given RBP, it was considered that age
negatively affected the expression levels of that given RBP across the
set of samples studied.

Age stratification and sample clustering
GTEx samples were grouped by tissue following the original classifica-
tion made by recount391 (Supplementary Table 14). Samples from each
body region were then binned by age within one of these three cate-
gories 20-39, 40-59 and 60-79 years-old. Only the body sites presenting
a minimum of 75 samples, equating to at least 25 samples per age
category, were considered. These were 18 body sites in total: ADIPOSE
TISSUE, ADRENAL GLAND, BLOOD, BLOOD VESSEL, BRAIN, COLON,
OESOPHAGUS, HEART, LUNG, MUSCLE, NERVE, PANCREAS, SALIVARY
GLAND, SKIN, SMALL INTESTINE, SPLEEN, STOMACH and THYROID. To
account for differences in the RIN numbers presented by the samples
grouped in each age category, we down sampled the clusters 40-59 and
60-79 tomeet similarity with the 20-39 group, as the overall sample size
of the latter was always lower than the two former categories across all
body sites studied. The sample pairing was performed only when two

samples from each age group presented a maximum difference of 0.05
in their RIN numbers (matchit(), MatchIt R package103, version 4.4.0,
https://cran.r-project.org/web/packages/MatchIt/vignettes/MatchIt.
html) (Supplementary Fig. 19). We then applied our modified version of
thepipeline publishedby IntroVerse and created a relational database to
study the changes occurring in the splicing activity of the n= 321,663
annotated introns (Ensembl-v105) that were found across the three age
categories and 18 body sites studied. We named it the Age-Stratification
intron database (Supplementary Fig. 20). From the 321,663 annotated
introns stored, 254,416 presented evidence of at least one type of MSR
event. It also included 1,183,988 novel donor and 1,664,788 novel
acceptor junctions, covering 200,837 transcripts, 31,544 genes and
6519 samples from 40 body sites and 18 tissues. To study the effect size
of MSR produced by age at the 5’ss and 3’ss of the annotated introns
stored on the Age-Stratification intron database, we made use of their
MSRD and MSRA values. To reduce any biases in the number of anno-
tated introns considered in this comparative analysis across multiple
body sites, we only included the introns that were common across the
three age categories and all 18 tissues studied. These were a total of
n= 112,523 common annotated introns. Then, to further reduce the
likelihood of including borderline samples between the three age
groups, we only considered samples from the two most extreme age
clusters 20-39 and 60-79. Focusing on the 5’ss of the n= 112,523 com-
mon annotated introns overlapping the 20-39 and 60-79 age groups, we
calculated theWilcoxon effect size that the covariate age (i.e. 20-39 and
60-79) produced over their MSRD values. We then repeated this
approach tomeasure the effect size between age and theMSR at the 3’ss
(MSRA) of the same set of n = 112,523 annotated introns. In both cases,
wemade use of the function wilcox_effsize (R package rstatix104, version
0.7.0, RRID:SCR_021240, https://CRAN.R-project.org/package=rstatix).
All Wilcoxon tests were performed using a one-tailed test. Next,
we measured MSR differences with age after controlling for RBP and
NMD expression. To do this, we calculated the fold-change in TPM
expression of each RBP/NMD factor in the 60-79 as compared with the
20-39 years-old group, and we normalised the MSR values on the basis
of the inverse fold-change. Samples within the two clusters had been
previously subsampled to meet by RIN similarity. We then repeated the
assessment of age differences in MSR values between the two age
groups as previously described by using the Wilcoxon Effect Size
method (function wilcox_effsize, R package rstatix104, version 0.7.0,
RRID:SCR_021240, https://CRAN.R-project.org/package=rstatix). Finally,
to assess the impact of each RBP/NMD factor onMSR values, we ranked
each of the factors in terms of their contribution to age-related splicing
inaccuracies.

GO and KEGG enrichment analyses of genes containing introns
with increasing levels of MSR values in ageing samples
Using data from the Age-Stratification database, we selected all introns
overlapping the three age categories for the brain tissue. These were
n = 211,178 annotated introns. To assess any changes occurring in their
splicing activity, we compared their MSRD and MSRA measures and
evaluated the changes occurring as the age of each cluster increased.
Focusing on the MSRD value, we selected the introns presenting
increasing levels of MSR with age at their 5’ss (MSRD 20-39 < 40-
59 < 60-79 yrs). We mirrored this approach focusing on their MSRA.
Then, we obtained the gene symbol of all introns showing
increasing MSRD and/or MSRA values with age. These were a total
of n = 12,408 unique genes. Using as background the list of all
genes (n = 20,472) parenting the complete set of annotated
introns found across brain sites, we ran a GO and KEGG enrich-
ment analysis of the set of n = 8,117 unique genes. For the GO
enrichment analysis, we used the R function enrichGO (R package
clusterProfiler, version 3.18.1, RRID:SCR_016884, http://yulab-
smu.top/biomedical-knowledge-mining-book/clusterprofiler-go.
html). For the KEGG enrichment analysis, we used the R function
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enrichKEGG (R package clusterProfiler, version 3.18.1,
RRID:SCR_016884, http://yulab-smu.top/biomedical-knowledge-
mining-book/clusterprofiler-kegg.html?q=enrichKEGG#
clusterprofiler-kegg-pathway-ora).

RBP cell-type enrichment calculation
We used Expression Weighted Cell Type Enrichment (EWCE)109

(https://bioconductor.org/packages/EWCE) to determine whether
genes involved in splicing regulation have higher expression within
particular brain-related cell types than would be expected by chance.
We used two gene lists: i) a list of 115 RBPs that had been functionally
categorised as splicing regulation, spliceosome or EJC by Nostrand
et al. 45, and ii) a list of 118 human genes published by the Reactome
project that had been classified as involved in NMD processes [R-HSA-
927802, NMDv3.7, Browser v82]. In total, 233 genes were considered
for study. Our aim was to evaluate the average level of expression of
those 233 genes within the HumanMultiple Cortical Areas SMART-seq
data set, which includes single-nucleus transcriptomes from 49,495
nuclei across multiple human cortical areas. These data are freely
available through the Allen Brain Atlas74 data portal (https://portal.
brain-map.org/atlases-and-data/rnaseq). To achieve this aim, we first
downloaded the EWCE docker image (https://hub.docker.com/r/
neurogenomicslab/ewce), which includes the EWCE110 R package
(version 0.99.3, https://bioconductor.org/packages/release/bioc/
html/EWCE.html). Second, we downloaded the single-nucleus tran-
scriptomes from 49,495 nuclei across multiple human cortical areas
from https://portal.brain-map.org/atlases-and-data/rnaseq/human-
multiple-cortical-areas-smart-seq. We made use of the matrices
including exon and intron counts. For this analysis, all brain regions
sampled were included, which corresponded to: Middle temporal
gyrus (MTG); Anterior cingulate cortex (ACC; also knownas the ventral
division of medial prefrontal cortex, A24); Primary visual cortex (V1C);
Primary motor cortex (M1C) - upper (ul) and lower (lm) limb regions;
Primary somatosensory cortex (S1C) - upper (ul) and lower (lm)
regions; Primary auditory cortex (A1C).

Then, we generated the cell type annotations. Level 1) Allen
Brain Atlas provided a class and subclass label. Class had only 3 levels
(GABAergic, glutamatergic and non-neuronal), thus instead we used
the subclass label, which subdivided glutamatergic neurons into
7 subtypes, GABAergic neurons into 5 subtypes, and non-neuronal
cell types into Astrocyte, Endothelial, Microglia, Oligodendrocyte,
OPC, Pericyte, VLMC. As the number of endothelial cells (n = 70),
pericytes (n = 32) and VLMC (n = 11) nuclei was low, these were
merged into the class Vascular Cell. Level 2) used the original clusters
defined by the Allen Brain Atlas. A total of 1,985 nuclei were labelled
as Outlier Calls and were removed during generation of the cell type
dataset. We used the function fix_bad_hgnc_symbols() (R package
EWCE, version 0.99.3, https://bioconductor.org/packages/release/
bioc/html/EWCE.html) to remove any symbols from the gene-cell
matrix that were not official HGNC symbols. A total of 30,792 genes
were retained. We then used the function drop_uninformative_-
genes() (R package EWCE, version 0.99.3, https://bioconductor.org/
packages/release/bioc/html/EWCE.html), which removes informatic
genes to reduce compute time in subsequent steps. The following
steps were performed: 1) Drop non-expressed genes (n = 1,263). This
step removed the genes that are not expressed across any cell types;
2) Drop non-differentially expressed genes (n = 6,304), which
removes genes that are not significantly differentially expressed
across level 2 cell types with an adjusted p-value threshold of 1e-05.
Finally, we used the function generate_celltype_data() from the R
package EWCE (version 0.99.3, https://bioconductor.org/packages/
release/bioc/html/EWCE.html) to generate the celltype dataset. This
dataset can be accessed at: https://github.com/RHReynolds/
MarkerGenes (version 0.99.1, DOI: 10.5281/zenodo.6418604). In a
separate analysis run in R 4.2.0 (https://cran.r-project.org/bin/

windows/base/old/4.2.0/), we used this cell type data reference in
EWCE. The goal of this analysis was to determine whether the genes
of interest had significantly higher expression in certain cell types
than might be expected by chance. Bootstrap gene lists controlled
for transcript length and GC-content were generated with EWCE
iteratively (n = 10,000) using bootstrap_enrichment_test() function
(EWCE109 R package, version 1.4.0). In brief, this function takes the
inquiry gene list and a single cell type transcriptome data set and
determines the probability of enrichment of this list in a given cell
type when compared to the gene expression of bootstrapped
gene lists; the probability of enrichment and fold-change of enrich-
ment are the returns. P-values were corrected for multiple testing
using the Benjamini-Hochberg method. The code, plotting and
library versions used for this analysis can be accessed at: https://
github.com/mgrantpeters/RBP_EWCE_analysis (version 1.0, DOI:
10.5281/zenodo.7734035).

Alzheimer’s disease/control short-read RNA-sequencing data
download and processing
We downloaded from recount391 junction data corresponding to 98
fusiform gyrus samples originating from individuals with Alzheimer’s
(AD) and neurologically normal (control) individuals, which were ori-
ginally published by Friedman et al. 49 (Gene Expression Omnibus:
GSE95587)(recount3 project ID = SRP100948). RNA was extracted
from frozen fusiform gyrus tissue blocks of autopsy-confirmed Alz-
heimer’s cases and neurologically normal age-matched controls.
Standard polyA-selected Illumina RNA-seq was performed. Only sam-
ples with RNA integrity scores of at least 5 as well as post-mortem
intervals lower than 5 hr were used. We classified the 98 samples by
diagnosis, namely Control and AD groups. Since the presence of split
reads within a sample can be affected by the sequencing depth of the
sample, we subsampled both sets of samples to match them by map-
ped read depth similarity. This reduced both sets to 24 samples each.
We next built a database following the methods indicated in the pre-
sent manuscript. This database included a set of 245,738 annotated
introns (Ensembl-v105, 149,649 of them with no evidence of mis-
splicing and 96,089 introns with at least one linked novel split read),
and a linked set of 219,658novel junctions (125,085 novel acceptor and
94,573 novel donor junctions), originating from 23,999 genes and
181,284 transcripts (Supplementary Fig. 25 and Supplementary
Fig. 26a-d). To compare differences in splicing accuracy between the
annotated introns found across the 48 samples studied, we made use
of theirMSR values. To avoid potential biases derived fromdifferences
inmean expression levels, we only considered those annotated introns
overlapping both groups of samples that displayed a maximum dif-
ference in their log10 expression levels of 0.005 (matchit() function,
MatchIt R package, version 4.4.0, https://cran.r-project.org/web/
packages/MatchIt/vignettes/MatchIt.html). Mean expression levels
were measured by obtaining the average number of split reads
supporting the presence of each annotated intron across all
samples of each group. This subsampling process reduced both
distributions of introns to 193,487 in each sample category
(Supplementary Fig. 26e,f). In all downstream statistical tests
performed, we used one-tailed paired Wilcoxon tests to evaluate
differences in the distribution of MSRs at the donor and acceptor
(i.e. MSRD and MSRA) values between the annotated introns
overlapping the AD and control sample groups. We measured
MSR differences in AD as compared to control samples after
controlling for RBP and NMD expression. To do this, we calcu-
lated the fold-change in TPM expression of each RBP/NMD factor
in AD as compared with the control cluster, and normalised MSR
values on the basis of the inverse fold-change. Samples within the
two clusters had been previously subsampled to meet by RIN and
sequencing depth similarity. We then repeated the assessment of
AD/control differences in MSR values between the two disease
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groups as previously described by using the Wilcoxon Effect Size
method (function wilcox_effsize, R package rstatix104, version 0.7.0,
RRID:SCR_021240, https://CRAN.R-project.org/package=rstatix).
Finally, to assess the impact of each RBP/NMD factor on MSR values,
we ranked each of the factors in terms of their contribution to AD-
related splicing errors (i.e. AD-related effect size).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This manuscript processes publicly available RNA-sequencing data
that is already in the public domain. To download each of the RNA-seq
datasets studied, we used the recount3 R package (version 1.0.7,
https://github.com/LieberInstitute/recount3), to download 1) data
corresponding to the GTEx v8 project (Supplementary Table 14); and
2) projectID = “SRP100948” (Gene Expression Omnibus: GSE95587).
Bam files from the ENCODE Gene Silencing Series were downloaded
using the R code https://github.com/SoniaRuiz/recount3-database-
project/ (https://doi.org/10.5281/zenodo.14204939, v2.0.0), R script
‘29_ENCODE_download_bams.R’, which was adapted from: https://
github.com/guillermo1996/ENCODE_Metadata_Extraction (version
1.0.2, https://doi.org/10.5281/zenodo.7733986). The five SQL data-
bases (Splicing, Splicing-2-reads, Age-stratification, Encode-shRNA and
AD-control) described in this manuscript, which are generated from
the publicly available RNA-seq datasets described above, are available
for data download at https://zenodo.org/records/14307072 (https://
doi.org/10.5281/zenodo.14307072) and https://rytenlab.com/browser/
app/splicing_accuracy_manuscript_databases. Supplementary Tables
are available at https://zenodo.org/records/14307072 (https://doi.org/
10.5281/zenodo.14307072).

Code availability
The repositories https://github.com/SoniaRuiz/recount3-database-
project (version 2.0.0, https://doi.org/10.5281/zenodo.14204939) and
https://github.com/SoniaRuiz/splicing-accuracy-manuscript (version
2.0.0, https://doi.org/10.5281/zenodo.14204490) contain the code (1) to
generate the five sqlite databases described in this manuscript and (2) to
replicate all analyses, figures, tables and supplementary information
included in this manuscript, respectively. All analyses were performed in
R version 4.0.2 (https://cran.r-project.org/bin/windows/base/old/4.0.2/)
(Ubuntu 16.04.7 LTS). The code used to obtain the metadata and extract
the bam files associated with each ENCODE shRNA knockdown data was
adapted from https://github.com/guillermo1996/ENCODE_Metadata_
Extraction (version 1.0.2, https://doi.org/10.5281/zenodo.7733986) and
https://github.com/guillermo1996/ENCODE_Splicing_Analysis (version
1.0.1, https://doi.org/10.5281/zenodo.7733984). The code to calculate the
expression levels of the RBPs known to contribute to splicing and its
regulation across body sites can be accessed at https://github.com/
ainefairbrother/RBP_expression_analysis (version 1.0.0, https://doi.org/
10.5281/zenodo.7736907). The code to reproduce the cell type specificity
analysis of the set of RBPs known to contribute to splicing and its reg-
ulation, and using as reference the drop-seq data from multiple cortical
regions (Allen Brain Atlas) is available at: https://github.com/
mgrantpeters/RBP_EWCE_analysis (version 1.0, https://doi.org/10.5281/
zenodo.7734035). The code to generate the cell type dataset using the
function generate_celltype_data() from the R package EWCE, can be
accessed at: https://github.com/RHReynolds/MarkerGenes (version
0.99.1, https://doi.org/10.5281/zenodo.6418604).
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